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ABSTRACT

A technique for ana1yzing the po1arizatiqn pfo; 
perties of plane waves is deve]bpeﬂ which offers a
ndmber of advantages over methods'curfently used in
the ané]yéis of both ground and satel]ite oEsekvatiohé "'
. of waves. This techniqﬁé.redhﬁés thejcomphtations

‘required to find the wave norma]‘Véctor,.is less
7'sensitive’to cbmmdn nofseléources, and is éﬁenab]ej_-"
fb ana]og'implementation.v‘Thié technique here is
'éﬁplied sﬁeci%icé1]y.to-the analysis of a‘ﬁroton.v
nwhist]er, but may aiso be3u§ed in most studies éf

ULF, ELF, and VLF magnetic wave phenomeha.'



THE USE OF THE THREE DIMENSIONAL COHERENCY
MATRIX IN ANALYZING THE POLARIZATION
PROPERTIES OF PLANE WAVES .

 INTRODUCTION | |
| The study of fhe po]arizationvproperfies of plane
‘ waves 1s an 1mportant too] in space plasma phys1cs It
‘1s of va1ue in 1dent1fy1ng the type of wave, determ1n1ng
the origin oflthe wave,”and 1nterpret1ng the propqgat1on
:characteristies ofwthe mediﬁm through theﬁvthe wave
treve]s.i Po]arizatibn'analysis is cqrrent]y employed |
in.studying a wide range of.waves'including ehorus;.ﬁiss,
lightning whistlers and hydromagnefic wevés in the meg- :
»netosphere, as well as various waves detected in.the |
'5-magnetosheath on'sheck, and 1nterp1anetary.medium.
Fow]er et a] (1967),énd Rankin and detz‘(]970)
: dea] w1th the two dimensionaifanalysis of quaeimono¥ 
chromat1c po]ar1zed waves. ‘Fo]10w1ng an ana]ys1s pre-
sented in Born and wolf (]970), these authors demonstrate
that the po1ar1zat1on prppert1es for a quasimonochromatic

wave represented by:.

H(t) = a, (t)explilut+s, ()]}

4Hy(t) ay(t)exp{i[wt+¢y(t)]}

may be'exeressedvin terms of the "polarization parameters”

_tan2e = :55—137 cos (¢, -9,)
MY
| o 2a 3 o
sin28 = —~——1:75in(¢ -d,.)



whefe'thé.bafs represent time.averages, 8 is the ang]é
. betweeh_the méjor'éxis of.the poTarizationle]]ipse and
the X-axis, and tang is the ratio of the minor to the

major axié_of the ellipse. The-sign of 8 indicates the

- sense of polarization: B>0 for counterclockwise and

... B<0 for ;ldckWise;rotation»of_the'pefturbation_ye;tor.

gbduf thé”Z-ékis._;

| Fowigr'ef al.v(1967)vshow how theseﬂpolarizatidh, ‘
pérémefefs méy be obtained in terms'of the‘é]ements of 
the two_diméﬁéiona] cdherency'matri%f 

*

L <H (E)H (t)> <H*(;? ()

R0 ()

:where'the angﬁTéf,brackets repreéent time éverégés, ahd
.the_asférisk indicates» the cofrespondihg_compjex conju—
5fjgaté. ' ' o , '

| '. This tecﬁniqﬁé T;’Eiregtly app]icéb]e_to.the ana]y-_<
sis of plane waves if the X and Y axes ﬁan be chosen to :
lie in the p1ane Qf thé_waveL ‘Inugenera]; howevef,

when a piane wave is detected by measuring ‘its three

~ dimensional vector time;serfes,the plane of the Wave
wi]1-nbt coincide with any of the three Qrthogoha]
méasufehent.b]anes.' We then Havé to dgai-with’the

three dimensional coherency matrix:



L<H (LH(E)> <K (O)H(2)>  <H (E)H)(2)>
9= | <H (E)H (2)>  <H (E)H (t)>  <H (t)H_(t)>
<H (E)H(0)> <H (£IHU(E)>  <H (L) (2)>

In order to utilize the results of the two dimen-
;sibnal analysis,it is necessary to- determine the plane
..of polar1zat1on of. the perturbat1on vector or, equiva-

1ent]y, "the wave normal vector.

TECHNIQUE AND THEORY.

j Lef Qs:first'exaMine thé;cbherency matrix‘defined
in férms 6f the three functions H (t) H (t); and H (t)
which are- ana]yt1c representat1ons of the measured sig-
nals and, as such, are complex. It 15 th1s fact wh1ch
complicates the éénekation of fhe coherency matrix in
'the t1me doma1n, since the generation of the analytic:
representat1on of a rea] funct1on 1nvo]ves a convolu-".""
tion 1ntegra1 (Bracewe11 1965). In the frequency
domain, however, the ana]ytic_representatlon of the real
signal is easi]y‘obtained by_mu]tiplying:theVFourier
transform of the-keaT'siQna1 by the Heayiside step
- function:
| 0 f<0

S(f) = 4 £39

We may obtain the frequency domain representation of
the three time serijes, after they have been digitized,

by use of the Fast Fourier Transform'algorithm pf Cooley

and Tukey (1965). Then, by use of the generalized power



theorem:
fm o(t)n*(t)dt = [ G(F)H () df

we may extend the definition of the coherency matrix to

the ffequency domain. The resu]ting_mafrix is:

| <H (FIR(F)>  <H (F)H(F)>  <H ()N, (f)>
) = ny(f)Hx(f)§ < y(f)Hy( )> f<Hy(f)Hz(f)>.
<H (F)HS(F)> <Hz(f)H;(f)>. fHZ(f)H:(f)>

where the angular brackets now represent the average
over all pos1t1ve frequenc1es
The coherency between two s1gnals is defined in
terms of the.e]ements of this matrix as:
C.. =—7jii%=;——‘ .
YooY
- The>cohereney has a ve1ue of one for eiéne1s whieh are
hfgh]y inferre]eted (i.e. ee¢p1ete1y polarized sigﬁais),'
“and a Qa}ue of zero.for signa]s which afe not interre]ated -
(i;e{ noise). | | | |
In order to.understand_what tybes.of'signals enter
the various matrix eTements we will Took at the calcu-
1etion of .the %Y element <HX(f)H;(f)>. Fof any given
frequency the transform coefficients for the X and Y

axes may be represented as:

I

"~ | Hx(f) A, coseff1A s1n6f

H ()

chos¢f+i8fsin¢f’



where ef and ¢f are the phésés of the signa]s refer-
enced to the same arbitrary zero point. The product
Hx(f)H;(f) for this frequency reduces to:

Hx(f)H;(f) = A%chos(ef—¢f))+ iAfosin(ef-éf). (1)
'From_this expression it is.obyiousﬂhow fwo signals with
' varying phase re]ations to one anqther_wi]l enter the .
z.off'diagbnal elements of the cbﬁérency matrix. The
- diagonal elements of.the matrix wi]]_a11 be-rga1 posi- .
tive quantities.since:there»1sAno phase difference‘-‘f:

- between a function and its conjugate.

With thé above information we may examine how some
typica]lsigna1s will enter the coherency matrix. First,
we will consider incoherent signéls. For incoherent
signé]s the off diagonal terms évekage to zero (since

the phase relations are random), and, thus, these sig-

:‘~f,na1§ will enter only in the diagona]'terms_df the matrix.

The coherency matrix for a non-isotropic incoherent sig-

nal is given by:

a2 0 o0
J = 0 b2 0
0 0 c?

It is intefestfng to note that if we rotate into any .
' qther'coordinate system (by use of a sfmi]arity trans-
formatibn) the signals in that coordinate system are

no longer incqherent,'that is, the off diagonal terms

are no longer zero except in a singular case to be



discussed be]pw.v T0»11]ustrete this we will rotate
the incoherent signal found by letting b = c =0 in

the aboye_matrix‘into a system defined by 0=¢=y=7n/4:

147 -.853 .5 \ fa’? 0 0\ [.147 -.853 .5
.853 -.147 -.5 \[o o o][.853 -.147 .5 \=
\.5...5 - .707/\o 0 of\.5 -.5. .707

..025 .129 .074\
129,725  .427

.074 .427 .250
The coherencies in thié coordihate‘system are:

’ ny»= T sz =1 CYz B !

Thus,fﬁ fhe rotatedveystemvthe_incohefent:signal appears_es
a«-tomp]eteTy coherent signa]-on a]] axes. The inco-
herent 1sotrop1c no1se source is of 1nterest in a number -

" of studies. Th1s source may be represented by mu1t1—l-

plying the 1dent1ty matr1x by a constant, i.e.

1 0 0
J=a2 1o 1 o

This is a special ease in whjch the:above ana]yeis}of'

the effects of coordinafe transformations fail since fhe
identity matrix is an invariant undef.a eimi1arity trans-
formation. This signal will, therefdre, remein incoher-

ent in any coordinate system.



If the th diagona] elehents ot the coherency matrix
are non-zero, then, by definition,.the‘signals are at
- least partially coherent (although a coordinate system
may exist in which the‘signals”are'incoherent).v The
phase'relations-between the eoherent parts of the signa]s'

determ1ne how they enter the off d1aaona1 terms as was

"”shown in equat1on (]) From this equat1on we see that. the

only signals which enter the 1mag1nary part of the coher-7
t_ency matr1x are 51gnals wh1ch are in quadrature to one
"another, that is, s1gna]s wh1ch have phase re]at1ons

of iﬂ/2. A]] other s1gna1s (1ncoherent in-phase, and
out-ot-phase coherent) enter the real part of the coherr_

- ency matr1x _ Th]S property prov1des a useful method of

f=ana1yz1ng plane waves in the . presence of noise sources.

We will now consider a monochromat1c.plane wave

“ which has a.eountert}ockwise. sense of po]ar1zat1on about_‘
-Athetwayefnormal yectort In the pr1nc1pa1 axes system

for this wave (the system 1n which Z is a]ong the wave-
~normal and & = 0), the time series for this wave may be
represented by:

:Hx(t) = a e*?{i[wt+§x]}]

noe

Hy(t) b exp{i[wt+¢y]}

i

Hi(t) 0
where ¢y.- ¢X:= /2 f6+ a counterclockwise sense of.

poTarization in the prfncipa] axes system;



The coherency matrix for this wave is shown to be

Fowler et al.. 1967):

a2 4ab o |  |a%2 o o] o 1 o
J= |-iab b% 0| = fo b2 o]+ dabf1 0 o0
o o of Jo o of ~lo o o

where we have extended the two d1mens1ona1 ana]ys1s to‘
h'three d1mens1ons | - o |

The coherency matrix in any other'codrdinate‘system
(i.e}'the-syétem in}which the‘actualhmeasurements occurf- 3
. may be obtained by the:similarity transfermation: |

J' = RJR™!

Where.R ié a general coordinate transfbrmatidn matrix
(Goldste1n ]955) f The aduantaqe df starting in the
pr1nc1pa1 axes coord1nate system 1s that it 11]ustrates
_the two propert1es of the coherency matr1x wh1ch may be.
used to determ1ne the wave norma] d1rect1on

The property which is current]y used by a number
'df,Jnvest1gators-and.1sva reasonab]y etrajghtuforward
extensidn of the twd dimensional analysis, is‘that, tn
the principa] aXeS'system, the reaT symmetric part of
the coherency-matrix'is_diagona1. We note that since
the coherencynmatrix.ts a Hermitian matrix, the real
part of the4matrix‘i§ symmetric and'the‘imaginary part
is antisymmetric. The technique used, then, is to

diagonalize the rea] symmetric part of the coherency



métrix, use the eigenvector associated with the mini-
mum eigenvélue as the:Wave_norma] direction, and then
rotate the full coherency matrix so}that the newlz-axis
corresponds to the wave normal difeétion. ,Af this point-v'
the two dimensiona] analysig may be applied t§ the X-Y
submatrix to obtain the polarizatibn;parameter§'for the
'pléne wave. ‘This technique of analyzing p]ane:wagés'i$ _;.‘
discussed in a numbef of.cufrent‘papers, Means~(i971),.
'McPherfon et a]. (]972).» Aithough thfs technique of';
“_analysis-is a réasonably straight forward exfension.qf"
the fWo'dimensioﬁa] technique,; it has two.serious draw-
backs.  it usés the réal.symmetfic part of fhe cdhérF"ﬂ
ency'matfix, the part that is most susceﬁtabTe to inter-
4férehce{from unwanted signéls; to determine the wave
normai'directidn and, afthbugh the teéhniques.for'determin-
ing thé~eigenve¢tors and eiggnvalues are readily'avai1;~ :
~‘ab]é,'the mathemat{6a13§teps involved dke'exténsive;5vii 
We will now conégder the‘second property,.the
re]ativé]yléihp]e antisymmetric.imaginéry part of the
coherenéy,matrix in the principal axes'system and how
it.may be used to determine thé wave normal direction.

We may rotate the matrix
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to another coordinate system by the use of the simi-

larity transformation:
Ji = ab RJI R

where we will use: .

C F . I
This rotation‘giVes: o _ _
o AE-8D  FA-cD|
B Ji = ab ép-AE-' 0 FB-CE|
CD-FA CE-FB 0

- evaluating this matrix in terms of the coefficients for -
the general rotation matfix given in terms of the Eulerian

angles (¢,e,w);'Go]dstein"(]965) gives:.-

0. ' cosé . -sinfcosy
Ji = ab| -cos8 - 0 R sinesinw
sinfcosy -sin@siny - 0

The fact that Ji-is ihdgpendent of'the rotation ¢ about
‘the i-axis is ea;i]y demonstfated by‘appiying this rota-
‘tion separately. Thus, any‘rotafiontabout the wave
‘normal vector E (the Z-axis in this coordinate sysfem)
doesn't change the imaginary part of the coherency.
matrix. | |

Referring again to Goldstein (1965), we can inter-

pret the components of JI in terms of the components of

the wave normal vector k:
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L 'ky Iy x ny Jyz
b fok, 0 kel o [y 9y 3y,
ky -k, 0 I uy 9

Thus;‘we may obtain'the'combonents of the wave
nofma]kvector directly from;the imaginary part of the

coherency matrix by using:

kx + ky + k- = 1 ‘
2 2 2 _ 2,2
ny + JXZ +'Jyz = a~b
“and
‘ J -dJ < J
Kk = JZ kK = XZ k- = XY
X ab y ab ? ab

It is 1mportant to.note that, as a result of the,j
"or1glna1 assumpt1ons, th1s is “the wave normal d1rect10n
for;a counterclockw1se,‘e111pt1ca]1y polarized, p]anez
n55wave; Sincevthe sense{of polarization of tHe wave
changes if we 1e£ E' % -E, this poses no real restric- -
tidn on the ana]ysis. 'If-a wave with a counferc]ock-
wise rotation has a wave normal vector E;,a wave with

the same wave normal vector but clockwiée'rqtation»wills‘“
in the above analysis, rese1t in a wave normal vector -QQ
| _In plasma phys{cs the sense of po]afization of.piane
waves is-always referenced to fhe magnetic field direc-
tion B. A wave is considered right—handed if it-rotates
in a counterc]ockw1se d]rect1on when Tooking down B left-

handed if it rotates 1n a clockwise sense TheA
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.determinationhot the sense of polarization of the wave'
in plasma phys1c= terms is easily 1nterpreted from the
dot product of k the wave normal d1rect1on
defined above, and B the magnet1c field d1rection
' For right-handed waves k B w11] be greater than zero,
whereas. for left- handed waveé k B w111 be ]ess than -zero.

Once the wave normal vector_1s determ1ned,1t 153-
necessary to rotate the coherency matrix-into'a coor-
dinate system sUch that”ohezaXis of the newléystemrcohft:
taihs thfs vector. If we assume that;this:axis is the»”
Z—axis in the.new coordinate system;then.the po]ari-ﬁ
zat1on parameters for the wave may be determ1ned by
,applylng the two d1mens1ona] ana1ys1s to the X Y sub-
..matr1x of the coherency matr1x . As was shown earller
}the part1cular choice of X-Y axis is arbntrary, that 15;
a rotat1on about the Z axis doesn't affect the 1mag1n-
‘ary part of the coherency matrix. S1nce the angle that
“the major axis of the ellipse makes»w1th the k-B.plane
is important in a number of ‘the:theories, it is advan-
tageous to choose the X-axis in the‘E-g plane and the_
Y-axis perpendicular to this p]ane.t The resu]ting.rtght-”
handed orthogoha1-coordinate‘system;is one ih which the
Z-axis lies along the wave normal vector ﬁ and the |
X-axis lies in the k-B plane.

In this new system the magnitudes ot,the three z

components of:the coherehcy matrix (sz, Jyz’ Jzz) are
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re]éted to'the-nbise sources which enter the real part
of the coherency matrix. It is poésible to éolve for
the noise sources directly if some assumptions are made
about the type of'noiSe-aﬁd coordinate system in which
it enters the signal (i.e.lihcoherent instrument noise).
The usefulness of th1s procedure is quest1onab1e unless
there is strong reason to belleve that the maJor sources
v.of the noise are.of-the assumed type. Of more genera1.
usefulness is the signal toAnoise,ratio defined by:

J- + J

SNR = 22X ——IY
2z
- This quantity is a useful indicator of the“reliability
of the po]ar1zat1on parameters. |
"There is one type of p]ane wave for which thls'

analys1s is 1nva11d the 11near1y po]arlzed plarie
wave. ,The_coherency matrix.for‘avmonochromatic 1ihe?{'
arly polarized b]ane wave in the prfncipa] axes coor-

dinate system is:

a2 0 0
0 0 0

where the power in the linearly polarized signal (aZ)
is given by the trace of JL.“ Since the 1inear]y.-
. polarized plane wave results in-a pure real coherency

matrix fhe above analysis cannot be applied.. One may,
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however, apply a general fotation matrix (R) to this
coherency matrix, and, in a manner similar to that used.
“dn analyzing the imaginary part of‘the.coherengy matrix,

determine the direction of the linear axis. Doing

this:
- Jxx _,ny J;z
QL = | yx Jyy Uyz
| | sz‘ 'Jzy_ Jzi

From'JLAwe,may'obtain théﬁcdmpbnents of the major pertur-
bation vector L and the linear power as fol]ows:

2

'TrdL =-32(L§ + Ly * Fz) =-a2
Lx -=.-". Jxx/az
-;‘Ly‘z,ny/ézLx_
;Lz =5sz/a2Lx.;’

Thus, we can ana]yzé the plane waves without resorting
to the diagona]izat{on of the coherency matrix, even
 for linear polariiétion._

The uﬁe-of the imaginary part of the'cohefency
matrix in determining.the wave normal vector offers a
number of advantages over techniques which use the real
part. The firsf advantage is a result of the fact that

the»imaginary?part of the-coherency matrix is susceptible
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to only one_Source'of interference, signals which are .
in quadrature to one another. This form ot‘interfer-'-
ence is the least 1ike]y form one is likely to»encbunter
from the.instrumentation used to_detect these Waves,
Otheh.adventages resuit‘frdm the'tabt that it is not
neceSSafy te do an eigen aha]ysis”in order'tO'determfne
‘the wave normal vector. Thistresults in a ]argeVSaving 
in computat1on when d1g1ta1 techn1ques of ana]ys1s are
-used as well as al]ows the ana]og 1mp1ementat1on of the

techn1que,'

| ANALOG IMPLEMENTATION

There have been some attempts at ana1y21ng pTane.
po]ar1zed waves using ana1og techn1ques (Smith, 1970)
“The necess1ty of perform1ng an e1genvector ana]y51s 1n_:;»
: order to determine the wave nOrma1 vector and sense of""
-polar1zat1on has, until now, 1mposed severe restr1c-‘ 
tions on the 1mp1ementat1on of analog data processing
~systems. The analysis of the imaginary part of the
ceherency mattix Just presented_provideé.a techhique
which does not 1nvolve»the eigenvector ‘analysis. In
. this ena1ysis,it was shown that the imaginary part ofh
the coherency matrix was directly related to the com-

ponents of the wave normal vector in the following way:



0 kz -ky 0 Ixy” IXZ
.JI = iab sz 0 Ky z ;yx 0 Iyz
ky —kx 0 -IZX IZy 0

16

. From the independent components of this matrix we may
form a polarization vector P as follows:
,?-= ]Iyz

- jlxz + kI

TXY +‘kkz)  't -

= ab(ik, + jk,

Thfs Veéfor has a magnitudeAdirecfiy propohpfona]lto'fhe
area of the polarization'eljipse formed by the p]&ne v
wave and a dfrection Which correSponds to'the:waveli
,nqrmaT»f¢r a counterclockwise e]]ibtica]]y polérized
-plane wave. | |

In the currentvstudies,in magnetospheric physics;
the wave nbrha]‘directfon and the sense'of'po]arizafion"'
vareAprjmary piecesAof information used in compéringf 
- wave-théory with experimént; -These bharacteristics'may _
be determined from the”polafizétion'vector by hormél-_
_izing'ﬁ to gef'E.and then determjning the sense from
4'E-§; where g is_fhe dc magnéti@lfield; ATheAposffivel.‘
dot product.co?respbnds to right-hand po]arizédAwaves
_ and the negative product correéponds to,]eft—hahd,waves.}
In addition to these quantities the magnitude of P
(being direct]j proportioné] to the area of the

é]]ibse) is a usefu]'indicator,
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In order to form the polarization vector it is
necessary‘to‘measuré the three quadrature components

- of the coherehcy_métrix I 1

, Xy’ .
block diagram of the,nécessary processing for the

xz’glyz’ A'funct1qna]

analog determination'df the components of the polar-

-

ization vector P is glven in F1gure 1. The basic

'techn1que for measur1ng the quadrature funct1on is that o

found in Bendat and P1erso] (1966). We note that these
determinations'cén bé cérried out on board spacecraft _
with simp]é"state—of~the?ért circuitry. Thékparticu-r -
1ar averaging constant, bandWidth, andrmodu]atiOn‘fré- 
ﬁuency used wi]i depend:upon‘the frequéncy band to be

aﬁa]yzed and the retofding technique used.

_DIGITAL IMPLEMENTATION

The’ d1g1ta1 1mp]ementat1on of the ana]ys1s of

7'p1ane po]arlzed waves 1nvo]ves four maJor stepS'

A. The generat1on of the three d1mens1onal
coherency matrix.

B..The‘determination of the wave normal vector.

C. The'rotation of the coherency matrix to a
system'whefe thé Z-axis is along fhe ane
normal vecfor. |

D. The determfnatidn of the polarization par-

ameters using the X-Y submatrix.
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Desériptions of systems designed to_detefmine the wave
normal vector using the real part of the’coherehcy
‘matrix are given by Means (1971), and McPherron et al.
'(1972){. It is.re]ativeiy simple to modify these
systems to detefﬁine the wave normal vector from the
quadrature components of tﬁe coherency matrix, and
th?n test the .technique. The results of two of these
- tests, one 6n simu]atéd data and one on actuai data, .
. are presented here. _ |
The simulated data was.generated on the computér»'
’Ausing;samp]es of.a'plane.poiarized, right-handed, sfg—
nal with a wave normé1'Vector of (0.5, 0.5, 0.707).
.Forlthis tést random gaussian numbefs,-with varyingiA:-f
 average amp]itudes, were added to thesé samp]és.. The-'
reSu]tihg data, which has a variable sigﬁa] to noise
rétfo,4Was run througﬁ_the modifiedlsystem.- The resu1t$
of this run are summarized in Table I. We note that |
- as ihe signa] to noise ratio decreases the toheréngy
}énd polarized power decrease, the angle between the
measured wave normal vector and the actual vectdr increase'
and‘sih 28 becémes.]ess reliable.

The sample of-data presented in ?fgure 2 is that.
of a proton whistler detected by the 0G0-6 search_cofl
magnetometer on September 19, 1969 at 1133 UT. An

analysis of this whistler, using thé real part of the
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coherency matkix for the_ane normal determination, is
presented in the paper by Chan et a].'(1972)f

"This whistler pnoyides a :good test case becadse_of ‘
the number of different mfxtures of signals present.
There is a stfong rfght-handed signal from 0.06 sec to
- Q.lS.sec.‘:Duriné this time the:coherence, signa].to
- nofse retio (SNR) and.po1arized powerdare’all high.
Correspond1ng1y, the ang]e between k and B and the |
va1ue of sin 28 show little var1ab111ty ~From 0.15;
. .seconds to 0.29 seconds there_ls.a m1xture'of night‘
and Teft-hand Waves;’kDuring this‘time»the"SNR, coher-‘
ence,'and po]éfized oower all decrease with time This
is reflected 1n the h1gher var1ab1]1ty observed in the
N k B.engle | The change from a dom1nant]y r1ght handed
s1gna1 to dom1nant]y left- handed s1gna1 occurs .between
0. 29 and 0. 49 seconds we note that the SNR and the‘
coherence d1p in this regmon, the po]ar1zed power

' genera]]y decreases, s1n 28 changes from r1ght handed

" to left-handed, and the angle between B and k 1s_quites'

variable. From 0.40 to 0.49 the amplitude of the right-
handed sfgnal decreasesrapid1y‘whi1e thedamp11tude of h
the left-handed signal remains'rough]y constent;} This

results in incneasing values of the coherence, SNR;'and
polarized power' In add1t1on sin 28 and the k B angle h

show less var1ab111ty - Finally,the 1eft-handed s1gna1
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slowly decays, énd dfsabpears at approximately 1.6
seconds. During this_intervaj as the SNR and polarized
power decrease, tﬁe coherence, sin 28 and Q-g remain

" relatively constant until the SNR falls below 5, then
the coherence decreases, and becomes more variable and
the values for. sin 28 and the angle befween Q and ﬁ
 become. more variable.

Iﬁ cdmpériﬁévthése résuTt§ with those obtained by"
using the Fea]‘part of -the coherency matrix tquetgrmine
the wave normé]vvector,>wejf1ndvthat meaningfui reSu]ts
are obtaihed_for'a S]ightly']ongér intervé] of time,
corresponding to a slightly lower SNR. Thisltéchnique .
fails where theré‘are equal contributions of night-énd
 1eft-handed_signa1siin the analysis bahd,?as occurs froﬁ
0.29 to O.40‘§écohd5; 'This is1tov5é exﬁeétéa since the -

_resultant signal corresponds to a 1inear]y.;pdlarized

"~ plane wave. -

The analog ihp]émehtétion would give results simi-
lar to tho§e obtained.here for the wave normal vector.»'
In the digité] implementation, however, we are not
restricfed td the broadband ana]ysi§ of the proton
whistler preSented here for test bufposes. We mayr
detérmine'theipo]arizatjdn parémeters for narrower bands
~of frequencies by filtering the data before generating

the coherency matrix. We note that, in the frehuenéy
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.domain, this corresponds to averaging over bands of
frequency and not over all frequencies. With this
;technjoue we may separate the proton and electron
‘branches of the whistler, except where they both lie

in the same ana]ysis band.

SUMMARY

| The ana]ysis of the po]arization properties of
plane po]ar1zed waves involves a study of the three
d1mens1ona1 coherency matrix. In present1ng the coher-
ency matrix we have shown how various s1gna]s will
enter the e]ements of the matr1x In part1cu1ar, we
have shown that 1ncoherent s1gna1s enter the d1agona1
v‘e1ements of the matr1x, that coherent s1gnals w1th
phase re]at1ons of nm radians (where n.is any 1nteger)
enter the d1agona1 and the real off d1agona] terms |
and that coherent s1gnals w1th phase re]at1ons of mf
radians (where m is an odd fnteger) enter the diagonal
" and imaginary>off diagona]«e1ements' We also empha-
:s1zed that signals which are 1ncohe1ent in one coor-
d1nate system may be h1gh1y coherent when v1ewed in
any other coord1nate_system.

There are two possib1e3techniques of analyzing the

.coherency matrix for plane po]arized'signa1s fn an

' arbitrary'coordinate system. The method currently
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used by a'number of investigators involves the diagonali-
zation of the real'symmetric part of the coherency
,matrix This method has two 1mportant shortcom1ngs, the .
number of computations necessary to diagonalize the-
‘matr1x and the suscept1b111ty of the real part of the’
'Acoherency matr1x to no1se sources. 7 |

- The method descr1bed in thlS paper ut1]1zed the-
.re1ative1y simple fqrm of the.imaginary_part'of the
-;oherency matrix in the prihcfﬁé].axés'coorainatésfi,?

It is sﬁown that, in a general coordinate éystem,::

the imaginary part of the coherency matrix.méy bé

expressed as:

o 0k ok
gp=dab fok, 0 kg
ky ka 0

whefé tﬁé E?s.afe.the-ﬁompqnénts.pf thé‘wave'ndrmallﬁl'
vector in this coordinaté'system} ThUS,we méy obtain
thé wave normal vector directly-from<the imaginary"part_
of the cohergncy matrix. In addition to the 'saving
in.computation obtained by removing fhe need to diagon-
~alize a matrix, the only sburceSiof signals which enter
the imaginary part of tﬁe coherency hatrix are signals |
- which are in quadraturé. This great1y»reduces the

possible sources of interference since most sources of
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noise on instruments will be either’ineoherent or in
phase coherent sources.

The fact that the components of the wave normalr
b.vectbr are g{venAdirecfly'by the terms-in the fﬁaginary
part of the coherency matrix may be used tb develep
‘an anaTeg technique to determine the wave normal vector;
This may be especia]Ty useful on'satelliteiexperiﬁentsei‘
Where the data transmission capabilities preclude the.
transmission'of theucomplete spectrum of'fnformation':'

~ available to the'various experiments.
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Figure 1
Functfona] block diagram of an analog circuit
~ for determining.the wave normal vector. |
FigUre 2 P
Po]afization anaiysi$ 6f a proton.whist]er detected .
bynthe 060-6 seérch coi]vmagnetomeier. The |
polarized power isvgiven fn'afbitrary unfts.' Thei'
dotted pbrtion-df the sin_ZB'curve-cofrésponds to

1eft-hand'bdlarization.-
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