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ABSTRACT 

After a  review of heat and mass transfer theory relevant 

to heat pipe.performance, math models are developed for cal- 

culating heat-transfer iim itations of high-temperature heat 

pipes and heat-transfer lim itations and temperature gradient 

of low temperature heat pipes. Calculated results are com- 

pared with the available experimental data from various sources 

to increase confidence in the present math models. 

For the convenience of the users of the present theory, 

complete listings of two computer programs for high- and low- 

temperature heat pipes respectively are appended to the report. 

These programs Enables the performance of heat pipes with 

wrapped-screen, rectangular-groove or screen-covered reCtdrJgUk%? 

groove wick to be predicted. 
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ABSTRACT 

After a review of heat and mass transfer theory relevant 

to heat gipe.performance, math models are developed for till- 

culating heat- transfer iimitations of high-temperature heat 
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pared with the available experimental data from various sources 

to increase confidence in the present math models. 

For the convenience of the users of the present theory, 
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NOHE?JCIJ'.TDRE 

a half,of groove width, Eq. (2.15) 

cross-sectional area, Eq. (2.4) 

a constant in Eq. (2.16) 

permeability factor for capillary structure, Eq. (2.13) 

frictional coefficient, Eq. (2.9) 

liquid specific heat at constant pressure, Eq. (2.28) 

correlation constant, Eq. (2.48) 
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effective diameter of capillary pores, Eq. (2.49) 

diameter of vapor flow passage, Eq. (2.9) 

coefficient for loss of dynamic pressure, Eq. (3.16) 

'gravitational acceleration, Eq. (2.2) 

liquid rise in capillary tube, Eq. (2.2) 

fully wetted liquid height in capillary groove, Eq. (2.6) 

heat of vaporization, Eq. (2.42) 

effective thermal conductivity of liquid saturated 
wick, Eq. (2.24) 

thermal conductivity of liquid, Eq. (2.24) 

thermal conductivity of wick material, Eq. (2.24) 

total liquid mass flow rate, Eq. (2.13) 

liquid mass flow rate per groove, Eq. (2.20) 

liquid mass flow rate ?er unit length of evaporator 
or condenser, Fig. 2.6 

vapor mass flow rate per unit of vapor flow area, Eq. (2.50) 

maximum vapor mass flow rate per unit of vapor flow 
area, Eq. (2.59) 
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Nomenclature (continued) 
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pf 

pg 
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Q max 
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rl'r2 

Mach number, l?q. (2-54) 

number of grooves, Eq. (3.19) 

ix&d transport factor, Eq. (3.6) 

Liquid pressure, Eq. (2.13) 

vapcr press-ure, Eq. (2.9) 

gas stagnation pressure, Eq. (2.51) 

vapor pressure, Eq. (2.44) 

LiTlid pressure, Eq. (2.44) 

capillary pumping pressure, Eq. (2.1) 

pressure drop due to liquid flow resistance, Eq. (3.1) 

pressure drop due to vapor flow resistance, Eq. (3.15) 

average pressure drop due to vapor flow resistance, Eq. (3.26) 
pressure drop due to gravitational force, Eq. (3.14) 

wetted perimeter, Eq. (2.4) 

heat transfer rate per groove per unit length, Eq. (2.36) 

heat transfer rate par unit area, Eq. (2.48) 

heat transfer rate, Eq. (3.11) 

maxjmum heat transfer rate, Eq. (2.59) 

radius, Eq. (2..3j 

radius of vapor bubble, Eq. (2.24) 

effective capillikry radius for liquid flow, Eq. (2.13) 

inner radius of heat pipes container, Fig. 2.1 

radius of vapor flow passage, Fig. 2.1 

principle radius of curvat-ure of meniscus, Eq. (2.1.) 
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Nomenclature (continued) 

ReW 

t 

T 

Tc 

Te 

T g 

ATC 

ATe 

TO 

U 

ii 

V 

wb 

XtY 
z 

z a 

% 

2 e 
2 t 

radius of capillary tube, Eq. (2..5) 

equivalent radius of capillary structure, Eq. (2.8) 

Reynolds number based upon axial velocity and 
radius, Eq. (2.11) 

Reynolds .lumber based upon radial velocity at tube 
wall and radius, Eq. (2.11) 

thickness of wick structure, Eq. (3.3; 

Temperature, Eq. (2.29) 

condenser wall temperature, Eq. (3.30) 

evaporator wall temperature, Eq. (2.30) 

vapor temperature, Eq. (2.31) 

temperature difference defined as (Te-Tgj, Eq. (2.40) 

temperature difference defined as (Tg-Tc) I Eq. (3.30) 

stagnation temperature, Eq. (2.52) 

axiai velocity, Eq. (2.9) 

bulk average axis1 velocity, Eq. (2.9) 

radial velocity at tube xall, Eq. (2.11) 

Neber number, Eq. (2.60) 

co-ordinate axes, Eq. (2.29) 

axial distance, Eq. (2.9) 

length of adiabatic section, Eq. (3.4) 

length of condenser, Eq. (3.4) 

length of evaporator, Eq. (3.4) 

total Length of heat pipe, Rq. (3.3) 
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Nomenclature_ (continued) 

defined as (dpf/dz)/pf, Eq. (2.14) 

ratio of specific heats, Eq. (2.54) 

groove depth, Eq. (2.16) 

porosity of capillary structure, Eq. (2.24) 

wetting angle, Eq. (2.5) 

liquid dynamic viscosity, Eq. (2.13) 

vapor dynamic viscosity, Eq. (e.18) 

liquid density, Eq. (2.13) 

vapor density, Eq. (2.20) 

gas density at stagnation state, Eq. (2.52) 

surface tension, Eq. (2.1) 

shear stress at tube wall, Eq. (2.9) 

nondimensional temperature, Eq. (2.31) 

heat pipe elevation angle, ~q. (2.41) 

groove width, EG. (2.22) 
I 
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I. INTRODUCTION 

An Integrated Cryogenic Cooling Engine System' (ICICLE) ' 1' 
currently under study at Goddard Space Flight Center is an 

attractive concept for providing long life cryogenic cooling 

space. Fig. i.1 is a schematic illustration of the ICICLE 

System concept. A mini.ature Vuilleunier (VM) cycle cryogenic ' 

engine is the central cooling refrigerator. The engine has 

three temperature regions: a hot volume (z900° K), an ambient 

temperature volume (~310~ IO and a cold volume (~~75~ K). The 

VX engine operates on thermal power which is provided by a 

radioisotope. Because safety considerations will dictate the 

location of the isotope and experiment requirements will 

dictate the location of spaces which must be cooled, the corn- . 

ponents of the ICICLE System will be distributed on a space- 

craft. Consequently, heat pipes ranging from cryogenic to 

liquid-metal temperatures are used to couple the VM engine to 

other components of the system. 

An objective of this research is to develop math models 

for predicting performance of heat pipes of various wick 

structures (e.g. wrapped-screen6 open-groove and screen- 

covered-groove wicks) and temperatures ranging from cryogenic 

to liquid-metal temperatures. As far as possible, the confi- 

dence in theoretical predictions will be established by com- 

parison of theory with available experimental data. 



Section II below isdevo'ied to a review of Seat and maas 

transfer theory leading to the development of present math 

models which is described in Section IIT. Also included in 

Section XII are comparisons of present predictions with avail- 

able experiments. For the convenience of ',rsers of the present 

math models two complete program listings for salcu.Utlng 

performance of low- and high-temperature heat. pipes respectively 

are appended to the report. 

Conclusions and recommendations for further work are given 

in Section LV. 

_- _ _-.. -.. ..-__ ____ 

r"ip;ure 1.1 Schematic i?ll:stration of the IZlClR 
system concept 
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1. Introductorv Remarks 

II. REVIEW OF HEX' AND MASS TPJLNSFER THEORY 

A well-known metnod for the transfer of a large 

of heat with small temperature drop consists of the evapora- 

tion of a liquid, transport of the vapor through a duct, and 

subsequent condensation. In order to work continuously, the 

condensate must be returned to the evaporator. Ordinarily 
'. 

this step is accomplished by gravity or by a pump. In a hea+. 

piw2, the return of liquid is accomplished by a wick of 

suitable capillary structure. 

T!x principle of operation of a simple cylindricai heat 

pipe is shown schematically in Fig. 2.1. The wick is saturated 

with a p!otting liquid. In the steady state the liquid temp- 

erature inthe evaporator is maintained higher than in the 
, 

condenser by an external heat source. The resulting differencre 

in vapor pressure Ap drives g vapor from the evaporator to con- 

denser. The depletion of liqdid by evaporation causes the 

vapor-liquid interface in the evaporator to retreat into the 

wick surface and a capillary pressure is developed. This capil- 

lary pressure pumps condensate back to the evaporator. The 

heat pipe can operate without drying out the wick as long as 

the capillary pressure term is greater than or equal to the 

sum of pressure drops due to liquid and vapor flow resistance 

and gravitational forces acting on the liquid. 

3 



_.
.. 

. 
. 

. 
..-

: 
- 

, 
.- 

“. 
_.

...
 

_ 
,,_

..,
,..

_.
._

.,_
 

-,.
-.-

. 
._

I..
 

1 
..,

- 
.-.

 
,-,

 
.“

,..
._

 
. 

/ 
F@

JE
 2

. 
i 

Sc
he

m
at

ic
 d

ia
gr

am
 o

f 
th

e 
pr

3n
cl

pl
e 

of
 

cr
pe

ra
tio

n 
of

 
a 

he
at

 
pi

pe
 



The temperature drop of a heat pipe equals to the sum of 

the temperature drops at the evaporator, vapor flow passage 

and condenser. Because of the usual thinness of wick strut-. 

tures and the small temperature drop at the vapor flew passages, 

the heat pipe exhibits a thermal conductance greatly in excess 

of that which could be obtained by the use of a homogeneous 

piece of any known metal. 

However, unlike sol.id heat conductors, heat pipes cannot 

be characterized by a sincgle property as equivalent thermal 

conductivity. Limitations and thermal conductance of a ht?at 

pipe are dependent upon not only the size, shape and materials 

of the heat pipe but also its heat transfer rate, wick struc- 

:; 

; 
_ i 

ture and working fluid. Heat pipes using working fluids 

ranging from cryogcns to liquid metals have been developed. 

Different types of wick structures have been used; several 

examples 3 are ShGWn in Fig. 2.2. Heat and mass transfer theory 

\; 

c 

relevant to heat pipe performance are reviewed below. 

2. Capillary Pressure in Wick Structures 

The well-known Laplace and Young equation for the capil- 

l.ary pressure difference, Apt, established at any point of a 

liquid vapor interface is 

AL’, = all/r, $0 l!r2), (2.1) 

in which r1 and r2 are the princiiaal radii of curvature of 

meniscus and u the surface tension. The commonest method cf 

measuring presswe differences across the meniscus in a 
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capillary- is the observation of vertical liquid rise, h. 

A% can then be related to h by the equation 
. 

AP, = (P, - py)ght (2.2) 

where pf is the liquid density, p g is the vapor density and 

g is the gravitational acceleration. For an approximate 

treatment of the capillary rise, when the radius of curvature 

of the meniscus is much smaller than the capillary ri.sc, 

Eq. (2.1) can be reduced to a simpler relation with one radius 

of curvature, r, and the pressure-,difference equation becomes 

APO = 2u/r = (pf - pg)gh. (2.3) 

In the case of a perfectly wetting liquid in a capillary tube, 

t;ic radius of curvature of the surface of the meniscus r apgroxi- 

mates the hydraulic radius of the capillary, R, defined as 

R = 2A/L?', (2.4) 

where A is the cross -sectional area and 8 the wetted perimeter. 

If the liquid, however, does not wet the capillary surface 

completely, an angle of contact between the liquid and the 

solid surface, 0, will be observed and the radius of curvature 

becomes r = R cos 8. Then, the capillary pressure diZfcrences 

and the vertical liquid rises can be accertained by the 

relation 

ApC = (Pf - Pg)gh = 2a cos e/R.. 

7 

(2.5) 



. 

*- - 

f 

Figure 2.3 Liquid rise in a cap5llary paovts 
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Fl&rure 2.4 Calculated fully wetted llqcis? rise in c~.pillary 

~OOV@ s 4 
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FQure 2.5 Measured dimensiogless liquid rise in 
capillary Rmoves 
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The liquid-vapor interface in a capillary groove under 

the action of gravity is shown schematically in Fig. 2.3. 

Experisontal and theoretical studies of liquid interfaces 

in different shaped grooves have beein made by Breasler and 

Wyatt4. It was found that both the measured and the cal- 

culated fully-wetted height can be represented accurately by 

a similar relation as given in Eq. (2.5) 

Apt = (P, - Pgkrhf = 2cJ cos e/ii 

as shown in :?igs. 2.4 and 2.5, when R for an open groove of 

CTOS3 -sectional area, A, wetted perinctcr,e , and width, w, 

is calculated by the equation 

instead of Eq. (2.4). 

Hence capillary pumping 

calculated by the equation 

R =: =b’ (B-w 1 

AP, = 20 CO8 8/-E 

(2.6) 

(2.7) 

pressure, when p 9 cc pf, can be 

(2.8j 

with RE designated an equivalent radius defined as 2A/r for 

capillary tubes and 2A/(P-w) for open capillary grooves. 

3. Vapor Pressure Drop 

A stationary vapor control. volume of diameter D and g 
width ciz :p.i,th mass transfer per unit width m' is represented 

in Fig. 2.6 with the terms which appear in the momentum 

11 
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Figure 2.6 An elementary control volme for vamr flw 
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equation, where m ' may be positive, zero or negative de:?end- 

ing upon whether the evaporator, adiabatic seation or con- 

denser of a heat pipe is under consideration. The principle 

of conservation of axial momentum requires chat 

D 2 * 
dpg/dz = -8 2 -2cfpgu /Dg - 8(d /O d pg u2rdr/dz)/D2, 9 (2.9) 

in which p 3 is the vapor prcssure, z  is the axial distance, 

cf is the skin friction coefficient ~s/(~~~~,"2!, Re is the 

Reynol.ds number pgiiD d % '% is the vapor dynamic viscosity, 

- u is the vapor velocity, and u is the vapor bulk average 

velocity. 

Integration of Eq. (2.9) from z = 0 to z  = zt(=ze+za+zc) 

yields a relation for the total vapor pressure drop 

Apg = / =t o (2zfpg= '/Dg)dz. 

It was noted in the above integration that u = 0 at both ends 

: 

:. 
: : 

of a heat pipe. This Eq. (2.10) can be evaluated if the skin 

friction coefficient cf is known. 

The talues of cf for laminar flow may be obtained from 

numerical solu+%orl of complete Wavier-Stokes equations for 

the tube fizz h wall suction and injection. The dependence 

* 
W ith negative m ' axial momentbn flux associated with m '(=m'u) 
may be subtracted from the righthand side of Eq. (2.9); but 
for heat pipe application condensation occurs at the vicinity 
of theliquid-vapor interface where u is small, so it is neg- 
lected in the present analysis. 

13 
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Fimre 2.7 Friction coefficient for the fully devel.opcd flou. 
0, exact numerical solutionl empirical , 
Eq. (1.11). 
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of the fully developed cfXe on the wall Reyzlolds number 

Rew(=[' vl) ./u 
9 57 53 

) from Yuan and Pinkclstein's solution 5,6 is 

shown in Fig. 2.7. It can be seen in this figure that the 

empirical equation 

cfRe = l/(0.048 -t- 0.0494/(4.7 + Rew)"-"1, (2.11) 

accurstdly represents the exact numerical data for negative 
. . as well as positive Re,. It can also be seen in this figure 

t:lat at Rew = 0 EC:. (2.3.l) reduces to 

c Re = 16/Re, 
f 

(2.12) 

which is the well-known Xagen-Po::seuilla solution for the 

fully developed tube flow without wall mass flux. 

It should be noted that in the above derivation of 

Eq. (2.19) for the vapor--pressure drop complete recovery 

of iynamic pressure due to vapor *.relocity has been assumed. 

However, 1.1; can be seen in Fig. 2.7 that the friction coef- 

ficient cf, and therefore the velocity gradient at the wall 

alsc, becomes zero at Rev, = -4.5978. At further increase 

in suction, negative velocity gradient exists at the wall; a 

and reverse flow is likely to occur. When the flow reverse? 

occurs, the recovery of dyn&mic oressure becomes difficult7. 

Unfortunately, no -quantitative information is available at 

the present time to account for t;ic loss of dynamic pressure 

at reverse flows. This information is urgently needed, 

because most heat pipes have large /Raw/ values at tne crTA!tzser. 

15 



4. Liquid Pressure Droe 

For the flow of liquid through capillary structures, the 

liquid prensure gradient in the axial direction dpf/dz may be 

calculated by the equation 2 , 

dpf/dz = cufmf/(Ar~pf) r (2.13) 

where c is .a dimensionless constant depending on the detailed 

geometry of the capillary structure, of is the liquid dynamic 

viscosity, mc: is the liquid mass flow rate, A is the total & 
cross-sectjonal area for liquid fltrd, re is the effective 

hydraulic radius for liquid flow , and pf is the liquirl 

density. For non-connected parallel. circular cylinder c = 8, 

and for concentric annular c = 12. However, for wrapped ..- 
I 
,' 

screen the value of c is uncertain and dependent upon the 

screen mesh size and the wrapping tightness. I. .' :. 
For liquid flow in passages of simple geometry such as 

those of open and closed grooves shown in Figs. 2.8, expres- 

sions for the pressure drop may be derived by theoretical 

consideration. The governing equation for the fully developed 

I 

. 

1 
1aAnar flow of liquid in grooves can be written as 

a%j3x2 + a2u/ay2 = Q, (2.14) : 

where a is defined as (dpf/dz)/uf. Eq. (2.14) can be solved 
*. 

with appropriate boutrdsry conditions. For example, for flow 

! 

; 
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L  

in  a n  o p e n  rec tangu la r  g roove  a S > f Fig, 2 .9  th e  b o u n d a r y  cond i -  

tio n s  d ry?  : 

u  =  0 , @  x - +  a  &  y =  0 ; a n d  a u /ay  =  0 , @  y =  6 ; (2 .15)  

a n d  so lu t ion o f E q . (2 ,141  m a y  b e  s o u g h t in  th e  fo r m  

u  =  B ( a 2  - X 2 ) Y  (6  - Y /2 )  (2 .16)  

wh ich  sat isf ies th e  b o u n d a r y  cond i t ions  (2.15).  In  acco rdance  

wi th th e  m e th o d  o f G a lerkin*,  w e  o b ta in  fo r  d e te rm ina tio n  o f 

B  th e  e q u a tio n  

i ?2u /~ x 2 + 3 2 u /3y2-~) (a2-x2)y (S-y /2)dxdy  =  0 . (2 .17)  
x = 0  y = o  

w h e n c e  

B  i: 5 a /[4 ( a 2  +  a 2 ,] (2 .18)  

a n d  th e  requ i red  so lu t ion is 

u  =  -5~(a2-x2)y(a-y /2) / [4(a2+~2) l .  (2 .19)  

N o w  m a s s  flo w  rate in  e a c h  g roove  m l m a y  b e  d e te r m i n e d  by  

th e  e q u a tio n  

m l =  2  Ja  I6  
x = 0  y = o  

p fudxdy . (2 .2G)  

O n  subst i tut ion o f u  f rom E q . (2 .19)  in to th e  a b o v e  E q . (2 .20)  

th e r e  is o b ta i n e d  

1 9  



ml = -5PfaA3/9 (a2d) (2.21) 

or 

r 

dpf/dz = -18(w2+462)~ml/(5w363pf)~ (2.22) 

for the liquid pressure drop in an open groove of depth 6 and 

width W. 

If similar analysis is made for J.iquid flows in covcrad 

grooves of depth 6 and width w, the resultant expression for 

the pressure gradient will be 

dpf/dz = -72 (w2+62) ,ynpu363Pf) l 

5. Heat Transfer --1 
The primary heat-transfer mechanism for heat pipes is 

thermal conduction through the liquid saturated wick with 

surface evaporation at the evaporator section and film 

condensation with conduction through t-he liquid-saturated 

wick at the condenser section. Values of the thermal can- 

ductivity of heterogeneous materials such as the liquid- 

saturated wick are dealt with by Gorring and ChurchiI.1'. 

The simplest configurations, as shown in Fig. 2.10, 

consist of arrangement of wick material and liquid in series 

or parallel. The exact solutions for these cases are r5- 

spectively, 

(2.23) 

K. = KfKw/kKw + Kf(l-e)l (2.24) 

i . . 20 , 1 



Direction of heat transf-r 

Series arran~ment 

Dlrectfon of heat transfer 
C 

Parallel arrangement 

FQpe 2.10 Heat transfer model for series or parallel a%?Wwe?ment of 
ltquid-satzrated uick strxtwxos 
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. . 

Flmm 2.11 fiat transfer model for cubic array of trunc;rted 
spheres 

22 



. . 

and 

% = EKE + (l-e)K, (2.25) 

in which E is the volume fractron of liquid, K, is the thermal 

conductivity of the liquid saturated wick, Kf is the thermal 

conductivity of the liquid, and K, is the thermal conductivity 

of the wick materlal.. Thermal conductivities for the liquid 

saturated wick of distributed cylinders and spheres can be 

calculated respectively by. the equations 

Ke = K~[K~+~ -(l-c) (Kf-KwlI/[Kf+~+(l-c) (Kf-Kw)j I (2.26) 

and 

Ke = Kf[2Kf+Kw -2(1-e) (I~f-K,)1/[2Kf+~+(1-s) (Kf-Kw)l. (2.27) : i 

The therm&l conductivity of a simple cubic array of adjoined; 4 
truncated spheres having circles of contact of radius 1: as 

illustrated in Fig. 2.11 is as follows: 

Ke = KJ[(R/rl + (ln2R/r)/nl, (2.28) : 

yhen fluid surrounding the array is postulated to have zero 

conductivity and the radius of contact was assumed to be small 

relative to the radius of the spheres. 

For some simple geometries , analytical expression for 1 I 

film evaporation and condensation can be derived in a straight- ; 

forward manner. For example, for the case of film evaporation 

from rcctanqular grooved wick as shown in Fig. 2.12 with Kf C< Kw 

23 I 



if liquid depletion is neglected, the conduction equation 

for the liquid in grocves may be written as: 

a2~/ai2 + a2T/ay’ = 0, 

and the approximate boundary conditions may be written as: 

@  x = 0, x = w 6 y = 0: T = evaporator wall temp- 
erature, T ei 

@  y = 6: T - vapor temperature, Tg. 

On the introduction of I$ defined as: 

9 = (T-T,)/ (T~-T,) , 

Eq. (2.31) becomes 

a2+/ax2 + a2+/alr2 = 0 

with boundary conditions 

@  x = 0, x = 0: 6 y = 0: @  = 0; and @.y - 6: 9 = 1. 

A solution of Eq. (2.32) with boundary conditions (2.33) by 

the separation-of-variables method is: 

(2.29) : 

(2.30) 

(2.31) 

.: 
; 

.; 
(2.32) ; 

(2.33) 

Q = (2/lr) ; {[(-l)"+l + l]/n]sin(nnx/o)s:nh(nHy/~)/sinh!nH~/~) i 
n=l r" -; 

(2.34) i 
f 

Hence the temperature of the liquid is given by the equation 

T- T,+(T~-T,) (2/n) L I[(-l)"+l]/n]sin(n~x/w)sinh(nny/w) 
n=l 

/sinh(nn6/n).. (2.35) 
j 

24 9 
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?Itgrt? 2.13 f(b:b) versus ;6/dj. x, exact f(b/ti) Eq. (1,38)# 
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ThZ h9.f. transfer per unit length of the rectangular groove 

cl' can then be calcuilated by the equation: 

42 
q’ = ‘2Kf / o (aT/Q’)y=O b, 

that is 

0,'~~) = S'/Mf (4/n) F [2/(2m+i)lcoth[C2m+~)~~/~l~. 
n=O 

Now let 

f(l5/w) E r/I4 c" [(2/(2m+l)coth((2mcl)~~/~)j}. 
m=O 

Fig. 2.13 shows that the exact values of f(6/w) can be 

represented accurately by the equation 

f(a/w) = 0.185 th[5.4(6/w)l. 

Hence the cvaForat.or temperature drop for the rectangular 

grooved wick with Kf << Kw can be calculated accurately by 

the ed;;lacicn 

AT e_ = 0.185 q'(th[5.4(d/o)l)/Kf. 

6. Kiscellar.eous Topics 

(2.36) 

(2.37) 

(2.36) 

(2.39) 

(2.40) 

(i) Gravitational force. The pressure drop due to gravity 

Aps in a col~nn cf liquid as shown in Fig. 2.14 can be cal- 

culated simply by the equation 

A% = pfgtt sin $, (2.41) 

where bps is definec; as (p2 - pl) and g is the gravitationai 

acceleration. 

27 
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,.. . 

Figwx? 2.14 hassum drop dua to gravitational force, 
A?S'pz'Pl 
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(ii) Vapor temperature drop. The Clausius-Clapeyron 

equation with the perfect gas approximation relates T ar.d 9 
along the saturation line 

where hfg is the k,eat of vaporization. Hence the vapor 

temperature drop AT 9 is related to the .$apor pressure drop 

Ap, by the equation 

AT 9 = TgApg/(pghfg). 

(iii) Nucleate boiling. Imagine a spherical vapor 

bubble of radius rb in a liquid: at equilibrium 

nr 2, 
b 'p vap - plig) = 2rrbo. 

% 

(2.42) 

(2.43) 

(2.44) 

For heat pipe application pvap corresponds to the saturation 

vapor pressure at the evaporator wall temperature Te and 

pliq corresponds to the pressure of the-vapor at the evap- 

orator pg Eq. (2.44) can be written as 

Fe - P,, = 2a/rb- 

Since (pe-pgl = (Te-Tgl (dp/dT) , we can combine Eqs. 

(2.45) to get 

T,-T g = 2T$/(hfgPgrb) . 

Hence if 

Te-Tg ' 2Tg u/thfg~grb) . 

29 

(2.45) 

(2.42) wicj 

(2.46) 

(2.47) 



a bubble of radius rb will grow and nucleate boiling may 

occur. 

A large number of experimental data for nucleation 

boiling have been reported; and a number of correlation 

equations for empirical data have been derived. Rohsenowl' 

reports the following correlation equation which satisfactorily 

represents the pool nucleate boiling data of a number of 

investigators: 
l/3 

cpf (Te-‘pg) /‘hfg J Csf { &‘/ hJhfq) A[g7bf;p,) 1 - bfCpf/Kf 1 

(2.48) 

in which cpf is the liquid specific heat, 4" is the heat flux 

density, and Csf is the correlation constant ranging from 

0.002 to 0.015 dependent upon surface-fluid combinations. For 

example, for water-platinum combination c gf = 0.013 and for 

water-nickel Caf - 0.006. 

Allingham and McEntirell , made both theoretical and 

experimental studies of nucleate boiling from water-saturated 

I . 

wick material. They ?ec.::)mmend the following COrrelatiOn ; 

equation: 

6"/ tcpfG (Te-Tg 1 I = 0.072 kpfllf/Kf) -0.6~Pf0;p~~-0.21 
-. 

(DeGhf) -O=", (2.49) ; 

f’ 

30 
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where G is defined as {"/chfg, s is iiiti xick porosity and 

De is the effcctivc diameter of the.cnpillary pores. 

(iv) Sonic velocity. For gas flow with wall injection 

and suction as shown in Fig. 2.15, the maximum axial mass 

flux density A" occurs at the downstream end of the injection 

section. Qn consideration of a control volume for the in- 

jection section, the conservation of mass, momentum and energy 

requires tnat 

l n m = PU? 

PO = p + pu2, 

To = T + u2/(2Cp); 

(2.50) 

(2.51) 

(2.52! 

and the ideal gas law states that 

P,/(P,T,) = P/(W). (2.5;) 

In the abova Eqn. subscript o indicates stagnation state of 

the injected gas. In terms of Mach number M, Eqs. (2.50) 

through (2.52) may be rewritten as: 

;I* - PM/$+?& (2.54) 

PO/P - 1 + yM2, (2.55) 

To/T I 1 4. (y-1)M2/2. (2.56) 

In the above Fga. y is the ratio of specific heats, and R is 

the gas con3tant. Combination of Eqs. (2.53) and (2.S5) and 

(2.5.6) yields an expression for the density ratio 

31 
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PO/P = ;i+rM2~/[‘+(u-1)M2/2]. 

From Eqs. (2.54), (2.56) and (2.57), the following expression 

for An can be derived 

l * m = p,Fm; M[lc(r-I)M2/211'2/(l*~~2). (2.58) 

The maximum mass flux density possible x$& for a given 

stagnation condition is at M equal to unity. l II 

mmax can therc- 

fore be calculated by Fig. (2.58) with M = 1, i.e. 

(2.59) 

(V) Entrainment. For a vapor flow over a liquid surface, 

the force which tends to tear the liquid apart is proportional 

to the product of dynamic pressure pgu2/2 and square of a 

characteristic length a', and the force which holds the stirface 

liquid is proportional to the product of surface tension of 

the liqulf. u and a characteristic length a. At high velocity, 

some liquid may bc entrained by the vapor. Weber number Wb 

defined as the ratio of the two forces mentioned above, namely: 

Wb I ogu-28/r3, (2.60) 

is used as a criterion for the liquid entrainment. 
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III. PERFOIUANCE OF HEAT PIPES 

i. 
b: 

Performance of a heat pipe is dependent upon the proper- 

ties of Its working fluid. An approximate analysis of heat 

pipes with various working fluids will first be made below 

and then mathematical models for steady operation of low- 

temperature as well as high-temperature heat pipes will be 

developed. 

1. wroximate Analysis 

For qualitative comparison of heat-pipe performance with 

various working fluids, an approximate theory is to be 

developed for a simple cylindricai heat pipe at horizontal 

orientation as shown in Fig. 3.1. The following simplifying 

assumptions are made: 

!i) Liquid wets the wick completely, 

(ii) Vapor pressure losses are negligible, 

(iii) Wick thickness t is much smaller than the radius 
of the vapor flow passage, 

(iv) Heat flux density is uniform at the evaporator 
and condenser surface, 

(v) Thermal conductivity of the liquid-saturated 
wick is proportional to that of the liquid. 

The pressure balance for steady operation of this heat pipe 

can then be written 

AFC = Apf. (3.1) 
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e.. 

At the maximum heat flux Qmax, capillary pressure Apt can be 

evaluated by Eq. (2.8) with 0 - 0, i.e.. 
; . 

and liquid pressure drop due to flow resistance Apf can be 

evaluated approximately by integrating Eq. (2.131, namely: 

I' AI\pf = z % [c~fmf/(2Ttrir~pfE)Jd~. (3.3 
0 

In this Cq. (3.3) the axial distribution of mf in terms of 

(Imax can be written as: 

e 0 2 2 < ze: mf = Ornax z/ ( zehf g) 

z < 2 < (z,+z,) : e- - _ mf = *maxjh fg 

:ze"zJ < 2 2 zt: m f . = Qmax rl-tz-(ze+za)l/~,}/hfg 

(3.4 

i Substitution from Eq. (3.4) followed by integration results ;., y.' p 
y 

in the following expression for Apf: 
b1 

\ 5;' ,I.. I i 
4, $ *Pf = ~Q~~~t~l~~+2z~+z~),'!4~ h nr.r2ts.). ffg le (3.51 

k5 _i-4 I;:- _ 
p Combination of Eqs. (3.2) and (3.5) yields an expression 
&- ;. I for Qmax: 
;., I. 
s 1 Q 

mkw 
- NftC8rri,r~~/Ic~(ze+2za+zc) I}. 

36 
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Where Nf is the liquid transport factor defined as apfhfq/pf, 

and it is a function of the working-fluid properties. All 

other terms on the right h?nd side of Eq. (3.5) depend on the 

heat pipe design. Fig. 3.2 shows the values of the liquid 

transport factor, Nf, for several heat-pipe working fluids. 

The temperature gradient of a heat pipe is determined by 

the heat flux density and the radial thermal conductance of 

the wick material saturated with the working fluid in the 

liquid state. Based upon the simplifying assumptions (iii) 

and (VI described above, the conductance of the liquid- 

saturated wick U is seen to be proportional to the thermal 

conductivity of the liquid divided by the wick thickness, i.e., 

U cc Kf/t or LIT d: Qt/Kf. (3..7) 

Now for a heat pipe of fixed physical dimensions, its 

approximate operating characteristics with different work- 

ing fluid may be derived from Eqs. (3.6) and (3.7). These 

are : (a) the maximum heat-transfer capability of the heat 

pipe is directly proportional to the values of liquid trans- 

port factor of the working fluid, and (b) the Lemperature 

drop at equal heat-transfer rate is inversely proportional 

to the liquid thermal conductivity of the working fluid. 

Fig. 3.3 shows the values of the liquid thermal conductivity 

for several fluids. 
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Similarly, the approximate operating characteristics of 

heat pipes of aqua1 maximum heat transfer capability may also 

be derived from Eqs. 3.6 and 3.7. These are: (a) the wick 

thickness required is inversely proportional to the value of 

the 1iqui.d transport factor of the working fluid; and (b) the 

temperature drop at equal heat transfe.r rate is inversely 

proportional to the product of the liquid thermal canduc,tivity 

and the liquid transport factor. For the convenience of future 

refercmce, this product is named the liquid t!lcrmal conduc- 

tance factor. Its values for severai fluids are plotted in 

Fig. 3.4. i 

i 
The foregoing are the relative operating characteristics 

of heat pipes in terms of the liquid transport factor, liquid 
; 

thermal conductivity and liquid thermal conductance factor. 

The high values for the liquid-metal fluids, as cm be seen 

in FJgs. 3.2 through 3.4, indicate large heat transfer 

capability and small temperature drop for the high-temperature 

heat pipes. It is often possible to consider the high- I f i :: i :: 
tomperatxe hadt pipe as an isothermal device. On the other : i , 
hand the low values for the cryogenic- and ambient-temperature 

Fluids indicate that the temperature gradients is required 

to be considered for the low-temperature heat pipes. 

2. Perfo,rm~~ of High-Temperature Heat Pipes -- 
An seen in the above section, the temperature gradient 

for high-temperature heat pipe is expected to be'small. For 

i 5 . c ; 
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the performance, its heat-transfer capability is of main con- 
/. 

tern. Theories for the calculation of heat-transfer limita- 
. . . . 

tiona have been developed by several authors, for example, see 

Rcfs . 2 and 3, Individual limitations indicated in Fig- 3.5 
3 are considered by Kemme . Following tha work of Kenme, we 

derive a mathematical model for cylindrical high-tem;?erature 

heat pipes at various wick structures as shown in Fig. 3.6. 
;. ,:. Sonic limitation. The maximum Mach number at the 

, 
evaporator exit is unity. Por given values of vapor temper- 

ature and density at the upstream end of the evaporator 

Tg and P=, th'z maximum mass flux density Qax at the exit 

of the evaporatcr, assuming that vapor behaves like an ideal 

gas, can be calculated by Eq. 2.59, namely: 

(2.59: 

where the value of y for monatonic gases in 1.667 and that 

for diatonic gases in 1.4. As the value of ikax is related 

to the maximum heat transfe.? rate by the equation: 

iAax = Qm,/(zr2h g fg)' (3.3) 

Combination of Eqs. (2.59) and (3.9! results in an expression 

for sonic limitation: 

(3.9) 



-- 

Entrainment limitation. If the dynamic pressure of the 

vapor is excessive, some liquid from the wick-retarn system 

may be entrained. Once entrainment begins in a heat pipe, 

fluid circulation increases until the liquid-return path 

cannot accommodate the increased flow. This causes dryout 

and. overheat of the evaporator.- Weber number defined by 

Eq. (2.60) i.e., Wb E -2 p 9 u a/u, can be used as a criterion 

for the entrainment limitation. Xagnitude of the charac- 

teristic length 'a' in the calculation of the Weber number 

is dependent upon the wick structures, which can be empirically 

determined for different structures once and for all. The 

entrainment limitation can then be determined by the equation 

pgii2a/o = 1. (3.LOj 
. 

As E is related to Q by the equation 

ci = Q/(nrGpghfg) (3.11) 

Substitution of Eq. (3.11j into (3.10) yields the following 

equation for entrainment limitation: 

Qs nax = n$hfg4Z&7Z . (3.12) 
. - 

Wicking limitation. When the sum of prassure drops due 

to gravitational force aad the resistance for liquid and vapor 

flows balances the maximum capillary press:ire, wicking limi- 

tation is reached. 



The maximum capillary pressure for a given liquid-wick 

combination can be calculated by Eq. (2.81, i.e. 

*PC - 24 co9 8/S (3.13) 

where 13 is the liquid-wick wetting angle, and RR is the 

effective capillary radius which equals to 2A/e for the 

meshed-screen wick and equals to 2A/(@-wj for the wick of 

open grooves. 

The pressure drop due to gravitational force is 

calculated by Eq. (2.41), i.e., 

ApS = pfgzt sin I+. (3.14) 

The vapor pressure drop can be evaluated by integrating 

Eq. (2.9) with values of cf fcr the evaporator and adiabatic 

section being calculated by Eq. (2.11). For the condenser at 

[Re,l c 4.5978, cf values cat also he calculated by Eq. (2.11). 

However, (Re,l values at the condenser of heat pipes operating 

at this maximum heat-transfer capability are usually greater 

than 4.5978. Under this circumstance the reverse flow is 

likely to be developed at the condenser and the recovery of 

dynamic pressure at the condenser becomes difficult. At the 

present time, no quantitative information of pressure recovery 

at the condenser is available. It will be assumed that the 
dynamic pressure at the down-steam end of the adiabatic 

section will be lost at the condenser. The total pressure 

46 



can then be evaluated by integrating Eq. (2.9) from z = G to 

2 = 2, -I- za with cf values for the evaporator and adiabatic 

section being calculated by Eq. (2.111, whence 

ze+za 0.8 
APg = 1 

Q- 
2pgG2/{DgRe[G.G481 + 0.0494{(4.7+RewI II 

Q/2 
I- (8 f 

0 
pgu2rdr/Dg 2, 

z=ze+za 

The first integral of this Eq. (3.15) can be integrated in 

a straight-forward manner; and the second integral was 

investigated by Rohdansky et. al. 12 and Busse13, whose 
. results 

(8 

Where F 

case of 

Rew for 

in the present notation may be written as: 

Dg/2 
/ pgu2rdr/Dg2) 

0 ' Z=Zd+Za 
:= F(2pgii2) 

Z=ZefZa 

in first approximation is equal to unit. For the 

uniform wall heat-flux density at the evaporator, 

the evaporator may be written as Qmax/"h- z P , and w e g 
ii for the evaporator, and the adiabatic section can also be 

written in terms of Q,,, as follows: 

@  Q -(, z 2 ze: ii = 4omax z/ (*hfgpgDg 2 ze) 

(3.15) 

(3.1&j : 
i 

Hence the following equation for Apg can be derived: 

Q 
Apg = (Qm,/h.,z,) i (1~~/'np~D~') [ze,'{G.0481+ 0.0494/'(4.7+ ma): -1 x 2 11 4v e 9 r 

+ 32q 32Qmax /(n2~,hfgDg4)1 
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The liquid pressure drop due to flow resistance can be 

evaluated by integration of Eq. (2.131, (2.22) or (2.23) 

(. 
I 
;. . !' 

depending on whether the capillary wick is mad2 of wrapped 

screens, open grooves, or screen covered grooves. The 

t resultant Apf expressions written in terms of Q,,,, are as 
$. follows: 

For wrapped-screen screen wick: 

*'pf =I cQmaxuf (ze+2za+zc) / [2mp h srZ(r?-r2) 1 ffg e L g . (3.19a) 

i: 
1:: 
I. For open-groove wick: 

Apf =9Q , marpf(~2+462) (ze+2za+Za)/(5nPfhfgw363). (3.19b) 

For screen-covered groove wicks: 

c 

Apf L+ 36 Q miucpf (u2+6 ‘) :zg+2za+zc) / (5np h ClJ363) ffg l 

(3.19c) 

- 

In Eqe. (3.19b) and (3.19c) , n is the number of grooves. 

On the substitution of Eqs. (3,131, (3.141, (3.18) and 

(3.19) for the pressure differences Ap,, Aps, Cpg and Apf 

respectively into the following preasure-banasce equation, 

AP, =AP,+ bpg" Apft (3.20) 

the maximum heat-,transfer rate due to wick limitation can 

be c&lculated. 
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Boiling l.iml.tation. Nucleate boiling in the wick ~truc- 

ture of a hec: pipe may interfere with the liquid return. 

The iimiting temperature drop at the evaporator for the onset 

of nuulet;tPon can be calculated by Eq. (2.461, namely: 

T, - T g - 2Tgo/thfgPg5.J I (3.21) 
4, 

. - . 

where the value of the effective bubble radius is dependent 

upon the wick structure and it has to be determined empiri- 

cally at the present time. (Te- Tg) may be written, in 

terms of t\:e heat transfer rate, as follows: 

(Te - TgI = C),,(ri -rg)/ [:bKeztz (ri+rg) 1 (3.22) 

wit:1 the effoctxve thermal conductivity, Ke, being evaluated 

by Eq. (2.26) for the wrapped-screen wicks and by Eq. (2.25) 

Car the groove wicks. The value of porosity, Ed for the 

wrapped screen wick is dependent upon the wrapping tightness 

and the value of E for the groove wick may be calculated by 

the equation 

e - W/tn(ri-rg) 1 (3.23) 

Combination of Eqs. (2.26), (3.21) and (3.22) yields the 

following expression of boiling limitation for the wrapped- 

screen heat'piper 

Qmax = 2nTgu{I,(ri+rg)Kf[K~~% '(1-0) * (Q-r\) 1 I/{ (ri-rg) [Kf+s 

+ (J.-E) (Ki-Q) i hfgogrbl 
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and combination of Eys. (2.25) and (3.21) through (3.23) 

gives the following expression of boiling limitation for 

the groove. heat pipes: 

Q max = 2Tgo”e 
[nuKf + [n(ri+rg)-nurl~)/I(ri-rg)hfgFgrb~ (3.25) 

Computer program and comparison with experiments. A com- . ---__ 
puter program has been written for the math model developed 

~bova for the calculation of heat transfer limitation. A pro- 

gram listing together with users instruction is appended to 

the manual, Appendix A. 

An example of the calculated results using this program 

is shown in Fig. 3.7 for comparison with Kemme's experiments 15 

under t.he same conditions. It can be seen in this figure that 

the experimental data are well represented by the theoretical 

prediction. However, it should be mentjoned that values of 

the liquid-wick wetting angle f3, and the characteristic lengths 

'a' for cntrairnnent have been so chosen to give this good 

agreement. 

3. Performance of Low-Temperature Heat Pipes 

It was shown in Section I of this chapter that the temp- 

erature drops for the ambient- and low-temperature heat pipes 

are often important. Complete performance of these heat pipes 

will include not only the maximum heat transfer capability 

but also the temperature drops at various operating conditions. 

Accordingly a math model is developed to calculate these quan- 

tities. 
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Maximum heat-transfer capability. &cause of thr? low -- 
values of liquid transport factor for :he working fluids of 

the low tcmpcrature heat pipes, the most likely heat-transfer 

limitation is the wick limitation. Procedure for the cnl- 

culation of wick limitation described in the above section 

for the high-temperature heat pipe is also applicable to the 

calculation of wick limitation for the low-temperature heat 

pipes. Thus the wick limitation is calculated by equating 

maximum capillary pressure Apt of Eq. (3.13) to the swn of 

the hydrostatic pressure drop hp, of Eq. (3.14), the vapor- 

flow pressure drop Apg of Eq. (3.18) and the liquid-flow 

pressure drop Apf of Eq. (3.19). 

Ternperature$Alr-. The total temperature 

pipe is equal to the sum of temperature Arcps 

vapor flow passage and condenser. Conduction 

drop of a heat 

at the evaporator, 

model described 

in Section 5 of Chap;Ier II can be used to calculate the tempera- 

ture drops at the evaporator and condenser, respectively. 

The vapor pressure drop AT CJ can be calculated by Ciausius- 

Clopeyron Eq. (2.43) 

AT g - Ts"cg/ (P h 9 fg)' (3.26) 

where the average vapor pressure drop AFg is the difference of 

the average vapor pressures at the evaporator and the con- 

denser; it can be calculated by Eq. (3.27a) or (3.27b) below 

52 



I 

depending on whether IRewi at condenzel: is l.css or greater 

than 4.5975: 

(2~g~/"hfgPgD~){=,,:/(0.C4al. + 0.0494/i4.7+ * 
0.8 

) ) ,s ahfgze'g 

0.8 
-I- 64z,+ z,/(O.O481 f 0.0494/(4.7- ---Q) 

nhfg?g 
)) 

or 

(3.27a) 

Ai! 9 m (Q/hfg)((2Ug/BPgDzj [~,/(0.0481 + 0.0494/(4.7-k nh-- 

+ 6451 -I* 32Q/(n2pghfqD;)) (3.27b) 

These Eqo. (3.27a) and (3.27b) for Apg are obtained by inte- 

gration of Eq. (2.9) using the procedure described in Section 2 

of this chapter. 

The temparnture drop at the evaporator ATe for thin Vick 

structures can be calculated by the equa.tion 

AT J L1 Q(r~-rg)/[“zoKe(rj,+rg) I (3.28) 

where Ke is the effective thermal conductivity of the li.quid 

saturated wick which may be approximated by Eq. (2.26) for 

the wrapped scrocn wick and by Eq.(2.2G) for the sintered- 

porous-metal wick. For wick structures composed of rectangular 
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grooves with Kf <( K, evaporation occ\zring at the liquid- 

vapor interface but not at the groove fin tip, ATe expression 

.can be derived from Eq. (2.401, i.e., 

AT* = 0.185 Q th [5.4(6/w)]/(nzeKf) (3.29) 

The temperature drop at the ccrrdenser ATc for thin wick 

structures can be calculated by the equation 

(3.30) 

where the effective thermal conductivity Ke for the liquid- 

saturated wrapped-screen and sintered-porous-metal wicks can 

again be calculated by Eqs. (2.30) and (2.28), respectively. 

For wicks of rectangular grooves condensation occurs at the 

liquid-vapor i;lterface as well as the qroove fin tips; and 

liquid and groove fin conduct heat in parallel. Ke can be 

calculated by Ry. (2.251, namely: 

K* = EF .f + (~-E)K~ (3.3-L) 

where 8 is equal nw/[n(ri+rg)J. 

Computer program an2 comparison with ex~~ziments. A com- --. 
puter program for the above described math model for the low 

temperature heat pipe has been developed; bcth maximum heat 

transfer capability and total temperature drops are calculated 

at various operating conditions. The program is applicable 

to the heat pipe with wrapped-screen wick, open-rectangular- 

grocve wick or screen-covered-rectanaular-groove wick. The 
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program listing together with users instruction is given in 

Appendix B. 

The calculated evaporator temperature drop for a liquid 

nitrogen heat pipe wici: wrapped-screen wick is Flatted versus 

heat transfer rate in Fig. 3.8 for comparison with Haskin's 

experimental data under.thc same operating conditions. 

Predictions based upon the present conduc.tion model cloeely 

represents the empirical data. Also shown in Fig. 3.8 i\re 

the evaporator temperature drops calculated by the theories 

of nucleate pool boiling Eq. (2.48!, and nucleate boiling 

in wick structures Eq. (2.49). It can be seen in this 

Fig. 3.8 that nucleate boiling heat transfer theory under- 

estimate the evaporate temperature drop. For further 

improvement on the present conduction model, liquid property 

variation with respect to temperature and convection heat 

transfer should be acoountcd, as can be seen in Figs. 3.9 and 

3.10. Details of conduction evaporation model with convection 

and property variation considered are described in Ref. 14. 

The low temperature heat pipes with the wrapped screen 

wicki; have rather poor performance from the temperature-.drop 

point of view as can be seen in Fig. 3.10. The grooved heat 

pipe offers improvement in both the heat transfer capability 

and the effective thermal conductance, because the grooves 

provide d small liquid flow resistance for liquid return, and 
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the highiy conductive groove fins insure low resistance for 

heat flow. 

The present predictions for the heat transfer capability 

and temperature drops of a Dynathenn liquid nitrogen heat pipe 

with groove wicks are shown in Figs. 3.11 and 3.12 for com- 

paris0n with the experiments16 by Dynatherm under the same 

conditions. 

The above Dynatherm nitrogen cryopipe is used as an 

example to illustrate the use of the present computer program 

to generate complete performance of the low-temperature heat 

pi?es.' This heat pipe has the following specifications: 

Mean groove height, d 0.089 cm 

Mean groove width, .U 0.064 cm 

Inner diameter, Di 0.97 cm 

Ou'cer diameter, Do 1.27 cm 

NC. of grooves, n 30 

Evaporator length, ze 10 cm 

Adiabatic-section length, z, 120 cm 

Condenser length, zc 10 cm 

Empirical capillary radius, s 0.0354 cm 

Container material 6061-76Al 

The predicted complete performance of this heat pipe is 

sho*wn in Fig. 3.13 ,in which the locus of the maximum 

heat-transfer capability and the lines of constant rate of 

heat transfer are mapped on tk total temperature-drop versus 

condenser-temperature coordinates. \, 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

1. Conclusions 

In conclusion the results of this research can be sum- 

marized as follows: 

(i) Fundamentals of heat and mass transfer theory are 

reviewed with a view of application to theoretical 

analyses of heat pipes of various wick structures 

and working fluids. 

(ii) A math model for high-temperature heat pipes has 

been developed by means of which it is possible 

to predict the heat-transfer limitations of heat 

pipes with wrapped-screen, rectangular-groove or 

screen-covered-rectangular-groove wick. 

(iii) A math model for low temparature heat pipes with 

wrapped-screen, rectangular-groove or screen- 

covered-rectangular-grGzze *qick has also been 

developed by means of which complete performance 

of heat pipes (e.g., see Fig. 3.3) including both 

heat transfer limitations and temperature gradients 

at different opc.:ating conditions can be predicted. 

(iv) The extent to -which the present prediction correlates 

the existing experimental data can be judgzl by 

inspection of Figs. 3.7, 3.11 and 3.12. 

(v) The theory is capable of greater ref&aement when more 

comprehensive ex[,erimental data become available. 
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2. Recommendations 

It is recommended i:hat the present theory should be 

extended and developed in the following ways: 

(i) There is a need fcr comprehensive exFerimenta1 

data in particular those for the low temperature 

heat pipes. Initial work confined to a single . 

low-temperature heat pipe at different operating 

conditions would be fruitful, particularly with the 

aim of obtaining complete perfo,rmance of a heat 

pipe as shown in Fig. 3.13. The next step would 

carry out tests on the same heat piFe with a 

variety of working fluids and combinations of 

evaporator, adiabatic-section and condenser 

lengths. 

(ii) Laminar and turbulent tube flows with mass injection 

have been reasonably well understood. By compari- 

son, knowledge of laminar and turbulent tube flows 

with large wall suction is limited at the present 

time. Both theoretical and exlzsximental data on 

tube flows with large suctirn are urgently needed 

to increace confidence in calculating pressure drops 

due to vapor flow resistance. 

(iii) Mechanisms of heat and mass transfer in groove wick 

are not weli understood at the present time. Detailed 

studies should now be made. 
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(iv) W5en the data recommended above become available, 

complete performance of heat pipe will be able to 

he developed with greater assurance of its accuracy. 
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A COMPUTER PROGRAM FOR LIMITATIONS OF HIGH -. --- -?%M??EF$,TURF HEAT PIPES 

A complete listing of the czputer program in Fortran IV 

language for calculation of sonic, entrainment, wick and 

boiling limitations is given in this Appendix. This program 

is written for application to the wrapped-screen-wick, open 

rectangular-groove and screen-covered rectangular-groove heat 

pipes. Alsc given in this Appendix are the flow diagram of 

the program (Pig. Al), and the data input sheets (Table Al). 

All the integers, beginning with I through N, at the input 

are 5-digit figures (IS); and all other inputs are 15-digit 

figures (E15.5). The main Fortran input and output symbols 

are defined as follows: 

Input: 

GRIT - 
ND d 
NTHP J 

gravitational constant, 981 cm/set* 
number of sets of heat-pipe physical dimensions 
t!!pe of heat pipes; i.e., 1 for wrapped screen, 
2 for cpcn groove, and 3 for screen covered groove 
radius of vapor flow passage, cm 
inner radius of heat-pipe container, cm 
length of evaporator, cm 
length of adiabatic section, cm 
length of condenser, cm 
inclination of heat pipe, radian 
effective bubble radius for boiling, cm 
liquid wetting angle, radian 
characteristic length for entrainment, cm 

\’ 

. 

'c 

L 
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Appendix A - Continued 

CDh'K (.Lfsz6 
$F , v+= 

thermasonductivity of wick material, erg/cm set OX 
effective hy&zulic radius for liquid flow, cm j 

c JDO%~ p ermeability factor for capillary structure, 
a non-dimensional constant 

EPSIL ,73?porosity of capillery structure 
%EA .ob57 cross-sectional area of capillary pores or 

capillary grooves, cm 
PERI:;ZJ- wetted perimeter of capillary pores or w 

2J 
capillari* grooves, cm 

GRVN 3O number of capillary grooves 
WIDTH . !"-' / 

width of capillary grooves 
DEPTH , .> ; ' depth of capillary grooves 
NP t number of sets of fluid property input 
TSAT 390 fluid saturation temperature, "K 
PSAT2x\'b 
CPFW~? 

saturation vapor pressure, dyne/cm 2 

saturaticn liquid specific heat, ergs/gm ‘K 
DEN!? %c, saturation liquid density, gm/cm3 
vsp 2,-w-&.3 saturaticn liquid viscosity, poise 
CDF~.-5iF~ saturation liquid thermal conductivity ~7-9 //rk P&-C / $k-- 
SFTr, yc2- saturation liquidsurface tension.. dyne/cm 
HFG zde3 heat of vaporization, erg/gm 
DENG 1 .2- i' '-> saturation vapor density, gm/cm 
VSG \ ,Llc'-q saturation vapor viscosity, poise 
GAMMA \.))vapor specific heaI;s ratio 

Output 

233 
ZA 
ZA 
PSI 
A 
THETA 
RE3 
TSAT 

length of evaporator, cm 
length of adiabatic section, cm 
length of condenser; cm 
heat-pipe inclination, radian 
characteristic length for entrainment, cm 
liquid wetting angle, radian 
effective bubble radius for boiling, cm 
heat-pipe vapor temperature, OK 
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Appendix A - Continued 

QS 
QEL 
QWL 
CBL 
Q.-.X 

sonic !.i.iiitation, erg/set 
entxaiiment limitation, erg/set 
wick limitation, erg/set 
boiling limitation, erg,'sec 
ultimate heat-pipe limitation (i.e., smailast 
of QSL, QEL, QWL, QBL), erg/set. 

(NOTE : 1 watt = i0 7 ergs/set) 

- i 
i 
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-- 
Tnwt number of sets of heat pipe djmep. ions;, IiD 

‘TI-------- 
wt value of HTHP for trpe of he&t pip?:7 for 

Dp2d screen, 2 for open pmove, 3 for cover4 4-r00~~ 

4 
J 

e IFput heat pip!? dimensionrt Rc, RI, ZE, Zp., ZG, FSl,- 
Rb,‘IW?Ti?, A 5 CDtlY 4 

I---- 

t “; _A--, hpJt f*Jrther dimensions: R!!, (;, EP3IJ,, AMA, f'SJ!l 

nput praperty values: TSAT, PSAT, CH', XNF, VSF, CDF, 
!T, ;-1X, !XVi, VSG, Cht?KA 
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GRF 

ND 
NTHP (=I) 
i3G 
ZE 
Fu3 
RF 
AREA 
NP 
TSAT 
DENF 
HFG 

TABLE AL (a! 

XNPUT DATA FOR WWiPPED-SCREEN HEAT PIPE 

RI 
ZA 
THETA 
C 

PSAT 
U'I'J.7 h 
LEVG 

zc 

A 

EPSIL 

CPF 

CBF 
VSG 

PSI 
CDWK 

SFT 



TABLE A1 (b) 

INPUT DATA FOR OPEN-GROOVE HEAT PIPES 

C-RF 
ND 
NTHP (=2) 
RG 
ZE 
RE 
GRVN 
NP 
TSAT 
DENF 
HFG 
GAMMA 

RI 
ZA 
THETA 
WIDTH 

PSAT 
VSF 
DENG 

zc 
A[ 
DEPTH 

CPF 
CDF 
VSG 

PSI 
CDWK 

SFT 
SFT 
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GRF 
ND 
NTHP 
RG 
ZE 
RE3 
GRVN 

NP 
TSAT 
DENF 
HFG 
GIAMMA 

TABLE Al (C) 

INPUT DATA FOR SCREENED-CO-VERED-GROOVE 
MElAT PIPES 

(= 3) 
RI 
ZA zc 
THETA A 
WIDTH DEPTH 
PERI 

PSI 
CDWK 

PSA'T CPF 
VW CDF 
DENG VSG 

SFT 





, 

..---. _- . . _ -_. ._ 

C3=(3?f+ODJI b/T. ! -- 
CO=lI?S-DPC 

A-- 
L 

f: 3 72 O*(~x=GEC -- ---- 
*4 71 IF (aMAX-2dL) 74.74.75 
,a 5 75 r?vaX=OnL ------I- -_-- 
ah 7L IF (QCI3X-39LI 7t,7b,77 

- 

I’ 1 CCLL FXIT ,..... -- 
22 ST>? 

- _- - 
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APPENDIX B 

A COMPUTER PROGPM FOR PERFOR%~KE OF -.-- LOW-TEK'ERKLWRE HEAT PIPES 

A complete listing of the computer program in Fortran IV 

language for calculation of complete perfcrmance of .cryogenic 

and ambient-temperature heat pi.oes is given in this Appendix: 

both the maximum heat transfer capability and the evaporator- 

as well as the condenser-wall temperatures at various 

heat transfer rates are predicted. This program is applicable 

to the wrapped-screen-wick, open rectangular-groove and 

screen-covered rectangular-groove heat pipes. Also given in 

this Appendix are the flow diagram of the program (Fig. Bl) 

and the data input sheets <Table Bl). All the integers, 

beginning with I through N, at the input are 5-digit fig- 

ures (I5); and all other inputs are 15-digit figures (E15.6). 

The main FORTRAN input and output symbols are defined as 

follows: 

Input 

NQ 

QI 

DQ 

number of heat transfer rates at which the 
evaporator and condenser temperatures are 
calculated, ergs/set. 
initial heat transfer rates for temperature 
calculations, ergs/set 
stepwise increase of heat transfer rates for 
temperature calculations, ergsjsec. 

(All other input symbols are same,as those defined in 

APPENDIXA) 

:‘; 

_  

. 
_:.. 

. 
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Appendix B - Continued 

output 

ZE 
XA 
%C 
PSI 
THETA 
TSAT 
Qf4A.X 
TE 
TC 

'CT 

length of evaporator, cm 
length of adiabatic section, CAT. 
length of condenser, cm 
angle of inclination of heat pipe, radian 
liquid wetting angle, radian 
Saturation vapor temperature, OK 

maximum heat transfer capability, ergs/set 
evaporator wall temperature, OK 
condenser wall temperatuse, OK 
temperature difference between the evaporator 
and the condenser walls, OK 
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Fig. Bl Flou diamq of program for Frfonance of lou-temperature heat oip 

heat pipe dimensions; RG, RI, 233, ZA, ZC, PSI, 

Input nunbet & magnitude of heat trazisfer rates, NQ, 
QT. DQ 

& 

Tncut further dimensions: RF, C. EPSIL. AREA. PERT 
Q 

npt f'urther dimensions: CRVN, 'rlIDTH,‘DEF%i 

(Input number of sets-of fluid properties. NP 
d 

TSAT, PSAT, 

if heat pipe 

Calculate snd outpu+, condenser and 
teqeratutis and to-1 temperature 

I 

0 stop 
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GRF 
N) 

NTHP 
RG 
ZE 
THETA 
NQ 
QI 
RF 
AREA 
NP 
TSAT 
DENF 
HFG 

TABLE B1 (a) 

. XNPUT DATA FOR WRAPPED-SCREEN HEAT PIPE 

(= J-1 
RI 
ZA 
CDWK 

m2 
C 
PER1 

PSAT 
VSF 
DENG 

ZC 

EPSIL 

CPF 
CDF 
VSG 

PSI 

SFT 

i 
. 



.- I 
i 
I 
I’ 

I 

TABLE B1 (b) 

GRF 

INPUT DATA FOR OPEN-GRGOVE HEAT PIPE 

ND 
KTHP 
RG 
ZE 
THETA 
NO 
QI 
GRVN 
NP 
TSAT 
DENF 
HFG 

(= 2) 

RI 
ZA 
CDWK 

ZC PSI 

DQ 
SIDTH DEPTH 

PS*AT 
VSP 

DENG 

CPF 
CDF 
VSG 

SFT 
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GRF 
ND 
NTHP (= 3) 
RG 
ZE 
TFXTA 
w2 
31 
GRVN 
AREA 
NP 
TSAT 
DENF 
HFG 

TABLE Bl (cl 

INPUT DATA FOR SCPeEEK-COVERED-GROOV.3 
HEAT PIPES 

RI 
ZA ix 

CDWK 

Ix2 
WIDTH 

PERI 

DEPTH 

PSAT CPF 
VSF CDF 
DENG VSG 
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