## DESIGN CONSIDERATIONS FOR DIVERS' BREATHING GAS SYSTEMS

O. R. Hansen Office of the U.S. Navy Supervisor of Diving Naval Ships Systems Command

## INTRODUCTION

The advent of deep dive systems and saturation diving has necessitated the careful planning and design of breathing gas systems. For saturation diving, the divers' enclosures must be pressurized to, and sustained at, a pressure equivalent to the depth at which the mission operations are to be performed. Thus, the flow rate itself is not a significant design parameter. The initial pressurization is normally conducted at a relatively low rate, and the mission duration can be up to 10 days.

Breathing gas, normally a helium-oxygen mixture, must be available to effect the required pressurization. There also must be sufficient gas to supply the breathing apparatus used by the deployed divers, as well as a reserve supply for treating decompression sickness.

This paper discusses some of the design methods used to establish the gas storage, mixing, and transfer requirements for existing deep dive systems.

## DEEP DIVE SYSTEMS

 
 Table 2.1
 Design parameters for gas requirements in Mark I and II deep dive systems.

|                                  | MARKI                    | MARK II                  |
|----------------------------------|--------------------------|--------------------------|
|                                  | Ртс                      | PTC                      |
|                                  |                          |                          |
| ENCLOSURE                        | VOLUME - FT <sup>3</sup> | VOLUME - FT <sup>3</sup> |
| Deck Decompression Chamber (DDC) | 321.0 (1 chbr)           | 765.0                    |
| Personnel Transfer Capsule (PTC) | 144.0                    | 227.0                    |
| Entrance Lock (EL)               | 103.79                   | 235.0                    |
| Supply Lock (SL)                 | 1.61                     | 3.0                      |
| MARKI                            |                          |                          |
| EL to DDC Trunk                  | 3.00                     |                          |
| EL to PTC Trunk                  | 9.28                     | _                        |
| PTC Trunk                        | 8.15                     | -                        |
| MARKII                           |                          |                          |
| DDC Transfer Trunk               |                          | 16.0                     |
| PTC Transfer Trunk               |                          | 13.0                     |
| PTC FLASKS                       |                          |                          |
| Helium                           | 20.0                     | 30.0                     |
| Oxygen                           | 6.0                      | 60                       |
| Mixed Gas                        | 10.0                     | 24.0                     |
| Scrubber – DDC                   | 2.90                     | 3.00                     |
| OTHER PARAMETERS                 | MARKI                    | MARK II                  |
| Design Depth of Diving Mission   | 850 feet                 | 1000 feet                |
| Diving Man-Hours                 | <b>A</b> *               | 0**                      |

\*The Mark I PTC is normally used with a three-man crew: a capsule operator (tender), a diver and a standby diver. One descent of PTC for a diving mission normally includes 4 hours so tho ttom time, 4 hours handling time and 2 hours for recharging PTC flasks. Two alternating crews are employed on a saturation mission with one crew being maintained at pressure in the DDC.

\*\*The Mark II PTC can accommodate a four-man crew: a capsule operator (tender), a standby diver and 2 working divers. The 2 working divers provide an eight man-hour diving capability for one deployment of the PTC. The U.S. Navy has two major deep dive systems (DDS), the Mark I and Mark II. These systems differ in the number of divers they will support, in enclosure volume, and in system arrangement. These differences reflect intended system application and installation: The Mark I was designed primarily to support the large object salvage system (LOSS), and the Mark II was designed to support submarine rescue operations. Table 2.1 provides the design parameters for establishing the gas requirements of these two systems.

The gas required to support missions of maximum duration must be stored aboard the diving platform or mother ship and must be available in a readily transferable state to permit performance of any mission within the design capability of the system. The usual gas supply is a mixture of helium and oxygen, with a small quantity of nitrogen present in the system atmosphere prior to pressurization. The enclosure environment is maintained at  $\sim 0.3$  atm oxygen partial pressure throughout the mission, and the oxygen required to replace that consumed by the divers in the enclosures is only about 1 SCF<sup>1</sup> hr. Thus, analysis of helium requirements receives the most attention.



Figure 2.1 Percentage of  $O_2$  in breathing mixture as a function of depth and  $O_2$  partial pressure.

of paramount importance. To avoid toxicity, the oxygen percentage must decrease as depth increases so that the quantity of helium supplied with the oxygen will increase with depth.

The Mark 10 closed-circuit breathing apparatus (see paper 8), appears to be an optimum system in which essentially only the oxygen to support the diver's metabolic requirements must be provided. This will simplify the establishment of gas storage system requirements.

## GAS STORAGE SYSTEMS

#### **High Pressure Storage Systems**

Utilizing design principals applied in nuclear submarines, the original diving gas storage systems were designed as high pressure stored gas systems. Recognizing that the submarine environment is at one atmosphere and that the diving system is at the diving depth pressure the significance of storage pressure and volume are not readily apparent. Pressure and volume effects both space and weight of the system and a method to relate these parameters is presented in this section.

Systems that use a semiclosed diver breathing apparatus are an exception, however, and demand a more extensive analysis of oxygen requirements. Figure 2.1 relates the percentage of oxygen in the breathing mixture to depth, and to oxygen partial pressure in both psia and atm. The curves show a large area within which mixtures are physiologically acceptable. The oxygen concentration must be maintained within the concentration range shown in this figure. In the semiclosed apparatus, mixtures must provide an adequate liter flow through the system to supply metabolic oxygen for the diver as well as maintain an oxygen concentration within tolerable limits. This system was adequately described in the initial life support systems conference but the definition of gas mixture oxygen concentration and liter flow (fig. 2.2) was developed later. It is again evident, however, that for deep diving, the availability of helium is

 $<sup>^{1}</sup>$ SCF = standard cubic ft; helium at 70° F and 14.7 psia.



Figure 2.2 Liter flow and O<sub>2</sub> percentage for semiclosed circuit breathing apparatus.

An adequate supply of gas must provide for the maximum mission as well as gas reserves needed in emergency. Unless provision is made for gas transfer, the storage volume will contain gas at equilibrium pressure with the depth of the diving mission. A second consideration is that helium, oxygen, and mixtures thereof deviate significantly from ideal gas, thus precluding application of simple gas laws. Figure 2.3 indicates that less than 90 percent of the helium predicted by ideal gas laws will be stored in a 3000 psi volume where real gas properties exist. This deviation has prompted the application of various techniques to account for real gas characteristics in the design of gas storage systems.

The importance of this deviation in maintaining the permissible mixtures was the subject of considerable study leading to the publication of a U.S. Navy Diving-Gas Manual (ref. 1), which has been invaluable in the design of breathing gas systems.

The use of a single virial coefficient (ref. 2) for determining helium storage requirements has been expedient in developing computer analyses of the many systems being designed. The helium properties established by means of this coefficient, have been compared to those in the manual, which were obtained with the use of additional virial coefficients. Properties obtained with the



Figure 2.3 Deviation of HeO<sub>2</sub> mixtures from ideal gas laws.

been determined for various state points existing within the diving system, effort can be directed toward establishing the system requirements.

Mark II DDS specifications dictate that 306,000 SCF of helium be available from the storage system at pressures above 200 psig. This gas supply is intended to support the two systems installed in the submarine rescue ships, ASR 21 and ASR 22. These are catamaran type ships, and half of the gas would be available to support a 10-day saturation mission in a single Mark II DDS installed in one hull.

single coefficient show a maximum variation of 0.12 percent from those in the manual. The computer program used for this analysis and the resulting output data are given in appendix A. The application of this single coefficient established the compressibility

factor that can be introduced into the ideal gas equation

$$PV = WRT$$

The compressibility factor is related to the pressure times B for any isotherm as follows. The real gas compressibility factor is

$$Z = \frac{PV}{RT}$$

where

$$Z = (1 + BP)$$

and

$$B = virial \ coefficient$$

The density is then

$$\lambda = \frac{P}{(1 + BP)RT}$$

and the pressure will be

$$P = \frac{\lambda TR}{1 - B\lambda RT}$$

applied in analyses, provides which, helium properties approaching real properties.

Once the gas property data have

Numerous studies were conducted to find the best method of storing this gas. Desired storage pressure, individual flask capacity, and storage bank arrangements were analyzed to arrive at the storage system as currently defined. In general, stored gas is contained in seamless steel pressure vessels designed according to Department of Transportation regulations.

The criteria for flasks used by the U.S. Navy are contained in a military specification (ref. 3); the pressure vessels are restricted to 3000 and 5000 psi working pressures and geometry defined by type. Investigation indicated alternative configurations and rated pressures could be obtained, and a limited optimization was performed within the capability.

To optimize the design of the cylinders it is necessary to define the stresses due to internal pressure in closed cylinders. Thus, an analysis for this study to obtain the stress in the cylinder wall was based on the fact that for a cylinder with other than very thin walls under internal pressure, the stress varies from a maximum at the inner surface to a minimum at the outer surface. The analysis also took into account the axial deformations, which affect the load capability of the material.

The following equations, known as Clavarino's equations, will provide the wall thickness to attain 67 percent of the material's ultimate strength at a test pressure equal to 5/3 the design pressure. The design pressure is equal to the pressure of the gas stored in the flask at standard conditions.

$$S_t = (1 - 2m)a + \frac{(1 + m)b}{r^2}$$

$$S_r = (1 - 2m)a - \frac{(1 + m)b}{r^2}$$

where

 $s_t$  tangential stress, psi

*sr* radial stress, psi

m Poisson's ratio of lateral contraction

*r* radius at any point in the wall, in.

a,b constraints for any given values of pressures and diameters such that

$$a = \frac{P_i d_i^2 - P_O d_O^2}{d_O^2 - d_i^2}$$
$$b = \frac{d_i^2 d_O^2}{4} \left(\frac{P_i - P_O}{d_O^2 - d_i^2}\right)$$

#### where

 $d_i$  inside diam, in.

 $d_O$  outside diam, in.

 $P_i$  internal pressure, psi

 $P_O$  external pressure, psi

When a and b are evaluated, and when  $d_i/2$  is substituted for r the equation of the thickness is

$$t = \frac{d_i}{2} \left[ \sqrt{\frac{s_i^{-} + (1 - 2m) P_i}{s_i^{-} - (1 + m) P_i}} -1 \right]$$

where

# $s_t$ = permissible working (tangential) stress in tension, psi

If, the end closure is assumed equivalent in thickness to the cylindrical walls and the normal corrosion allowance of 0.065 in. is added to wall thickness, the weight can be determined from the external volume less the internal volume times the density of the material used in fabrication. In the analyses, the outer diameter was maintained constant at 18, 20, 22, and 24 in. The cylinder configuration is shown in figure 2.4.



Figure 2.4 Gas storage flask configuration used for He capacity and weight.

The results of the analyses provide the wall thickness, internal volume, and weight for cylinders for each of the four diameters and the various design pressures.

These results are incorporated in the computer program for determining the total gas available above an equilibrium pressure equivalent to a given operating depth, established as 1000 ft. A ratio of available helium (in SCF) to each pound of metal in the storage system was obtained, which relates the gas storage pressure, diameter of the storage vessel, and gas contained at equilibrium pressure for each of the four outer diameters.

From the real gas properties for helium, one normally would expect less

helium per pound of metal to be stored at higher pressures because of the increasing compressibility factor. This is correct, but the influence of reduced flask volume and diameter relative to the residual gas quantity is not immediately evident, although it becomes more apparent when the ratio is plotted versus storage pressure. The results are shown in figure 2.5, and the analytical data are given in appendix B.

The results indicate that the 24-in. diameter flask, with a design pressure ranging from 3400 to 3800 psi, is of optimum weight for helium storage in the system.

In general, this technique was applied in the selection of the gas flasks for the Mark II deep dive system aboard the ASR 21/22. Other factors in gas flask selection were the maximum available tooling capacity at the steel mill, which limited the outside diameter to 24 in. and the design pressure to 3800 psi, and the deck height, which restricted flask length to 8 ft (table 2.2).

Oxygen flasks were restricted to 3000 psi design pressures; the helium flasks had design pressures of 3800 psi. The helium available if filled to an equilibrium temperature of  $100^{\circ}$  F is 164,150 SCF; the quantity available above the minimum specified pressure is 153,860 SCF.



Figure 2.5 Available He/lb of metal versus design pressure for flasks of 18- and 24-in. outer diam.

**Table 2.2** System data for Mark IIdeep dive system aboard ASR 21/22.

#### COMPRESSORS

| USE    | CAPACIŢY          | QUANTIT Y               | DISCH. PRESSURE | TYPE      |
|--------|-------------------|-------------------------|-----------------|-----------|
| Helium | 0.45 CFM          | 2 per ship - 1 per hull | 3800 PSIG max.  | Diaphragm |
| Oxygen | Min. Displacement | 2 per ship - 1 per hull | 3800 PSIG max.  | Booster   |

#### FLASKS

| USE                  | VOLUME        | QUANTIT Y                 | SIZE                  |
|----------------------|---------------|---------------------------|-----------------------|
| Helium               | 16.88 cu. ft. | 84 per ship - 42 per hull | 8'0" Lg. x 24" O. D.  |
| Oxygen               | 16.81 cu. ft. | 24 per ship - 12 per hull | 7'0" Lg. x 24" O. D.  |
| Mixed Gases          | 16.88 cu. ft. | 12 per ship - 6 per hull  | 8'0" Lg. x 24" O.D.   |
| High Pressure<br>Air | 10.0 cu. ft.  | 20 per ship - 10 per hull | 7'10" Lg. x 18" O. D. |

Figure 2.6 illustrates the use of helium over a 10-day period in a saturation diving mission, relating the gas available for required events to that stored in the system. The analytical data resulting from these analyses are presented in appendix C. The results indicate that the helium stored is not quite sufficient to maintain the required reserve, and that flask filling and topping must be accomplished during replenishment.



Figure 2.6 Helium available versus days of diving operation on a 10-day saturation diving mission.

Figure 2.7 shows the general arrangement of the Mark II system aboard an ASR 21/22 type platform.

## **Supercritical Storage Systems**

One means of reducing gas storage system weight and volume is to convert the gas to liquid by cryogenic processes. It has been found that the low latent heat of vaporization and the high  $\Delta T$  between the operational environment and liquid helium ( $\sim \Delta T = 532^{\circ} R$ ) preclude the long term storage of supercritical helium; however, its properties are such that lighter weight and lesser volume transport systems can be designed, particularly since the development of super insulations.



Figure 2.7 Mark II deep dive system aboard ASR 21/22.

The system concept is that a pressure vessel (fig. 2.8) is thermally insulated and filled with liquid helium at atmospheric pressure. The liquid inlet and gaseous vent are closed upon reaching the design capacity (in pounds of liquid); pressure then increases within the constant volume of the system in response to "heat leak" through the thermal insulation.

Then the pressure increase can be related as follows. From the first law of thermodynamics,

$$\Delta U = Q - W_k$$

and the definition of enthalpy

$$H = U + pv$$

where

$$Q$$
 heat added to the system

U internal energy function

 $W_k$  work done, by the system

*P* pressure

$$v$$
 specific volume =  $\frac{\text{container volume}}{\text{total mass of liquid and vapor}}$ 



Since the process is one of constant volume

$$W_k = 0$$
  

$$\Delta U = Q$$
  

$$Q = \Delta U = \Delta H + v \Delta p$$

Then the pressure rise is the result of the heat leak into the system, and the time for the system to reach the permissible working pressure is related to the thermal conductivity of the insulation. These principles were applied to a recently developed flyaway system to support the diving systems (fig. 2.9).



Figure 2.9 Supercritical gas system for diving.

Performance curves relating days to pressure increase are shown in figure 2.10.

When the previously stated relationship and helium property data from ref. 5 are applied, the helium temperature when the Dewar is at 1250 psi will be  $\sim 44^{\circ}$  R. (Relationships of temperature and internal energy to pressure in a closed Dewar are shown in figure 2.11.) Therefore, any helium to be used in the diving system must be heated to a usable temperature. This is done in the gas delivery console. System weight is then full Dewar weight plus the delivery console or  $\sim (12800 + 1300) = 14,100$  and, based on their delivery criteria, there are  $\sim 4$  SCF helium available per lb of metal in the system.

or



Figure 2.10 Test results of pressure buildup versus time in one supercritical He Dewar.



Figure 2.11 Internal energy and temperature of He versus pressure in a closed Dewar.

#### **Refrigerated Cryogenic Storage**

Another method for reducing weight and volume of the helium storage would be pressurized storage at liquid oxygen temperature (-297° F); at 1250 psi and 100 atm, the density is ~4.20 lb/ft<sup>3</sup>. Using the same Dewar as designed for the supercritical system, which was 84.5 ft<sup>3</sup> in volume, this system would contain [( $4.20 \times 1250$ )/0.01034] = 50,600 SCF, and that available above 1000 psi would be ~46,000 SCF. Assuming that the delivery system would be no greater in weight than the one used in the supercritical system, we would obtain a ratio of 3.26 SCF/lb of metal in the system.

This system is promising in that the gas can be converted to a usable form, as required, and will not require helium transfer relative to thermal insulation characteristics. The use of liquid oxygen as a refrigerant appears logical in that the liquid produced and stored can be converted to gas to supply the system oxygen requirements.

The U.S. Navy currently uses cryogenic processes in small Joule-Thompson type liquefiers installed aboard aircraft carriers to generate breathing oxygen for fliers. The cryogenic refrigerated storage concept could be developed on the basis of experience and available technology.

#### GAS MIXING SYSTEMS

There are three basic methods of preparing breathing gas mixtures. The first two are mixing by weight and mixing by partial pressures. These are batch processes, and they introduce significant error in mix ratios because of deviation from ideal gas laws (ref. 1). Diffusion of oxygen into helium is a slow process; in some instances, it takes several days to obtain stabilized concentrations when the storage vessels are large.

The third technique, normally required for sustained large-scale diving operations, is a continuous flow method that consists of metering and controlling separate streams of oxygen, helium, and air or nitrogen and mixing them at high turbulence downstream from the metering system. To be effective this method requires a simple, easy-to-operate mixing system and a reliable analyzer to detect malfunctions quickly enough to permit adjustments to the gas mixture. The gas mixture may be fed directly to the diver through hose and regulators, introduced into a chamber such as a habitat or personnel transfer capsule, or recompressed and stored for later use.





Figure 2.12 shows the principles of the system, an Airco Mixmaker (TM), that is presently in use at the Navy Experimental Diving Unit. Stored, pure gases are supplied to the system at approximately 1100 psi through a regulator (1). At a constant, regulated pressure, the gases are passed through a heat exchanger (2) to reach a preset constant temperature. The system utilizes sonic flow characteristics through calibrated metering valves (3). The gases are mixed in a turbulent mixing chamber (4) and then sent through a regulator controlling flow-meter-outlet pressure at  $\sim$ 750 psi. The gas is sampled

by bleeding from the main flow and routed to a gas chromatograph or other recording gas analyzer (6). The main gas stream passes through a final regulator (7) to be supplied directly to the divers (8). An accumulator (9) should be added to prevent high concentrations of oxygen from reaching the divers in the event of system malfunction. The mixed gas could be fed to storage cylinders or into a high-pressure diaphragm compressor for additional pressurization prior to storage.

The accuracy of mixing claimed for this system is as follows:

| Amount of oxygen<br>in mixture | Precision of oxygen content |
|--------------------------------|-----------------------------|
| 0 - 10%                        | ±0.15% O <sub>2</sub>       |
| 10 - 15%                       | $\pm 0.25\% \text{ O}_2^-$  |
| 15 - 100%                      | ±0.50% O2                   |

For example, mixed gas prepared at the 9 percent setting would contain between 8.85 and 9.15 percent of pure oxygen.

Continuous-flow breathing-gas mixture systems, such as the system described above, can be fed to high-pressure compressors for filling UBA tanks or compressed-gas storage banks, as desired.

The oxygen content of the mixture would depend on the type of breathing apparatus to be used and the range of diving depths anticipated.

The Airco Mixmaker represents a fairly recent concept in gas mixing for underwater breathing applications. Since the only outside resources required are pure gas and electrical power, both binary and ternary mixtures of any predetermined requirement can be mixed on site, a significant advantage over "batch basis" mixing. Another version of a gas mixing system is shown in figure 2.13. This system uses calibrated turbine-type flowmeters and two-stage motor-operated needle valves.



Figure 2.13. Worldwide gas mixing system.

#### GAS TRANSFER SYSTEMS

Transfer systems consisting of suitable noncontaminating compressors are desirable for helium, oxygen, and mixed gas systems. They enhance the performance ratio of SCF of helium available per pound of metal, but their operation requires a relatively high inlet pressure, as much as 200 to 400 psig for some of the smaller units. Figure 2.14 illustrates a transfer system utilizing an A5C250 compressor.

Application of these pumps in a system requires some knowledge of their performance characteristics. The only known parameters that can be applied are the displacement volume and rpm, from which the displacement per unit time and the flow capacity as related to the inlet pressure, outlet pressure, volumetric efficiency, and real gas properties can be obtained. The volumetric efficiency can be established theoretically if clearance volume is known, but more frequently, it is determined experimentally for each type of compressor. The volumetric efficiency for one model of a diaphragm type compressor is shown in figure 2.15. When the displacement and the volumetric efficiency are known, a simple computation relating the flow through the compressor with varying upstream-downstream pressure conditions, which are normally present in gas transfer operations, can be performed.



Figure 2.14 A5C250 compressor unit.



Figure 2.15 Volumetric efficiency curve A5C250 compressor.

A program was developed (appendix D), in which the data input permits variation in the input parameters (table 2.3). The program progressively reduces the pressure in the supply volume relative to the compressor displacement as affected by clearance, which is related to downstream pressure. It follows conventional compressor principles where a  $lb_{in}$  is a  $lb_{out}$  but takes into account the effect of the upstream-downstream condition on the flow capacity.

# Table 2.3 Input data constants for calculating He transfer time

#### INPUT DATA

| VOLUME OF ON BOARD STORAGE BANK                                     | 24.0 CU FEET       |
|---------------------------------------------------------------------|--------------------|
| DESIGN PRESSURE OF STORAGE BANK                                     | 3000.0 PSIG        |
| MINIMUM PRESSURE OF STORAGE BANK<br>BEFORE PUMPING MAY BE INITIATED | 200.0 PSIG         |
| VOLUME OF SUPPLY BANK (100 BOTTLES)                                 | 60.0 CU FEET       |
| INITIAL DELIVERY PRESSURE OF SUPPLY BANK                            | 3000.0 PSIG        |
| MINIMUM (RETURN) PRESSURE OF SUPPLY BANK                            | 200.0 PSIG         |
| PUMP CLEARANCE VOLUME                                               | 5.0 PERCENT        |
| DURATION OF ONE PUMPING CYCLE                                       | 9.0 MINUTE(S)      |
| VOLUME DISPLACED BY PUMP IN ONE MINUTE                              | 0.6 CU FEET        |
| POLYTROPIC PROCESS EXPONENT                                         | 1.6                |
| TEMPERATURE OF GAS (ASSUMED CONSTANT)                               | 70.0 DEG-F         |
| HELIUM GAS CONSTANT (R)                                             | 386.3 FT-LBF/LBM-R |
|                                                                     |                    |

See Appendix D for the complete program and data concerning calculation of helium transfer time.

Although in our application of the program the polytropic exponent was near that of conventional compressors, in practice it more nearly approaches isothermal compression. Results obtained have provided transfer time for various shipboard applications, establishing constraints on time-related application of the compressor (e.g., the transfer of helium from a tube trailer into the nearby gas storage system).

#### COMPRESSED AIR CONSIDERATIONS

Although compressed air has limited application in DDS, it is the most common breathing gas used by divers.

In deep diving systems compressed air is only for pressurizing the enclosures to an equivalent pressure to 14 ft of seawater to increase the oxygen partial pressure to 228 mm Hg so that the monitoring instrumentation can be zeroed and performance can be verified. Compressed air is used to support conventional surface-supplied systems and the more common scuba gear.

## **Purity Standards and Monitoring Techniques**

Current purity standards for breathing air are:

| Oxygen                     | 20 to 22 percent by volume                                         |
|----------------------------|--------------------------------------------------------------------|
| Carbon dioxide             | 300 to 500 ppm $(0.03 \text{ to } 0.05 \text{ percent})$ by volume |
| Carbon monoxide            | 20 ppm maximum                                                     |
| Oil, mist, and vapor       | $5 \text{ mg/m}^3 \text{ maximum}$                                 |
| Solid and liquid particles | not detectable except as noted above under oil, mist, and vapor    |
| Odor                       | not objectionable                                                  |

Efforts to provide appropriate equipment for meeting these standards have been extensive. Filter testing at both the manufacturer's facility and another laboratory, together with a short-term test on one of the ARS-type ships, has verified the performance of an oil- and particulate-removal filter system. Procurement has been initiated for sufficient units to supply each existing salvage ship (ARS) and submarine rescue ship (ASR) with a portable unit, and an adequate number was included for salvage equipment pools, for supporting HCU and ATF surface-supplied diving.

Other projects include definition of compressor lubricating oils and their additives, with recommendations to exclude the use of oils containing phosphate esters. The commonly used 2190 TEP will be replaced with a 2135 TH type oil.

Proposed projects for monitoring techniques that will permit air sampling from the shipboard systems are being reviewed. These projects fall into two categories. The first is a technique for adapting coal dust monitoring equipment, under development as required by a recently established public law, for use in determining, on a periodic basis, the oil and particulate matter in diver air systems. This work involves the development of sampling techniques and adaptation of the coal dust sampler cassette for the sampling of air in diver breathing systems.

Currently under study are selective permeable membranes, incorporated into cassettes, that collect oil aerosols and particulate matter as the sample air passes through them. Once calibrated to provide representative quantities, these membranes will indicate the quantities of these

contaminants in an air stream. The contaminant levels established for the coal dust monitoring equipment are strikingly similar to diver system requirements:  $2 \text{ mg/m}^3$  and  $5 \text{ mg/m}^3$ , respectively.

A second category comprises techniques for establishing the gaseous contaminants. A proposal in this area is under consideration that would refine current practice and hopefully provide acceptable techniques for periodically analyzing the air from divers' breathing gas systems.

Systems cleaning presents a major problem particularly in existing systems that do not permit in-place cleaning. Future installations, where practicable, will permit in-place cleaning.

## CONCLUSION

The analytical approach to the design of compressed gas systems for supporting deep diving systems offers a method of effectively determining gas requirements and storage system definition. Although shipboard installations are not normally weight sensitive, the magnitude of these installations requires some optimization to reduce the weight.

Gas mixing systems also appear essential to provide the low concentration mixtures within the converging tolerance range dictated by applications to ever-increasing depths.

Time-related use of gas together with the performance of the gas transfer system is another significant consideration to ensure transfer within a reasonable time frame for systems application.

## REFERENCES

- 1. U.S. Navy Diving Gas Manual, Oct. 1, 1969. U.S. Navy Supervisor of Diving Research Report 3-69.
- 2. Journal of Chemical Engineering Data, vol. 5, no. 1, Jan. 1960.
- 3. Anon.: Flask, Compressed Gas and End Plugs for Air, Oxygen, and Nitrogen. Military Spec. Mil-F-22606B (Ships).

#### APPENDIX A

PROGRAM - VIRIAL

PROGRAM VIRIAL

PRGGRAM JIRIAL 00100 READ R,T,TI,T2,T3,T4,T5,T9,B,B1,B2,B3,B4,B5 00110 DIM A(7),A1(7),A2(7),A3(7),A4(7),A5(7),A6(7) 00120 FRR C = 1 T0 7 00130 READ A(C) 00140 NEXT C 00150 FRR C1 = 1 T0 7 00160 FRR DA1(C1) 00170 NEXT C1 00180 FRR C2 = 1 T0 7 00190 READ A2(C2) 00200 NEXT C2 00210 FRR C3 = 1 T0 7 00220 READ A3(C3) 00240 FOR C4 = 1 T0 7 00250 READ A4(C4) 00260 NEXT C3 00260 NEXT C5 00270 FOR C5 = 1 T0 7 00280 READ A5(C5) 00290 NEXT C5 00300 FRR C6 = 1 T0 7 00310 READ A6(C6) 00320 NEXT C6 00330 FRINT"TEMPERATURE DEG F "T 00340 GOSUB 01380 00330 PRIAT"TEMPERATURE DEG F "T 00340 GØSUB 01380 00350 FRINT 00360 FØR I = 1 TØ 7 00370 LET P = A6(1) 00390 LET DI = P/((1+B+P)\*R\*([9+T)) 00400 LET D2 = D1\*1728 00410 LET V2 = ((D2-D)/D)\*100 00420 LET V1 = 100\*V 00430 LET V2 = INT(V1\*I0+3 + .5)/10\*3 00440 LET V3 = V2/100 00450 PRINT TAB(1),P.TAB(13),D.TAB(3U),D2,TAB(52),V3 00460 NEXT 1 00470 PRINT 00400 HLA. 4 00470 PRINT 00480 PRINT 00520 GØ SUB 01380 00510 PRINT 00520 FØR II = 1 TØ 7 00530 LET P = A6(11) 00540 LET D = A1(11) 00550 LET D = P/((1+B1+P)\*R\*(T9+T1)) 00560 LET D = 10+128 00570 LET v = ((D2-D)/D)\*100 00580 LET v1 = 100\*V 00590 LET v2 = INT(V1\*10\*3 + .5)/10\*3 00600 LET v3 = V2/10C 00610 PRINT TAB(0),P,TAB(13),D,TAB(30,,D2,TAB(52),V3 00620 NEXT II 00620 NEXT I1 00630 PRINT 00640 PRINT 00650 PRINT"TEMPERATURE DEG F"T2 00660 GØSUB 01380 00660 GØSUB 01380 00670 PRINT 00680 FØR I2 = 1 TØ 7 00690 LET P = A6(12) 00700 LET D = A2(12) 00710 LET D1 = P/((1+B2\*P)\*R\*(T9+T2)) 00720 LET D2 = D1\*1728 00730 LET V = ((02-D)/D)\*100 00740 LET V1 = 100\*V 00750 LET V2 = INT(V1\*10+3 +.5)/10+3 00760 LET V3 = V2/100 00770 PRINT TAB(1),P,TCC(13),D,TAB(30),D2,TAB(52),V3

00780 NEXT 12 00790 PRINT 00800 PRINT 00810 PRINT"TEMPERATURE DEG F"T3 00810 PHINT TEMPERATURE DEG F"T3 00820 GØ SUB 01380 00830 PRINT 00840 FØR I3 = 1 TØ 7 00850 LET P = A6(I3) 00870 LET D1 = P/((1+B3\*P)\*R\*(T9+T3)) 00870 LET D2 = D1\*1728 00890 LET V2 = ((D2-D)/D)\*100 00910 LET V2 = INT(V1\*10\*3 + .5)/10\*3 00920 LET V3 = V2/100 00930 PRINT TAB(1),P,\*TAB(13),D, TAB(30),D2, TAB(52),V3 00940 NEXT I3 00950 PRINT 00950 PRINT 00960 PRINT 00970 PRINT"TEMPERATURE DEG F"T4 00970 PRINT"TEMPERATURE DEG F"T4 00980 GØSUB 01380 00990 FRINT 01000 FØR I4 = 1 TØ 7 01010 LET P = A6(14) 01030 LET D1 = P/((1+B4\*P)\*R\*(T9+T4)) 01030 LET D2 = D1\*1728 01050 LET V1 = ((02-D)/D)\*100 01660 LET V1 = (00\*V 01070 LET V2 = INT(V1\*10\*3 + .5)/10\*3 01680 LET V3 = V2/100 01990 PRINT TAB(1),P,TAB(13),D,TAB(30),D2,TAB(52),V3 01100 NEXT I4 01110 PRINT 01120 PRINT 01130 PRINT"TEMPERATURE DEG F"T5 01120 PRINT 01130 PRINTTEMPERATURE DEG F"T5 01140 GØSUB 01380 01150 PRINT 01160 FØR I5 = 1 TØ 7 01170 LET P = AG(I5) 01180 LET D = AS(I5) 01190 LET D = P/((1+B5\*P)\*R\*(19\*T5)) 01200 LET D = pr((1+B5\*P)\*R\*(19\*T5)) 01200 LET V = (D2-D)/D)\*100 01220 LET V = (D2-D)/D)\*100 01230 LET V = (D2-D)/D)\*100 01230 LET V = 1 NT(V1\*10\*3 \*.5)/10\*3 01240 LET V = 1 NT(V1\*10\*3 \*.5)/10\*3 01260 IF IS = 7 THEN 01470 01250 PRINT TAB(1),P,TAB(13),D,TAB(30),D2,TAB(52),V3 01260 IF IS = 7 THEN 01470 01270 NEXT I5 01280 DATA 4480E-5, 3.29277E-5, 3.16830E-5, 3.02923E-5, 2.90253E-5 01300 DATA 2.78820E-5 01300 DATA 4480E-5, 3.29277E-5, 3.16830E-5, 3.02923E-5, 2.90253E-5 01300 DATA 01075, 3.35975, 70764, 1.04443, 1.3708, 1.6873, 1.9945 01320 DATA 01075, 3.35975, 70764, 1.04443, 1.3708, 1.6873, 1.9945 01330 DATA 01075, 3.3875, 70764, 1.04443, 1.3708, 1.6873, 1.9945 01330 DATA 01075, 3.324641, 68186, 1.00703, 1.3225, 1.6288, 1.9265 01340 DATA 00997, 3.3402, 65357, 93976, 1.2356, 1.5234, 1.8631 01350 DATA 00962, 33249, 63557, 93976, 1.2356, 1.5234, 1.8631 01350 DATA 00962, 3114, 4.17, 500, 1000, 1500, 2000, 2500, 3000 01380 PRINT TAB(15),"USN DIVING",TAB(29),"VIRIAL CØEFF.", 01380 PRINT 01390 PRINT TAB(15),"USN DIVING",TAB(29),"VIRIAL CØEFF.", 01400 PRINT TAB(5),"DIFFERENCE" 01410 PRINT"PRESSURE",TAB(15),"GAS MANUAL",TAB(30),"CØMPUTATIØN", 01420 PRINT TAB(5),"PECENT" 01430 PRINT TAB(5),"DENSITY",TAB(32),"DENSITY" 01440 PRINT TAB(2),"DENSITY",TAB(32),"LBS/FT3",TAB(32),"LBS/FT3", 01450 PRINT

01460 RETURN 01470 END

| PROGRAM VI   | RIAL                                |                                        |                       |                  |                                                |                                                    |                       |
|--------------|-------------------------------------|----------------------------------------|-----------------------|------------------|------------------------------------------------|----------------------------------------------------|-----------------------|
| TEMPERATURE  | DFG F 30                            |                                        |                       | TEMPERATURE      | DEG F 70                                       |                                                    |                       |
| PRESSURE     | USN DIVING<br>GAS MANUAL<br>DENSITY | VIRIAL CØEFF<br>CØMPUTATIØN<br>DENSITY | DIFFERENCE<br>PERCENT | PRESSURE<br>PSIA | USN DIVING<br>GAS MANUAL<br>DENSITY<br>LBS/FT3 | VIRIAL CØEFF.<br>Cømputatiøn<br>density<br>Lbs/FT3 | ULFFEKENCE<br>PERCENT |
| PSIA         | LBS/FT3                             | LB3/F13                                |                       |                  | 10000                                          | 9.96501 E-3                                        | 05009                 |
|              | -01119                              | 1.11855 E-2                            | 04004                 | 14.7             | 13402                                          | .334037                                            | .00519                |
|              | 214 50                              | . 37 4201                              | .01108                | 000              |                                                | . 458253                                           | .05372                |
| 005          |                                     | 735931                                 | .06533                | 0001             | CCCC0                                          | 973075                                             | .08693                |
| 1000         |                                     |                                        | .09961                | 1 500            |                                                |                                                    | .10998                |
| 1500         | 1.08472                             | 000001                                 | .11845                | 2000             | 1.2775                                         | . 52(10)                                           | .11578                |
| 2000         | 1.4227                              | - 46407                                | 50101.                | 2500             | 1.5743                                         | 210/01                                             | 10465                 |
| 2500<br>3000 | 1.7501<br>2.0676                    | 2.06981                                | 11201.                | 3000             | 1.8631                                         | 1.86505                                            |                       |
|              |                                     |                                        |                       | TEMPERATURE      | DEG F 110                                      |                                                    |                       |
| TEMPERATURE  | DEG F 50                            |                                        |                       |                  |                                                |                                                    | DI CECHENCE           |
|              | USN DIVING                          | VIRIAL COEFF.                          | DIFFERENCE            | 301155300        | USN DIVING<br>GAS MANUAL                       | VIRIAL CUEFF.<br>Computation                       | PERCENT               |
| PRESSURE     | GAS MANUAL                          | COMPUTATION                            | PERCENT               |                  | DENSITY                                        | DENSI TY                                           |                       |
|              | DENSITY                             | DENSITY                                |                       | PSIA             | LBS/FT3                                        | LBS/FT3                                            |                       |
| PSIA         | LBS/FT3                             | LBS/FT3                                |                       |                  |                                                |                                                    | 0.4896                |
|              |                                     | 1.07 468 F-2                           | 03002                 | 14.7             | • 009 62                                       | 9.61367 E-3                                        | 61900.                |
| 14.7         |                                     |                                        | .01109                | 500              | • 32249                                        |                                                    | 05548                 |
| 500-         | - 1955 -                            |                                        | .06647                | 1000             | . 63557                                        | 01/010                                             | 16190-                |
| 1000         | • 70764                             | 1100/ •                                | 10258                 | 1 500            | • 9 3 9 7 6                                    | • • • • • • • • • • • • • • • • • • • •            | 99601                 |
| 1500         | 1.04443                             | 1.0405                                 | .12177                | 2000             | 1.2356                                         | C K G C Z - 1                                      | 19291.                |
| 2000         | 1.3708                              |                                        | 77991.                | 2500             | 1.5234                                         |                                                    | 12101                 |
| 2500<br>3000 | 1.6873                              | 1.99701                                | .12583                | 3000             | 1.8037                                         | 1.60287                                            |                       |
|              |                                     |                                        |                       | TEMPERATURE      | DEG F 130                                      |                                                    |                       |
| TEMPERATURE  | DEG F 70                            |                                        |                       |                  |                                                | VIUTAL CORFE.                                      | DIFFERENCE            |
|              |                                     | UTBIAL COFFF.                          | DIFFERENCE            |                  | ISING NSU                                      | CAMPUTATION                                        | PERCEN1               |
| 000000       | GAS MANUAL                          | COMPUTATION                            | PERCENT               | PRESSURE         | GAS MANUAL<br>DENSLTY                          | DENSI TY                                           |                       |
|              | DENSITY                             | DENSI TY                               |                       | 0210             | LBS/FT3                                        | LBS/FT3                                            |                       |
| PSIA         | LBS/FT3                             | LBS/FT3                                |                       |                  |                                                |                                                    | 01100                 |
|              |                                     |                                        | - 01.08               | 14.7             | .00929                                         | 9.28928 E-3                                        | 00772                 |
| 14.7         | .01034                              | 1.03411 E-2                            | 2010-                 | 500              | .31174                                         |                                                    | 18030                 |
| 500          | .34641                              | - 346415                               | 0.04856               | 1000             | .61471                                         | • 61 50 35                                         | A4780.                |
| 1000         | .68186                              | 161289.                                | 19220                 | 1500             | .90941                                         | 102016                                             |                       |
| 1500         | 1.00703                             | 19/00-1                                | 40600                 | 2000             | 1.1963                                         | 86161-1                                            | 66101.                |
| 2000         | 1.3225                              |                                        | 19460.                | 2500             | 1.4756                                         | - 4// 4/                                           | 01001                 |
| 2500         | 1.6288                              | 1.92815                                | .08547                | 3000             | 1 • 7 48                                       | 1-75016                                            | 10001.                |
| 3000         |                                     |                                        |                       |                  |                                                |                                                    |                       |

PROGRAM VIRIAL - OUTPUT DATA

22

#### APPENDIX B

#### PROGRAM - HELIUM CAPACITY

```
10 PRINT"
              TOTAL HELIUM CAPACITY OF FLASKS AT RATED DESIGN PRESSURE"
20 PRINT"
                              CONSIDERING VARIOUS DIAMETERS"
30 PRINT
40 DIM V3(4,9),W(4,9),C(4,9),C1(4,9),S1(9)
50 DIM C2(4,9)
60 \text{ FOR A} = 1 \text{ TO } 9
70 READ $1(A)
80 NEXT A
90 LET S2 = •31851
100 FOR DO = 18 TO 24 STEP 2
110 LET K = (D0/2) - 8
120 LET L = 92
130 \text{ LET } \text{L1} = 92 - D0
140 LET R0 = D0/2
150 LET V = (4/3)*3.1416*R0+3 + L1*3.1416*R0+2
160 \text{ LET } S = 0.67 \pm 110000
170 PRINT
180 PRINT" FLASK DIAMETER", DO" INCHES"
190 PRINT
200 PRINT TAB(7), "DESIGN", TAB(20), "WALL", TAB(34), "INTERNAL"
210 PRINT TAB(7), "PRESS.", TAB(18), "THICKNESS", TAB(35), "VOLUME", 220 PRINT TAB(50), "WEIGHT"
230 PRINT TAB(9), "PSI", TAB(20), "INCH", TAB(37), "FT3", TAB(51), "LBS"
240 PRINT
250 \text{ FOR } I = 1 \text{ TO } 9
260 \text{ LET P} = 1400 + 1*400
270 LET P1 = (5/3)*P
280 LET D1 = D0*((S - 1.3*P1)/(S + 0.4*P1))+0.5
290 LET D2 = D1 - 2*0.065
300 \text{ LET R1} = D2/2
310 LET V1 = (4/3)*3.1416*R1+3 + L1*3.1416*R1+2
320 LET V3(K.I) = V1/1728
330 LET V2 = (V-V1)/1728
340 LET W(K,I) = V2*485
350 \text{ LET } T = (D0-D2)/2
360 LET C(K,I) = V3(K,I)*(S1(I) - S2)/0.01034
370 LET C1(K_{J}I) = C(K_{J}I)/W(K_{J}I)
380 \text{ LET } C2(K,I) = V3(K,I)*(S1(I)/0.01034)
390 PRINT P,T,V3(K,I),W(K,I)
400 NEXT I
410 NEXT DO
417 PRINT
418 PRINT
419 PRINT
420 PRINT"
               TOTAL HELIUM CAPACITY OF FLASKS AT RATED DESIGN PRESS."
430 PRINT"
                  - AND - HELIUM AVAILABLE TO AN EQUILIBRIUM DEPTH"
440 PRINT"
                          EQUIVALENT TO 1000 FEET OF SEA-WATER"
450 PRINT
460 PRINT
470 FOR K3 = 1 TO 4
480 \text{ LET DO} = 16 + 2 \text{*} \text{K3}
490 PRINT
500 PRINT"
            FLASK DIAMETER", DO" INCHES"
510 PRINT
520 PRINT TAB(7),"DESIGN", TAB(20), "TOTAL", TAB(34), "AVAIL. HE",
530 PRINT TAB(48),"SCF HELIUM"
540 PRINT TAB(7), "PRESS.", TAB(19), "STORAGE", TAB(33), "FOR 1000 FT",
550 PRINT TAB(48), "AVAIL. PER"
560 PRINT TAB(8),"PS1", TAB(21), "SCF", TAB(33), "DIVE - SCF",
562 PRINT TAP(48),"LB OF METAL"
565 PRINT
570 FOR I1 = 1 TO 9
580 \text{ LET P} = 1400 + 11*400
590 PRINT P.C2(K3,11),C(K3,11),C1(K3,11)
600 NEXT 11
610 NEXT K3
620 DATA 1.206632, 1.455111, 1.697805, 1.935114, 2.167208, 2.394232
630 DATA 2.616470, 2.834094, 3.047276
640 END
```

TOTAL HELIUM CAPACITY OF FLASKS AT RATED DESIGN PRESS-- AND - HELIUM AVAILABLE TO AN EQUILIBRIUM DEPTH EQUIVALENT TO 1000 FEET OF SEA-WATER

| FLASK DIAMETER |            | 18 INCHES   |                      |
|----------------|------------|-------------|----------------------|
| DESIGN         | TOTAL      | AVAIL. HE   | SCF HELIUM           |
| PRESS.         | STORAGE'   | FOR 1000 FT | AVAIL • PER          |
| PS1            | SCF        | DIVE - SCF  | LB OF METAL          |
| 1800           | 1348.811   | 992.7708    | 1.85044              |
| 2200           | 1598.746   | 1248.796    | 1.974715             |
| 2600           | 1833.215   | 1489 • 302  | 2.047285             |
| 3000           | 2053.086   | 1715.158    | 2.087352             |
| 3400           | 2258.954   | 1926.96     | 2.105693             |
| 3800           | 2451.367   | 2125.256    | 2.108922             |
| 4200           | 2630.996   | 2310.717    | 2.101459             |
| 4600           | 2798.374   | 2483 •878   | 2.086196             |
| 5000           | 2954.016   | 2645.254    | 2.065158             |
| FLASK DIAMETER |            | 20 INCHES   |                      |
| DESIGN         | TOTAL      | AVAIL HE    | SCF HELIUM           |
| PRESS •        | STORAGE    | FOR 1000 FT | AVAIL • PER          |
| PS1            | SCF        | DIVE - SCF  | LB OF METAL          |
| 1800           | 1653.805   | 1217.257    | 1.870051             |
| 2200           | 1960.024   | 1530.993    | 1.990134             |
| 2600           | 2247.21    | 1825-631    | 2.059095             |
| 3000           | 2516.436   | 2102.243    | 2.096135             |
| 3400           | 2768.436   | 2361 • 565  | 2+111953             |
| 3800           | 3003+887   | 2604.273    | 2.113074             |
| 4200           | 3223+616   | 2031+190    | 2+103043             |
| 4600           | 3420+200   | 3242.990    | 2.064793             |
| 5000           | 3010+327   | 0240 001    |                      |
| FLASK DIAMETER |            | 22 INCHES   |                      |
| DESIGN         | TOTAL      | AVAIL. HE   | SCF HELIUM           |
| PRESS .        | STORAGE    | FOR 1000 FT | AVAIL. PER           |
| PS1            | SCF        | DIVE - SCF  | LB OF METAL          |
| 1800           | 1986 • 726 | 1462.298    | 1.883806             |
| 2200           | 2354 . 299 | 1838.965    | 2.000091             |
| 2600           | 2698.922   | 2192.602    | 2.06586              |
| 3000           | 3021.893   | 2524.504    | 2.100271             |
| 3400           | 3324.098   | 2835 • 562  | 2.113927             |
| 3800           | 3606•36    | 3126.598    | 2.113264             |
| 4200           | 3869.679   | 3398.613    | 2.102553             |
| 4600           | 4114.853   | 3652.405    | 2.084569             |
| 5000           | 4342.652   | 3888•746    | 2.061239             |
| FLASK DIAMETER |            | 24 INCHES   |                      |
| DESIGN         | TOTAL      | AVAIL. HE   | SCF HELIUM           |
| PRESS .        | STORAGE    | FOR 1000 FT | AVAIL. PER           |
| PS1            | SCF        | DIVE - SCF  | LB OF METAL          |
| 1800           | 2346.727   | 1727.271    | 1.892969             |
| 2200           | 2780.553   | 2171.916    | 2.005791             |
| 2600           | 3187-166   | 2599.251    | 2.068714             |
| 3000           | 3568.108   | 2980-815    | 2.100817             |
| 3400           | 3924 • 436 | 3347.67     | 2.112598             |
| 3800           | 4257.129   | 3090+793    | 2+110407             |
| 4200           | 4307+376   | 4011 377    | 6.070443             |
| p.c. 1011      | 4856 107   | 4210 27     | 9.079495             |
| 4600           | 4856 • 127 | 4310.37     | 2.079425<br>2.055241 |

## TOTAL HELIUM CAPACITY OF FLASKS AT RATED DESIGN PRESSURE CONSIDERING VARIOUS DIAMETERS

.

## FLASK DIAMETER

#### 18 INCHES

| DESIGN         | WALL.             | INTERNAL          |           |
|----------------|-------------------|-------------------|-----------|
| PRESS.         | THICKNESS         | HOLUNE            |           |
| 951            | INCU              | VULUME            | WEIGHT    |
| F31            | INCH              | F13               | LBS       |
| 1800           | 2768101           |                   |           |
| 1800           | •3768101          | 11.55838          | 536.5054  |
| 2200           | •4462458          | 11.36067          | 632.3931  |
| 2600           | •5157485          | 11.16467          | 727.452   |
| 3000           | •5853251          | 10.97037          | 821.691   |
| 3400           | •6549829          | 10.77773          | 915.1192  |
| 3800           | •7247291          | 10.58675          | 1007 745  |
| 4200           | 7945708           | 10,2074           | 1007+745  |
| 4600           | - 9645161         | 10+39/4           | 1099.578  |
| <b>4000</b>    | •0045101          | 10.20968          | 1190+625  |
| 3000           | •9345727          | 10.02355          | 1280.896  |
| FLASK DIAMETER |                   | 20 INCHES         |           |
|                |                   |                   |           |
| DESIGN         | WALL              | INTERNAL          |           |
| PRESS •        | THICKNESS         | VOLUME            | WEIGHT    |
| PSI            | INCH              | FT3               | LBS       |
|                |                   |                   |           |
| 1800           | •4114556          | 14.17197          | 650.9219  |
| 2200           | •4886065          | 13.92791          | 769.9914  |
| 2600           | - 5658317         | 12 68500          | 70706714  |
| 3000           | +3030317          | 13.00399          | 000+0103  |
| 3000           | •643139           | 13.44621          | 1002.914  |
| 3400           | •7205366          | 13.20853          | 1118.19   |
| 3800           | •7980322          | 12.97292          | 1232,457  |
| 4200           | •8756342          | 12.73938          | 1345.727  |
| 4600           | •9533513          | 12.50787          | 1458.009  |
| 5000           | 1.031192          | 12.27837          | 1569.315  |
| FLACK DIAMETER |                   |                   |           |
| FLASK DIAMETER |                   | 22 INCHES         |           |
| DESIGN         |                   |                   |           |
| DESIGN         | WALL              | INTERNAL          |           |
| PRESS .        | THICKNESS         | VOLUME            | WEIGHT    |
| PSI            | INCH              | FT3               | LBS       |
| 1800           |                   |                   |           |
| 1800           | •4461012          | 17.02487          | 776.2464  |
| 2200           | •530967           | 16.72962          | 919.4408  |
| 2600           | •6159148          | 16.43702          | 1061.351  |
| 3000           | •7009529          | 16.14704          | 1201.00   |
| 3400           | •7860903          | 15.85966          | 1241 270  |
| 3800           | .8713354          | 15 57492          | 1341.372  |
| 4200           | .0566077          | 13+57463          | 1479-512  |
| 4200           | • 7 3 6 6 7 7 7   | 15.29254          | 1616.422  |
| 4600           | 1.042186          | 15.01276          | 1752.116  |
| 5000           | 1.127811          | 14.73546          | 1886.606  |
| FLASK DIAMETER |                   | 24 INCHES         |           |
| DECTOR         |                   |                   |           |
| DESIGN         | WALL              | INTERNAL          |           |
| PRESS •        | THICKNESS         | VOLUME            | WEIGHT    |
| PSI            | INCH              | FT3               | LBS       |
| 1 000          |                   |                   |           |
| 1800           | •4807467          | 20.10983          | 912.4662  |
| 2200           | •5733277          | 19.75857          | 1082.823  |
| 2600           | •665998           | 19-41053          | 1251 .623 |
| 3000           | •758 <b>76</b> 68 | 19.06567          | 1418.884  |
| 3400           | ·8516439          | 18 72394          | 1584.400  |
| 3800           | 9446304           | 18,98620          | 1304.022  |
| 4200           | 1.037741          | 10.00002          | 1/40-054  |
| 4600           | 1.121001          | 10+04976          | 1911-597  |
| =000           | 1+131021          | 17.71725          | 2072.866  |
| 5000           | 1.22443           | 17. <b>3877</b> 4 | 2232.678  |

10 READ J,V,Y,D15 LET P = 0.44444+D20 LET P1 = 0.44444+D - 0.5+0.4444425 LEI P2 = 300030 LET c = 1 + UP40 LET 22 = 1 + UP44 LET 22 = 1 + UP55 LET 23 = 1 + UP56 LET 24 = 1 + VP57 LET 25 = 1 + VP57 LET 25 = 1 + VP58 LET 24 = 1 + VP59 LET 24 = 1 + VP50 LET 24 = 4.0026+144/(1546+578)50 LET 44 = 4.0026+144/(1546+578)50 LET 44 = 4.0026+144/(1546+578)50 LET 44 = 4.0026+144/(1546+578)51 LET 44 = 4.0026+144/(1546+578)52 LET 44 = 4.0026+144/(1546+578)53 LET 44 = 4.0026+144/(1546+578)54 LET 44 = 4.0026+144/(1546+578)55 LET 44 = 4.0026+144/(1546+578)56 LET 44 = 4.0026+144/(1546+578)57 LET 44 = 4.0026+144/(1546+578)58 LET 44 = 4.0026+144/(1546+578)59 LET 44 = 4.0026+144/(1546+578)50 LET 44 = 4.0026+144/(1546+578)50 LET 42 = 235+03/0.0103450 LET 42 = 235+03/0.0103450 LET 44 = 153866.5 - K1 - K2 - K356 LET 44 = 153866.5 - K1 - K2 - K356 LET 44 = 142+16.88+09/0.01034170 LET 4 = H22+16.88+09/0.01034175 LET M1 = MAPPENDIX C PROGRAM - HELIUM AVAILABLE FOR SATURATION DIVING MISSION 

 300
 DATA 3.3979E-5.3.0431E-5.2.9025E-5.850

 305
 PRINT

 306
 PRINT

 307
 PRINT

 308
 PRINT

 309
 PRINT

 309
 PRINT

 309
 PRINT

 309
 PRINT

 309
 PRINT

 309
 PRINT

 310
 PRINT

 311
 PRINT

 312
 PRINT

 313
 PRINT

 314
 PRINT

 313
 PRINT

 314
 PRINT

 315
 PRINT

 316
 PRINT

 317
 PRINT

 318
 PRINT

 319
 PRINT

 319
 PRINT

 319
 PRINT

 319
 PRINT

 319
 PRINT

 PSTA" F PSIA" PI 316 PRINT "P1 AT 35 DEGREES F, 43 =" 23317 PRINT "P1 AT 88 DEGREES F, 45 =" 23318 PRINT "P1 AT 110 DEGREES F, 25 =" 25319 PRINT "P2 AT 35 DEGREES F, 26 =" 26320 PRINT "P2 AT 188 DEGREES F, 26 =" 27321 PRINT "P2 AT 180 DEGREES F, 28 =" 28322 PRINT "P2 AT 180 DEGREES F, 28 =" 28323 PRINT "HELIUM DENSITY AT P AND 35F, LB/FT3 W =" W324 PRINT "P1 AND 35F, LB/FT3 W =" W325 PRINT "P1 AND 35F, LB/FT3 W =" W326 PRINT "P2 AND 35F, LB/FT3 W =" W327 PRILT "P1 AND 88F, LB/FT3 W =" W328 PRINT "P2 AND 36F, LB/FT3 W =" W329 PRINT "P1 AND 88F, LB/FT3 W =" W320 PRINT "P1 AND 88F, LB/FT3 W =" W321 PRINT "P1 AND 88F, LB/FT3 W =" W322 PRINT "P1 AND 110F, LB/FT3 W =" W333 PRINT "P1 AND 110F, LB/FT3 W =" W333 PRINT "P1 AND 110F, LB/FT3 W =" W334 PRINT "RESERVE FOR DUTER LOCK OPERATION ONCE. SCF" R1335 PRINT "RESERVE FOR DUTER LOCK OPERATION ONCE. SCF" R3336 PRILT "\*\*\*\*\*\*\*0UATITY AVAILABLE FOR DIVING MISSION SCF"A337 PRINT "RELIUM FOR PTC MIXED GAS BANK PER BANK SCF" M339 PRINT "HELIUM FOR PTC PTC HELIUM FLABSES CFI C3340 PRINT "HELIUM FOR PTC PTC HAIED ALABLE FOR DAILY OPERATIONS SCF"A2341 PRINT "HELIUM FOR PTC PSSURIEATION DC OUTER LOCK SCF" C1343 PRINT "HELIUM FOR PRESSURIEATION DC MAIELY OPERATIONS SCF"A2344 PRINT "HELIUM FOR PTC PRESSURIEATION DC CA345 PRINT "HELIUM FOR PTC PRESSURIEATION DC MAIELY OPERATIONS SCF"A2346 PRINT "HELIUM FOR PTC PR

DATA

COLUMNS:

- A AVAILABLE TO OPERATE SYSTEM
- 8 AVAILABLE AFTER CHARGING PIC FLASKS AND SHIP'S MIXED GAS FLASKS
- C AVAILABLE AFTER ENCLOSURE PRESSURIZATION
- D AVAILABLE AFTER DAILY OPERATION
- E CUMULATIVE DDC AND PTC LEAKAGE
- F CUMULATIVE RECOVERABLE HELIUM

•

| A                                                                                                        | в                                                                                                        | С                                                                                                        | Ď                                                                                            | E                                                                                                                | F                                                                                                |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 117221.8<br>117221.8<br>117221.8<br>117221.8<br>117221.8<br>117221.8<br>117221.8<br>117221.8<br>117221.8 | 85897.31<br>85897.31<br>85897.31<br>85897.31<br>85897.31<br>85897.31<br>85897.31<br>85897.31<br>85897.31 | 55745.98<br>55745.98<br>55745.98<br>55745.98<br>55745.98<br>55745.98<br>55745.98<br>55745.98<br>55745.98 | 49415.24<br>43084.51<br>36753.78<br>30423.05<br>24092.31<br>17761.58<br>11430.85<br>5100.116 | E<br>420 • 8263<br>841 • 6525<br>1262 • 479<br>1683 • 305<br>2104 • 131<br>2524 • 958<br>2945 • 784<br>3366 • 61 | F<br>1756.985<br>3513.97<br>5270.954<br>7027.939<br>8784.924<br>10541.91<br>12298.89<br>14055.88 |
| 117221.8                                                                                                 | 85897.31                                                                                                 | 55745.98                                                                                                 | -7561.35                                                                                     | 3787+436<br>4208+263                                                                                             | 15812+86<br>17569+85                                                                             |

- OF SYMBOLS
PRESSURE EQUIV. TO 850FT. S.W. MINUS 0.5FT. PSIA 377.774
TO 850FT. S.W. MINUS 0.5FT. PSIA 377.5518
PTC FLASK WP P2 = 3000
COMPRESSIBILITY FOR P AT 35 DEGREES F, Z = 1.012836
P AT 88 DEGREES F, Z = 1.011496
P AT 110 DEGREES F, Z = 1.0112829
P1 AT 35 DEGREES F, Z = 1.0112829
P1 AT 35 DEGREES F, Z = 1.0112829
P1 AT 110 DEGREES F, Z = 1.010955
P2 AT 35 DEGREES F, Z = 1.00175
B814-7 AT 88 DEGREES F, Z = 1.007075
B814-7 AT 80 88F, L3/F13 W = 0.253093
P2 AND 88F, L3/F13 W = 0.253093
P2 AND 88F, L3/F13 W = 0.253093
P2 AND 88F, L3/F13 W = 1.070228
P AND 186F, L3/F13 W = 1.070228
P AND 110F, L3/F13 W = 0.0242663
P AND 100F NUECH JJUNE MISSION SCF 174.703
HELIUM FOR PIC MALUALABLE FOR DIVING MISSION SCF 174.703
HELIUM FOR PIC MALUALABLE F

#### APPENDIX D

#### PROGRAM - HELIUM TRANSFER TIME CALCULATION

SOURCE STATEMENT - IFN(S) -+ EFN MTAS T. BRINKER CODE 6432 X68002 C HELIUM TRANSFER TIME CALCULATION IUM TRANSFER TIME CALCULATION 1. BRINKER CODE 0422 A CASDAC 242053 MTAS HANSEN 6154E 62434 DIMENSION ITYPE(50), PRESS1(50), PRESS2(50), P(2) DIMENSION DENSTY(2), ATIME(50), PTANK(50), WTRANS(50) DIMENSION PHOLD1(2), PRESS1(1)), (PHOLD2(2), PRESS2(1)) EQUIVALENCE (PHOLD1(2), PRESS1(1)), (PHOLD2(2), PRESS2(1)) C\* 10 FORMAT(8F10.2) 11 FORMAT(4F10.2) 11 FORMAT(/1X25HTOTAL TIME OF TRANSFER = , F9.2,2X,7HMINUTES) 130 FORMAT(1X,5HOPER.,6X,15HBOTTLE PRESSURE,5X,4HMASS,6X,4HTANK,4X,9HO //FERALLUN,44,44111EC/ 140 FORMAT(1X,5HCOUNT,7X,4HFROM,5X,2HTO,5X,19HTRANSFERED PRESSURE/) 200 FORMAT(1//30X,10HINPUT DATA//) 201 FORMAT(10X,31HVOLUME OF ON BOARD STORAGE BANK,11X,1H=,F8.1,2X,7HCU 1 FEET/10X,31HDESIGN PRESSURE OF STORAGE BANK,11X,1H=,F8.1,2X,4HPSI 2G/10X32HMINIMUM PRESSURE OF STORAGE BANK/ 12X,31HBEFORE PUMPING M 3AY de INITIATED.0X,1H=,F8.1,2X,4HPSIC1 /PERATION, 4X, 4HTIME) 2G/10X32HMINIMUM PRESSURE OF STORAGE BANK/ 12X,31HBEFORE PUMPING M 3AY BE INITIATED,9X,1H=,F8.1,2X,4HPSIG) 204 FORMAT(10X,35HVOLUME OF SUPPLY BANK (100 BOTTLES),7X,1H=,F8.1,2X,7 1HCU FEET/10X,43HINITIAL DELIVERY PRESSURE OF SUPPLY BANK =,F8.1,2X 2,4HPSIG/10X,43HMINIMUM (RETURN) PRESSURE OF SUPPLY BANK =,F8.1,2X, 34HPSIG/10X,21HPUMP CLEARANCE VOLUME,21X,1H=,F8.1,2X,7HPERCENT) 205 FORMAT(10X,29HDURATION OF ONE PUMPING CYCLE,13X,1H=,F8.1,2X,9HMINU 1TE(S))
202 FORMAT(10X,38HVOLUME DISPLACED BY PUMP IN ONE MINUTE,4X,1H=,F8.1,
12X,7HCU FEET/10X,27HPOLYTROPIC PROCESS EXPONENT,15X,1H=,F8.1/10X,
23HHELIUM GAS (ASSUMED CONSTANT),5X,1H=,F8.1,2X,5HDEG-F/
310X,23HHELIUM GAS CONSTANT (R),19X,1H=,F8.1,2X,12HFT-LBF/LBM-R//)
203 FORMAT(30X,13HGENERAL NOTES/ 17X,36HPRESSURES EXPRESSED IN PSI(ABS
10LUTE)/17X,39HMASS TRANSFERS EXPRESSED IN MASS POUNDS/17X,33HTIME
2005 EXPRESSED IN MINITES(/) 1TE(S)) 2PERIODS EXPRESSED IN MINUTES//) 777 READ(5,10) VSTOR,VSUPLY,T,PBOTIN,PBOTFI,PSTORF,PSTORM,R READ(5,11) CLEAR,POLY,DISPL,TIME 1 2 3 WRITE(6,200) WRITE(6,201) VSTOR,PSTORF,PSTORM 5 WRITE(6,204) VSUPLY, PBOTIN, PBOTFI, CLEAR 6 7 WRITE(6,205) TIME WRITE(6,202) DISPL,POLY,T,R 8 WRITE(6,203) 9 WRITE(6,130) 10 WRITE(6,140) TOTVOL=VSTOR+VSUPLY CLEAR=CLEAR/100. TIMSUM=0.0 TR=T+460. PFINAL=PSTORF+14.7 PTEST=PBOTIN+14.7 ICOUNT=1 12 Z=1. +3.25\*10.\*\*(-5)\*(PSTORM+14.7) WTMIN=((PSTORM+14.7)\*144.\*VSTOR)/(Z\*R\*TR) AT IME (ICOUNT)=0.0 ITYPE(ICOUNT)=0 16 Z=1.+3.25\*10.\*\*(-5)\*P(1) DENSTY(1)=(P(1)\*144.)/(Z\*R\*TR) WBOTLE=DENSTY(1)\*VSUPLY WRESDU=DENSTY(2)\*VSUPLY WTEQU=WBOTLE-WRESDU 50 WT2=WT2+WTEQU IF (WTMIN-WT2) 30,30,40 40 PRESS1(ICOUNT)=P(1) PRESS2(ICOUNT)=P(2) 22 PTANK(ICOUNT)=(WT2\*R\*TR)/(144.\*VSTOR-3.25\*10.\*\*(-5)\*WT2\*R\*TR) WTRANS(ICOUNT)=WTEQU ICOUNT=ICOUNT+1 GO TO 50 INITIALIZATION FOR OPERATIONS. с 30 PRESSI(ICOUNT)=P(1) ICOUNT=ICOUNT-1 WT2=WT2-WTEQU ICHECK=0 IPRINT=0 LOGIC=0 ILAST=0 WTSUM=WT2+WBOTLE C EQUALIZING OPERATION. 90 ICOUNT=ICOUNT+1 ATIME(ICOUNT)=0.0 ITYPE (ICOUNT)=0 37 P(1)=(WTSUM\*R\*TR)/(144.\*TOTVOL-3.25\*10.\*\*(-5)\*WTSUM\*R\*TR) PRESS2(ICOUNT)=P(1) PTANK(ICOUNT)=P(1) ZA=1.+3.25\*10.\*\*(-5)\*P(1) 40 WT1=(P(1)\*144.\*VSUPLY)/(ZA\*R\*TR) WTRANS(ICDUNT)=WBOTLE-WT1 WT2=WT2+WTRANS(ICOUNT) P(2) = P(1)

28

# PROGRAM (Continued)

| С      | PU  | IMPING OPERATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|--------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|        | 70  | ) ICOUNT≈ICOUNT+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|        |     | IF(ICOUNT-51) 300,301,302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|        | 301 | CALL QUTPUT (ICOUNT + ILAST + IT YPE + PRESS1 - PRESS2 - WTPANS DTANK AT THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|        |     | 1MSUN, PHOLD1, PHOLD2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47  |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        | 200 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        | 500 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        | 204 | IF(IPRINI) 302,71,304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|        | 204 | CALL DUTPUT(ICDUNI,ILAST,ITYPE,PRESS1,PRESS2,WTRANS,PTANK,ATIME,TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|        |     | IMSUM, PHOLD1, PHOLD2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52  |
|        |     | GO TO 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25  |
|        | 71  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|        |     | PRESS1(ICOUNT)=P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|        |     | A=•67+CLEAR+CLEAR*(P(2)/P(1))**(1•/POLY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|        |     | $B = (DISPL * TIME * P(1) * 144_) / (7A*R * TR)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51  |
|        |     | WTRANS(ICOUNT)=A*B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|        |     | WT I = WT I - WTRANS(TCOUNT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     | $\frac{1}{16} \left( \frac{1}{16} + \frac{1}{16}$ | 60  |
|        | 60  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        | ••  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     | ITYPE(ICOUNT)=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        | 61  | WT2=WT2+WTRANS(ICOUNT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|        |     | P{2}=(WT2*R*TR)/(144.*VSTOR -WT2*R*TR*(3.25*10.**(-5)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|        |     | IF(P(2)-PFINAL) 99,100,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67  |
|        | 100 | IPRINT=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|        | 99  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|        |     | IF(P(2)-PTEST) 80.81.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|        | 81  | ICHECK=-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|        | 80  | IF(LBGIC) 73-72-9999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|        | 73  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        | 72  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        | 12  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     | IF (ICHECK) 63,64,9999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|        | 04  | PRESSI(ICUUNI)=PRESS2(ICOUNT-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        | 63  | PRESS2(ICOUNT)=P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|        |     | PTANK(ICOUNT)=P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|        |     | GO TO 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|        | 20  | LOGIC=-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|        |     | PRESS2(ICOUNT)=PBOTFI+14-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|        |     | P(1) = PB0TIN+14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|        |     | PDIFF=PRESSI(ICOUNT-1)-PRESS2(ICOUNT-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     | ATTHE TECHNET (CODE TO CODE TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|        |     | ATTREVICUUNT) = {PDELIA/PDIFFJ*TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     | Z=1++3+25+10+++(-5)+PRESS1(ICOUNT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96  |
|        |     | WIRANS(ICOUNT)=(PRESS1(ICOUNT)+VSUPLY+144.)/(R*TR+Z)-WRESDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |     | G0 T0 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|        | 62  | WTSUM=WT2+WBOTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|        |     | PRESS1(ICOUNT+1)=P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|        |     | IF(ICHECK) 86,90,9999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|        | 86  | ZA=1++3+25+10+++(-5)+P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|        |     | $WT1 = (P(1) + 144_{a} + VS(P(Y)) / (7A + P + TP))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105 |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 3      | 05  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107 |
| 2      | 02  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 2      | 02  | #61[610]303]<br>E00441/125000000044 E0000 #78444455544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109 |
| و<br>م | 43  | CONTATIZZOPKUGKAM ERRUR TERMINATION/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 79     | 77  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |

04/23/68 DUTPUT - EFN SOURCE STATEMENT - IFN(S) -SUBROUTINE OUTPUT(ICOUNT,ILAST,ITYPE,PRESS1,PRESS2,NTRANS,PTANK,AT IME,TIMSUM,PHOLD1,PHOLD2) 121 FORMAT(I5,5X,2F8.2,2X,F8.3,2X,F10.3,2X,10HEQUALIZING,2X,F5.2) 122 FORMAT(I5,5X,2F8.2,2X,F8.3,2X,F10.3,2X,10HEQUALIZING,2X,F5.2) DIMENSION ITYPE(50), PRESS1(50), PRESS2(50), WTRANS(50),PTANK(50) DIMENSION ATIME(50),PHOLD1(2),PHOLD2(2) ICOUNT=1COUNT+ 00 120 1=1,ICOUNT KCOUNT=ILAST+I IF(ITYPE(I)) 2,2,3 2 WRITE(6,121)KCOUNT,PRESS1(I),PRESS2(I),WTRANS(I),PTANK(I),ATIME(I) 9 WRITE(6,122)KCOUNT,PRESS1(I),PRESS2(I),WTRANS(I),PTANK(I),ATIME(I) 16 119 TIMSUM=TIMSUM+ATIME(1) 120 CONTINUE ILAST+ILAST+ICOUNT PHOLD1(1)=PRESS1(ICOUNT) PHOLD2(1)=PRESS2(ICOUNT) RETURN END

#### IBLDR

UNUSED CORE

76654 THRU 77014

#### INPUT DATA

| WOLLING OF ON BOARD STORAGE BANK         | -  | 24.0   | CU FEET      |
|------------------------------------------|----|--------|--------------|
| VULUME OF ON BOARD STORAGE BANK          |    | 3000.0 | PSIG         |
| DESIGN PRESSORE OF STORAGE BANK          |    |        |              |
| ALCORE PHIMPING MAY BE INITIATED         |    | 200.0  | PSIG         |
| HOLINE OF SUPPLY BANK (100 BOTTLES)      | =  | 60.0   | CU FEET      |
| VULUME OF SUPPLY BRESSURE OF SUPPLY BANK | ٤, | 3000.0 | PSIG         |
| INITIAL DECIVERY PRESSURE OF SUPPLY BANK | =, | 200.0  | PSIG         |
| BUND CLEARANCE VOLUME                    |    | 5.0    | PERCENT      |
| PURP CLEARANCE FOLONE                    | =  | 9.0    | MINUTE(S)    |
| NORME DISPLACED BY PUMP IN ONE MINUTE    |    | 0.6    | CU FEET      |
| VOLUME DISPERCESS EXPONENT               |    | 1.6    |              |
| TCHRERATURE OF CAS (ASSUMED CONSTANT)    |    | 70.0   | DEG-F        |
| HENTING CAS CONSTANT (R)                 |    | 386.3  | FT-LBF/LBM-R |
| HELIOH GAS CONSTANT                      |    |        |              |

GENERAL NOTES PRESSURES EXPRESSED IN PSI(ABSOLUTE) MASS TRANSFERS EXPRESSED IN MASS POUNDS TIME PERIODS EXPRESSED IN MINUTES

| OPE8. | BOTTLE PRESSURE | MASS       | TANK     | OPERATION  | TIME |
|-------|-----------------|------------|----------|------------|------|
| COUNT | FROM TO         | TRANSFERED | PRESSURE |            |      |
| 1     | 3014.70 2094.72 | 33.105     | 2094.718 | EQUALIZING | 0.   |
| â     | 2094 72 1970-17 | 4.625      | 2410.262 | PUMPING    | 9.00 |
| ~     | 1070 17 1855.06 | 4.306      | 2709.567 | PUMP ING   | 9.00 |
| 3     | 1955 04 1748.48 | 4-014      | 2993.465 | PUMPING    | 9.00 |
| 5     | 1748.48 1649.66 | 3.745      | 3262.734 | PUMP ING   | 9.00 |
|       |                 |            |          |            |      |

TOTAL TIME OF TRANSFER = 36.00 MINUTES

#### INPUT DATA

| WOLLING OF ON RUARD STORAGE BANK              |    | 24.0         | CU FEET      |
|-----------------------------------------------|----|--------------|--------------|
| DESTEN PRESSURE OF STORAGE BANK               | =  | 3000.0       | PSIG         |
| NTNIMUM PRESSURE OF STORAGE BANK              |    |              |              |
| RECORE DUMPING MAY BE INITIATED               | =  | 200.0        | PSIG         |
| NOLUNE OF SUPPLY BANK (100 BOTTLES)           | =  | 50.0         | CU FEET      |
| VULUME OF SUPPLY BRANK (1200 DESTERATION RANK | =. | 3000.0       | PSIG         |
| INITIAL DELIVERT PRESSURE OF SUPPLY BANK      | ÷. | 200.0        | PSIG         |
| MINIMUM (REFORM) PRESSORE OF SOFTET DATA      | ÷  | 5.0          | PERCENT      |
| PUMP CLEAKANGE VULUME                         |    | 9.0          | MINUTE(S)    |
| DURATION OF ONE PUMPING CILLE                 |    | 0.6          | CH FFFT      |
| VOLUME DISPLACED BY PUMP IN UNE MINUTE        | -  | 0.0          | 00 / 22 /    |
| POLYTROPIC PROCESS EXPONENT                   | =  | 1.0          |              |
| TEMPERATURE OF GAS (ASSUMED CONSTANT)         | =  | 70 <b>.0</b> | DEG-F        |
| HELIUM GAS CONSTANT (R)                       | =  | 386.3        | FT-LBF/LBM-R |

#### GENERAL NOTES PRESSURES EXPRESSED IN PSI(ABSOLUTE) MASS TRANSFERS EXPRESSED IN MASS POUNDS TIME PERIODS EXPRESSED IN MINUTES

| OPER. | BOTTLE<br>FROM | PRESSURE | MASS<br>TRANSFERED | TANK<br>PRESSURE | OPERATION  | TIME |
|-------|----------------|----------|--------------------|------------------|------------|------|
| 1     | 3014.70        | 1974.23  | 31.316             | 1974.225         | EQUALIZING | 0.   |
| 2     | 1974.23        | 1833.96  | 4.375              | 2270.364         | PUMP ING   | 9.00 |
| 3     | 1833.96        | 1706.10  | 4.021              | 2547.296         | PUMPING    | 9.00 |
| 4     | 1706.10        | 1589.31  | 3.700              | 2806.296         | PUMP ING   | 9.00 |
| 5     | 1589.31        | 1482.43  | 3.410              | 3048.545         | PUMPING    | 9.00 |

TOTAL TIME OF TRANSFER = 36.00 MINUTES

#### INPUT DATA

| VOLUME OF ON BOARD STORAGE BANK = 24.0             | CU FEET      |
|----------------------------------------------------|--------------|
| DESIGN PRESSURE OF STORAGE BANK = 3000.0           | PSIG         |
| MINIMUM PRESSURE OF STORAGE BANK                   |              |
| BEFORE PUMPING MAY BE INITIATED = 200.0            | PSIG         |
| VOLUME OF SUPPLY BANK (100 BOTTLES) = 80.0         | CU FEET      |
| INITIAL DELIVERY PRESSURE OF SUPPLY BANK =+ 3000.0 | PSIG         |
| MINIMUM (RETURN) PRESSURE OF SUPPLY BANK =, 200.0  | PSIG         |
| PUMP CLEARANCE VOLUME = 5.0                        | PERCENT      |
| DURATION OF ONE PUMPING CYCLE = 9.0                | MINUTE(S)    |
| VOLUME DISPLACED BY PUMP IN ONE MINUTE = 0.6       | CU FEET      |
| POLYTROPIC PROCESS EXPONENT = 1.6                  |              |
| TEMPERATURE OF GAS (ASSUMED CONSTANT) = 70.0       | DEG-F        |
| HELIUM GAS CONSTANT (R) = 386.3                    | FT-LBF/LBM-R |

#### GENERAL NOTES PRESSURES EXPRESSED IN PSI(ABSOLUTE) MASS TRANSFERS EXPRESSED IN MASS POUNOS TIME PERIODS EXPRESSED IN MINUTES

| OPER. | BOTTLE       | <b>₽RESSURE</b> | MASS       | TANK     | OPERATION    | TIME |
|-------|--------------|-----------------|------------|----------|--------------|------|
| COUNT | FROM         | то              | TRANSFERED | PRESSURE |              |      |
| 1     | 3014.70      | 2267.73         | 35.652     | 2267.726 | EQUAL 12 ING | 0.   |
| 2     | 2267.73      | 2166.00         | 4.980      | 2611.402 | PUNPING      | 9.00 |
| 3     | 2166.00      | 2070.31         | 4.713      | 2943.275 | PUMP ING     | 9.00 |
| 4     | 2070.31      | 1980.20         | 4.463      | 3263.713 | PUMPING      | 9.00 |
| TOTAL | TIME OF TRAN | NSFER =         | 27.00 MI   | NUTES    |              |      |