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ABSTRACT

A technique for analyzing the polarization pro-

perties of plane waves is developed which offers a

number of advantages over methods currently used in

the analysis of both ground and satellite observations

of waves. This technique reduces the computations

required to find the wave normal vector, is less

sensitive to common noise sources, and is amenable

to analog implementation. This technique here is

applied specifically to the analysis of a proton

whistler, but may also be used in most studies of

ULF, ELF, and VLF-magnetic wave phenomena.



THE USE OF THE THREE DIMENSIONAL COHERENCY
MATRIX IN ANALYZING THE POLARIZATION

PROPERTIES OF PLANE WAVES .

INTRODUCTION

The study of the polarization properties of plane

waves is an important tool in space plasma physics. It

is of value in identifying the type of wave, determining

the origin of the wave, and interpreting the propagation

characteristics of, the medium through which the wave

travels. Polarization analysis is currently employed

in studying a wide range of waves including chorus, hiss,

lightning whistlers and hydromagneti c waves in the mag-

netosphere, as well as various waves detected in the

magnetosheath , bow shock, and interplanetary medium.

,, Fowler et al . (1967) , and Rankin and Kurtz (1970)

deal with the two dimensional analysis of . quasimono-

chromatic polarized waves. Following an analysis pre-

sented in Born and Wolf (1970), these authors demonstrate

that the polarization properties for a quas imonochromati c

wave represented by:

Hx(t) = ax(t)exP{i[ut+4>x(t)]}

Hy(t) = ay(t)exp{i"[a>t + 4>y(t)]}

may be expressed in terms of the "polarization parameters"

2a" a~ _ _
cos(<j> -4>y)

2 a a
sin2B = 1LX

ax + ay



where the bars represent time averages, 6 is the angle

between the major axis of the polarization ellipse and

the X-axis, and tanB is the ratio of the minor to the

major axis of the ellipse, the sign of B indicates the

sense of polarization: 3>0 for counterclockwise and

3<0 for clockwise rotation of the perturbation vector

about the Z-axis.

Fowler et al. (1967) show how these polarization

parameters may be obtained .in terms of the elements of

the two dimensional coherency matrix:

J =
<Hx(t)H*(t)> <Hx(t)H*(t)>

<Hy(t)H*(t)> <Hy(t)H*(t}>

where the angular brackets represent time averages, and

the asterisk indicates the corresponding complex conju-

gate. • " ':. • ;.;,V, - ' ' ' • • . / . . - '••-'••''• ". •

This technique is directly applicable to the analy-

sis of plane waves if the X and Y axes can be chosen to

lie in the plane of the wave. In general, however,

when a plane wave is detected by measuring its three

dimensional vector time series,the plane of the wave

will not coincide with any of the three orthogonal

measurement planes. We then have to deal with the

three dimensional coherency matrix:



<Hx(t)H*(t)> <Hx(t)H*(t)> <Hx(t)H*(t)>

J= <Hv(t)H*(i)> <Hv(t)H*(t)> <H (t)H*(t)>
Jr A y J j *•

<H2(t)H*(t)> <Hz(t)H*(t)> <Hz(t)H*(t)>

In order to utilize the results of the two dimen-

sional analysis,it is necessary to determine the plane

of polarization of the perturbation vector or, equiva-

lently, the wave normal vector.

TECHNIQUE AND THEORY

Let us first examine the coherency matrix defined

in terms of the three functions H (t) , H (t), and H (t)x y i

which are analytic representations of the measured sig-

nals and, as such, are complex. It is this fact which

complicates the generation of the coherency matrix in

the time domain, since the generation of the analytic

representation of a real function involves a convolu-

tion integral (Bracewell, 1965). In the frequency

domain, however, the analytic representation of the real

signal is easily obtained by multiplying the Fourier

transform of the real signal by the Heaviside step

function:

0 f<0
S< f> = 1 f>0

We may obtain the frequency domain representation of

the three time series, after they have been digitized,

by use of the Fast Fourier Transform algorithm of Cooley

and Tukey (1965). Then, by use of the generalized power



theorem:

g(t)h*(t)dt = / G(f)H*(f) df
— 00 .-00

we may extend the definition of the coherency matrix to

the frequency domain. The resulting matrix is:

J =

<Hx(f)Hx(f)>

<Hy(f)H*(f)>

<H2(f)H*(f)>

<Hx(f)Hv(f)>A y

<H (f>H*(f)>

<Hz(f)H*(f)>.

<Hx(f)Hz(f)>

•<Hy(f)H*(f)>

<H2(f)H*(f)>

where the angular brackets now represent the average

over all positive frequencies.

The coherency between two signals is defined in

terms of the elements of this matrix as:

' ' • J. . ' .. ' .
- _ -

The coherency has a value of one for signals which are

highly interrelated (i.e. completely polarized signals),

and a value of zero for signals which are not interrelated

(i.e. noise).

In order to understand what types of signals enter

the various matrix elements5we will look at the calcu-

lation of the X-Y element <H'(f)H (f)>. For any givenx y
frequency the transform coefficients for the X and Y

axes may be represented as:

H (f) = A.cCOse.p-HA .sin9f
A I 1 I I

•H (f) = Bfcos4>f-HBfsin4>f



where Q* and 4^ are the phases of the signals refer-

enced to the same arbitrary zero point. The product

H (f)H (f) for this frequency reduces to:x y
Hx(f)H*(f) = AfBfcos(6f-cf>f) + lAfBfsin(.6f-«j)f) (

From this expression it is obvious how two signals with

varying phase relations to one another will enter the

off diagonal elements of the coherency matrix. The

diagonal elements of the matrix will all be real posi-

tive quantities since there is no phase difference

between a function and its conjugate.

With the above information we may examine how some

typical signals will enter the coherency matrix. Firsts

we will consider incoherent signals. For incoherent

signals the off diagonal terms average to zero (since

the phase relations are random), and, thus, these sig-

nals will enter only in the diagonal terms of the matrix

The coherency matrix for a non-isotropic incoherent sig-

nal is given by :

J =

a2 0 0

0 b2 0

0 0 c2

It is interesting to note that if we rotate into any

other coordinate system (by use of a similarity trans-

formation) the signals in that coordinate system are

no longer incoherent, that is, the off diagonal terms

are no longer zero except in a singular case to be



discussed below. To illustrate this we will rotate

the incoherent signal found by letting b =-c = o in

the above matrix into a system defined by e=<j>=i|;=iT/4:
2.147 -.853 .5

.853 -.147 -.5

0 0\

0 0

0 0

/.147 -.853 .5

.853 -.147 .5

.5 -.5 .7071-

/,.025 .129 .074

a~ .129 .725 .427

.074 .427 .250

The coherencies in this coordinate system are:

C=l C = 1 C = 1xy xz Yz

Thus ,in the rotated system the incoherent signal appears as

a completely coherent signal on all axes. The inco-

herent isotropic noise source is of interest in a number

of studies. This source may be represented by multi-

plying the identity matrix by a constant, i.e.: '

1 0 0

J = a 2 0 1 0

0 0 1

This is a special case in which the. above analysis of

the effects of coordinate transformations fail since the

identity matrix is an invariant under a similarity trans-

formation. This signal w i l l , therefore, remain incoher-

ent in any coordinate system.



If the off diagonal elements of the coherency matrix

are non-zero, then, by definition, the signals are at

least partially coherent (although a coordinate system

may exist in which the signals are incoherent). The

phase relations between the coherent parts of the signals

determine how they enter the off diagonal terms as was

shown in equation (1). From this equation we see that the

only signals which enter the imaginary part of the coher-

ency matrix are signals which are in quadrature to one

another, that is, signals which have phase relations

of ±ir/2. All other signals (incoherent, in-phase, and

out-of-phase coherent) enter the real part of the coher-

ency matrix. This property provides a useful method of

analyzing plane waves in the presence of noise sources. •-•

We will now consider a monochromatic plane wave

which has a counterclockwise . sense of polarization about

the wave normal vector. In the principal axes system

for this wave (the system in which Z is along the wave

normal and 6 = 0), the time series for this wave may be

represented by: .

H (t) =. a exp{i[ut+4» ]}
A . • A

H y ( t ) ' " = b exp{ i [u3 t+<J> y ] }

H z ( t ) = 0

where <{> - $ '= if/2- for' a counterclockwise sense ofy x
polarization in the principal axes system.
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a2 iab 0

- i a b b 0

0 0 0

='

a2 0 0

0 b2 0

0 0 0

+ iab

0 1 0

- 1 0 0

0 0 0

The coherency m a t r i x for th i s wave is s h o w n to be

fcowler et al . - » ' 1967) :

J =

where we have extended the two dimensional analysis to

three dimensions.

The coherency matrix in any other coordinate system

(i.e. the system in which the actual measurements occur)

may be obtained by the similarity transformation:

J1 = RJR"1

where R is a general coordinate transformation matrix

(Goldstein,1965).' The advantage of starting in the

principal axes coordinate system is that it illustrates

the two properties of the coherency matrix which may be

used to determine the wave normal direction.

The property which is currently used by a number

of investigators and is a reasonably straight forward

extension of the two dimensional analysis, is that, in

the principal axes system, the real symmetric part of

the coherency matrix' i s. diagonal . We note that since

the coherency matrix, is a Hermitian matrix, the real

part of the matrix is symmetric and the imaginary part

is antisymmetric. The technique used, then, is to

diagonalize the real symmetric part of the coherency



matrix, use the eigenvector associated with the mini-

mum eigenvalue as the:wave normal direction, and then

rotate the full coherency matrix so that the new Z-axis

corresponds to the wave normal direction. At this point

the two dimensional analysis may be applied to the X-Y

submatrix to obtain the polarization.parameters for the

plane wave. This, technique of analyzing plane waves is

discussed in a number of current papers , Means (1971),

McPherron et al. (1972). Although this technique of

analysis is a reasonably straight forward extension of

the two dimensional technique, it has two serious draw-

backs. It uses the real symmetric part of the coher-

ency matrix, the part that is most susceptable to inter-

ference from unwanted signals, to determine the .wave

normal direction and, although the techniques for determin-

ing the eigenvectors and eigenvalues are readily avail-

able, the mathematicaKsteps involved are extensive.

We will now consider the second property, the

relatively simple antisymmetric imaginary part of the

coherency matrix in the principal axes system and how

it may be used to determine the wave normal direction.

We may rotate the matrix

0 1 0

ab -1 0 0

0 0 0
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to another coordinate system by the use of the simi-

larity transformation:

,-1; = ab RJ TRI I

where we will use:

R =

A

B

D

E

F

G

H

I

JJ = ab

Jj = ab

This rotation gives:

0 AE-BD FA-CD

BD-AE 0 FB-CE

CD-FA CE-FB 0

evaluating this matrix in terms of the coefficients for

the general rotation matrix given in terms of the Eulerian

angles (cf>,9,ijj), Goldstein (1965) gives:

0 cos9 -sinScosij;

-cos6 0 sin6si.m|>

sinecosip -sinesin^ 0

The fact that J| is independent of the rotation 4> about

the Z-axis is easily demonstrated by applying this rota-

tion separately. Thus, any rotation about the wave
.̂ .

normal vector k (the Z-axis in this coordinate system)

doesn't change the imaginary part of the coherency,

matrix.

Referring again to Goldstein (1965), we can inter-

pret the components of Jj in terms of the components of
\̂

the wave normal vector -k:
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JJ = ab

0

0

xx

y*
zx

xy

yy

xz

Thus, we may obtain the components of the wave

normal vector directly from the imaginary part of the

coherency matrix by using: • . , -

9 o o
kx + k + kz = ]

xy

and

k =
x

xz

-J

,' 2 2,2
Jyz = a b

xz
ab ab

k
2 ab

It is important to note that, as a result of the

original assumptions, this is the wave normal direction

for^a counterclockwise, elliptically polarized, plane

wave. Since the sense of polarization of the wave '• •
>s - /*.

changes if we let k1 = -k, this poses no real restric-

tion on the analysis. If a wave with a counterclock-
>s

wise rotation has a wave normal vector k, a wave with

the same wave normal vector but clockwise rotation w i l l ,
>\

in the above analysis, result in a wave normal vector -k.

In plasma physics the sense of polarization of plane

waves is always referenced to the magnetic field direc-
ys.

tion B. A wave is considered right-handed if it rotates
/\

in a counterclockwise direction when looking down B, left-

handed if it rotates in a clockwise sense. The



determination of the sense of polarization of the wave

in plasma physics terms is easily interpreted from the

dot product of k, the wave normal direction

defined above, and B, the magnetic field direction.

For right-handed waves k-B will be greater than zero,

whereas for left-handed waves' k-B will be less than zero.

Once the wave normal vector is determined,it is

necessary to rotate the coherency matrix into a coor-

dinate system such that one axis of the new system con-

tains this vector. If we assume that this axis is the

Z-axis in the new coordinate system^then the polari-

zation parameters for the wave may be determined by

applying the two dimensional analysis to the X-Y sub-

.matrix of the coherency matrix. As was shown earlier

the particular choice of X-Y axis is arbitrary, that is,

a rotation about the Z-axis doesn't affect the imagin-

ary part of the coherency matrix. Since the angle that

the major axis of the ellipse makes with the k-B plane

is important in a number of the;theories , it is advan-

tageous to choose the X-axis in the k-B plane and the

Y-axis perpendicular to this plane. The resulting right-

handed orthogonal coordinate system is one in which the

Z-axis lies along the wave normal vector k and the

X-axis lies in the k-B plane.

In this new system the magnitudes of the three Z

components of;the coherency matrix (J , J , J77)
 are

r\ &- J
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related to the noise sources which enter the.real part

of the coherency matrix. It is possible to solve for

the noise sources directly if some assumptions are made

about the type of noise and coordinate system in which

it enters the signal (i.e. incoherent instrument noise).

The usefulness of this procedure is questionable unless

there is strong reason to believe that the major sources

of the noise are of the assumed type. Of more general

usefulness is the signal to noise ratao defined by:

SNR =
J + Jxx yy

This quantity is a useful indicator of the reliability

of the polarization parameters.

There is one type of plane wave for which this

analysis is invalid, the linearly polarized plane

wave. The coherency matrix . for a monochromatic line-

arly polarized plane wave in the principal axes coor-

dinate system is :

a2 0 0

0 0 0

0 0 0

where the power in the linearly polarized signal (a)

is given by the trace of J. . Since the linearly

polarized plane wave results in a pure real coherency

matrix the above analysis cannot be applied. One may,

JL '
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however, apply a general rotation matrix (R) to this

coherency matrix, and, in a manner similar to that used

in analyzing the imaginary part of the coherency matrix,

determine the direction of the linear axis. Doing

this:

Jxx

J

Jzx

°xy

Jyy
' V

°xz

Jyz
Jzz

'L =

From J, we may obtain the components of the major pertur-
A. •

bation vector L and the linear power as follows:

VL '

Lx •

' Jxy/a Lx

Thus, we can analyze the plane waves without resorting

to the diagonalization of the coherency matrix, even

for linear polarization.

The use of the imaginary part of the coherency

matrix in determining the wave normal vector offers a

number of advantages over techniques which use the real

part. The first advantage is a result of the fact that

the imaginary-part of the coherency matrix is susceptible
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to only one source of interference, signals which are

in quadrature to one another. This form of interfer-

ence is the least likely form one is likely to encounter

from the instrumentation used to detect these waves.

Other advantages result from the fact that it is not

necessary to do an eigen analysis in order to determine

the wave normal vector. This results in a large saving

in computation when digital techniques of analysis are

used as well as allows the analog implementation of the

technique.

ANALOG IMPLEMENTATION :

There have been some attempts at analyzing plane

polarized waves using analog techniques (Smith, 1970).

The Necessity of performing an eigenvector analysis in

order to determine the wave normal vector and sense of

polarization has, until now, imposed severe restric-

tions on the implementation of analog data processing

systems. The analysis of the imaginary part of. the

coherency matrix just presented provides a technique

which does not involve the eigenvector 'analysis. In

this analysis,it was shown that the imaginary part of

the coherency matrix was directly related to the com-

ponents of the wave normal vector in the following way:
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J , = iab

0 kz ~ky

^T ° kVJu /\

ky -kx °

= '

0 V 'xz

'yx ° 'yz

'zx !zy °

From the independent components of this matrix we may

form a polarization vector ^ as follows:

?.' ?Iyz - 3.1 x? + «xy'. ab(?kx t JkyVkk2) •">•'

This vector has a magnitude directly proportional to the

area of the polarization ellipse formed by the plane

wave and a direction which corresponds to the wave

normal for a counterclockwise elliptically polarized

plane wave.

In the current studies in magnetospheric physics»

the wave normal direction and the sense of polarization

are prjmary pieces of information used in comparing

wave theory with experiment:. These characteristics may

be determined from the polarization vector by normal-
' * " ' ~ 'izing P to get k and then determining the sense from

/ \ y v ' - . / \ . • . . ~ . ' • . . .

k - B , where B is the dc magnetic field. The positive

dot product corresponds to right-hand polarized waves

and the negative product corresponds to.left-hand waves.

In addition to these quantities the magnitude of ^

(being directly proportional to the area of the

ellipse) is a useful indicator.
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In order to form the polarization vector it is

necessary to measure the three quadrature components

of the coherency matrix I , 1 , 1 . A functional
" y " £ ' y £

block diagram of the necessary processing for the

analog determination of the components of the polar-

ization vector I* is given in Figure 1. The basic

technique for measuring the quadrature function is that

found in Bendat and Piersol (1966). We note that these

determinations can be carried out on board spacecraft

with simple state-of-the-art circuitry. The particu-

lar averaging constant, bandwidth, and modulation fre-

quency used will depend upon the frequency band to be

analyzed and the recording technique used.

DIGITAL IMPLEMENTATION

'The digital implementation of the analysis of

plane polarized waves involves four major steps:

A. The generation of the three dimensional

coherency matrix.

B. The determination of the wave normal vector.

C. The rotation of the coherency matrix to a

system where the Z-axis is along the wave

normal vector.

D. The determination of the polarization par-

ameters using the X-Y submatrix.
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Descriptions of systems designed to determine the wave

normal vector using the real part of the coherency

matrix are given by Means (1971), and McPherron et al .

(1972). It is relatively simple to modify these

systems to determine the wave normal vector from the

quadrature components of the coherency matrix, and

then test the technique. The results of two of these

tests, one on simulated data and one on actual data,

are presented here.

The simulated data was generated on the computer

using samples of a plane polarized, right-handed, sig-

nal with a wave normal vector of (0.5, 0.5, 0.707).

For this test random gaussian numbers, with varying

average amplitudes, were added to these samples. The

resulting data, which has a variable signal to noise

ratio, was run through the modified system. The results

of this run are summarized in Table I. We note that

as the signal to noise ratio decreases the coherency

and polarized power decrease, the angle between the

measured wave normal vector and the actual vector increase

and sin 26 becomes less reliable.

The sample of data presented in Figure 2 is that,

of a proton whistler detected by the OGQ-6 search coil

magnetometer on September 19, 1969 at 1133 UT. An

analysis of this whistler, using the real part of the
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coherency matrix for the wave normal determination, is

presented in the paper by Chan et al. (1972).

This whistler provides a good test case because of

the number of different mixtures of signals present.

There is a strong right-handed signal from 0.06 sec to

0.15.sec. During this time the coherence, signal to

noise ratio (SNR) and polarized power are all high.
*. *.

Correspondingly, the angle between k and B and the

value of sin 2g show little variability. From 0.15

seconds to 0.29 seconds there is a mixture of right

and left-hand waves. During this time the SNR, coher-

ence, and polarized power all decrease with time. This

is reflected in the higher variability observed in the
^ X • • : .- - . ; . . " . : - , - • - • ' • .

k-B angle. The change from a dominantly right-handed

signal to dominantly left-handed signal occurs between

0..29 and 0.49 seconds. We note that the SNR and the

coherence dip in this region, the polarized power

generally decreases, sin 2B changes from right-handed
/N /N.

to left-handed, and the angle between B and k is quite

variable. From 0.40 to 0.49 the amplitude of the right-

handed signal decreases rapidly while the amplitude of

the left-handed signal remains roughly constant. This

results in increasing values of the coherence, SNR, and
S*. >N

polarized power. In addition sin 28'and the k-B angle

show less variability. Finally,the left-handed signal
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slowly decays, and disappears at approximately 1.6

seconds. During this interval as the SNR and polarized
A. s*

power decrease, the coherence, sin 23 and k-B remain

relatively constant until the SNR falls below 5, then

the coherence decreases, and becomes more variable and
^ ^ .

the values for sin 2B and the angle between k and B

become more variable. ' . .... .

In comparing these results with those obtained by

using the real part, of the coherency matrix to determine

the wave normal vector, we find that meaningful results

are obtained for a slightly longer interval of time,

corresponding to a slightly lower SNR. This technique

fails where there are equal contributions of right and

left-handed signals in the analysis band, as occurs from

0.29 to 0.40 seconds. This is to be expected since the

resultant signal corresponds to a linearly polarized

piane wave.

, The analog implementation would give results simi-

lar to those obtained here for the wave normal vector.

In the digital implementation, however, we are not

restricted to the broadband analysis of the proton

whistler presented h.ere for test purposes. We may :

determine the polarization parameters for narrower bands

of frequencies by filtering the data before generating

the coherency matrix. We .note that, in the frequency
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domain, this corresponds to averaging over bands of

frequency and not over all frequencies. With this

technique we may separate the proton and electron

branches of the whistler, except where they both lie

in the same analysis band.

SUMMARY

The analysis of the polarization properties of

plane polarized waves involves a study of the three

dimensional coherency matrix. In presenting the coher-

ency matrix we have shown how various signals will

enter the elements of the matrix. In particular, we

have shown that incoherent signals enter the diagonal

elements of the matrix, that coherent signals with

phase relations of rnr radians (where n is any integer)

enter the diagonal and the real off diagonal terms

and that coherent signals with phase relations of m?-

radians (where m is an odd integer) enter the diagonal

and imaginary off diagonal elements. We also empha-

.sized that signals which are incoherent in one coor-

dinate system may be highly coherent when viewed in

any other coordinate system.

There are two possible techniques of analyzing the

coherency matrix for plane polarized signals in an

arbitrary coordinate system. The method currently
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used by a number of investigators involves the diagonali

zation of the real symmetric part of the coherency

matrix. This method has two important shortcomings, the

number of computations necessary to diagonalize the

matrix and the susceptibility of the real part of the

coherency matrix to noise sources.

The method described in this paper utilized the

relatively simple form of the imaginary part of the

coherency matrix in the principal axes coordinates.

It is shown that, in a general coordinate system,

the imaginary part of the coherency matrix may be

expressed as :

0 k

= iab

z -ky
k 0

k -kky . x 0

where the k's are the components of the wave normal

vector in this coordinate system. Thus,we may obtain

the wave normal vector directly from the imaginary part

of the coherency matrix. In addition to the saving

in computation obtained by removing the. need to diagon-

alize a matrix, the only sources of signals which enter

the imaginary part of the coherency matrix are signals

which are in quadrature. This greatly reduces the

possible sources of interference since most sources of
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noise on instruments will be either incoherent or in

phase coherent sources.

The fact that the components of the wave normal

vector are given directly by the terms in the imaginary

part of the coherency matrix may be used to develop

an analog technique to d.etermine the wave normal vector.

This may be especially useful on satellite experiments

where the data transmission capabilities preclude the

transmission of the complete spectrum of information

available to the various experiments. .
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TABLE I

TEST RESULTS ON COMPUTER
GENERATED SIGNALS

SNR

CO .

400

100

50

40

30

20

10

5

COHERENCE

1.00

.98

.95

.91

.93

.83

.80

.81

.71

sinZB

; .637

.636

.616

.666

.586

.634

.698

.674

.561

k-Z

1 .000 .

1.000

1 .000

.999

.999

.998

.997

.978

.935

% POLARIZATION

: ;: 100

95

95 :

91

94

89

85

82

76
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Figure 1

Functional block diagram of an analog circuit

for determining the wave normal vector.

Figure 2 ' . • ' . ' ' /

Polarization analysis of a proton whistler detected

by the OGO-6 search coil magnetometer. The

polarized power is given in arbitrary units. The

dotted portion of the sin 23 curve corresponds to

left-hand polarization.



Input x(t,

Input y(ti

Local
Oscillator

Input z(\ ,

}
Modulator

Modulator

H M *J t 4Mocuiawr

'*"

•*"•

Band-oass
Clliarriner

Band-pass
rr 11 A *%.. 'Finer

uono pass
Filter

_ 90-degree
Phase-shift

00 rlix^' Uc?wf GG

Phase-shift

\L

•

Multiplier

Multiplier

A A 1 A *•* / *>»Multiplier

Averaging
Uif VU//

Averaging
Circuit

Averaging
Circuit

_



1000-

500 -

0

DYNAMIC SPECTRUM

/.On

0

COHERENCE

50+-}

0

SIGNAL/NOISE

POLARIZED POWER

1.0 -}

0

R.H. L.H. SW

90° -i

0

_/ A A
Cos (B-k)

0 1.0 1.5

TIME (sec)


