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SYNTHESIS OF FEEDBACK SYSTEMS WITH LARGE PLANT IGNORANCE FOR

PRESCRIBED TIME DOMAIN TOLERANCES

ABSTRACT

There is given a minimum-phase plant transfer function,

with prescribed bounds on its parameter values. The plant

is imbedded in a two-degree-of freedom feedback system,

which is to be designed such that the system time response

to a deterministic input lies within specified boundaries.

Subject to the above, the design should be such as to min-

imize the effect of sensor noise at the input to the plant.

This report presents a design procesure for this purpose,

based on frequency response concepts. The time-domain

tolerances are translated into equivalent frequency response

tolerances. The latter lead to bounds on the loop transmis-

sion function L(jw) , in the form of continuous curves on

the Nichols chart. The properties of L(jw) which satisfy

these bounds with minimum effect of sensor noise, are de-

rived. The design procedure is very transparent, providing

the designer with the insight to make any necessary trade-

offs, at every step in the design process. The same design

philosophy may be used to attenuate the effect of distur-

bances on plants with parameter ignorance.



CHAPTER I

STATEMENT OF THE PROBLEM

1.1 Introduction

This report is devoted to the following problem. There

is a single input-output 'plant' imbedded in a linear

'two-degree-of-freedom feedback structure'. The term 'plant'

denotes the constrained part of the system, whose output is

the system output. The designation 'two-degree-of-freedom

feedback structure' indicates a system wherein the command

input, r(t) in Fig. 1.1, and the system output c(t) , may

be independently measured. In such a structure1 the system

response to command inputs, and the system sensitivity to the

plant may be, to some extent , independently controlled. The

structure shown in Fig. 1.1 is of course only one of many

possible canonic two-degree-of-freedom feedback structures.

The plant parameters are not known precisely. Only the

ranges of their values are known. For example, the plant

transfer function may be a known function of elements of the

set X ={xl, x 2 ,...xn} but these elements are known only to

lie in a given closed region in n-dimensional space. Clearly,

the 'bounded ignorance' of the plant may appear in many dif-

ferent forms. Strictly speaking, the design technique is ap-

plicable only to fixed parameter plants, but it is well-known

that for engineering purposes, it is also applicable to

'slowly-varying' plant parameters. It is much less known that

the feedback is quite effective even for rather fast-varying

plants3 . However, this is a topic requiring considerable

separate treatment, so it will be assumed in this report that

the plant is fixed but there is on the designer's part ig-

norance, in the sense previously described, of the plant

parameters.
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r( _ _o

R(s) t (n Cos)

--- N (noise)

Fig. 1.1: A canonic two-degree-of-freedom feedback structure.

(Darker portion is constrained part.)

Bounds on c(t)

Bound on 1c(t)J

t

Fig. 1.2: Example of tolerances on unit step response.
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The system sensitivity to the 'plant ignorance' is to be

characterized by the resulting ignorance in the system time

response to a specific deterministic time input. A unit step

is chosen for the latter in this report, but any other input

may be chosen for that purpose. The problem is to guarantee

that the output ignorance is contained within prescribed

bounds, for example, those shown in Fig. 1.2, for the case

r(t) = u(t) , the unit step function. It is, of course, up

to someone somewhere in the hierarchy, to provide these

bounds. This report is concerned only with the means to

satisfy such specifications. It can be shown2 that if the

plant is minimum-phase, then any such specifications, no

matter how narrow the tolerances, may be approached as closely

as desired. From this, it follows that it is easy to over-

design in minimum-phase systems. The 'price' paid in general

is in the large 'bandwidth' of the loop-transmission function,

with transfer function L(s) , which in turn opens wider the

'window' to the noise in the feedback return path, lumped as

sensor noise N in Fig. 1.1 . In the high-frequency range

where IL(jw)l < 1 , but where IP(jw) < IL(jw)l , the

noise is amplified by IL(jw)/P(jw) , which tends to be very

large over a large bandwidth, in such systems. The amplified

noise tends to saturate the output stages of G(s) or input

stages of P(s) . This Xroblem has been emphasized before 

1.2 Optimization Criteria

This report copes with the above problem by taking the

response bounds as inviolate, but attempting to satisfy them

with an L(jw) whose magnitude as a function of frequency is

decreased as fast as possible. This decreases the effect of

the sensor noise, if it is strong in the relatively higher

frequency range. Another approach would be to minimize an

index into which enter both the spread in the response and
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the effect of the noise. Statistical methods have been very

useful for such indices, for many problems in which the plant

parameters are precisely known. Attempts to do the same for

the present problem have been unsuccessful because of the

need to obtain expectations over P of expressions like

P/(l+PM) . The practice5 has been to neglect the ignorance

of P in the denominator, and replace it there by some

nominal P0 , but this is obviously a very poor approxima-

tion for plants with significant ignorance bounds. The op-

timization criterion used in this report is discussed

further in Section 3.1

1.3 Previous Work

There have been two principal approaches to the problem

considered in this report, under the constraint of linear,

fixed compensation functions G,F in Fig. 1.1 . (This

constraint eliminates the class of nonlinear feedback, or

nonlinear 'adaptive' systems.) One approach is that of the

dominant pole-zero method6 '
7
'

8 which has been reasonably well

documented. The other approach has been by the frequency-

response method, of which this report is the most recent con-

tribution. The philosophy cf the frequency-response method

is to translate the system time-domain bounds into equivalent

bounds on the magnitude (and/or phase) of system transfer

function frequency response. This first step remains to this

day nonrigorous and approximate. The second step is to

translate these frequency response bounds into equivalent

ones on the loop transmission function, L(s) = GP of Fig.

1.1 . In previous work the method used was based on the
9,10,11

equation

T(jw) 1 + L 0(jw)
T (w)= p (3X) (1.1)
To(jW) P0 (jW)

+ L 0 (jw)
P

where P0 is the nominal plant function at which the system

transfer function has its nominal value, To . When the
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plant function is P , the corresponding system function is

T . L0 is the nominal value of the LTF,pi.e., L0 = GPO

From Equation (1.1), given the range of p(jw) , it is

straightforward to find the bounds on L0 (jw) , at any w

such that the bounds on TO/T are not violated. These

bounds on L (jw) are obtained at as many discrete fre-

quencies as one may wish. The third step is to choose a

satisfactory L (jw) , such that the above bounds on L0

are satisfied. This determines G = LO/P0 , and then F

is chosen from the relation

T
o

= F L 0 /(l+L )

This design technique has remained virtually unchanged

since 1959 when it was first presented. It has three

distinct shortcomings: (1) the nonrigorous, approximate

nature of step 1, in which time-domain bounds are translated

into equivalent frequency-response bounds. (2) the need in

the second step to make at the outset a pairing of a nominal

response function with a nominal plant function. An ex-

perienced designer can usually make a reasonable good

pairing. Normally, the slowest admissible response function

corresponds approximately to the slowest, smallest magnitude

plant. However, even the very experienced designer has very

small probability of a priori choosing a pairing which

proves to be optimal. And the inexperienced designer may

initially make a very poor pairing and be forced to a

second round. This specific shortcoming disappears in the

revised method presented in this report, by eliminating en-

tirely the need for pairing. Finally, the third shortcoming

is in the lack of guide-lines for the third step, i.e.,

finding the optimum L0 (jw) which does satisfy the set of

bounds derived in step 2. This shortcoming is very signi-

ficantly reduced in the present work, in which there are

presented many of the properties of the ideal L(jw)



CHAPTER 2

DERIVATION OF BOUNDS ON L(jw)

2.1 Templates of P(jw)

It is assumed that the translation of time-domain into

frequency-domain specifications has been accomplished and

the latter are of the form shown in Fig. 2.1. For example,

at u = 5 rps, IC(j5)I is permitted to be anywhere between

-2.5 and -13.5 db ; IC(jl0)I between - 7.0 and - 27.0 db ,

etc. Since C = RT = RFL/(l+L) and there is no ignorance

of F, G ,

AZnlC(jw) [ = AZn!T(j) I = Aen l+L(jw) (2.1)

with
L = GP (see Fig. 2.2)

AZnL = AtnP . (2.2)

A specific value of frequency is chosen; say

=Wlrps . The values of P(jw,) over the range of plant

parameters are calculated and the bounds obtained. The

procedure is illustrated for the case

P(s) = s(sa) ; 1 < k < 10 ; 1 < a < 10 . (2.3)

This is done on the plane of Zn L (jw) = ZnLIj+ j Arg L,

the abscissa in degrees and the ordinate in decibels (the

Nichols chart). Thus, at w = 2 rps, P(2j) lies within

the boundaries given by ABCD in Fig. 2.3. Since

Zn L = ZnG + £nP , the pattern outlined by ABCD may be

translated (but not rotated) on the Nichols chart, the

amount of translation being given by the value of G(2j)

For example, if a trial design of L(2j) corresponds to
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the template of P(2j) being translated to the new position

A'B'C'D' in Fig. 2.3, then

IG(2j)j = IL(2j)I-IP(2j)l = (-2.0) - (-13.0) = 11.0 DB

Arg G(2j) = Arg L(2j) - Arg P(2j) = (-60° ) - (-153.4° ) = 93.4°

2.2 Bounds on L(jw) in the Nichols Chart

The templates of P(jw) are manipulated to find the

position of L(jw) which results in the specifications of

Fig. 2.1 on ZnIT(jw)I being satisfied. Taking the w = 2

template, one tries, for example, positioning it, as shown in

Fig. 2.3, at A'B'C'D' . Contours of constant ZnIL/(l+L)I

are available on the Nichols chart. Using these contours it

is seen that the maximum change in ZnIL/(l+L)I which, from

Equation 2.1, is the maximum change in ZnIT I is, in this

case, very closely (-0.49) - (-5.7)=5.2 DB, the maximum being

at the point C' , the minimum at the point A' . The speci-

fications of Fig. 2.1 tolerate a change of 6.5 DB, at w = 2

so IL(j2) is in this case more than satisfactory. One may

shift the tmplate lower on the Nichols chart, until the

bounds on AZnITI correspond to 6.5 D.B. This is achieved

when the lower left corner of the template is at A'' in Fig.

2.3 . The template corners are at A''B''C''D'' and the ex-

treme values of ln/L/(l+L)I are at C'' (-0.7 DB), A''

(-7.2 DB) . If L(2j) for condition A is chosen to be

-4.2 DB /-60° , then it is guaranteed that A9nIT(j)I < 6.5 DB,

over the entire range of plant parameter values. If

Arg. LA(2 j) = - 60° , then -4.2 DB is the smallest magnitude of

LA(2 j) which satisfies the 3.2 DB specification for AZnITI 

Any larger magnitude is satisfactory but represents, of course,

overdesign at that frequency.

The manipulation of the w = 2 template may be repeated

along a new vertical line, and a corresponding new minimum of

ILA(2j) I found. Sufficient points are obtained in this man-

mer to permit drawing a continuous curve of the bound on
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LA(2 j) , as shown in Fig. 2.3 . The entire process may be

repeated at other frequencies. Fig. 2.4 shows the outline

of the templates and the resulting bounds on LA(jw) , for

a number of frequencies. The template outlines are drawn

at any available convenient areas on the Nichols chart,

since they are, in any case, translated later. In each

case the permissible region is to the right of the curve.

It is important to note that although condition A (a=k=l)

was chosen to generate the curves, any other set of values

of a, k could have been chosen. However, once condition

A was chosen at any one value of w , this same condition

A must be used for all the contours. If the bounds on LA

are satisfied, then automatically those on all other sets

of parameter values, as encompassed by the templates, are

also satisfied. This means that AnljT(jw) will not ex-

ceed the specifications of Fig. 2.1

Since P(s) is infinite at w = 0 , the system is

Type 1, and the zero frequency specification on AQnITI

(assuming it is zero) can be satisfied with any finite

value for lim sL(s) . In practice there will be a re-

quirement oA 0 the velocity constant which will give a lower

bound on lim sL(s).
s+0O

2.3 System Response to Disturbances

The system response to command inputs r(t) (of Fig.

2.2) is not the only response function of interest. There

are, in most systems, also disturbances to be considered.

The disturbance response (for D in Fig. 2.2), is

CD(S) =1+(s) (2.4)

It is necessary, of course, to choose L(s) so that the

disturbances are properly attenuated, and the technique of
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Fig. 2.4: Boundaries of L(jw) on the Nichols Chart
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this report lends itself very readily for this purpose, as

detailed in Section 7./2 . For the present, only one aspect

of this disturbance response problem will be considered,

namely, that there will generally be a constraint on the

damping factor of the pole pair nearest the jw axis. This

damping factor can be related to the peaking in

L(j w)
1+L(j) | 

Thus, using the single complex pole pair as a model, a peak of

8 db corresponds closely to a damping factor C = 0.2 ;

2.7 db to C = 0.4 , etc. The usual constraint on the damping

factor can therefore be translated into a constraint on the

peak value of IL/(l+L) I . Suppose this happens to be 2 db,

in the present example. If so, the contours in Fig. 2.4 must

be modified, as they now permit peaking greater than 2 db

The required modifications are shown by the dashed lines. The

parts of the contours rendered invalid because of the above re-

quirement are to the left of the dashed lines. Note that a

portion of the ITI = 2 db locus is common to all the contours.

2.4 The single high-frequency boundary

At large frequencies, w > > amax = 10

P(jw) - k
(jW)2

and the template becomes a vertical line of length IAkalmax
which is 40 db. At these frequencies, from Fig. 2.1, it is

seen than AZ nTI is allowed to be more than 40 db . Hence,

the only constraint on L(jw' , for the higher frequency range,

is that IL/(l+L) I < 2 DB , due to disturbance response. This

gives the contour marked wh , in Fig. 2,4, which will be valid

for all frequencies higher than wh , with wh w 5 ama 
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A reasonable number of discrete frequencies must be worked

out in the above manner to ensure that,at the frequencies

omitted, the design will also be satisfactory. The next step

is to choose the optimum L(jw) which satisfies the above

bounds. Important properties of the optimum L(jw) are

derived in the following two chapters.



CHAPTER 3

PROPERTIES OF OPTIMUM L(jw) - NECESSARY AND SUFFICIENT

CONDITIONS FOR BOUNDARIES OF NEGATIVE SLOPE

3.1 Definition of Optimum L(jw) and its Justification

This chapter is devoted to the derivation of the optimum

L(jw) function, which is defined as follows. At very high

frequencies

L(jw) + , (3.1)
(jw)e

where e is the excess of poles over zeros of L(s) . The

optimum L(jw) is the one which satisfies the specifications,

as obtained in Chapter 2, and whose K, of Equation (3.1),

has the minimum possible value. What is the reason for this

definition of optimum? It lies in the effect of noise in

the feedback loop on design practicality.

In Fig. 3.1, 0N represents the power spectrum of

sensor and amplifier noise, referred to an indicated point

in the loop. A typical difficult adaptive problem, i.e.,

one with relatively large ignorance or narrow response bounds,

will require relatively large ILI over a large bandwidth.

The principal reason is the existence of an almost vertical

boundary line, extending over a large range, like the one

with phase of -127°, in the specific example of Fig. 2.4

This line is a boundary of permissible L(jw) over a large

frequency range. It extends vertically for approximately

40 db, because the range of K of Equation (3.1) is precisely

40 db (recall K = ka in the example of Chapter 2 with

1 < k, a < 10) . The phase lag of LA(j w) , [recall A cor-

responds to the condition a = k = 1], must not exceed 1270
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for w < w
h

z 50 rps. In Fig. 2.4, at w = 5 , ILAl can be

approximately - 11 DB . Let us assume LA(jw) has the maximum

allowable lag of 1270 for w > 5 up to w = 50 . Then the

average slope of ILAl over this decade is -(127/180)40 =

-28.2 DB per decade. Hence, at best, ILA(j50)Iz -11 -28.2

=-39.2 DB . If the bounds for the frequencies between 5 and 50

rps do not interfere, it appears feasible to have ILA(j50)I

- 40 DB . Note, however, that if the range of k happened to

be, say, 100 instead of 10, then the range of K would be

60 DB and the vertical line would extend down to approximately

-60 DB, while the boundaries at w = 5,10,30 would be basically

unchanged. In such a case, I LA! , would have to decrease at

this 'slow' rate of -28.2 DB per decade until I LA! -60 DB,

which would require 60/28.2 = 2.1 decades beyond w = 5 , i.e.,
2.1

up to w = wx = (5) 10 The phase lag of LA may be

sharply increased only after w > wx , permitting only then a

much faster reduction of ILA! . Essentially, it is a matter

of gain margin. If the range of K is 100 , a gain margin

> 40 DB is required, etc.

In Fig. 3.1, the effect of the noise at X is obtainable

from the power spectrum of XN , denoted by

XN =N L = L/P 2 (3.2)

using the relation

1/2

(XN)RMS {f XN dw} (3.3)
0

The principal factors in the noise problem can be ex-

plained with the aid of Fig. 3.2, in which a hypothetical de-

sign example is presented, ILA(j5)1 = - 11 DB and decreases

at the rate of -28.2 DB per decade up to 100 RPS at which it

is generously assumed that the slope can be instantaneously.
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changed to -100 DB per decade. IPA(jw)l is also shown, and

so is IGI = LA/PA . In the frequency range where

ILA <1 1+LA i, and ILA I < 1 for W > 40 which,

from Fig. 3.3, is the most significant range for calculating

(xN)RMs . Thus, in this important frequency range

DXN Z DNIL/P I = DN IG12 , (3.4)

Since P is beyond the designer's control, it is most im-

portant to reduce ILI as quickly as possible, as a function

of frequency. Hence, the importance of having tolerances as

large as possible for A nlTI , and for optimizing LA(j) ,

in the sense indicated. It is important to note that arith-

metic scales are used in Fig. 3.3 for finding (xN)RMs

Hence the saving of even a few db or of a part of an octave

in L(jw) has a significant effect on x N .

The definition of optimum L(jw) , [minirnuln K of Equation

3.1], is reasonable when the noise is white. But if this is

not so, for example, if there is a sharp peaking of the noise,

say at w = 10 , in the example of 2.4, then it would appear

that a more precise definition of optimum directly in terms of

ON etc. would be necessary, leading to emphasis in the 10 rps
range where ON is unusually large. Note, however, that in

any case such a redefinition would not help matters much, as

the bound on L(jlO) in Fig. 2.4 precludes drastic reduction

of IL(jl0)I . (In fact, it is not an unreasonable conjecture

that the definition of optimum L being used leads to the

minimization of ILl at every frequency, but this is only a

conjecture.) Hence, significant reduction of |L(j10)I re-

quires a significantly lower boundary on the Nichols chart of

L(jlO), which would, of course, affect the time domain response

for some combinations of plant parameter values. This is now
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a matter of compromise between the time domain specifications

and the noise response, and would have to be handled at that

level. Of course, an optimality criterion which includes

within it both these factors would therefore be superior in

this respect. But, as noted in Chapter 1, there has been no

success in applying such a criterion to this problem.

Estimate of L(jw). An excellent idea of how fast

ILA(jw)I may be decreased is obtainable from a simple physical

inspection of the LA contours of Fig. 2.4 . It is of course

desirable that LA have as large a lag angle as possible be-

cause the phase is, in a general sensel3 proportional to

dZnILI Since the boundaries tend to increase with phase lag
d& nw
(at least on the left side which is the desirable larger phase

lag side), there will be a compromise. If the slopes of the

boundaries are rather gentle, as they are for those in Fig.

2.4, then the optimum LA will probably pass through points

near the minima on the boundaries. There is also the matter

of consistency, of the slope of ILAI with the location of

the contours. For example, if LA(j2 ) is cnosen " - 6.5 DB

,'-127° and it has this lag angle over an octave or so, then

the rate of decrease of ILAI near w = 2 is approximately

(127/180)12 = 8.5 db per octave. Hence at w = 5 , which is

1.32 octaves away, ILAI ,will be approximately -6.5 - 1.32(8.5)

= -17.7 db, which is well below the boundary for w = 5 . The

optimum LA will therefore probably have less than the above

phase lag at w = 2 . It is seen that the problem is not an

easy one.

3.2 Derivation of Optimum L(jw) for negative slope boundaries-

necessary conditions

A boundary curve on the Nichols chart (for example, as in

Fig. 2.4) can be written as IFI = f(e) . It is assumed in

this chapter that dlFI/de is negative over the entire range.
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This is generally the situation at larger frequencies, but

isn't so at the lower frequencies (see Fig. 2.4) . However,

it has been noted that it is desirable to work in the larger

phase lag region in which all the contours have the negative

slope character. If the system is Type 1 or 2, then one may,

in fact, be in this negative slope region for all, or almost

all of the frequency range. This is not true for Type 0

systems where Arg L(0) = 0° , where L(jw) must originate

on the zero degreee vertical line and then, perforce, must

cross a region where the contours tend to have positive

slope. Nevertheless, we shall first assume the negative

slope condition, because it is then possible to determine

necessary and sufficient conditions for the ideal L (de-

noted as L
I
) and prove that L

I
exists and is unique.

The more general case of boundaries of general V shape, is

considered in Chapter 4.

The derivation of the optimum L(jw) for the negative

slope case, is accomplished in the following steps.

(1) Derivation of necessary conditions.

(2) Uniqueness of the function which satisfies the

necessary conditions of Step 1, on the assumption

of fixed L(0) for Type 0 system, or fixed

lim sL(s) for 'Type 1 system, etc. This is done in
s 0
Sec. 3.3

(3) Proof that the optimum, if it exists, will have its

L(0) [or lim sL(s) etc.] at its minimum per-
s+0

missible value (Sec. 3.4).

(4) Proof of existence of optimum (Sec 3.5).

Taken together, the above provide necessary and sufficient

conditions for the optimum L(jw)
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Step 1. Derivation of necessary conditions

Necessary conditions are derived by proving that any

postulated L (jw) , which does not satisfy these conditions,

can be improved by using instead

L2 (jw) = F(jw)L1 (jw)

which is "better" than L (jw) . For this purpose the three

F (FA, FB, Fc) building blocks in Fig. 3.4a, b, c are useful.

It can be assumed that the phase in Fig. 3.4a and the magni-

tude characteristics in Fig. 3.4 b,c are first chosen and then

the missing characteristic is obtained from the Bode integral

relations 14,15 The important properties of these building

blocks are indicated by the dashed vertical lines in Fig. 3.4

viz., for all w to the left of XX' in Fig. 3.4a , /'FA is

zero, while IFAIDB > 0 etc. In Fig. 3.4a, note 15 that

A = (2/i) times the shaded area of Fig. 3.4a .

Let M be the locus, on the Nichols chart, of the
x

maximum IL/(l+L) allowed due to the peaking specifications

on the disturbance response. Let V be the vertical line

tangent to MX , corresponding to the maximum phase lag al-

lowable until the required gain margin is obtained to take

care of IAKI (of Equation (3.1)). For example, V extends

from 5 to - 36 DB in Fig. 2.4. Let wh be the smallest

frequency for which V constitutes the right-hand part of the

boundary of permissible L(jwh), i.e., for all w > h the

boundaries have no portions to the right of V (wh " 50 in

Fig. 2.4). It is generally the lowest frequency for which the

permissible AM nTI exceeds the height of the P template.

This usually occurs at a frequency sufficiently large such

than the P template is almost a vertical line.
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Necessary condition 1 (for boundaries of any slope)

For all w > h ' the optimum L(jw) will have no portion

to the right of V

Proof.

Suppose an L1 (jw) is postulated which does not satisfy

Condition 1, but for some frequency range wh < w1 < w < w2 

lies to the right of V , as in Fig. 3.5 . This means that

L1 for this range has less phase lag than that allowed. Let

L = FAL1 with wA on the line XX' in Fig. 3.4a, w 2 on

the line YY' . The arrows in Fig. 3.5 indicate the effect of

FA on L_. For all w < wl , ILI > 1L1 1 at the same phase,

so that L1 certainly lies on or above the boundaries if L1

does (see Fig. 3.5, where the dots denote L1 positions and

the arrows denote the general position of L = FAL1 ) . For

W, W< <- W 2 , A i , but this is tolerable. The level J

of the building block of Fig. 3.4a need only be adjusted such

that L does not cross the vertical line V . J is finite,

even though it may be small. At high frequencies ILI < {L11

by a finite amount A = (2/E) times the shaded area of Fig.

3.4a . For all w > w2 / = ,1 , so the constraints on L

for w > w 2 are still satisfied. Note that this necessary

condition applies, whatever the slope of the boundaries, as

the proof is valid for boundaries of any slope.

Necessary condition 2 (for boundaries of any slope)

The optimum L(jw) must lie on the boundaries in the

frequency range immediately below h '

Proof

Again, let L1 not satify this condition, in that for

the range wx < h < h it lies above its boundaries (see

Fig. 3.6) . Again, let L = F AL , using building block A

of Fig. 3.4a for F A , with w on XX' , wh on YY'A x ·
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The effect of F
A

is indicated by the arrows in Fig. 3.6 .

For all W < w , L certainly lies above the boundaries, if
- x

L1 did. At high frequencies ILI < IL1 1 by the amount A

= 2/w times the shaded area of Fig. 3.4a . Only in the range

x < < h does L tend to be closer to the boundaries than

L 1 , but the latter has a 'surplus' area in precisely this

range. J may be adjusted until L lies precisely on a

boundary at one or more wx < w < W h . Again, the proof is

valid whatever the slopes of the boundaries.

Necessary condition 3. (only for boundaries of negative slope)

In the frequency range immediately above w = 0 , the op-

timum L must lie on the boundaries.

Proof.

Assume L1 does not lie on the boundaries for 0< w < < 4

(Fig. 3.7) . Let L = FBLi , FB of the kind shown in Fig. 3.4b,

with w
4

on XX' . The effect is shown by the arrows in Fig.

3.7 . For all w > w 4 the new L lies above thie boundaries,

even if L1 lay exactly on the boundaries for w > 4 4

Hence, the techniques used for conditions 1, 2 may now be used to

improve matters. Essentially, FB permits the shifting of a

"surplus" from the low frequency region, to a more convenient

high-frequency region, where the techniques of conditions 1,2 may

be used.

Necessary condition 4 (only for boundaries of negative slope)

The optimum L cannot have any range in which it lies above

the boundaries.

Proof.

It has already been shown that the optimum L must lie on

the boundaries above and immediately preceding wh , and for the

range immediately following w = 0 Consider an L1 which



26.
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lies above the boundaries for any range WA < X < B (Fig.

3.8) . Let L = FcL1 , F c of Fig. 3.4c with wA at XX'

WB at YY' . The arrows show the effect of Fc in Fig. 3.8.

For all w < wA and w >' wB the effect is to move the new L

away from the boundaries, thus creating pockets of "surplus"

which may be exploited by the techniques of Conditions 1-3

In part of the range wA < W < B ' the effect of F c is to

push L towards the boundaries but a surplus exists in this

range for this purpose.

From the above four conditions, for boundaries of nega-

tive slope, it follows that the optimum L , if it exists,

must lie at each frequency, on its boundary. The next step

is to prove that such an L , if it exists, is unique, if its

value is fixed at w = 0 .

3.3 Uniqueness of L with prescribed L(O)

Theorem.

There cannot be two or more L(jw) functions, which lie

on the boundaries for all w >0 andwhich are equal at w= 0. (Proven only

for boundaries of negative slope.)

Proof.

Suppose that it is not so and there are two of them, LA

and LB , with LA(O) = LB(O) . There are three possibilities,

as shown in Fig. 3.9 . LB1 is for the case ILBI > ILAl for

all w , in which case 6
B

< e
A

for all w . LB2 is for the

case ILBI < L
A

for all w , in which case eB > 0A for all

X . LB3 is for the last possible case when LB crosses LA

at one or more points. (Note that at w = 0 , in a type zero

system, L(O) must lie on the vertical line 0 = 0 . In a

type 1 system there is a lower bound on lim, sL(s) , and

sL(O) must lie on the vertical line 0 - 090°.) Consider
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Li LA/LBi for the three LB cases. Magnitude and phase

sketches of ILiID
B

and e
i

are shown in Fig. 3.10, for

the three.

Apply the relation
1
6 (which applies to minimum-phase

L i)

do

X4 O -n Liw = (Znlni(jIl) 2 - (Zn Li(o) )2 (35)

to each Li . Since Li(0) = 1, the righthand side of (3.5)

is positive. However, from Fig. 3.10, it is seen that when-

ever ei >- , ZnILil < 0 and vice versa. Hence the left-

hand side of Equation (3.5) must be negative. Thus the sup-

position is untenable and there can be only one such loop

transfer function. It is very important to note that this

proof depends on boundaries with negative slope as in Fig.

3.9, for only then is 8B e< A when ILBI > ILA -

The above theorem does not preclude an infinitude of

LI(jw) , providing each has a different value at zero

frequency.

3.4 Optimum L has minimum permissible value at w = 0

The next step is to prove that the best L is the one

with minimum magnitude at w = 0 (or for Type 1 systems the

one with minimum value of lim sL(s) , etc). This is done by
+0

means of the following relation, for minimum-phase F(s)

I c [Z nIF(jw) 1nlF(oo)n]dw Odw
2 = -1 (3.6)

_1- Cc -1
2 

where

F = |F - . (3.7)
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Theorem. The optimum L must have the minimum permissible

magnitude at w = 0.

Proof.

Consider Lm(s) with (1) the minimum permissible magni-

tude at w = 0 and (2) which crosses the boundaries at each

value of w . Compare it to any other L1(s) which satisfies

(2) but is larger than Lm at w = 0 . L (jw) can cross

L (jw) either an even or an odd number of times in the range

0 <_ h 'h If they do not cross at all in this range, then

the situation can be as shown in Fig. 3.11, for F A L1/Lm

Case (a) or any even number of crossings in the range w > wh

leads to

IFIl = IL1/Lm(c)l > 1 , (3.8)

so there is no advantage in L 1 over L . Case (b), ap-

plied to Equation (3.6) with wc = Wh , has zero for the

right-hand side. On the left side %nlF(co)l< 0 . Hence

the integrand is always positive. This is a contradiction

in that the left side is finite and positive, the right side

zero. Hence case (b) is impossible. We next turn to the case

of even number of crossings in the range 0 < w < wh '

Case 1 Even number of crossings in the rance 0 < w < h

In this case F(jw) - Ll(jw)/Lm(jw) will apear

qualitatively as in Fig. 3.12. Sub-case (i) or of any even

number of crossings in the range w > wh need not be con-

sidered, for then (3.8) applies. Only sub-case (ii), i.e.,

an odd number of crossings in the range w > h need be

considered. 
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Let Wh = c of Equation (3.6) and write QnIF(-o) I = -M,

M > 0 because, for subcase (ii), IF(-)I < 1 . Equation (3.6)

can be written as follows

(l-2) + (a3-) + +(c2n-l-2n) + P1 + P2 = 0

where

a2i+l = f

W2 i

An F I do
2

1

A~h

W 2 i
a2 =Ijf knFldw

- 7W

mAh

~11 = ZnlFIdw
2n /1 W

W02n 

=2 M J 

(3.9)

(3.10a)

(3.10b)

(3.11a)

(3.11lb).d = -Mwh > 0
0 71 22o

2

' 2h

h

Next, let w2n -W C
of Equation (3.6), which becomes

(a1- 2) + ( 3-B 4) + ' '+ (B2n-l- 2n) + 2 - E > 0 (3.12)
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because on the right-hand side of (3.6), 0 < 0 in the range

Wc = 2n < W<Wh ' In (3.12),

2i+1

2i+1 = nlF dw
W2i ii - w2

) 2i2

W2n

W2i

2i: If
2i-1 1 -

2n

(3.13a)

(3.13b)

The last two terms on the left-hand side of (3.12) constitute

W2n

0 -n-F() =M2n 2< MW2h (3.13c)

1-
W 2
2n

which can be written as
2h 

2 MW 2h -E = 12 -
with E > 0

Compare any pair (a2i-l-a2i+2 ) of Equation (3.9)

with (B2i+1- 2i+2) of Equation (3.12)

e2i+1 - a2i+2

2i+1
= f

W2i

2
1 -

a2i+2 2

22
2i+l 1 

2
h

0 2

1 - -T

W2n

2

h

0.5

0.5

1 Z nIF1 dw
2

- w
2n
~2n

ZnlFldw
2

1 - --
2

(3.14a)
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2 0.5

1 2

The function p(w) _ [ _2n] (3.14b)
6 2

1-
2

h

is monotonically decreasing for 0 < w < w2n Hence,

p(W2i+l) < p(w) for the open interval of integration of the2i+l1
first term on the right side of (3.14a) , while P(w2i+1) >p(W)

for the open interval of integration of the second term. But

note that if p(M) is removed from these integrals, what re-

mains are precisely the integrands of Bi+l i+2 , re-

spectively, and over the same limits of integration. Hence

a2i+l > P(W2i+l) 2i+l; 2i+2 < P(02i+)l 2i+2 (3.15)

e2i+l- a2i+2 > P(2i+1) (B2i+l-2i+2) (3.16)

Note also, because of the monotonically decreasing nature of

p(w) , that

1 > p
1

> P2 . > P 2n- (3.17)1 2 > P2n-1 > 0

Combining (3.16) and (3.17), gives

(al-a2) + (a 3-a4)+ '' (2n-_l-2n)

> p(wl) (B1- 2
) + p(w3 ) (B3 -4)+---P(W2n _1) (22n -l-2n)

> P(W2n-) [(B1-- 2) + (B3-B 4 ) +... (2n- 2n)i

> P( 2n-1)(- 2+ ) , (3.18)

from (3.12) .



But, from (3.9), the left side of (3.18), i.e.,

(al-a2) +2 '' = - (1+2) -

Hence,

-(1 + 2) > P(W2 n-1) (- 2+E)

or

- ' p (2n-1
)

> P2[1 -P(w2 n-l)] > 0 -

(3.19)

(3.20)

because 0 < P(W2n1) .

Since p1 , E , p are all positive (3.20) is impossible, so

the hypothesis is untenable.

Case 2. Odd number of crossings

In this case F(jw) A L 1 (jw)/L2 (jw) will appear quali-

tatively as in Fig. 3.13. Sub-case (i) in Fig. 3.13, or of

any even number of crossings in the range w > wh ' need not

be considered, for then (3.8) applies. Only sub-case (ii),

i.e., an odd number of crossings in the range w > wh , needs

to be shown impossible.

Let wc of Equation' (3.6) be set equal to 2n+.

Then Equation (3.6) becomes

(a -a ) + (a3-a 4) +. -+(a -2n-) + a2n+l

+ 22n+l = -
W2 n+l / - 1

2n+1

A
= -A < 0 (3.21)

37.
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where the ai are defined as before,

except for the\substitution of W2n+l

Let wc = w2n in Equation (3.6),

(1 -B2)+(B3 4-)+ ' +(2n-1 B2n)+2 w2n

in Equations (3.10a,b),

for wh '

and it becomes

Wh
= fOd = -a+S, (3.22)

2
2n -1

2

W2n

with B > 0 , since

=1 1 edw ,I

W2n+l 2 -1 W2n
W 2

2n+l

e d
2

-1

2n

because w2n+l > w2n and because 0 < 0 in the range

W2n < w < w2n+l -

As in the previous development,

(a2i+l 2i+2) (W2i+l )(2i+1- 2i+2)

with

1 - --- 0.5
2n

X() = [ ] ,
W2

1 2
W2n+l

monotonically decreasing from unity over the rance

0 < 2 < W2n ' i.e.,

(3.23a)

(3.23b)

1 > X(wl) > X(w2 ) .....> X(2n ) > 0 .
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Therefore

(al-a2) +.-.+(2n-l- a2n)> P(S2nnl) [(l-B2)+---+(82nl-- 2n) ] . (3.24)

From Equations (3.21, 3.22), this means

irMw irMw
2 n+l > 2 a2n+l P(

2
n 1) [- a+ 2 (3.25)

which can be manipulated into

(a+ 2 )[1-P( 2n 2 n
+

2 n ) 2 n +) P (3.26)2 2n-L 2 2 n+l-w2 n)<cL2 n+l 2 n-1

Each factor of each term on the left is positive, while each

term on the right is negative. Therefore the assumption

(ii) of Fig. (3.12) is impossible.

So far, it has been found that the optimum L , if it

exists, must lie at each frequency on a boundary curve and

have the minimum permissible value at w = 0 . It has also

been proven that such an L , if it exists, is also unique.

There therefore only remains to prove that such an L(s)

does indeed exist.

Existence Theorem

There exists an optimum L function in the sense

previously described.

Proof

We use the analogue of the Weierstrass Theorem which

states1 8 that if J(f) is a continuous functional defined

on the normal and compact family {f(z)} , then IJ(f)I = MIN
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has a solution within this family. In this problem

j(f) = J[L (jw)] = liml (jw)XL (jw) , where x is chosen so

that J is nonzero and finite; for example, if the vertical

boundary for X > h is at - 8, then x = 8/f . Such a

functional is clearly continuous for a large variety of
19

norms. There is a theorem which states that a class of

analytic functions regular and uniformly boundea in a domain

D is a normal family which is also compact. Uniformly

bounded functions f(s) in D are those for which there

exists a positive constant M , such that IL(s) I < M,

for s in D . In this case D is the right half-plane

and L(s) is regular in D . For any given problem it is

always possible to select an M such that the family of

candidate L functions is restricted to IL(iw) < M for

all w . [For a Type 1 system, one would deal with sL(s),

etc.] By the principle of the maximum modulus, IL(s) I < M

in D . Hence, all the conditions of the theorem are satis-

fied and our functional must have a minimum.



CHAPTER IV

PROPERTIES OF OPTIMUM L(jw) - NECESSARY CONDITIONS FOR BOUNDARIES

OF BOTH POSITIVE AND NEGATIVE SLOPE

4.1 Introduction

This chapter is devoted to the derivation of some

properties of the optimum L(jw) function, for the case when

the boundary curves can have portions with positive slope, as

for example in Fig. 4.1. In contrast with Chapter 3, a

complete theory has not been developed. An important necessary

condition has been found, and exactly the same existence theorem

as in Chapter 3 applies to this case. However, sufficiency,

proven implicitly in Chapter 3 by proving uniqueness, has not

been proven here for the function which satisfies the necessary

condition.

4.2 Some necessary conditions for the optimum L(s)

The first two conditions were proven in Chapter 3, as

necessary conditions 1,2

(1) For all w > wh , the optimum L(jw) must lie on the ver-

tical line V (Fig. 4.1).

(2) The optimum L must lie on the boundaries in the fre-

quency range immediately below wh

(3) The optimum L must be on the boundaries in the region

where the boundaries have negative slope.

The third necessary condition is restricted to the case where

L(jw) passes initially through a region of positive slope

boundaries, followed by a region of negative slope boundaries.

Proof

The building block F1 of Fig. 4.2 is used in the proof.

Suppose the postulated L lies above some positive slope

boundaries, as shown in Fig. 4.1 . Then L2 = F 1L will have

the values in the direction of the arrows, and will have a
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finite'surplus' for all w > X . The technique of

necessary conditions 1,2 can be used to exploit this surplus.

Note that for the proof to be valid it is necessary that

= xw , and that the range (w ,w') of the building block

of Fig. 4.2 be chosen so that it lies inside the range

(w 3,W 5 ) of Fig. 4.1 . This is evidently always possible to

do with the many parameters available, i.e., the various

levels and slopes of F1 .

Generalization. More complex building blocks are required,

in order to generalize this result to the case when L(jw)

passes through several alternating regions of positive and

negative slopes. For example, that in Fig. 4.3 may be used

for the following order of slopes (starting from w = 0):

positive, negative, positive, negative, and with a surplus

pocket in the last negative region, as shown in Fig. 4.4

Obvious extensions of Fig. 4.3 would apply for larger num-

ber of pairs of alternating slopes with the last being nega-

tive, and wherein a surplus pocket exists in the last

region.

4.3 Necessary condition 4

This condition applies to the case where L(jw) passes

initially through a region of positive slope, followed by a

region of negative slope boundaries.

(4) The optimum L must lie on the boundaries in the region

of positive slope.

Building Block

A somewhat more elaborate building block is needed for

the proof of (4) . It is constructed from Fig. 4.5, where

I,j is specified to be zero db from w = 0 to w = A '

while 0 = L is specified with the indicated properties for
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WA < w ; i.e., 0 < 0 for WA < W < x , > 0 for

W < W < WB e = 0 for w > wB . Also 0 is continuous

so 0 = 0 at w = wA , xx , WB . The missing portions

(IL I for w > WA , and e for w\ < w ) , may be obtained

from the appropriate Bode integrals20' 1, which here simplify

into

A WB

(A ( )- i (5_) i - A)

-'rr0 (W)
- w2 ) 0 for W < WA

2w(W2 2o AA

I M (w) 5 for w > wA
2(W2_W2) o. $ 

A

M(w) = ZnIL(jw) I
where

(4.lb)

(4.2)

It will be shown that it is possible to choose 8 of the

form indicated in Fig. 4.5, in the range WA < W < WB , such

that the complete L is as shown in Fig. 4.6 The important

features are: the range of positive M for W > y > x the

ability for log IFI to be zero at infinity, or alternatively

to cross at W > WB from positive to negative values; and to

remain negative from wz to infinity.

The proof of the above assertions will be given by

selecting a specific form for 8O() , with sufficient parameters

to obtain these properties at prespecified frequencies.

Selection of O(M) in range WA < < < W

Let 8(i) = V/-~W2 (A + BE + CE2 ), for WA '< W <- B'

with (WA) = 8 (W) = 8 (Wb) = 0 

(4.3)

(4.4)

(4.la)
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Hence

0 = A + Bw + Cw ; 0 = A + Bw
B

+ Cw 2 (4.5a,b)

Solution of (4.5a,b) gives

(Wx+WB) A
B = - A ; C = 

x B WxWB
(4.6a,b)

so that only A and wx remain to be chosen. Consider the

sign of M(X) which we would like to be negative or zero.

From (4.lb, 4.3, 4.6a,b), this requirement is

WB
A f

HA1

(Wx+WB)c - 2
[1 - (XB + - ]d < 0 .

xOB x B
(4.7)

It is easy to see that A < 0 in order that

O(wB.) > 0 , because

0(w B) =
A[W xB - (Wx+WB) B- B) 2 ]

WxWB

A (w x-B-) (WB-WB-)

WxWB

With A < 0 , (4.7) gives

W (3w' -W) - (wA+3w') + 2 > OB x 

where the primes indicate normalization with respect to wA '

i.e., WA = wB/WA etc.

If 3w' = w' , then (4.8) requires 2 > w' + 3w' , which
x B B x

is impossible. A necessary condition for (4.8) is therefore

3w'
x

WB
1 (4.9a)

and condition (4.8) can be written as

(4.8)



W W' w'+2
x = x B

P = r >
WB WB - B

For example, if WI = 2, then p = 2/3 gives M(o) = 0,

while p > 2/3 gives M(-) < O . Also obviously, p can

be chosen to precisely position wz (of Fig. 4.6)

For our purposes it is important that M(B ) > 0

Evaluating (4.lb) with 8(E) of Equation (4.3), gives

2

WAM = J,, 1
~2

for U > A ~ A'

(4.9b)

(4.10a)

2
WA0= p 2 -1 for W<WA

W
(4.10b)

2 WW2~~ WB- WJ = A WIB n B71 1 W-W
A

B+W

A

WB-WA

x B

WxW
W W BB = W +W - (W + )x B 1 x +B W

W W
W W B = W +W + (W + )

xB132 x B W

(4.10c)

(4.10d)

(4.10e)

From the above it is found that M( B-) > 0 requires

1 - 1W W
P = X <W 2W

B 9
R +B
nl+w~i

1 . (4.11)

Combining (4.9b), (4.11) gives

W 2 +W- 2

3 wB (W B-1)

1- 1
W B
B

l+w

1 (4.12a)

49.
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which reduces to

Zn +< .5(la) (4.12b)
a+l (2+e)

where
w

1 Aa = Ar (4.12c)
B B

It is easily found that (4.12b) applies for 0 < a < 1

If Equations (4.10) are expanded at w = wA + 6, the

result is M + KA V/ in 6 , with K > 0 . Since A < 0 ,

M > 0 at w = A + 6. Similarly, it is found that 0 < 0

at X = A 6. At w = 6 , 0 is negative, if

(1+ 1) > p-l (4.13)

w w
where p = < 1 , = , which is always satisfied, as

WB
> 1 . It is known that both M and 0 of Fig. 4.6 are

continuous and the shape of the characteristics for frequencies

in between the above calculated points, as shown in Fig. 4.6,

has been checked by numerous computer runs.

Application of Building Block to prove Necessary Condition 4

In Fig. 4.7 there is sketched a set of boundaries and an

L function with the properties under consideration. Let

L2 = FL with F like that in Fig. 4.6. Choose wA > WjF

B < ' , and Wh < W . The values of L 2 are in the direc-

tion of the arrows in Fig. 4.7 (for the case these relations

are satisfied with the equality sign). Hence, clearly L2

is better than L
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Generalization

Consider the sequence of frequency ranges with a trial

L crossing in order, boundaries of positive, negative,

positive, negative slopes, with a surplus in the last posi-

tive range. Part of the building block of Fig. 4.2, pro-

perly combined with that of Fig. 4.6, could presumably be

used for a building block. But this has not been explored.

Summary

It has been shown that a necessary condition for an

optimum L which passes through a range of positive bound-

ary slopes, followed by one of negative slopes, is that L

must lie on the boundaries at every frequency. The exist-

ence theorem of Chapter 3 is also valid and indicates that

an optimum L does exist, but, of course, it need not

cross the boundaries in the above manner. It may be such

as to cross only negative slope boundaries or to cross

alternately more than two different sign slopes. Intuition

and experience suggest that for all cases the optimum must

lie on the boundaries.



CHAPTER 5

SHAPING OF THE LOOP TRANSMISSION FUNCTION

5.1 Introduction

It is assumed that the boundaries of L for a suitable

number of discrete frequencies have been obtained, as in

Chapter 2. From the work in Chapter 3, 4 it is concluded that

the optimum L is one which lies on the respective boundaries

at each frequency. The objective is to achieve such an L(s)

function. Some guide lines are presented here for this pur-

pose.

5.2 Detailed Shaping of L(jw)

The boundaries shown in Fig. 5.1 are used to illustrate

the procedure with wh = 8 rps, i.e., for all w > 8, L must

lie to the right of the boundary marked V in Fig. 5.1 . It

should be recognized that the phase at zero frequency is fixed

at 00 , or -90° , etc., according as to whether the system is

Type Zero, or One, etc. This may not correspond to the op-

timum L(jw) , if there was no such constraint. However, the

'loss' due to this constraint can be made very small, because

it is possible, at as low a frequency as desired, to have

L(jw) at the more favorable point, wherever it may happen to

be. The practical limitation is the inconvenience of having

poles and zeros very close to the origin. In Fig. 5.1, what-

ever may be the value of L at zero rps, it is easy to ar-

range that L(j 0.5) have any desired value.

Consider the boundaries of Fig. 5.1 . Arbitrarily, let

us try to achieve, say, -26 db at w = 8 . Why is this im-

practical? Note that at w = 4 , approximately -- 10 db is

needed for ILI . In order that ILI decrease to - 26 db

at w = 8 , L must have an average slope of - 26 + 10

= - 16 db per octave over this range of frequencies
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(between w = 4 and w = 8) . But the average phase of L

over this range is at best approximately (-180 - 130)/£= -155°

With such a phase there is associated an average slope of

- 155/180 x 12 : - 10 db per octave, which is significantly

less than the assumed - 16 db per octave. A value of -18 db

for ILI at w = 8 seems more reasonable. Let us check this

value in the same manner. The average phase is, at best, now

-130° (see Fig. 4.1), so the average slope of ILl is

-130/180 x 12 = -8 db/octave. If IL(j4)I = -10 db, then

using the above slope, IL(j8)1 = 10 -8. = -18. , which is

reasonably compatible with the assumption of -18 db at w = 8.

It is seen that the value of -10 db at w = 4 is a good

starting point. It would be possible to use IL(j4)i = --11 db ,

providing /L(j4) = -110° . But then the average phase from
......t. -110-130w = 4 to w = 8 would only be 120° , with an as-

-120
sociated average slope of 180 x 12 = -8db/octave, so that

IL(j8) I -11 -8 = -19 , which is so close to -182 , as to make

little difference. What of the other boundaries? What points

on w = 2 , 1 etc. should we aim for? On the w = 2 boundary,

the -130° line is clearly the best, because the boundary is

almost flat there. In any case, the average slope for ILI

near w = 2 is certainly such that if IL(j4)I = -10 db , then

IL(j2)1 will be greater than -8 db, i.e., L(j2) might as well

be on V . Similarly, for L(j) . As for L(j 0.5) , we need

only make certain that 'L(j 0.5) is close to -110° or so.

Working backwards from IL(j4)1 = - 10 db, this means that

IL(j2) will be approximately -1 db , IL(jl)j approximately

7 db , and IL(j 0.5)I approximately 15 db , providing we ar-

range to have approximately -130° phase for L from w = 8 to

w= 1 , and about -110° phase at w = 0.5

How can the above phase values be simply obtained? An

average phase of -130° may be obtained by alternating a lag

corner frequency (lacf) with a lead corner frequency (lecf).

Let l+a be the number of octaves under consideration, with a

slope of -6 db/octave over one octave and a slope of
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-12 db/octave over a octaves. Then the average phase lag is

av ) 180 , (5.1)
/L av. l+'

which is to be -130° in the above example. Solving (5.1)

for a gives a' = 0.8. Thus, if we allow a slope of

-12 db/octave for one octave duration, we should allow a

slope of -6 db/octave for 1/0.8 = 1.25 octaves.

The above results are applied to the example of Fig. 5.1,

as follows. About -110° is desired at w = 0.5 . This is a

Type 1 system, so assign a lacf at w1 , a lecf at 2w ,

so that the asymptotic slope of -12 db/octave is over one

octave, a lacf at 2 (2w,) , so that the asymptotic slope of

- 6 db/octabe is over 1.25 octaves, etc. Try various values of

W
1

, until w1 is found such that the net result of an in-

finite series of the above leads to -110° phase at w = 0.5

To simplify the numbers, we used 2.5 instead of 21 25 = 2.37

and set w1 = 1 , which is a conservative choice. In ac-

cordance with the above procedure, the lacf at w = 1 is fol-

lowed by a lecf at w = 2 , a lacf at w = (2.5)2 = 5 , and a

lecf at (2)(5) = 10 rps. This procedure is halted at 10 rps,

because near w = 10 we are permitted (see Fig. 5.1) a gradual

decrease in phase. The level of ILI is moved vertically un-

til IL(j4)1 = -10 db. The phase lag of the design,so far, is

Curve A in Fig. 5.2

The next lacf will be set at a somewhat higher frequency

than would result from the above formula, because we wish to

follow it with another two lacfs, in order to have a final

asymptote of -24 db/octaves, corresponding to an excess of 4

poles over zeros for L(s) . The situation at w = 10 is

examined. At present /'L(jl0) = -114° , and from Fig. 5.1, it

can be = - 140°, if IL(jlO) I; - 26 db. Hence 260 more lag
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is tolerable at W = 10 . A lacf at w = 30 contributes

- 18.50 at X = 10 , leaving 7.50 . The latter permits a

complex pole pair at 4 rps, if its damping factor is 0.2

The phase lag due to all poles and zeros, excepting the last

complex pole pair, is Igiven by curve B in Fig. 5.2, while

the total phase lag is given by curve C . The resulting L

is also sketched in Fig. 5.1 . The boundaries are slightly

violated for 6 < w < !10 . More significantly, for w > 12

L could have more phase lag , which would permit its faster

reduction.

22
The following relation gives one an idea of the magni-

tude reduction available by increasing the phase lag:

2 / ed in w i= - [nlL(0) I - ZnIL(-) ] . (5.2)
7T

0

Compare two designs, in which IL(0) is the same in both,

but in one region 2< 80 by, say, an average of 200 over one

octave. The difference between the two, for thie left side of
2 20

(5.2) is (5723) Z n 2 = .154 nepers = 1.34 db . Equation (5.2)

is useful for estimating whether, in any particular problem,

it is justifiable to seek to improve a tentative design. Thus,

in Fig. 5.1, at w = 0.5, 1, 2 the phase lag could be in-

creased by 60, 130, 6°, respectively, so that the left side of

(5.2) is increased in magnitude by about 1.7 db . However,

most of the resulting increase in the difference between

ZnIL(0)I and 9nIL(o)I- would be due to an increase in IL(0) .

rather than a decrease in IL(-)I . The reason is that IL(j4)I

cannot be decreased, and since the increase in phase lag is

in the frequency range less than 4 rps, the decrease in slope

of ZnIL(jw) will occur primarily there. For this same

reason, the increase in phase lag possible in the range

w > 12 approximately, is more appealing, for it occurs in the
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region w > 4 , so most of the effect will be in the higher

frequency range.

5.3 Loop Shaping by Working Backwards from L(j1 h )

A great deal of additional insight into the loop-shaping

problem may be obtained by considering the following example

in detail. Fig. 5.3 presents the contours and for the present

purpose it doesn't matter how they were obtained. The boundary

is a vertical line for all w > 100 rps . We are interested

that Y('jLh)-I be as small as possible. Let us try, at random,

IL(jlO)) = -32 db . Consider the w = 10 boundary, and try

L(jlQ) = -10 db L110° (point Q in Fig. 5.3). Then, from 10

to 100 rps, the average slope of LI (110+140) 40'I~~~ I-~ ~ ~2 (180)
db/decade, which is more than the -32+10 = 22 db needed. Hence,

considering for the momeny only the w = 10 boundary, -32 db for

IL(j100) is achievable. In fact, IL(j100)I = -36.7 db is

achievable on this basis; perhaps an even smaller value by ter-

minating on a lower portion of the w = 10 boundary. However,

let us be content with the point Q1 on the w = 10 boundary

(because, in any case, as will soon be seen, other boundaries

will not permit even this value to be attainable).

Consider the w = 7 boundary in Fig. 5.3 and see whether

it is possible to reach this boundary from the desirable point

Q1 , (Q being assumed the best from the viewpoint of attaining

IL(j100)I min.) . The range from w = 7 to w = 10 covers

0.52 octaves. Try point R1 (0/-110° ) on the w = 7 boundary.

It is impossible to achieve this, because the average slope

magnitude is only l-- x 12 = 7 db per octave, operating over

0.52 octaves, which gives much less than the required 10 db

from Q to R1 . In this way, one finds it necessary to move

down to point R
2

(-6.6 db /-85) , for then the average slope
110+85 12

of -[ 2 (12-)]z- 6.5 db/octave, over 0.52 octaves, gives

the magnitude change of 3.4 db required between Q1 and R2
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Next, consider the 4 rps boundary, and the transition

from 4 to 7 rps, a range of 0.81 octaves. It is impossible

to reach point R2 from any point on the 4 rps boundary, as

the smallest magnitude difference is more than 8 db, and the

maximum average slope is less than 8 db/octave. It is there-

fore necessary to move up higher on the 7 rps boundary, which

must therefore make it impossible to operate at Q1 , at

10 rps. The best one can do is to find the point closest to

R
2

which permits transition to the 4 rps boundary, because

this will then give the point closest to the unattainable

Q1 It is found that one must go all the way up to R

(= - 2.3 /-102°) , with the corresponding point at S on the

4 rps boundary, and the point, Q on the 10 rps boundary,

- 35.5 (point W) on the -140° line, which is the 100 rps

boundary.

Next, consider the transition from the 2 rps boundary

to point S . The point U (12 /-110° ) is suitable, as the

average slope of _( 210+130 180 - 8 db per octave, over one

octave gives precisely the 8 db difference between U and S

In this manner a compatible gain-phase trajectory for

L(jw) has been obtained, and which is a good approximation

to the optimum. It is easier now to work by hand calculation,

as it is known what to aim at. Also, it provic'es a good ini-

tial input trajectory for a computer program for computing L

and finding its pole-zero pattern.

5.4 Design of Compensation in the Loop

It is hardly necessary to point out that the loop trans-

mission, L , can always be written in the form L = MP , with

M the compensation which must be inserted by the designer

(in Fig. 1.1, M = G). Some set of plant parameters was chosen

to obtain the boundaries of L . This resulting plant trans-

fer function, at that set of plant parameters, could be denoted
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by Pn * If so, the resulting L(s) should be denoted by Ln

with M(s) = L (s)/Pn(s) . M(s) will be independent of the

particular choice of nominal plant parameters, i.e., of Pn

Since both Ln(s) and Pn(s) represent physically realizable

transfer functions, so does M(s)



CHAPTER 6

COMPLETION OF THE DESIGN

6.1 Design of Prefilter F

The work in the previous chapters, concentrating on the

design of L(s) , guarantees that despite the specified

bounds of plant ignorance, the change in T(jw) remains with-

in the allowable range. Thus, if T(jw
l
) is allowed to

change from -3 db + 2 db , i.e., by a total of 5 db , then

we can be certain only that the change in IT(jw
l
) l is by

5 db . However, the range of

L(jwl)|

l+L(jw)

may be from + 2 to + 7 db , or from any value K to (K + 5)db.

It is therefore necessary to make use of the prefilter F of

Fig. 1.1 . Specifically, IF(jw1 ) I must be set at - 5 db, such

that IFL/(l+L) WI ranges from - 3 to + 2 db
1

The above, and the problems which may arise, are illus-

trated by the following numerical example.

6.2 Design Example

The plant transfer function is given by

k
P(s) = (6.1)

s(s2+S s + P )
p p

with 1 < k < 1000 , and the complex pole pair of P ranging

anywhere in the rectangle M, N, Q, U of Fig. 6.la . The

performance specifications require that the step response,

characterizable by a dominant complex pole pair, be such that
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this complex pole pair lies within the region ABDEFG in the

complex plane of Fig. 6.lb . This problem has been treated

in the literature by the Dominant Poles Method.

The first step was to translate the dominant-poles spe-

cifications df Fig. 6.1 into equivalent ones on IT(jw)l ,

the magnitude of the system transfer function frequency re-

sponse. This step is at present handled, in general, as

follows. Any simple model, such as a second-order one is

used, and the range of model parameters found which satisfies

the domain specifications. In this example this is already

available, in Fig. 6.lb . The next step is to find the re-

sulting range of variation of IT(jw) . These are shown in

Fig. 6.2a with the labels corresponding to those in Fig.

6.lb . [The reasoning is that magnitude control implicitly

includes phase control; at least, it is worth trying. If

not, then phase specifications can also be included and the

design technique remains basically the same -- only the

boundaries of permissible L will be affected.] Returning

to Fig. 6.2a, it is important to broaden the permissible

range of IT(jw)I as much as possible, for clearly, this

permits design by an L(jw) of smaller bandwidth. To

broaden the permissible range of IT(jw)j , one may proceed

by trial and error, trying IT(jw)I functions which pro-

gressively decrease faster as functions of frequency, until

the time response specifications are intolerably violated.

Similarly, one tries IT(jw)I functions which progressively

decrease more slowly versus w , until again the time-domain

specifications are intolerably violated. In thLis way, the

significantly larger bounds shown in Fig. 6.2b were obtained.

The procedure of the previous chapters was then fol-

lowed. Some of the plant templates are shown in Fig. 6.3

Note that for 2 < w < 10 , they extend to infinity, because



I 10

Fig. 6.2a: Frequency responses of

Fig. 6.lb
IT (jw) I corresponding to

66.

-4

-8

-12

-16

-20

-24

-28

-32
100



67.

I I I- I I I I I I 1111 I I I I I II

- - - - - - -

N

N

N"
"N

IS

'\ permitted bounds
\ /

I I I I I I I I I I I I I I I I I I I I
· , . · it . . I ~ I I I I I I I I · I I I I I [ [

10 100
(A

Fig. 6.2b: Larger IT(jw) bounds obtained by cut and try

I0

0

-10

-20

3

-03

30H-

-40 _

-50[_

-6C \, I-11
I I



-320 -280 -240 -200 -160 .. -120

DEGREES

Plant templates at various frequencies

68.

-360 -80 -40 0

Fig. 6.3:



69.

this range is included in the plant pole range variation

(see Fig. 6.1a). The resulting boundaries on L and

several alternative designs of L are shown in Fig. 6.4

These were all done by hand calculation. (Note the simi-

larity with Fig. 5.3 . However, the boundaries at

w = 20, 40, 60 were omitted in Fig. 5.3 , so the calcu-

lations there do not apply to Fig. 6.4 .) It is in-

teresting to compare the four L n 's of Fig. 6.4 . The

larger phase lag of Lnl results in a larger value of

[ZnLnn(0) - nlnLn() I] , (recall Equation 5.2 and the

discussion there). However, since this extra phase lag

is in the low-frequency range, and the value at w = 10

is even higher than the rest, this difference means only

a much larger jLnl(0) than the rest. One should not

make much of the small differences at w = 100 rps, be-

cause the design was performed by hand calculations,

which do not permit very precise optimum design.

In any case, the resulting design leads to the

changes in

L(jw) AIT'(jw)
1+L(jw) = IT' () I

shown in Fig. 6.5a . Most of the responses lie outside

the permitted boundaries. A prefilter F must be added

and the requirements on IFI are found, as explained in

Sec. 6.1 . The results are shown in Fig. 6.5b . One may

note that over some frequency range (up to about 3.3 rps)

the boundaries are completely filled, but not for w > 3.3.

This may seem surprising, because if L(jw) lies pre-

cisely on its boundary at each frequency, then AlnjT(jw)

should cover precisely its entire permissible range. The

reason for this discrepancy is that the boundaries have

been restricted to some extent, due to the constraint on

the disturbance response damping factor, as explained in

Sec. 2.3 .
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The step responses resulting from Fig. 6.5(b) are shown

in Fig. 6.6 . These responses fall within the time response

bounds corresponding to the complex pole range of Fig. 6.lb.

However, there are some time responses whose behavior, as a

function of time, may not be acceptable. The reference is to

Curve 8, in which the first overshoot is below the final

value. The corresponding frequency response marked '8' in

Fig. 6.5(b) has a minimum followed by a peak which does not

reach the IT(O) I reference. We shall refer to this as the

"wobbling problem". (It is interesting to note that reflec-

tion of the IT(jw)f frequency response about the y axis at

w = 0 , gives a roughly qualitative picture of the system

step response. This is especially true of the 'wobbling'

phenomenon.) The wobbling problem will be next considered.

6.3 The Wobbling Problem

Case 8 in Fig. 6.5b is a good example of a 'wobble' in

IT(jw) . Evidently, at a low frequency, (2 rps), case 8

must be at the low end of the template of P(j2) , see Fig.

6.3, template marked w = 2 . When this template is posi-

tioned to find the boundary of acceptable L(j2), Case 8

lies near the low extreme of IT(j2)1 . On the other hand,

at w = 3 , if the template of P(j3) is calculated, it is

found that Case 8 lies near the top of the template, towards

the left side, which means that it will be near the high ex-

treme of IT(j3) . The occurrence of a wobble of this type

may therefore be predicted when there are some plant condi-

tions which exhibit this kind of behavior.

How can the 'wobble' in the frequencu response be eli-

minated? The simplest but least economical way is to in-

crease the level of ILI for all w . The corrective



0 1.0 2.0
t , sec

Fig. 6.6: Step responses for T(jw) of Fig. 6.5b

74.

I.1

1.0

0.9

0.5

0.25



75.

effect is as follows -- see Fig. 6.7 . At w = 2 , the

position of L 8 (j2) is, say, in the neighborhood of Q ,

i.e., in the low end, while at w = 3 , L8 (j3) is say,

at U , in the high end. Increase of ILI at the same

phase improves matters at both frequencies. It decreases

ITI at w = 3 , and increases it at w = 2 , both ef-

fects helping to straighten out the wobble. This method

was used in the above design example, increasing ILI by

2 db . The new IFL/(l+L)I values are shown in Fig. 6.8a,

and their step responses are sketched in Fig. 6.8b

It is certainly possible to eliminate the wobble in a

more economical manner, i.e., with a smaller increase of

ILI at high frequencies. The two principal frequencies of

the wobble, i.e., the minimum and maximum points, which

were at w = 2,3 for Case 8 in Fig. 6.5b, are considered.

Fig. 6.9a is used to present the argument, with extreme

wobbling for Condition 1, between w, and w
2

. Suppose

L is changed at wl such that IT1 1 is increased and

IT2 1 is lowered, from points A1 , A2 to points B 1 , B2

respectively. This by itself alleviates the wobbling prob-

lem in two ways. First, the difference in level between

Tl(w
l
) and T1 (X 2 ) is reduced by log B1 - log A 1 - 61 .

Second, it is possible to improve matters by modifying the

prefilter (F) value at Uw . Let the new IF(jwl)| be

larger than the old, by the amount log A2 - log B2 A 62

The result is to restore IT
2
(jWl)1 back to the position

A 2 , and to increase {T1(jwl)l precisely by the amount

62 . Thus, the total improvement is 61 + 62 . The same

two effects occur at w2 if a change of L at w2 causes

a decrease in IT1 (ji 2 ) and an increase in IT3 (jW 2 ) .

There remain the following questions to be answered.

How much of the improvement should be assigned to w1 ,
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and how much to w2 ? Whatever the amount assigned to

either, how is it to be attained, i.e., how should L be

changed at that frequency? At any frequency one can find

the net gradient of ITI , as follows. Consider Fig. 6.9b,

whose points A1 ,A2 correspond to the equivalent points

in Fig. 6.9a . The gradient of ITI is, of course, normal

to the contours of constant ITI . The solid arrows are

drawn in the desired direction in each case, i.e., at A2

it is desirable to decrease IT21 , while at A1 , it is

desirable to increase IT1 . Let the length of the arrows

be assumed proportional to the gradient magnitudes. Then

the net gradient is the vector sum of the two arrows and

gives the optimum direction for decreasing ITI with

least change in ILI , at that specific frequency. Super-

ficially, it would seem that one could thus find the net

gradients at each of w1 , W2 and assign the burden of

correction to each, in proportion to their net magnitudes.

But the matter is not that simple, because a change in

ILI is associated to some extent with a change in L

and the change cannot be local only. For example, suppose

AL = 2 db 30 is desired at w < w2 . This can be
23

achieved by means of a suitable 'finite line segment'

properly placed (Fig. 6.9c). The phase lead exists for

only a part of the frequency range, while the magnitude

change persists for all w > wx and its benefits are

therefore available for all w > wx . Hence, if the w2

of Fig. 6.9a is not much larger than w1 it is cer-

tainly worthwhile maintaining the level of the correction

(denoted by G) to w2 . Also, it is clearly better to

use Fig. 6.9c , rather than increase the level of ILI by

the same amount for all w , because Fig. 6.9c permits

the desired phase lead to be simultaneously obtained, and

so obtain a correction lined up with the net gradient
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calculated for the point w1 . It is possible to make addi-

tional adjustments at W 2 , to try thereby to achieve a

correction there, also lined up with the gradient.

The net 'loss' to the system, in the form of larger

ILI at high frequencies, is available from Equation (5.2)

when IL(O)I is maintained at its former vai'e. It is,

therefore, desirable at higher frequencies where correction

is not necessary, to reduce IGI back to zero db . If that

is possible, them there will be an associated phase lag

which will cancel the phase lead in Fig. 6.9c, and by

Equation (5.2), there will then be no net loss. This is

impossible to do completely, if our original design for L

was indeed an optimum design. But it is at least possible

to partially do so (see Fig. 6.9d). Let L1 be the

original optimum loop transmission which resulted in the

wobbling problem. Let the circles represent the result of

the correction which eliminated the wobbling. For simpli-

city, it is assumed w5 is sufficiently large so that the

phase of the correction G is back to zero at w5 , so

the circles are vertically above the former points on L 

A negative 'finite line-segment' if introduced here,

would have the effect indicated by the arrows. It could,

at least theoretically, be shaped optimally to reduce the

'loss' as much as possible. It is certainly better to do

this than to allow the correction, i.e., this higher level

of ILl, to stand as is over this higher frequency range

where it is not needed.



CHAPTER 7

CONCLUSIONS

7.1 Unfinished Work

This report has presented a procedure for design of

two-degree-of-freedom feedback systems with parameter ig-

norance and specified acceptable time-domain performance

bounds. One of the attractive features of the technique

is its transparency. At every point the designer under-

stands the basic conflicts between the desiderata, espe-

cially the relation between the loop bandwidth and its

effect on the system response variations. Another advan-

tage is in the speed of the design. Once the designer

understands the method, he can design a problem such as

the one described in Chapter 6 in about ten working hours,

if he has computer programs for evaluating time from fre-

quency response and vice versa.

There are several important uncompleted parts. One

is the study of the optimum L(jw) for the general case.

A second is the wobbling problem. A third is the transla-

tion of time response boundsto frequency response bounds.

In addition, it would be very desirable to automate the

design steps as much as possible. The automation of the

calculation of the templates of P(jw) is easy and has

been done. The determination of the boundaries of L(jw)

on the Nichols chart is relatively easy to do by hand and

is probably best left that way. But it would certainly

be desirable to have a computer program for finding L(jw),

or at least to polish it up after the initial approxima-

tion by the methods of Chapter 5.

7.2 Application to Disturbance Attenuation

The same technique may be applied to the problem of

disturbance attenuation accompanied by plant parameter ig-

norance. Consider. the three disturbances of Fig. 7.1, one
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by one.

(7.1)
D 3 D 3 l+L

with

L = GPP2 . (7.2)

1
Let Z = L and then

T (7.3a)
D3 D3 1+l9

3

The rotation of the Nichols chart by 180 ° is equivalent

to the transformation L = 1/ . Hence, the Nichols chart

may be so used for TD . Templates of P = P 1 P 2 are found

in the same manner as before and so are boundaries of Z (jw)

to satisfy given frequency response specifications on

T etc.
D3

Consider

~C P P0 P0
T C P (7.3)TD D 1+PG P0 POD1 +P

+ PO G p + Lo

where P0 is any nominal plant transfer function. It may be

more convenient to work in the complex plane, rather than in

the Nichols chart. At any given frequency, the range of.

P0 /P may be found. Suppose it is as shown in Fig. 7.2 at

w= W. .? Suppose also that - L0 (jwl) at point Al is

under consideration. Then

P 0 (jw1 )
T AB (7.4)D AB

where B may range anywhere inside or on -p (jw) . One may

then find the boundary of the - L0 (jwl) which satisfies the
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frequency response specifications on T . The balance of

the design is straightforward.

Finally, consider
10

p P 20 p
T C 2 1

D2 D 2 1 + P 1P2G P 1 0P 2 0

PP2+ Lo
P1P2

P P P
A 10 10 20 A

The boundaries of - p p p - 2 are obtained and

sketched as in Fig. 7.3 . The region A of y¥ maps into

the larger region A' of Y12 , B into B' and parts of

A',B' may overlap. This is all at some specific frequency

. From Equation (7.5)

P2 0 y 1
TD = (7.6)
D 2 MN

When the region A in y, is considered, then the appropriate

range of N , in Fig. 7.3, is A' etc. In this way boundaries

of acceptable -LO(jw
l
) may be obtained and the design con-

tinued by the methods of this report. Alternatively, one may

work on the Nichols chart by writing

1 2P 1 L/P

T 1+ pp G = (7.7a)
D2 1 + PP2G 1 +L

so

Z nITD I =Z nllL I + nl P1 . (7.7b)

When the template of P is manipulated on the Nichols

chart, it is necessary to consider also the template of P1

in a manner equivalent to Fig.'7.3

Finally, if there are specifications on both the system

response to commands, and its response to disturbances, it is

possible by the means described to find the resulting

boundaries of L(jw) for each separately, and then take the

worst of both, such that both sets of requirements are

satisfied.



87.

P 0

M - Lo( jl,)

Pio
PI

P20
P2 = 2

S -PLANE

Design technique for D
2Fig. 7.3:



88.

REFERENCES

1. I. Horowitz, Synthesis of Feedback Systems, Academic

Press, 1963, pp. 170, 239, 246.

2. Ibid, pp. 332, 351.

3. Ibid, pp. 441-452.

4. Ibid, Secs,. 5.9, 6.14, p. 373.

5. P. Fleischer, Optimum Design of Passive-Adaptive Linear

Feedback Systems with Varying Plants, IRE Trans. on

Automatic Control, Vol. AC-7, March 1962, pp. 117-128.

6. D. E. Olson and I. Horowitz, Design of Dominant-Type

Control Systems with Large Parameter Ignorance,

International Journal of Control, Vol. 11, 1970,

pp. 545-554.

7. H. Z. Lewis, Computer-Aided Design of Feedback Control

Systems with Plant Parameter Variations, Department of

Electrical Engineering Research Report, University of

Colorado, June 30, 1970.

8. I. Horowitz, Optimum Linear Adaptive Design of

Dominant-Type Systems with Large Parameter Variations,

I.E.E.E. Trans. on Automatic Control, Vol. AC-14, June

1969, pp. 261-269.

9. I. Horowitz, Fundamental Theory of Automatic Linear

Feedback Control Systems, IRE Trans. on Automatic

Control, Vol. AC-4, December 1959, pp. 5-19.

10. Reference 1, pp. 267-285.



89.

11. I. Horowitz, Linear Adaptive Flight Control for Reentry

Vehicles, I.E.E.E. Trans. on Automatic Control, Vol.

AC-9, January 1964, pp. 90-97.

12. N. Oda, Frequency Response Approach to Design of

Adaptive Control Systems via Model of Specifications,

M.E.E. Thesis, Department of Electrical Engineering,

University of Colorado, June 1969.

13. Reference 1, pp. 313-4.

14. H. W. Bode, Network Analysis and Feedback Amplifier

Design, D. Van Nostrand, 1945. Chapters 14, 15.

15. Reference 1, pp. 307-319; Equations (7.5, 2)

16. Reference 14, p. 302, Formula V(a)

17. Reference 14, p. 302, Formula VI(a)

18. Z. Nehari, Conformal Mapping, First edition,

McGraw-Hill, 1952, pp. 141 et seq.

19. Reference 18, p. 143.

20. Reference 14, pp. 32,8-9.

21. Reference 1, p. 319.

22. Reference 14, p. 286; Reference 1, p. 317.

23. Reference 14, p. 338; Reference 1, p. 316.


