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DEVELOPMENT OF A MODEL OF MACHINE "HAND-EYE"
COORDINATION AND PROGRAM SPECIFICATIONS FORA
TOPOLOGICAL MACHINE VISION SYSTEM

Abstract

A unified approach to computer vision and manipu-
lation is developed which is called choreographic vision.
In the model, objects to be viewed by a projected robot
in the Viking missions to Mars are seen as objects to be

-manipulated within choreographic contexts controlled by
a multi-moded remote, supervisory control system on Earth.
A new theory of context relations is introduced as a basis
for choreographic programming languages. A topological
vision model is developed for recognizing objects by
shape and contour. This model is integrated with a pro-
jected vision system consisting of a multfaperture image
dissector TV camera and a ranging laser system. System
program specifications integrate eye~hand coordination
and topological vision functions and an aeroépace multi-
processor implementation is described.
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SECTION I. OVERVIEW OF RESEARCH*

1.1 Introduction

The value of unmanned teleoperator or robotic flights has been
demonstrated by the Soviet Union in the Luna 16 Flight in which a machine
system retrieved a lunar sample at an estimated 1/50th of the cost of a
similar manned mission. ‘

A prerequisite for automatic assembly of space station and space
laboratory components both for near-earth and interplanetary missions is
a machine "hand-eye" coordination system. The present research derives
its rationale from this need as well as requirements scaled to machine
vision implementations that can be forecast for unmanned spaceflight in
the 1977 era.

Research in the U.S. on machine vision and computer control of
mechanical arms and hands is proceeding principally at M.I.T., Stanford
University, Stanford Research Institute and Battelle Institute. University
labs such as the Artificial Intelligence Lab at M.I.T.'s Project MAC
usually use a DEC PDP-10 class of computer for these investigations and
their objectives are largely theoretical. They are investigating the general
problem of computer vision and seek a phenomenology of machine vision
derived from a better understanding of how machines can emulate humans
in analyzing scenes.

The specific objective of the present contract is to provide NASA
with an alternative approach that can later be evaluated in a test-bed
environment. This work develops a unified approach to computer vision
and manipulation that we term choreographic vision. Results of the
research can be scaled to limited computation resources -—- aerospace
multiprocessors. This work is at once an approach toward a new theory
of machine perceptual-motor functioning and an applications study directed
toward context-dependent perceptual-motor tasks for unmanned space missions.

1.2 NASA Context

The original NASA context toward which this research 'was oriented
is the need for robotic elements in interplanetary flights. Research con-
tributions are focused on projected unmanned missions to Mars currently
being planned by NASA/Ames and the Jet Propulsion Laboratory.

*Supported by National Aeronautics and Space Administration,
Washington, D C. under Contract NASW - 2243.
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Our development of a logical and mathematical model of robot vision
can be regarded as a continuation of earlier research undertaken for NASA
by the M.I.T. Instrumentation Laboratory.1 This work, conducted by
Sutro and Kilmer (with the collaboration of Dr. Warren S. McCulloch) was
also oriented toward defining robotic elements for the exploration of Mars 2

Sutro and Kilmer have pointed out that the need for robots (aside
from questions of cost and feasibility for equivalent manned missions) is
closely related to the up-link and down-ling transmission times involved
in earth command and control of a Martian lab vehicle. A single bit of
information from Mars to Earth requires several minutes for transmission.
This requirement rules out anything but pure robotic elements for real
time control. For example, transmission delays of this magnitude rule out
the exclusive use of teleoperators in remote supervisory control modes.
Unless the robot has autonomous perception and manipulation, perceptual—
motor loops cannot be closed.

An interesting strategy for commanding and controlling a robot on
the Martian surface would be the use of pure robotic elements in con-
junction with the use of symbolic, supervisory control for specifying
plans, experiments, and schedules of perceptual-motor activity. Per-
ceptual motor relations in particular could be specified. This would
correspond to transmission of coded commands to the robot's multi-moded
relational computer on Mars. An aerospace multiprocessor would then
command the broad-bandwidth, perceptual-motor behavior loops of the
robot. Such a stratification of command and control exists in biological
systems. :

1.3 Approach to Problems of Machine Hand-Eye Coordination

- Research on computer vision and computer control of electro-
hydraulic mechanical manipulators has generally proceeded in parallel
paths with little or no-cross fertilization of strategies. They are con-
ceptualized as separate problems. However, it is becoming increasingly
important to study the problems of computer eyes and computer hands in a
unified way in an attempt to develop the beginnings of a theory of machine
perceptual-motor functioning. Research on computer vision alone--

1NASA Grant, NGR 22-009-140, to the Instrumentation Laboratory,
MIT, from NASA Electronics Research Center in 1968.

2R—582 , Assembly of Computers to Command and Control a Robot,
L. Sutro and W. Kilmer, February, 1969, MIT Instrumentation Laboratory,
Cambridge, Massachusetts.
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analysis of complex visual scenes by computers using television eyes--
is an extremely valuable scientific program that will lead to advances in
artificial intelligence. . However, in the interim we need appl1cat10ns-
oriented research in which a limited computer can control a sensor and an
actuator in certain restricted contexts of machine perceptual-motor tasks.

Out of the M.I.T. lab studies of machine vision of natural ‘objeCts
such as fruit, there has emerged a realization of the crucial role played
by context in se,eing.1 For example, if a machine knows beforehand that
an apple has more of a specular surface than a pear, it can interpret
highlights more efficiently. The role of context in the specialized vision
that we shall study in this research is even more critical.. As a result,
context will be formally modelled here as an operator in evaluating
functions and mappings. Context will be taken not as the visual field
or surroundings of the imaged object, nor even the lighting conditions or
the direction of the light source. Rather, context will be modelled
choreographically in terms of the interactive eye-hand elements in a
manipulation scene.

For example, ‘a nut on a threaded shaft will be viewed in terms
of rotation and torque. An occluded object will invite a pushing action
of the hand to separate the scene into non-occluded objects. Thus an
object will have as a set of properties not only its visual properties such
as surfaces, outlines, shadows, but a set of properties as an object to
be manipulated. :

Interactive properties will be sought which can be hypothesized and
verified by topological tests. In this respect, we shall differ considerably
from M.I.T. heuristics which are frequently derived from the artificial
geometric context determined by regular polyhedra that can be modelled
as line drawings "or subsets of the abstract retina."” Thus vertices and
edges may be of lesser importance than shape propertles that can be
induced by deformation-testing. : :

One of the recent thrusts of M.I.T. research has been the forrhation
of concepts on the basis of visual information.2 The work of Winston
has used relation-constructs for machine representations of 3-dimensional

1Cf. Lawrence J. Krakauer, MAC TR-82, "Computer Analysis of
Visual Properties of Curved Objects, " M.I.T. Artificial Intelligence lab,
May 1971, p. 10.

2Cf. Patrick H. Winston, MAC-TR-76, "Learning Structural Descrip-
tions from Examples," M.I.T. Artificial Intelligence Lab, September, 1970.
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structures such as arches. This approach will be further formalized by
constructing eye-hand relations using the diagrams of category algebra
and mappings derived from contextual logic. 1 In this way, we shall
realize in limited applications, a calculus of relations which will permit
the formation of hypotheses about the interactive space for the eye and
the hand.

From the viewpoint of methodology, the present work relies less
on anthropomorphic models of machine vision than does M.I.T. They
seek a common thread between the phenomenology of human vision and
machine vision. This is a valid approach in constructing a laboratory
for machine vision. In our circumstances, we shall modify this strategy
somewhat and depend more on machine-specific heuristics for seeing.
We do not have the luxury of large-scale machines and software. Also
in the NASA context, the computer environment for spaceflight will
also tend to be austere.

In the place of attempts to approach the versatility of human vision,
our efforts will be directed toward realizing practical machine vision for
limited, albeit mission-oriented, contexts. Instead of searching for the
universal intelligent machine eye, we are constructing models for reason-
able machine perception and arm/hand control based on. perception,

In place of the extensive geometric heuristics at M.I.T. we shall
depend on topological heuristics that are more adapted to seeing natural
objects (viz. not confined to regular polyhedra) and which can be
expected to require less of the computer in terms of speed and storage.
Topological encodings will form a common bridge for the eye and hand
language and will permit economical machine implementations of the
resulting choreographic language of the eye-hand interactions.

Programs using geometric processing of image data tend to grow
without bourid. For example the program of Krakauer for recognition of
curved objects requires 5,200 36-bit words of PDP-10 MIDAS assembly
language code plus 1,700 words of fixed buffer and tablets plus the
dynamically allocated array and list structures which can grow to an
arbitrary size. '

Our approach to machine vision is active vision. Other investigators
have been impressed with how much an eye can see without extensive

1Cf. John C. Kotelly, "Context Logic I: Fundamental Concepts,
Notations, and Derived Notions," Notre Dame Journal of Formal Logic,
Vol. XI, No. 4, October, 1970, pp. 431-446.
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special preparation or interaction with objects in the visual field. 1 we
are equally impressed by the activity required for visual hypothesizing
at all levels of processing visual information.

Everyone agrees today that the secret of vision is intimately
connected with the ability to selectively throw away masses of visual
data that tend to generate model mismatches. However, this ability to
throw away is not to us a passive phenomenon on the part of the eye, but
is the payload of very active hypothesizing in which competing hypotheses
are allowed to contend for the honor of being the hypothesis that the eye
will adopt relative to the scene before it... Seeing is thus a form of
hypothesizing and a machine model must use the logic of hypothetical
inference as its strategy. This accounts for our efforts to formalize
hypothetical inference--a subject that has not received enough attention
in studies of artificial intelligence.

1.4 Approach to Development of Choreographic Vision Model

The dominant idea of choreographic vision is that we are not inter-
ested in "scenes to be analyzed" or still-frames of objects as entities
that have interest to the machine retina or the machine lateral geniculate
body. "Choreography" denotes a sequence of frames in which there are
changes in the positions and relative orientations of the objects. By
generalizing this concept of motion sequences, an object to be viewed
is seen as an object to be manipulated and instead of the visual scene
that is the usual problem-solving format for computers-with-vision we
substitute the choreographic context.

For example, in the task-context of a robot performing automatic
assembly operations in automotives, a large circular object with radially
spaced projections is to be seen as a wheel to be mounted onto a car.
The wheel-choreogaphy would then be represented by a sequence of

manipulator actions culminating in rotations with associated torque quantities -

which would correspond to hand-eye coordination in the " mount wheel

context."

The list of object properties in any choreographic frame must include
the frame-transformation variables that are required to bring the object
to the next choreographic frame, Thus typically,object orientation and
motion-path and force-vector would be part of the choreographed model of
the object to be manipulated.

1Cf. M.I.T. Project MAC ReportOVI, p. 15,
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To grasp the significance of this approach, consider that what the
eye-hand system has to do is to implement a "cine" sequence in which
by eye-hand choreographic interactions it creates its own "filmstrip."
If the "filmstrip" matches internally stored choregraphed models, then
the choreographic sequence matches an eye-hand task sequence. Otherwise,
it will continue to-construct the required "filmstrip" by adopting and con-
firming and rejecting alternative hypotheses about the object to be manipul-
lated.

For example, suppose that in a "mount wheel context, " robot
operation of a wrench does not produce the desired sequential goal frame
of a mounted wheel. An alternative hypothesis would then be tested that
a thread might be stripped and some eye-hand test would be called to
verify the choreographic subsequence of discovering if a thread is stripped.
A stripped thread could perhaps be detected by simply viewing the wheel
lug as a helix or a broken spring.

One of the significant discoveries of the M,I.T. research program
on artificial intelligence is the superiority of vertical system structures
in a program vs. horizontal system structures. Earlier horizontal pro-
cessing of visual data from a television camera proceeded by sequential
operations such as preprocessing to establish a favorable signal-to-noise
ratio, detecting of edges, abstraction of features, finding contours etc.

In a horizontal or hierarchical system, there is an implicit division
into lower level processing and higher level processing and there is
little iteration or recursion in the sequence. As a result, earlier errors
get propagated such that higher level heuristics must become inordinately
powerful to process the visual data.

The new approach to this problem is to treat vision as a heterarchical
system in which there is considerable communication of cues and informa-
tion among the various vision-processing routines at all levels. This
result is particularly important in this study since we are aiming at a model
of eye-hand coordination. We ‘envision a vertical structure which has
considerable feed forward of information to higher level processing and
" considerable feed backward to lower level processing. Further, at all
levels, a unifying topological language and hypothetical inference frame-
work will be used to verify the choreographic context operators. The
vision model consists in an integration of the eye choreography and the
hand choreography. This integration gets realized by a vertical program-
structure. This software structure is thus a mirror of feedback structures
in the hardware.

One of the characteristics of horizontal systems is their contextual-
poverty. As Krakauer notes, "....there will always be ambiguities in
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finding significant pattern features which can only be resolved through
the use of context."l We propose to use the vertical structures which
tend to naturally propagate contextual information among the various
visionzp_rocessing Ar'outines, as a formal system for imbedding context
logic. : s

A by-product of a formal contextual vertical program structure,
will be the relaxation of hardware requirements. Television sensors of
a standard type-and relatively imprecise preprocessors can be used since
the precision of the system will be derived from the logical framework and
the ability of the system to emulate the hypothetical inference that is
found in human and probably animal vision.

The problem-solving domain of the choreographic vision model
will be an interactive space. By this we mean an eye-hand ¢oordination
space which is coordinately described in terms of eye properties that
indicate the existence of a choreographic frame and hand properties that
transform that frame into a next-eye-frame.

Formalisms have been developed to serve as a basis for modelling
perceptual-motor loops.3 These loops are modelled by entailment diagrams
involvihg hand-eye data, choreographic properties (characteristics of
objects-to-be-manipulated), and choreographic models.

A formal system for tracking entailments in context is extended to
provide a formalism for modes of hypothetical inference.? The hypothetical
inference schema of Polya5 is also formalized in order to account for the
inter-dependency of likelihoods among perceptual-motor events using-

process variable information from a Kalman filter. The entailment diagrams
which a robot must construct in order to command and control perceptual-

motor behavior loops via its relational computer are formalized.

1Krakauer, op. cit. p. 10

ZI.C Kotelly, "Context Logic I," Notre Dame Journal of Formal Logic,
“Fall, 1970.

3Quartemz Report No. 1: Logical Development of Choreographic Vision
Model, Cyberfacts, Inc., October 15, 1971.

4]. C. Kotelly, "Context Logic I," Notre Dame Journal of Formal Logic,
Vol. XI, Number 4, October, 1970, pp. 431-446.

'SPollaL Patterns of Plausible Inference, Vol. II, Princeton University
Press, 1954.




. The logical choreographic model can be compared to theories of
human perceptual-motor behavior. In the choreographic model, vision
is interpreted in terms of hand/arm properties (objects to be grasped and
manipulated). Coordinately, manipulation is interpreted in terms of
changing the "cine" sequence of visual fields via interactions with the
objects in that field and by being part of the visual field. This approach
can be compared with Smith's neurogeometric theory of motion.l In
Smith's theory, perception and motion are seen as inseparable units
of behavior. Their interactions constitute the perceptual-motor behavior
loop.

The choreographic model stresses three components of robot behavior: -
interaction, context, and relational modelling.

To paraphrase A. R. Johnson, grasp will be a more fundamental
perceptual mode than mere touch for a robot on the Martian surface.
Looking will be more essentially descriptive of vision than mere seeing.
It will be the total involvement of the robot that will be paramount.

For a Martian robot, sensory input (eye-hand data) will be metaphoric.
There will be an hypothesized comparison of eye-hand data and the event
“which produced it. The sensory input itself will not be modelled as the
event. It will simply be interpreted as a metaphoric statement about
the event or object. It will remain for the robot to discern the meaning of
the metaphor through follow-on-eye-hand behavior (which will be again
more than simply a set of passive, sensory observations). Meaning will
be found in the response which the robot finds appropriate (in accordance
with stored models of contexts and filters that enable the robot to select
out contexts). The context of the event will act as an operator in the
relational computer of the robot. 3 It will assign meaning to the manifold
of sensory metaphor. Discernment and matching of context will be a
continuous, active process in the relational computer, and eye-hand data
will be matched with internally stored choreographic models via modelling
of choreographic properties of objects.

1L. E. Smith and J. S. Harrison, "Comparison of the Effects of Visual,

Motor, Mental, and Guided Practice Upon Speed and Accuracy of Performing
- a Simple Eye-Hand Coordination Task, " Research Quarterly, 33, 299-307, 1962.

2

A. R. Johnson, "Organization, Perception, and Control in Living
Systems, " Industrial Management Review, Winter 1969, Vol. 10, No. 2, p.2.

3

H. T. Hermann and J.C. Kotelly, "An Approach to Formal Psychiatry,"

Perspectives in Biology and Medicine , Vol. 10, No. 2, Winter 1967, 272-308.
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The entailment/relational diagrams (eye-hand data—schoreographic
properties —+ choreographic models) will be the blue-print for the robot's
perception. What does perception do? ‘

Keeping up to date the internal organizing system,
that represents the external world, by an internal
matching response to the current impact of the

world upon the receptive system is called perception. 1

How will the robot realize perception?

In a sense, the internal organizing system is con-
tinuously making fast-time predictions on what is
going on out there and what is likely to happen out
there, and it takes anticipatory action to counter
the small errors that might threaten its overall
stability. 2

The choreographic Vision model is based on a calculus of relations
for the robot's relational computer. A context relation logic has been
developed for the first time. The objective is to provide a firm basis for
future choreographic programming languages. This theory will be to a
choreographic programming language what the A -calculus of Church was
to development of LISP.

The crucial importance of a powerful theory of relations and a
correspondingly machine-implementable calculus was recognized by the
late Dr. Warren S. McCulloch. McCulloch was searching for a theoretical
basis for nueurophysiological models that could serve as models for robots -
as "descriptions of life applicable to either men or machines." The recent
valuable work of Winston shows the power of a relational approach to
internal machine modelling.

1W. M. Brodie and N. Lindgren, "Human Enhancement Beyond the

Machine Age," (Describing the work of D. MacKay) IEEE Spectrum , February,
1968.

2ibid.
_ 3A . Church, The Calculi of Lambda-Conversion, Princeton University
Press, Princeton, 194l.

4

P. H. Winston, MAC-TR-76, Learning Structural Descriptions from
Examples, MIT Artificial Intelligence Lab, September, 1970.
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_ Sutro and Kilmer have described the functions of a relational computer
by making analogies to the functions of the cerebral cortex. They looked
on the relational computer as the lateral geniculate memory in the h1erarchy
of computers to command and control a robot. '

Visual memory will store the relations found in....
stimulus patterns by the visual subsystem. Hence
the term: relational computer. An object will be
stored, not as a picture, but as a structure of
relations, or model, which cause the robot to do
something: run from the object, pick it up,
~experiment with it. Such a model can either be
built in or learned. 1

1. 5_ Approach to Development of Toplogical Vision Model

Two new, complementary approaches to topological machine vision
form a basis for subsequent system program specifications.

A shape-recognition model takes advantage of the inherent edge-
enhancement and shape-detection properties of multiaperture image
dissector television cameras. A shape encoding schema is developed with
which we can associate activation of subsets of the multichannel aperture
matrix with graph elements out of which shapes can be constructed. The
rationale of this encoding schema is to provide economical machine repre-
sentations of the shapes of both artifacts and natural objects both for
processing in a limited computer environment and for transmission to
earth-based computers for image:-feconstruction.

The model also presents an alternative approach to storing and
transmitting shape-encodings. A variant of grass-fire encoding is explored
which should minimize storage of a large number of shapes and should
provide faster correlation of an observed shape with a stored shape. More
significantly, grass-fire encoding, which is a technique for characterizing
a shape in terms of structural transformations of that shape in Euclidean
space, may offer a practical strategy for minimizing bandwidth require-
ments for transmittal of shape information on the downlink to earth. '

A contour-recognition model is developed for processing inputs
from the projected laser ranging systems for the Viking missions. This
model provides a method for encoding laser-derived images of 3-dimensional,
smooth, compact objects. A graph-representation of contours leads to
graph-representations of a sequence of contours obtained by scanning the

11, . sutro and W. Kilmer, o_p. cit., p. 13.
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laser through planar cross-sections perpendicular to the line-of-sight.
The feasibility of the method is based on a theory of Morse which
limits both contour sampling and scanning from single viewing angles
and from multiple viewing angles. An approach is also given to the
problem of object-identification under various orientations or in different
positions.
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SECTION II. @ EYE-HAND COORDINATION MODEL

2.1 Hypothetical Inference Processes of Choreographic Vision

The problem of hypothetical inference for a choreographic vision
system is to substitute for a complicated tangle of predicates or pro-
perties attached to an object in the field of vision, a single conception
of an object to be manipulated. '

From the viewpoint of the choreographic processing system, the
process of hypothesizing looks like this. The internal machine model of
a class of objects to be manipulated, O, has for its contextual properties
(without breaking down into distinct subcontexts) a set of predicates, Pj,
P,, P3, etc. As a result, I infer that the object in the field of view
belongs to O.

The program will not admit or form a hypothesis, unless it can
develop a model from it that will account for both eye data and hand
data. Following Peirce, the form of inference is as follows: "The
surprising fact, C, is observed; but if A were true, C would be a matter
of course. Hence there is reason to suspect that A is true. "l

For example, the outline of a printed circuit board has suddenly be-
come an irregular polygon. If the printed circuit board is placed behind
other components, then this would account for the sudden change in contour.
As a result, there is reason to hypothesize that the printed circuit board is
occluded by other objects in the field of view.

Another example involves hand-data. The gripper is slipping when
it trys to grasp the target object to be manipulated. If the object is covered
with oil, then it will have specular rather than matted properties when
differential light regions and contours are constructed. The object does
indeed have highly specular components in the image. There is reason to
hypothesize that the gripper is in contact with the correct object, but it
has become coated with oil. :

The rationale for hypothetical inference is covering a smaller bet
with a larger bet. The program places a high degree of likelihood in the
condition "if A were true, C would be a matter of course."” As a result it
hypothesizes as likely that A is true (where C is the larger bet and A is the

1C. S. Peirce, Collected Papers, Vol. 5, paragraph 189, Harvard

University Press, Cambridge, Mass. 1960.
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smaller bet). It has been observed by Peirce and others that this process
has the form of modus ponens where if p is hand or eye data and q is a
set of choreographic properties and r is a choreographic model:

(P—a, g —1)=n(p—>pr1).

The modellability of the middle term q permits the machine to model the
eye-hand data, p.

Now since machine vision requires selection of modellable properties
and does not have, as we do, an innate intelligence for hypothesizing
correctly over the long run, there is required another form of hypothetical
inference which rejects lower level processing of visual data as the basis
of rejecting the modellability of a set of choreographic properties. This
inference mode is modus tollens, 'This will take a machine form as
follows: "The surprising fact, C, is observed, but if A were true, C would
be a matter of course. But in certain contexts, A is not true. As a result,
in those contexts C does not offer any information to the choreographic
program."

Modus ponens is thus the machinery for forming hypotheses and
modus tollens is the machinery for deselecting hypotheses.

For example, highlights are observed which would correspond to the
curved surface of a capacitor. However, in the context determined by
handling integrated circuit boards, it is unlikely that a capacitor-scale
object exists. As a result, it is unlikely that capacitor highlights are being
observed.

Since hypothetical inference is a form of machine betting on the
likelihood of model match or model mismatch, we need a formal system
for balancing likelihoods or for introducing a contextual awareness at the
outset which biases a vision system toward one of the other choreographic
responses. There can be several approaches in solving this problem.
Hypothetical inference is currently being investigated by logicians with
renewed interest since it is recognized as a very neglected and critical
part of logic. There are schemes in Polya, Hintekka, Suppes, Tarski,
Carnap. We shall provisionally adopt a scheme in Polya. Also instead
of casting it into a logistic system (such as the probabilistic logics of
Lukasiewicz), we shall adopt a form of natural inference as opposed to
axiomatic inference and its deductive overtones.
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2.2 Formalization of Polya Plausible Inference Scheme

Polya introduced his plausible inference scheme to provide an
alternative to deductive or axiomatic inference systems. 1 1n artificial
intelligence studies today, schemes such as Polya's provide an alternative
to theorem proving since they offer natural inferential schemes that can be
generalized and formalized to provide machines with hypothetical inference.

We shall use the Polya scheme as a starting point to build a logical
model of choreographic vision. His scheme will be generalized and formal-
ized to provide a mechanism of inference that can lead to machine algonthms
and heuristics in later phases of this research

We start by assigning graduate levels of likelihood. Consider the
following graduated scheme of levels and their interpretations.

Lq: "will be modelled”

Ly: "is more likely to be modelled"

Lj: "is somewhat more likely to be modelled"

Lyt "is somewhat less likely to be modelled”

Lg: "is less likely to be modelled”

Lg: "will not be modelled"
where "modelled" means realizing an effective match between the program's
knowledge of the choreographic context and the program's perception of
choreographic elements, and where "not modelled" means a mismatch. A
choreographic element is defined as a property (or set o‘f properties) of an

object to be manipulated.

We define a set of necessary conditions, N(xi) for the modellability
of a choreographic elements, Xj.

N (x;) = {n] A np A N3 SURES anp}

We also define a set of suff1c1ent conditions, S(x ) for modellmg a choreo— '
graphic element, x; ;

S ) ={s;vsyvs3vsy ...vspl

1G. Polya, Patterns of Plausible Inference, Vol. II, Princeton University
Press, 1954.
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In the Polya plausible inference scheme, we infer (modus tollens)
from levels of confidence in the realization of a set of necessary conditions
N(xi) to levels of confidence in the modellability of a choreographic element.

Major Premise

the set of necessary conditions N(xi) is realized.)

(if X; is modelled, then we infer that

Minor Premises

L]_N(Xi)

L 2 N(Xi)

L3 N (Xi)

L4 N (Xi)

L5 N (Xl)

L6 N (Xi)

Conclusions

I*

L4 )

L (x;)

Correlatively, we infer (modus ponens) from levels of confidence in the
‘realization of a set of sufficient conditions, S (Xi) to levels of confidence

inthe modelling of a choreographic element, Xj-

Major Premise

x, «—S(X,) (if a set of sufficient conditions, S(x;)

is realized, then we infer that the choreographic element is modelled.)

Minor Premises

L1 S(xi)

3 S(x;)

L4 S(xi)

L5 S(Xi)

LG S(xi)

Conclusions

L, (Xi)

I*

L4(x;)

Lg (x;)

2.3 Kalman Filtering of Eye-Hand Data

Derivation of likelihoods for a hypothetical inference scheme must be
either based on preprogrammed or learned assignments or must be dynamically

derived from sensor/actuator data.
such a mechanism.

2.3.1

Sensor Utilization-Optimum Parameter Estimation

We shall assume that the robot will have
One approach of deriving likelihoods is Kalman filtering.

We assume in this discussion that the robot control subsystem can
receive measurement or observation inputs, m, from the sensor subsystem.
The measurement, m, is a function of sensor process or actuator process

variables to be estimated and subsequently autonomously controlled.

The robot's control logic must accomplish this process of estimation
and control with minimum error in order to perform complex tasks.

*I is an indeterminate conclusion.
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The robot's problem is as follows. How can it use an ensemble of
oObservations or measurements in such a way that the robot's control sub-
system has a model of the sensor or actuator task to be controlled?

Recall at this point that the robot is internally representing to itself
aspects of its own behavior as it interacts with the behavior of objects
within its sensor or actuator space.

Our approach to the mechanism that the robot will use to give itself
an optimum estimate of process variables to derive Polya likelihoods for
model match or mismatch is the Kalman Filter.

The Kalman Filter gives the optimum linear minimum variance estimate
of process variable x; from a set of measurements or observations m,.

From an optimum estimate of process variable, the robot can compute
a response function, u, to control (1) its own manipulatory and vision
processes and (2) the Mars mission experiment process. The goal is to
arrive at the desired values of the process variables that the robot is
estimating.

The robot is confronted with the problem: what has it measured or
observed and what is the contextual relevance of each measurement. The
recursive filtering approach given by the Kalman computation is a process
whereby the robot will use each new piece of incoming data to form an
improved estimate of all the estimated quantities.

2.3.2 Model of the Problem

To illustrate an acceptable way for the robot to handle the two
different classes of process variables it will encounter, let us imagine a
process in which the robot must control two variables. One variable, A,
is essentially constant with time. The other variable, B, is time-variant.

A pointto be stressed is that a good a priori knowledge of the variables to be
controlled must be either programmed into the robot (on the basis of prior
computer simulation) or must be acquired via its own ability to perform
hypothetical inference and receive information from the earth-based symbolic
supervisory control system., Let us assume that our robot is the beneficiary
of the results of computer simulation of the process (using conventional
Monte Carlo methods in conjunction with a replication of the Kalman Filter
in a lab computer). Simulation could also occur in training sequences. At
any rate the robot does not become adaptive instantaneously but starts with
some a priori models.
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The time-variant variable, B, can be expressed:

B{t)=1+bt (1)
c+dt

Thus in our two-variable problem (A and B), the robot will need to
acquire the continuous time-history of a, b, ¢, and d, where

)

A . t '
B (b, c, d, t). (2)

(a
f

I

in order to estimate the process variables, A and B. This is the first critical
requirement for a Kalman Filter Robot.

The quantities to be estimated are collected into a state vector, X.
With the vector expressed in a row or a transposed form, the state vector
in this problem is : : '

xT = @becda 3)

The value of a is the current value of A. The quantities, b, ¢, d,
are the coefficients in the B variable model given in equation (1). These
guantities can be taken as constants although it is to be expected that
somewhat different values of these parameters would fit the local process
behavior better at different time periods. So, to model the fact that these
parameters need some freedom, a differential equation of state is used to
eéxpress the rate of change of X as a random noise.

X=n 4)

The effect of this noise is to hold up the gains of the recursive filter
so that the estimates are more sensitive in later measurements than they
‘would be without n. For this purpose, the simplest model of the noise will
be a white noise and this will serve the robot well for most control situations.
Then by definition,

(=0 )

n®am®MT=Pw0dE-7 6

The best way to evaluate the P matrix is to note that it is numerically
equal to the correlation matrix for the changes that we might expect in X over
a unit time interval. As a result,



with o o
AX (t) =X (t+1)-X(t) (8)

We now have to derive an expression that maps the robot's physical
measurement, m, into the variables of the state vector. By defining the
calculated value of the measurement to be

M=f(a, b, c, d 9)

we see that the next critical requirement is to be able to analytically express
the measurement as a function of the elements of the state variable. The
linearized theory requires the linearized relationship between the estimated
quantities and the sensor subsystem measurements. In practice, this
linearization is performed about the current value of the estimates. Hence
at our current estimate of a, b, ¢, and d (current value of X in equation

(3), M is calculated from equation (9).

Let us now define a measurement column-vector, h, where

nT = {DM M M bMA] (10)
2a ob oc od

From a knowledge of the current value of X, equation (10) can be
evaluated.

The actual measurement telemetéred by the robot subsystem, measure-
ment, m, is the ideal measurement given by equation (9) plus the measure-
ment noise. That is

m=M +n (11)

The third critical requirement is for the robot to determine whether
measuretment, m, accurately represents the true value of M. To find this
out, O m is specified as the variance of the random value of n. The robot
can let this quantity vary for each telemetered sensory input in some way
that is tailored to the characteristic of the individual sensory channel and
its usual behavior over time for the range of industrial contexts it is
expected to operate in. What is critical is that the robot can describe the
accuracy of each individual measurement. Once this is accomplished, the
robot has a model of the process.

To summarizeé the specification of a process model, an adaptive robot
will have to be given some knowledge of the process variables to be con-
trolled (as well as their approximate time profiles) probably by prior computer
simulation of the process. Then, the robot should be able to express any
measurement as a function of the process variables. Finally, it should
be able to form a model of the accuracy of each individual measurement.
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2.3.3 The Kalman Estimator

The "

genius" of the adaptive robot is its recursive activity as a

way of achieving self-reference. The recursive estimator for the current
problem has the form '

o
Xg =

El

EK .=

here &, =
wereXK—

mK——-'

k- E

A
Xg-1 * Egr by

hKTl E'y hK-1 + o mK (mg - M (XK 1) {12)
k-1 T Px (g ~ tg-1) (13)
E,, - E'g hg_ by ; TE o (14)
K’ Kg-13k-1 K

h'kx-1 E'gxhyg |+ omK

estimate of X after the Kth measurement,
covariance matrix for the errors in Xg - .
measured value of Kth measurement telemetered by sensor.

M ()’ZK_I)— calculated value of measurement based on la st estimated

state vector .

The computational steps are as follows.

(1)

(2)

initialize X to get X0 by assuming inital values for aO, bo,
cg. and dO (based on. prior simulation) .

Assume initial values for Eq- (This accuracy of this step
is not critical if the robot is to be receiving a large number
of measurements from a given telemetry channel associated

with a given sensor over a period of time.)

Assume a constant rate of change for the covariance matrix.
A constant value for PK is usually adequate for most processes.

Calculate M (o) and h &g).

Calculate E'llat time of first measurement (t] of mlj .
Calculate E.

Calculate 21, then calculate A and B.

Repeat (4) through (7) as process to be controlled continues
to obtain the current value XK at time of current measurement,

tK.
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2.3.4 Synthesis

It is assumed that the process to be controlled is a function of a
set. of variables such as rates of movement, positional changes, etc.

These variables are designated Qs coeves » dp- Then in the generalized
case

A=f(ay, dgs -vvee. . dp)

B—f(ql,qz, ...... ,qn)
and

dA = :;\1 dg; * 322 dgy Free e +—-§§n dq, (%)

A similar formulation holds for B, the variable variant with time._ A
nominal profile of A (t) and B (t) is stored within the robot's memory.  The
current estimate ofg permits computation of A and B. The difference be-
.tween the estimate and the derived nominal n is obtained. The dq's are
solved for in the context of affecting the desired change in the process
variables. The result of this computation is fed back to complete the
loop in real time to the sensor/actuator subsystems. '

To return to the discussion of synthesis, the robot compares measure-
ment information to the optimal profile within its memory. It thus is in a’
position to act cybernetically--as a governor--to bring the present response
surface of process variables closer to the desired surface in the next time
window, t + 1. Specifically, as a result of the preceding computations,
the robot makes changes to the control functions (the g's) that are driving
-its control loop. When the robot must take very positive actions to stabilize
this control loop, the partial derivatives in equation (15) can be changed in
value so as to change the overall system's gains in controlling process
variables.

[

2.3.5 Error Propagation

The covariance matrix, E, gives the statistics of the errors in estimates
of the parameters, a, b, ¢, and d which are the elements of X. It has the
form _ : -

A
1loa  oab o-ac oad

L

gca ocb o gcd

gda odb Jddc gd
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What we are immediately interested in are the statistics of the
errors in the estimates of the process parameters, A and B. The linearized
relationship between these errors is as follows:

error in A n
= G error in X (17)
error in B
where
Gll= 0A =1 G2l1=_9JB =0
0a Ja
Gl2= A =0 G22= 3B =t (c+dt)}
)b : b
Gl3= A =0 G23= OB =-(c+dt)” ! B
. —C P
Gl4=_dA =0 G24=- dB = o023t
P - T

Then the covariance matrix for the errors in the estimates of A
and B is

A o AB

B

2.3.6 Simulation

A critical step towards realization of an adaptive robot will be
acquiring the profile of parameter variations for the process histories of the
planetary exploration or experimentation. We have to acquire a measure of
the quality of the sensor subsystem measurements in specific experimental
contexts. The objective is to determine the estimation errors for the
experimental process. ' -

The actual mechanization of an adaptive system is complex. The
estimator may be very powerful and flexible, but in the last analysis it
‘is limited by its knowledge of the process to begin with. It should be
emphasized that by "process" we mean the product of the interactions of
the robot's sensor and actuator subsystems with the special machine
process variables under adequate time-histories to create an adequate
measurement and synthesis model.
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2.3.7 Performance Summary for Kalman Robots

Conventional automatic batch-processing control systems determine
a system's dynamic state and associated uncertainties of measurement of
the state at many different points simultaneously. A Kalman Filter Robot
would differ by its recursive behavior. Its basic cycle yields the state
vector estimate at time, t,, together with the statistical uncertainties
associated with the measurement at tgs the error propagation equations
relating tK to some earlier time, tg_j, and the earlier state vector estimate
at tg_, ., together with its uncertainties. Each piece of measurement or
observation data is processed as soon as it is received from the sensor/
actuator subsystems. " :

There exists an essential differernce between a Kalman Filter Robot
and a robot that incorporates a weighted least square batch processor.
Both are optimum estimators in the sense that their selection of the best
estimate of the state minimizes the statistical dispersions around the
estimate. Abstractly, they can be shown to be equivalent, but in
practice they produce different behavior. A significant advantage of
Kalman filtering is the savings in throughput time and storage thus making
it ideal for the complex real-time applications of aerospace robots. Kalman
filtering is currently used for adaptive navigation problems. Its rapid
acceptance for real-time applications has however uncovered certain weak-
nesses and potential problem areas.

The primary problem-area is divergence or failure of the estimated
quantities to track the nominal quantities. However, the general cause
of divergence can be traced to inadequate modelling and simulation of
the process to be controlled. Any attempt at economizing on this simula-
tion activity can lead to systems failure if divergence is unacceptable within
the control criteria required by the process.

Most real time applications will entail dynamics which are not known
in great detail. Further the interaction of robot actuator subsystems will
introduce new dynamics which will certainly not be known beforehand in
detail. Since advanced adaptive robots will be taking observations of
their own interactions with outside processes, divergence can lead to
pathological behavior on the part of the robot. Let us examine the divergence
phenomenon.

The robot's estimation algorithm operates on perturbation equations
derived from a linearization about somereference state. Neglected non-
linearities associated with the process to be controlled or the robot’s own .
interactions with this process, make the linearized equations only approxi-
mations to the actual physical control problem. Unless process noise is
‘added in the filtering algorithm, to account for inherent uncertainties, the
Kalman filter "thnks" it has an excellent solution and the actuator subsystem
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is commanded to act in accordance with this solution. As a result, as the
robot continues to control a process, it eventually will tend to exhibit
sloppy control behavior. The statistical uncertainties associated with the
latest state vector estimate (which must be compared with the assumed
uncertainties corrupting the measurements at each observation or measure-
ment step) becomes overly optimistic. A statistical inconsistency then
develops and divergence follows. The filter acts in a solipsistic fashion--
much as some humans--and tends to give less and less weight to sub-
sequent measurements since it "thinks" that it has already obtained an
accurate model of the system to be controlled. '

In our example of controlling processes A and B, we have created
a mechanism to defeat divergence within the robot by adding a process
noise 'matrix to the covariance of the state vector uncertainties between
every two measurements. This results in a filtering algorithm that is
somewhat stoical about its control task and places more weight on recent
observations. '

- Other schemes can of course be devised in which weighting schemes
or "tracking logics" can be given to robots in training sequences and can
be specifically tailored to the demands of the process to be controlled. In
this area, there will be no substitute for experience and at this point we
have no experience in the rigors of space-exploration, adaptive robot
‘control and have extrapolated from applications of adaptive control in
aerospace problems such as navigation.

2.4 Contextual Formalization of Modus Ponéns and Modué Tolleris

The Polya scheme introduced in 2.2, even when formalized into a
procedure that can be computed has a serious drawback. It is a context-
free inferential schema (like nearly all formal systems). However, as
realized by investigators in artificial intelligence, the ability to handle
context is of critical importance in a computer-vision system of any kind.
The next step then is to provide the Polya scheme (as we have formalized
it) a recognition of contextual selection and deselection of hypotheses.

We now return to the context-free form of modus ponens where if
p is hand or eye data and q is a set of choreographic properties and r is
a choreographic model:

(P—sq, q—eD) =>(p—sr1)

We now put this expression into a standard form of MP. Given A, A—B,
then B. Thus A stands for the given premises (p—q, g——sr), B stands
for the conclusion, (p—sr) and A—-B stands for the entire expression

((p— a4, d—s 1) =3 (p—1)).
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Now context-free MP would have it that if A, and A——B, then always

and inflexibly, B. Returning to an earlier example, if p is an observation
that a large circular object with radial projections is in the field of view,
and q is an interpretation that the radial projections are bolts onto which
nuts can be screwed, then always and inflexibly we must correlate obser-
vations of large circular objects with radial projections with a "mount-
wheel chreographic model." However, if the robot is to be more versatile
than SAM at General Motors (which is preprogrammed only to weld car )
frames), there most likely will be encountered other automotive (or machine
tool) parts that also fit the hand/eye data, p. As a result, to resolve the
ambiguity concomitant with context-free exercise of MP inference, there
must be freedom to conclude to other choreographic models such as in this
case "balance-wheel model, change wheel model, " "calibrate-wheel
model, " "adjust-brake model" etc. or more dramatically, "mount differen-
tial housing."

Following the context logic of Kotelly, a contextual MP form would
have the following diagram

A4Bz

N

such that given A, A—-»Bi, then Bi'

B

n

In our model, this means that the premises, "p—sq, g—-sr" must
contain contextual clues such that a program can select out the appropriate
conclusion, p—sr. Since p, and r appear in the conclusion to be selected
out, the contextual clues must be assigned to the term that does not appear
in the conclusion, q. It will be recalled that q was defined as a set of
choreographic properties—-properties of an object to be manipulated.

However, in Kotelly's treatment of context, the entire premise, A or
(p—»qg, g—-r), must be asserted in a specific context, in order for MP
to be contextual. This corresponds with the veritcal structures described
earlier, where at the lower levels of processing hand and eye data, context
must provide interpretation as an operator. Context also operates in the
middle level of g--assignment of choreographic interpretations--as well as
.at the higher level of discovering model match and mismatch.
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At this junction, we can introduce the new formalism for contextual
MP. We shall first present some essentials of the context C* logic.1 The
system uses the language of category algebra and its diagrams .2 The
universe of discourse in this formalism consists of the following primitives:

() corresponds to a place-holder with no specific restrictions
- stands for the concept of mapping or entailment ("arrow")
= denotes the undefined equality between mappings
@ denotes that a symbol appearing on the left is the name
of the "arrow" on the right, i.e. @: ( )—s( ) or ( )@ )

*Capital letters with stars represent context-selection operators, i.e. A¥*,
B*, C*, E* etc.

‘the prime is applied toa ( ) givinga ( )' such that ( ) need not be
equal to ( ).’ '

(A6) A context operator C* assigns an arrow to the origin-endpoint
of an identify map. "y

I ()
Given ( ) ,then | C* ( )
()

where the extremity of C* ( ) is either a place-holder or an
arrow, i.e. the origin of C* ( ) is the origin of the identity map.

Df. A map @ is defined to be a map in the context C* if the
following diagram is commutative:

()< ()

C*(D (@) \/ c* (R () W
) - .

ie.,C*D@)=C*R@)°F

At this point, we can return to MP in the Context Logic. Asserting an
A (the premises of MP, viz. (p—»q, g—»r) corresponds to the assertion

that 1, is in the context C*, i.e. asserting the diagram:

1I. C. Kotelly, "Context Logic I, " Notre Dame Journal of Pofmal Logic,
Vol. XI, Number 4, October 1970, pp. 431-446.

2Cf. Saunders MacLlane, Homology, Springer-Verlag, Berlin, 1963;
Peter Freyd, Abelian Categories, Harper and Row, New York, 1964; and
Barry Mitchell, Theory of Categories, Academic Press, New York, 1965.
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l C* (IA)_ (2)
()

If we assert A— B (the whole expression ((p—+q; q—s ) =3 (p—s 1)),
this corresponds to making a prediction on the above diagram exemplified by
the following diagram:

Pd (C* (1) = &
1, - ()

c* (1 l/ 3)

()

such that the domain of Pd (C* (lA)) = is 1p-

MP is then an operator whose value results, in context, from applica-
tion of the above diagram, i.e. MP (Pd C* (lA)) = (Z =1p such that the
following diagram would be commutative:

R ,lA v .¢1B - , .
C* (1A) N \ / C*(1p) (4)
' ()

The ‘hierarchy of operators is accordingly: C*, Pd, MP, represented
by the following diagram:

MP

Pd (5)

C* (1))
()

Df. Pd is an operator on C* such that Pd (C*(lA)) = J and such that
D (@) =1,. :

Df. MP is an operator on the diagram



C* “A) (6)

()

whose value is lg = p (Pd (C* (1,)))= R& such that:

1p g |y .
C* (lA) \ / C* (lB) (7)
o ()

is. commutative.

In the formalism of the Context Logic, there is no explicit treatment
of Modus Tollens. The form can easily be derived, however, consistent
with the €* Logic, and consistent with the treatment we have given to MT
up to this point.

MT will simply be an inference form that recognizes that the operator
MP does not hold for a particular diagram. This does not imply that the
context operator Q* becomes a "zero" context operator such that Q* ( A)
reduces to A, Pd (Q* (1)) reduces to A—4B, and MP (A, A—=sB) = B~--
the context-free form of Modus Ponens. Contrar1w1se MT is a form of
context-dependent inference and its force is to recogmze a breakdown in
‘@* operators when applying MP in ¢*.

It will be recalled that on page , MT was described as follows:
"The surprising fact, C, is observed, but if A were true, C would be a
matter of course. But in certain contexts, A is not true. As a result, in
those contexts C does not offer any information to the choreographic
program." We can represent this symbolically

(P—q, q—er)2z(p—1).

where p is hand or eye data»and g is a set of choreogrphic properties and
r is a choreographic model.

The modellability of the middle term g permits the machine to detect
a model mismatch for eye~hand data, p.
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Now to return to the Context Logic, MT need not be defined as a
new operator, but simply the non-realization of MP. A necessary and
sufficient condition for the non-realization of MP as an operator is the
condition that the diagram (7) is verified not to be commutative, i.e.

C* (lA) = C* (lB) o . This is equivalent to the condition that C* (D
(@) = C*(R(®)) o & in diagram (1) i.e. that diagram does not commute.
As a result, MT is the inference mode that detects that a map J is not a
map in the context C*, It concludes that at least for C*, MP does not
have the value true. What this means then is that the middle operator in
the hierarchy of operators, Pd does not hold for C*. We can now define
MT more precisely in the ¢* Logic as an inference formed from detecting
that Pd (C* (lA) =@ orD (@) =1p. (See diagram (5). Now if Pd is dis-
covered not to be an operator on C*, we conclude it may be an operator
for D*, E*, F*, etc. but not for this context, C*. One final mechanism
is involved to check whether C* is contextually nested in another context
D* and if so, to infer MT that Pd is not an operator for D*,

Up to this point, MP and MT have been considered only as inference
modes in which deductions can be made in context. Since our interest is
focused on having a machine hypothesize in context, we need to develop
a hypothetical inference form of MP and MT in the @Z* Logic. We shall
do this via the Polya Plausible Inference Scheme. -

Earlier, the graduated levels of likelihood, Li’ were defined on sets
of choreographic elements, x;, sets of necessary conditions, (N (x;) for
the modellability of choreographic elements, and sets of sufficient con-
jlditionS','_ (S ('xi-)’. Correlatively, in the MP mode, we inferred from levels
of confidence in the realization of a set of sufficient conditions, (S (xi)) '
to levels of confidence in the modelling of choreographic elements, x;.

Translating this into the @* Logic, -on diagram (5) we can instantiate
the place-holder, 15, as p, eye-hand data. Similarly, we instantiate the
place-holder, lg, as r, a choreographic model. The prediction arrow or
operator, Pd, will be interpreted as the double-entailment, "p—q,
g—r," where g again is interpreted as a set of choreographic properties.

Now we interpret the contextual assertion of p via the map, C* (lp) .
lp
*
C* (1) | (8)
().

We also interpret the arrow or mapping, C* (1,) as the assertion of
the existence of a subset of the set of sufficient conditions for modelling p.

1Cf. Context Logic, loc. cit. p. 437 for the conditions of contextual-
nesting. : ’
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Similarly, in the right-hand place-holder, we place 1, and as in the
diagram (7) we assert the contextual identity of r via the map (C* (lr) as
the assertion of the existance of r in the context C*,

c* (1) (9)

()

We now define C* (S (xi)) as a contextual set of sufficient conditions
for p to be modelled, where C* (S (x;)) can now be precisely defined as the
composition of the two maps C* (lA) o C* (1) or in our case,; C* (1 ) o C*
(1p). Thus the mapping & which is the implication =y in (p—eq, q._.r) =
(p—=r) is defined in terms of sufficient conditions via the commutativity
of the diagram; i.e. 1p g 1, =C* (1p) o C* (1). Now for this composi-
tion to be realized, the extremity of both contextual identification maps
is a range of C* properties which we shall interpret as q, choreographic
properties (in the context C*).

At this juncture, we can assign levels of confidence in the contextual
identity maps to infer the level of confidence in the implication & which
we can reinterpret as "p has a choreographic model inr." For example,
using the table developed in 2.2 under MP, C* (lp) oLg C* (1) = Ls ¢J, if
we adopt the convention that L; A Ly = L if Lj 2 1;.

We can now give representative diagrams involving various formalized
Polya assignments for MP.

‘ : lp Lg (@) - o Lr
L, (C*(1p) \ ’ Lg (C* (1p) - (10)
1, I* (@) ol

LZ(C*(I ) \ / L4(C an (11)

where I* is an indeterminate ass1gnment of confidence to the implication ¢&.

1Exc:ept for a value, Lg, on the identity context maps, which yields
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lp L4(¢) ,lr
L,(C*(1))) L.(C*(1))
T \ / T (2
\ (q)

. 1y L, (%) >1r
L (C*(1)) L,(C*(1))
2 p \ / 2 r (13)
. . | (q)

The next step in completing the hypothetical inference machinery
for the Context Logic is ’providing_ a hypothetical MT operator just as we
arrived at a hypothetical MP operator. However, as remarked earlier no
distinct MT operator was needed for hypothetical MT in the ¢* Logic.
What is involved is establishing that Pd is not an operator on C*. Now
the nexessary condition for this is either Pd (C*(1,)) = J or D (@) = 1y
(Refer again to the second diagram on page-26), we can infer MT that
"p does not have a choreographic model in r." Now a necessary condi-
tion for D (@) = lp or 1, = R (@) would be the condition that a contextual
shift has occured and we are actually processing distinct, that is contex-
tually distinct, choreographic properties, gi. As a result, diagram (4)
could appear as follows:

such that the diagram no longer commutes.

Placing this result in the formalized Polya framework, hypothetical
MT proceeds by detecting the conditions of non-commutativity in the
application of MP, or more precisely balancing the likelihocds that an MP
diagram will not be commutative.

Thus if L, ((C*(1_)) L (C*(lr))’ then (following the assignments on
the table on paGe 15), 1if we define N (x;) as (C*(1p)) and (C*(1y)), then we
conclude Lj (p), i.e. "the eye-hand data is somewhat more likely to have
a choreographic model inr." Or if Lg (C*(1p)) and Lg (C*(1f)), then we
infer Lg(p), i.e. "the eye-hand data, p, is less likely to have a choreo-
graphic model inr." I
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Specific machine procedures will be required to test for the existence
of both the sets of necessary and sufficient conditions for MP and MT
respectively and for the assignment of levels of confidence to the contextual
identity maps, (C*(lp)) and C*(1,)) in the diagrams of the type shown in (10)
through (14).

One mechanism for accomplishing this is to represent the diagrams
as relations that must be constructed. Thus the entailment map, &, can
be represented as a relation in extension to be constructed, R. Following
the standard theory of PM,1 lp is D(R) and ly is R(R). R therefore repre-
sents in extension the set of ordered pairs (p, r) that satisfy the relation R.
Now if we interpret the contextual identity maps, ((C* ( )) as relative
descriptions, we obtain the following diagram where (f‘) is a set of intensions
or relative properties of the relation taken in extension.

Consider the following relation, for example, R, interpreted as "son
of." Suppose we have to find the domain of R given the range of R, some
individual, J. We construct the following diagram, where the contextual
identity map is represented as a relative description of the domain of R; by
this we mean that D or R has a mapping to a set of relative properties ( ).
This set of relative properties, in turn, has a mapping as a relative function
of J. Preserving the structure of the C* diagrams, we say the (( ) R]) = ( )
mtHW(f) o (f) rf.()). This means that to instantiate D (R) we must model the.
set of intensions or properties of the individual or individuals comprising
the set, D (R) such that that set of intensions or relative properties can
function as a relative function of the known or given R (R}, viz. the indivi-
dual J. Thus we are required to identify the range of R as a relative of J,
where J is the independent variable, such that D (R) = rf ().

() C*R T

C*Intld C* (rf) (15).

(f)

where C* Int Id is an identity mapping from an object or set of objects in
extension to a set of properties of that object or set of objects in intension,
where (f) is a set of intensions, and where C* (rf) is a relative function,
mapping from the set of intensions to the given object, J.

Now suppose that C* (R) denotes the relation "biological son of. "
Suppose that we are given the correlative of C* (R) as an individual J. To

1Cf. Whitehead and Russell, Principia Mathematica, Oxford Univ. press.
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construct C* (R) we must find an individual that is the domain of C* (R).
Suppose we can lead J into a room with a candidate set that is a candidate
domain of R. We now make general and specific and perhaps even physio-
logical measurements of J to construct a set of relative properties ( ) that
are a function of J in the C* context of biological paternity. We next
construct the mapping C* Int Id as a selection of a subset of the boys in
the room that can be relatively described by the set of intensions ( ).

This process is iterated until we select a single boy (assuming that we
know beforehand that only one individual is in the domain of R). We desig-
nate this individual K. We now say that K (R) J iff K Int Id ( ) is a relative
function of J. By this procedure we have constructed a relation in extension
by intensional tests. Such an intensional construction procedure, when
applied to the problem of MP and MT inference, using the diagrams of the
C* Logic provides a construct that will lead to a machine procedure for
hypothetical inference. This development will be continued during the next
phase of this research. :

2.5 Context Relation Logic

The theory of relations is an ancient logico-mathematical discipline.
Its crucial importance in realizing advances in artificial intelligence was
first recognized by W. S, McCulloch at MIT Research Laboratory for
‘Electronics. McCulloch with R. Moreno-Diaz published some preliminary
notes as a trail balloon to spur on a concerted effort to -develop a useful
calculus of relations for cybernetics. 1 Unfortunately, the attempt ex-

- clusively represented relations in extension (according to sets) and did not

account for relations in intension - (according to attributes, qualities, or
characteristic relative properties of objects in extension). The notes were
further weakened by a premature attempt to develope an n-adic calculus of
relations using structures from the tensor and matrix calculi.2

The theory of relations probably originated with Aristotle, 3 was given
a rigorous foundation by C. S. Peirce4 and Schr'o'_der.5 It was refined by

1R. Moreno-Diaz, W. S. McCulloch, "On a Calculus for Triadas, "
Artoga, Communication 101, May 1967. .

2]. Simoes da Fonseca and J Mira, "A Calculus of N-Adic Relations"
(Communication to W. S. McCulloch, April 9, 1969).

' 3Aristotle, Topics.

—_— 4C. S. Peirce, Collected Papers , Harvard University Press, Vol. III,
1960. .

SE. Schrdder, "Uber die Algebra der binaren Relative, " Math. Annalen,
46, 1895, 144-158.
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Russell and Whi’r:ehead,l and investigated in many forms by Tarski,2 Wiener,
Lyndon, 4 Jonsson, 5 Birkhoff,6 and others. This writer, while at NASA ERC,
directed the work of J. Rial, 7 in an attempt to develop for the first time an
intensional relation algebra.

Classical theories of relations (as well as newer treatments aimed
at structures for machine intelligence) have treated relations exclusively
in extension as sets or classes. The relations are also treated as con-
text-free (CF). The present research is directed toward overcoming some
.of these shortcomings. In the present precis of context relation theory
{(which is a nucleus for a later in-depth formulation) relations are taken
both extensionally and intensionally as constructible (by man or machine)
through formal context operators that assign meaning or interpretation to
relational structures.

2.5.1 Definitions

In the following development of a context relation logic as a basis
for the future development of choreographic programming languages, defini-
tions from PM (Principia Mathematica) of Russell-Whitehead will be used
as a frame of reference and a means to introduce the context relation logic.
P.M. definitions will be identified as CF (Context-Free) descriptions of
relations in extension. The new developments will be identified immediately
" after each CF entry as C* (Context-Dependent).

lA. N. Whitehead and B. Russell, Principia Mathematica, Cambridge
University Press, 1927.

2A Tarski, "On the Calculus of Relations, " Journal of Symbolic Logic,
Vol. 6, No. 3, September 1941.

3N. Wiener, "A Simplification of the Logic'of Reiativeé, " Proceedings
of the Cambridge Philosophical Society, 17, 1914, Part 5, .387-390.
: 4R. Lyndon, "The Representation of Relation Algebras, ™ Annals of
Mathematics, Vol. 51, 1950 707 729 also Annals Vol. 63, 1956, 294-307.

SB Jonsson, "Modular Lattices and Relat1on Algebras " Transactions
‘of the American Mathematical Society, Vol. 92, No. 3, 1959, 449-464.

6G Birkhoff, Lattice Theory, American Mathemat1ca1 Society Colloquium
Publications, Vol. XXV, 1948.

7]. F Rial, Intensional Relation Algebras, The MITRE Corporation,
Bedford, Mass., 1969 (prepared under NASA Contract No. NASA 12-644).
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CF A dyadic relation is defined: x Ry =% §[¢ x, v} i.e. "x
has the relation R to y" denotes in extension the set, the x's and the y's
such that ¢ (¢, y) or the couples that satisfy the relation, R.

C* A dyadic relation is defined: x /fC* y=%9 [fSX, y) } i.e.
"x has the relation £ to y in the context C*" denotes in extencsion-a set,
the x's and the y's such that ﬁ C* (x, y), and such that ﬁ C* is a relative
mapping of x to y determined by the context, C*. The @ C* mapping is
constructed via the following commutative diagram, where a represents x
taken intensionally and p# represents y taken intensionally.

*
X y Y

EXTIDC™  INTIDC®

REL Fywer

R e

In this diagram, the range of § C* is the domain of the contextually
determined identity mapping, INT ID C.* The domain of _é— C* is the range
of a contextually determined identity mapping EXT ID C* from a set of
intensions of relative properties of x, A , or the domain EXT ID C*. REL
FUNCT C* is a relative.function mapping whereby the range of REL FUNCT
C* is an independent variable, p~, and the domain of REL FUNCT C* is a
set of properties or intensions of x, 4 , that constitue a function, viz.

A =f(p).

The Y 4 relation is defined in the context C* by the commutative
diagram: i . '

x P ,v,= Y INT ID C* s, REL FUNCT Ci#ah EXTID C* X
X f Cc*

Consider an example /£ relation to be constructed.? Let C* be a
"mount-wheel context." Suppose also we are given the hypothetical
relation x 26 Y, i.e. x stands in the relation of turning y. Then we say
that this relation must be constructed in the mount-wheel context, in
order for the relation to hold. The construction procedure-is as follows.

y = x EXT ID C*7! .) REL FUNCT c;/“,f; INT ID c* "Ly

%
7

1Suppose that C* happens to be a mathematical context, and y stands for
the number two. Then y in extension is the class of all sets, each of which
stands in 1-1 correspbndence to the set {0, _1} . Then y in intension
(represented by,u) is the property of being even prime,

A more detailed exposition of the construction procedure is given in
Relative Product, 2.5.11.
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The object in extension y is identified in C* with a specific set

of intensions or properties, 4 . Another (distinct) set of properties
A , is a function of Mo and is extensionally identified with an object
Xo :

Thus if y in C* is given as a radially spaced set of projections,
and vy can be identified with properties such as "threaded" "two-inches
long," "doughnut-shaped, " "hexagonal, " rotating clockwise, " etc. and
another distinct set of properties such as "having a clamping force of
10 pounds, " "having a torque of 20 foot-pounds," "clamping opposing
straight surfaces, " rotating clockwise" etc. is a function of the first
set of properties, and if we can extensionally identify the second rela-
tive property set with an object x, then we can construct the relation
/fc‘, "robot hand turning lug-nut on a wheel,"

The important difference in the CF and C* forms.of relations can
be seen in this example, Construction of an A relation proceeds by
hypothetical inference. In the classical CF form, the relation R is
given as a set of ordered pairs, In the C* form, the relation is con-
structed by extensional and intensional tests, and by determining that
one set of properties is a relative function of the second set. Such a
procedure is the basis of machine perception in the present study. In
the C* system, given one member of the relation Z or given a relative
in extension, the problem is to find a correlative in extension, such
that they are £ -related in the context C*. If the diagram can be con-
structed such that the diagram commutes, then the inference is made
that the objects are /L -related in C*, If the commutative diagram cannot
be constructed, then they may be /2 -related in another context, D*,
E*, F*,.....but not in the context, C*.

CF The -antecedent of R is the object which has the relation R
to something. The consequent of R is the object to which something
has the relation R. . : R

C*  The antecedent of £ is the object which in the context C*
has the relation £ to something by being a relative of something. The
antecedent is a relative term because intensjonally it is a relative func-
tion of something. The consequent of £ is the object to which in the
context C* something has the relation /Z . The consequent is correlative
term because intensionally it is an argument of something.

2.5.3 Relations Between Relations

CF -R is the complementary relation of R and is defined x 9 ("'"K)’,)
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It denotes in extension all couplzs not joined by the relation R. For
example, if R denotes "north of" (without specifying whether the
context is geography or -bridge or whatever), -R denotes all couples

that are R-related in any other way except in a north-south relationship.

e ————_— s ——— ——— ——— —— ———— — ——— ———— " —— T — —— ————— ——— O ——

- C* ~A denotes in extension the set of all couples that are 2 -
related by a different context, D*, E*, F*,,....but are not A -related
in_the context, C*. For example, if C* is the linear order relation,
"longer than, " then —A ., denotes a class of linear order relations deter-
mined by contexts other than C*, such as say, D*, "heavier then," E*
"older than," F* "faster than, "etc. Now the class of linear order relations
constjltutes the contextual universe of Z and each context is a Model of

.~ All models of Z must satisfy the following where Z is the set of
-linear ordered couples: . _ '

W) x ed=xAy.
2 (x, Ved=>ly, V¢ L |
(3) x, VeZ (v, Dded =>(x, 2e L.

Now to construct a relation £ , we must determine if the relation holds
for a specific set (x, y) in a specific Model of y 4 , i.e. in a specific
context, C*, Now if the relation diagram is not commutative (as shown

- in the following three types of non-commutativity), then we construct —/Z2 ,
Thus-/C~connotes a shift in context, or a model mismatch, rather than

the negation of A , by the affirmation that x and y can be A . -related,

or 4  -related, etc. : : :

1 . , . . .
-. "Here we are considering context as a model relative to a universe

of models. More generally in the C* system, "model" refers to the re-
lational maps of the C* relation diagram such that model is an ordered set
denoted by Mod (B, X, h) read "B ‘. = models X relative to h," where

(1) X is the set being modelled, (2) B is the modelling set, and (3) h is a
map from X to B. Cf. Herman and Kotelly, op. cit. p. 273 f{f.
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— *
Kem e 29 ______
R i
EXT ID C* lINT ID C*
| REL FUNCT y
f STy e
- £ Type 1: Diagram Does Not Commute
Yo Tt 5y
/:\ ]
]
EXT ID IC* ! INT ID C*
! REL RUNCT |,
ll" l,——___..c___>/,g
J
- R Type 2: Diagram Does Not Commute
-— c E 9
/li( ______ _.é _______ > Iy
! |
EXT ID C* ! INT ID C*
pP REL FUNCT Vel
Ymmmmm e TR >4

- /@ Type 3: Diagram Does Not Commute
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RUS forX¥ x R yvx Sy). (union of R and §)

C* Case l: (rfdJ)is in a single context, C* such that A=f (peevpay)
yL X 5 Y
Wex D+
INTIo| C* "Cf:;" /w78 c?
ge Fuver c* REL FYNeT C";V <
i 2 -
C* Case 2: (/f(/',j) is in different contexts, C* and D* Such that
A=fi)vg ()
X 5 Y
4 wo > Dex
/v Yo é'-XV'/D C’vﬂ' INT 1D C ¥

N

V. REL Funver DF
N

REL FuneT C*

C* Casel: (Rﬁ/) is in a single context, C* such that A =

C* Case 2: (/f/iJ) is in different contexts, C* and D* such that

b g

X ?Cx/\ic’

N

Edrro c*ap?*

Y
Pern e
Exrioc?® /NT 10 C X
REL Fywer C* ‘ .
p) YAy

mwrio c*¥ao’*

REL Fumel cihr 0 ‘7

P AL

f (/u-gA/lb

A=f ;a.,\/u)
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cF RIS forX% &Ryl sSy) (strong disjunction)

C* Casel: (/‘Z/')J) is in a single context, C,* such that 2—,:= f(pe ) &

2 = £ (pf). X \
J. f I“'J . N @C,@,l,dc" /

N E 4
r /0
Exrmo * w C

e @ /lJ' REL Funver < * /‘_o @/U_J'

’C* Case 2: (/@f}IJ) is in different contexts, C* and D,* such that
=1 (p)@ A4 =g ().
K R4

gc" @ Yo *

Exrip <*@o” mrip C*@o*

20 ’%/&L fover < @ 0* N C YN

CF RCG Sfor (X,9). xRy D x8Sy. (containment)

P ot ——— — — —— - ———————— ————— —— gy o — ———— " ———————— ————————— -

C* Case l: (ﬂ UJ) is in different contexts and C* is contextually nested
in D,* viz. (C* € D*) such that D*———» C* or equivalently, Mod
(B, X, h) in D* entails Mod (B, X, h) in C,* where (1) X is the set being
modelled, (2) B is the modelling set, and (3) h is a map from X to B, written

. h . B W » -
X1 _5B. % 2] l y
. t 4

£ S{c ol

TioC INT 10 C

Exr 10 % X JNT 1D D’

rwob REL FoNCT <Ay .
R . >H
RE L |Fuwver D*

. . W /sY A .
C* Case 2: (RU g) is in a single context,” C* such that if can be
constructed, A can be constructed.

P
)(} Wwerx Y

r
Exrmmqd* /NT 10 C

REL Fuwey CX¥

(s 2
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2.5.4 Universal and Null Relations

[ )
CF VW for%, ¥ (x=xwv=y) (universal relation)

— — —— — —— —— T ——— — - ——— ———————— ——— A i ————— Y ———  — —— T — ——— ———

C* The universal relation is the zero-context or the CF relation of PM.
Thus the universal relation in C* form is subject to the axioms, theorems,
and laws of the relation x Ry in PM. The universal C* relation denotes
in extension a set (x, y) that is ;Brelated by any possible context. As

a result, its diagram always commutes, since all mappings are determined
by an infinite disjunction of context operators, C,* D,* E* F*.........

X év %

£XT 1D ctvo*XvEN .- /br/pC*VD'vE'v-

REL _Fuwner /
2 crxvorv Exv M

e e - — ———— e ——— — —— . — —— — — —— ——— — — ————— ——— Y~ — " = e

CF I\ for % P x#xe-v#y) ( null relation )

- ——— e —— ——— ———— i — —— o~ ———————— — o — — ———— —— = S  — ——— —

C*. The null relation is the universal context relation in the C* system.

The null relation denotes in extension a set (x, y) that is -related in
. every context.. This set.is empty since no /CL-relation holds in every context.
As a result, its diagram never commutes, since all mappings are determined
by an infinite conjunction of context operators, C, *D,*xE,*, F* ,.........
L
X _é A - =Y
A

|

| P :
:/4/7‘10 c*Ao* AET N
I

1

RE Fosel _
C*AD* A £%n Ve

|
|
Exr 12 "\ b%n E:”" -
|
L}
pa

o o o
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2.5.5 Existence of a Relation

cF 3R for (EXy) « xRy

C* The structure of the C* relation, lf , 1s the commutative diagram.
When the diagram is verified as commuting by instantiation of the exten-
sional place holders (x, y) and the intensional place-holders ( 2 ) ),
3! Rcx.

Example: where C* is a "mount-wheel context."

=robot-hand turner~,(of)  _y=lug-nut
7
EXT ID C | | INT ID C*
= {rotating CW, REL FUNCT C¥ 7% = frotating CW,
20 foot-1bs of torque, ' hexagonal, threaded,
etc.} ' - etc.f

The existence of a relation can be seen in more detail in 2.5.11 Relative
Product where the reader can instantiate the extensional and intensional
place-holders of the -relation in the C* context of time, x I v,

"x precedesy" '

2.5.6 Indi_vidual Descriptions

CF R?yfor( 7?7 x) (xRy) (read "R of y" is the individual description
since it describes only one individual x which is R-related to one other
object, y. Example; if "R" is the relation "author of" and y is "Cybernetics, '
x = R’ y= Norbert Wiener.

C* The CF individual description is the individual relative in C*. The
antecedent of the relation &£ is an individual relative when x and y are
individuals and the set of properties of y are an argument for nothing else
but a set of properties of x. Such an individual relative is called restricted
in C*,
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Plural Descriptions

CF “R ’y for® (x Ry) ‘_S_the class. of objects which has the relation R to
a given individual and R ’x for ¥ (x Ry) (the class of objects to which
a given individual has the relation R). Graphically:

—

R% or Gs ’ R R ’y or Sg’R

———— ———— i —— —— — ——— ———— ———— = —— —————— — —— —————— —_——— A —— = v —— ———

C* The CF plural descriptions are either relatives or correlatives of IZ ,
viz. antecedents or consequents of a relation 4 , which are sets of
individuals. The relative of /gcorre_sponds to the R plural description

(sg 7 R) when the set of properties of an individual y are an argument for
nothing else but a set of properties of the class x. The correlative of A2
corresponds to the ‘R——plural description when the set of properties of an
individual x are an argument for nothing else but a set of properties of the
class, y. Such relatives and correlatives are called restricted in C* .,

————— = i ————————— —— o ——— ——————— T ————— — —————— ——————————————

2.5.7 Converse of Relations

)

CF xR y fory RX. Cnv R for R (R-converse).

- ——— — ————— —— —— ————————— —_—————————— ————————— ———— ——————— i ————— ———————

v .
C* To construct the converse relation, e , the dual diagram of R is con-
structed. In the dual diagram, intensional and extensional identity maps
are interchanged and REL FUNCT is changed to REL FUNCT -1, The set
of intensions &, becomes a function of 4 .,

N X — S
gc " y @' /C_yt J
/f___ EXT 0 C* o0 )t /MT 0 CF ' EXT 0 ¥
REL gyner <% Y - Rey fomer /e
2 2 L -

i e e —— . — S e A S . S . — - ——
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C* Two relations ). 4 and Afare equal iff /€, A{are constructed by the same
diagram. If two relations are constructed by the same diagram, than their

c/cg}verses will be constructed by the same diagram. Hence their converses
and /({will be equal.

o .
C* Since £ is constructed by the dual diagram of £ , then by interchanging
the identity maps and taking the inverse of REL FUNCT, 1 the resulti

diagram is the diagram of A . Since both diagrams are equal, then = /.
cF Flcov 7 R

C* If the relation /Zexists (cf. section 2.4 on p.31) . fhen the converse,
A exists. Given the diagram of A , the diagram of £ can be con structed.
Given the diagram of 3/ £, the diagram of #£can be constructed.

CF Cnv’ (RUS)=Cnv’ R UCnv

C* Casel: (/f% is)in the same context, C* The same diagram constructs
Cnv ’ (£Ud) and CnvZ U Cnv ’Ad '

x

A
S Yl
Erio ¥ /wT 10 C ¥
< REL poner = .
- Ay

Case 2: (,fu',ds is in different contexts, C* and D.* The same diagram
constructs Cnv ? (#ud) and Cnv’2 U  Cnv’ A

b4 2z X
$lex Y ox
ctaor suro 0t
e TR 7o
*/ -~
__£éL puver - REL Foner ~!




-44-

CF Cnv® RNS) =Cnv ’'RACnv ’ 8.

C* Casel (Eﬁ/) is in the same context, C.* The same diagram
constructs Cnv(#id) and Cnv’ &£ N Cnv’A

/—Ll\c
-1 ¥
X (,u [

LY
/4rIp ¥ Ext o ¥
J REL FoweT c¥ .
Xv %j TV Ay

——— —— — — — —— —————————————— — ——————————————— — — ——————— —— —_—— ————— —————

C* Case 2: (/f/)‘,/) is in different contexts, C* and D*. The same diagram
_constructs Cnv 2 (wid) an)c(i Cnv°’ X /A _Cnv’ e

Yor

/T o XA OF Exr 10 *A DY
, kEl.Fumcr-é‘_*
N .
A'a kj REL Fumer~" o % PN
CF Cnv-R= -CnvR
C* - fc*denotes in extension the set of all couples that are /g-related by
a different context, D*, E*....... Z*, but are not -related in the context,

C*. Corresponding to -/Zis a set of diagrams that construct —/? . Corres-
ponding to -/ is a set of diagrams that construct -/ . Corresponding to
(- £ ) is the dual set of diagrams that construct (-/é' . This set of diagrams
is the same set that constructs - (/é/) . Therefore, since two relations are
equal iff their diagrams are equal, Cnv)=/€ = - Cnv’/f.

C* Two relations are equal iff they are constructed by the same diagram.
A then is constructed by the dual diagram‘of/d. , and /<fis constructed
by the dual diagram of /2. . . : : -
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CF RCS—SCR R § for (x y)nyDxSyand SCRfor (x y)
xSyDXKy

C* Case l: EC/Z and/Jc_/J such that £ -,is in C*, then V4 is in C*; /¢
is in D* then  is in D*._Then if £ < , £<., and if ,dC/é’ Lk
Hence £ =4, and £ =,J

v (&)
Case 2: Y 4 is in C*, and A is in D*, then if/Jis in E* andA[is in
F*, C* <€ E* < D*. (contextual nesting). Example of fis in C*, and
is in D*: "The man is father (C*) to the boy." "“The boy is father (D*)
to the man."

Case 3: EC/E such that if A is in C*, then /f1s in C*, /4{ is in E*
and/d is in F*, Then C* < F* and E* < C*, thén E* < TF*,

Case 4: A is in C* and £ is in D*,/Jis in E*, and A is in E*,
then C* C E*, E*¥* < D*, then C* < D¥*,

2.5.8 Domains and Fields

CF D’ Rforx{ (Ey)ny] D’ Ris the domain of R, i.e.
the set of objects which stand in the relation R to any object.

C* D )/e is the set of objects in extension which in the context C* stand in
the relation to an object. INT D 7.4 (intensional domain of £) is the set

of properties, £ of D’# which in C* are a relative function of a set of
properties of an object to which D’ is /2 -related.

) P .
CF dRfor$ [(Ex) x R y} d R is the converse domain of R, i.e. the
set of objects to which any other objects stand in the relation R.

C* G,/gis the converse domain of /2 , or the set of objects in extension to
‘which any other objects stand in the relation , in the context C*. INT ‘R
(intensional converse domain of /&) is the set of properties, g« , of @ R,

which ;%1 C* are a relative argument of set of properties of an object which is
the D’ .
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CF C) R is the field of R, i.e. the logical sum of the doméin and converse
domain of R. C’Rfor D’RUQ’R. :

————— o  — — — ————— T ———— ———— —————— ——— i —————— ——————_——————— ———— v ——

C* C ? A is the field oflfor the logical sum of the domain and converse
domainof £ . C’ A for D’A Ua’f INTC’ A is the logical sum of the
INT D’A and INTQ’ £ . ;

[ %4

1C* Condition for Ié and E to be in the same context, C*: C /9= C ~
and INTC'A = INTC'A.
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c* D’ARcdR= g’#=c’K and INTD ' A<INT @'K =INTO 'R
=INTC’K.

—— - — —————— —— — i ————— ————————————— ——————— ————— — i ——————————_— ————

CF C )R is the field of R, i.e. the logical sum of the domain and
converse domain of R. 'C’R for D’RUG’R, '

C* )ﬂ is the field of /for the log1cal sum of the domain and converse
domainof £ . C /? for D'RUQ /? INT C ﬂ is the logical sum of the
INT D’ Rand INT @’F

CF x, vy): XRy D xEDR -« yeO)R.

cv x y): xfy>xe DA+ yead® ana lsINTD%quTCZ)/f

CF (y) R ycD R.

C* (y) /gyinC*-D R in C*
-

CF (%) Rx<dR
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2.5.9 Relations with Limited Domains, Converse Domains , and Fields

CF « /R for x yxe - xR y) denotes the relation R limited in
its domain to the class « . R /‘ﬂ for XY (ye/?e X R y) denotes the relation

R limited in its converse domain to the class X JR fPIorRY (xeot- yef -
X Ry) denotes the relation R limited in its domain to the class®and in its
converse domain to the class £ . R Jfor « 1 R /xdenotes the relation

R is limited in its field to the class <X .

C* The domain, converse domain, and field of a relation /f , are limited
inversely proportionately with the intensional domain, intensional converse
domain, and intensional field of .  The contravariance of intension and
extension has been noted by logicians from Peirce to Carnap. It can be
.seen intuitively in an example relation. If the domain of a relation consists
of a set of actuators, then its intensional domain may simply consists in

1 y )
Y C* Com}iition forﬂand ﬂto be in the same context, C*: C ﬂ=
¢ HandINTC'H =INTC'A.
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the properties of forces. If the domain is limited to electric actuators,
then the intensional domain may include the properties of harmonic drive
sets or linear induction motors. :

- ———————— ——— — —————— —————————_ ———— ———————— —————— — ————— —_—_——————— o

2.5.10 One-One Relations

CF 1—Cls forﬁ {(X,, ¥, 2): XxXRzyRz 2 x=y} denotes
the one-many-,{elation (restricted in its domain to unit classes or singletons).
Cls—1 for R {(x, Y, 2): XxRye'sRz D y= z} denotes the many-one
relation in which the converse-domain is restricted to unit classes. 1——l
for 1—+Cls) 1 (Cls — 1) denotes the one-one relation.

- ———— T 1 — — ———— ——— ———— ——_—— — — —— — ———— — = A —————————— ——————— ———————

C* Restriction of the domain, converse domain, and field of a relation to a
unit class or unit classes results from the selection of context. For example,
in the context of industrial robots today, "controller of a robot hand" is a
one-one relation, whereas in the context determined by future time-shared
robots, “"controller of a robot hand" will be a one-many relation. Another
example can be taken from the context of biology. The relation, “father of"
.is one-many for the same father can have several children, but a child can
have only one father. In the context of therapy of psychological guidance

or counseling, the relation "father of" can be ordinary or many-many. Be-
cause extension and intension of a relation are contravariant, when a con-
textual shift occurs and a relation changes from ordinary or many-many to
say, a one-one relation, the intensional field of the relation will expand.
Shifts of context are characterized by corresponding expansions and contrac-
tions of extensional and intensional fields of a relation, expecially one a
relation is transformed into one of the above relations involving unit classes.

2.5.11 Relative Product

CF RIS for)?ﬁ(Ey) xRywySz)>DxTz.

—— —————————————————— ——————————— o _————— i —— —— ———————_————— o ————— 1 -

C* The formation of relative product of relations is a critical operation in
mechanizing hypothetical inference (as discussed in the First Quarterly
Report). In its CF form, what is required is the existence of the converse
domain of a first factor relation, R, and the existence of the same term as the
domain of a second factor relation. This extensional requirement can be
seen in the formation of relative product in the time-domain context. The
operation is valid because in this context, the real-line is dense in itself,
i.e. in extension there always exists a non-zero length interval of the real-
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line to guarantee the existence of the term that is the converse domain of
the first factor relation ( x R y ) and the domain of the second factor relation
(y S z). This holds for formation of linear relative products in the time-
‘context, viz. where in the above definition of the CF relative product, x =
z, relative products (x = z), whose formation does not violate properties of
the real-line partial ordering. 1

An analysis of the formation of relative product requires in addition to
considering the properties of the field of the relation, an analysis of the
. intensional field of the relation. In the C* system, the formation or relative
product is equivalent to constructing diagrams for the factor relations /eand .
, then constructing a derivative diagram for their product relation '

We shall consider an example from the time-context to demonstrate this
procedure. We shall use a set of primitives or intensional properties of
events or activities that were developed by this writer and L. Suyemoto to
generate a time-relation algebra. '

A time relation "x is contained in y or in symbols X 3 y, is defined
by the relative function (REL FUNCT), A (x) =« ,8(,w(y)) where A is the
set of properties in the time-domain context, C*, of x, and 4 is the set of
properties of y in the same context and where o¢ -1 is an atomic time relation
such that p (y) < p (x), where p ( ) is the start-time of a non~-zero length
activity, B is an atomic time relation such that q (x) € q (y), where q ( )
is the finish-time of a non-zero length activity. The REL FUNCT mapping
between A (x) and M (y) is the conjunction of the functions x’;e.

_ o 4
So far, we have hpothesized that x2 y, and we have defined a corres-

- ponding REL FUNCT map between the 1nten51ons or relatwe propentes of

x and vy, wh1ch would hold if indeed x 3 V. :

In the next step in constructing the relation diagram for x% y, we
construct an INT ID map between y and its set of properties in C*, ¢# . Since
M is the independent variable, we select a value for # relative to the time-

line: p{y) =1, q (y) =2. (Note that p (y) € q (y) by definition of y as a
non-zero length activity). Then by REL FUNCT o("',é’, we derives values
forx: p(x) > 1, g ®) < 2. The relation x3 y can now be constructed. First
however, we visualize it by representing it relative to the time-line.

1 ’ZCf. L. C. Driscoll and L. Suyemoto, "Heuristics for Resolution of
Logical Scheduling Conflicts," Proceedings of the Fourth International Con-
ference on Operational Research, Ed. by D. B. Hertz and J. Meles, Wiley-

Interscience, New York, 1966, 651-680.
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The first factor relation in the relajive product is constructed by the diagram.
- x 2— c » « y

sxpio c? Jur 10 c*

P fo)>/, ](")<Z RFLO(F:/;ICI’ c* \//u_.. /,Cy).: ’, 5(7): 2

For our second factor relation, we define a time relation, "y precedes -
z" or in symbols, y [ z, by the REL FUNCT, A (y). = J (#~(z) ), where
is an atomic time relation such that q (y) < p (z). The REL FUNCT mapping
between A (y) and Yt (z) is the function

We now construct an INT ID map between z and its set of properties
in C*. Since z is the independent variable, we again select a value for
relative to the time-line: p (z) = 3, ‘} (z) > 3 (since by definition, p (2) <
q (z)). Then by REL FUNCT = 4 ( ), we derive values fory: q (y) = 2,
p (v)< 2.

The relation y I’ z can be represented relative to the time line, and
can be constructed as a C* relation.

time line

v

y [c* 2

AT 70 4
£xr 1 |t <

1: 7Cy)=z,f(y)<z REe Fyner c ¥ /u_.'/p(Z)=3l 3 (z)>3

1
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The next step in the procedure of constructing the relative product
of = and I’ is to construct an identity relation for the term that is the con-
verse domain of the first factor relation and the domain of the second factor
relation, viz. y. The reason for this step is purely formal: (1) to explicitly
represent the intensional identity properties of y (2) to be consistent with
the procedure of having A (y) = REL FUNCT (#~(2)). In the C* context of
time-relations, the identity relation is "y co-occurs with y" or in symbols,
y $ v. This identity relation is defined by the REL FUNCT =ré: p (y) =

PY).,a=q(), py)<qgly).

At this point, we can construct the relative product diagram for the
relative product of 2and /7. The C* values for the relative property sets
of x, y, zcan be listed: p ®X)>1, q X< 2, py)=1, g (y) =2, p(z) =3,
q (z) > 3. The derived REL FUNCT mapping between R (x) and F(z) can
now be determined since q (x) < p (z) satisfies the atomic relation J ,
which it will be recalled defines the relation /" . The existence of a REL
FUNCT mapping between A (x) and /(z) can be seen in that:

A () = (REL FUNCT (REL FUNCT (#*(z) ))) = (REL FUNCT ( p£(z)))
The derived product relation between x and z is, x/ z, "X precedes

z." The relative product diagram is constructed as follows. First, we
visualize it relative to the time line.

time line

A4

[

* : *
&exro C e c* Evrip C* w7 10 <

y
/A—

- »*
2 REcromerc (K B)Y rer fower <* é rer runer 2 (SN

- . Aly): ply)=1
Cy) f(y)-/ Y 4
Jjix) <z /;(y).— ]Cy)=z ](Z) >3,

w(2): ple)=3
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The C* relations in the time-context provide a simple but useful
model for other contexts. The question naturally arises about the forma-
tion of relative products of relations in different contexts C* and D*. We
know that intuitively we can form relative products of relations in different
contexts. For example, "x is a lover of y (C* = romantic love), y is a
lover of w (C* = romantic love), w is northeast of z''— 4"z is southwest of
a rival of x." This problem has been investigated by Riall for different
relation "types."

2.5.12 Ancestral Relation

CF her for o,‘( (3R) (R ' C«). A class is "her" or hereditary with
respect to the relation R ("her" is the class of hereditary relations), when
the consequents of R in relation to the elements of & are also elements of

o« . Example: the class of people that can have sickle cell anemia is
hereditary with respect to the relation of parents, for if x are the parents
of y, and x belongs to the class of people that can have sickle cell anemia,
then y belongs to that class also.

C* In the C* system, the antecedent of the relation If(via its
intensionality or list of relative properties in the context C*) is a relative
function of the consequent. In the converse form of the C* relation, the
consequent in turn is a correlative function of the antecedent. The
classical hereditary class of relations is a special case of the correlative
being a relative function of the antecedent, such that if the mapping REL
FUNCT ! gives the consequent set membership in the set in which the
antecedent is a member (as determined by the context C*), then the relation

/? is hereditary. The basic idea of the class of ancestral relations is that
a class or a set is generated by the relation. In the C* system all sets are
generated by relations since denoting set membership is itself a relation
that must be constructed in the C* system. The C* "her" class of relations
is a special case of a set being generated by a relation that generates a
series.

CF Rx for 32? x € C,Rf' ) - E’i{q-xé’o{-) .y & « )gives precision
to the concept RO U R (J RZ ) R3 etc. where RO is 14 C’ R (identity
restricted to the field of R, i.e. the relation of identity that each element of
.C ? R has to itself, and where Rl is R, R2 is R| R (relative product of R and R),
R3 is R%|R and RM is R*"1|R. This is the ancestral relation.

1]. F. Rial, op. cit. {Intensional Relation Algebras).
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C* In the formation of relative products of series relations of the form
/Qn—l/ ,€, the series is reduced by successively forming products of ternary
strings. The product relation is defined by the functional string x = REL
FUNCT (REL FUNCT (REL FUNCT (....z))). The assignment of meaning in
the context C* to the resulting -product relation results from evaluation of
the nested functional expressions. The ancestral relation then is recursively
evaluated in C* by evaluating the string of functionals. (CF 2.5.11 Relative
Product) . :

2.5.13 First and Last Terms

CF Bfor®R {x &€ D'RN -CR ., "B" ("beginning") is the relation
between the first term x of the series formed by R and R itself. This proposi-
tion states that x belongs to the domain, but not to the converse-domain of
R. The class of first terms of R is sg’B’R, and that of the last terms is sg’
B ’Cnv )R. -

C* In the C* system, all tefms in a series relation of the form ,gn—ll
= /fn. are members of the intensional field of /{ except the domain of the
first ﬂ (which is a miember exclusively of the domain of f and the last
term (which is a member exclusively of the converse domain of /? ). Said
another way, all terms in extension of the series relation are mapped onto
a set of functionals A in C* of AL, except the first term which is a function
and the last term which is an argument/"n_'1 . (Cf Relative Product in 2.5.11)

CF Ming for E% o?_[x ex N c’RN -R % , and Maxp for Ming.
Ming, is B "beginning" restricted to one class. It is the minimum of this
class with respect to R Maxp is the maximum,

C* In C* system, the first term is the function term, /l of the series
relation /f n—l/ K and_the last term is the argument term, #,_1. In the
series relation/{ n-1) g , the last term becomes the function term ll and
- the first term becomes the argument term, J~ n-l.
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2.5.14 Isomorphic Relations

CF RtS for R|S|R. The relation R}S is isomorphic: it holds
between x and t when the following holds: (fy, z) x Ry ySz zR tox
Pt.

C* The "isomorphy" of /a =/?7‘,<fsimp1y reflects the fact that whatever
the derived relation or relative product between x and t is in context C*,
/oc *, this relation must be the same or metaphorically identified with the
relation, QC* between x and t that may be given in the same context C*.
This can be shown graphically: x/ac_ y is 1somorph1c to x d.c *y, where

[cx = c*//ec

The isomorphy of terms induced by the diagram above is more interesting.

Since x is a first term in the relative product, A (x) = functional of an argu-
ment of t; similarly, since t is the first term in the converse relative product,

A (t) = functional of an argument of x. As a result, x is related to t as
co-functionals of each other's arguments. Example: "x is a lover of someone
who is northeast of z, ‘—"t is a lover of someone who is southwest of y.
Also: "x is a lover of someone who is northeast of someone loved by t'"—»" t
is a lover of someone who is southwest of someone loved by x." As a result,
X is co-related to t (in extension) because of their intensional symmetry.

2.5.15 Reflexivity

CF refl for ﬁ (RoC R): ‘refl is the class of reflexive relations in which
if an x belongs to the field of Rand R < ﬁ, then x R x holds.

C* Every context has nested within it an identity context which is
the metaphorical identity context in relation to the context containing it.
Consider the identity relation of the time algebra discussed in 2.5,/ Relative
Product, page 52). The relation is a time-relation in the context C* of
time. In that context, it is defined by REL FUNCT to be "x co-occurs with

y" or "x and y are simultaneocus." The identity context D* of C* is nested
in C* ( D* < C%*), and the relation in D* is defined by REL FUNCT as identity
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"x is identical with x." As a result, if REL FUNCT has the component

functions P (x) = P (y), Q (x) = Q (y) it defines the relation é-as "co-occur
with;" if REL FUNCT has the component functions P (x) < Q (y), P x) =

P (y), Q (x) =Q (y), then necessarily x =y, such that x g X is interpreted

in D* < C*, x is identical with x (with respect to the context time, C¥*).

The class of refexive relations i®C* is co-extensive with the class of identity
or metaphorical identity relations contextually nested in C*, D*, E*,..... e

CF -irr for ﬁ ROC - R). irr is the class of irreflexive relations in
which if an x belongs to the field of Rand R< R thenif xRy, xX%v.

c* . —/fdenotes in extension the set of all couples that are /f -related
by a different context, D*, E*, F*, . ...... but are not -related in the
context, C*. (CF 2.5.2 Relations between Relations). The class of irre-
flexive relations in the C* system is co-extensive with the class of relations
that do not have an identity context in C*, but have an identity context in
D*, E*x, F*_ ...... Example: if C* is the context of parental love and is
the relation "lover of, " then if x '€C* y, if x belongs to the field of C*:
then x # y. If a relation does not have an identity context nested in a
given context C*, then this results from the condition that it does not have
an intensional identity context nested in C*.

CF R Erefl=&): xE c’RrRox R-xandRCirr=(x)~xRx.

C* /?6' refl iff the INT C)/?is such that REL FUNCT defines an identity

in C* between the domain of /?and the converse domain of /€ . €irr iff
INT C’/Z is such that REL FUNCT does not define an identity in C* between
the domain and converse domain of . Note: if reflexivity and irreflexivity

.are taken_as context-free, then there exist ambiguous relations that can be
both reflexive and irreflexive and are usually treated as neither reflexive or
irreflexive. An example is this is "x cooks food for y." However, if
context is taken into account, then this fuzzy class is eliminated. Thus in
the context determined by automation "x cooks food for y" would require that
the relation "cook," /? , is irreflexive on the assumption that x is a robot
(x # yv). In the context determined by the sole survivor of an air crash in a
life-raft, "x cooks food for y" would require that /7 is reflexive (x = y).
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2.5.16 Symmetry

) (% * [} } N v o,
CF symforR (R=R). as for R(R =- R). sym is the class of
symmetrical relations; as is the class of asymmetrical relations.

. /J
)C* A relation iis symmetrical in a context C*, iff INT C )/E= INT D/€=
INTag @ i.e. x v is symmetrical in C* if REL FUNCT = REL FUNCT_1 in
C*. A condition for this is that A (x) = /A~(y), in C*, A relation /fis
. . . ) / ‘o .

assymetrical in a context C*, iff INT C /é = INT D= INTQ /(1.e. X /gy

is assymetrical in C* if REL FUNCT # REL FUNCT li.e. QA(x) # pely)

in C*,

CF REsym = X)xXxRY=yRx. RE& as (x)-ny=~yRk.

C* In the contexts of ancestral relations and in the context of linear
order relations, amny relations are clearly assymetrical. For example, "x
is greater thany," "x is smaller than y" "x is the father of y." Other
contexts yield symmetrical relations "x is a neighbor of y," "x is a colleague
of y." There exists also in CF logic, relations that are taken as neither
symmetrical or assymetrical. For example, the relation "listen" is summe-
trical or assymetrical when context is taken into account and neither in a
context-free system. In the context determined by a telephone conversation
"x listens to y" the relation ﬂ listen is symmetrical. In the context deter-
mined by a television set, £ is asymmetrical.

2.5.17 Transitivity

. CF trans for R (RZC R) intr for R (RZC -R). A relation is transitive
iff R [ R CR.
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T
C* A transitive relationlfcfin C* is a relation restricted to contexts

connoting identification, metaphoric identification, likeness, model, order,
etc. The inclusion of REL FUNCT as a . functional in REL FUNCT as a
function defines the inclusion of the powers of a relation(in a relationle .
In REL FUNCT of a transitive relation, the property sets 4 and peare
identified, metaphorically identified, compared, modelled, ordered, etc.
A contemporary way to view the transitive relation class js to identify it
with the context of modelling. Thus we have xlfy AY /z >x Az iff

p (2) models (y) and Y (y) models A (x) such that /“(z) is a modeller
of a modeller of (%) — (z) is a modeller of A4 (x). The INT C ) If if £
is a transitive relation consists in relative modelling properties of objects in
extension. The chain of functionals being included in the function induces
an identity on the A and Vot by recursion. For where REL FUNCT is
symbolized as f, A (x) = f (f(z)). But if f is a modelling function (defining
a transitive relation), A (x) =f (z). Therefore A (x) =f ( A (%)) and

A =f(( A (%)) etc.

o ——— — o — —— —————— —————— — ———— ————— —— — ——————————— — —— ———— — = ——— ———————— = —

CFR € trans = (x, ¥): (Ez2)xRzezRy>DxRy. RE intr =
(x, vy, 2(xRyle.y Rz D~xRz. '

—— —— —— - —— —— ————— i ——————— —— ———— —————— A ————— — ————— — ————— ——— A S - - —————

C* The linear order relations and all relations expressing equality and
identity are clearly of the class of transitive relations. In CF, however, there
are relations which are taken as neither transitive or intransitive. The rela-
tion "love" is one of these. However, if "love" is put into a modelling con-
text it can be verified as a transitive relation. For example: "x is a lover
of everybody loved by y and y is alover of everybody loved by z'"—4"x
is a lover of everybody loved by x." In intension, z models y, y models x
— 2z models 's.

CF trans { \ sym C refl.
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C* The intersection of the classes trans and sym is the class of

relations, K ‘e K The class of reflexive relations is the class
in which £°c /£  where /£ ° is1/ C’/ . (identity restricted
to the field of £ , i.e. the relation of identity that each element of C’R
has to itself). As a result, trans ﬂsy‘m defines a class of relations
restricted to contexts of equaﬁity, similarity, metaphorical identity, identity,
which are nested within the individual identity context. The individual identity
context is nested within every context, such that the identity is a metaphorical
identify relative to the context containing it. (Cf. 2.5.15 Reflexivity). The
CF law above then expresses in C* the containment of contexts: where trans

M sym is restricted to C* as a similarity model of /f , where refl is re-
stricted to D* as a metaphorical identity model of/‘z , and where E* is a
context that is any arbitrary model of/€ . C* D* E*,

A (V4 A
C* as is defined as A (K=- A). irrid defined as A (/?-oc" L)
such that V4 £as = (x) x /fy inC* =~y A xin C* and € irr= (%) ~-
x Rx in C*. /Zis assymetrical in C* iff INT C >/ #INT D’ #INDQ )ﬂ
i.e. A x) # p(y).in C* Alis irreflexive in C* iff A (x) # REL FUNCT - (x)
in the identity context of C*, Ifis assymetrical in C* iff 2 (x) = REL
FUNCT ﬂ—(y)_; A (y) # REL FUNCT H (x). Now A (x) # REL FUNCT/-«'-(X)

in the identity context of C*_, - RinC*, and RinD¥*, E*, F*.........
(cf. 2.16 p. ' ) Similarly, A (y) # REL FUNCT /A.(x) in C¥——» -~ Rin C*,
and Rin D*, E*, F*,...... If we denote irr as Mod;q as the set of contexts

or models of A in which A is reflexive, and if we denote Modgyn as the
set of contexts or models of Ein which /eis symmetrical then Modjq <
Modsym,ﬁ - ModSym < -.Modi.d. - Therefore in C* , as < irr.

Counter example: In the complete lattice of the time relation algebra refer-
enced in 2.5.11, there are 28 time relations or time relation contexts of
time relations that can hold between two activities. Of this number, 7 are
reflexive, 21 are irreflexive, 6 are symmetrical, 22 are asymmetrical. As
a result, the basis for this proposition in CF and C* requires further study.

é. 5.18 Similarity and Equality

CF sim for sym ( Jrefl. The class of relations sim is the class of
relations of similarity, i.e. "nearly the same," "approximate," "nearly
equal, " etc. All such are symmetrical and reflexive.
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C* A relation /eis symmetrical iff REL FUNCT = REL FUNCT ! and
relexive iff INT C'ﬂ is such that REL FUNCT defines an identity in C*
between the domath of £ and the converse domain of £ . This identity
is a metaphorical identity is most reflexive relations (viz. an identity con-
text which is metaphorical through -the C* relation). The class of relations
_ E»is sim iff REL FUNCT = REL FUNCT"! and REL FUNCT defines a meta-
phorical identity between D’/ and @’X.

CF aeq for trans ﬂsym. is the class of relations. of equaﬁity, i.e.
of the same form, size, color, etc. These relations are transitive and
symmetrical. : :

—— - . ——— T —— ———— . . ——— — —— —— —— — ——— = —— = = v~ —— e ———— ———— — ——— — —

C* A relation/g is aeq iff for X/gy and y/fz, /A(z) models /* (y) and
/«(y) models A (x) such that/u(z) is a modeller of A'(x), in C*, and REL
FUNCT = REL FUNCT ! in C*.

——— ———— . — — —— - —— - — e A = = = ——— —— — —— —— —— ——— ———— —— ——————— — — — — ———

C* 1If a relation /{is irreflexive, i.e. does not have a metaphorical
identity context in C*, but has a metaphorical identity context in D*, E*,
F* ..., and we denote this set of contexts Modiq and if a relationZ is
not aeq (i.e. not trans and sym) and we denote the set of contexts for which

KA is not aeq. as Mod_, o4 then Modjq & Mod_geq, and Modgeq <~ Modyef] ,
Similarly, if a relation is irreflexive in C* and assymetrical in C*, and we
denote the set of contexts in which it is reflexive and symmetrical as Mod;q

M Modsym and we denote the set of contexts for which it is not aeq. as
Modaeq: then Modjg MModgyy < Mod-gjm and Modgjy < Modid N Modgym,

o " — e = ——— L = = M A —— — —— = —— = = - = e = ———— — —

2.5.19 Connexity

CF connex for ﬁv(l I C) R € R.\UR). A relation R is "connex"
or connected when R or R always holds between any two objects in the field
of R. ‘
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C* In the time-relation algebra referenced jn 2.5.11, the relation /Z J
Xy, "X finishes after y starts" or the relation ¢ X/“UY, "y finishes
after x starts, " can be constructed between any two activities for which
we can construct time relations. If we consider each of the 28 time relations
in this algebra as a model of time relations, or a context in which we model
time relations, then the S+~ —context is the connex context of time.

CF ser for irr () trans nconnex. A relation generates a series when
it is irreflexive, transitive, and connex.

C* A relation /gis ser or generates a series iff REL FUNCT of f
does not define an identity in C* between D’ /e nd 0’4_,/ and where x/{y A
y/fz, > xRz, inC*, s (z) models A(x), and x/Cy or x £y can be constructed
between any objects in the field of E, in C*, All models of /emust satisfy
the following, where J is a series:

1) x,v)ed—s xy

@ &g A— (v, eA

(3) (v, x)¢ — x %y

4) x,yv)e I , (v, z)ed—(x, 2) 8/
(5) e 4 x, Dded—ty, e

(v, x

CF ser<Cirr, serc_as

C* The context of series is contained in the context of relations that
do not express metaphoric identity as well as the context of relations where
REL FUNCT # REL FUNCT-1.

cC* If /fis irr, tran, and connex, /fis irr, tran, and connex.
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2.5.20 Definition of Triadic Relation

No CF definitions will be given since there does not exist a CF
calculus of polyadic relations. The present C* definition is based on Peirce
and is an extension of the C* system.

A triadic relation is defined as an ordered triple of relative functions
ex,s, m ) whose arguments form an ordered triple of terms (x, y, z) such
that the following diagrams commute in C*, It is symbolized:

RC* (x (y,z), o(x, z), rmx, y)) or RC* (x,5;m).

Diagram 1: x is a term in extension that has an INT ID map to the
conjugative relativeX which is a function of two arguments, y an element
in extension and z an element in extension. - The map REL FUNCT 1 is be-
tween x and y: X = REL FUNCT 1 (y). The map REL FUNCT 2 is between
X and z: ¥ = REL FUNCT 2 (z).

Note: what distinguishes the triad from the dyad is the functions¥,s, ™
each require two arguments for their evaluation.

Interpretation: X is a function such that x is an intermediary between
y and z. Example: X = giver of y (REL FUNCT 1); X = giver to z (REL
FUNCT 2). Thus RC* (x,5; 7) is interpreted "x is a giver of y to z." When "
y and z, the arguments, are determined, then the context in which "x is a
giver of y to z" is determined. Thus if y is a gift and z is a hospital, then
x-is a benefactor. If y is a ticket and z is a motorist, then x is a law-
enforcer, etc.

The triad generates two dyads x Ry and x S z. The triad is not
reducible to these dyads because X is simultaneously a function of two
arguments and not two distinct functions of two arguments. The sub-diagrams
of the two dyads commute only as parts of the overall diagram and not
separately. The reason for this is that the context in which x stands in the
relation R to z and x stands in the relation S to y is defined by the double
REL FUNCT maps, each of which is outside the other's diagram.-

Diagram 1 Construction of triad R C* (X5 )

1
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Diagram 2 is a cyclic permutation of Diagram 1. z is a term in
extension that has an INT ID map to the conjugative relative? which is
a function of two arguments, x, and element in extension, and y, an
element in extension. The map REL FUNCT 3 is between ¢ and x:

o = REL FUNCT 3 (x). The map REL FUNCT 4 is between #and y:
= REL FUNCT 4 (y). '

Interpretation: is a function that is intermediary between x and z.
Diagram 2 is a cyclic permutation of Diagram 1. Therefore, its interpreta-
tion is in the context determined by REL FUNCT | and REL FUNCT 2 of
diagram 1. Diagram | was interpreted "x is a giver of y to x." Then
Diagram 2 is interpreted: "z is a receiver of y from x." If the context of
Diagram 1 was determined by REL FUNCT 1 and REL FUNCT 2 to be philan-
thropy, then if y is a check and x is the President of IBM, by REL FUNCT 3
and by REL FUNCT 4, z is the Director of the Hospital.

Diagram 2 Construction of Cyclic Permutation of
Triad R C* (x,0; 1)

Diagram 3 is a cyclic permutation of Diagram 1. In this permutation
y is a term in extension that has an INT ID map to the conjugative relative 7
which is a relative function of two arguments, x and element in extension
and z, an element in extension. The map REL FUNCT 5 is between 7 and x;
7 = REL FUNCT 5 (x). The map REL FUNCT 6 is between 7 and z:
77 = REL FUNCT 6 (z).

Interpretation: 7 is a function that is intermediary between x and z.
Diagram 3 is a cyclic permutation of Diagram 1. Preserving the context -
defined by REL FUNCT 1, REL FUNCT 2, REL FUNCT 3, and REL FUNCT 4,
then Diagram 3 is interpreted: "y is a gift from x to z." If the context has
been more precisely determined by REL FUNCT 3 and REL FUNCT 4 to be public
relations, then if x is the Secretary of the President of IBM, and z is a 3 -
year old child in-patient at the hospital, by REL FUNCT 5 and by REL FUNCT
6, v is a teddy bear with a check pinned to its ribbon.



Diagram 3. Construction of Cyclic Permutation of
Triad RC* &,o57)

The triad offers a richer structure for hypothetical inference, but is
described here to suggest that the C* system is a general theory of rela-
tions and not restricted to dyadic relations. Full development of a working
calculus of polyadic relations will await a separate research program.
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'SECTION III. TOPOLOGICAL VISION MODEL

3.1 Object Identification by Recognition of Shape

3. 17 Approach

In the original proposal for this study, it was specified that the
topological vision model would be based on the EIA standard 525 line
vidicon TV system. The present model is based on more realistic sys-
tem elements that are likely to be specified for the Viking missions to
Mars. We shall assume that a robotic system will have a multiaperture
image dissector television camera and an image processing laser system.
The image dissector will prove adequate for conventional TV functions
since it can be used in a scanning mode to produce a normal television
image. Its compelling advantage in providing an auxiliary "eye" for a
robotic system is its capability to provide edge-tracking and shape-de-
tection. This will be a significant advantage since it will reduce the
complexity of the computer environment as well as the software and
hardware/software integration. A laser ranging system will similarly
reduce computer requirements since it can provide 3-dimensional inform-
ation directly to the topologist program. The combination of the image
dissector and laser is an attractive system solution for realizing computer
vision via the class of computers that can be expected for Viking missions.

3.1.2 Multiaperture Image Dissector

Research at MIT for detecting ed%es and recognizing shapes has
. 1,2,3,4,5,6,7 ;

relied on complex programs. Although immensely

valuable as studies of pre-processing of image data for subsequent

laboratory scene-analysis, these approached do not appear scaled to the

requirements of an autonomous or semi-autonomous robotic system for

Martian surface exploration.

The multiaperture image dissector and follow-on developments such
as the "Dissecticon" developed by Bendix for the Navy are ideally suited to

lg, Blum, "A Transformation for Extracting New Descriptions of
Shape, " Models for the Perception of Speech and Visual Form, W. Wathen-
Dunn (Ed.), MIT Press, Cambridge, 1967. '
: 2A. Herscovits, "On Boundary Detection, "Project MAC Al Memorandum
183, 1970. ]

A. Guzman-Arena, MAC TR-59, "Computer Recognition of Three-
Dimensional Objects in a Visual Scene," December, 1968.
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Figure 3-1. Diagram of Multiaperture Image Dissector Tube.
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limited computing environments. By integrating these cameras with edge-
detection and shape-detection logic, they will simplify robot vision on
Mars. In effect, functions usually performed by a computer can be ex-
pected to be performed in the electro-optics and associated logic.

The multiple aperture image dissector is an electrostatically fo-
cused, magnetically deflected image dissector. An image-dissector is
a television camera tube in which an image projected on the photocathode
produces electrons that are focused through a deflaction system so that
the current from a selected point of the image plane falls through a small
hole and is measured.

The main features of the multiple aperture image dissector tube are
shown in the following diagram. A lens projects an optical image on a
curved photo-cathode. The emitted electrons are distributed in accord-
ance with the light intensity at each part of the image. The electron-
optical image is then focused onto a flat metal plate at the rear of the lens. -
“The focus.ring varies the positive voltage to obtain a sharp focus. The -

- flat plate has a small aperture behind which channel electron multipliers
are inserted. In our envisioned application, there will be sixteen multi-
pliers arranged in a four-by-four matrix. Each of the 16 multipliers re-
ceives an electron current proportional to the light intensity of the pro-

~ jected image. ‘Each channel multiplier amplifies current falling on it inde-
pendently of the other multipliers. Sixteen separate anodes collect the’
multiplied currents. The matrix can receive the electron image from any
part of the photocathode by magnetic deflection fields.

The multiaperture tube has an interesting property that can be used
to detect edges and shapes. The device can look at adjacent parts of an
image simultaneously with or without a scanning field applied.

45, Herscovits and T.O. Binford, "On Boundary Detection, " Project
MAC Al Memorandum 183, July 1970.

. SB. Hom, "Shape from Shading: A Method for the Determination of
the Shape of a Smooth Opaque Object from One View," MAC-TR-79, Nov.
1970.

6A. K. Griffith, "Computer Recognition of Prismatic Solids," MAC-TR-
73, Aug. 1970.
L. G. Krakauer, "Computer Analysis of Visual Properties of Curved
Objects, " MAC-TR-82, May 1971.
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The tube produces signals proportional to the rate of change of intensity
in any direction. Signals from two adjacent apertures can be differenced
and the difference between these two outputs will be proportional to the
rate of change of intensity with distance, i.e. dI / d X. This difference
is a function of the intensity differential and is independent of scanning _
speed. Two apertures at right angles will produce a signal corresponding
" to the differential dI /dY.

Bendix Research Laboratories, Southfield, Michigan, has developed
a simple edge enhancement system based on this property. This is shown
in the simple examples of differential images of a checkerboard input
image. The checkerboard pattern is shown in Figure 3-2 using the signal
from one aperture in a conventional scan mode. Figures 3-3 and 3-4 show
the differential image for horizontally adjacent and vertically adjacent
apertures, respectively. Figure 3-5 shows the results of processing the
differential signals in a "window gate" which in effect adds the gate sig-
nals from both directions.

Bendix also found that the tube could be used to detect shapes. In
this sense, we could characterize it as a "line-finder." In this mode, when
the tube is scanned across a scene, logic circuitry would detect line pat-
terns. Bendix found that with a 3 X 3 aperture format, it could devise logic
circuits to detect bright vertical lines in an image when channels 2, 5, and
8 are bright and all other channels are dark.

()(e

Bendix 3 X 3 Aperture Format

_ This result can be extended to find black-to-white and white-to-black
transitions in an image that generate a line with a direction, The multi-
channel matrix will require more elements than a 3 X 3 format. If we quantize
line directions and use a 4 X 4 aperture format, the tube can with associated
logic provide a detection of shapes that can be encoded in accordance with
the activation of the channels. A sequence of these codes can be used to
build up a complete object shape over successive selective scans in which
different lines are found by the combination of channels.

3.1.3 Shape Encoding

The multiaperture tube's capability to detect edges and shapes suggests
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Figure 3-2. Checkerboard

Figure 3-3. Differential Image
Image from Single Aperture

from Two Adjacent Horizontally
Stacked Apertures

Figure 3-4. Differential Image Figure 3-5. Output from Bendix
from Two Adjacent Vertically Edge Ehhancement System with
Stacked Apertures Checkerboard Input Image
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a shape-encoding scheme in which we associate activation of subsets of
the multichannel aperture matrix with graph elements out of which shapes
can be constructed '

Figure 3‘-‘.6’ ‘ShOWS a 4 X 4 aperture format with basic straight line
directions and basic curves. Channel activation is assumed to take
place by detection of black-to-white (B——sW) transitions or white-to~
black (W—sB) transitions. Stacking of the transitions vertically for
example corresponds with detection of the 90° line direction in the image.

Since we are interested in detection of a shape under various orien-
tations relative to the camera's viewing angle, we can assign a code to
each direction and its negative.

, i -
O r3 A

Thus given any shape mé_de up of straight lines, we can encode it

by our gross quantization ( + 11.25°

/-

. ’ Y - - -
The shape is encoded as ( a & a ;, 67 a"'d /)

We would obtain the same coding for the following shape, since we
have not yet accounted for size.

In a similar way, we can encode curved shapes by assigning a code
to parts of a circle. :
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Figure 3-6. 4 X 4 Aperture Format Channels and Associated
Basic Straight Line Directions and Basic Curves
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o<")
We can then encede curved shapes as follows.

_ I e
This shape is encoded as ( d x }/ r =<

If this shape is rotated 90° clockwise, we obtain a new encoding by a

The shape in this new orientation is encoded as ( }“' ﬁ'ﬁj"ﬁ Y d).

If we use a 6 X 6 aperture format, as shown in Figure 3-7, we can
achieve a finer quantization of straight line directions and curves in the .
image. If we superimpose all the associated codings about a center, we
obtain the "wagon-wheel" figure. The set of encodings forms a group
under rotations by 22.5° and by reflections about any quantized direction
line. As a result, we can encode a given shape as S =g;7; ' ** 9», and"
then drive the image dissector line-finder logic by transforming S under
the group transformations, Tpe where T g+ (S) = T/w(ﬂ'i ) Tpe(92),......
Tp (o). o

Since we have not accounted for sizing of a shape, we would obtain
the same encoding representation if we were to stretch a curved shape.
This is shown with our example shape.

Clearly, an approach is needed to the sizing problem to identify specific
objects instead of just classes of objects, or shapes.
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3.1.4 Approach to Sizing Probleml

Because our characterization in terms of curves and straight line
directions is independent of metrics -- specific lengths of individual
parts of a shape and the relative proportion of individual shape parts --
we now need a way to recognize shape in terms of size.

The use of the image dissector with multiple aperture can permit
rapid correlation of an image stored by image points in the computer and
an image in view. Since, however, the computer storage is limited and
since maximizing a correlation function in matching images is time-
consuming even with,say 36 correlation circuits. associated with the 36
channels, we need further a way to store and process size information for
rapid real-time object identification. '

Let us assume that we have an effective logic for detecting black-to-
white and white-to-black transitions. Such a logic would be a modifica-
tion of the Binford-Horn Linefinder, for example, developed at MIT. 2
This class of line-finders should prove effective with the highly sensitive
and high resolution "Dissecticon"variants of the image dissectors. The
three types of intensity transitions (step, roof-shaped, flat with a peak
on the edge associated with the edge-effect)” would be mapped into the
straight line and curve codes. Since it is recognized today that a line-
finder should not generate vertices in order to represent a shape, vertices
would be constructed on the basis of contextual information (natural ob-
jects vs. artifacts such as instruments which may be classed as polyhedra).
We thus assume that there is a strong interaction with the contextual pro-
cessing of the relational program. Since the present study has a model
of eye-hand coordination, contextual clues will also be developed by ex-
ploratory grasp of the object in order to derive more precise shape informa-
tion and to correct the critical generation of vertices needed to encode a
shape.

1Altematively, the sizing problem can be solved in pre-processing
shape date from the image dissector (as would be the case if a LINE DRAWER
Progam (variant of Binford-Horn LINEFINDERis used,

2B. K. P. Horn, "The Binford-Horn LINEFINDER, " Vision Flash 16,
MIT Artificial Intelligence Laboratory (undated memo.)

3A Herskov1ts and T. O. Binford,. "On Boundary Detection, "
Artiflcial Intelligence Memo 183, Artificial Intelligence Laboratory, MIT,
July, 1970.
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The "wagon-wheel" encoding pass developed via the multichannel
detection of straight line and curved portions of the shape to be recog-
nized can be supplanted by a more finely quantized "wagon-wheel."

This will now be done by computation; as opposed to using the shape-
detection properties of the image dissector. An initial or origin x, y.
point is established, and the program constructs a vector to the "next" - .
point (xj., Yj). This process is iterated to generate the vectors, V;;,'J' =
(x, +1-x) i+ (y; +1-y;)j. Anew "wagon-wheel" encoding is thus -
derived from the changes in the derivative or slope of the vectors v; + 1.

This process is shown in the following diagram. A processing rule
will require that changes in the second derivative mode will provide in-
puts to the "wagon-wheel" construction routine which will consider that
point to be a termination of a prior segment. ]-

~—t 2

\
./

el
ras

L

For example, a c-coded segment (straight line with 45° direction) would
be characterized by a non-change slope of approximately 7 /#- . An &«
coded curved segment would be characterized by an increase in slope up
to where the slope is zero or @ , as measured from the horizontal.
Slope changes for the basic segments can be listed as follows.

Segment _ Change in Slope

a, a~l Zero

b, b~ zero

c, c t Zero

d, d": Zero

e, e zero

£, f 0 Zero

g, g ! zero

h, h™' zero
A positive increase
B~ negative increase
hs negative increase
IS positive decrease
S , negative decrease -
S~ positive increase
< positive increase
o' A negative decrease
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Thus as a boundary or edge tracing program tracks along the B—W,
W-_—B intensity transition points, ‘it establishes the direction ( quadrant)
of the track, and the mode (slope constant, increasing, or decreasing).
When a slope of zero of ‘oo is reached a change of mode is flagged and
this point is characterized asa "segment endpoint." This is shown in
the following examples, :

Thus for image matching, for example, the. program qulckly traces
around a boundary and stores only the set of 1n1t1al and end: pomts asso—
ciated with a coded segment, thus. ehmmatmg 1ntermed1ary pomts For
example for a shape, S = (F)- J < ) we have a shape pomt encod’mg,

The shape-point encoding can now be used to develop siging para-
meters. There are clearly several possible approaches to sizing using
shape-point encoding. If the objective is to develop pointing information
for the laser, an algorithm is needed to develop the scale of the shape
W1th1n the f1e1d of view of the laSer. If shape information is used to

- ;parameters We shall assume that a reasonable configuration for a

Viking mission mampulator is a "soft—hand " derived from the current Baer
‘Automated Systems pressure- operated gripping devices. . In this case only
gross sizing information may be useful. For example’’ w1th several of
_these prehensile fingers which can be automat1cally "docked" w1th the
~arm mechanism, the robot selects a hand for the gnppmg, hftmg, or’
manipulation task on the basis of the 51zmg mformatlon Interestmgly,
with soft hands, shape is of minor 1mportance because the flngers can”
close under d1fferent1a1 pressure until the object is completely 1n contact
with the fingers. CodT 3 .

A nominal solution to the sizing proglem:' can ﬁowe{}er be pres’ented.
The shape-point encoding can be used to- S1ze the workp1ece or natural
ob)ect to be manipulated. This information can be used to ‘*box in" jnf
the shape segment, such that a rectilinear shape of known d1mens1ons
can be used to 51ze the constructed shape. :

For example sSuppose we are given a shape-pomt set (Xl Y1, <, x9,
yz) The program defines new coordinates (xq, Y2) and(xz Yl) to. construct
the new shape point set ( (x;, vy;) &« (xl, yy) e (x9 yz) a (Xl vy e -/
(Xl , yl) ). By iteratively constructing these rectilinear shape—pomt sets,



Figure 3-8. Concepts of Doc.king-Hand Configurations
(After "Manifolding Concepts' of Baer Automated Systems, Inc.,
Lakeland, Florida, Oct. 31, 1971).
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a final shape-point set is constructed which can be used to scale or size

the shape in the image. This information can then be correlated with

stored metric shape-point sets or used to compare or match images in

successive looks or scans from different viewing points. Metric- shape
changes can be described as a subsequence of adopting various viewing

angles for a given object. In practice this might be done by rotating

the object by the robot hand for different viewing angles.

L N |

——————— 4 | ;

This section on image~ dlssector and "wagon—wheel" shape-encodmg
should be considered only a first~-stage in identification of objects by
recognizing their shapes in various orientations. . The next section will
present a method for form homotopic encoding in order to simplify the in-
ternal machine preprocessing and representation of objects.

Figure 3-9 provides a final example of shape-encoding, this time
using the 6 X 6 aperture format channels and associated straight line
directions and quantized curves (as shown in Figure 3-7). The example
shows two cross-sectional views of the shape of a Baer inflatable finger.
The upper encoding and diagram of the finger line'dra'wing is in the un-
flexed state and the lower encod.mg and diagram represents the flexed
state.

3.1.5 Grass-Fire Encodmg

Grass-fire encoqaing is a technique denved from ear11er studles of
pattern-recognition in which a pattern or a shape is uniquely characterjzed

in terms of structurai transformation of that shape in Euclidean space. 12,3,4

1H Blum, "An Assoc1at1ve Machme for Dealmg with the Vlsual Field
and Some of its Biological Implications,: AFCRL-62% 63, February 1962,
Air Force Cambridge Research Laboratories, Hanscom Field, ‘Mass.

I C. Kotelly, "A Mathematical Model of Blum s Theory of Pattern
Recognition, " AFCRL-63- 164 April, 1963, ‘

3H.Blum, A Transformafion for Extracting New Descriptors of
Shape," Symposium on Models and Perception of Speéch andVisual Forms,
Boston, Mass. Nov. 1964.

4L. Calabi and W, E. Hartnett, “Shape Recognition, Prairie Fires,
Convex Deficiencies, and Skeletons," 5711-SR-1, Parke Mathematical
Laboratories, Inc., Carlisle, Massachusetts, Feb. 1966.
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Figure 3-9. Illustration of Shape Encoding of Inflatable Finger in Flexed
and Unflexed States (6 X 6 aperture format)
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Figure 3-10. Arc-length of Wavefronts vs. Time for Different
Shapes (from Blum (1962)).
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In the present model, we imagine that‘th_e"imagve—plane of the image-~
dissector camera is an ideally homogeneous field that is dry and ready to
burn. The variant of the Binford-Horn line-finder mentioned in 3.1.4 de-
fines a boundary or a stone wall within this plane. 'If we spray kerosene
inside this wall and then arrange to set it afire all at once, the wall acts
as a fire-cut and the fire develops toward the center of the shape. If
we observe how the fire progresses, we will see homotopically-generated
wavefronts. In this model, we do not have any portions of the wavefronts
passing through each other, since we cannot burn a space or a region
twice. ‘

These Huyghens-like wavefronts have an interesting property first
observed by Blum. 1 If we map the arc lengths of the wavefront as a
function of burning-time, we obtain a graphical method for characteriz-
ing shapes. Usually, this method is analyzed in terms of mapping of the
unit interval onto the wavefront plane. For example in Figure 3,10 we
reproduce Blum's diagram in which an X-shape, a circle, a line defined
by two terminal points, and a single point are the origins of the fire and
the wavefronts burn outward to define a characteristic shape as a function
of time. Clearly, we can also assume that we start with the outer
shape and bum inwards to the center, i.e. the generation of wavefronts

‘is reversible as a process.

Some examples of wavefront-generation are shown in Figure 3-11
for various shapes. :

We can derive an encoding method from this process which should
prove useful in minimizing storage of a large number of shapes, in
correlating an observed shape with a stored shape, and perhaps more
significantly, in minimizing the bandwidth required for transmittal of
shape information on the downlink to earth. '

Shapes can be-encoded in terms of (1) arc-length of the wave front
vs. time (Fig. 3-10) (2) times at which wavefronts meet (3) time for the
disappearance line (at the end of the burning) (4) the characteristic "stick-
figure" defined by the disappearance lines of the shape. '

If we utilize the shape-point metric information discussed in sec-
tion 3.1.4, the characteristic stick-figures can be encoded in the same
way that the original boundary shape was encoded using the "wagon-wheel"

. lH.Blum, "An Associative Machine for Dealing with the Visual Field
and Some of its BiologicalImplications,: AFCRL-62-63, February 1962,
Air Force Cambridge Research Laboratories, Hanscom Field, Mass.
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encoding technique. In this way, the shape can be reconstituted or re-
constructed on earth on the basis of the burning-time and wave-meeting
time parameters and the straight-line segment codes. For example, the
stick-figure of shape 1 (an assymetric shape) would receive an encoding
different than the symmetric shape2.

Wavefront transformations at times t can also be encoded by

"wagon-wheel" codes since they can be regarded as quantized or dis-
crete samplings of a continuous homotopic deformation of the original
shape.

shape 2

Sl = ((xl yl) C (X2 Yo ) G (X3 y3) C (X4 }’4)). S2 = (Xl yl )I (X2 yZ))

3.2 Object Identification by Recognition of Contours

3.2.1 Approach

Research at Stanford University's Vision Laboratory points to the
feasibility of a new approach to computer vision using a laser coupled to a
vidicon TV system. Parallel developments are underway at Stanford Research
Institute to adapt a surveyor-type laser for robot vision. The use of lasers
as image processing inputs to robots promises sclutions to the problems of
3-dimensional machine representations of solid objects. Lasers can also
lead to simplification in software systems -- a prerequisite for realistic
system designs for the Viking missions.

This section outlines an approach to encoding a laser-derived image
of a 3-dimensional, smooth, compact body. Through eye-hand coordina-
tion (via an ancillary TV eye), objects whose size and mass permit mani-
pulation can be presented to the laser in such a way as to obtain repre-
sentative viewing angles. For other objects, a rover-type robot can obtain
different viewing angles by moving about the object. '

The laser systems will be scanned to derive 2-dimensional contours
of the object corresponding to object cross~sections in a plane perpendic-
ular to the laser's optical axis or the line-of-sight. Alternatively, the
laser input can be thought of as "contour-map" information. The contours
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will appear at regularly sampled intervals of length along the line-of-sight.
These intervals will be variable as required for fineg quantization of the
"contour-map." 7 Tl

3.2.2 Image-Encoding From a Single Viewing Angle - ° .

Contours derived by the laser imaging systerﬁ will f‘epresent compact,
2-dimensional objects in the plane bounded by curves. -Contours can be
classified as non-singular and singular. A non-singular contour is de-
fined by the condition that the boundary curves consist of several simple,
closed curves with no intersections or self-intersections.

An example of non-singular contours is shown: below in which shading
represents the interior portion of the object.
]

/ / (© o ///
g
If we assume that the object is smooth, then by a well-known
theorem of Sard1 we know that the contours determined by the various. dis-
tances along the line-of-sight will be non-singular (except for a set of

distances which form a subset of the real line of measure zero). Thus the
probability of any randomly sampled contour being singular is zero. . -

-— e e - v = — o,
- . o — — ——

In addition to providing boundary curves, the contours also give
"shading" or depth, i.e. contours indicate which regions of the plane
are interior and which exterior to the object. The assumption that the
object is bounded uniquely specifies interior and exterior regions since

- given the boundary curves, one simply alternates shaded and unshaded

.regions. as one moves inwards. .. . . B
A singular contour is simply any other contour than a non-singular

contour. The following are eXamples of some singular contours.

A B ¢

1cf. V.Milner, Topology from the Differentiable Viewpoint.
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These singular contours occur from the labeled sections of the following
objects. ” :

torus "dogbone"

In fact, whenever two non-singular contours of an object are
different topologically, there must be a singular contour at some inter-
mediate distance along the line-of sight. Usually, these singular con-
tours are isolated and they are always of measure zero.

A simplest machine strategy would be to discard singular contour
information since if's occurrence would be rare. If by chance, there
should occur two successive singular contours, then the program would
direct the search for an intermediate non-singular contour .

The simplest approach to encoding non-singular contours is to
store only two parameters: (a) the number of contour-components (i.e.
simple closed curves); (b) the depth or range-~ordering of components
(i.e. which components are inside or outside relative to other compon-
ents). This information can be symbolically represented by a graph
with oriented line segments. The vertices correspond to the components
-and the edge connects two vertices if one of the corresponding components
is inside the other. The edge is directed from the inside vertex to the
outside vertex. '

An example of this encoding schema can be given for the examples
of non-singular contours previously given.
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These basic graphs can be used to build up a metric representation
of the contour instance -- information such as contour quantization
(distance between the components) and the sizes of the boundary-curves.
For example, in thepreceding graph representation, we assign to each
vertex a weight measuring the area enclosed by that curve. The graph
indicates that the represented object-contour has two holes and that
the contour area is 54 and the hole areas are 24 and 4.

3.2.3 Assembly of a Sequence of Contours

We can now encode a sequence .of non-singular contours obtained
from planar cross-sections perpendicular to the line-of-sight and sampled
at reqular range intervals along the line-of-sight. Range-gating can be
variable, however, when as mentioned earlier, singular contours happen
to be acquired. We now want to represent the contiguity between adja-
cent contours. We need to indicate the connectivity of curves associated
with closer range contours with curves associated with contours at a
greater range via the slice of the object lying between the corresponding
planar sections. More precisely, consider that portion of the object
lying between the two planar cross-sections, and imagine it breaking up
into several components each of which connects certain points of one
contour with certain points of the contiguous contour. Or alternatively,
we could just consider the shape or boundary of the object from our
viewing angle. If we consider that part of the boundary lying between
the contour-sections, it would consist of several pieces of smooth sur-
face with boundary curves lying in one or both of the planar sections.

The problem now can be stated: which curves bound the same piece of
intermediary surface.

This can be visualized in the following example. There are two
pieces of surface between planes A and B. One piece connects contour
1 with contours 3 and 4. The other piece connects contours 2 and 5. We
represent this situation graphically by connecting the corresponding ver-
tices of the two graphs associated with the cross-sections via an undirected
edge,
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In another example, we can indicate contour information and contour-
connectivity information. The example shows a contour-map defined by
eight planar sections perpendicular to the laser line-of-sight. The sections

are indexed by the arrow-marks. A
- KL 8 .
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This graph is constructed of both directed and undirected edges that
correspond with individual cross-sections of the object. This is done by
stacking vertices vertically when they belong to the same cross-section.

In a connected graph (one in which any two vertices are joined by some
sequence of edges or line segments), the presently undirected segments

can be directed from left to right (corresponding to the sequential stacking

of the planar sections perpendicular to the laser line-of-sight). If a

graph happens to be disconnected, then it is a representation of multiple
objects or equivalently a disconnected object (consisting of more than one
piece). By assigning solid arrows to indicate contour-connectivity -and open
arrows to indicate contour structure, we can now represent the above example
as a directed graph. l ] |
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This graph represents the connectivity of contours as well as the
structure of individual contours. The problems still remains to represent
the connectivity of contour-components, i.e. curves, between conti-
guous contours in the sequence of cross-sections.

One approach is suggested by the condition that the distance be-
tween contiguous sections is less than the distance between different
curves in the same section. If this is the case, if we were to superim-
pose sections, then curves of different sections would be connected.
More precisely, we would select a small real number £>0and consider
the € -neighborhood of each curve in each contour. This neighborhood is
defined as the area in the plane consisting of all points of distance < &
from the curve. Then whenever the curve in one contour lies within the

€ -neighborhood of a curve in an adjacent contour, they are to be con-
nected by an edge. In the following example, curve 1 is contained in
the & -neighborhood of curve 3, and curve 4 is contained in the
neighborhood of curve 2. This gives us a connectivity-graph for contour-
curves between different adjacent contours.

A

g:;f /[ 1 2
/V ¢.‘:-neighborhoods\\3 / .\4

B .
, O‘  curve- connectivity

graphs

contours

curve from the adjacent contour. If £ is chosen too large, then some
curves will be contained in the &€ -neighborhood of another curve in
the same contour. The selection of the value for € clearly has to be
determined experimentally for the class of objects that we expect to be
identified by the robot. Since case 2 (selection of too large a value for
& ) can be nullified by the condition or rule that the connectivity-arrow
for curves cannot connect curves within the same contour, then the
threshold-value for € can be increased to avoid case 1 (failure to connect
curves at all).
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The next example illustrates another difficulty likely to be en-
countered by a program processing contour-sequences.

A‘::::‘l mz‘

RN B
‘~Q\:4‘;\>\ B\ o e
o\ |

If we superimpose contour section A onto contour-section B,A then
the curve-connectivity graph by our method of &€ -neighborhoods of the
curves, would be the following.

Ny

3 4
However, a true representation would have the following graph.
1 47 e 2
3° ‘4
This error is induced by the fact that the contour-sections are not
sufficiently close together. This implies that an optimal contour-section
sampling would approach continuous sampling. Clearly, continuous
sampling would avoid the above misrepresentation of curve-connectivity
between sections. However, approaching continuous sampling means
that inordinate demands will be placed on the resolution of laser-scanning.
It also means that inordinate storage and processing demands will be
“made on the contour vision program to process the correspondingly large
number of graphs that would be generated by laser-scanning that approaches
a continuous scan. One approach to solving this problem is to maximize
the scanning resolution of the laser, but to discard redundant contour-
sections as they are inputted from the laser and associated logic.

Redundant contour-sections can be detected by checking whether
contours are isomorphic. A contour is siomorphic to another contour when-
there is a one-to-one corréspondence between vertices such that a direc-
ted edge or segment joins the corresponding vertices in the other contour,
and in the same direction. (In our graphs, at most one edge connects any
two vertices.) ' . : : :

An example of isomorphic contours can be found on page . Con-
tours 3, 4 and 5 are isomorphic. This set is also isomorphic to contour 7
and further, contours 2 and 6 are isomorphic, but the program would not
label any contours isomorphic unless they belong to adjacent sections.
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Our program procedure to discard isomorphic contours is as follows .
Once the laser has scanned a window of k-contour sections, this contour-
window or contour-sequence is temporarily stored. The k+1 contour is
then read into storage and tested for isomorphism with the kth contour.
If the kth and k+1 contour are verified as isomorphic, then-'the kth con-
tour will be discarded. But first, the k+1 contour is checked for isomor-
phism with the k-1 contowr. If k-1 is isomorhpic to k+1, then the program
discards k-1 and retains contour k, otherwise it discards contour k. This
enables the program to store the most recent contour to determine connec-
tions to the present contour.

As a consequence of Morse Theorylthe number of contours the pro-
gram will.store will have an upper bound beyond which however closely the
sections are taken (however finely the laser is scanned), the contour-
sequence will remain the same. More precisely, if we change the view-
ing angle by an infinitesmal amount, the following situation will occur
() A finite number of points on the line-of-view will determine singular
contours. (2) The non-singular contours arising from points in the inter-
val between two adjacent singular points will be isomorphic. We call
this a Morse View (although in fact a Morse View is even more restrictive.)
We can conclude from this that there exists a well-defined sequence of
graphs that is independent of the particular sections chosen, as long as
they are sufficiently close, and dependent only on the object and the line
of view. A further consequence of Morse's Theory is that nearby lines of
view will yield the same sequence of graphs. The objective of the contour-
sequence processing program then is to construct the well-defined se-
quence of graphs representative of the contour-connectivity in the object.
From Morse Theory, we know that this can be done by discrete scanning
and that there exists a practical upper bound on laser scanning resolution
beyond which we will not obtain a different graph-sequence. However,
there is a lower bound also, as we have seen, below which we will not
obtain contour-sections that are close enough for computation of the con-
nectivity of contours.

The unique correspondence of a graph sequence representative of the
object from a particular viewing angle is illustxiated in the following example.

o=\ s
—]].
L] s
o 1

1]. Milner, Morse Theo Annals of Mathematical St
Princeton University Press, 1963.
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The singular contours appear at points 1, 3, 5, and 7. Any contour
between contours 1 and 3 looks like contour 2 (i.e. its graph is isomor-
phic to the graph of contour 2). Similarly, the set of contours between
contours 3 and 5 look like contour 4, and the set between 5 and 7 look
like contour 6. Thus the graph of this object from this viewing angle
will always have the following representation.

<%

More compact coding of graph sequences can be realized by index-
ing the number of times a given graph appears in succession. For example,
on page 27 the program would record only one graph for contours 3, 4, and
5, but would assign it a series number 3 to indicate that the graph repre-
sents a sequence formed by an immediate succession of contour 3, 3 times.
Further, we can indicate succession by a relational symbol, I and
immediate succession by a symbol K . Thus the graph that is the be-
ginning of a series would be indexed to denote the multiplicity of its im-
mediate successions and successions. In this same example, contour 3
is succeeded by contour 7 {another instance of contour 3). The sequence
of graphs on page can now be represented by a directed graph in which the
directed edges between contour edges between contour sections are re-
placed by scanning -relations, K and I’ , whenever a contour is repeat-
ed in a graph sequence.

| .
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3.2.4 Image-Encoding from Multiple Viewing Angles

Up to this point, we have given an approach to image-encoding from a
single viewing angle. Since different objects may present identical contour-
sequences from given, single viewing angles, we clearly need an identifi-
cation procedure that is based on multiple viewing angles of the same object.
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We shall assume in this section that the object is-in.a fixed position
(i.e. has not moved relative to its position during laser scanning from
the first viewing angle).

Our present problem then is to select multiple viewing angles that
will satisfy two requirements:~ (1)-.the ensemble of views will distinguish
different objects; (2) different ensembles of views of the same object
can be recognized as views of the same object. Reqhi‘rementv (1) relates
to identification of an object so as to distinguish it from different objects
that may be indistinguishable from a single viewing angle. Requirement
(2) relates to recognition of an object on the basis of a different selection
of viewing angles and to avoid erroneous identification of the object as
a new object different from the object previously represented by a set of
different viewing angles.

We assume that the object is resting on a horizontal plane in a
certain position or orientation. We shall describe a procedure for obtain-
ing a finite selection of views of the object in this given position. The
resulting set of views will depend upon the object in a particular position
and should distinguish the object from a different object or the same object
in a different position. We shall then consider the problem of recognizing
the object in different positions. - -

The first view of the object will be taken vertically (from directly
overhead). It may be noted in passing that this is the normal viewing
angle of the laser/TV system being developed by Stanford University.

The cross-sections of the object will be planes parallel to the horizontal
plane on which the objects lies. The remaining views will be along hori-
zontal lines and can be obtained as follows. The laser will be moved in
a circular path about the object in a horizontal plane. From each point of
view it views the object along the horizontal line which passes through
the origin of the circle. In this way, a continuum of horizontal views is
obtained (actually a large number of views from regular small intervals

- along the circle.) :

It follows from properties of the function space that we may assume
that all but a finite number of views along the circle will be Morse views,
Thus the Morse views occur at the points of a finite number of open inter-
vals along the circle. The views from the points of one of these intervals
will all give the same contour representation. It follows that once our
sampling along the circle is fine enough, we will obtain a certain finite
number of different views which remain fixed independently of increasingly
finer samplings. The laser has only to travel 180° and the final view will
be the reverse of the initial view.
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This procedure provides us with a well-defined sequence of views
that are independent of the technique used to obtain the samplings.

Consider the following example. Suppose we have a torus lying on
a horizontal plane. :

The top view will give the graph %
The horizontal views will all be the same {}

Another example is a "dogbone" lying along its length.
Moving along the horizontal circle give us 10 different views which

occur at positions along the circle.g 5
4
8} 3
9 2

10 1

The top view is represented as follows.

Some of these views are identical to others. They group together as
follows: 1, 10; 2, 9; 3, 8; 4, 7; 5, 6. The last group contains adjacent
views which are identical, even though they are separated by a non-Morse
view., Nevertheless, our final representation would not contain view 6.
The graphs are as follows,

I
] : : |
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Sample cross-sections for each of these five views (as seen from
the top or overhead) would appear as follows.

1

2

Our results up to now can lead to a program procedure for identifying
an object on the basis of contour information via unique encodings provided
that the object happens to be in a fixed position. A method is also needed
to recognize an object whose position or orientation has changed. Within
the context of the projected robot application in the Mars mission, this
capability is especially needed to recognize artifacts such as tools or
instruments that can be expected to assume positions different from those
encountered in laboratory training sessions or in first sightings on the
surface of Mars. Furthermore, the robot eye should be able to recognize
natural objects whose positions have changed either as a result or prior
manipulation or transfer or as a result of intervening environmental changes
such as the effects of dust-storms of landslides.

Clearly, there are several possible approaches to solving the prob-
lem of seeing an object in various positions such that the robot recog-
nizes it as the same object and not several different objects. The pro-
gram could look up the shape-encodings developed earlier to correlate
positions with boundaries. Let us assume initially that we restrict the
computer vision to contours alone. One approach would be to encode the
contours of an object in all possible positions. Using the present topo-
logical approach, there would be only a finite number of different encod-
ings required since slight perturbations in position do not induce a corres-
ponding change in a given contour encoding. In fact, machine implemen-
tation of our method would indeed require a slewing mechanism to make
slight changes in the viewing angles of the laser optics to perturb the
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views. This will probably be required in order to obtain the requisite
Morse Views which form the basis for finite sampling of contours and
finite assembly of contour sequences. We can expect that selection

of perturbations will be critical since different perturbations will
probably yield different representations of contour sequences thus lead-
ing to erroneous object identifications. However, pointing algorithms
can be readily devised to produce systematic perturbations to obtain
valid Morse Views. '

As is usual in artificial intelligence, an optimal solution to
problems of ambiguity in computer vision should invoke context to
remove ambiguities. Instrumentation with its relational structures
(reminiscent of the structural relations of Winston at Project MAC) will
have contextual positions. More cogently, objects will have natural
positions., For example, we may restrict ourselves to positions in
which the object can stand unsupported and stable (such that a slight
push will not upset it). To state this requirement mathematically, a
stable position will be one in which the center of mass of the object
projects to a point p in the horizontal plane P which lies in the interior
of the convex hull,.C, of the subset of P formed by the points of con-
tact with the object. These are called stable. A semi-stable position
will be one defined by p belonging to the frontier of C, i.e. p belongs
to C but not to its interior.

The following is an example of a stable position. The points of
contact form a circle. C is the region enclosed by the circle (and
boundary) and p is the center of the circle.

NN

The next éxample shows a semi-stable position. The points of
contact are two points. C is the line joining these two points and p is
the midpoint of the line, C.

=)

The object may have no stable position (as in the case of the "dog-
bone"), but there will alwaYs exist a semi-stable position. Contour-
encodings of stable or semi-stable positions would eliminate the neces-
sity for storing contour-encodings of objects in all possible positions.
However, this problem requires further study.
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Other solutions may offer better alternative approaches to recog-
nizing an object that may have moved relative to the "training set"
position or the first sighting. One such solution would be to utilize
color information (at least for artifacts) such that a change in position
would present a corresponding color transformation to the TV system.
This approach has certain drawbacks since the resolution of the color
TV system may not be sufficient for the overall system resolution.

Alternatively, if we assume that the imaging sources (both active
and passive) can move about the object, a search procedure can be
initiated for a reference contour-encoding sequence. The system would
try to correlate a stored encoding with encodings taken by moving about
the object. A rule could be used that no object will be interpreted as a
new object unless a zero correlation exists with a set of stored contour
encodings (graph~statements.) If a correlation is met, then the program
can infer that the object has a certain identity with a new position.

3.2.5 Example of Contour-Encoding of a Robot Finger

We shall conclude this section on identifying objects on the basis
of recognizing contours by giving an example of our procedure for the
inflatable robot finger discussed in the section on shape-encoding on
page .

We encode a portion or segment of the robot finger in a supine or
unflexed position. The following shows the segment under consideration.

The dotted outline shows the hollow interior of the finger. The
view of the finger from on top has the following simple graph.

T
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There are many different horizontal views. We can indicate three of
these views along the direction indicated (as shown in a view of the finger

from on top.) . :

N4

A

Contour-graph from direction A
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SECTION IV.  SYSTEM PROGRAM SPECIFICATIONS

4.1 System Description

Figure 4-1 shows the system diagram. The system is vertically or
heterarchically structured such that.higher-level programs are involved at
nearly all levels of processing of eye-hand-object data. This is shown
in Figure 4-2.

4.1.1 Topological Vision Subsystem

The topological vision subsystem consists of the following programs
or systems.

(1) Multiaperture image dissector TV control system. The multiaperture
image dissector television device will probably be a further development of
the image-dissecticon camera tube developed by Bendix Research Laboratories
under contract to the Naval Weapons Research Center in Corona, California. 1,
2,3,4 The image-dissection is a high-sensitivity camera tube. It
consists of an image dissector (described in section 3.1.2) combined with an
image-intensifier, all in the same vacuum envelope as shown in Figure 4-3.
Photoelectrons from the input photocathode are focused onto the microchannel
plate, where they are amplified and projected onto the phosphor screen. The
light emitted from the screen is imaged onto a second photocathode by a fiber-
optic plate. The photocathode feeds the signal into an electro-static multiple
aperture image dissector, with continous resistive-surface-deflection plates
to deflect the image across the dissecting apertures. This Bendix device
offers a promising direction for realizing 6 x 6 multiaperture tubes needed
for high-resolution shape detection. It will be able to overcome losses
associated with multiple elements and provides a low-light level capability
for the image-dissector. It should be emphasized that Bendix does not
consider the 6 x 6 format to be now feasible but it can be forecast for the
1975~1977 period. The TV control system has four basic functions: (1) point-
ing and focusing control (pitch, roll, yaw,focus, zoom adjustment) (2) camera
tube control; (3) mode selection (scanning mode, non-scanned mode);

(4) edge and shape detection logic control.

1] M. Abraham, C.E. Catchpole, G. W. Goodrich, "Image Processing
with Multiaperture Image Dissector, " 12th Annual SPIE Technical Symposmm
Los Angeles, California, August 7-11, 1967.

2C. E Catchpole, "Television Camera Tube Research at Bendix, "
(Fourth Symposium on Photoelectronic Image Devices, London, England,
September 16-20, 1968,

3C . E. Catchpole, "Electron Image Amplification Using Microchannel
Plates, " Optical Society of America Spring Meeting, Philadelphia, Pa., April
10, 1970

4
C. E. Catchpole, Photoelectronic Imaging Devices, Vol. 2, Chapter 8,

"The Channel Image Intensifier," Plenum Press, 1971, pp. 167-190.
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(2) Laser Ranging Control System. The laser ranging system will
be based on testbed and prototype configurations under development at
Stanford University and Stanford Research Institute. The Stanford Univer-
sity system can be regarded as a stereo-vision system. Corresponding '
points in the TV and laser views are uniquely located in space by the two
angles in the two images as shown in Figure 4-4., The laser functions as
a ray light source imaging a point. As a result, the TV camera follows the
light source and thus imaging correspondence is obtained. In practice, the
" ray source is a plane source imaging a slit, such that a ray from the laser
source projects along a line in the image. The Stanford configuration is
shown in Figure 4-5. The Stanford experience to date indicates that color
is crucial.l This means that the system would require a 3-color laser light
source and a color-filter wheel used in conjunction with the TV image
dissector cameras. The dissecticon variant of the image dissector provides
(@s noted earlier) low-light level capability. This means that in the pro-
jected system laser power can be correspondingly lowered. The Stanford
lab system laser currently uses 30 MW. If we assume an additional ambient
lighting source for hand-eye coordination tasks, then laser power can probably
be lowered to about 10 MW, '

object
01 é-, él. é—l-

TV camera laser source

Figure 4-4 Stereo By Triangulation

(3) LINE-DRAWER. A line-finder locates lines of points having certain
properties (such as being inhomogeneous or having a large light intensity
gradient). A vertex finder merges concurrent lines, or creates a vertex at
their meeting point.2 The objective of this program is to produce a line-
drawing with reasonably well formed vertices for subsequent shape encoding
and analysis. A variant of the Binford-Horn class of linefinders will be
required to fully exploit the inherent line-finding capability of the multiple
aperture image dissector TV camera tube. The standard program is used with

1T. O. Binford, Artificial Intelligence Project, Computer Science
Department, Stanford University, Notes Evaluating the Characteristics of
‘Stanford Laser Ranging System, 30 November, 1971

2 *A. Guzman, "Computer Recognition of Three Dimensional Objects in a
Visual Scene"” MAC TR - 59 (Thesis), Project MAC, M.I.T. Cambridge, Mass.,
December, 1968, p. 60.
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a random access single aperture image dissector.l The multiaperture

format described in 3.1.2 can be used to simplify the generation of lines.
Switching of the image dissector modes between scanned and unscanned
modes can generate cues to discover lines and to verify the discovery of a
line. Another simplification of the line-finder involves: use of 3-dimensional
data from the contour finder. The outside edge of an object can be correlated
with the depth information from the laser-ranging pfquessing. The proposed
line-finding variant is shown in Figure 4-6. ‘

(4) CONTOUR-FINDER in Figure 4-7 is analogous to the Binford-
Horn LINE-FINDER variant. The CONTOUR-~FINDER outputs to the topological
contour recognition program the elemeénts of a 3-dimensional representation.
The program diagram is shown in Figure 4-7. Contours are encoded by two
parameters: (a) the number of contour-components (i.e. simple closed
curves) and (b) the depth or range-ordering of components (as measured along
the optical axis of the laser beam). Scanning information from the LINE-
DRAWER can then be used to assign metrics to the sizes of boundary curves
which can be combined with metric information on depth or topographical maps
derived from the laser.

(5) SHAPE-TOPOLOGIST - in Figure 4-8 recognizes objects in hand-eye
coordination task contexts on the basis of shape information. . Two modes of
operation will be available: (1) fast perceptual-motor mode in which shapes
are recognized in the electro—optlcs by the multlaperture 6 x 6 format in con-
junction with the straight line segment and curve -encoding process.

(2) vision mode in which shapes are analyzed in the software on a problem--
solving basis by taking inputs from the LINE DRAWER. The program is
structured into successive filters that correlate’ shape data of the object in
the eye-hand contextual space with wagon-wheel shape=-point set encodings
or grass-fire encodings that are stored-in object property lists. Successful
recognition of a shape provides object identification and shape property infor-
mation to the. CHOREO VISION Program and outputs to the KALMAN FILTERING
Program. Failure to recognize a shape activates a new object identification
sequence and listing in cooperation with the Kinematics Control System which
controls the eye-hand motor system. Finally, if the outcome is the identifi-
cation of a new object, the grass-fire encoding of the new object shape is
transmitted to the remote, symbolic supervisory control system on Earth.

(6) CONTOUR TOPOLOGIST in Figure 4-9 receives contour inputs from
the CONTOUR FINDER and assembles a sequence of contours from a single
viewing angle of the laser imaging system. On the basis of heuristics and
‘Kalman filter corrections it then selects a small real number € > ¢ and
defines the € -neighborhood of each curve in the contour. A test for

1B. K. P. Horn, "The Binford-Horn LINEFINDER," Vision Flash 16,
M.I.T. Artificial Intelligence Laboratory, undated.
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isomorphic contours discards isomorphic contours and presents the latest
non-isomorphic contour for a window of k-contour sections. The connectivity
contour graph  sequence is then constructed and a decision is made whether
the graph matches a stored connectivity graph sequence. If no match is
made, the KALMAN - £ neighborhood selection loop is performed in a loop or
iteratively until a match is made or the number i of iterations is reached.

If a match is made, identification information is given to the parallel SHAPE
TOPOLOGIST and the object identity and contour-properties are inputted to
the CHOREO VISION program. If i iterations are performed without match, a
new viewing angle is selected and the processing of contours from the new
viewing angle is performed to find a match from the new angle. (This loop
may also be iterated when a match has been found to verify the object
identity). If, after j iterations of this contour-assembly and connectivity
processing from multiple viewing angles, the object is not recognized, then

a new object is identified and its confour—properties from several representative
viewing angles are both entered onto tape for transmission to earth and
inputted to the CHOREO VISION program.

4.1.2 Eye-Hand _Coordination Subsystem - :

The eye-hand coordination subsystem has the.followihg programs or
systems. '

(1) CHOREO VISION in Figure 4-10 is a high-level program.that will use
extensive heuristics. Like-all such programs , CHOREO VISION will have :
empirically derived heuristics probably derived from the use of -computer
graphics) as well as those suggested by the logical model presented in this
research. This program matches a stored or transmitted choreographic
sequences (consisting of symbolic lists of eye-hand-object choreographic
properties) with a list of choreogaphic properties inferred from eye-hand
data. In this sense, the program as it were, matches the "cine" sequence
of eye-hand coordination frames with choreographic goal frames that are
represented symbolically on tape. If the system were to be a pure laboratory
test bed we could use optical correlation techniques that would match a
desired frame (stored picture) with the actual picture of the state of the
object-hand system as derived in real-time from the computer eye. Such a
"filmstrip" correlation system, however, is not feasible in terms of the
transmittsion delays and bandwidth requirements for remote control of the
robot on Mars. Thus we envision that the CHOREO VISION program and the
entire integrated eye-hand coordination/topological vision system will be
imbedded within a symbolic supervisory control system of the type being
developed by M.I.T. Instrumentation Laboratory. This is shown in Figure 4-il.

CHOREO VISION forms machine concepts or machine models of the
eye-hand scene and the resulting choreographic frames. This involves con-
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struction of eye-hand data—s choreographic properties —#choreographic
models mappings via the context relation logic introduced in Section 2.5
Construction of relations and relations among relations provides a medium
for machine concepts of eye-hand data in terms of choreographic properties
and choreographic models. h ‘ '

(2) THE KALMAN FILTER ALGORITHM is descnbed in Sectxon 2.3.
The flow-diagram is shown in Figure 4-12.

(3) KINEMATICS CONTROL is the basic digital“to-analog and .analog- "
to-digital interface to the robot. It has the following functions: (a) transform-
ing choreographed commands for manipulation sequences into robot hand/arm
system motions, velocity, accelerations, decelerations, forces, torques;

(b) transforming hand sensor and force-vector data for feedback to the

CHOREO VISION Program via the KALMAN FILTER Program (including tactile,

. grasp, proximity, caliper, and other special purpose measiurement data from
the hand); (c) activation of the robot hand/locomotion system in;'respori'se to
commands either from the SHAPE TOPOLOGIST or CONTOUR TOPOLOGIST or

the CHOREO VISION Programs; (d) integration of interactions between pointing
and optics control and robot posture and arm/hand motions. This program is

- a high-level program that models the manipulation space as an interactive
space in which choreography can be performed. Instead of commanding robot
motion paths by a coordinate system, robot motions and manipulations are
synthesized from the basic motion interactions of the robot hand with an
object. For example, a typical command might be FIND OBJECT IN FIELD OF
VIEW AND GRASP. This would be a macro which directs the basic motions of
the. robot throu'gh a manipulation sequence. The space in which the robot
moves is thus modelled not as'a volume defined by sets of coordinates for each
degree of freedom, but as an interactive space in which motions can be choreo-
graphed to fit a given choreographic vision task. Development of the-detailed
logic for this program will require further research in choreographlc programm-
1ng languages.

4.2 Program Descrigtion

4.2. 1 System Guidelines

At the outset of this research, it was thought that individual functions
such as computer vision within an eye-hand coordination context could be
implemented on a minicomputer class of machines that can be expected in
the 1975 era. This, however, is clearly not the case when we consider the
‘complexity of integrated computer vision and eye-hand coordination in the
semi-autonomous mode described in Section 4.1. Our conclusion is that
even with symbolic supervisory control and choreographic programming ---
a system environment that minimizes the levels of artificial intelligence in
the projected Viking robot system --- overall program size and real-time
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control requirements will require an aerospace multiprocessor whose
performance can be compared to today's standard artificial laboratory
computer, the DEC PDP-10. In some respects,we may require faster
machines with more sbphisticated real time operating characteristics.
Implementation of théT system described in Section 4.1 will require at least
the following capabilities.

(1) 1/3 microsecond cycle time . .
(2) 256 K 36-bit words o . g
(3) privileged mode instruction - P

(4) 16 general registers '

Table 4-1 summarizes estimated requirements for the individual programs
shown in Figure 4-1.



Program

LINE-FINDER/
VERTEX GENERATOR

SHAPE TOPOLOGIST

CONTOUR FINDER/
ENCODER

CONTOUR TOPOLOGIST

KALMAN FILTER

CHOREO VISION .

ROBOT KINEMATICS
CONTROL

OPERATING SYSTEM

Estimate % of
Computer Time

Estimated
Frequency of Execution

Estimated
Program Size

Estimated Dynamic
Storage Requirements

5%

once per viewing
angle (in slow mode)

once per viewing angle

10%
10% once per viewing angle
15% once per viewing angle
5% continuous
25% continuous
10% continuous during
choreographic task
execution
20% continuous
Table 4-1

(36-bit words) .
16K

20K

32k

40K

20K

64K

32K

32K

Estimated Program Requirements

Requires 4K dynamic storage
for TV data; bypassed in fast
mode shape recognition when
Image Dissector provides
shape information, ‘

.Grass-fire encoding option

will require 4K
Requires dynamic storage
for laser data.

Requires 8K of dynamic
storage for contour data.
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Requires 16K of dynamic
storage for transmittal to
Remote Symbolic Supervisory
Control and 32K of dynamic
storage for choreographical
program, ’
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