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INTRODUCTION 

Since  the  recent  appearance of the  branch of structural  optimization which 

is concerned  with  constraints of a dynamic  (natural  frequencies of vibration) or 

aeroelastic  nature*, two trends  have  developed, which represent two complemen- 

tary  methods of solution. 

The first of those  makes  use of mathematical  programming  techniques. 

The  structure  to  be  optimized is either a structure with discrete  characteristics, 

such as a stiffened  beam,  or a continuous one  which is first discretized:  this is 

the case of a beam  broken  into  finite  elements.  This  approach,  the  older, is the 

one  taken  by  Haug, et al. 2 '  3 ,  Fox and  Kapoor4, Rubin', and  Turner',  to  name 

only a few. Its  advantages are obvious:  complex structures  can  be  approximated 

this way with good accuracy,  then  subject to  optimization  techniques.  The weak- 

ness of the  method,  however, lies in  the fact that the  optimization is done after 

the  discretization  has  been  made, so that  it is impossible  to know  how close  the 

discrete optimum found is from  the  true  one,  and even in  some  extreme  cases  it 

makes no sense  at  all. ' In other  words,  there is no way of getting  the  optimum 

within a given  accuracy. 

*A small  paragraph  was  devoted  to  the  subject  under  the  heading "dynamic  com- 

pliance"  in  the  excellent  comprehensive  review of the  field of Structural  Optimi- 

zation  done by Sheu and  Prager' less than three years ago.  The  number of 

articles belonging  to  this  classification  which  have  appeared  since is impressive, 

and  the  subject  alone now meri ts  far more  extensive  review. 

'The only way to  decide  where  to  stop  iterating  in  the  optimization  process is when 

it appears  to  converge;  however, it has  been  frequently  proven  that,  depending  on 

the  method  chosen  to  arrive at the optimum,  the  process  might  pseudo-converge 

to a solution  which is totally  irrelevant  and  vanishes when another  optimization 

method is tried. 



Another  approach,  more  recent, is that of the classical calculus of 

variations  whose  foundations  date  back  to  the  time of Euler  and  Lagrange  and  has 

raised  considerable  interest  ever  since:  it is applicable  to  simple, continuous 

structures.  It has  been  widely  used by Turner  for  his now classical bar ,  by 

Keller  and  Niordson  for  the  problem of the tallest column, by Niordson  for 

the  optimization of a beam  for a fixed first frequency of vibration, by  Olhoff 

for  the  optimal  design of vibrating  circular  plates.  Variational  principles  were 

also  used by Prager  and Taylor'' and  Taylor l2 and  applied  to  continuous 

sys  tems . 

7 

a 9 

10 

In the  spirit of this  approach  an  extension  was  made by the  use of the 

techniques of optimal  control  theory, which are themselves  ramifications of 

the  classical  ca.lculus of variations;  its  principles  are  expressed  in a different 

form,  more  suitable  to  the kind of problems  encountered  in  the  theory of control. 

For  the  structural  applications,  the  constraints are put  under a form  analogous 

to  that of control  constraints,  thus  imposing  the  distinction  between  state  and 

control  variables.  The  necessary  conditions are then  derived  in  the  form of 

a system of differential  equations,  yielding a two-point  boundary-value  problem. 

Exact  solutions  have  been found in a few rewarding  cases,  and  numerical  methods 

derived  in  control  theory,  requiring  discretization  but only at this  step,  have 

been  applied.  Accuracy  can  then  be  fixed  in  advance,  the  limitations of this 

method now being  due to the  complexity of the structure. In other  words,  this is 

the  opposite  approach  from  the  one  discussed  first.  This  method was f i rs t  

introducted by Ashley  and McIntosh13 for  the  optimization of structures  subject 

to  aeroelastic  constraints, and  applied by Armand  and  Vitte14  to a few simple 

cases  and by Weisshaar15  to  the  panel  flutter  problem  started by Turner. 

A  recent and  detailed  account of the  development of the  field of structural 

- especially  dynamic o r  aeroelastic - optimization wi l l  be found in some of the 

references  above,  especially and  in references 13 16,17 

The  structures  optimized up  to now were  "one-dimensional";  this  means 

that, due  to  their  nature,  the  problems to  be  investigated  led  to  constraints 
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expressed  in  the  form of ordinary  differential  equations  in  one  independent 

spatial  variable. A beam  problem is obviously  one-dimensional; so are optimi- 

zation  problems  dealing  with  circular plates when the  imposed static or dynamic 

constraints  have  the  property of axisymmetry. lo The  problems of dynamic  structural 

optimizatlon  where  the  constraints are in  the  form of partial  differential  equations 

have  hardly  been  investigated up-to-date. The only  tentative  efforts known to  the 

author are those of  Johnson’’ and Haug” who investigated  separately  the  problem 

of the  optimization of a plate  for a fixed first frequency of vibration. Both of them 

make  use of the  method of discretization  described at the  beginning of this  chapter, 

and  this is why, unfortunately,  it is impossible  to  give  an  estimate of the  pre- 

cision which guarantees  the  validity of their  optimal  solution.  Moreover, 

Johnson’ s square  plate is divided  into  only 25 elements,  the  symmetry of the 

problem  further  reducing  the  accuracy to  only 6 elements.  Haug, on the  other 

hand,  presents  an  adaptation of the  powerful  method of steepest  descent  developed 

in  optimal  control  theory  to  two-dimensional  problems, which seems  very 

promising and  should  lead  to  the  numerical  solution of number of such  problems. 

The  present  work tries to present  an  adaptation to  two-dimensional 

I 

structures of the  methods of optimal  control  theory  already  applied  to  one- 

dimensional  structural  optimization,  in  the  spirit of the  previous  work  done  in 

this area 13’ 14’ 15’ The  corresponding  branch of Optimal  Control  Theory  is 

known as optimal  control of distributed-parameter  systems and is, we might 

say, a brand new field of investigation.  The  first  ever  made,  proposing a 

definition  and  an  evaluation of the  task at hand, is contained  in a Russian  paper 

dated 1960 The  systems  to  be  considered are characterized by either  partial 

differential  equations  or  integral  equations  to  be  satisfied  on DxT, where D is 

some  spatial  domain  contained  in  the  Euclidean  space En for n 2 1 and  T is 

a time  domain.  In  the case of differential  equations,  there  are  also  boundary 

conditions to be  satisfied.  The  behavior of the  system  can  be  influenced  either 

by  mechanisms  actingthroughout D or  at the  boundary of D,  o r  both. There is 

given some  functional  dependent  on  the  state of the  system  or  its  boundary 

20 
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conditions o r  on its control,  or s0m.e  combination of these,  and two types of 

questions  may  be  asked: 

i) What should  the  available  controls  be  to  minimize  the  given  functional 

(open-loop control) ? 

ii) What should  the  functional  relationship  between  the  control  and  the 

system state be  in  order  that  the  functional  be  minimized  (closed-loop  control)? 

Needless  to  say,  optimal  control of distributed-parameter  systems is 

much more difficult  than  for  lumped-parameter  systems,  and it is sti l l  a growing 

field of investigation. An excellent  survey  containing  an  exhaustive  list of 

references is due  to  Robinson21.  In  his paper, both a historical  and  technical 

presentation of the  research  in  this  domain is done.  Two  textbooks  have  appeared 

recently,  one by the  pioneer Butkovskiy" presenting a unifying treatment of most 

of the  literature  that  appeared  previously  in  Russian  journals  and of great interest 

although perhaps too  broad  in  scope;  the  other one is by Lions23  and is  mostly 

concerned  with  the  mathematical  aspect of some  particular  problems. 

The  overwhelming  majority of research up-to-date has been  devoted  to 

linear  problems. Although our  scope  will  be  more  limited  than  the  general  goal 

of optimal  control of distributed-parameter  systems,  we  shall  never  encounter 

linear  problems, and  we wil l  have to derive a more  general  approach  applicable 

to  non-linear  constraints. 

We f i r s t  have  to  define  the kind of problems  that we will  encounter  for  our 

purpose, which remains  structural  optimization:  the  domain DxT will simply  be 

the  domain  occupied  in  space by the  two-dimensional  structure  which we consider, 

referred to a set  of orthonormal axes Ox, Oy. The  constraint wil l  take  the  form 

of a partial  differential  equation  to  be  satisfied  inside  the  domain, with adequate 

boundary  conditions  provided by the  physical  properties of the structure. For the 

common case of a minimum-mass  problem,  the  functional  to be minimized  will be 

the  surface  integral of the  thickness  over  the  domain  covered by the  structure. 

Generally,  the  deflection (in-plane o r  out-of-plane)  will  play  the role of a state 

variable,  whereas  the  thickness wil l  be  in  some cases the  control  variable. 
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A  problem of this  type is a special case of the  more  general  one  stated  above, 

namely a Mayer-Bolza  problem  for  multiple  integrals.  The  most  authoritative 

treatment of the  general  Mayer-Bolza  problem  in two dimensions is that of 

Lur'  e24, who was  the first to suspect  the  applications this theory  might  have  for 

structural  optimization.  This  paper  was later reprinted  in a textbook  on  topics 

in  optimization  edited by L e i t ~ n a n n ~ ~  with  some  additions, in particular  an 

application  to  magnetohydrodynamics  leading  to a control of the bang-bang type, 

itself a reprint of an article published  in  the  Journal of Applied  Mathematics  and 

Mechanics . Lur' e derives  the  necessary  conditions  for  an  optimum  for a very 

general  Mayer-Bolza  type of problem,  extending  the classical methods of 

calculus of variations to two dimensions. 

26 

In part  A of this  study, we will  extend  the  methods  used by Bryson  and Ho 27 

in  their  excellent  textbook on optimal  control  theory to the  case of two independent 

variables. We wi l l  be  led  to  the  definition of a scalar two-dimensional  Hamiltonian, 

already  suggested by Lur' e ,  and to a set  of necessary  conditions  for  an  extrema1 

in   terms of i t  analogous  to  the  ones  he  derived by other  means.  The case of finite 

equality o r  inequality  constraints on the  control  variables  will  also be considered. 

P a r t  B presents  an a.pplication of the  theory  to  the  case of the  optimization 

of a shear  plate: we  want  to  find  the  thickness  distribution  such as to  minimize 

the  mass of this  structure,  the  first  frequency of vibration of the  homogeneous 

reference  plate with  constant  thickness  being  required  to  keep a constant  value. 

The  shear  plate was  chosen so as to  provide a simple, though non-trivial,  partial 

differential  equation as a constraint;  an analytical solution  will be found in  the  case 

of simply-supported  edges. 

Our  experience wi l l  then  be  applied  to  the  minimum-mass  design of more 

practical  structures,  under  the  same  constraint as above. The  sandwich  plate 

wil l  be treated in  part  C ,  while par t  D is devoted  to  the classical elastic plate, 

Following  the  steps of the  simple  shear-plate  optimization  process,  both of these 

optimization  problems  will  reduce  into  finding  the  solution of a system of two 

simultaneous  partial  differential  equations  for  the  optimal  thickness  distribution 

and  the  displacement  mode.  The  necessary  conditions are then  in a form  showing 
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that  they a r e  nothing but the  expression of a very  general  sufficient  optimality 

condition stated by Prager  for a broad  class of structural  optimization  problems 

to which the  considered  cases  belong;  they  are  therefore  necessary  and  sufficient 

conditions  for  an  extremal. A numerical  treatment of this  system of partial 

differential  equations is presented in Par t  C for  a simply-supported  sandwich 

plate.  The  uniformity of the  energy  distribution  throughout  the  structure is shown 

in  Part E to  be  a  sufficient  condition  for an extremal of the  mass. 
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t 
PART A 

/ NECESSARY  CONDITIONS  FOR THE STATIONARY  VALUE OF A FUNCTIONAL 

/ I  UNDER  CONSTRAINTS EXPRESSED AS PARTIAL  DIFFERENTIAL EQUATIONS 
~ "~ - 

I '  - 
I 

;; 

; I  i i 
i :  

Let D  denote a closed  domain  in  the  plane  with a piecewise  continuous 
I ?  
,\, 

1 1. Statement of the  Problem 
- \  

li boundary aD. If the  plane is referred to a set  of rectangular  coordinates (x,y), 

let the  boundary  curve  be  represented  in  parametric  form by  the  equations: 

x =@(a) 

where cy and P are piecewise  continuous  functions of the  parameter a possess- 

ing a first  derivative in the  intervals  where they a r e  continuous. 

In this  domain, we consider a system of partial  differential  equations of 

the  form: 

az 
i - 

ax - S(- - z,u;x,y)  = 0 

i = 1 , 2 , .  . .n .  

The X. and Y. functions  have  to  be  such  that  they  satisfy  the  compati- 
1 1 

bility  conditions: 

DXi DYi 
Dy DX 
-" - - 0  

i = 1,2,. . . n,  where  the  derivatives  above  are  total  derivatives taken  with respect 

to all the  arguments  included, i .  e .  : 

D X ~  
ax. az axi au axi 

DY az  ay au  ay  ay 
1 -  N 

"" - +"+" 
Iv v 

7 



For a system  governed by a set of equations  in  the  form (1. l), the  vector 

function z = (zl, z2, .  . . , z ) of the  arguments  x,y  describes  the  mechanical 

system  itself, and therefore  the z. play  the  role of state  variables,  whereas 

the  functions u = (u u , u  ) of the  same  arguments  represent  the  distributed 

controls. 

cv n 

.1 

- 1’ 2 ’ ” ’  P 

Equations (1.1) represent a standard  form of any system of partial 

differential  equations:  Lur’ e25 calls it  the  special case of the  Pfaffian  system. 

Any partial  differential  equation of order  superior  to one or  any system of such 

equations  may  be  written in the  form (1.1) , with  the  number of dependent  variables 

increased as necessary.  The  technique of decomposition is simply  an  extension of 

the one  used  in  the case of the  transformation of a high order  ordinary  differential 

equation  into a system of first order  ones by introducing  auxiliary  dependent 

variables. 14’ 27 The  only  difference  resides  in  the  fact  that a function  in two 

independent  variables  possesses k+l derivatives of order k ,  whereas a func- 

tion  in  one  independent  variable  possesses  only one: therefore  the  decomposition 

will  require  the  introduction of a much  considerable  number of dependent  variables. 

The  compatibility  conditions  will  help  reduce  this  number. 

The  procedure is best  demonstrated on a simple  example,  treated below. 

We wil l  then show how the  decomposition is done for  the  general  case of a single 

partial  differential  equation in two dependent  variables which we will  always 

encounter as a constraint  in  problems of minimum-mass  design of structures 

satisfying  conditions  on  their  frequency of vibration or on some  aeroelastic 

eigenvalue.  Generally, one of the  dependent  variable  will  represent  the  displace- 

ment  at a point of the structure,  the  other  representing  the  thickness  distribution. 

For the  Helmholtz  equation,  example also  treated by Lur’ e in  the  already 

referenced  paper: 

a z  a z +  
ax  ay2 

2 
” 

2 
+ u z = o  
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we find  the  equivalent  system: 

az 

ax 2 
1 
" - 2  

az 

aY 3 
1 
" - 2  

az 

ax 2 
2 
" - u  

az2 
" 

a Y  3 
- u  

az 3 
" 

ax 3 - u  

az3 
" 

aY 
- -u -u z 2 1 1  

Here we had  to  introduce  the new dependent  variables z z ,u , u  the 2' 3 2 3' 
original z being  denoted z and  the  original u ,u   The state variables  are now 1 1' 
zl, z2, z3 , while the  controls are u  u  u 1, 2' 3' 

In the  light of the  example  above,  we a r e  now able  to  explain more  precisely 

how the  decomposition (1.1) can be achieved  in  the  case of main  concern  to  us, as 

we will see  later,  that is of a constraint  expressed  in  the  form of one  single  partial 

differential  equation  in  the two independent variables  x  and  y,  and two dependent 

variables w and  h of order n 2 1 and  n 5 0 respectively  in  those  variables. 

In other  words,  there is present at least one  partial  derivative of order  n  in  the 

first variable  called w, and at least  one partial  derivative of order  n in  the 

other  variable,  called h.  The  most  general  form  for this type of equation  will be: 

1 2 

1 

2 

2 n l  n1 n n 1 1 
&v aw a XV a \v a w f(\v, - - a w  a w  
a x y  ay 

ax2 y -  axnl ' axn+ay n 1 -1' n 1 ' 
- - - 

Y . . . ,  

aY 

(continued) 
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n n n n 
ah  ah  a2h a 2h a 2h a 2h a 2h 

h , s q -  2 ’ ” ”  - n ’ n -1 -. 
ax ax  ay axay aY .(l. 1. a) 

n -1’ n 7 X’Y) = 0 
ax 2 2 2 

and we will  assume  that  this  equation  can  be  solved  for  one of the  highest  derivatives 

of w appearing,  for  example, if 

is present: 

y l +  1) 
We will  introduce 1+ 2+. . . +n = 1 2 

auxiliary  variables z. as 
1 

follows: 

w =  z 1 

” azl 
ax 2 - 2  

” azl 
aY 3 

- z  

az2 
ax 4 
-= 

” az2 
aY 5 

- z  

aw 
(= ay’ 

2 a w  
(= a x a y )  

(continued) 
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az 

ax 5 
3 
" - z  

= z  
aY 

n (n -1) 

2 
+2 

ax 
= z  

n (n -1) 

2 
+2 

n, -1 

(= - a W) 
n, -1 

n, -1 

ax ay 
I 

n, -1 

n, -1 
a IV 

(= ) n,  -2 

(continued) 

1 1  



az 
n (n -1) 1 1  n, -1 

2 = z  
aY n 1 1  (n +1) 

2 

The (nl + 1) u variables 
H 

az n (n -1) 
l,1 +1 

Y 

ax = u  1 

a z  n (n +1) 1 1  
2 
ax = U  n 1 

2 
= U  aY nl +1 

are now introduced as follows: 

We now do the same  for  the  dependent  variable  h, 

a Y  
I 

n 
(= -W) a 1  

ax 
n 1 

"1 

a IW 

(= 1 n, -1 

I aY 
n2(n2+1) 

introducing 
2 

auxiliary state variables % and n +1 auxiliary  control  variables v  follow- 

ing  an  identical  procedure. 
2 a '  

Now the  given  equation  will  be  replaced  by  the two systems  formed  above, 

together  with  the  condition: 

12 



In  the case of a constraint of this  type,  the  role of the  control  variables is 

played by the u and  v  variables,  while  the  z  and  h  define  the  state of the 

mechanical  system.  The z  and  h are the state variables z of (1.1) whereas 

the u  and  v are the  distributed  controls  u. 

N u N hl 

N CI n d  

N N H 

The  decomposition of a partial  differential  equation  or of a system of the 

same  into a system of the form (1.1) is of course by no means unique. A question 

of definition of the  controls arises too, as can  be  seen  in  the following  example. 

Consider  the  partial  differential  equation,  in  the  two  dependent  variables 

w and h,  that we wil l  encounter as a constraint  in  part B: 

" ( h Z ) + - ( h - ) + k h w = O  a aw a aw 2 
ax aY aY 

By the  process  described  above,  this  equation is equivalent  to  the  system: 

w = z  1 

az 

ax 2 
1 -= Z 

az 

aY 3 
1 

-= z 

az 

ax 
2 - = u  1 

az3 
ax 
" "u 2 

az3 
" 

aY 3 
- u  

a w  
ax 

2 
(= 

2 a w  
(= axay' 

a w  
(= 2) 

aY 

2 

(continued) 
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ah 
“ 

ax 1 
- v  

ah 
“ 

aY 2 
- v  

2 1 2  2 3  v z + v z  
u = -U -k z 

3 1 1- h 

where  the  role of the  control  u is actually  played by u v u bringing 

no contribution  to  the  system  itself as can  be  seen  from  the  constraint.  Because 

of its special  nature,  the given  equation is also  equivalent to the  somewhat  simpler 

1’u3’v1’ 2’  2 N 

system: 

w = z  1 

az 

aY 2 

2 
” - u  

az  
ax 3 

3 
” - u  

az3  2 
” - -U -k hz 
aY 1 1 

where  the  role of the  control is now being  played by h, u u the  definition 

of the  u  being  different  than  from  above. 
1’  2’‘3’ 

h 

We  will show in  Appendix 1 that,  although  the two systems and  the two 

controls  are not the  same,  the  same  final  result is obtained for the  same  optimal 

problem  they both describe. 
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Let  us now go back  to  the  statement of the  optimal  problem. We now 

have  to  describe  the  boundary  conditions. 

We assume that  the  first  m s n functions z. are prescribed  along 
1 

portions of aD: 

Z i = 1,2,. . . m  

The  simplest  Mayer-Bolza  problem is now formulated as follows: in a 

suitable class of functions, to which we  will  come  back  later,  determine the state 

variables  z  and  controls  u so as to  minimize  the  functional: - N 

aD D 

subject  to  side  conditions (1. 1) and (1.2). 

The  problem  may be complicated by considering  boundary  controls on 

movable  boundaries  and/or  constraints on the  state  or  control  varia.bles.  The 

case of boundary  controls  and  that of constraints on the state  variables wil l  not 

be  investigated in the  present  study; the former  can be found, treated  in  some 

details,  in  Refs. 24 and 25. However, we wil l  investigate  the case of constraints 

(finite  equalities  or  inequalities) on the  control  variables  in  section 3 of this 

chapter. 

2. The  Necessary Conditions 

Following  the  methods of optimal  control  theory  in  one  single  variable, we 

adjoin  the  system of partial  differential  equations (1.1) to J with  the  help of 

vector  multiplier  functions A(x,y) and p,(x,y). 
N N 

(continued) 



We define a scalar function,  the  Hamiltonian, as 

J is rewritten  then as: 

If we  add  and subtract  the  quantity: 

\ a x + a y ) Z  

to  the  second  integrand, J takes  the  form: 

NOW, by the use of Green’ s formula (*), the  third  integral  becomes a line 

integral as follows: 

Then  the  integral (2 .3)  takes  the  form: 

(*) which is the  counterpart  in two dimensions of the  classical  integration by 
par ts  in  one  dimension. 
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/[pTal (a) - X T p' (u)]zda N 

aD 

and J becomes: 

Now consider  the  variation  in J due  to  variations  in  the  control  vector 

m m 

We now choose  the  multiplier  functions A(x,y) and p,(x,y) to  cause  the 

coefficients of 6 z in  the  surface  integral  above  to  vanish,  therefore  escaping  to 
ro N 

N 

the task of computing  the 6 z in terms of the  variations 6 u of the  controls: 
N 15 

Along  the  portions of aD where  the z. are  prescribed, 
1 

6 2. = 0, i = 1 , 2 ,  ... m. 
1 

Along  the  other  portions  and  for  the z. , j = m +1,. . . , n which are not a t  
J 

all prescribed, we ask the  relations 



h p' (u) - IJ a' (u) = - - T T aR 
N cv az (2.7a) 

N 

to  hold  along aD: they serve as boundary  conditions for  the  system (2 .7) .  

(2.6) then  becomes: 

For  an  extremum, 6 J must  be  zero  for  arbitrary 6 u  (x,  y);  this  can only 
hr 

happen if: 

- =  aH 0 
au 
N 

Equations (2. 8) are analogous to the  control  equations  derived in  one- 

dimensional  optimal  control  theory. 

Equations (2.7),  (2.7a) and  (2. 8) are the  Euler-Lagrange  equations of the 

classical  calculus of variations,  for two independent variables.  They  form a se t  

of necessary  conditions  for  an  optimum. 

In summary, to  find a control  vector  function  u(x,y)  that  produces a 
N 

stationary  value of the  performance index: 

J = f R(5;m)dm + Jfi(z,u;x,y)dxdy " 

aD D 

we must  solve  the  following  system of partial  differential  equations in D: 

az 
- =X(z,u;x,y) ax - - -  cv 

ah a, 
ax +- ay = - ( a  

N -  aH - 
N 
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" aH - 0 
au 
N 

where  the  Hamiltonian  H is defined as: 

The  boundary  conditions are: 

i = 1,2,. . . , m  

(the I= are the  portions of 8D where  the first m variables z. are prescribed) 
1 

aa k p '  (a) - y.a' (a) = - - , 
1 1 azi 

along aD-Z, and: 

i = 1 , 2 , .  . . ,m  (2 .7a)  

j = m+l ,  . '. . , n (2.7a) 

along 8D. 

We have  n+n+n+p = 3n+p  equations  for  the  3n+p unknowns z, h, p ,  and 
" N  

N 

U. 

3. . Equality .~ ~~~ - - and  Inequality  Constraints on the  Control  Variables 

For  most of the  structural  optimization  problems  that we will  consider, 

the  role of the  control  variable  will  be  played by the  thickness  distribution  which 

we wish  to  render  optimal.  For obvious  physical reasons,  we do  not  want, in 

most cases, for  this  thickness  to  be  zero  along a line  interior  to  the  structure 

(leading  to  the  formation of a hinge,  subsequently  causing  the  collapse of the 

structure). Such an  inconvenience  might be taken  care of by the  adjunction  to 

equations (1.  1) and  (1.2) of a minimum  thickness  constraint, which will  appear 

as an  inequality  constraint on the  control  variables. 
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More  generally,  suppose  we  have  restrictions  imposed on the  control 

functions  in  the form of r finite  equalities: 

c p ; x ,  y) = 0 9 k =  1,2, ... r 
N 

and s finite  inequalities: 

We assume  that  there  exists a solution  to  equations (1. 1), (1 .2)  under 

the  restrictions (3 .1) ,   (3 .2)  imposed on the  control  tunctions. 

A way to  transform  the  inequality  constraints (3 .2)  into  equality con- 

straints is to introduce  supplementary  artificial  controls u* = (u* u*  ,uE), 

following a traditional  technique, by virtue of the  following  equations: 
N 1' 2'"' 

D* = D  (u;x,Y) - U* = 0 ,  A =  1 , 2 ,  ..., s 
2 

R R  a (3  3) 

and to add  these  controls  to  the  previous  set of u,  therefore  considering only 

r + s equality  constraints with an  augmented  number of controls. 
N 

This point of view is the  one  adopted  in  Lur' e ' s  paper . We will 

present  here  another  method,  again  directly  inspired  from  the  methods of 

optimal  control  theory,  in  particular of Ref. 27, Chapter 3.  

24 

Consider  the  case of equality  constraints  first.  Clearly,  the  dimension 

of the  control  vector  u  must be greater or  equal  than 2 for  the  problem  to  be 

interesting,  since for m = 1 the  constraint (3. I) determines  u(x,  y)  completely 

and there is no optimization  problem  left. 

N 

We adjoin (3 .1)  to the  variational  Hamiltonian with a set  of Lagrange 

multipliers u ( x ,  y) = ( u1 (x, y),  . . . , u (x,  y)) as follows: - r 
m m 

T 

The only  change  this  brings  about is in  the optimality  conditions: 
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which,  together  with (3.1) , represent p +r  conditions  to  determine  the p- 

component  vector  u( x, y) and  the  r-component  vector v(x, y). 
N N 

Now consider  the  inequality  constraints (3.2). In the  same way as above, 

we introduce  the  s-dimensional  vector 6 (x,y)  the  components of which are the 

s Lagrange  multipliers 6 (x, y), . . . , E  s(x, y),  and  define 
N 

1 

” & ” N  

The  necessary  condition  to  be  satisfied by this  augmented  Hamiltonian is: 

which is the same as above  with  the  additional  requirement  that: 

o r :  

Another  approach is the  following,  again  in  the case of s inequality 

constraints: 

If we  define H* as: 

(which is nothing  but the  Hamiltonian  defined  for  the case when there are no  con- 

straints on the  control  variables),  then,  from (2.6): 
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and  this is, by definition, 

D 

where  the X and  the p satisfy  the set of partial  differential  equations 
N N 

with  boundary  conditions: 

(2. 7a) 

holding  along  the  portions of aD where z is not  defined. 
N 

For the  control  u(x,y) to be  minimizing, we must have: 
N 

for all admissible  6u(x,  y). This implies  that we have: 
N 

6 H * r O  

for all admissible  6u(x,y)  and  this all over  the  domain D. 
N 

Hence, a t  all points on D = 0 the  optimal  u  has  the  property  that: 
N N 

for all 6u  such  that: 
N 

aD 
6 D  =- I, 6u  

I, au - 2 0, a =  1 , 2 , . . . ) S  

(3.10) 

which  yields  (3.7). 

Another way of stating (3.10) is to  say  that 6 H* must  be non-improving 

over  the  set of all possible 6u. 
ru 
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Actually a much  stronger  statement, IrH* must  be  minimized  over  the 

set of all possible u holds.  This  compact  statement is the  extension  to two- 

dimensional  systems of the  famous "Minimum (or Maximum,  the  distinction 

being  due  to a different  convention in Russian  literature  and  elsewhere  to  write 

the  Hamiltonian H*) Principletfa8.  A  rigorous proof of the  above can be found 

in a paper by  Butkovskiy , in  one .by  Egorov3', and  in  the  already  referred 

to  paper by Lur' e , which presents an extension of the  Weierstrass  conditions 

of the  classical  calculus of variations  to  this type of problems  and is nothing 

but an  alternate way of stating  the Minimum  Principle. 

- 

29 
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A remarkable  approach  using  the  function-space  formulation is found in 

a recent  paper by Neustadt , who presents  in  the  general  non-linear  case an 

abstract Minimum  Principle  covering  almost all constrained  minimization 

problems  ever  considered,  including  lumped  and  distributed  variational  problems 

under a variety of conditions. 

31 

4. Discontinuities  in  the  Distributed  Controls 

In the  definition of the  general  problem  given in section 1, we spoke of a 

"suitable  class of functions". It is now appropriate  to  explain  this  notion,  and  to 

specify  in  detail  the  class of admissible  controls and possible  behavior of state 

variables. 

The  distributed  controls wil l  be assumed to  belong  to a class of functions 

no less wide than  the class of piecewise  continuous  functions  in two independent 

variables.  Possible  discontinuities of distributed  controls  may  occur  along 

smooth,  closed  isolated  curves A lying  entirely  inside  the  domain D. 

The state variables z. are assumed continuous across a curve  such 

that A ;  the  variables  u are in  general  discontinuous, but their  values on 

both sides of A are connected by the  requirement  that  the  tangential  derivatives 

az./acr along A be  continuous,  that is, if we denote by a subscript - the  values 

of the  variables  attained on the  curve A from  one  definite  side of i t ,  by +their  

values  attained  from  the  other  side, 

1 

j 

1 



Recall  that  the  curve A has  the  parametric  representation: 

y and 6 being two piecewise  continuous  and  differentiable  functions of u. 

It  can also be shown that  along  such a line of discontinuity of distributed 25 

controls A: 

m rn rn m 

5. Remarks  and  Conclusion 

The  necessary  conditions  have  thus  been  established  in a very  general 

case of distributed-parameter  systems. We are now confronted  with a set of 

partial  differential  equations  to  be  solved  with  adequate  boundary  conditions, 

which  represent  the  first-order  necessary  conditions  for  an  extremum. 

The  original  optimization  problem is therefore  reduced  to  that of the  determi- 

nation of solutions  for  this  resulting set of partial  differential  equations.  This  latter 

task  unfortunately  proves  to  be an extremely  difficult  one when we t ry  to  solve 

this  system  for  some  specific cases. The  reason is clear: even for  the 

simplest of all problems,  the  system  formed by the  necessary  conditions  will  be 

greatly  complicated. We s tar t   f rom one  single  partial  differential  equation as a 

constraint.  This  equation  has  to  be  broken, as shown in  section 1, into a set  of 

first-order  equations,  having now n  variables  z  and  p  controls  u  After 

writing down the  necessary  conditions, we a r e  left  with a system of 3n+p 

partial  differential  equations  in  3n+p unknowns. It is therefore  understandable 

that  only  in  very  special  cases  can we find a. rigorous  analytical  solution  to a 

given  optimization  problem.  One  such  problem of structural  interest is presented 

i j' 
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and solved  in the next part of this study. The  approach to the more  complex, 

but at the same  time,  more  realistic problems presented  in  parts C and D 

seems to have to be numerical at this  stage of their solution. 
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PART B 

MINIMUM-MASS  DESIGN OF A SIMPLY-SUPPORTED SHEAR PLATE 

FOR A FIXED NATURAL FREQUENCY 

A plate-like structure with  special  properties  will  be  described  and 

analysed. 

Given  the  shape of a homogeneous  "shear  plate"  with  constant  thickness, 

we  find its  fundamental  frequency of vibration.  The  problem  considered is then 

to  determine  the  thickness  to  be  distributed  within  the  same  boundary so as to 

keep  the  above  fundamental  frequency  constant  while  achieving  the  minimum 

possible  mass. Only for  simply  supported  edges  will a complete  solution be 

given. 

Stating  the  problem  in  mathematical  form,  we are confronted  with a 

situation of the  kind  investigated  in par t  A ,  for which an  exact  analytical  solution 

will be found in  the  case of a rectangular  or a circular boundary. 

1. The  Shear  Plate:  Definition  and  Analysis 

We define a shear  plate as a rather  artificial  plate-like  structure  such 

that  the  bending  rigidity  for  normal  loads is negligible:  the  running  load is thus 

borne by shear only. 

We refer the  plate to a set  of rectangular  Cartesian axes Ox, Oy in the 

middle  plane of the  plate;  the  plate  occupies a simply  connected  domain D with 

a smooth  boundary aD. 

Now let  us  consider a rectangular  element with sides  parallel  to  the 

coordinate axes and  with  lengths dx and  dy  respectively,  around a point 

P(x,y).  Let  h(x,y)  be  the  thickness of the  plate,  p(x, y) its density, both at 

P ,  and  let  w(x,y;t)  be  the  normal  deflection of P at  time  t. We choose  the 

axis Oz directly  perpendicular to Ox and Oy. 

The  forces  acting on the  above  element  (see  figure 1) a re  all parallel  to 

the  z-axis.  They are,  in  projection on Oz: 
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Figure 1. Shear forces acting on the sides of an infinitesimal element of plate. 



a) the  shear  forces: 

a(Txzh’ 
-T x2 hdy and (T x2 h + - ax dx) dy 

on  the two sides  perpendicular  to Ox. 

on  the two sides  perpendicular to Oy. 

b) the  d’  Alembert  force: 

From  equilibrium, 

But  the  classical  stress-strain  relations  read 

aw 
YZ = GyYz = G -  aY 

so that  the  differential  equation of motion  takes  the  form: 

a a w a a w  2 
- & h z )  + -(h-) - t h a w =  0 

aY aY at2 

This  equation  must be satisfied  inside  the  two-dimensional  domain D 

bounded by the  frontier 8D. Let u s  now examine  the  boundary  conditions. 

If the  plate is supported at points (x y ) on segments of the  boundary 1’ 1 
8D, we  have  the  boundary  condition: 

I.. , 
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If, on  the  other  hand,  the  plate is free to  deflect  transversely  at  some 

other  points (x , y ) on ,different  segments of the  boundary,  there  cannot  be  any 

shear component  in  the  transverse  direction.  Consequently  the  boundary con- 

dition  at  such  points is: 

2 2  

G -  = O  aw 
an 

o r  

aw 
an 
“ - 0  

at ( X , ~ Y ~ )  

(1.2b) 

The  boundary  curve aD contains all points  such as (x , y ) and (x y ), 1 1  2’ 2 
and only one of the  boundary  conditions  (1.2a)  or  (1.2b)  must be satisfied  at a 

given  point on the  boundary. 

We will  confine  ourselves  to  the case of a homogeneous  plate (p  = 

constant).  Let us  investigate the nature of the free  vibrations of the  shear  plate 

with  constant  thickness. 

With  h = constant,  the  equation of motion (1.1) becomes: 

2 
G $ w = p y  a w  

at 

which is in  the  same  form  that  the  equation of the free vibration of a membrane 

where G plays  the  role of the  uniform  tension T of the  membrane. 

Following  the  classical  procedure , we write  the  displacement  w as the 

product of a function W of the  spatial  coordinates  only and a function f depend- 

ing  solely  on  time: 
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(1.3)  becomes: 



where  the  superscript (. ) denotes a derivative  with  respect to time, and  the 

common  value of these two ratios  has to  be a constant, “w , negative  for 

reasons of stability. f is then  harmonic  with  frequency o , and W satisfies 

the  partial  differential  equation: 

2 

2 2 -GV W = O  PW 

inside the domain  D,  together  with  the  boundary  conditions: 

w = o  a t  (x1 9 Y,) (1.5a) 

a t  (1.5b) 

The  eigenvalue  problem  represented by equation  (1.4)  together with the 

boundary  conditions  (1.5) is of the classical type: 

L[W] = AM[W] 

where  the  operators L and M are respectively: 

L = -GV 2 

M = p  

with  boundary  conditions  independent of the  eigenvalue A. The  problem is easily 

shown  to  be ~ e l f - a d j o i n t ~ ~ :  if W  and W are two eigenfunctions  corresponding 

to two distinct  eigenvalues Ar # As, then  they satisfy the  orthogonality  relation: 
r S 

D 

Also, it  can  be shown, as in  the classical membrane  case,  that if the 

boundary  condition  (1.5a) is satisfied  over  part of the  curve aD,  the system is 

positive  definite,  and  that if the  boundary  condition (1. 5b) is satisfied  over  the 

entire  length of aD,  the  system is only  positive. 

To pursue  the  discussion  further,  we  shall confine ourselves to an 

investigation of the  properties of rectangular  and  circular  plates only. 



1.1 -vibrations .~ of Homogeneous  Rectangular  Shear Plate with 

Constant  Thickness 

The  plate  extends  over a domain D defined  by 0 5 x c a ,  0 c y 5 b. The 

boundary aD is made of the  straight  lines x = 0, a and y = 0, b. Let: 

and  write (1 .4)  as: 

2 2 v w + a w = o  

where  the  expression  for  the  Laplacian  in  rectangular  coordinates is: 

2 a2 a2 
ax ay 

v = -  
2 + -  2 

( 1 . 6 )  is solved by separation of variables; to this  end, we let  the  solution 

have  the  form: 

and, after substitution in (1.6) and rearrangement,  obtain: 

which leads to  the  equations: 

n * + y2Y(y) = 0 

where 

P 2 + Y  =a! 
2 2  



so that,  introducing  four  constants of integration  A  A A A  the  solution  W 

has  the  form: 
1’  2’ 3’ 4’ 

W(x,y) = A sin px sin  yy + A sin px cos yy + A cos px s in  yy 1 2 3 

+A COS px COS Yy 4 (1- 7) 

where A , A  , A  , A  as well as p and Y must  be  determined by means of the 

boundary  conditions. 
1 2 3 4  

a) Plate Simply-Supported  Along  the  Edges 

The  boundary  conditions  then  read: 

The first and  third one of the  above  conditions  lead to: 

whereas  the  second  and  the  fourth  imply: 

sin pa = 0 

sin yb = 0 

and  yield an  infinite  sequence of discrete  roots: 

p = -  m r  
m a  

Y n = b ’  
nrr 

m = 1,2,. . . 

n =  1 ,Z  ,... 

so that we are led  to  the  eigenvalues  solution of the  problem: 

m , n  = 1,2,. . . 
(1.9) 

The  corresponding  modes are: 



W = A  sin- mrx n r y  
Sin - mn mn a a (1.10) 

The fundamental  frequency of vibration is obtained for m = n = 1, and has 

the value: 

(1.11) 

b) Plate Simply-Supported Along Two Parallel Edges and Free Along the 

Other Two 

The boundary conditions now read,  assuming  the  plate  to be simply- 

supported  along  the  parallel  edges x = 0 and x = a: 

(x,O) = - (x,b) = 0 8W 
8Y a Y  

(1.12) 

The  integration  constants  in (1.7) a r e  determined then from the first 

boundary condition: 

A = A  = O  3 4  

From the third one: 

A = O  1 

and from  the two remaining ones: 

sin pa = 0 

sin 'yb = 0 

p and y have to take  the discrete values: 

m r  
Pm= a 

nr 
Yn = - b 

m =   1 , 2  ¶... 

n = 1 , 2 ¶ .  . . 
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The  frequencies of vibration are the  same as in case a) above. The 

modes a r e  now being given by: 

W = B sin- cos - mnx n r y  
mn mn a b y  

m , n =  1,2,. .. (1.13) 

c) Free-Free  Plate 

For  this  idealized  case  (realizable  in  practice by assuming  the  plate to 

be simply-supported at  its  center), the boundary conditions  read: 

aw (x,O) = %(x,b) = 0 
a Y  aY 

(1.14) 

The  natural  frequencies of vibration are  the  same as in case a) or b). The 

natural  modes are  now given by: 

w = c cos- mnx n* Y 
mn  mn a b y  cos - m , n =  1,2,...  (1.15) 

1.2 Vibrations of a Homogeneous Circular  Shear  Plate with Constant 

Thickness 

The  circular  plate extends over a domain D defined by 0 s r s a; the 

boundary of the domain is the circle aD described in polar  coordinates by the 

equation r = a. 

With polar  coordinates r and 0 ,  the  differential equation to be satisfied 

throughout D is: 

where 
2 

G a -  2” 

Assuming a solution of the  form: 
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and recalling that in polar  coordinates the  Laplacian is given by: 

2 a2 l a  1 a2 v =-+"+" 
ap2 r ar r2 ag2 

(1.16) reduces to: 

which can be separated into two equations: 

- d2R +"+ dR (" a" $) R = O  
dr2 r dr  

(1.17) 

(1.18) 

The  constant m is chosen to obtain a harmonic equation for 0 ; further- 2 

more, the  solution must be periodic  in 8 with the  period 2a ; m has then to be 

an  integer  (m = 0, 1,2, .  . . ). 
(1.17) yields as solution: 

0 (e) = Clm sin me + C cos me, 
m 

m = 0,1,2, .  . . 
2m 

(1.18) is a Bessel equation  and its solution is: 

Rm(r) = C3mJm(a') + C4mym(a r) Y m =  0,1,2,. . . 

where Jm(X) and Ym(x) a re  the  Bessel functions of order m of the first and 

second kind, respectively. 

The  general  solution of (1.16) can then be written: 

Wm(r, e )  = AlmJm(ar) sin me +A2mJm(w)  cos me +A3mYm(m) sin me 

+*b m Y (w) cos me , m = 0,1,2, .  . . (1.19) 
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a) Simply-Supported Plate 

The boundary condition reads: 

At every  interior point of the  plate the  displacement  must be finite: but 

Bessel functions of the  second kind tend  to  infinity as the  argument  approaches 

zero. It follows that: 

so that (1.19) reduces to: 

Wm(r. e )  = A J (ar) sin  me  +AZmJm(ar)  cos  me, l m  m m = 0 , 1 , 2 , .  . . 

At r = a we must have: 

Wm(a, e )  = 0 , m = O , 1 , 2 ,  ... 

regardless of the  values of 8 ,  which implies: 

Jm(aa) = 0 , m =  0 , 1 , 2 , . . .  

This equation represents  an infinite set of characteristic  or frequency 

equations, and for  each m there is an infinite  number of discrete solutions 

amn . The  fundamental mode of vibration is obtained for m = 0; as the first 

zero of J (x) occurs at x = 2.4048, the fundamental  frequency is given by: 0 

0 01 = 2 . 4 0 4 8 E  

and the  corresponding mode by: 

wol  01 0 
= A  J (2.4048 r, a 

(1.20) 

(1.21) 

For  the  upper  frequencies o there are two corresponding  modes  to mn 
one particular frequency:  the  modes are then degenerate. 
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b) Plate  Free Along the Edge 

The boundary condition now reads: 

As above,  the  displacement at the center  has to be finite, so that the 

solution is in the form: 

Wm(r, 0) = AlmJm(ar)  sin  me + AzmJm(ar) cos me, m = 0,1,2,. . . 
The boundary condition thus requires: 

34 
But, by a property of Bessel functions : 

d - J (olr) = - olJ1(ar) d r o  

m = 1 ,2 , .  . . 

the first formula being only a particular  case of the second one if we note that: 

Thus we must have: 

This equation represents an infinite set of characteris  tic equations , and 

for each m there is an infinite  number of discrete solutions Q! corresponding 

to the zeros of this transcendental equation. The  lowest  frequency  corresponds 

to m = 0 and is obtained from the first zero of J,(x),  occuring at x = 3.8317; 

mn 

thus 

and the  corresponding mode 

I 

is: 

(1.22) 
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WOl(r,8) = A J (3.8317 -) 
r 

01 0 a 
(1.23) 

Again, for  each  frequency w , m # 0, there are two different  modes, mn 
and it follows that for m # 0 the  natural  modes a re  degenerate. 

After  this  preliminary  study of the  vibrations of a shear  plate, we now 

are ready to set up the  optimization  problem. We note that  in the case of a 

circular boundary the  optimal  thickness  distribution will evidently be rotation- 

invariant  (symmetry about 0 and about  any axis through 0), i. e. , independent of 

8, and the  optimization  problem will then reduce to the  classical  case of one 

independent variable,  in this case r ,  encountered in  optimal  control  theory. 

2. Optimization of a Simply-Supported Shear  Plate 

Let  us  consider a simply-supported shear  plate extending over a domain 

D bounded  by the  curve 8D. We assume that  the material  constituting  the  plate 

is homogeneous with density p and that  the  thickness is a constant  h the mass 

of this reference  plate is thus: 
0; 

where G is the area enclosed  inside  the boundary 8D. The fundamental 

frequency of the  plate is w as found above in  the  cases of a rectangular  plate 

and of a circular one. 
f' 

We then want to find the optimal  thickness  distribution  h (x, y) relative 

to  an  orthonormal  set of coordinates  such as to yield a minimum of the surface 

integral: 

or,  equivalently,  the surface  integral: 



the  constraint  the  first  frequency of vibration  be w being  expressed  under  the 

form of the  partial  differential equation: 
f 

to  be  satisfied  inside D, together  with  the  boundary  condition: 

w(x, Y) = 0 on 8D (2- 3) 

2.1  Necessary Conditions  for  an  Optimal 

Following  the  method  derived  in P a r t  A ,  we break  the  partial  differential 

equation (2.2) into a system of first  order  partial  differential  equations, with the 

help of auxiliary  variables z and u i j '  
Let: 

z = w  1 

z = h -  aw 
2 ax 

z = h -  aw 
3 aY 

The  system (A.  1.1) then reads: 

az 
2 

ax 1 - = u  

az 

aY 2 
2 

~ = u  
(continued) 

39 



az 
3 
” 

8 x 3  - u  

& 3  2 
” --u - Q U I  hz aY 1 G f  1 

The  boundary  condition is: 

z = o  
1 on aD 

The  Hamiltonian is now formed: 

and  the necessary  conditions  for  an  extremum of J are:  

h 
1’2  ’1’3 1”---- 
h2 h2 

- &d2p z = 0 
G f 3 1  

The  boundary  conditions  are: 
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z = o  1 

p' (u) - p2af (a) = 0 2 

(2. 6a) 

on aD, uniquely  determined by the  parametric  representation: 

and they reduce  to,  considering  (2.6) 

z = o  1 

(2.  6a) = = o  
2 c"3 

on aD. 

Now the  first  three  equations  in  the  system  (2.6) are very  similar to  the 

f i r s t  two and  the last of the  system (2.4).  We a r e  thus  led  to  the  assumption: 

z 
2 

l a  
= -  

where a is any  constant. 

Note that  this  assumption is compatible with  the  boundary conditions 

on aD. 

The  control  equation  reduces to: 
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2 z  1""+& 2 3 2 - = o  
2 2 

2 2 G f a r  

Z 

a h   a h  

or,   expressed  in  terms of the  old  variable w: 

which is a nonlinear  first  order  partial  differential  equation  to  be  satisfied by w, 

together  with  the  boundary  condition: 

w = o  on aD (2.8a) 

( 2 . 8 )  is a necessary condition for  an  optimum;  we wil l  show in Part C 

that  it is also  sufficient, as i t  is nothing but the  expression  in  the  particular case 

of a shear  plate of an  extremely  general  sufficient  condition  applicable to a broad 

class of structural  optimization  problems.  Thus the  whole  optimization  problem 

reduces to  solving  this  partial  differential  equation: if a solution to ( 2 . 8 )  can  be found 

that  satisfies  the boundary  condition (2 .  Ba), then  the  solution of the  original 

problem  can be immediately 

Equation ( 2 . 8 )  shows 

a = c  2 

Also,  let: 

2 2 5 u f  = k ,  

derived  from the  knowledge of 

us+  that a has  to  be  positive: 

and write ( 2 .  8) in parametric  form,  introducing  an unknown 

W. 

let 

function e (x, y), as: 

" aw JT7Z-5" 
ax - c + k w  cos  9(x,y) 

" 

From  the  fact  that  the  value of the  second  mixed  derivative of w is 

independent of the order  of the  derivations: 

+ w  attains  the  value 0 on the  boundary, which is  part  of J-J. 
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- 1 - k  w- aw sin 8 + dc2+k2w2 ' ae COS 0 4377" ax ax c +k w 

or: 

cos 0 - + sin 8 - = 0 ae ae 
ax ax 

which is a linear  first-order  partial  differential  equation  that has to  be  satisfied 

by e(x, Y). 

The  characteristic  lines are given by the  system : 
35 

and are therefore  defined by 

The  characteristics are therefore  straight  lines,  along which 8 keeps a 

constant  value. 

On the  boundary aD, w  has  the  constant  value 0; therefore, 

or  

cose dx + sine dy = 0 

which shows  that  Q(x,y)  has a geometric  significance: it is the  angle  that  the 

normal  to the  contour aD, oriented  outwards,  makes with a direction  parallel to 

the x axis.  The  characteristics, which a re ,  as we recall, straight  lines  along 

which e keeps a constant  value, are therefore  the  normals  to  the  contour.  At any 

point P interior to the  domain,  the  value of e is that of the  angle  the  normal  to 

the  contour  drawn  from  that  point P makes with  the  direction Ox (Figure 2). 
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Figure 2. Solution of the  partial  differential  equation ( 2 .  8) for a 

general  domain D: definition  and  interpretation of the 

different  quantities  introduced. 
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At P, 

d m '  dw = c + k  w (cos0 dx + sin0  dy) 

if p is the  distance  from P to the  boundary 8D, measured  along  the  normal 

to  the  boundary  pointing  outwards. 

Thus : 

dp = 
dw 

Jc2+ k2w2 ' 
o r ,  integrating: 

p - p  = -lOg(kw + L 
O k  

which is: 

w = -  E C  

k 
sinh[k(p-po)], E = f 1 

For a point on the  boundary ( p  = 0 ) ,  then w = 0: this shows  that  the con- 

0 
stant p has  the  value  zero,  and  the  solution  to (2.8) is simply: 

w = - sinh(kp) E C  

k (2- 9) 

where we recall  that p is the  distance  from  P(coordinates x and y) to  the 

contour 8D. 

For  a given  contour,  there are usually  many  normals  that  can be drawn 

from a point  interior to the  domain  it  encloses  (figure  2).  Thus  the  question 

arises to  decide  which  normal  to  consider  to  define  the  distance p: it seems 

logical  (and  turns  out  to be the  only  solution for a rectangular  plate)  to  take  for 

p the  shortest  distance  from P to  the  boundary 8D. 

Another  approach  to  equation (2.8) that  reduces it to a form  encountered 

in  the  theory of plastic  torsion of a cylindrical beam is given  in  Appendix 2. 
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We now apply  the  above  result,  valid  for  any  domain D under  the  general 

assumptions  outlined at the  beginning,  to a rectangular,  and then to a circular 

shear  plate. 

From a point  inside a rectangular  domain,  we  may  draw  four  perpendiculars 

to  the boundary. Therefore we have  to  consider 4 domains  labelled (1) , (2), (3), (4) 

as represented  in Figure 3 ,  delimited by the  boundary,  the bisectors  of the 4 

right  angles  at  the  corners  and  the  segment  joining  their  points of intersection 

two by two (the  latter  reducing to a point  in  the case of a square  plate). In each 

of those  domains,  the  shortest  distance of a point  to  the  boundary is readily 

expressed, and this  leads to an  analytical  expression  for  w,  taking a different 

form  in  each  domain*. 

Let  the  boundary  be  formed of the  lines  x = 0 ,  x = a ,  y = 0, y = b. We 

may  always  assume, without  any loss of generality,  that a =t b. Due to the 

symmetry of the  problem, we need  only  consider  one-fourth of the  plate, for 

instance  the  portion  delimited by the  lines x = 0, x = a/2, y = 0,  y = b/2. 

In  region (l), w is a function of x only: 

w = - sinh(kx) E C  

k 

and the  optimal  thickness  distribution is found from  (2.2) which  reduces to: 

-[h cosh(kx)] + kh sinh(kx) = 0 ax 
a 

The  general  solution  to  this  partial  differential  equation of a special type 

is readily found to  be: 

- 
W+Y) 

h =  2 cosh (kx) 

*Note that i t  is easy to see why the shortest  distance to  the  boundary  has  to be 
chosen  in  this  case;  another  choice  for p would not  allow  either  the  condition 
w = 0 to hold along  the  boundary aD or  the displacement w to  be  continuous 
inside  the  domain D. 
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W=-sinh(kx) 
E C  

k 

C 

, w = ( c  k sinh[k(b-y)] 
I 

W = k s i n h  ( k y )  E C  

~ W = y s i n h [ k ( a - x ) ]  

L 
a X 

Figure 3. The  division of the  rectangular  plate  into  four  regions,  and 

the  corresponding  expressions  for  the  optimal  displacement w. 
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where 0 (y) is an arbitrary function of y. 1 
Similarly,  the  optimal thickness distribution in (2) is given by: 

Now the  shear  force  has to be continuous when we cross the boundary from 

region (1) to  region  (2); this means  that  the  expression: 

has to be continuous across any  line with normal G .  In particular, between (1) 

and  (2), we must have: 

or: 

But: 

aw 
" = E C  cosh(kx) 

as the  boundary line is defined by the equation y = x. 

Thus it is necessary that: 

h = O  

on the segment y = x, 0 s x s b/2, which implies  that 

" 

w = w  E O  
1 2  

and 

h - 0  



The  optimal  solution is therefore  the  trivial  one,  zero. This result 

should not surprise us, as we already encountered it in one-dimensional 

cases '7' 13' l4 The  trivial solution is a consequence of the constraint equation 

being homogeneous in h. We also know from  past experience14 that  introduction 

of a minimum thichess constraint  will not be of any help. 

2.2 The  Structural Mass Hypothesis 

The way to overcome  this  difficulty is to assume that  the total mass of the 

plate is made up  of two parts with drastically  different structural properties: a 

constant  fraction 6 is non-structural,  whereas the remaining  part of the mass, 

labelled  structural, is originally in the  proportion 6 
2 

1' 
The  thickness is expressed as: 

where 

6 + 6  =1 
1 2  

h* will often be referred to as the "virtual thickness", by opposition to 

the  actual  thickness h. 

Note that the non-structural  mass is not at the  control of the designer, 

and that we are trying to minimize  the  total  mass by acting on the  intermediate 

variable h*. 

The  problem is then set up as follows: minimize  the  total  mass 

or, equivalently, the surface integral: 

(2.10) 

D 
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with  the constraint: 

a (h* z) aw + -(h* a ) &V + w (6 h* + 6 2 ) ~  = 0 2 
?Y aY G f l  

w = 0 on aD (2.11) 

The  optimization process is similar to the one already  performed; under 

exactly  the  same  assumptions on AI, A2, ply p3 we find that  the  optimal  displace- 

ment mode w has to satisfy the first-order  partial  differential equation: 

a w 2  aw2 (g) + (ay' = c2+-Q6 W w 2 2  
G I f  (2.12) 

together with the boundary condition: 

w = 0 on aD 

which is exactly  the  same equation as (2.8) , with k now having the  value 2 

The solution is then,  using the  same  notations as before: 

w = E sinh(kp) k (2.9) 

For  the  rectangular  plate, the 4 regions  previously defined (figure 3) 

have  to  be considered  again; the  optimal  displacement w in  each of them is again 

given by the  same  expressions, k having the new value 

In region (l), from (2.11 

the  differential equation: 

- ) y  the  optimal  "thickness" h* has to satisfy 

a 62 -[h* cosh(kx)] + k(h* + 6)  sinh(kx) = 0 ax (2.13) 
1 

or : 
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ijz - + 2k tanh( kx)h* + k 6 tanh( kx) = 0 ah* 
ax 1 

the  general solution of which is: 

6 2  ,(Y) 
- 

h*(X,y) = - - + 
26 , cosh2( kx) 

where Gl(y) is an  arbitrary function of y. 

Similarly,  in  region  (2),  the  optimal  llthicknessll  distribution is given by: 

6 2  G2(x) h*(x, y) = - - + 
26 cosh2(ky) 

Now, as before, h* - has to be continuous across the  line  y = x, which av 
an 

leads to the condition 

h*= 0 

on the  segment  y = x , 0 s x s b/2. 

The  expression  for h* in  region (3) will be obtained from  that  in  region 

(1) by changing x  into a-x; for  region (4), from  that  in (2), y being replaced 

by  b-y. The continuity of the  shear  from (2) to (4) when we cross the  segment 

y = b/2,  b/2 s x < a-b/2 

necessitates: 

or,  as: 

on that line, 

h* = 0 on y = b/2, b/2 s x g a-b/2. (2.14) 
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Thus h* has to be zero on the  lines  serving to define the 4 regions 

which are not boundary lines (dotted lines in fig. 3). 

Applying this condition, we find the expressions for the undetermined 

functions Gi and Ts - due to the condition (2.14)’ region (2) has to be subdivided 

into (2)  and (2’) by the  lines x = b/2, x = a-b/2 as shown in fig. 4. In the same 

fashion, those lines divide (4) into (4) and (4’). 

1 2’ 

The optimal ‘‘thiclmess” distribution h* is: 

in (2) h*(x, y) = - 
251 cosh (ks) 

2 (2.15) 

The expression for h* in (3) is obtained from that in (1) by  changing x 

into a-x; in (4) and (4’ ) respectively by that  in (2)  and (2’ ) by changing y into 

b-y. We note that h* is nowhere negative, as it should. 

This  corresponds to the actual thiclmess distribution: 

(2.16) 

the  expressions in regions (3), (4), (4’ ) being derived as above. 

The contour lines  (lines of-constant thickness) corresponding to the case 

where 40% of the mass is initially structural and thus allowed to vary are 



W=%inh(kx) k "- 

I 
I W = z s i n n  [k(b-y)l 
I 

k 

W = z s i n h  [k(a-x)] 
k 

0 EC b I Q  a-- b 
W = x  sinhtky) 2 

I 
2. 

Q X 

Figure 4. Subdivision of  the rectangular  plate  into regions where the 

optimal thickness has different analytical expressions. 
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represented  in  figs. 5 and 6 respectively  for a square  plate  (a/b = 1) and for a 

rectangular  plate  for which the ratio of the larger  side to the  smaller one is 

equal  to 1.5 (a/b = 3/2). We note that the optimal  thickness  distribution attains 

its minimum of 0.6 corresponding to h* = 0 along the  lines  already  described 

in fig. 3, and that a thickness of more than 1.7 times  the  original one is attained 

at the four points which are the  middle of the  sides  in  the  case of the square  plate. 

The  optimal mass of the plate is given by the double integral: 

D 

We compute it for one-fourth of the plate: due to the symmetry, the total 

mass will be four times  that  result. 

We obtain, after  performing the double integration,  the  exact  expression: 

M = p 6 + - sinh (k,) + - sinh(kb)] 
2  2  b a-b 

2 2 k2 2k 

where: 

This  leads to an  optimal  mass  ratio equal to: 

(2.17) 
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Y 

a 

a 
2 
- 

I 

6, ~0.4 
S2= 0.6 

a 

Figure 5. Optimal  configuration of a square  simply-supported  shear 

plate  (the  thickness of the  reference  plate  is  taken  equal  to  unity). 
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Y 
I 

i 

I .3 

-X 

Figure 6 .  Optimal configuration of a rectangular  simply-supported 

shear plate  (a/b = 1. 5). 
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(2.17) 

Let us now examine  the  extreme cases: when 6 -. 0, i. e. , when all 

the  mass is non-structural  and  thus  impossible  to  redesign,  the  optimal  mass 

ratio  tends  to  the  value 1 , as it should, showing that the  result of the  optimization 

process is the  original  plate  itself, as can  be  seen by noting that in  the  vicinity 

of 6 1  = 0 ,  

sinh2 LL J-- lT26 (A2+1)  

4A2 

1 
2 A  

On the  other  hand,  for 6 = 1 and 6 = 0 (case 

the mass is structural and  allowed  to vary),  this  ratio is 
1 2 examined first  when all 

equal  to  zero,  due  to  the 

fact  that  the  optimal  thickness  distribution is then  identical  to  zero throughout  the 

domain D. 

For a square  plate, a = b thus A = 1, and  the  optimal  mass  ratio is then 

equal to: 

(2.17a) 

For  the  shapes  pictured  in  figs. 5 and 6 ,  the mass  savings are found equal 

to 14.3% and  15.9%  respectively, which is an encouraging  result if we consider 

that 60% of the  initial  mass is not at the control of the  designer. 

When A goes  to  infinity, i. e. , when one  dimension of the  plate  becomes 

extremely  large  compared  to  the  other  one, then  the optimal mass  ratio tends 
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to the  limit  value: 

1 

1 

which is identical  with  the  optimal  mass  ratio found for  the  minimum-mass  design 

of the  one-dimensional  cantilever wing for  fixed  torsional  frequency14.  The 

analogy  between  that  problem  and  our  shear  plate  one is by the way worth noting. 

Also,  for a fixed  value of 6 the  mass  ratio first decreases when the 1' 
ratio  a/b  increases,  reaches a minimum  and  increases  again  to  the  value m 
when 6 goes to infinity.  This  variation of m with A for a 6 of 0 . 3  is plotted 

in fig. 7. The  asymptote is the  straight  line lh = 0.901663, and  the  maximum 

mass  saving is obtained  in  that  case  for  a/b = 3.42. The  value of the mass  ratio 

is then 0.88621, ,corresponding  to a saving of 11.4% as compared  to a saving less 

than 9% for a square  plate  made of the  same  material. 

0) 

1 1 

The  variation of the  mass  ratio h with the  proportion 6 of structural 
1 

mass is represented  in fig. 8 for  different  values of the  ratio  a/b. 

2 . 3  Application  to  the  Circular Plate 

We  now turn  our  attention  to  the  optimization of a circular  simply-supported 

shear  plate.  The  optimal  thickness  distribution  being  assumed  to  be  rotation- 

invariant, i. e. , its  expression in polar  coordinates  to  be  independent of 8 ,  the 

problem  might  also, as pointed  out  in  the  introduction, be  viewed as a one- 

dimensional  one,  and  solved  using  the  classical  methods of optimal  control  theory, 

which wil l  provide two ways of finding  the  solution. 

In  polar  coordinates (r, e ), an  axisymmetric  optimal  solution h*' has  to 

satisfy (2 .2 )  rewritten as: 

'where  the  superscript (*) has  the  same  significance  than  before,  the  actual  thick- 

ness  being  h = 6 h* + 6  with 6 + 6 = 1. I 2 '  2 
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1 
r (h*w')' + - h*w' + k  (h* + -1 w = 0 

2 6 2  

61 
(2.18) 

where ( I  ) denotes  the  derivative  taken  with  respect  to r. 

With the  value of the  optimal  displacement  given by (2.9)  where p is 

taken  equal to a-r, 

w = - sinh[k(a-r)] E C  

k (2.19) 

the  optimal  virtual  thickness  h*  has to satisfy  the  ordinary  differential  equation: 

1 b 2  h*' + (- - 2k tanh[k(a-r)])  h* - k 6 tanh[k(a-r)] = 0 (2.20) 
1 

r 

For the  same  reasons  than  for  the  rectangular  plate  (continuity of the 

shear),  theoptimal  virtual  thickness h* has  to  vanish  at the center of the  plate. 

The  solution is thus found to  be,  after  some  manipulation: 

6 
2  sinh(2ka) - sinh[2k(a-r)] - 2kr  cosh[2k(a-r)] 

2 8kr cosh  [k(a-r)] 
h* = - 

61 
(2.21) 

and  the  optimal  thickness  distribution is given by: 

h = 6  
( L +  

1 sinh(2ka) - sinh[2k(a-r)] 
2 

+ 
2 (2.22) 

4  cosh  [k(a-r)]  8kr  cosh  [k(a-r)] 

We recall that: 

k = a  px = 2.4048 - V l -  
f a 

The  optimal  mass  ratio is then  equal  to: 

2rrhrdr 

m =  0 2 rra 
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and, after some  easy  integrations, found  to  be: 

2 sinh2(ka) ) m = -(I+ 
2 2 2  k a  

(2.23) 

As expected,  the  ratio is equal  to  zero when all the  mass is structural 

(6 = l), and  tends  to  the  value 1 when all the  mass is non-structural (6  = 0 ) ,  

and  therefore not at  the  control of the designer. 

A diametral  cross-section of the  optimal  plate  corresponding  to  the case 

where 60% of the mass is non-structural is represented  in fig. 9. The  mass 

saving  then  obtained is equal  to 8.6%. The  variation of the  optimal  mass  ratio 

with.the  proportion 6 of structural   mass in  the  reference  structure is plotted 

in  fig. 10: note  that  the  savings  obtained  for a circular  plate are slightly less 

important  than  those  obtained  in  the  case of a rectangular  plate, as can be seen 

by comparison of the  curves  represented  in fig. 7 to  the  one of this  figure. 

1 

To solve  the  same  problem as a direct  application of the  methods of 

optimal  control  theory, we have  to  minimize  the  mass: 

a 

0 

or ,  which is equivalent,  the  definite  integral: 

a 

J = f hrdr (2.24) 

0 

The  constraint is given by equation (2.11) rewritten  for the case of axi- 

symmetric  vibrations,  using  polar  coordinates, as: 

(h%f) '  + -h*wf 1 + E a f  2 (61h* + 6  ) w = 0 
r 2 (2.25) 

(I ) denoting as before  the  derivative  with  respect to r, together  with  the  boundary 

condition: 
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w(a) = 0 

We introduce  the  auxiliary  variable: 

s = h*r 

and  rewrite (2.25) as: 

2 62 

6 1  
(sw') '+ k (s + - r) w = 0 

w(a) = 0 

where: 

2 2 2.4048 2 k = :afS1 = (7 6 1  

Introducing  another  auxiliary  variable  t by the  means of: 

t = s w '  , 

we  rewrite  the  optimization  problem as: 

Minimize: 

a 

J = f sdr 

0 

subject  to  the  differential  constraints: 

t' = -k 2 ( S  + - 6 2  r)w 

6 1  

(2.26) 

(2.24) 

and  the  boundary  conditions 
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w(a) = 0 

t(0) = 0 t 

The  Hamiltonian is formed: 

t 2  6 2  
w s  61 

H =  s + A  - -  k 16s +-r )w 

and  the  necessary  conditions for a minimum are given by: 

2 62 

61 
1' W = k At's + -r) 

h 
1' = - 
t s  

W (2 .27)  

2 
1 - - - k  h w = O ,  2 t 

S 

the last equation  being  the  control  equation. 

The  natural  boundary  conditions  are: 

(0) = 0 

ht(a) = 0 

W 

A solution  to  the  problem  appears  to  be  such  that: 

being a proportionality  constant,  assumption  compatible  with  the  original 

~ ~~ ~ 

'The second of the  conditions results  from  the  fact  that s(0) = 0 imposes  the 

vanishing of t for r = 0. 
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boundary  conditions.  The  control  equation is then  rewritten as: 

t2 2  2 a - ~ + k ~  = O  
S 

or : 
2 2 2  w' = a + k w  

which  shows that 01 has  to  be  positive: let 

2 a =  c 

(2.28) is written as: 

d r = E  -- dw € = f l  

or, integrating: 

e r-r =- Log(kw + 
o k  

which is also: 

w = - sinh[k(r-r  )] E C  

k 0 

(2.28) 

(2.29) 

and,  due  to  the  condition w(a) = 0 ,  the  optimal  displacement  mode is finally 

given by: 

w = - sinh[k(a-r)] € C  

k (2.30) 

which is exactly  the  expression of the  solution found to  the  two-dimensional 

problem, as rewritten  for  the  case of axisymmetrical  vibrations  in  polar 

coordinates  (equation  (2.19)).  The  problem of finding  the  optimal  thickness 

distribution  from now on is the  same as treated above. 

The  solutions  to  the  optimal  problem  obtained  from two different  methods 

- satisfying  the  necessary  conditions  for  optimality  in  the classical one- 



dimensional case and in  the  two-dimensional  one, as derived  in  part A - are 

therefore  the  same when the  two-dimensional  domain  can be in  fact reduced 

to a one-dimensional  one  in  an  image-space as it is the case for  the  axisymmetric 

vibrations of a circular  plate,  therefore  proving  the  validity of the  optimality 

process  in  two-dimensions  for  this  particular case. 

3. Simply-Supported  Rectangular  Shear Plate with a Minimum-Thickness 

Constraint 

As we have  previously  seen,  the  optimal  thickness  distribution  in  the  case 

of a rectangular  plate is found such  that  the  virtual  thickness  h*  vanishes  along 

the  segments  constituted by portions of the bisectors of the four corner r ight  

angles  and of the  line  joining  their  points of intersection, as represented  in  fig. 6. 

This  has as a consequence  the  instability of the structure,  and a plate  built 

following this  theoretical  distribution would immediately  collapse if simply- 

supported.  The  same  situation arises for  a square  plate, which i s  a particular 

case of the  above  for  which  h* is zero  along  the two dia.gonals. 

It is therefore  very  desirable  to  impose a constraint on the  virtual thick- 

ness h*;  imposing  h*  to  be at least  equal to h* is of course equivalent  to 

impose a minimum  actual  thickness  h = 6 Ih,* + 6 2. 
0 

The  optimization  problem is the  same as before: 

Minimize  the  surface  integral: 

J* = ff h*(x,  y)dxdy 

D 

subject  to  the  constraint: 

- & h * z )  a + -(h*-) +&a (6 h * + 6  ) w =  0 a w a  aw 2 
ay ay G f 1 2 

w = o  on a D  

with  the  additional  inequality  constraint on the  control  variable: 
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I 

h* - h* 2 0 (3 3) 
0 

(3 .2)  is broken down into a system of the  form (A. 1 . 1 ) .  Following  the 

method  derived in (A. 3),  we form  the  augmented  Hamiltonian: 

Z 
2 

Z 
3 H = h* +h - + A2ul + h3u3 + p1 h* + p u 1 h* 2 2  

G f 
+ w 2  (6 lh* + 6 2 ) ~ 1 ]  +E,(h*-h:) 

where : 

.re exp The  necessary  conditions  for an  extrema1 a 

partial  differential  equations: 

az 

ax 1 
2 
” “u 

a22 
” 

aY 2 
- u  

az 

ax 3 
3 
” - u  

az 

aY 1 G f  1 
3 2 
” - - u  ( 6  h* +d2)z1 

Ires 

(3.5) 

sed by the system of 

(continued) 

69 

” 



- +-=" 
aY h* 

'1'2 '1'3 2 I-"" w d  L Z  + g = o  
h*2 h*2 G f 1 3 1  

h = o  
3 

together  with  the  boundary  conditions: 

z = o  
1 

h p' ((T) - p 01' (u) = 0 
2 2 

h p' (m) - (y'(cr) = 0 
3 3 

on aD, which  reduce  to: 

z = o  1 

h2 = p3 = 0 

Assume,  as in  (2.7): 

z 
3 

p 1 -  Q 
" 

(3 .6a)  

(continued) 



z 1 
'2='3=" ci ' 

being a proportionality  constant.  The  control  equation  reduces  to,  going  back 

to the  original  notations: 

At  every  point of the  domain D where h* is greater  than  h*, 
0 

5(X,Y) E 0 

and  (3.7)  reduces to: 

aw 2 aw 2 2 2  
(ax) ay 

+(-) =,+e, 6 w 
G f  1 

Let 

2 , = c .  

The  solution  to  this  equalion  was found to  be: 

w = - sinh(kp) E C  

k 

where : 

k = w  f ,/c G 1  

and  the  quantity p having  been  previously  defined. 

We now focus  our  attention  onto  the  case of a rectangular  plate  with  sides 

of lengths a and  b (a 2 b). For  obvious  reasons of symmetry, it is sufficient 

to consider  the  portion of the  plate which is the left half of the  region  previously 

called  (2). 

Inside  this  portion, p is equal  to  y, and: 

w = - sinh(ky) E C  

k (3.8a) 

71 



The  optimal  virtual  thickness is, as before: 

26 cosha(ky) 

where Ts is an arbitrary function  to be determined. 

Now in  the  regions  where  the  minimum  value  permissible  for h* is 

attained,  that is: 

then equa.tion (3 .2)  reduces to: 

2 6 
v w + g u ; ( b l + < )   w = o .  

This is an equation of the form ( 1 . 6 ) ,  with: 

Q = w  

The  general  solution  is,  introduce  the  four  constants of integration 

A , A , A3, Ad: 1 2  

w(x, y) = A sin px sin 337 + A  sin px cos yy + A cos px sin yy 
1 2 3 

+ A cos px cos yy 
4 

where: 

2 2  p 2 + y  = a  . 

(3.10) 

(3 .11)  

(3 .12)  

The  problem is now to find  the  shape of the  curve A dividing (2) into two 

regions  with  different  properties: in the first  one, which  should  be  attached to the 

b i sec to r  of the   lower- le f t   corner   and   to   the   l ine   def ined  by  

Y = b/2,  b/2 s x s a/2 , 

h*  keeps  the  minimum  permissible  value h* * in the  second  one,  closer  to  the 
0 ’  



side y = O ,  the  distribution of h* is as given by (3.9). 

The  shape of this  dividing  curve A can  be  imagined  quite  easily,  with  the 

help of the  shape of the  lines of constant  thickness  already  derived  for  the case 

where  there is no constraint on the  thickness,  and  from  previous  experience  in 

one-dimensional cases14: A should  consist of a curve  starting off somewhere  on 

the  lower  side of (2) between  the  points x = 0 and x = a/2,  situated on the  same 

side of the  line y = x, and prolongated by a nearly  straight  line  parallel to  the 

x-axis after  the  point with abscissa b/2. In any case, in  the  corridor  enclosing 

the bisector y = x, the  displacement w has  to  be  symmetrical about the same 

line,  and  this  can  happen if and  only if: 

A = A  
2 3  

To determine  the  exact  shape of A ,  w e  note  that w and its f i rs t  

derivatives  &/ax and h / a y  have  to  be  continuous across it. 

A point (f , q ) of A has  to  be  such  that: 

sinh(kq) = al sin pf sin Pq + a2(sin cos pq + cos  sin p71) 

+ a cos PC cos pq 4 

- cosh(kq) = a1 sin Pf cos Pq - a2(sin PC sin Pq - cos Pf cos pq) k 
P 

- a4 cos PC sin pq (3.13) 

(the a , a  replace  the  previous  constants A A , A  as the  displacement 

mode w is defined  up  to a constant  multiplicative  factor). 
1 2'"4 1' 2 4 
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The  point 0 belongs to the  domain  in  which w is given by (3.12). The 

condition  w = 0 at  the  corner 0 leads to: 

a = O .  
4 

By subtraction of the  last two equations  in (3.13), we obtain: 

k  cosh(kq) a =  
1 P sin P(C -q) ' 

From the  second  equation, 

Replacing a and a by their  values in the first equati 1 2 on (3 .13) ,  we 

find  the  relation  between 5 and q :  

After  some  trigonometric  manipulation,  this equa.tion turns  out  to  be 

solvable  in 5 , yielding: 

where  sin is defined by: -1 

f- 

sin -1 u = ( Arcsinu + 2hn 

TT - Arcsinu + 2hn , 

(3.14) 

h =  0, 6 1,. . . 

Arcsinu  representing  the  principal  determination of arcsinu, and where  the  proper 

choice of the  integer  h  has  been  made. 

Recall  that k and P are defined as: 

(continued) 
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The  curve A is thus  defined by the equation: 

x = f (Y) - 
Although we  cannot do the  inversion in an analytical  form,  its  Cartesian 

equation is , formally: 

y = q (x) = 5 (x) - -1 

We are now a.ble to  write down the  expression for the  thickness  distribution 

in  region (2): it ha.s to  be continuous across  A; thus , at every point (5 , q )  of 

A :  

where  the unknown function 6 is  defined as: 

0 (x) = ( h g  + :) cosh [kq(x)] . 2 

1 

6 2  cosh [kq (x)l 
26 1 

2 
h*(X,y) = - - (3 .15)  

(in  region (2) , the  extension of this  formula to  the  other  regions  being  immediate), 

and this  corresponds  to a. true  thickness  distribution of: 

6 2  2 cosh [kr)(x)l 2 

cosh (ky) 2 
h(x,y) = + ( 6  h* + - )  (3 .16 )  
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Of course,  in  the  remaining  part of domain (2), h  keeps  the  constant 

minimum  value: 

h(x,  y) = 5 h* + 6 1 0  2 

The  distribution  in  the  other 3 regions  follows  immediately  from 

symmetry. 

We  cannot here  give  an  explicit  expression  for  the optima.1 thickness 

distribution, as the  function ~ ( x )  cannot  be  put  under any analytical  form and 

is only known implicitly. 

Of course a computational  approa.ch is alwa.ys possible:  contours of 

constant  thickness  have  been  represented in figures 11 and 12 respectively  for  the 

case of a square  plate  and  that of a rectangular  plate  for which  the ratio of the 

lengths of the  sides  is  equal to 3/2,  as in the  previous  unconstrained  problem. 

Again,  the  initial  proportion of structural   mass in  the  reference  structure 6 1 
was taken equa.1 to  0.4, which  mea.ns  that 60% of the mass  is  non-structural. 

The  constra.int  h* was  taken  equal  to 0. 5,  representing an  actua.1 constraint of 

0. 8 on the  true  thickness h. 
0 

In the case of the  square  plate,  84.4% of the pla.te sur face  i s  a t  the 

minimum  allowed  thickness of 0.8.  The  mass  saving then  obtained is of 14.1% , 

slightly  inferior  to  the  one  obtained  in  the  ca.se  where  there was no minimum 

constraint on the  thickness. 

For the  recta.ngular  plate  (a/b = 3/2),  the  minimum  allowed  thickness is 

reached on 77.6% of the tota.1 surface.  The tota.1 mass  is found to  be of 0. 845 

tha.t of the  original  plate,  corresponding to a saving of 15.5%  that  compares wel l  

with  the 15.9%  obtained when there was  no constraint  on  the  thickness. 

When we compare  the  corresponding  optimal  shapes  for  the cases where 

there   is  a minima.1 constraint on the  thickness and the  unconstra.ined  ones,  the 

main  feature  that  we  notice  is  the  augmentation of the area of the doma.in formed 

by the  reunion of the  points  where  the  thickness was  inferior  or equa.1 to the 

given constraint,  together with the drastic diminution of the  maximal  thickness, 

that was  obtained at  the  four  points  middle of the  sides  in  the case of the  square 



Figure 11. Optimal  thickness  distribution  for a simply-supported 

square  shear  plate with a minimum-thickness  constraint. 
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Figure 12. Optimal  thickness  distribution  for a simply-supported 

rectangular  shear  plate  with a minimum-thickness 

constraint  (a/b = 3 / 2 ) .  
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plate, and at the two points  middle of the  larger  sides in  the case of the  rectan- 

gular  shape.  Physically,  this is logical, as in the  constrained  case,  the  parts of 

the  plate  where  the  thickness is above the  imposed  minimum  have less to con- 

tribute  to  the  rigidity of the  structure  than  in  the  unconstrained  one,  where  they 

have  to  compete  with  the effect of antagonistic  hinges.  This  can  also  be  viewed 

in  terms of the  total  potential  energy  for  the first deflection  mode of the  plate, 

which has to remain  the  same  for a fixed  natural  mode,  whether o r  not there is 

a constraint on the  thickness:  the  contribution of a large  thickness a.t some  points 

of the  plate  has  to  balance  that of hinges in the  unconstrained  case,  whereas 

everything  gets  smoother when a constraint on the  thickness is imposed. 

This  feature  (diminution of the  maximum  thickness  attained  and  augmenta- 

tion of the area where  the  thickness is inferior  or  equal  to  the given  constraint 

a s  soon as it is applied) is the  exact  extension to two-dimensions of properties 

already  recognized  for  the  one-dimensional  problems  where a minimum con- 

straint was imposed on the  thickness . 14 

For  the  practical  design,  these  results  a.re of extreme  importance.  The 

sha.pes obta.ined when the  thickness is subject  to a minimal  constraint are much 

easier to rea.lize in practice:  the  maximum  thicknesp  attained in  the  doma.in 

covered by the  plate is much  sma.ller  than in the  unconstrained case, most of 

the surface of the  plate is at this  minimum  imposed  thickness,  and  there are 

no hinges as before.  Moreover,  together with all these  adva.ntages,  the  striking 

fact is that  the  mass  saving is only slightly  inferior tha.n in the  unconstra,ined 

case. 

Aga.in, these  properties  were  noticed  also  for  one-dimensional  ca.ses . 14 
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PART C 

THE MINIMUM-MASS  DESIGN OF A SANDWICH PLATE FOR A GIVEN 

FUNDAMENTAL FREQUENCY OF VIBRATION 

A  further  step  in  the  domain of applications  to  more  realistic  structures 

is that of the  optimization of plate-like  structures  encountered  in  practical  design 

for  a given  fundamental  frequency of vibration.  For a sandwich  plate,  the 

necessary  conditions  lead, when the  displacement  along  the  edge is  assumed  to 

vanish,  to  an  optimality  condition  expressing  the  uniformity of the  optimal 

energy  distribution  in  the  form of a second order  nonlinear  partial  differential 

equation for  the  optimal  displacement  mode  w tha.t does not  involve any design 

parameters.  The  optimal  thickness  distribution  is  the  solution of a second 

order  linear  partial  differential  equation. 

A numerical  solution of these  equations is  presented  for a square  aluminum 

alloy-aluminum  honeycomb  panel  simply-supported  along  the  edges. 

1. Sta.tement of the  Optimization  Problem 

A  sandwich  plate  is a composite  plate  consisting of a core  layer of 

thickness ho a.nd of two face  layers of thickness t. It is assumed tha.t t is 

small  compared to  h  and  that  the core ma.teria1 is much more  flexible than  the 

face  material. Under these  assumptions  the  transverse  shears are predominantly 

taken by the  core  plate  while  the  bending  stresses are primarily taken by the  face 

plate  (Fig. 13). We will  take  the  elastic modulus  in transverse  direction of the 

core-layer  material, to be infinite. 

0 

GC 

The  core ma.teria.1 is generally  extremely  light, and despite  the  small 

thickness of the face  material,  most of the weight is concentrated in the  fa.ces. 

We wil l  therefore  act on the  face  layers with thickness t ,  and our goa.1 will  be 

to find the  optimal  t  distribution of the  rectangular  plate of minimum  weight 

having  the same  fundamental  frequency of vibration a.s a uniform  reference one. 
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Figure 13. Infinitesimal  element of sandwich  plate,  showing 

dimensions  and  relevant  components of s t ress .  
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Under  the  small-deflection  a.ssumption,  the  equations of equilibrium  for 

a sandwich  plate  have  been  derived  by  Reissner 36y37 who followed the classical 

approach of combining  the  equilibrium  equations  and  the  stress-strain  relations, 

and by Hoff who used a variational  approach.  Assuming  that  the  only  external 

action  applied  to  the  plate is the  normal  force of intensity  q,  the  equilibrium 

equation  reads: 

38 

a2M a2M a2M 

ax2 axay ay2 

x _ 2 x y + " l " g  

where M , M are the  bending  moments per  unit  length of sections of the  plate 

perpendicular  to  the  x  and  y axes respectively,  M  the  twisting  moment 

per  unit  length of sections  perpendicular to the  x axis, the  signs  being  taken 

according  to  the  Timoshenko  convention . 39 

36 

X Y  

XY 

From  the  stress-strain  relations , 

where  the  bending  stiffness  factor 

t(ho+  t) E 2 

D =  S 

2U-v.  ) 
2 

D is defined as: 

(1 .3 )  

E being  the  elastic  modulus of isotropic  face-layer  material, v the  Poisson 

ratio. 
f 

Substituting  these  expressions  in  the  equation of equilibrium (1. l), we 

obtain: 
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Under our  hypothesis t << h a very 0' 
n 

D = -  hCdEs 

2 ( 1 - v  ) 
2 

a w  a ~ a w  2 2 2  
(1- 4) 

ay2 ay2 ax2 

good approximation  for  D is: 

and (1.4) reduces to: 

2 2  v (tV w)+( l -v )  q (1.6) 

For a sandwich-plate of uniform face thickness t and  uniform core 
0 

thickness  ho,  the  differential  equation  for free vibration is (1. 6)  where q i s  

replaced by the  d'  Alembert  force  -(hopc+t p )(a w/at ) and  t is a constant 2 2  
o s  

to: 

v4w = - 2(1-V ) 0 c 0 s a w  

at2 

2 h p + t p  2 
(1.7) 

PC 
is the  density of the  core-layer  material,  that of the  face-layer Pf 

material. 

Denote  by  n  and s the  coordina.tes in the  directions  normal and 

tangential  to  the  boundary 8D. For a clamped  edge, w e  have  the  geometric 

boundary  conditions : 

w = O  and 3 = o along a~ . 
an (1. 7a) 

At  a. simply-supported  edge,  the  boundary  conditions are: 

w = 0 and M = 0 along aD (1.7b) n 

where M is  the bending  moment per  unit  length  associated  with  the  cross- 

section  whose  normal  is n. 
n 



In the case of a free  edge,  the  boundary  conditions are: 

aM 

n  n  n as 
M = O  and V = Q  --- - 0 along aD ns (1.7c) 

where Vn denotes  the  vertical  force,  Qn is the  shearing  force  and M is 

the  twisting  moment  about  the  direction n. All three  quantities V , n Qn and 
M a r e  for  one  unit  length of boundary a.nd are associated  with  the  cross-section 

whose  normal  is n. 

ns  

ns 

The  relation  between  the  moments and shearing  forces  and  deformations, 

in terms of norma.1  and  tangential  coordinates, are : 
32 

Q = - D " V w  a 2  
n an 

where  the Lapla.cian ha.s the  form: 

2 a2 1 a a2 v =- + - - + -  
2 R an 

an 
2 

as 

and R denotes  the  ra.dius of the bounda.ry curve. 

To formulate  the  eigenvalue  problem, we let  in  the  cla.ssica1 fa.shion the 

displa.cement  w  be  given by: 

where W depends on the  spatia.1  coordinakes only and f i s  a. time-dependent 

harmonic  function of frequency o. (1.7)  reduces  to: 

4 2(1-v ) 0 c 0 f w2w 2 h p + t p  
v w= t 
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boundary  conditions a r e ,  depending on the  situation  at  the  edge,  given  by 

one of the  conditions  (1.7a),  (1.7b)  or ( 1 . 7 ~ )   w h e r e  w  has  been  replaced by W. 

This  eigenvalue  problem is a classical one 32'33; it is shown to  be  self- 

a.djoint, and yields an infinite  sequence of eigenvalues,  the  smaller one  being  the 

fundamental  frequency of vibration w of the  plate  under  the  imposed  boundary 

conditions. 
f 

The  varia.ble  face-layer  thickness  t of a. rectangular  plate  having  for  one 

of its natural  frequencies of vibration w - that  we  can  reasonably  assume  to f 
be  also  its  fundamental  frequency if the  plate  does  not  differ  too  drastically  from 

the  uniform  one - together  with  the  corresponding  mode  w,  have  to  satisfy 

the  partia.1  differential  equation: 

2 2  
( 2  2 2 2  z> a t  a w  a t a w  a t a w  v (tV w)+( l -v)  2" - " - " 

say a a y  ax  ay2 ay  ax 

2 2  

- 2  p +tpf)wf w = 0 . 2 
o c  

If w e  introduce  the  non-dimensional face-1a.yer thickness 7 = (t/t ), the 

above  equa.tion reduces to: 
0 

2 2  v (7 v w)+(l-v) 
(1.10) 

where IK and p are constants  depending only on the  material  properties of the 

reference  structure,  defined as: 

2 

(1.11) 

(1.12) 



We are now able to state the  optimization  problem:  mininize  the  total 

mass: 

D 

o r ,  equivalently,  the  functional: 

(1.13) 

D 

taken  over  the  domain D covered  by  the  plate,  subject to the  partial  differential 

equation  constraint: 

2 - p (T+K)W = 0 
a a y  ahray ax2 ay2 ay ax 2 2  

(1.10) 

together  with  boundary  conditions  (1.7a),  (1.7b) o r   ( 1 . 7 ~ )  along  the  portions of the 

boundary aD where  the  edge  is  respectively  clamped,  simply-supported  or free. 

For a rectangular  plate with sides of length a and b, a 2 b,  the  natural 

frequencies of vibration are found to be: 

m , n =   1 , 2 , 3  ,... . 

The  fundamental  frequency is: 

I 9  \ 

0 f = w  11 = r 2  (>+$)J ES 

2(l-V2) Pf 

(1.14) 

(1.15) 

and the  value of p in  equation  (1.10) i s ,  in that  particular  case: 2 
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2 1 r  4 2 

1 + K  a b  
(1.16) 

The following  derivation of the  necessary  conditions will be  valid  for  the 

most  general  shape of the boundary aD. For  the  applications,  we wil l  assume 

the  plate  to  be  rectangular and  will  take  the  coordinate axes to  coincide  with two 

of the  sides,  the  origin  being  one of the  corners of the  plate. Only clamped  and 

simply-supported  edges  will  be  considered.  The  boundary  conditions  will  be 

picked  among  one of the following: 

i. edges  parallel  to  the x axis. 

CLAMPED:  w = 0, &/8y = 0 along y = 0, b 

2 
SIMPLY-SUPPORTED: w = 0, 7 -- a w  

- 0 along y = 0 ,  b 
aY2 

ii. edges  parallel to the y axis: 

CLAMPED: w = 0, %/ax = 0 along x = 0, a 

2 
SIMPLY-S'UPPORTED: w = 0,  7 -- a w  

2 - 0 along x = 0,  a (1. loa) 
ax 

2. The  Necessary  Conditions 

The  constraint  (1.10)  is  transformed into a set  of f irst   order  partial  

differential  equations in the  form (A. 1.1) following step by step  the  general 

method  outlined in P a r t  A. 8 ~ / & 8 y  is computed from (1. lo) ,  leading  to  the 

system: 

"" 

2 

z = w  
1 

az 
1 
" ax 2 "z 

I- 

(continued) 
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az 

aY 3 
1 
” - z  

az 2 
” 

ax 4 
- z  

az2 
“ 

aY 5 
- z  

az 3 
” ax 5 

- z  

az 
-= ax 7 4 z  

az 

aY 8 
4 
” - z  

az5 
” 

ax 8 
- z  

az 

a Y 9  

5 
“ - z  

6 
” ax 9 

- z  

- az7 
ax 1 = u  
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a2 
a Y 2  

7 
" - u  

- 4  ax -u2 

- az8 
aY 3 

= U  

az 

ax = u3 
9 - 

az 

aY 4 
9 
" - u  

az 10 - ax 4 = U  

az 

aY 5 
10 -= u 

t = 7  1 

atl 
ax - t 2  
" 

" 

ax 1 - v  

(= - 3 

at2 2 
" 

aY 
- [p (tl +K)z1-t1(U1+ZU3+U5)-2t (2 +z )-2t (2 +z )-v ( z  +vz ) 2 7  9 3 8  10 1 4  6 

(continued) 



-v (z + v z  )]/2(1-V)Z5 3 6  4 

at3 at2 
ax aY 
"- - 

at3 
" 

a y 3  
- v  

The boundary  conditions, in the case of a rectangular  boundary  and  simply- 

supported  edges  read: 

z = o ,  z = o  along x=O, a 

z = o ,  z = o  along y =  0, b 

1 4 

1 6 (2. la) 

We now form the  Hamiltonian: 

t + p  v + 
+'11 3 13 3 2(1-v)z5 

P (t1+K)Z1-t1(U1+2U3+U5)-2t 2 7  (z +z  9 ) 

-2t (z +z  )-v (z + m6)-v (z + la4) 3 8  10 1 4   3 6  

The  necessary  conditions  read: 

ahl aPl aH  '13+  '12 2 

azl 

- + - -  ax* - - -  - " 
2(1-u)z5 P ( t l + K )  

(continued) 

"" 





aH 
" 

a4 
= A  +' = o  

1 0  9 

" aH tl(A13+'12) 

&5 = '10 - 2(1-v)z = o  
5 

" aH - '13 +'12 
avl = I12 2(1-v)z5 (z4+ vz ) = 0 6 

-= aH 
'13+  '12 

8v3 - '13 2(1-v)z5 
- (Z6+ La4) = 0 

For a rectangular  simply-supported plate, the boundary  conditions  read: 

= A  = A  = z  = A  = A   = A   = A   = A  
1 2 3 4 5 6 7 8 9  

= All = A12 = A13 = 0 

along x = 0 , a 

z1=p2  ='3='4='5=z6='7='8='g- - '10 = ~ 1 1 -  - ~ 1 2  - - '13 = 0 

along y = 0, b (2.3a) 

We therefore  have  to  solve a system of 46 equations  in  the 46 unknowns 

z, u, t,   v, A and p , which is a formidable  task if we  consider  that  the  majority of 

the equations  composing it are partial  differential  equations. A logical and simple 

assumption, in the  line of the  one  made  for  the  shear  plate  problem (see 

Appendix l),will  however  yield a simple  partial  differential equation  to  be  satisfied 

by the  optimal  displacement  mode w. We verified  that  this  assumption  was  indeed 

valid  in  the  shear  plate case, and similar  ones  also  have  proven  to  be  valid  in 

" " N  H 



one-dimensional  cases. '* We will  come  back to this assumption in length in 

Part E. 

The top  equation of (2.3) is similar in form to the  original  constraint 

equation (1.10) which might be written  under  the  form: 

with 

This leads us to assume 

h = - = - 1 (t (a +Z )+t (z  +uz6)+(l-u)t3z5 1 P 
l a !  a 1 7  9 2 4  

p 1 -  a! 
- 9 = - L (t (z + z  )+(1-v)t z +t  (z +uz4) 

a! 1 8 1 0  2 5  3 6 

A +  
13 '12 1 Z 

2(1-u)z5 
= +- 

a 

where a is a proportionality  constant. Under this  assumption,  compatible with 

the boundary  conditions when z1 is prescribed  to  vanish  dong the  edge, 

z (z + v z  ) 
1 4  6 h12 = + 

a! 

z (z + vz4) 1 6  
~ 1 3  = + a! 

The three equations  above (the control  equations) are rewr i t ten  as: 
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This  relation  simplifies into: 

2 2  2 2 2  
4 4 6  6 5 1 

z +2uz z +z  +2(1-v)z = a  3- p z 

or, in terms of the  sole  variable w: 

that we might rewrite as: 

2 2  

a a Y  a x @  
(a2.w)2 + 2(1-v) [( L) - 9 e] = a  +p 2 2  w (2.10) 

The  expression on the left hand side is, up to a constant  multiplicative 

factor, the potential  energy of deformation  density of the sandwich plate, which 

is identical to the one given in Ref. 33 for an elastic plate with constant  thickness. 

This  potential  density  might also be  expressed  very  simply as a symmetric 

quadratic  form of the principal  radii of curvature p and pz of the  deformed 

plate, and more  precisely in terms of the  so-called  mean and total curvatures 

(ref. 33, p. 250). For a sandwich plate with varying  thickness  such as the one 

we consider  for which the bending rigidity is simply  proportional to the  thickness 

t ,  the  potential energy  density is independent of t. This is actually not the  case 

for a classical elastic plate with varying  thickness h: as we will see in the next 

chapter,  where  the  potential  energy  density will be encountered again, it is 

then a function of h, and more  precisely is proportional  to  the  square of the 

varying  thickness. 

1 

Actually, (2. I O )  states for  the sandwich plate an extremely  general 

optimality principle encountered  in a very  broad class of structural optimization 

problems:  for a given fundamental  frequency of vibration, (2.10) expresses  the 

conservation of the  difference between the  potential  energy and kinetic energy 

densities. We will come  back  in Part E to this extremely important feature, 

which is a necessary and sufficient  condition  for  an  extremal. 
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If we rewrite the left hand side  as: 

we see that it cannot be  negative,  the  Poisson  ratio v of the given material 

having to be comprised between the  extreme  values 0 and 1/2. On the boundary 

aD, w = 0, and the  above expression  takes,  from (2. lo), the  value CY: this shows 

that CY is actually a positive  quantity; let: 

2 CY=c 

If m is a solution of: 

(2.11) 

then ECW is a solution of (2.10). As the  displacement mode is known up to a 

multiplicative  constant  factor  only, and if we recall that CY was any multiplicative 

constant, it is sufficient for  our  purpose  to  consider (2.11). The latter is a very 

interesting looking nonlinear partial  differential equation of the second order  in 

the dependent variable w, much simpler  than what we might have expected from 

an original  system of 46 equations. It is also  very  general in that it has to  be 

satisfied  inside a domain D of any shape, the  constant p being  determined 

from  the  uniform  plate,  according to (1.12). For a rectangular domain, 

2 

(1.16) 

The  different boundary conditions corresponding to different  supports  (clamped 

or  simply-supported  edges) are to be  chosen among (1. loa). 

Once the  optimal  displacement mode is found from (2.11) , the  optimal 

thickness  distribution is given by the  original  constraint equation: 



3. A Numerical  Application 

Equation (2.11) which  gives  the  optimal  displacement  mode is, a s  

already  mentioned, a second  order  nonlinear  partial  differential  equation. 

It  is  unfortunate  but  true  that  equations of this  type  have  generated 

practically  no  interest  among  mathematicians  in  our  century.  The  main 

reason,  as quoted from A m e ~ ~ ~  seems  that  nearly no physical  situations 

within  the  scope of mathematical  formulation  yields  equations of the  afore- 

mentioned  type to be  solved as  steps  towards  the  solution.  It  is  hoped  that 

optimization  problems  making  use of variational  techniques  will  give a new 

life to the  whole  subject:  the  constraint  equation  which  we  started  from 

was a fourth  order  one,  linear  in w, whereas  the  optimality  condition 

(2.11) i s  a second  order  nonlinear one. Similarly,  for  the  shear  plate, 

the  constraint  was a second  order  partial  differential  equation  linear  in 

w,  yielding an  optimality  condition  in  the  form of a first  order  nonlinear 

equation.  The  characteristic  features  comrnon to such  problems  seem 

that,  whereas  the  constraint  is  linear,  because  based on a previous 

linearization of the  system  under  investigation,  the  optimality  criterion 

yields a nonlinear  equation of order  reduced by half. For  sandwich  struc- 

tures,  we are  always  led to an equation  involving  the  optimal  displacem’ent 

mode only : it will  be  nonlinear of the  second  order i f  the  original  con- 

s t ra int   i s  of the  fourth  order,  as  is  extremely  common in the  theory of 

elasticity. 

11 

This  present  disinterest in nonlinear  second  order  partial  dif- 

ferential  equations is  the  more  curious  because  extremely  interesting  studies 

of the  subject  have  been  made at the  end of the XVIIIth and  beginning of 

the XIXth century by some  famous  mathematicians.  In  those  earlier  days, 
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the goal was then to find a general solution to the partial  differential equation, 

and to impose  the boundary conditions to determine  the unknown functions or 

constants  appearing  in  the  expression of the  general solution. This method of 

course  does  not apply to every  case, but is worth of more  efforts on the  part of 

researchers confronted with a first or second order nonlinear  partial  differential 

equation. It worked in the case of equation (B. 2.8)  for  the  most  general  shape 

of the boundary. 

The  author  wishes  to  express his gratitude to Ames for  referencing  in a 

modern work3' the  admirable  work by Forsyth, first published in 1890 and 

reprinted by Dover in 1955 , which is a monumental tribute  to  the  theory of 

differential equations and bears  most of the knowledge in this field up to the 

beginning of the XXth century. In there were we able to find a mention of the 

original  work of Ampere and in particular  the exact reference of his two funda- 

mental  contributions 41y 42 which led us to  the  discovery of an  exact  solution of 

equation (2.11) when the boundary of the  plate is an ellipse. However, we have 

been  unable yet to find an exact  solution of this equation for a rectangular 

boundary: the solution cannot in this  case  be  simply a function of the  distance  to 

the boundary as it was for equation (B. 2.8),  due  to  requirements of continuity 

for  the bending slope 0 ,  the bending moment M and the shear V along  the 

lines loci of the  points  from which two different  normals with equal  length  can be 

drawn  to  the  contour,  requirements which cannot be  met  under  such an assumption. 

40 

n n 

A numerical solution at this stage of research  seems  the  most  profitable 

thing to do, as it also will help orienting  future  investigations of equation (2. l l ) ,  

The  reference sandwich plate  under  consideration will be  constructed as 

follows:* the face material is constituted of 7075-T6 aluminum alloy, which has a 

Young's modulus of 1 0 . 4 ~  10  psi, a Poisson  ratio of 0.33 (1-v2 = 0.89) and a 

density pf of 0.1007 lb/in . Its  thickness is t = 0.012 in. The core is made 

6 

3 
0 

*The author  wishes  to  express  his  gratitude  to  Professor  Jean  Mayers and 
Professor  Richard Shevell for  their help in getting  the above data. 
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of 3/16-5052  H39-0015 P hexagonal aluminum honeycomb  alloy,  with a density 

PC of 0. 00254 lb/in3,  and  its  thickness is h = 0.3 in. 0 
For a simply-supported  square  plate  with  sides of length a = 10 inches, 

the  fundamental  frequency of vibration is given by 

0.3) x 10.4 x lo6 2 1 0.012 
2 x 0.89  0.3x0.00254 +O. 012x  0.1007 = 353 cps 

The  values of the  parameter K is 

K =25 00254 = 0. 632 
0.1007 

and P is given  by: 2 

The  numerical  problem is now reduced  to  solving  simultaneously  the  partia.1 

differential  equations 

V (T V W) +O. 67(2~ w - T w - 7 W )-0. 0239(~+0.632)~ = 0 
2 2  

XY  XY = YY YY = (3- 2) 

in the  square  domain  limited by the  straight  lines x = 0, lO and  y = 0 , lO under 

the  boundary  conditions  (simply-supported  edges) : 

w =  0, 'TW= = 0 along x = 0, lO (3. la) 

w = 0,  TW = o  along y = 0, lO 
337 

(3.2a) 
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For  the  computation, 49 x 49 = 2401  interior  mesh  points  were  considered, 

therefore  breaking  the  domain  into 2500 small  squares  with  side  length of 0.2. 

The  initial  start  for  w  was  taken  to  be  either  w = 0 o r  w = sin - sin  the 

displacement  mode  for  the  original  uniform  plate.  The  solution was found from 

(3.1) after  the  same  number of iterations,  10,  using a regular  relaxation  method. 

The  contour  lines  for  the  optjmal  displacement  mode  w are drawn  in  Fig.  14 

(interval  taken  equal  to 0.2).  The  maximum of w is attained at the  center of 

the  plate, and its  value is equal  to  1.23.  This  pattern is also shown by the 

computer  printout  reproduced in Fig. 15.  The  letters A, By C ,  , , . correspond 

to  points with a w in  the  respective  ranges 0.1 f 0. 015, 0.2 f 0. 015 

0.3 f 0.015,. . . 

10  10’ 

The  above  values for w are then used in (3.2) which is now a second 

order  linear  partial  differential  equation for the  optimal  nondimensional  thickness 

7. 

Two initial  guesses for 7 were  taken,  respectively,  to  be 

7 = 1 . 2  sin - mc sin . - *’ and 
10 10 

Both vanish  along  the  edges, as should  do  the  optimal  thickness,  because  neither 

w  nor  w are zero along  those  edges.  The  convergence was  in  that case very 

slow, and the  solution  was found after 150 iterations. At that  stage,  the  sum of the 

squares of the  differences  between  the  values of T during two successive  iterations, 

sum  taken  over  the 2401 mesh  points, was only 0.08736,  thus  securing  the  validitv 

of the  solution.  Contour  lines are represented  in Fig.  16,  while a computer 

printout of the  optimal  configuration,  under  those  same  rules  governing  the 

representation of w, is reproduced in  fig, 17. The  optimal  thickness  distribu- 

tion  along a median axis of symmetry and  along a diagonal of the  plate are 

plotted infigs.  18and 19, respectively.  The mass of the  optimal  face  layers is 

69. 8%  that of the  original  uniform  ones, and this  corresponds to a total  mass 

saving of 18.5%  for  the sandwich  plate. 

xx YY 

A  computer  program  written  in  the FORTRAN H language to solve  the 

system (3. l), ( 3 . 2 )  , using  double  precision, is presented  in Appendix 3. 
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7 vanishes only along the  edges, which does not prove to be  practically 

inconvenient , as was the  optimal  shear  plate. Also, its maximum is 1.47, which 

is quite  reasonable. However, one might  be  interested in imposing a minimum 

thickness  constraint as an extra inequality constraint.  The  application of the 

general method outlined in Par t  A is straightforward, and the above procedure 

may  be  used with only slight modifications. Due to limitations  in  computer  time, 

numerical computation was not carried out,  but it is a simple  exercise  for  the 

mind to imagine how the  optimal  thickness  distribution will look like when an 

inequality constraint is applied. 
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I 2 3 4 5 6 7 8 9 

Figure 14. Contour lines  for  the  optimal  displacement  mode  w-square 

simply-supported  sandwich  plate  (the  constant  c  has  been 

set  equal  to 1). 

L 
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Figure 15. Computer  printout  for the optimal  displacement  mode. 

Let ters  A, B, C, . . . correspond to points in the range 

0.1&0.015,  0.2*0.015, 0 . 3 i 0 . 0 1 5  ,.... 
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Figure 16. Contour lines for the  optimal  thickness  distribution - 
square simply-supported  sandwich  plate. 
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Figure 17. Computer  printout for  the  optimal  thickness  distribution. 

Same  notation  as  in fig. 15. 
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Figure 18. The  optimal  thickness  distribution  along a cross-section 

following a median  axis of symmetry. 
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Figure 19. The optimal  thickness  distribution  along a cross-section 

following a diagonal  axis of symrnetry. 
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PART D 

THE MINIMUM-MASS DESIGN OF  AN ELASTIC PLATE FOR A GIVEN 

FUNDAMENTAL  FREQUENCY OF VIBRATION 

Derivation of the  necessary  conditions leads for  vanishing  displacements 

along  the  boundary to an optimality  criterion  expressing  again  the  conservation of 

the  Lagrangian  density. It differs  from  the  conditions  previously  encountered 

for sandwich structures in  the  fact  that  the  design  pa.rameter  h,  thickness of 

the  plate, is present.  The  optimal  displacement  mode and  the  optimal  thickness 

distribution are therefore found  to be  the  solutions of a system of two simultaneous 

nonlinear  partia.1  differential  equations. Only a numerical  approach  seems 

possible in that case. 

1. Statement of the  Optimization  Problem 

The  differential  equation of equilibrium  for a plate of varia.ble  thickness 

h can  be found  in the  classical  textbook by T i m ~ s h e n k o , ~ ~  pp. 173-174 o r  in a 

paper by R e i s ~ n e r ~ ~ .  In rectangu1a.r  coordinates (x,y)  in  the  plane of the  plate, 

it  reads: 

2 2  
2 2 2  a w  a D a w  V (DV w)+(l-v)  - - - -- (1.1) 

h a y   h a y  ax2 ay2 

in which 

w denotes  the lateral deflection 

Eh 
3 

D =  2 the  flexural  rigidity 
12(1-u ) 

v the  Poisson's  ratio  and, 

q the  intensity of the  acting 1oa.d. 
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The free vibration of such a plate is governed by equation (1.1) in  which 

q is repla.ced by the  d'  Alembert  force 

p being  the  density of the  material,  assumed to  be  homogeneous, of which  the 

plate is made: p is   therefore a constant. 

The free vibrations of the  uniform  reference  plate  made of the  same 

materia.1 and of constant  thickness  h are governed by the  equation 0 

4 2 
D V w = - p h  - a w  

O at2 0 

where 

For a simply-supported  rectangular  plate  extending  over a domain D 

defined by 0 5 x .s a and 0 s y s b, the  natural  frequencies of the  system  are 

found to  be 

The  corresponding  natural  modes are 

W (x, y) = Amn sin - m m  sin 
mn a b 

The  fundamental  frequency of vibration is 

r r) i 

f = w  11 =2(>+>)J Ehi 
12p(l-v ) 

2 

109 



The  variable  thickness h of a plate  occupying a domain  D  and  having 

the  same  fundamental  frequency of vibration o than  the  uniform  one  made of 

the  same  material  and occupying  the same  plane  domain D  under  the  same 

boundary  conditions,  together  with  the  corresponding  mode  w,  have  to  satisfy 

the  partial  differential  equation: 

f 

For a simply-supported  rectangular  plate,  the  value of w is given by f 
(1.5). 

The  constraint  equation  (1.6)  may  be  rewritten in terms of h  and  w 

only, as 

+ 3  { [2(f$ +h?] (2+ v$) +2(1+v) E- -+h-  - 
ah ax ah ay a2h3 h a y  a2w axay 

+&($,"+h$]($+V$)} - 12(1-v E 2 ) p w  2 w = o  

f (1.7) 
aY 

o r ,  a s  an  alternative  way, in terms of D and w only as 

where  the  positive  constant P is defined as: 2 

Our  goal is to  minimize  the  total  mass of the  plate, given by the  surface 

intergra.1: 
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M = f l p  hdxdy 

D 

and  the  optimization  problem  may  be  stated as follows: 

Minimize  the  functional 

J = ffidxdy 

D 

subject  to  the  constraint (1 .7) ,  or,  alternatively, 

Minimize  the  functional 

K = /SD1”dxdy 

(1.10) 

(1.11) 

(1.12) 

D 

subject to the  constraint (1 .8) .  

The boundary  conditions  can  be  expressed  for  the  more  general  domain 

D in terms of the  coordinates  n a.nd s in  the  directions  normal and tangential 

to  the  boundary  respectively: 
32 

At a simply-supported  edge, 

w = o  

For a clamped  edge, 

w = o  

” aw - - 0 
an  

1 1  1 



In the case of a free  edge, 

where  the  Laplacian  has  the  form 

2 a2 1 a a2 v = -  
n +" 

and R denotes  the  radius of curvature of the  boundary  curve aD. 

For a simply-supported  rectangular  plate,  the  boundary  conditions  read: 

2 
w = O  and Daw=O along x = O,a 2 ax 

2 
w = O  and D y -  a w  - 0  along y = 0 , b  

For clamped  edges,  they  read: 

w = O  and - = 0  
aw 
ax a.long 

along 

x =  O,a 

y = O,b 

2. The  Necessary Conditions 

W e  will  concentrate  on  the  optimization  problem  under  the  second 

formulation,  where w e  wish  to  minimize  the  surface  integral 

K = fj dxdy 

(1.8a) 

(1. 8b) 

D 



subject  to  the  constraint  (1.8),  rewritten as: 

4 aD 2- (V2W) + 2 - "V w) aD a 2 
aY aY 

DV w + 2 ~  ax 

In a similar  fashion to  that which was  done  in Pa r t  C , we break  (2.2)  into 

a system of first  order  partial  differential  equations as follows: 

z = w  1 

az 

ax 2 
1 
" - 2  

az 

aY 3 
1 
" - 2  

az 

ax 4 
2 - = z  

az 

aY 5 
2 - = z  

az 

ax 5 
3 
" - 2  

az 

aY 6 
3 -= z 

az 

ax 7 
4 
" - z  

aw 
(= 

(= -) 
aw 
aY 

a w  
(= 2) 

ax 

2 

2 
a w  

(= a x a y )  

2 a w  
(= a x a y )  

a w  
(= 2) 

aY 

2 

a w  
(= 3) 

ax 

3 

(continued) 
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az 

ax 8 
5 
” - z  

az 

aY 9 
5 
” - 2  

az6 
” 

ax - 2  
9 

az 

ay 10 
6 

-= z 

az 

ax 
7 

-= u 
1 

az 

aY 2 
7 - = u  

az 

ax 
8 -=u 2 

az 

aY 3 
8 - = u  

az 

ax 3 
9 
” - u  

az 

aY 4 
9 - = u  

a w  (= - 1 
axay2 

3 

a w  
(= 4) 

ax 

4 

(continued) 
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az10 
" 

ax - u  
4 

az 

aY 5 
10 
" - u  

aD 
" 

aY 3 
- D  

E L v  
ax 1 

" aD2 2  1/3 
aY - [ P  D  zl-D(ul+2u + U  )-2D ( Z  + Z  )-2D ( Z  + Z  ) 3 5 2 7  9 3 8  10 

a2D -v (z + v z )-v (z + vz )]/2(1-V)] z5 1 4  6 3 6  4 (= a x a y )  

" aD3 
aY 

- v  
3 

In the case of a. rectangular  boundary  with  simply-supported  edges,  the 

boundary  conditions  read 

z = o ,  z = o  1 4 
along x = 0 , a  

z = o ,  z = o  
1 6 along y =  O,b (2.3a) 

We form  the  Hamiltonian: 



+ h  D + A  v + z + p  z +p z + p  z + p  z +p  z + v  u + p  u + p  u 1 1 2   1 2 1 ' 1 3   2 5   3 6   4 8   5 9  6 1 0  7 2   8 3   9 4  

+'lo 5 11 3 13 3 u + p  D + p  v 

-v (z + V Z  )-v (2  + uz 1 4  6 3 6  

The necessary conditions a re :  

aAl aH 
A +  

- +-=-- - 13 '12 p2D1/3 
ax ay az 2( 1-u)z5 

" 

1 

3 ap2 aH 
ax aY 

-= az - Al +"= - 
2 

ah4 3P4 aH A +  

ax ay az4 
- + - = - -  = - A  + l3 u12 (v + uw ) 

2 2(1-U)Z 1 3 
5 

ah5 av5 aH 
A + (p D  zl-D(u1+2u3+u5) = - A  - + 
2(1- u)z 

13 '12 2  1/3 
ax ay az 3 k2 
-+----"-  

5 
5 

-2D ( Z  + Z  )-2D ( Z  + Z  )-v ( Z  + U Z  )-v ( Z  + U Z  ) 2 7  9 3 8  10 1 4  6 3 6  4 

ah7 a h  aH A +  
13 '12 - 

ax ay az 4  (1-u)z 
+" " - = - A  + 

7 5 D2 
(continued) 
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For  a rectangular  simply-supported  plate,  the  boundary  conditions  read: 

along x = 0, a 

As in the  sandwich  plate  problem of Part Cy we  note  that  the first 

necessary  condition 

is very  similar  in  appearance to equation  (2.2),  rewritten as: 

where 

2 a w  
2 

Q = (1-V) ax e] axay + $D( % + v  -)] 2 
a Y  ax 

and  therefore  leads us to  assume  the  proportionality  relations: 

P 1 A = - = - - [D(z + Z  ) + D  (Z + vz  )+(l-v)D z ] l a !  a! 7 9   2 4  6 3 5  

= - Q 1  = - - [D(z  + Z  )+(l-v)D z +D (Z + vZ,)] 
I-ll a!  a! 8 10 2 5  3 6 

A +  
13 '12 1 

Z 

2( 1- V ) Z 5  
= +- 

a! 
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or,   in  terms of the  original w and D variables: 

2 2  

axay ax ay 
(V 2 2  w) +2(1-v) [(&) - 7 a w a w  41 = 3 D 

1 -2/3 2 2  
( ( y + P w )  (2.10) 

Equation (2.10) is a second order nonlinear  partial  differential equation 

in  the two dependent  variables D, optimal  flexural  rigidit' and w,  optimal 

displacement mode. Together with  equation (1.8) it forms a system of 

simultaneous  partial  differential  equations  leading to the  solution of the  optimiza- 

tion  problem. 

(2.10) can also  be  rewritten in terms of the  optimal  thichess  distribution 

h  and  w, as: 

the  constant a* being  defined as 

and,  together  with (1 .7 ) ,  forms a system of two simultaneous  partial  differential 

equations for  the two unknowns h,  optimal  thickness  distribution, and w, corre- 

sponding displacement  mode,  the latter being known  up to a constant  multiplying 

factor  only, as usual. a* can  be shown to be  positive,  exactly as for  the  sand- 

wich plate equation. Let 

The  solution w will  be of the form cw where w satisfies: 0' 0 

2 2  2 2  2 
(V w) +2(1-v)[( "?.> - % $1 = 1 + pwf 2 2 2  w /h (2.12) 

hay a8-y E 
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For a simply-supported  rectangular  plate,  the  solution of the  optimization 

problem  reduces  to  that of the two simultaneous  partial  differential  equations: 

a w a w 2 2  2 

2 (2.13) 
3 a  7 

4 1   1 2  - a  (2 + 2 '  w =  o 
ax a b  

(2.14) 

7 = h/ho being  the non-dimensional optimal  thickness  distribution (7 = 1 for  the 

uniform  reference  structure). 

The boundary  conditions for simply-supported  edges are: 

2 
w = O  and 2- a W - 0  along x = O,a 

ax 
n z 

W =  0 and 7 -- a w - 0  along y = 0,b  
aY2 

(2.14a) 

For  clamped  edges: 

W V = O  a d  - E O  
aw 
ax along x =  0 , a  

w = O  a d  - -  aw - 0 along y = 0,b (2.14b) 
aY 

A computational  approach at this stage of the  optimization  process  seems 

now inevitable,  and  the above system  seems  suitable  to  such an approach. 
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Equation (2.12) is very  similar to  the  optimality  condition  derived by 

S u h ~ b i ~ ~  for  the  optimal  plastic  design of a plate  using an entirely  different 

approach. 
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PART E 

THE  OPTIMALITY CRITERION A SUFFICIENT CONDITION 

FOR  AN EXTREMAL 

The  nonlinear  partial  differential equation  to which the  entire  system of 

necessary conditions reduces  in  each of the  three  cases  considered so far  under 

the  assumption of prescribed  vanishing  displacement at the edge is the  expression, 

in each case, of an optimality  criterion  expressing  the Constance of the  energy 

distribution of the  system, which is a sufficient  condition for an extremum and 

was first derived by Prager  for a broad  class of structural optimization  problems. 

The  system of two partial  differential equations to be  satisfied  simultaneously or  

not by the  optimal  displacement mode and the  optimal  thickness  distribution, 

which is formed by this  optimality  criterion and the  original  constraint equation, 

and to which each of the  aforementioned cases  reduces is therefore  necessary and 

sufficient. For  the  shear  plate, uniqueness of the  optimal solution follows. 

When the  displacement is not required to vanish  along  the  edge, Prager' s 

criterion still applies, but has  to  be  written in a three-dimensional  space.  The 

above fact agrees with the  validity of the  proportionality  assumptions  made in the 

course of the  derivation of the  optimality condition. 

Equations (B. 2. €9, (C. 2.10) and (D. 2.11) are nothing but  the  expression 

of a very  general  optimality  criterion  stating the  uniformity of the  energy 

distribution throughout the  structure  under  consideration, valid for  three dimen- 

sional  structures  to  be  optimally  designed  under  the  most  general  assumptions. 

It was first derived by Prager 46' 47 and is an  alternate  form of stating  the so- 

called "conservation of the  Lagrangian  density" which was pointed out by Ashley 

and McIntosh. t 

tThe  term  Lagrangian  density which was introduced by Ashley and McIntosh 13 in 

optimal  frequency  design  has its origin in the  similarity between the  Lagrangian 
of Classical Mechanics, difference between the  kinetic and potential  energy, and 
the  expression G-cp H, difference between the  potential  energy  density and the 
quahtity pwf2w2,  which can  be viewed as a kinetic  energy  density. 
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Using Prager' s notation,46  the  structure is to be designed  to  satisfy 

a single  behavioral  constraint  prescribing  the  value of a scalar @ itself 

characterized by a global  minimum  principle  involving a field cp associated  with 

the  structure,  and  having  one of the  following  forms: 

@ = min JF[y]dV 

@ = min 

V 

J&dV 
V 

V 

V being  the  volume  occupied  by  the  structure. When the  constraint is on the 

fundamental  frequency of vibration, @ is the  square of the  prescribed  value 

"f of the  frequency  and,  from  Rayleigh' s principle  follows  that  the  constraint is 

of the  form (lb) above,  where G[(p] is twice the  strain  energy  density of the 

field (p, and H[cp] is plcpl , where p is the  density of the  material. 2 

Prager has  proven  that when the  behavioral  constraint is expressed by a 

minimum  principle of the  form (la), a sufficient  condition for  an optimum is: 

F = Constant ( 2 4  

on the  portion of the  surface S where  vanishing  surface  tractions are prescribed. 

When the  constraint is in  the  form  (lb), a sufficient  condition is: 

G - @ H = Constant  (2b) 

on that same portion of the  external  surface S. 

The  above  conditions  can also be shown  to be  necessary. * 

*The  general  formulation of the  sufficient  conditions  above is actually  slightly 
more  complex,  and  the best way to express them is, as did  Prager,   to  use 
notations  from set theory.  The  reader is referred  to  references  46, 47 for  more 
precision. 
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A proof of the suf€iciency of the coni dition of uniform  energy  distribution, 

which we believe  to  be  original, will be given below for  the  case of interest  to  us, 

the  minimum-mass  design of a structure  (one, two or  three-dimensional) for a 

given fundamental  frequency of free vibration. This proof makes use of Rayleigh' s 

principle. 

Let 8 be the set of all structures with the same constant  density p 

similar to the uniform reference  structure D and all having the same funda- 
0 

mental  frequency of free vibration uf under  the same support conditions. 

Among those, at least one, which we shall call 5, is assumed  to be such  that its 

energy  distribution is constant throughout the volume v it encloses. If (p is 

the  displacement  field  associated with i t ,  G[$ twice the strain energy  density 

of the field, we assume that: 

and, from Rayleigh' s principle, o is exactly given as: f 

rewritten  as: 

Now consider any structure D member of the above set and occupying a volume 

V,  with the  corresponding  field cp . From Rayleigh' s principle, 



and, 6 being  the  field  corresponding to the structure 6, we also have the 

inequality: 

rewritten as: 

Subtracting  (4a) from (6a), 

and, by the  use of (3), the  inequality  reduces to: 

9 d V r  0 

v-v 
or - 

v I;v 

The volume 7 occupied by the  structure 5 satisfying the  condition (3) 

is therefore  smaller  or  equal to the  volume V occupied by D. As the structure 
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D was arbitrarily chosen among the set 8,  we are led to the conclusion  that a 

structure  satisfying (3) has  the  smallest  possible weight". among the structures 

belonging to the class 8 under  consideration. (3) is therefore a sufficient 

condition for an  extremal of the weight under  the  conditions already  stated. 

The above  sufficient condition is intuitively not at all surprising: this 

uniformity of the  energy  distribution is a very  general and logical  property 

encountered  whenever one wants  to  make the  best out of a given system, and 

should be considered as a law of nature. In the  case of a vibrating  plate with 

uniform thickness,  the  efforts are not uniformly  distributed throughout the  plate, 

and some  parts undergo more stress than others. We might say  that  the  uniform 

plate is not ideally  designed for vibration  purposes, and it reacts to  vibrating 

conditions  in an  unorderly and anarchistic  behavior, which is however the  best it 

can do if it cannot modify its total shape. This is also a law of nature. Suppose 

now that  the  plate could modify its shape and mass: it would still comply to the 

laws of nature, but with more  freedom now,  and tend  towards  an  optimal  shape. 

The non-uniform plate would  now be  perfectly adapted  to the  vibrating conditions 

imposed on it, and the  efforts would  now be equally distributed throughout. This 

is the  best of all plates  under  the given conditions,  such  that  the  energy  distribu- 

tion is uniform and the  same  role is assigned  to any point of the  structure. 

Understandably, such a structure will be  optimally  designed for  the  purpose at 

hand, here  the first vibration  frequency  being  held  constant, and this  optimal 

plate will have  the lesser possible weight of all structures having the  same 

fundamental  frequency, its matter  being the more  properly  distributed of all of 

them. 

This  uniformity of energy  distribution  attained by Nature  in  the  best of 

all configurations of a system is also a very  general  principle going beyond 

structural optimization: Max Munk showed in 1918 that  the minimum induced 48 

drag of a wing is obtained if the distribution of lift  over  the  span is elliptic, 

corresponding to a uniform  energy  distribution  over  the wing area. 

*The material is assumed to be  isotropic with uniform  density p. 



Let  us now verify  that we indeed obtained the  optimality condition for  the 

three  structures we  considered. 

For the shear  plate,  the  strain  energy  density is: 

and H is simply: 

2 H = pw 

so that (2a) is expressed  under  the  form: 

aw2  aw2 (--) + -e o w = constant 
’G f 

2 2  

which is nothing but equation (B. 2.8) which is therefore a necessary and sufficient 

condition for  an  extremum.  This equation was derived  for simply-supported 

edges, and was found to  have a unique  solution,  given  analytically by (B. 2.9). It 

follows that it is - the  solution to the  optimization  problem, and the  shear  plate 

problem  possesses a unique solution as described  in Part B. 

The  strain  energy density 
46 

deflection w(x, y): 

of a sandwich plate is, in  terms of the  lateral 

expressing  the  optimality condition (2a ) as: 
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where p is a constant  whose  value is the  same as the p2 defined by (C. 1.12). 

This is nothing  but another way of writing (C. 2.10). Our  proportionality 

2 

assumption (C. 2 .5 )  was  thus  perfectly  valid, and (C. 2.10) is not only a necessary, 

but  also a sufficient  condition for optimality. 

The  fact  that  for sandwich structures  the  optimality condition does not 

involve the  design  parameter 7 was  pointed out by Prager and  Taylor. 11 

For  the  classical  plate with varying  thickness,  the  strain  energy  density 

in bending is given by: 43 

v = * 8(1-V 2 ) {V2w). + 2(1-v) [$)2 - 9 $]} (13) 

and Prager' s o3timality criterion  leads  to  the  expression: 

h2 k 2 w ) .  + 2(1-v) [($r - 9 2 e]} - 4o E pa2 f w2 = constant 
ax ay (14) 

which is exactly (D. 2.11). 

The  precision and  beauty of Prager' s theorem is even more evident when 

one considers  the following important  fact, which will  also  serve  the  purpose of 

clarifying a delicate  point, which is the  assumption of proportionality in  the 

course of the  derivation of the  necessary  conditions.  This  remark  led  to  the 

conservation  property;  however, it was  compatible  with  the  boundary  conditions 

only in the  case of vanishing  displacements at the edge: this  was  the  case  for  the 

simply-supported shear  plate,  for  the  clamped or  simply-supported  sandwich 

plate and also  for the elastic plate. On the  other hand, Prager's  theorem 

seems  to  lead  to  the  same  optimality  condition,  whatever  the boundary  conditions 



are. A careful  review of the conditions  under which it is valid is therefore 

necessary at this point. 

Prager' s theorem  applies  to  optimal  structures occupying  the  volume V 

with  the  surface S. Each element of S is supposed  to  belong  to  one  and only 

one of the sets S' , S", S I ' ,  where nonvanishing surface  tractions are prescribed 

on the  elements of S' (for  problems  that we consider  here S' = 0), vanishing 

surface  tractions on the  elements of SI' (here  the  surface  covered by the  plate), 

and  vanishing  displacements on the  elements of S"' . Moreover,  the  surfaces 

S' and SI'' and  the boundary  conditions  thereon are regarded as fixed 

''ingredients'' of the  design  problem. S"' is the boundary of the  plate when the 

displacement is prescribed  to  vanish along the  edge.  However, the  portions of 

the boundary which are not supported  belong to S" , the  plate  being 

viewed in the  broad  sense of a three-dimensional  structure, and  cannot be 

regarded any more as fixed  ingredients of the  problem: in such  cases, the 

optimization  problem  needs  to be viewed in three  dimensions, and will not yield 

an optimality  condition as simple as (B. 2 . 8 ) ,  (C. 2.10) or  (D. 2.11). 

Prager '  s theorem  therefore still applies, but with an added  dimension. 

As we  recall, when portions of the  edge are free,  the  proportionality  assumption 

expressed by (B. 2.7), (C. 2.5) o r  (D. 2.7) is no longer  compatible  with  the  boundary 

conditions,  rendering  equations (B. 2.8), (C. 2.10) o r  (D. 2.11) no longer valid. 

This is one more evidence of the  complete  agreement  between  Prager' s 

optimality  criterion and our  results, obtained by an  entirely  different method 

based on the  calculus of variations  in two dimensions. 



CONCLUSIONS 

In our  approach  to  optimization  problems  intwo  dimensions , outlined in 

the  theory  presented  in  the first part of this work and applied to the  subsequent 

structural optimization  problems, we are confronted with a system of partial 

differential equations  to be  solved  inside a domain,  together with boundary con- 

ditions, both expressing a set of necessary and sufficient  conditions for  an 

optimum. A computational approachundertaken at this stage,  although  being in 

theorya  classical  problem of Numerical  Analysis would prove  very awkward 

and especially time-consuming: for a simple  structure  such as a sandwich plate 

or  an elastic  plate and under a very  simple  constraint  such as the  fundamental 

frequency of vibration being  fixed,  the  necessary conditions  yield a system of 

46 equations  in 46 unknowns, mostly  first-order  partial  differential equations! 

However, and this is one of the purposes of the present  study, a careful study of 

these  necessary conditions in  each  particular case permits, under  assumptions 

later  verified,  to  reduce  them to only two partial  differential equations in  the 

important unknowns. h some cases we will be lucky enough to  find an exact 

analytical  solution, and in  the  majority we will have  reduced  the  original  problem 

to a reasonable amount of numerical computation, following the  well-established 

pattern to solve  numerically a single  partial  differential equation or  a system of 

a limited  number of the  same. 

49 

This  property  leads  us  to  make  the  remark  that, in the  case of optimization 

problems  in one  dimension,  the  necessary conditions for  an  extremum  lead  to fxo- 

point boundary value  problems,  requiring  extreme caution: no universal  numerical 

method has been found up to date  to  solve any kind of such  problems  (for  example, 

the powerful transition-matrix  procedure which gave  excellent results in a number 

of cases in structural optimization failed  for  the  panel-flutter  case  where  the non- 

linearity was too strong). However , for two-dimensional  optimization procedures , 
following the method presented  here, we are in  the end confronted with a problem 

of a classical type and there is, in theory at least, a method permitting  to  solve it. 



This i s  a very  important  feature  differentiating  optimization  problems 

in one-dimensional  space  from  those  in  higher  dimensional  spaces.  This 

i s  why we  will  be  less  pessimistic  than R. Chattopadhyay" about  the 

existence of practical  solutions  for  problems of optimal  control of 

systems  with  distributed  parameters,  always  keeping  in  mind  that  asking 

for  the  services of a  computer  should  be  the last thing to do, and  should 

be done only after we  have  made  sure  that  every  possible  method  or 

trick  failed. It is not  our  goal to discredit  the  computer: its help i s  

tremendous  in  the  majority of cases,  and it brought  the  solution to 

inextricable  practical  problems,  but  some  reflection  makes it more  ef- 

ficient  and . . . cheaper! 

However,  we  will a t  this point raise  several  questions,  as  for- 

mulated in Ref. 50. 

Is it better to discretize  the  system  itself  in  the  first  place,  as 

did  Haug, l9 than to discretize  the  equations  expressing  the  necessary 

conditions  for  an  extremal,  obtained  for  the  exact  system?  Are  the  ap- 

proximate  equations  consistent  with  the  original  system  equations? Is 

the  discretization of the  system  valid? Do the  approximate  solutions 

converge to the  actual one in  the limit and do the  errors  made  remain 

bounded?  These  questions a r e  unfortunately ve ry  difficult to answer 

and a r e  beyond the  scope of the  present  investigation,  but on their  solu- 

tion  rests  the  possibility of obtaining  results of practical  interest. 

It i s  our  sincere hope that  the  present  study will lay  the  theoretical 

foundations  necessary to future  investigations  in  this  entirely new field 

of two-dimensional  structural  optimization,  reducing  any  such  problem 

to the  search of the  numerical  solution of a simple  system of partial  dif- 

ferential  equations: this i s  by itself  a  classical but  unfortunately  non- 

trivial  problem,  and  attaining  the  solution  will  rely  mainly on the  skill 

of the  researcher  as  well  as  the  special  nature of the  structure  investigated. 

The choice of two-dimensional  systems to be  investigated i s  of course 

very wide,  and more  general  constraints  can  be  considered,  still fol- 

lowing the  pattern  presented  before. 
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APPENDIX 1 

INDEPENDENCE O F  THE FORM O F  THE SYSTEM O F  PARTIAL 

DIFFERENTIAL EQUATIONS ON THE  OPTIMIZATION  PROBLEM 

In Part A, we showed that  the  constraint defining the  optimal  problem  for 

the  shear  plate,  expressed in the  form of the  single  partial  differential 

equation of order 2 in w and 1 in h: 

-(h-) + -(h-) + k hw=O a a v a m  2 
a x a x  a Y a Y  

could be put under  the  form of two systems of very  different  appearance,  part 

of the  control  variables being in  one of them the  thickness  h, in  the  other one 

its first derivatives. 

Derivation of the  necessary conditions for an optimum was made for  the 

first case in section B. 2 .1  when the functional to be  minimized is the  integral 

of h over a plane  domain D under  the given constraint.  Let  us show now that 

the  same  answer is found if we start  from the other  system, obtained by the 

means  described in (A. l), and derive  from it the  necessary conditions. 

With this system as a constraint,  the Hamiltonian takes  the  form: 

H = h + A z + h u + h u + h v + ~ 1 ~ + ~ 1 ~  1 2   2 1   3 2   4 1   1 3   2 2  

2 1 2   2 3  v z + v z  
-p (U +k z + 3 1  1 h ) + ~14V2 

The  necessary conditions for an  extrema1 are thus found to be: 



aP4 v z + v z   1 2   2 3  - +" - -1-p3 
h2 

A2-p3 = 0 

A + p  = o  
3 2  

'3  '2 A - - = o  
4 h  

p3z3 
p4 -h = o  

The  form of the  first equation suggests to try  the  substitution: 

hz 
A =- 
l a  

2 

- hzl 
v3- -- CY 

by analogy with the  original  constraint equation. Now, 

z z  1 2  A = - -  
4 a 

z z  
1 3  

p 4 = - a ,  

and (6) is rewritten as: 

a a 
- ( z z ) + - ( z z ) = a " ( v z + v z )  ax 1 2  ay 1 3  h 1 2  2 3  

Z 
1 

or ,  in terms of w and h: 



+ \ v v w = a - q - -  2 ah &v +- ah -) &v 
h a x a x  % J a y  

But,  from  the  original  constraint, 

so that (6) is put under  the  form: 

which is nothing but equation (B. 2.8), the  solution of which led to the  optimal 

thickness  distribution of the  shear  plate. It is easy to check that  the  hypotheses 

(11) are  consistentwith  the  system  formed by the  original  constraints,  the  necessary 

conditions and the boundary conditions in the  simply-supported  case. 
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APPENDIX 2 

ON ANOTHER  METHOD TO SOLVE THE PARTIAL DIFFERENTIAL 

EQUATION  ARISING IN THE SHEAR PLATE OPTIMAL PROBLEM 

A very  interesting  alternative  approach  to  solve  the equation: 

a w 2  2 2 2  
+(-) = c +k w 

aY 

and also  applicable  to  more  general  boundary  conditions  than  the one  we considered, 

i. e. , w = 0 along aD, has been suggested by  Dr. E. 0. A. Naumann. 

Let  us  make  the change of dependent  variable,  introducing  the new function 

z defined by: 

w = - sinh(kz) C 

k (2) 

(1) reduces to: 

or,  using  standard  notations, 

2 2  p +q = 1  

This  partial  differential equation is a classical  one,  encountered in 

particular in the  theory of plastic  torsion of cylindrical  beams. It also arises 

in  geometrical  optics, and is investigated  under  that  name in  Ref. 35. 

The  system of five  ordinary  differential  equations  for  the  characteristics 

assumes  the  form: 

dx - = 2p ds  

(continued) 



dz 2 2  
ds - 2(P + q 1 " 

It follows that p and q are constants along  any characteristic, and that: 

x - x  = 2ps 0 

Y - Yo = 2PS 

z - z   = 2 s  0 (6) 

Hence the  characteristics are straight  lines. In view of the  restriction (4) 

on p and q, they are precisely  those  lines which make  an  angle of 45' with the 

z-axis. A geometrical  interpretation of those is given in Ref. 35, pp. 41-43. 

Elimination of s in (6) results in: 

x-x 0 p=-  
0 z-z ' 

Y-Yo 
q = =  

0 

and a solution of special interest is the  cone of equation: 

It can  be  used to form a complete  integral of equation (1). To satisfy 

the boundary conditions,  the following conditions  need to  be  met: 

z = &  for x = c  and y = q  

and dg = 0 along the given boundary curve q = q (f ). 

Thus : 

and, by differentiation: 
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o r  

Equations (8) and (9) together with the  relation between f and q 

expressed as: 

and its derivative with respect to f : 

are sufficient  through  elimination of f , q , q ' to establish  the  desired function 

z = z(x, y) which satisfies  the  partial  differential equation (3) and the boundary 

condition. For complex  functions q (f ) , it may not be  possible  to find a single 

equation and f and/or q may  remain as parameters of a set of equations. 

However, z is still uniquely defined. 

In the  simple  case  where  the boundary aD is circular,  the  relation 

between 6 and q takes  the  form: 

together with the  derivative: 

f +qq' = 0 

Elimination of q ' from (9) and (11) gives: 

Substituting for f into (8) and (10) gives: 

2 xrl 2 2 2  
2 2 

(z-5) = (x + - )  + (y-q) = (x + y  )(1+ 
Y 

2 2  

2 
2\11 

2 
R =  = + q2 = (x +y 

Y 



The  parameter  q/y can easily  be  eliminated, yielding, 

or  

z = G r t ( R -  F x + y  ) 

Another simple example is the boundary defined by: 

r l = 5  

where 

y' = 1 

(9) reads: 

(X-S 1 + (Y-rl 1 = 0 

Eliminating f : 

x + y - 2 ' 1 = 0  

or 

(8) becomes: 

2 2 
( 2 4 )  = (x - =y) 

2 + ( Y  -7) 
x+y 

1 2 
= ,(=") 

o r  

When the boundary is defined by: 

rl = b  
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i. e. : 

q '  = o  

one  immediately  obtains  from (9): 

x-5 = 0 

i. e. : 

2 2 (Z-G) = (y-b) 

or  

z = 5 f (y-b) 

Similarly  for a boundary defined as: 

5 = a  

the  solution is: 

z = 5 rt (x-a) 

The  transformation of z  into w is: 

and, for w = 0, 
0 

w = - sinh[k(z-G)] C 

k 

For  the  case of a rectangular  plate, Dr. Naumann' s results presented 

above thus agree completely with the  ones found in  Chapter (B. 2): for  instance, 

in region (4) of the  rectangular domain (figure 3), for  the boundary q = by we 

get: 

2-5 = f (y-b) 
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i. e. : 

w = I; sinh[  &k(y-b)] = - sinh[k(y-b)], E = 6 1  C E C  

k 

which is identical with the  result we found. 

Another interesting  remark  concerns  the  subject of which boundary controls 

what part of the domain. The z-functions are planes which intersect  the xy plane 

at an angle of 45 . Thus,  the  intersecting  boundaries within the domain are simply 

the  bissectors of the angles of the  boundaries, which are the dotted lines 

represented in figure 3. The solution  z can be visualized as being a roof over  the 

boundary base with a pitch  angle of 45 all the way around (as well as its exact 

complement, i. e. , a pitch  angle of -45 ). 

0 

0 

0 

One can  also  visualize  the function z to be  like a sand  hill on  top of any 

shaped boundary with the  sand of such a consistency that it can only support a 

pitch  angle of 45'. 

To  generalize  the above results, it is obvious that  the function z-5 is 

f p,  if p is  the  shortest  distance of the  particular point in  the xy plane to the 

given boundary aD, which leads  to  the  general solution for (1) given by: 

w =k sinh(kp) E C  

if the boundary condition is w = 0 along aD. 

In case that w varies along aD, i. e. , d5 # 0, equation (9) is still 

applicable and reads: 

Again, equations (8) , (Sa) , (lo), (ll), together with: 

uniquely define the function z = z(x, y) solution of (1) , and the above procedure 
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can thus  be  used  even if w varies in a known manner along  the boundary 8D. 

Our alternate  approach of Chapter (B. 2) could also have  been extended to  this 

more  general  case, which is however of a limited  practical value. 

1 42 



APPENDIX 3 

A COMPUTER  PROGRAM  TO  FIND  THE  OPTIMAL  THICKNESS 

DISTRIBUTION O F  A  SANDWICH P L A T E  

C 
C 
C 
C 
C 
C 

C 
C 
C 

C L A S S I C A L   O P E R A T O R S   F O R   T H E   P A R T I A L   D E R I V A T I V E S  
S T A R T l N G   F U N C T I O N  IS W = S I N ( P I * X / l O l ~ S I N ( P I * Y / 1 0 )  
TEST  PERFCRMED ON THE  DOf4ATN i O t l O ) J : c ( O v  10) 
S T E P  -2 [49*49 b!ESH P O I N T S )  

V A L U E  AT E A C H   P O I N T   G O T  BY S O L V I N G  AW2+BW+C=0 
O N L Y   P C S I T I V E   R C O T   K E P T   A S   R E S U L T  9 STOP  OTHERWISE 

R E A L  *E I * J ( 5 1 ~ 5 1 )  r T ( 5 1 r 5 l I  Y 

lNXX,WXY,k~YY, 
i w x x x t  hXXY  rb iXYY t H Y Y Y t  
3 H X X X X  tkJXXYY 9 WYYYY 9 

4 W 2 X X ~ 5 1 ~ 5 1 ~ , w 2 X Y ~ 5 1 , 5 1 ~ , ~ 2 Y Y o r  
5 W 3 X X X ~ 5 1 r 5 1 ~ r W 3 X X Y ~ 5 1 , 5 1 ~ ? ~ 3 x Y Y ~ 5 1 ? 5 1 ~  r W 3 Y Y Y ( 5 1 , 5 1 1 1  
h W 4 x X X X ~ 5 1 , 5 1 ~ , W 4 X X Y Y ~ 5 ~ , ~ 1 ~ , ~ 1 4 Y Y ~ Y t 5 1 , 5 1 ~ .  
7 H , H 2 , H 3 , t t 4 r A r B t C , D E L T A r D I F Z , B ~ T A Z , H X t H Y t ~ P t V I T ~  
8 A D l ? A 8 2  

S E T T I N G   U P  A FEH CONSTANTS 

BETA2=0.0239 

H2=H*H 
H3=H2*cH 
H 4 = H 3 * H  
N=49 
N1=51 
A=-BETA2+10.64/H4 
K= 1 

Hz0  2 

C 
C I N I T I A L I S A T I O N  
C 

DO 3 f = l ,  h l  
D f l  3 J=l,Nl 
~ ~ ~ I t J I = D S I N ~ ~ I - 1 ~ * H * 3 r 1 4 1 6 / l O ~ ~ ~ D S I N ~ ( J - i ~ ~ ~ H * 3 . l 4 l 6 / l O ~ ~  

3 COfSTI  NUE 
C 

50 DO 1 I Y = l t N  
DO 1 I X = l r N  
B = - 5 . 3 2 / H 4 ~ ~ I W ~ I Y c l ~ I X i 2 ~ + ~ ~ ~ i Y + i ~ ~ X ~ * ~ ~ ~ I Y + ~ ~ I X + l ~ ~ ~ ~ ~  I Y t l X + l l )  

C 
C~1~~4/16.O/H4~:(M(IY+Z~IX+2)+W~IYrIX)-H(IY+'2rIX)-W(IY~IX+2))**2 

i + ( k J ( I Y + l t  I X I + H (   I Y + l r I X + 2 )  )**2/H4 
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C 
10 
1 

C 

30 

4 
C 
C 
C 
C 
C 
C 
C 
C 
C 

5 
C 
C 
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C 
C 
C 

C 
C 
C 
60 

62 

C 
64 

CASE OF Ah EDGE POINT 
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GOTO 76  
C 
66 

C 
68 

C 
7c 

C 
72 

C 
7 4  

76 
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77 
C 

55 
C 

H Z Y Y  ( J+lr i + l  l=WYY 
W 3 X X X ( J + l r E + l l = W X X X  
W3XXY ( J+19I +l )=WXXY 
W3XYY ( J+1, I tl )=WXYY 
W3YYY ( J+ l , I+ l  )=MYYY 
W 4 X X X X I J + l r   I + l ) ' W X X X X  

H 4 Y Y Y Y ( J + l t   I + l ) = H Y Y Y Y  
W4XXYY(  J+l, I + l ) = W X X Y Y  

CCNT I NbE 

K= 1 
D I F 2 = 0 . 0  

DO 6 J=l ,N 
DO 6 Z=l,N 

C 

C 

6 
C 

C 
C 
C 

80 

7 
C 

W X I T E ( 6 ? 2 0 0 1   K , D I F 2  
I F ( ( K - E 0 . 1 5 0 )  .OR. ~ D I F 2 m L T . 0 ~ 0 0 1 ~ )  GOT0 80 
K=K+1 
GOTO 5 5  

F I N A L  RESULTS FOR F U N C T I O N  T 

W R I T E ( 6 t 1 0 7 1  
DO 7 J = l r 2 6  
A B 1 = (  J-1 j *H 
HKITE ( 6 9  1101 A B 1  
DO 7 I = l 9  26 
P.B2=( 1-11 *H 

C O N T I  NUE 
W K I T E ( 6 9 1 1 1 )   A D Z T T ( J , I )  

H X = 1 0 - / 4 9 .  
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L 

C 

LOO 
10 7 
lC8 
109 
110 
111 
199 
200 
600 
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S U B R O L T I N E   F L E V E L ( L T W ~ , U L ~ N O L ~ T O L )  
REAL *G  L,WLIULITOL 
D I M E l L S I O N   Z [ 5 1 r 5 1 )  

C 
C TRACES T t E   L E V E L - L I N E S  FOR A TABULATED  FUNCTION ( VALUES IN Z ( J , I ) )  
C Wl IS THE  LEVEL UNDER WHICH '? '  I S  PRINTED 
C lii 54;4E FULCTION FOZ THE  UPPER LEVEL 
C N a L  IS TkE NUi4BfR GF LEVELS (STEP -1 ASSUMED) 
C TOL IS TEE HALF OF THE WIDTH OF THE BOUND 
C 
C FRCGRAH PRIKTS OUT THE L E V E L S   I D E N T I F I E D  BY LETTERS ON ONE PAGE 
C 

I h T E G E R   L I T  *2 (15 ) / 'A  ' r ' B  ','C ' t ' D  ' * ' E  * v ' F  ' g ' G  't'H '9 

1 ' I  ' , ' J  ' , 'K 'g'L ' , ' M  '*IN '9'0 ' /  
IKTEGER PAGE * 2 ( 5 1 t 5 1 )  
INTEGER *2 CUEST/ '?  '/,%LANK/' ' /  

C 
DC 1 I = l r 5 1  
DO 1 J=l, 5 1  
P A G E ( J t I ) = B L A h K  

1 CONTIhUE 
C 

DO 2 J = 2 t  50 
DO 2 L = 2 r 5 0  
iF ((Z(J,I).LT.~L).OR.(Z(JII).GT.UL)) PAGE(J,I)=QUEST 

2 CLihT1 i4UE 
C 

00 3 K = l r K B L  
VALZO o L*K 

C 
Dl i  4 J = l r  5 1  
DO 4 1 ~ 1 8 5 1  
IF ( (Z(J , I ) .GT. (VAL-TOL)) ,ANDo(Z(J , I ) .LT. (VAL+TOL~~)  

l P A G E ( J f I ) = L I T ( K )  
4 CGNT I RUE 
3 CCNTI  hUE 

C 
00 5 J = l r 5 1  
~ R I T E ( 6 , 5 0 0 ) ( P A G E ( 5 2 - J 1 I )  rI=Lt521 

5 CGNTINUE 

5CO FORMAT(1H  920X951A2) 

501 F G R I * l k T ( l H l )  
RETLJRN 
END 

C 

H R I T E ( 6 r 5 0 1 )  
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