DESIGN CONSIDERATIONS FOR DIVERS' BREATHING GAS SYSTEMS

O. R. Hansen
Office of the U.S. Navy Supervisor of Diving Naval Ships Systems Command

INTRODUCTION

The advent of deep dive systems and saturation diving has necessitated the careful planning and design of breathing gas systems. For saturation diving, the divers' enclosures must be pressurized to, and sustained at, a pressure equivalent to the depth at which the mission operations are to be performed. Thus, the flow rate itself is not a significant design parameter. The initial pressurization is normally conducted at a relatively low rate, and the mission duration can be up to 10 days.

Breathing gas, normally a helium-oxygen mixture, must be available to effect the required pressurization. There also must be sufficient gas to supply the breathing apparatus used by the deployed divers, as well as a reserve supply for treating decompression sickness.

This paper discusses some of the design methods used to establish the gas storage, mixing, and transfer requirements for existing deep dive systems.

DEEP DIVE SYSTEMS

Table 2.1 Design parameters for gas requirements
in Mark I and II deep dive systems.

The U.S. Navy has two major deep dive systems (DDS), the Mark I and Mark II. These systems differ in the number of divers they will support, in enclosure volume, and in system arrangement. These differences reflect intended system application and installation: The Mark I was designed primarily to support the large object salvage system (LOSS), and the Mark II was designed to support submarine rescue operations. Table 2.1 provides the design parameters for establishing the gas requirements of these two systems.

The gas required to support missions of maximum duration must be stored aboard the diving platform or mother ship and must be available in a readily transferable state to permit performance of any mission within the design capability of the system.

The usual gas supply is a mixture of helium and oxygen, with a small quantity of nitrogen present in the system atmosphere prior to pressurization. The enclosure environment is maintained at $\sim 0.3 \mathrm{~atm}$ oxygen partial pressure throughout the mission, and the oxygen required to replace that consumed by the divers in the enclosures is only about $1 \mathrm{SCF}^{1} \mathrm{hr}$. Thus, analysis of helium requirements receives the most attention.

Figure 2.1 Percentage of O_{2} in breathing mixture as a function of depth and O_{2} partial pressure.

Systems that use a semiclosed diver breathing apparatus are an exception, however, and demand a more extensive analysis of oxygen requirements. Figure 2.1 relates the percentage of oxygen in the breathing mixture to depth, and to oxygen partial pressure in both psia and atm. The curves show a large area within which mixtures are physiologically acceptable. The oxygen concentration must be maintained within the concentration range shown in this figure. In the semiclosed apparatus, mixtures must provide an adequate liter flow through the system to supply metabolic oxygen for the diver as well as maintain an oxygen concentration within tolerable limits. This system was adequately described in the initial life support systems conference but the definition of gas mixture oxygen concentration and liter flow (fig. 2.2) was developed later. It is again evident, however, that for deep diving, the availability of helium is of paramount importance. To avoid toxicity, the oxygen percentage must decrease as depth increases so that the quantity of helium supplied with the oxygen will increase with depth.

The Mark 10 closed-circuit breathing apparatus (see paper 8), appears to be an optimum system in which essentially only the oxygen to support the diver's metabolic requirements must be provided. This will simplify the establishment of gas storage system requirements.

GAS STORAGE SYSTEMS

High Pressure Storage Systems

Utilizing design principals applied in nuclear submarines, the original diving gas storage systems were designed as high pressure stored gas systems. Recognizing that the submarine environment is at one atmosphere and that the diving system is at the diving depth pressure the significance of storage pressure and volume are not readily apparent. Pressure and volume effects both space and weight of the system and a method to relate these parameters is presented in this section.

[^0]

Figure 2.2 Liter flow and O_{2} percentage for semiclosed circuit breathing apparatus.

An adequate supply of gas must provide for the maximum mission as well as gas reserves needed in emergency. Unless provision is made for gas transfer, the storage volume will contain gas at equilibrium pressure with the depth of the diving mission. A second consideration is that helium, oxygen, and mixtures thereof deviate significantly from ideal gas, thus precluding application of simple gas laws. Figure 2.3 indicates that less than 90 percent of the helium predicted by ideal gas laws will be stored in a 3000 psi volume where real gas properties exist. This deviation has prompted the application of various techniques to account for real gas characteristics in the design of gas storage systems.

The importance of this deviation in maintaining the permissible mixtures was the subject of considerable study leading to the publication of a U.S. Navy Diving-Gas Manual (ref. 1), which has been invaluable in the design of breathing gas systems.

The use of a single virial coefficient (ref. 2) for determining helium storage requirements has been expedient in developing computer analyses of the many systems being designed. The helium properties established by means of this coefficient, have been compared to those in the manual, which were obtained with the use of additional virial coefficients. Properties obtained with the

Figure 2.3 Deviation of HeO_{2} mixtures from ideal gas laws.
single coefficient show a maximum variation of 0.12 percent from those in the manual. The computer program used for this analysis and the resulting output data are given in appendix A.

The application of this single coefficient established the compressibility factor that can be introduced into the ideal gas equation

$$
P V=W R T
$$

The compressibility factor is related to the pressure times B for any isotherm as follows. The real gas compressibility factor is

$$
Z=\frac{P V}{R T}
$$

where

$$
Z=(1+B P)
$$

and

$$
B=\text { virial coefficient }
$$

The density is then

$$
\lambda=\frac{P}{(1+B P) R T}
$$

and the pressure will be

$$
P=\frac{\lambda T R}{1-B \lambda R T}
$$

which, applied in analyses, provides helium properties approaching real properties.

Once the gas property data have been determined for various state points existing within the diving system, effort can be directed toward establishing the system requirements.

Mark II DDS specifications dictate that 306,000 SCF of helium be available from the storage system at pressures above 200 psig. This gas supply is intended to support the two systems installed in the submarine rescue ships, ASR 21 and ASR 22. These are catamaran type ships, and half of the gas would be available to support a 10-day saturation mission in a single Mark II DDS installed in one hull.

Numerous studies were conducted to find the best method of storing this gas. Desired storage pressure, individual flask capacity, and storage bank arrangements were analyzed to arrive at the storage system as currently defined. In general, stored gas is contained in seamless steel pressure vessels designed according to Department of Transportation regulations.

The criteria for flasks used by the U.S. Navy are contained in a military specification (ref. 3); the pressure vessels are restricted to 3000 and 5000 psi working pressures and geometry defined by type. Investigation indicated alternative configurations and rated pressures could be obtained, and a limited optimization was performed within the capability.

To optimize the design of the cylinders it is necessary to define the stresses due to internal pressure in closed cylinders. Thus, an analysis for this study to obtain the stress in the cylinder wall was based on the fact that for a cylinder with other than very thin walls under internal pressure, the stress varies from a maximum at the inner surface to a minimum at the outer surface. The analysis also took into account the axial deformations, which affect the load capability of the material.

The following equations, known as Clavarino's equations, will provide the wall thickness to attain 67 percent of the material's ultimate strength at a test pressure equal to $5 / 3$ the design pressure. The design pressure is equal to the pressure of the gas stored in the flask at standard conditions.

$$
\begin{aligned}
& S_{t}^{\prime}=(1-2 m) a+\frac{(1+m) b}{r^{2}} \\
& S_{r}^{\prime}=(1-2 m) a-\frac{(1+m) b}{r^{2}}
\end{aligned}
$$

where
$s_{t^{\prime}}$ tangential stress, psi
s_{r}^{\prime} radial stress, psi
m Poisson's ratio of lateral contraction
r radius at any point in the wall, in.
a, b constraints for any given values of pressures and diameters such that

$$
\begin{aligned}
& a=\frac{P_{i} d_{i}^{2}-P_{O} d_{O}^{2}}{d_{O}^{2}-d_{i}^{2}} \\
& b=\frac{d_{i}^{2} d_{O}^{2}}{4}\left(\frac{P_{i}-P_{O}}{d_{O}^{2}-d_{i}^{2}}\right)
\end{aligned}
$$

where
d_{i} inside diam, in.
d_{O} outside diam, in.
P_{i} internal pressure, psi
P_{O} external pressure, psi

When a and b are evaluated, and when $\mathrm{d}_{\mathrm{i}} / 2$ is substituted for r the equation of the thickness is

$$
t=\frac{d_{i}}{2}\left[\sqrt{\frac{s_{t}^{\prime}+(1-2 m) P_{i}}{s_{t}^{\prime}-(1+m) P_{i}}}-1\right]
$$

where
$s_{t}{ }^{\prime}=$ permissible working (tangential) stress in tension, psi
If, the end closure is assumed equivalent in thickness to the cylindrical walls and the normal corrosion allowance of 0.065 in . is added to wall thickness, the weight can be determined from the external volume less the internal volume times the density of the material used in fabrication. In the analyses, the outer diameter was maintained constant at 18, 20, 22, and 24 in. The cylinder configuration is shown in figure 2.4.

Figure 2.4 Gas storage flask configuration used for He capacity and weight.

The results of the analyses provide the wall thickness, internal volume, and weight for cylinders for each of the four diameters and the various design pressures.

These results are incorporated in the computer program for determining the total gas available above an equilibrium pressure equivalent to a given operating depth, established as 1000 ft . A ratio of available helium (in SCF) to each pound of metal in the storage system was obtained, which relates the gas storage pressure, diameter of the storage vessel, and gas contained at equilibrium pressure for each of the four outer diameters.

From the real gas properties for helium, one normally would expect less helium per pound of metal to be stored at higher pressures because of the increasing compressibility factor. This is correct, but the influence of reduced flask volume and diameter relative to the residual gas quantity is not immediately evident, although it becomes more apparent when the ratio is plotted versus storage pressure. The results are shown in figure 2.5 , and the analytical data are given in appendix B .

The results indicate that the 24 -in. diameter flask, with a design pressure ranging from 3400 to 3800 psi , is of optimum weight for helium storage in the system.

In general, this technique was applied in the selection of the gas flasks for the Mark II deep dive system aboard the ASR 21/22. Other factors in gas flask selection were the maximum available tooling capacity at the steel mill, which limited the outside diameter to 24 in . and the design pressure to 3800 psi , and the deck height, which restricted flask length to 8 ft (table 2.2).

Oxygen flasks were restricted to 3000 psi design pressures; the helium flasks had design pressures of 3800 psi . The helium available if filled to an equilibrium temperature of $100^{\circ} \mathrm{F}$ is $164,150 \mathrm{SCF}$; the quantity available above the minimum specified pressure is $153,860 \mathrm{SCF}$.

Figure 2.5 Available He/lb of metal versus design pressure for flasks of 18 - and 24-in. outer diam.

Table 2.2 System data for Mark II deep dive system aboard ASR 21/22.

COMPRESSORS

USE	CAPACITY	QUANTITY	DISCH. PRESSURE	TYPE
Helium	0.45 CFM	2 per ship - 1 per hull	3800 PSIG max.	Diaphragm
Oxygen	Min. Displacement	2 per ship-1 per hull	3800 PSIG max.	Booster

FLASKS

USE	VOLUME	QUANTITY	SIZE
Helium	$16.88 \mathrm{cu} . \mathrm{ft}$.	84 per ship -42 per hull	$8^{\prime} 0^{\prime \prime} \mathrm{Lg} . \times 24^{\prime \prime} \mathrm{O} . \mathrm{D}$.
Oxygen	$16.81 \mathrm{cu} . \mathrm{ft}$.	24 per ship -12 per hull	$7^{\prime} 0^{\prime \prime} \mathrm{Lg} . \times 24^{\prime \prime} \mathrm{O} . \mathrm{D}$.
Mixed Gases	$16.88 \mathrm{cu} . \mathrm{ft}$.	12 per ship -6 per hull	$8^{\prime} 0^{\prime \prime} \mathrm{Lg} . \times 24^{\prime \prime} \mathrm{O} . \mathrm{D}$.
High Pressure Air	10.0 cu. ft.	20 per ship -10 per hull	$7^{\prime} 10^{\prime \prime} \mathrm{Lg} . \times 18^{\prime \prime} \mathrm{O} . \mathrm{D}$.

Figure 2.6 illustrates the use of helium over a 10 -day period in a saturation diving mission, relating the gas available for required events to that stored in the system. The analytical data resulting from these analyses are presented in appendix C. The results indicate that the helium stored is not quite sufficient to maintain the required reserve, and that flask filling and topping must be accomplished during replenishment.

Figure 2.6 Helium available versus days of diving operation on a 10-day saturation diving mission.

Figure 2.7 shows the general arrangement of the Mark II system aboard an ASR 21/22 type platform.

Supercritical Storage Systems

One means of reducing gas storage system weight and volume is to convert the gas to liquid by cryogenic processes. It has been found that the low latent heat of vaporization and the high ΔT between the operational environment and liquid helium $\left(\sim \Delta T=532^{\circ} \mathrm{R}\right)$ preclude the long term storage of supercritical helium; however, its properties are such that lighter weight and lesser volume transport systems can be designed, particularly since the development of super insulations.

Figure 2.7 Mark II deep dive system aboard ASR 21/22.

The system concept is that a pressure vessel (fig. 2.8) is thermally insulated and filled with liquid helium at atmospheric pressure. The liquid inlet and gaseous vent are closed upon reaching the design capacity (in pounds of liquid); pressure then increases within the constant volume of the system in response to "heat leak" through the thermal insulation.

Then the pressure increase can be related as follows. From the first law of thermodynamics,

$$
\Delta U=Q-W_{k}
$$

and the definition of enthalpy

$$
H=U+p v
$$

where
Q heat added to the system
U internal energy function
W_{k} work done, by the system
P pressure
$v \quad$ specific volume $=\frac{\text { container volume }}{\text { total mass of liquid and vapor }}$

Since the process is one of constant volume
or

$$
\begin{aligned}
W_{k} & =0 \\
\Delta U & =Q \\
Q & =\Delta U=\Delta H+v \Delta p
\end{aligned}
$$

Then the pressure rise is the result of the heat leak into the system, and the time for the system to reach the permissible working pressure is related to the thermal conductivity of the insulation. These principles were applied to a recently developed flyaway system to support the diving systems (fig. 2.9).

Figure 2.9 Supercritical gas system for diving.
Performance curves relating days to pressure increase are shown in figure 2.10.
When the previously stated relationship and helium property data from ref. 5 are applied, the helium temperature when the Dewar is at 1250 psi will be $\sim 44^{\circ} \mathrm{R}$. (Relationships of temperature and internal energy to pressure in a closed Dewar are shown in figure 2.11.) Therefore, any helium to be used in the diving system must be heated to a usable temperature. This is done in the gas delivery console. System weight is then full Dewar weight plus the delivery console or $\sim(12800+1300)=14,100$ and, based on their delivery criteria, there are ~ 4 SCF helium available per lb of metal in the system.

Figure 2.10 Test results of pressure buildup versus time in one supercritical He Dewar.

Figure 2.11 Internal energy and temperature of He versus pressure in a closed Dewar.

Refrigerated Cryogenic Storage

Another method for reducing weight and volume of the helium storage would be pressurized storage at liquid oxygen temperature $\left(-297^{\circ} \mathrm{F}\right)$; at 1250 psi and 100 atm , the density is $\sim 4.20 \mathrm{lb} / \mathrm{ft}^{3}$. Using the same Dewar as designed for the supercritical system, which was $84.5 \mathrm{ft}^{3}$ in volume, this system would contain $[(4.20 \times 1250) / 0.01034]=50,600 \mathrm{SCF}$, and that available above 1000 psi would be $\sim 46,000 \mathrm{SCF}$. Assuming that the delivery system would be no greater in weight than the one used in the supercritical system, we would obtain a ratio of 3.26 $\mathrm{SCF} / \mathrm{lb}$ of metal in the system.

This system is promising in that the gas can be converted to a usable form, as required, and will not require helium transfer relative to thermal insulation characteristics. The use of liquid oxygen as a refrigerant appears logical in that the liquid produced and stored can be converted to gas to supply the system oxygen requirements.

The U.S. Navy currently uses cryogenic processes in small Joule-Thompson type liquefiers installed aboard aircraft carriers to generate breathing oxygen for fliers. The cryogenic refrigerated storage concept could be developed on the basis of experience and available technology.

GAS MIXING SYSTEMS

There are three basic methods of preparing breathing gas mixtures. The first two are mixing by weight and mixing by partial pressures. These are batch processes, and they introduce significant error in mix ratios because of deviation from ideal gas laws (ref. 1). Diffusion of oxygen into helium is a slow process; in some instances, it takes several days to obtain stabilized concentrations when the storage vessels are large.

The third technique, normally required for sustained large-scale diving operations, is a continuous flow method that consists of metering and controlling separate streams of oxygen, helium, and air or nitrogen and mixing them at high turbulence downstream from the metering system. To be effective this method requires a simple, easy-to-operate mixing system and a reliable analyzer to detect malfunctions quickly enough to permit adjustments to the gas mixture. The gas mixture may be fed directly to the diver through hose and regulators, introduced into a chamber such as a habitat or personnel transfer capsule, or recompressed and stored for later use.

Figure 2.12 AIRCO gas mixing system.

Figure 2.12 shows the principles of the system, an Airco Mixmaker (TM), that is presently in use at the Navy Experimental Diving Unit. Stored, pure gases are supplied to the system at approximately 1100 psi through a regulator (1). At a constant, regulated pressure, the gases are passed through a heat exchanger (2) to reach a preset constant temperature. The system utilizes sonic flow characteristics through calibrated metering valves (3). The gases are mixed in a turbulent mixing chamber (4) and then sent through a regulator controlling flow-meter-outlet pressure at $\sim 750 \mathrm{psi}$. The gas is sampled by bleeding from the main flow and routed to a gas chromatograph or other recording gas analyzer (6). The main gas stream passes through a final regulator (7) to be supplied directly to the divers (8). An accumulator (9) should be added to prevent high concentrations of oxygen from reaching the divers in the event of system malfunction. The mixed gas could be fed to storage cylinders or into a high-pressure diaphragm compressor for additional pressurization prior to storage.

The accuracy of mixing claimed for this system is as follows:

Amount of oxygen in mixture	Precision of oxygen content
$0-10 \%$	$\pm 0.15 \% \mathrm{O}_{2}$
$10-15 \%$	$\pm 0.25 \% \mathrm{O}_{2}$
$15-100 \%$	$\pm 0.50 \% \mathrm{O}_{2}$

For example, mixed gas prepared at the 9 percent setting would contain between 8.85 and 9.15 percent of pure oxygen.

Continuous-flow breathing-gas mixture systems, such as the system described above, can be fed to high-pressure compressors for filling UBA tanks or compressed-gas storage banks, as desired.

The oxygen content of the mixture would depend on the type of breathing apparatus to be used and the range of diving depths anticipated.

The Airco Mixmaker represents a fairly recent concept in gas mixing for underwater breathing applications. Since the only outside resources required are pure gas and electrical power, both binary and ternary mixtures of any predetermined requirement can be mixed on site, a significant advantage over "batch basis" mixing. Another version of a gas mixing system is shown in figure 2.13. This system uses calibrated turbine-type flowmeters and two-stage motor-operated needle valves.

Figure 2.13. Worldwide gas mixing system.

GAS TRANSFER SYSTEMS

Transfer systems consisting of suitable noncontaminating compressors are desirable for helium, oxygen, and mixed gas systems. They enhance the performance ratio of SCF of helium available per pound of metal, but their operation requires a relatively high inlet pressure, as much as 200 to 400 psig for some of the smaller units. Figure 2.14 illustrates a transfer system utilizing an A5C250 compressor.

Application of these pumps in a system requires some knowledge of their performance characteristics. The only known parameters that can be applied are the displacement volume and rpm, from which the displacement per unit time and the flow capacity as related to the inlet pressure, outlet pressure, volumetric efficiency, and real gas properties can be obtained. The volumetric efficiency can be established theoretically if clearance volume is known, but more frequently, it is determined experimentally for each type of compressor. The volumetric efficiency for one model of a diaphragm type compressor is shown in figure 2.15. When the displacement and the volumetric efficiency are known, a simple computation relating the flow through the compressor with varying upstream-downstream pressure conditions, which are normally present in gas transfer operations, can be performed.

Figure 2.14 A5C250 compressor unit.

Figure 2.15 Volumetric efficiency curve A5C250 compressor.

A program was developed (appendix D), in which the data input permits variation in the input parameters (table 2.3). The program progressively reduces the pressure in the supply volume relative to the compressor displacement as affected by clearance, which is related to downstream pressure. It follows conventional compressor principles where $a l b_{i n}$ is a $l b_{o u t}$ but takes into account the effect of the upstream-downstream condition on the flow capacity.

Table 2.3 Input data constants for calculating He transfer time
input data

VOLUME OF ON BOARD STORAGE BANK design pressure of storage bank MINIMUM PRESSURE OF STORAGE BANK BEFORE PUMPING MAY BE INITIATED VOLUME OF SUPPLY BANK (100 BOTTLES) INITIAL DELIVERY PRESSURE OF SUPPLY BANK MINIMUM (RETURN) PRESSURE OF SUPPLY BANK PUMP CLEARANCE VOLUME
DURATION OF ONE PUMPING CYCLE VOLUME DISPLACED BY PUMP IN ONE MINUTE POLYTROPIC PROCESS EXPONENT TEMPERATURE OF GAS (ASSUMED CONSTANT) helium gas constant (R)
24.0 CU FEET
3000.0 PSIG
200.0 PSIG
60.0 CU FEET
3000.0 PSIG
200.0 PSIG
5.0 PERCENT
9.0 MINUTE(S)
0.6 CU FEET
1.6
$70.0 \mathrm{DEG}-\mathrm{F}$
386.3 FT-LBF/LBM-R

Sce Appendix D for the complete program and data concerning calculation of helium transfer time.

Although in our application of the program the polytropic exponent was near that of conventional compressors, in practice it more nearly approaches isothermal compression. Results obtained have provided transfer time for various shipboard applications, establishing constraints on time-related application of the compressor (e.g., the transfer of helium from a tube trailer into the nearby gas storage system).

COMPRESSED AIR CONSIDERATIONS

Although compressed air has limited application in DDS, it is the most common breathing gas used by divers.

In deep diving systems compressed air is only for pressurizing the enclosures to an equivalent pressure to 14 ft of seawater to increase the oxygen partial pressure to 228 mm Hg so that the monitoring instrumentation can be zeroed and performance can be verified. Compressed air is used to support conventional surface-supplied systems and the more common scuba gear.

Purity Standards and Monitoring Techniques

Current purity standards for breathing air are:

Oxygen
Carbon dioxide
Carbon monoxide
Oil, mist, and vapor
Solid and liquid particles Odor

20 to 22 percent by volume
300 to 500 ppm (0.03 to 0.05 percent) by volume
20 ppm maximum
$5 \mathrm{mg} / \mathrm{m}^{3}$ maximum
not detectable except as noted above under oil, mist, and vapor not objectionable
Efforts to provide appropriate equipment for meeting these standards have been extensive. Filter testing at both the manufacturer's facility and another laboratory, together with a short-term test on one of the ARS-type ships, has verified the performance of an oil- and particulate-removal filter system. Procurement has been initiated for sufficient units to supply each existing salvage ship (ARS) and submarine rescue ship (ASR) with a portable unit, and an adequate number was included for salvage equipment pools, for supporting HCU and ATF surface-supplied diving.

Other projects include definition of compressor lubricating oils and their additives, with recommendations to exclude the use of oils containing phosphate esters. The commonly used 2190 TEP will be replaced with a 2135 TH type oil.

Proposed projects for monitoring techniques that will permit air sampling from the shipboard systems are being reviewed. These projects fall into two categories. The first is a technique for adapting coal dust monitoring equipment, under development as required by a recently established public law, for use in determining, on a periodic basis, the oil and particulate matter in diver air systems. This work involves the development of sampling techniques and adaptation of the coal dust sampler cassette for the sampling of air in diver breathing systems.

Currently under study are selective permeable membranes, incorporated into cassettes, that collect oil aerosols and particulate matter as the sample air passes through them. Once calibrated to provide representative quantities, these membranes will indicate the quantities of these
contaminants in an air stream. The contaminant levels established for the coal dust monitoring equipment are strikingly similar to diver system requirements: $2 \mathrm{mg} / \mathrm{m}^{3}$ and $5 \mathrm{mg} / \mathrm{m}^{3}$, respectively.

A second category comprises techniques for establishing the gaseous contaminants. A proposal in this area is under consideration that would refine current practice and hopefully provide acceptable techniques for periodically analyzing the air from divers' breathing gas systems.

Systems cleaning presents a major problem particularly in existing systems that do not permit in-place cleaning. Future installations, where practicable, will permit in-place cleaning.

CONCLUSION

The analytical approach to the design of compressed gas systems for supporting deep diving systems offers a method of effectively determining gas requirements and storage system definition. Although shipboard installations are not normally weight sensitive, the magnitude of these installations requires some optimization to reduce the weight.

Gas mixing systems also appear essential to provide the low concentration mixtures within the converging tolerance range dictated by applications to ever-increasing depths.

Time-related use of gas together with the performance of the gas transfer system is another significant consideration to ensure transfer within a reasonable time frame for systems application.

REFERENCES

1. U.S. Navy Diving Gas Manual, Oct. 1, 1969. U.S. Navy Supervisor of Diving Research Report 3-69.
2. Journal of Chemical Engineering Data, vol. 5, no. 1, Jan. 1960.
3. Anon.: Flask, Compressed Gas and End Plugs for Air, Oxygen, and Nitrogen. Military Spec. Mil-F-22606B (Ships).

APPENDIX A

PROGRAM - VIRIAL

PRGGRAM JIRIAL
00100 READ R, T, T1, T2, T3, T4, T5, T9, B, B1, B2, B3, B4, BS
00110 DIM $A(7), A 1(7), A 2(7), A 3(7), A 4(7), A 5(7), A 6(7)$
00120 FQR C $=1$ TO 7
00130 READ A(C)
00140 NEXT C
00150 FER C1 $=1$ TE
00160 READ AI (Ci)
00170 NEXT CI
00180 FBR CE $=1$ TB 7
00190 READ AR(C2)
00200 NEXT C2
00210 FQR C3 = 1 TO 7
00220 READ A3(C3)
00230 NEXT C3
00240 FBR CA $=1$ T0 7
00250 READ AA(CA)
00260 NEXT C4
00270 FRR C5 $=1$ TG 7
00280 RGR CS I I
00290 REXT CS
00290 NEXT CS
00300 FGR C6 $=1$ TQ 7
00310 READ A6(C6)
00320 NEXT CG
00330 PRINT'TEMPERATURE DEG F "I
00340 GESUB OI 380
00350 PRINT
00360 FRR $1=1$ Tg
00370 LET $P=A G(1)$
OUS̃Ó LET U $=$ AG(1)
00390 LET DI $=P /(\mathbb{C} 1$
0 (
00410 LET V (COB
00420 LET VI = $100 * V$ D)*100
00420 LET VI $=100 * V$
0430 LETV2 $=1 N T(V 1 * 10+3+.5) / 10+7$
00450 PRINT TABCI)
(
0460 PRINT
00480 PRINT
00480 PRINT
0490 PRINT"TEMPERATURE DEG F"TI
00500 GQ SUB 01380
00510 PRINT
00520 F8R II $=1$ T0 7
00540 LET D = AICI)
0540 LET D = AIC11)
0550 LET $=P /((1+B 1 * P) * R *(T 9+T 1))$
00560 LET D2 $=$ Dt* 1728
0580 LET $=((02-D) / D) * 10 n$
0580 LET V1 = 100*V
0590 LET VE $=$ SNT(VI*1013 * . 5)/10*3
00600 LET V3 $=$ V2/10C
00610 PRINT TAB(Q), P, TAB(13), D. TAB (3G;, U2, TAB(52), v3
00620 NEXT II
00630 PRINT
00640 PRINT
00650 PRINT"TEMPERATURE DEG F"T2
00660 GOSUB O1380
00670 PRINT
00680 FER $12=1$ T0 7
00690 LET $P=A 6(12)$
00700 LET D = A2(I2)
00710 LET D1 = $P /((1+B 2 * P) * R *(T 9+T 2))$
00720 LET D2 $=01 * 1728$
00730 LET $V=((D 2-D) / D)=100$
00740 LET V1 $=100 * V$
00750 LET V2 $=$ INT(VI*10.3 +.5)/1013
00760 LET V3 $=$ V2/100
00770 PRINT TAB(1),P, Tnn(13), D, TAB(30), D2, TAB(52), V 3

```
00780 NEXT L2
    00790 PRINT
    00800 PRINT
    00820 GZ SUB OL3BO
    00830 PRINT
    00840 FRRNT = - TO
    00840 FRR I3 = 1 T6
    00850 LET P = A6(I3)
    00870 LET D1 = P/((1+B3*P)*R*(T9+T3))
    008B0 LET D2 = DI* (1+B
    00890 LET V = ((D2-D)/D)*100
    00900 LET V1 = 100*V
    00910 LET VR = INTM
    *10.3+.5)/10+3
    0930 PRINT TABC1)100
    *)
    00950 NERINT
    0950 PRINT
    0960 PRINT
    0970 PRINT"TEMPERATURE DEG F"TA
    0980 GOSUB O1380
0 0 9 9 0 ~ P R I N T ~
1000 FGR 14 = 1 T07
01010 LET P = A6(I 4)
01020 LET D = AA(IA)
01030 LET DI = P/( (1+B4*P)*R*(T9+T4))
01040 LET D2 = D1*1728
01050 LET V = ((D2-D)/D)*100
1060 LET V1 = 100*V
1070 LET VR = INT(V1*10+3 +.5)/10+3
01080 LET V3 = V2/100
01090 PRINT TAB(1),P,TAB(13),D,TAB(30),D2,TAB(52),V利
01100 NEXT 14
1110 PRINT
1120 PRINT
01130 PRINT"TEMPERATURE DEG F"TS
01:40 GøSUB O1380
O1150 PRINT
O1160 FOR IS = 1 T0 7
01170 LET P = AGCI5
01180 LET D = A5(IS)
01190 LET D1 = P/((1+B5*P)*R*(T9+TS))
01200 LET D2 = D1*1728
01210 LET V = ((D2-D)/D)*100
01220 LET VI = 100*V
01230 LET V2 = INT(VI*1013 +.S)/10+3
01240 LET V3 = V2/100
01250 PRINT TAB(1),P,TAB(13),D,TAB(30),D2,TAB(52),V3
01260 1F I5 = 7 THEN O1470
01270 NEXT 15
01280 DATA 4636, 30, 50. 70, 90, 110, 130, 459.6
01290 DATA 3.4480E-5, 3.29277E-5, 3.16830E-5, 3.02923E-5, 2.90253E-5
01300 DATA 2.78B2OE-5
01310 DATA .01119, . 37416, .73545, 1.08472, 1.4227, 1.7501, 2.0676
01320 DATA .01075, .35975, .70764, 1.04443, 1.3708, 1.6873, 1.9945
01330 DATA -01034, . 34641, .68186, 1.00703, 1.3225, 1.6288, 1.9265
01340 DATA .00997, .33402,.65790, .97223, 1.2775, 1.5743, 1.8631
01350 DATA .00962,.32249. .63557. .93976, 1.2356. 1.5234, 1.8037
01360 DATA .00929, . 31174,.61471. .90941. 1.1963. 1.4756, 1.7480
01370 DATA 14.7. 500, 1000, 1500, 2000, 2500, 3000
01380 PRINT
01390 PRINT TAB(15),"USN DIVING",TAB(29),"VIRIAL COEFF.",
01_400 PRINT TAB(SI),"DIFFERENCE"
01410 PRINT"PRESSURE", TAB(15),"GAS MANUAL",TAB(30),"CGMPUTATI ON",
01420 PRINT TAB(53),"PERCENT"
01430 PRINT TAB(16),"DENSITY"",TAB(32),"DENSITY"
01440 PRINT TAB(2),"PSIA",TAB(16),"LES/FT3",TAB(32),"LBS/FT3",
01450 PRINT
01460 RETURN
O1470 END
```


temperature deg F 90	
	USN diving
Pressure g	gas mainual
	DEESSITY
PSIA	LbS/ft3
14.7	00997
500	. 33402
1000	. 6579
1500	-97223
2000	1.2775
2500	1.5743
3000	1.8631
temperature deg	DEG F 110
	USN diving
Pressure	GAS MANUAL
	DENSITY
	Les/fi3
14.7	. 00962
500	. 32249
1000	. 63557
1500	. 93976
2000	1.2356
2500	1.5234
3000	1.803^{7}
temperature deg	deg F 130
	USN diving
PRESSURE	GAS MANUAL
	density
	Lbs/ft3
14.7	. 00929
500	- 31174
1000	. 61471
1500	. 90941
2000	1.1963
2500	1.4756
3000	1.748

VLVG LndLno - TVIষ In WVdooyd

$\begin{array}{c}\text { DIFFERENCE } \\ \text { PERCENT }\end{array}$
-.03002
-01109
.0667
-10258
-12177
12977
.12583

APPENDIX B

PROGRAM - HELIUM CAPACITY

```
10 PRINT"
20 PRINT"
30 PRINT
40 DIM V3(4,9),W(4,9),C(4,9),CI(4,y),S1(9)
50 DIM C2 (4,9)
60 FOR A = 1 TO 9
70 READ SI(A)
80 NEXT A
90 LET S2 = . 31851
100 FOR DO = 18 TO 24 STEP 2
110 LET K = (DO/2)-8
120 LET L = 92
130 LET L1 = 92 - DO
140 LET nO = DO/2
150 LET V = (4/3)*3.1416*R0*3 + L1**.1416*ROt2
160 LET S = 0.67*110000
170 PRINT
180 PRINT" FLASK DIAMETER',DO" INCHES"
190 PRINT
200 PRINT TAB(7),"DESIGN",TAB(20),"WALL",TAB(34),"INTERNAL"
210 PRINT TAB(7),"PRESS.",TAB(18),"THICKNESS",TAB(35),"VOLUME",
220 PRINT TAB(50),"WEIGHT"
230 PRINT TAB(9),"PSI",TAB(20),"INCH",TAB(37),"FT3",TAB(51),"LBS"
240 PRINT
250 FOR I = 1 TO 9
260 LET P = 1400 + I*400
270 LET P! = (5/3)*P
280 LET D1 = DO*((S - 1.3*P1)/(S + 0.4*P1))10.5
290 LET D2 = D1 - 2*0.065
300 LET R1 = D2/2
3i0 LET VI = (4/3)*3.1416*R113 + L|*3.1416*R1i2
320 LET V3 (K,I) = V1/1728
330 LET V2 = (V-V1)/17728
340 LET W(K,I) = V&*485
350 LET T = (DO-DE)/2
360 LET C(K,I) = V3(K,I)*(SI(I) - S2)/0.01034
370 LET CI(K,I) = C(K,I)/W(K,I)
380 LET C2(K,I) = V3(K,I)*(S1(I)/0.01034)
390 PRINT P,T,V3(K,I),W(K,I)
4 0 0 ~ N E X T ~ I ~ I ~
4 1 0 ~ N E X T ~ D O ~
417 PRINT
4 1 8 ~ P R I N T ~
4 1 9 ~ P R I N T ~
4 2 0 ~ P R I A T " ' 0
430 PRINT"
TOTAL HELIUM CAPACITY OF FLASKS AT RATED DESIGN PRESS.""
4 3 0 ~ P R I N T " ~ - ~ A N D ~ - ~ H E L I U M ~ A V A I L A B L E ~ T O ~ A N ~ E Q U I L I B R I U M ~ D E P T H " ' 0
```



```
4 5 0 ~ P R I N T
460 PRINT
470 FOR K3 = 1 TO 4
480 LET DO = 16 + 2*K3
490 PRINT
500 PRINT" FLASK DIAMETER",DO" INCHES"
510 PRINT
520 PRINT TAB(7),"DESIGN",TAB(20),"TOTAL",TAB(34),"AVAIL, HE",
530 PRINT TAB(48),"SCF HELIUM"
540 PRINT TAB(7),"PRESS.",TAB(19),"STORAGE",TAB(33),"FOR 1000 FT",
550 PRINT TAB(48),"AVAIL. PER"
560 PRINT TAS(8),"PS1",TAB(21),"SCF",TAB(33),"DIVE - SCF",
562 PRINT TAL(48),"LB OF METAL"
565 FRINT
570 FOR II =1 TD 9
580 LET P = 1400 + I1*400
590 PRINT P,C2(K3,I1),C(K3,I1),C1(K3,I1)
```



```
610 NEXT K3
620 DATA 1.206632, 1.455111. 1.697805,1.935114, 2.167208, 2.394232
630 DATA 2.616470, 2.8340צ4, 3.047276
6 4 0 ~ E N D ~
```


OUTPUT DATA

-OTAL HELIUM CAPACITY OF FLASKS AI KAIED DESIGN FFESS. - AND - HELIUM AVAILABLE TO AN EQUILIBRIUM DEPTH EQUIVALENT TO 1000 FEFT OF SEA-WATER

FLASK DIAMETER

DESIGN	TOTAL PRESS PSI
	STAGE SCF
1800	1348.811
2200	1598.746
2600	1833.215
3000	2053.086
3400	2256.954
3800	2451.367
4200	2630.996
4600	2798.374
5000	2954.016

DESIGN PRESS PSI	TOTAL STORAGE SCF
1800	1653.805
2800	1960.024
2600	2247.21
3000	2516.436
3400	2768.436
3800	3003.887
4200	3223.618
4600	3428.286
5000	3618.529

FLASK DIAMETEK
\(\left.$$
\begin{array}{cc}\text { DESIGN } \\
\text { PRESS } \\
\text { PSI }\end{array}
$$ \quad \begin{array}{c}TOTAL

STORAGE

SCF\end{array}\right]\)| 1800 | 1986.726 |
| :--- | :--- |
| 2200 | 2354.299 |
| 2600 | 2698.922 |
| 3000 | 3021.893 |
| 3400 | 3324.098 |
| 3800 | 3606.36 |
| 4200 | 3869.679 |
| 4600 | 4114.853 |
| 5000 | 4342.652 |

FLASK DIAMETER

DESIGN	TOTAL
PRESS.	STORAGE
PS1	SCF
1800	2346.727
2200	2780.553
2600	3187.166
3000	3568.108
3400	3924.436
3800	4257.129
4200	4567.376
4600	4856.127
5000	5124.298

18 INCHES
AVAIL. HE: FOR 1000 FT dive - ScF
992.7708
1248.796
1489.302
1715.158
1926.96
2125.256
2310.717
2483.878
2645.254

20 INCHES
AVAIL. HE SCF HELIUM FOR 1000 FT AVAIL. PEK DIUE - SCF LB OF METAL
1217.257
1530.993
1825.631
2102.243
2361.565
2604.273
2831.198
3042.998
3240.31

22 INCHES
AVAIL. HE FOR 1000 FT
dive - SCF

1462.298	1.883806
1838.965	2.000091
2192.602	2.06586
2524.504	2.100271
2835.562	2.113927
3126.598	2.113264
3398.613	2.102553
3652.405	2.084569
3888.746	2.061239

24 INCHES
AUAIL. HE FOR 1000 FT DIVE - SCF

SCF HELIUM AVAIL. PER LB OF METAL
1727.271
2171.916
2599.251
2980.815
3347.67
3650.793
4611377
4310.37
4588.692

SCF HELIUM
AVAIL. PER
LB OF METAL
SCF HELIUM
AVAIL. PER LB OF METAL
1.85044
1.974715
2.047285
2.087352
2.105693
2.108922
2.101459
2.086196
2.065158

LB OF METAL

$$
\begin{aligned}
& 1.870051 \\
& 1.990134 \\
& 2.059095 \\
& 2.096135 \\
& 2.111953 \\
& 2.113074 \\
& 2.103643 \\
& 2.087091 \\
& 2.064793
\end{aligned}
$$

> 1.883806 2.000091 2.06586 2.100271 2.113927 2.113264 2.102553 2.084569 2.061239
1.892969
2.005791
2.068714
2.100817
2.112598
2.110407
2.098443
2.079425
2.055241

OUTPUT DATA

TOTAL HELIUM CAPACITY OF FLASKS AT RATED DESIGN PRESSURE CONSIDERING VARIOUS DIAMETERS

FLASK DIAMETER
18 INCHES

DESIGN	WALL	I NTERNAL	
PRESS.	THICKNESS	volume	WEIGHT
PSI	INCH	FT3	LBS
1800	. 3768101	11.55838	536.5054
2200	. 4462458	11.36067	632.3931
2600	. 5157485	11.16467	727.452
3000	. 5853251	10.97037	821.691
3400	. 6549829	10.77773	915.1192
3800	. 7247291	10.58675	1007.745
4200	. 7945708	10.3974	1099.578
4600	. 8645161	10.20968	1190.625
5000	. 9345727	10.02355	1280.896
Flask diameter		20 INCHES	
design	WALL	I NTERNAL	
PRESS.	THICKNESS	volume	WEIGHT
PSI	INCH	FT3	LBS
1800	. 4114556	14.17197	650.9219
2200	. 4886065	13.92791	769.2914
2600	. 5658317	13.68599	886.6183
3000	. 643139	13.44621	1002.914
3400	. 7205366	13.20853	1118.19
3800	. 7980322	12.97292	1232.457
4200	. 8756342	12.73938	1345.727
4600	. 9533513	12.50787	1458.009
5000	1.031192	12.27837	1569.315
FLASK DIAMETER		22 INCHES	
DESIGN	WALL	INTERNAL	
PRESS.	THICKNESS	volume	WEIGHT
PS I	I NCH	FT3	LBS
1800	. 4461012	17.02487	776.2464
2200	. 530967	16.72962	919.4408
2600	. 6159148	16.43702	1061.351
3000	. 7009529	16.14704	1201.99
3400	. 7860903	15.85966	1341.372
3800	. 8713354	15.57483	1479.512
4200	. 9566977	15.29254	1616.422
4600	1.042186	15.01276	1752.116
5000	1.127811	14.73546	1886.606
FLASK DIAMETER		24 INCHES	
DESIGN	WALL	INTERNAL	
PRESS.	THICKNESS	volume	WEIGHT
PSI	1 NCH	FT3	LBS
1800	.4807467	20.10983	912.4662
2200	. 5733277	19.75857	1082.823
26013	. 665998	19.41053	1251.623
3000	. 7587668	19.06567	1418.884
3400	-8516439	1872394	1584.622
3800	9446386	18.38532	1748.854
4200	1.037761	18.14976	1911.597
4600	1.131021	17.71725	2072.866
5000	1.22443	17.39774	2232.678

```
- READ U,V,Y,D
S LET P = 0.44444*D
LET P1 = 0.44444*D - 0.O*0.44444
LEEI P2 = 3060
30 LET E = 1 + U*P
3S LE'l E1 = 1 + V*P
46 LET Z2 = 1 + Y*% 
SD LET Z̈ = 1 + V*NI
SS LET ZS = 1 + Y*PI
60 LET Z6 = 1 + U*H2
6S LET Z7 = = + V*RZ
75 LE'T Z9 = 1 +V*3814.7
8U LET K=4.0026*144/(1546*495)
85 LEI KI = 4.0VGS*144/(1546*548)
90 LET K2 = 4*日0266*144/(1)46*570)
95 LET W = K*P/Z
100 LET W! = K*P1/Z3
105 LET W2 = K*P2/Z6
110 LETT W3 =K1*P/Z1
11S LET W4 =K1*P1/Z4
120 LET WS = K1*P2/E7
125 LET WG = K2*P/Z2
130 LET W7 = K2*F1/ES
135 LEJ w8 = K2*P2/28
4& LE] W9 = K1*3814.7/E9
143 LET N1 = 1000*W3/0.01034
1S0 LET K2 = 23\*w3/0.01034
155 LET R3 = (227 + 24)*W3/E.01434
160 LET A = 153866.5-N1-N2-N3
165 LET H = 1 - (1.2/((0.44444*D + 14.7)/14.7))
175 LET MI = M
180 LET M2 = M
185 LET M3 = W0 4*6*W5/0.01034
190 LET MA = 5*0*wう/0.01034
195 LET A1 = A - M - M1 - M2 - 13 - M4
200 LEI C = 235*W3/0.01034
205 LET CL = 765*w3/0.01034
21* LET C2 = 227*W3%0.01434
213 LEI AR = Al - C - Cl - CL
215 LEI C3 = 2*16**3/0.01034
220 LET C4 = 2.13**3/0.61034
225 LET CS = 4*3*W3/0.01034
238 LEi C6 = 2*227*(43 - N6)/6.010344
232CEC7 = 2*16*W/0.01034
235 LET C8 = (476.43*1.5)*2*2
240 LEI C9 = 0.5*3*43/0.010344
245 LET L = 24*1000*(w3 - w4)/0.01034
250 LEI LI = 24*227*(*3 - w4)/0.01034
257 Let L2 = L + LI
260 LE1 B = C3+C4 + C3+C6 + C7 + C8 + C9
265 FON X = 1 TO 10 STEN 1
267 LET LJ = X*LR
278 LET A3 = A2 - X)(B + L2)
288 PRINT A;A1;AR;A3;L3:KS
290 NEXT X
300 DATA 3.3979É5,3.0431E゙-5.2.902SE゙-5,850
305 PRINT
306 PKINT
30B PNINT "DEFINITION OF SYMBULS"
310 PRINT "PRESSURE E゙GUIV. TO 850FT. S.w.
3IT RKINT " TO 8SGFT. S.W. MINUS U.SFT. rSlA" MI
312 PRINT "OTC FLASK wP P2 = " P2
314 PRINLT "COMFNESSIBILIIY FOR P AT 35 DEGREES F, }Z="*
r AT 88 DEGNEES F, Z1 ="* 
P AT 110 DEGREES F, Z2 ='" Z'
316 PKINT "* PI AT 35 DEGREES F, t3 ="* Z3
M15 PRINT ". 
318 PRINI ".
319 PKINT ".
321 PRINT ""
P1 AT 110 DEGREES F, Z5 ="* ZS 
H2 AT 3S DEGREES F, Z6 =" Z6
                    H2 AT 110 DEGREES F, Z8 ="* Z7
                    M814.7 AT B8 DEGREES F, Z9 ="'ZZG
    32 PRINT "HELIUM DENSITY AT
324 PRINT ".
    325 PRINT "
    326 PRINT "
    327 PRI LT .*
328 PRINI "
328 PRINI ".
329 PRINT "
331 PRINT "" PRINT "
332 PRINT "RESERVE FOR HYPERBARIC TREATMENT 3814* AND LB/FT3 W9 =" W9
333 PRINT "RESERVE FOR HYPERBARIC TREATMENT IN DDC, SCF", RI
334 PRINT "RESERVE FOR OUTER LOCK OPERATION ONCE, SCF", R2
```



```
338 PRILT "*******GUAITITY AVAILABLE FOR DIVING HISSION SCF'A
38 PRINT "HELIUM FOR SHIP'S MIXED GAS BANK PEK BANK SCF" M
339 PRINT ". HELIUM FOK PTC MIXED GAS FLASKS SCF" M3
340 PKINT " HELIUM FOR PTC HELIUM FLASKS SCF" M4
341 PRINT "********日UANTITY AVAILABLE FOR DIVING MISSION SCF"AI
342 PRINT "HELIUM FOR PRESSURIZATION DDC OUTEN LOCK SCF" C
343 PRINT "HELIUM FOR PRESSURIZATION DDC INNER LOCK SCF" CI
344 PRINT "HELIUM FOR PTC PRESSURIZATION SCF" G2
345 PRINT "******** SUANTITY AVAILABLE FOR DAILY OPERATIONS SCFraR
346 PRINT " DAILY OPERATIONS "
346 PRINT " DAILY OPERATIONS
347 PRINT "DDC TRUNK PRESS. TWICE DAILY SCF" C3
348 PRILT "PTC TRUNK PRESS.' TWICE DAILY SCF" CS
349 PRINT ." MEDICAL POCK FOUN DAI UY SCF." CS
359 PRINT ." MEDIGAL LOCK FOUN DAI IY SCF", CS
M5 PRIN. PTC DELIA I EQUALIEATION: TWICE DAILY SCF" C6
I PRINT"PTC TKUNK BLOW AT DEPTH TWLCE DAILY SCF" C7
352 PRINT " DIVERS USE WITH O-ges ILPGRIFICE MAN, II SCF" CB
353 PRINT " LOSS IN PTC SCRUBBER CHANGE ONGE EVERY TWO DAYS SCF" C9
353 PRINT "* LOSS IN PTC SCRUBBER CHANGE ONCE EVERY TWO DAYS
354 PRINT "DAILYY LEAKAGE DDC, INNER & OJTER LOCK SCF"L
S PRILT "DAILY LEAIAGE PTC.
36 PRINT "TOTAL DAILY LEAKAGE DDC ALD PTC
357 PRINT "HELIUM USE DAILY FOR DIVING OPS
358 PRINT "HELIUM USE DAILY FOR DIVING OPS
360 END
```

A	8	C	D	E	F
117221.8	85897.31	55745.98	49415.24	420.8263	
117221.8	85897.31	55745.98	43084.51	841.6525	$\begin{aligned} & 1756.985 \\ & 3513.97 \end{aligned}$
117221.8	85897.31	55745.98	36753.78	1262.479	
117221.8	85897.31	55745.98	30423.05	1262.469 1683.345	5270.954 7027.939
117221.8	85897.31	55745.98	24092.31	2104.131	7684.939
117221.8 117221.8	85897.31 85897.31	55745.98	17761.58	2524.958	8784.924 10541.91
117221.8 117221.8	85897.31	55745.98	11430.85	2945.784	12298.89
117221.8 117221.8	85897.31 85897.31	55745.98 55745.98	5100.116	3366.61	14055.88
117221.8	85897.31	55745.98 55745.98	- -1230.617	3787.436	15812.86

- OF SYMAULS

C HELIUM TRANSFER TIME CALCULATION T. BRINKER COOE 6432×68002
C*
CASDAC 242053 MTAS HANSEN G154E 62434
DIMENSION ITYPE(50), PRESS1(50), PRESS2(50), P(2)
DIMENSION DENSTY(2), TIME (50), PTANK(50), WTRANS(50)
DIMENSION PHOLO1(2), PHOLD2(2)
EQUIVALENCE (PHOLDI(2), PRESS1(1)), (PHOLD2(2), PRESS2(1))
10 FORMAT (8F10.2)
11 FORMAT (4 F10.2)
11 FORMAT (/1X25HTOTAL TIME OF TRANSFER $=$, F $9.2,2 X$, THMINUTES)
130 FORMAT ($1 X, 5$ HOPER. $6 \mathrm{X}, 15$ HBOTTLE PRESSURE, $5 \mathrm{X}, 4$ HMASS, $6 \mathrm{X}, 4 \mathrm{HT}$ ANK, $4 \mathrm{X}, 9 \mathrm{HO}$ /PERATION, $4 X, 4 H T I M E$)
140 FORMAT ($1 \mathrm{X}, 5 \mathrm{HCOUNT}, 7 \mathrm{X}, 4 \mathrm{HFROM}, 5 \mathrm{X}, 2 \mathrm{HTO}, 5 \mathrm{X}, 19 \mathrm{HTRANSFERED}$ PRESSURE/)
200 FORMAT (///30X,10HINPUT DATA//)
201 FORMAT (10X, $31 H V O L U M E$ OF ON BOARD STORAGE BANK, $11 X, 1 H=, F 8.1,2 X, 7 H C U$ 1 FEET/10X,31HDESIGN PRESSURE OF STORAGE BANK, $11 \mathrm{X}, 1 \mathrm{H}=, \mathrm{F} 8.1,2 \mathrm{X}, 4 \mathrm{HPSI}$ $2 G / 10 \times 32 H M I N I M U M$ PRESSURE OF STORAGE BANK/ $12 X, 31 H B E F O R E$ PUAPING M 3AY BE INITIATED, $9 x, 1 H=, F 8.1,2 X, 4 H P S I G)$
204 FORMAT (10X, 35HVOLUME OF SUPPLY BANK 1100 BOTTLES), $7 X, 1 H x, F 8.1,2 X, 7$
 $2,4 H P S I G / 10 X, 43 H M I N I M U M$ (RETURN) PRESSURE OF SUPPLY BANK $=9$ F8. $1,2 X$, 34HPSIG/10X,21HPUMP CLEARANCE VOLUME, $21 X, 1 H=, F 8,1,2 X, 7 H P E R C E N T)$
205 FORMAT ($10 X, 29 H D U R A T I O N$ OF ONE PUMPING CYCLE, $13 X, 1 H=, F 8.1,2 X, 9 H M I N U$ ITE (S))
202 FORMAT ($10 X, 38 H V O L U M E$ DISPLACED BY PUMP IN ONE MINUTE; $4 X, 1 H=, F 8,1$, $12 \mathrm{X}, 7 \mathrm{HCU}$ FEET/10X,27HPOLYTROPIC PROCESS EXPONENT, $15 \mathrm{X}, 1 \mathrm{H}=, \mathrm{F} 8,1 / 10 \mathrm{X}$, $237 H T E M P E R A T U R E$ OF GAS (ASSUMED CONSTANT), 5X, 1H=,F8.1, 2X,5HDEG-F) $310 \mathrm{X}, 23 \mathrm{HHELIUM}$ GAS CONSTANT (R), $19 \mathrm{X}, 1 \mathrm{H}=, \mathrm{F} 8.1,2 \mathrm{X}, 12 \mathrm{HFT}-\mathrm{LBF} / \mathrm{LBM}-\mathrm{R} / / 1)$
203 FORMAT ($30 X, 13 H G E N E R A L$ NOTES/ $17 X, 36 H P R E S S U R E S$ EXPRESSED IN PSI (ABS IOLUTEJ/17X,39HMASS TRANSFERS EXPRESSED IN MASS POUNDS/17X,33HTIME 2PERIODS EXPRESSED IN MINUTES//I
777 READ $(5,10) V S T O R, V S U P L Y, T, P B O T I N, P B O T F I, P S T O R F, P S T O R M, R$ REAO $(5,11)$ CLEAR, POLY,DISPL,TIME WRITE $(6,200)$
WRITE $(6,201)$ VSTOR,PSTORF,PSTORM
WRITE 6,204) VSUPLY,PBOTIN, PBOTFI,CLEAR
WRITE $(6,205)$ TIME
WRITE(6,202) DISPL, POLY, T,R
WRITE $(6,203)$
WRITE $(6,130)$
WRITE $(6,140)$
TOTVOL =VSTOR +VSUPLY
CLEAR =CLEAR/100.
TIMSUM $=0.0$
$T R=T+460$.
PFINAL $=P$ STORF +14.7
PTEST=PBOTIN +14.7
ICOUNT = 1
Z $=1 .+3.25 * 10 . * *(-5) *($ PSTORM+14.7)
WTMIN=((PSTORM+14.7)*144.*VSTOR)/(2*R*TR)
ATIME (ICOUNT) $=0.0$
ITYPE (ICOUNT) $=0$

DENSTY(1) =(P(1)*144.)/(Z*R*TR)
WBOTLE =DENSTY(1) \#VSUPLY
WRESOU=DENSTY(2)*VSUPLY
WTEQU $=$ HBOTLE - WRESDU
50 HT $2=$ HT $2+$ HTEQU
IF (WTMIN-WT2) $30,30,40$
40 PRESSI(ICOUNT) $=P(1)$
PRESS2(ICOUNT) $=P(2)$
PTANK (ICOUNT) = (WT2*R*TR)/(144。*VSTOR-3.25*10.** (-5)*WT2*R*TR)
WTRANS (I COUNT) =WTEQU
ICOUNT =I COUNT +1
GO TO 50
C INITIALIZATION FOR OPERATIONS.
30 PRESS $1(I C O U N T)=P(1)$
ICOUNT =ICOUNT-I
WT2=WT2-HTEQU
ICHECK=0
IPRINT $=0$
LOGIC $=0$
$I \perp A S T=0$
WT SUM \times WT $2+$ HBOTLE
C EQUALIZING OPERATION.
90 ICOUNT $=I$ COUNT +1
ATIME (ICQUNT)=0.0
ITYPE (I COUNT) $=0$
$P(1)=(W T$ SUM*R*TR)/(144.*TOTVOL-3.25*10.** (-5)*WTSUM*R*TR)
PRESS2(ICOUNT)=P(1)
PTANK (ICOUNT)=P(1)
$Z A=1 .+3.25 * 10$. $*=(-5) * P(1)$
$W T 1=(P(1) * 144$. $\# V S U P(Y) /(Z A * R * T R)$
WTRANS(ICOUNT) =WBOTLE-WTI
WT $2=W T 2+W T R A N S$ (ICOUNT)
$P(2)=P(1)$

```
C PUMPING OPERATION.
    70 ICOUNT=I IOUNT +1
        IF(ICOUNT-51) 300,301,302
    301 CALL OUTPUT I I COUNT, ILAST, IT YPE, PRESSL,PRESS2,WTRANS,PTANK,ATIME,TI
        1MSUM,PHOLDL,PHOLD2)
            ICOUNT = 1
        GO TO 71
    300 CONTINUE
        IF(IPRINT) 302,71,304
    304 CALL DUTPUTIICOUNT,ILAST,ITYPE,PRESSI,PRESS2,WTRANS,PTANK,ATIME,TI
        IMSUM,PHOLD1,PHOLD2)
        GO TO 305
    71 CONTINUE
        PRESSI(ICOUNT) =P(1)
        A=.67+CLEAR-CLEAR*(P(2)/P(1))**(1./POLY)
        B= (DISPL*TIME*P(1)*144.1/(2A*R*TR)
        WTRANS(ICOUNT)=A*B
        WTL=WT1-WTRANS(ICOUNT)
        PTEMP=(WTl#R*TR)/(144.*VSUPLY-WT1#R*TR*(3.25*10.***;-5);)
        IF(PTEMP-PBOTFI-14.7) 20,60,60
    60 P(1)=PTEMP
        ATIME(ICOUNT) = IIME
        ITYPE(ICOUNT)=1
    61 WT2=WT2+WTRANS(ICOUNT)
        P(2)=(WT2*R*TR)/(144**VSTOR -WT2*R*TR*(3.25*10.**(-5)))
        IF(P(2)-PFINAL) 99,100,10067
    100 IPRINT=1
    9 9 ~ C O N T I N U E ~
        IF(P(2)-PTEST) 80,81,81
    81 ICHECK=-1
    80 IF(LOGIC) 73,72,9999
    73 PTANK(I COUNT)=P(2)
        LOGIC=0
        GO TO 62
    72 CONTINUE
        IF(ICHECK) 63,64,9999
    64 PRESSI (ICOUNT)=PRESS2 (ICOUNT-1)
    63 PRESS2(ICOUNT)=P(1)
        PTANK(ICOUNT)=P(2)
        GO TO }7
    20 LOGIC=-1
        PRESS2(ICOUNT)=PBOTFI +14.7
        P(1)=PBOTIN+14.7
        PDIFF=PRESS1(ICOUNT-1)-PRESS2(ICOUNT-1)
        POELTA=PRESSI (ICOUNT)-PRESS2 (ICOUNT)
        ATIME (ICOUNT) ={PDELTA/PDIFFI*TIME
        ITYPE (I COUNT)=1
        Z=1.*3.25*10.**(-5)*PRESSI(ICOUNT)
        WTRANS (ICOUNT) = (PRESSI(I COUNT )*VSUPLY*144.)/(R*TR*Z)-WRESDU
        GO TO 6l
    6 2 ~ H T S U M = W T 2 + W B O T L E ~
        PRESSI(ICOUNT+1)=P(1)
        IF(ICHECK) 86,90,9999
    86 ZA=1.+3.25*10.** (-5)*P{1}
        Tl=(P(1)*144.*VSUPLY)/(ZA*R*TR)
        GO TO 70
    305 WRITE(6,111) TIMSUM 107
```



```
303 FORMAT(/25HPROGRAM ERROR TERMINATION/)
9999 GO TO }77
    END
                OUTPUT - EFN SOURCE STATEMENT - IFN(S) -
122 FORMAT (I5,5X,2FB.2,2X,FB.3,2X,F10.3,2X,7HPUMPING,5X,F5.2)
        DIMENSION 1TYPE(50), PRESS1(50), PRESS2(50), WTRANS(50), PTANK(50)
        DIMENSIDN ATIME (50),PHOLOL(2), PHOLD2(2)
        ICOUNT = I COUNT-I
        OO 120 1=1, I COUNT
        KCOUNT=I LASTT+I
        IF(ITYPE(I)) 2,2,3
    2 WRITE(6,12I)KCOUNT,PRESSI(I),PRESSZ(I),HTRANS(I),PTANK(I),ATIME(I)
        GO TO 119 (I)
    3 WRITE (6,122)KCOUNT,PRESSI(I),PRESS2(I),NTRANS(I),PTANK(I),ATIME(I)
119 TIMSUM=TIMSUM+ATIME(I)
120 CONTINUE
    ILAST =ILAST+ICOUNT
    PHOLOI(1)=PRESSI(ICOUNT)
    PHOLD2(1)=PRESS2(1COUNT)
    RETURN
    ENO
```

IBLOR

INPUT DATA

GENERAL NOTES
PRESSURES EXPRESSED IN PSI(ABSOLUTE) MASS TRANSFERS EXPRESSED IN MASS POUNDS TIME PERIOOS EXPRESSED IN MINUTES

OPER.	SOTTLE PRESSURE	MASS	TANK	OPERATION	IIME	
COUNT	FROM	TO	TRANSFERED PRESSURE			
1	3014.70	1974.23	31.316	1974.225	EQUALIZING	0.
2	1974.23	1833.96	4.375	2270.364	PUMPING	9.00
3	1833.96	1706.10	4.021	2547.296	PUMPING	9.00
4	1706.10	1589.31	3.700	2806.296	PUMPING	9.00
5	1589.31	1482.43	3.410	3048.545	PUMPING	9.00

TOTAL TIME OF TRANSFER $=36.00$ MINUTES

INPUT DATA

VOLUAE OF ON BOARD STORAGE BANK		24.0	CU FEET
DESIGN PRESSURE OF STORAGE BANK		3000.0	PSIG
MINIMUM PRESSURE OF STORAGE BANK			
gefore pumping may be initiateo	=	200.0	PSIG
VOLUME CF SUPPLY BANK (100 BOTTLES)	=	80.0	CU FEET
INITIAL OELIVERY PRESSURE OF SUPPLY BANK	B,	3000.0	PSIG
HINIMUM (RETURN) PRESSURE OF SUPPLY BANK	=	200.0	PSIG
PUMP CLEARANCE VOLUME		5.0	PERCENT
DURATION OF ONE PUMPING CYCLE		9.0	MINUTE(S)
VOLUME DISPLACED BY PUMP IN ONE MINUTE	$=$	0.6	CU FEET
POLYTROPIC PROCESS EXPONENT	\#	1.6	
TEMPERATURE OF GAS (ASSUMED CONSTANT)	=	70.0	DEG-F
HELIUM GAS CONSTANT (R)		386.	FT-LBF/LB

GENERAL NOTES
PRESSURES EXPRESSED IN PSI(ABSOLUTE)
MASS TRANSFERS EXPRESSED IN MASS POUNOS
TIME PERIODS EXPRESSED IN MINUTES

OPER.	BOTTLE	PRESSURE	MASS	TANK	OPERATION	TIME
COUNT	FROM	TO	TRANSFEREO PRESSURE			
1	3014.70	2267.73	35.652	2267.726	EQUALIZIING	0.
2	2267.73	2166.00	4.980	2611.402	PUMPING	9.00
3	2166.00	2070.31	4.713	2943.275	PUMPING	9.00
4	2070.31	1980.20	4.463	3263.713	PUMPING	9.00
TOTAL TIME OF TRANSFER $=$	27.00	MIMUTES				

[^0]: ${ }^{1} \mathrm{SCF}=$ standard cubic ft ; helium at $70^{\circ} \mathrm{F}$ and 14.7 psia.

