NASA CR-WRL- 31650-24-T

CR-115757.

THE NASA EARTH RESOURCES SPECTRAL INFORMATION SYSTEM: A DATA COMPILATION

by Virginia Leeman **Dianne Earing Robert K. Vincent** Sharon Ladd

INFRARED AND OPTICS LABORATORY WILLOW RUN LABORATORIES INSTITUTE OF SCIENCE AND TECHNOLOGY THE UNIVERSITY OF MICHIGAN REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161 prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Manned Spacecraft Center Contract NAS 9-9784 W. E. Hensley/TD, Project Manager

THE NASA EARTH RESOURCES (NASA-CR-115757) SPECTRAL INFORMATION SYSTEM: A DATA V. Leeman, et al (Michigan COMPILATION Unclas CSCL 08G May 1971 Univ.) 36922 G3/13 ·

N72-28366

NOTICES

Sponsorship. The work reported herein was conducted by the Willow Run Laboratories of the Institute of Science and Technology for the National Aeronautics and Space administration under NASA Contract NAS 9-9784 with Mr. W. E. Hensley/TD, Earth Resources Office, as Project Manager. Contracts and grants to The University of Michigan for the support of sponsored research are administered through the Office of the Vice-President for Research.

<u>Disclaimers</u>. This report was prepared as an account of Governmentsponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- (A) Makes any warranty or representation, expressed or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- (B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA or employee of such contractor prepares, disseminates, or provides access to any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Availability Notice. Requests for copies of this report should be referred to:

National Aeronautics and Space Administration Scientific and Technical Information Facility P. O. Box 33 College Park, Md. 20740

<u>Final Disposition</u>. After this document has served its purpose, it may be destroyed. Please do not return it to the Willow Run Laboratories.

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

NASA CR-WRL 31650-24-T

1

TECHNICAL REPORT

THE NASA EARTH RESOURCES SPECTRAL INFORMATION SYSTEM: A DATA COMPILATION

by Virginia Leeman Dianne Earing Robert K. Vincent Sharon Ladd

INFRARED AND OPTICS LABORATORY WILLOW RUN LABORATORIES INSTITUTE OF SCIENCE AND TECHNOLOGY THE UNIVERSITY OF MICHIGAN

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

May 1971

CONTRACT NAS 9-9784

NASA Manned Spacecraft Center Houston, Texas 77058 W. E. Hensley/TD, Project Manager Earth Resources Office

FOREWORD

This report describes part of a comprehensive and continuing program of research into remote sensing of the environment from aircraft and satellites. The research is being carried out by the Willow Run Laboratories, a unit of The University of Michigan's Institute of Science and Technology, for the NASA Manned Spacecraft Center, Houston, Texas. The basic objective of this multidisciplinary program is to develop remote sensing as a practical tool to provide the planner and decision-maker with extensive information quickly and economically.

Timely information from remote sensing will be important to such people as the farmer, the city planner, the conservationist, and others concerned with a variety of problems such as crop yield and disease, urban land studies and development, water pollution, and forest management. The scope of our program includes: (1) extending understanding of basic processes; (2) developing new applications, advanced remote sensing systems, and automatic data processing to extract information in a useful form; and (3) assisting in data collection, processing, and analysis, including material spectra and ground-truth verification.

The research described here was performed under NASA Contract NAS 9-9784, Task B3, and covers the period from October 1969 through September 1970. The program was directed by M. R. Holter, formerly Head of the Infrared and Optics Laboratory, and is now being directed by R. R. Legault, Associate Director. The work was done under the management of the NASA Contract Monitor, W. E. Hensley/ TD, Manned Spacecraft Center. The Willow Run Laboratories' number for this report is 31650-24-T. Appendix II contains a list of related reports.

iii

ABSTRACT

This report describes the NASA Earth Resources Spectral Information System (ERSIS) and the information contained therein. It contains an ordered, indexed compilation of natural targets in the optical region from 0.3 to 45.0 μ m.

The data compilation includes approximately 100 rock and mineral, 2600 vegetation, 1000 soil, and 60 water spectral reflectance, transmittance, and emittance curves. Most of the data have been categorized by subject, and the curves in those subject areas have been plotted on a single graph. Those categories with too few curves and miscellaneous categories have been plotted as single-curve graphs. Each graph, composite of single, is fully titled to indicate curve source and is indexed by subject to facilitate user retrieval.

Preceding page blank

CONTENTS

Foreword
Abstract
List of Figures
List of Tables
Summary
1. Introduction
2. List of Subject Codes. 4 2.1. Vegetation Subject Codes 4 2.2. Rock and Mineral Subject Codes 4 2.3. Soil and Water Subject Codes 4 2.4. Parameter Subject Codes 4
3. Subject Cross Reference
4. Data Plots144.1. Composite Plots164.2. Single Plots1354.2.1. Laboratory Data1354.2.2. Field Data137
Appendix I: Data Instrumentation Techniques
Appendix II: List of Related Reports 173
References
Distribution List

Preceding page blank

vii

- WILLOW RUN LABORATORIES -----

FIGURES

1.	Local Coordinate System for Determining Bidirectional Reflectance 142
2.	Schematic of the General Electric Spectrophotometer
3.	Schematic of the Beckman Spectrophotometer with Reflectance Attachment 145
4.	Schematic of the Coblentz Hemispherical Reflectance Attachment Used by New York University
5.	Schematic of the USAERDL Portable Spectrophotometer
6.	Schematic of Measurement Configuration Used by Krinov
7.	Schematic of the Hohlraum Reflectance Attachment
8.	Coblentz Hemisphere Used by Detroit Arsenal
9.	Photoelectric Field Polarimeter
10.	Geometry of Field Measurements
11.	Laboratory Polarimeter and Instrumentation
12.	Cary 14R Reflectometer
13.	Perkin-Elmer Normal Incidence Reflectometer
14.	Perkin-Elmer Reflectance Unit
15.	Absolute Reflectance of Smoked MgO
16.	Absolute Reflectance of Pressed BaSO ₄
17.	Absolute Reflectance of Pressed MgCO ₃

TABLES

1.	Vegetation Subject Codes	•		•	•	•	•	•	•	•	•	•	•	•		•	•	5
2.	Supplement to Vegetation Subject Codes	•		•	•	•	•	•	•	•	•	•	•	•	٠	•		7
3.	Rock and Mineral Subject Codes	•		•	•	•	•	•	•	•	•	•	•			•	•	8
4.	Soil and Water Subject Codes	•	•		•	•		•	•		•	•	•	•		•	•	9
5.	Subject Codes Used as Parameter Information	•															•	10

THE NASA EARTH RESOURCES SPECTRAL INFORMATION SYSTEM: A DATA COMPILATION

SUMMARY

This report summarizes the NASA Earth Resources Spectral Information System (ERSIS) and the information contained therein. It contains an ordered, indexed compilation of data useful for improving remote sensing techniques.

The data compilation includes approximately 100 rock and mineral, 2600 vegetation, 1000 soils, and 60 water spectral reflectance (transmittance, emittance) curves in the optical region from 0.3 to 45.0 μ m.* Most of the data have been categorized by subject, and the curves in those subject areas have been plotted on a single graph. Those categories with too few curves and miscellaneous categories have been plotted as single-curve graphs. Each graph, composite or single, is fully titled to indicate curve source and is indexed by subject to facilitate user retrieval. In addition, the documents from which the curves have been extracted are summarized to facilitate the use of the data. Information on the experimental platform, instrumentation, reflectance standards (for relative data), and other related matters has been included, and additional references describing some of the instrumentation in greater detail are cited.

All of the data included in this publication are available in digital form at NASA/ MSC as part of ERSIS. The present computer facility includes a set of magnetic tapes containing the optical, spectral data and a series of computer programs for updating the magnetic tapes, for retrieving data from the tapes, and for analyzing the retrieved data.

^{*}The majority of the curves in this report were obtained from the Target Signatures Analysis Center (TSAC) Library, developed at The University of Michigan for the U. S. Air Force under Air Force Contract AF 33(657)-10974 and were previously reported in Ref [1].

1

INTRODUCTION

Prior knowledge of the spectral signatures of potential targets is of great value to planners of remote sensing missions; such knowledge permits the experimenter to choose the optimum detection system for discriminating the targets of interest in an economical and timely manner. The concept of the NASA Earth Resources Spectral Information System (ERSIS) is to provide the spectral signatures of natural targets to scientists in the remote sensing community in a catalogue form which is quick and simple to use. Our efforts to consolidate this information should not be viewed as an attempt to enter agricultural, geological, or other remote sensing fields, but rather as an attempt to serve these various fields as a catalyst for stimulating researchers in these fields to evaluate and become more deeply involved in the use of spectral signatures for analysis of remote sensing applications. We hope they will view this ERSIS activity as theirs to participate in rather than ours provided for them. This report describes the ERSIS and the information contained therein; it is one of four reports pertaining to the system. The other three reports are "Earth Resources Spectral Information System Procedures Manual" which explains the data information-retrieval procedures, "Data Gaps in the NASA Earth Resources Spectral Information System" which delineates the experimental data needed most to improve this catalogue, and 'Remote Sensing Data-Analysis Projects Associated with the NASA Earth Resources Spectral Information System" which demonstrates the usefulness of the ERSIS by showing how analysis of remote sensing problems has been aided by information in the system.

The Earth Resources Spectral Information System established at NASA/MSC and maintained by The University of Michigan consists of a set of magnetic tapes containing optical, spectral data and a series of computer programs for updating these magnetic tapes, for retrieving data from the tapes, and for analyzing the retrieved data. It provides a centralized source of data useful for improving remote sensing techniques. Sources for the data are reports published by laboratories making such measurements and unpublished data acquired directly from an experimenter. Each report is examined for data to be added to the system.

Selected curves are then manually digitized with an established format. Great care is exercised to preserve all significant details of the original curve except those details attributable to instrument noise. Data points are taken in such a way that the new curve formed by connecting the data points with straight lines will duplicate the original curve. The curves are then given an identification number, defined in Section I, of Appendix I, and coded with subject descriptors that describe the material and/or object measured and the complete conditions of the experiment. These descriptors provide the basis for retrieval. The current NASA/MSC Earth Resources Spectral Information System includes approximately 100 rock and mineral, 2600 vegetation, 1000 soil, and 60 water, spectral reflectance, transmittance, and emittance curves (or data sets).

Three kinds of measurements are represented: (1) laboratory measurements of materials, such as leaves, rocks, and soil; (2) ground-based field measurements of objects, such as plants and soil plots; and (3) a few uncorrected airborne measurements of scenes in a special category. In the optical portion of the spectrum, laboratory-measurement programs are far more abundant than either ground-based field measurements or airborne-measurement programs.

Separate, master magnetic tapes are kept for soil and water, vegetation, and rock and mineral spectra. The present retrieval system allows for the specification of any of a group of coded descriptors, specified experimental conditions, or individual curve identification numbers. Interpolation of the digitized data points to find the reflectance (transmittance, emittance) at a particular wavelength is also performed. In addition, mean values, standard deviations, and maximum-minimum envelopes of the digitized curves may be routinely computed for a retrieved subset of data. Microfilm plotting programs and punched, card-deck output for scientists' utility programs will soon be in use. The "Earth Resources Spectral Information Procedures Manual," mentioned earlier, describes the organization of the data on the master tape, input specifications for retrieval-analysis programs, and actual operating instructions for the Univac 1108 computer located at the Manned Spacecraft Center in Houston, Texas.

Each data curve has been assigned alphabetic and/or numerical descriptor codes to describe the object measured. A list of these codes is given in Section 2. The data curves in this publication have been grouped according to the coded descriptor that best describes the object measurement. This prime descriptor, a page number, and the common names of the objects are arranged as a cross index in Section 3.

Section 4 contains the plots of actual, directional reflectance (transmittance, emittance) curves. Section 4.1 contains composite plots of several, vegetation categories, such as crops, grasses, and trees. The categories are roughly those of the "Supplement to Vegetation Subject Codes" (See Section 2). In some cases, a further division was made to point out the effects of variations in the following: moisture and fertilizer content, background of the material, mode of measurement, and age of the sample or time after picking. Additional explanations detail the chlorophyll, water, and cellulose bands, which are prominent features in the vegetation spectra.

Section 4.2 contains single plots or rocks, minerals, soils, water, and miscellaneous vegetation data not included in the composite plots in Section 4.1. Included with each plot, composite or single, is a title listing of the material(s) measured plus the document and curve numbers, thus completely identifying the curve source.

Appendix I of this report discusses (1) a theoretical treatment of reflectance, (2) instrumentation used to collect the data, (3) absolute reflectance, and (4) the documents from which data were obtained.

2.

LIST OF SUBJECT CODES

Those agency investigators and scientists interested in using the ERSIS probably will have useful suggestions for improving the classification schemes and subject codes, and these will be welcome. As more data is added to the ERSIS, more detailed breakdowns and codes will be required.

2.1. VEGETATION SUBJECT CODES

The alphabetic vegetation subject codes, classified according to biological families, are listed in Table 1. In Table 2, entitled Supplement to Vegetation Subject Codes, the vegetation spectra are classified with alpha-numeric codes according to layman nomenclature for the plant families. Every vegetation curve has been classified with two subject codes, one for the biological names, and one for the common name. From these two tables, one can select curves of individual species or of entire plant families. The numbers shown in parentheses correspond to the number of spectra for each category. Numbers adjacent to the major, subject-code categories indicate how many curves are included that do not fit into any of the subcategories under that major subject code.

2.2. ROCK AND MINERAL SUBJECT CODES

Table 3 lists the rock and mineral subject codes (alpha-numeric) classified according to rock and mineral composition. The codes are as detailed as possible from the identifications reported. This results in some uneveness in the classification scheme. The silicate rocks are arranged approximately according to SiO_2 content. Each number in parentheses relates how many curves of each subcategory are contained in ERSIS.

2.3. SOIL AND WATER SUBJECT CODES

Table 4 contains a list of alphabetic soil and water subject codes. The soils are classified according to texture and soil series, whereas the water spectra are arranged according to macro-scopic formation and physical state. The parenthetical numbers correspond to the number of spectra for each category.

2.4. PARAMETER SUBJECT CODES

Finally, Table 5 denotes the alphabetic subject codes used as parameter information. These codes describe the experimental conditions of the measurements.

	()		
BG	Vegetation (31)	BGCMO	Vetch (1)
BGA	Herbaceous, Algea Fungi	BGCMP	Wheat (130)
BGAA	Cladoniaceae Family	BGCN	Heath Family (5) (see also
BGAAA	Reindeer Moss (1)		Ligneous)
BGB	Moss-Liverwort (3)	BGCNA	European Blueberry
BGBA	Sphagnum Family	BGCNB	Heather (1)
BGBAA	Sphagnum Moss (3)	BGCO	Mallow Family (5)
BGC	Vascular (13)	BGCOA	Cotton (94)
BGCA	Banana Family (2)	BGCP	Mustard Family
BGCAA	Banana	BGCPA	Cabbage (5)
BGCB	Bromeliaceae Family	BGCPB	Mustard (1)
BGCBA	Bunch Grass	BGCQ	Nightshade Family
BGCC	Buckwheat Family	BGCQA	Potatoes (4)
BGCCA	Buckwheat (1)	BGCQB	Tomatoes (5)
BGCD	Composite Family (4)	BGCR	Pea (or Pulse) Family (3)
	(cf. Ligneous)		(see also Ligneous)
BGCDA	Daisy (3)	BGCRA	Alfalfa (32)
BGCDB	Goldenrod	BGCRB	Clover (14)
BGCDC	Ragweed (1)	BGCRC	Coffee Plant (1)
BGCDD	Sunflower (1)	BGCRD	Lentil (2)
BGCE	Convolvulus Family	BGCRE	Lima Bean (3)
BGCEA	Sweet Potato (1)	BGCRF	Pea (1)
BGCF	Crowfoot Family	BGCRG	Peanut (9)
BGCFA	Crowfoot (3)	BGCRH	Soybean (160)
BGCG	Duckweed Family	BGCRI	String Bean (4)
BGCGA	Duckweed (2)	BGCS	Plantain Family
BGCH	Evening-Primrose Family	BGCSA	Plantain (2)
BGCHA	Willow Herb (cf. Willow	BGCT	Sedge Family (1)
	Family)	BGCTA	Cotton Grass (1)
BGCI	Fern Family (3)	BGCTB	Sedge (5)
BGCIA	Bracken Fern (1)	BGD	Ligneous (26)
BGCJ	Flax Family	BGDA	Arecaceae Family (7)
BGCJA	Flax (5)	BGDAA	Areca Palm (1)
BGCK	Goosefoot Family (3)	BGDB	Beech Family
BGCKA	Pigweed (3)	BGDBA	Beech (24)
BGCKB	Sugar Beet (9)	BGDBB	Chestnut (2)
BGCL	Gourd Family	BGDBC	Oak (162)
BGCLA	Squash (3)	BGDC	Bignonia Family
BGCM	Grass Family (148)	BGDCA	Catalpa (12)
BGCMA	Barley (15)	BGDD	Dalycanthacea Family
BGCMB	Bermuda Grass	BGDDA	Meratia Praecox (2)
BGCMC	Corn (188)	BGDE	Carduacea Family
BGCMD	Creeping Grass (1)	BGDEA	Rabbit Brush (1)
BGCME	Fescue (3)	BGDF	Cashew Family
BGCMF	Foxtail (6)	BGDFA	Chinese Pistachio (1)
BGCMG	Ilyas (13)	BGDFB	Sumac (2)
BGCMH	Millet (4)	BGDG	Composite Family (1) (cf.
BGCMI	Oats (15)		Herbaceous)
BGCMJ	Reeds (1)	BGDGA	Sagebrush (3)
BGCMK	. Rice (5)	BGDGB	Wormwood (3)
BGCML	Rye (7)	BGDH	Dogwood Family (35)
BGCMM	Selin (1)	BGDHA	Dogwood
BGCMN	Timothy (9)	BGDI	Ebony Family
	• · ·		

TABLE 1. VEGETATION SUBJECT CODES. (Classified according to families in a biological sense,i.e., Mustard family)

ı.

TABLE 1. VEGETATION SUBJECT CODES. (Classified according to families in a biological sense,i.e., Mustard family (Continued)

BGDIA	Ironwood (2) (cf. Hazel	BGDXE	Pine (286)
	Family)	BGDXF	Spruce (11)
BGDIB	Persimmon (2)	BGDY	Plane-Tree Family
BGDJ	Elm Family	BGDYA	Sycamore (151)
BGDJA	Elm (22)	BGDZ	Pea Family (5) (cf.
BGDK	Figwort Family (4)		Herbaceous)
BGDKA	Paulowina (1)	BGDAZ	Locust (5)
BGDL	Hazel Family	BGE	Ligneous (continued)
BGDLA	Alder (1)	BGEA	Rose Family (18)
BGDLB	Birch (23)	BGEAA	Blackberry (1)
BGDLC	Hazelnut (6)	BGEAB	Cherry (9)
BGDLD	Hornbeam (1)	BGEAC	Hawthorn (1)
BGDLE	Ironwood (cf. Ebony	BGEAD	Juneberry (3)
	Family)	BGEAE	Peach (10)
BGDM	Heath Family (12) (cf.	BGEAF	Pin Cherry (1)
	Herbaceous)	BGEAG	Plum (11)
BGDMA	Mountain Laurel (3)	BGEB	Sour Gum Family (2)
BGDN	Holly Family	BGEBA	Gum
BGDNA	Holly (3)	BGEC	Trumpet-Creeper Family
BGDO	Honeysuckle Family (2)	BGECA	Calabash (4)
BGDOA	Viburnum	BGED	Vine Family
BGDP	Laurel Family (5)	BGEDA	Virginia Creeper
BGDPA	Laurel (2)		Walnut Family (1)
BGDPB	Sassafrass (3)	BGEE BGEEA	Hickory (6)
BGDQ	Lily Family	- +	Willow Family (98)
BGDQA	Yucca (1)	BGEF BGEFA	Aspen (36)
BGDR	Linden Family		
BGDRA	Basswood (54)	BGEFB	Poplar (116) Willow (5) (cf. Evening
BGDRB	Linden (3)	BGEFC	Primrose Family)
BGDS	Logania Family	DOFROM	Dwarf (1)
BGDSA	Privet (2) (Ligustrum)	BGEFCA	
BGDT	Magnolia Family (2)	BGEFCB BGEG	Ground (50)
BGDTA	Magnolia (2)		Witch Hazel Family
BGDTB	Tulip (3)	BGEGA	Sweet Gum Leaf (128)
BGDTC	Tulip Poplar (5)	BGF	
BGDU	Maple Family (168)	BGFA	Narrow (490)
BGDUA	Maple Panny (100) Maple	BGTB	Broad (202) Coriaceous (Leathery)
BGDV	Maple Mulberry Family (2)	BGFBA	•
BGDVA	Rubber (10)	BGFBB	Membranous
BGDW	Olive Family (7)	BGFBC	Lower Leaf Surface (285)
BGDWA	Ash (58)	BGFBD	Upper Leaf Surface (565)
BGDX	Pine Family (3)	BGFC	Young (Spring) (25)
BGDXA	Cedar (8)	BGFD	Mature (Summer) (67)
BGDXB	Fir (10)	BGFE	Old (Fall) (49)
BGDXB	Juniper (6)	BGFF	Dry (163)
BGDXD	Larch (4)	BGG	Bark (38)
DUDVD		BGH	Twig (22)

TABLE 2. SUPPLEMENT TO VEGETATION SUBJECT CODES (Classified according to families in a layman, user-oriented sense, i.e., Corps)

40 Herbs (2) 41 Crops (2) 41A Vegetables (49) 41A1 Soybeans (11) 41A1A Soybean leaf, green (48) 41A1B Soybean pods and stems (46)41A1C Soybean leaf. mature (11)41A1D Soybeans, flowering (30) 41A1E Soybeans, seedling stage (12) 41B Grains (Misc.) 41B1 Barley (9) 41B1A Barley field, stubble (6) 41B2 Corn (23) 41B2A Corn leaf, green (47) 41B2B Corn leaf, brown (44) 41B2C Corn leaf, yellow (15)41B2D Corn tassel (12) 41B2E Corn, normal stand (20)41B2F Corn kernel (6) 41B2G Corn, multicolored leaves (21) 41B3 Oats (6) 41B3A Oats field, stubble (9) 41B4 Sorghum leaf, green (22) 41B4A Sorghum, brown (15) 41B5 Wheat (28) 41B5A Wheat field, normal stand (36) 41B5B Wheat field, thin stand (30)41B5C Wheat, diseased (13)41B5D Wheat heads (6) 41B5E Wheat, seedling stage (20) 41C Clothing fibers (5) 41C1 Cotton (94) 42 Nonflowering plants and weeds (41) 42A Grass (42)

42A1 Diseased grass (10) 42A2 Brown grass (59) 42B Ilyas (13) 43 Flowering plants (28) 43A Alfalfa (32) 44 Flowering weeds (21) 44A Clover (21) 50 Shrubs (36) 51 Dogwood (35) 60 Trees (4) 61 Deciduous (79) 61A Nut trees 61A1 Hickory leaf (5) 61A2 Hazelnut leaf (6) 61A3 Nutree bark (2) 61A4 Chestnut leaf (2) 61B Fruit trees 61B1 Plum fruit (3) 61B1A Plum leaf (7) 61B1B Plum, bark and twig (5) 61C Ash (58) 61D Aspen (36) 61E Basswood (54) 61F Beech (24) 61G Birch (23) 61H Catalpa (12) 611 Elm (22) 61J Maple (50) 61J1 Silver Maple (100) 61J2 Red Maple (30) 61K Oak (50) 61K1 White Oak (50) 61K2 Black Oak (30) 61K3 Burr Oak (30) 61L Poplar (20) 61L1 Cottonwood (100) 61M Sweet Gum (50) 61N Sycamore (151) 610 Tulip Tree (or Yellow or Tulip Poplar) (110) 61P Willows (8) 62 Coniferous (28) 62A Pine (28) 62A1 Red (or Norway) Pine (190) 62A2 Scotch Pine (70) 62B Spruce (10) 62B1 Spruce bark (1)

TABLE 3. ROCKS AND MINERAL SUBJECT CODES (Classified according to rock and mineral mineral composition)

- 100 Igneous Rocks
 - 101 Acidic (greater than 65% SiO₂)
 - Silicate Rocks
 - 101B Obsidian (1)
 - 101C Frothy Pumice (1)
 - 101D Welded Tuff (1)
 - 101E Tektite (1)
 - 101 F Quartz Monzonite Porphyry (1)
 - 101G Dacite (1)
 - 101H Granite (1)
 - 1011 Graphic Granite (1)
 - 101J Granite Aplite (1)
 - 101K Pyroxene Aplite (1)
 - 101L Rhyolite Pumice (1)
 - 101M Granite Gneiss (1)
 - 101N Trachyte (1)
 - 101P Potash Granite (1)
 - 101Q Migmatite (2)
 - 101R Adamellite (9)
 - 101S Granite Pediment (1)
 - 101T Felsite (1)
 - 102 Intermediate (53 to 65% SiO₂) Silicate Rocks
 - 102A Quartz Syenite (1)
 - 102B Andesite (1)

 - 102C Nepheline Syenite (1).
 - 102D Quartz Basalt (1)
 - **102E** Hypersthene Andesite (1) **102F** Hypersthene Andesite
 - Vitrophyre (1)
 - 102G Quartz Diorite (1)
 - **102H** Augitediorite (1)
 - 102I Latite (Squirrel Gulch) (4)
 - 102J Latite (Bonanza) (11)
 - 102K Latite (Eagle Gulch) (2)
 - 102L Biotite Andesite Flow (8)
 - 102M Andesite (Rawley) (11)
 - 102N Latite (Brewer Creek) (8)
 - 103 Basic and Ultrabasic (less than
 - 53% SiO₂) Silicate Rocks 103A Garnet Gabbro (1)

 - 103B Augite Gabbro (1)
 - 103C Schist (1)
 - 103D Diabase (1)
 - 103E Basalt (1)
 - 103F Plagioclase Basalt (1)
 - 103G Monchiquite (1)
 - 103H Hornblende Gabbrogneiss (1)
 - **103I** Peridotite (1)
 - 103J Olivine Gabbro (1)
 - 103K Nepheline Basalt (1)

- 103L Serpentine (1)
- 103M Linburgite (1)
- 103N Dunite (8)
- 103P Lava (1)
- 103Q Gabbro (1)
- 103R Hornblend Gneiss (2)
- 110 Sedimentary and Metamorphic Rocks
 - 111 Silicate Sedimentary and Meta
 - morphic Rocks
 - 111A Light Colored Sandy Rock (6)
 - 111B Yellow Sandstone Clay (1) 111C Sandy Rock (1)

 - 111D Yellow Sandstone (1)
 - 111E Red Sandstone (1)
 - 111F Shale (1)
 - 111G Grey Sandstone (1)
 - 111H Siltstone (1)
 - 111J Chert (1)
 - 111K Quartzite (1)
 - 112 Carbonate Sedimentary and Metamorphic Rocks
 - 112A Limestone (1)
 - 112B Dry White Coral (1)
 - 112C Limestone (Manitou) (1)
 - 112D Marble (1)
- 120 Minerals
 - **121** Silicate Minerals
 - 121A Quartz (3)
 - 121B K-Feldspar (1)
 - 121C Grey Feldspar (1)
 - **122** Ferromagnesian Minerals
 - 123 Accessory Minerals (6)
 - **123A** Carbonate Minerals 123A1 Calcium-Magnesium Carbonate (Dolomite) (1)
 - 123A2 Magnesium Carbonate (Magnesite) (1)
 - 123A3 Calcium Carbonate (1)
 - 123A4 Sodium Carbonate (1) 123B Sulfate and Sulfite Minerals
 - 123B1 Anhydrite Sand (3) 123B2 Calcium Sulfate (1)
 - **123C** Nitrate and Nitrite Minerals 123C1 Sodium Nitrate (1) 123C2 Potassium Nitrate (1)
 - **123D** Phosphate Minerals
 - 123E Carbonaceous Minerals 123E1 Silicon Carbide (4)
 - 123E2 Graphite (1)
- 130 Ores and Hydrothermally Altered Rock (1) 131 Ores (2)

TABLE 3. ROCKS AND MINERAL SUBJECT CODES (Classified according to rock and mineral mineral composition) (Continued)

131A Uranium Ore (1) 132 Hydrothermally Altered Rock 132A Latite (Hydrothermally Altered) (2) 140 Meteorites

141 Chondrites 141A Leedy (2) 141B Farmington (2)

TABLE 4. SOIL AND WATER SUBJECT CODES (Classified according to texture and series)

			_
BE	Terrain Uniformity (210)	BFIG	Barnes (3)
BEA	Flat (21)	BFIH	Blakely (6)
BEB	Rolling	BFII	Clareville (2)
BEC	Hilly (4)	BFIJ	Clarion (4)
BED	Mountainous (38)	BFIK	Collington (1)
BEE	Rural (127)	BFIL	Colts Neck (11)
BEF	Urban	BFIM	Decatur (2)
BF	Soil (77)	BFIN	Dublin (3)
BFA	Cultivated (27)	BFIO	Gooch (3)
BFB	Uncultivated	BFIP	Grady (3)
BFC	Coarse Textured	B FIQ	Greenville (6)
BFCA	Sand (61)	BFIR	Guthrie (2)
BFCB	Loamy Sand (4)	BFIS	Hainamanu (1)
BFD	Moderately Coarse Textured (1)	BFIT	Hall (2)
BFDA	Sandy Loam (35)	BFIU	Hamakua (2)
BFDB	Fine Sandy Loam (22)	BFIV	Herradura (4)
BFE	Medium Textured	BFIW	Joplin (2)
BFEA	Loam (33)	BFIX	Marias (2)
BFEB	Silt Loam (31)	BFIY	Marshall (2)
BFEC	Silt (1)	BFIZ	Matanzas (2)
BFF	Moderately Fine Textured	BFJ	Series (Continued)
BFFA	Clay Loam (30)	BFJA	Maury (3)
BFFB	Sandy Clay Loam	BFJB	Moaula (6)
BFFC	Silty Clay Loam	BFJC	Naalehu (6)
BFG	Fine Textured	BFJD	Onomea (2)
BFGA	Sandy Clay	BFJE	Ookala (4)
BFGB	Silty Clay	BFJF	Orangeburg (4)
BFGC	Clay (21)	BFJG	Oriente (2)
BFH	Other Constituents (4)	BFJH	Orman (2)
BFHA	Organic Material (11)	BFJI	Pallman
BFHB	Gravel (less than 3-in. diameter)	BFJJ	Penn (2)
	(9)	BFJK	Pierre (2)
BFHC	Cobbles (3- to 10-in. diameter)	BFJL	Putnam (2)
	(6)	BFJM	Quibdo (2)
BFHD	Stones (greater than 10-in.	BFJN	Rubicon (2)
	diameter) (9)	BFJO	Ruston (10)
BFHF	Salt	BFJP	Santa Barbara (6)
BFI	Series	BFJQ	Texas Dune (4)
BFIA	Aguan (4)	BFJR	Tifton (2)
BFIB	Aiken (4)	BFJS	Tillman (2)
BFIC	Akron (2)	BFJT	Tilsit (2)
BFID	Alamance (2)	BFJU	Vernon (2)
BFIE	Albion (2)	BFJV	Weld (4)
BFIF	Alonso (4)	BFJW	Windthorst (6)
~		DIAM	······································

TABLE 4. SOIL AND WATER SUBJECT CODES (Classified according to texture and series) (Continued)

BFJX	Yolo	Second	lary Characteristics Codes (These		
BFJY	Zanesville (4)	codes	codes appear occasionally with chemicals,		
BFK	Minerals (11)	soils,	soils, terrain, and water subject codes)		
BFL	Chemicals (13)	•			
BH	Water (2)	AAG	Roads		
BHA	Formations (2)	AEA	Aluminum		
BHAA	Lake (6)	AEH	Dirt		
BHAB	Puddle	AEJ	Glass		
BHAC	River (3)	AEK	Gravel		
BHAD	Sea (12)	AEL	Metal		
BHB	State	AEQ	Tar		
BHBA	Ice				
BHBB	Ice and Liquid				
BHBC	Liquid (8)				
BHBD	Snow (30)				

TABLE 5. SUBJECT CODES USED AS PARAMETER INFORMATION (Equipment and radiation)

С	Equipment	CE	Platform
CA	Radar	CEA	Aircraft
CAA	Coherent	CEB	Balloon
CAB	Noncoherent	CEC	Ground
CAC	Pulse	CED	Laboratory
CAD	CW	CEE	Shipborne
CAE	MTI	CF	Optical
CAF	Resolution Limited by Antenna	CFA	Ultraviolet
CAG	Synthetic Aperture	CFB	Visible
СВ	Radiometer	CFC	Infrared
CBA	Optical (wavelength less than	CFD	Active
	1000 µm)	CFE	Passive
CBB	Microwave Wavelength greater	CG	Detectors
	than or equal to 1000 μ m)	СН	Filters
CBBA	Unmodulated	CI	Image Tubes
CBBB	Post-Detection Modulated	CJ	Materials
CBBC	Signal Modulated	CJA	Reflectance Standards (Optical)
CBBD	Cross Correlated	CJAA	Magnesium Oxide
CBBE	Two-Channel Subtraction	CJAAA	Smoked
CC	Spectrograph	CJAAB	Pressed
CCA	Eastman Kodak	CJAB	Magnesium Carbonate
CD	Spectrometer	CJAC	Sulphur
CDA	Beckman	CJAD	Aluminum
CDAA	Model DU	CJADA	Mirror
CDAB	Model DK-1	CJABD	Sandblasted
CDAC	Model DK-2	CJAE	Sapphire Felt
CDAD	Microspec	CJAF	Other Specular Standards
CDB	General Electric	CJAG	Other Diffuse Standards
CDC	Perkin-Elmer	CJB	Reflectance Standards (Micro-
CDCA	Model 12		wave)
CDCB	Model 21	CJBA	Metallic Sphere
CDD	Interference	CJBB	Luneberg Reflector
CDE	Cary	CJBC	Corner Reflector
CDEA	Model 14	СК	Evaluation
CDEB	Model 90	CKA	Noise

01	Deflector (Didinection 1)	N 1111	
	Reflectometer (Bidirectional)	DKK	Nernst Glower
CLA	EGR	DKL	Nuclear Explosion
CLB	PGR	DKM	Oscillator
CM	Polarimeter	DKN	Shock Tube
DD	Polarization	DKO	Spark
DDA	Radar	DKP	Vapor Lamp
DDAA	Circular	DKQ	Monochromator
DDAAA	Right	DKR	Blackbody Cavity
DDAAB	Left	\mathtt{DL}	Natural Sources
DDAB	Elliptic	DLA	Aurora
DDABA	Right	DLB	Airglow
DDABB	Left	DLC	Lightning
DDAC	Linear	DLD	Lunar
DDACA	Horizontal or Perpendicular	DLE	Planetary
DDACB	Vertical or Parallel	DLF	Solar
DDACC	Oblique	DLG	Stellar
DDACCA	Cross-Polarized	DLH	Zodiacal Light
DDACCB	Parallel-Polarized	DLI	Sky
DDAD	Random	DM	Flux
DDB	Optical	DN	Radiance
DDBA	Circular	DO	Coherence
DDBAA	Right	DP	Diffraction
DDBAB	Left	DQ	Apparent Temperature
DDBB	Elliptic	DQA	Antenna
DDBBA	Right	DQB	Target
DDBBB	Left	DQC	Contrast
DDBC	Linear	DR	Blackbody Cavity Source
DDBCA	Perpendicular	ECBB	Color (used as secondary
DDBCB	Parallel		descriptors)
DDBD	Random	ECBBA	Blue
DK	Artificial Sources	ECBBB	Green
DKA	Arc	ECBBC	Yellow
DKB	Beacon	ECBBD	Orange
DKC	Flame	ECBBE	Red
DKD	Flare	ECBBF	Brown
DKE	Gas	ECBBG	Field Drab
DKF	Gas Discharge	ECBBH	Khaki
DKG	Globar	ECBBI	Olive Drab
DKH	Incandescent Lamp	ECBBJ	White
DKI	Maser, Laser, Iraser, Uvaser	ECBBK	Grev
DKJ	Maser, Laser, Haser, Ovaser Mantle	ECBBL	Black
M1M	Malitic	LCDDL	DIAUN

TABLE 5. SUBJECT CODES USED AS PARAMETER INFORMATION (Equipment and radiation) (Continued)

3

SUBJECT CROSS REFERENCE

The data curves published in this report have been grouped by their primary, subjectdescriptor code. A complete list of the subject codes may be found in Section 2. To facilitate use of the data, a cross-reference by the common name of the material has been published in this section. The cross-reference has been divided into 5 main categories which are rocks and minerals, soils, terrain, water, and vegetation. Although the laboratory and field data have been

separated, they are cross-referenced together, so that in one place, one can find all of the available data on that subject. To distinguish field from laboratory measurements, an (F) precedes the page number of the field data.

For example, if one desired all the data on potatoes, he would look under Vegetation for Potatoes and find:

He would then proceed to the published data on vegetation and scan the dividers for subject code section BGC. The pages of data will be numbered for example, BGC 1, BGC 2. One follows the same procedure for the field data except that the subject code section would be (F)BGC.

Rocks and Minerals Precambrian Hornblende 103:7-8 Alumina 123:1-2 Precambrian Andesite 102:1-2, 6-11 Migmatite 101:4 Aplite 101:3 **Pumice** 101:1, 3 Basalt 103:2, 4 101:2 Quartz Calcium Sulfate 123:4 102:1 Carbides 123:5 103:1 Carbonate 123:2-3 121:1 Chert 111:4 Quartzite 111:5 Chlorides 123:2 Sand 123:3-4 Chondite 141:1 Sandstone 111:1-3 Coral 112:2 Serpentine 103:4 Dacite 101:2 Shale 111:2 Diabase 103:1 Siltstone 111:3-4 Diorite 102:2 Svenite 102:1 103:1 Tektite 101:1 Dolomite 123:2 Trachyte 101:4 Dunite 103:4-6 Uranium 131:1 Feldspar 121:1, 2 Welded Tuff 101:1 Felsite 101:7 Flint 130:1 Soils Gabbro 103:1, 3, 7 Chemicals BFL 1, 2 Granite 101:2, 3, 4, 7 Graphite 123:6 Clay BFGC 1-4 (F)BFGC 1 Latite 102:3-7, 12-13 Clay Loam **BFFA 1-6** 132:1 103:6-7 (F)BF 6 Lava Cultivated BF 2 Limburgite 103:4 (F)BFA 1-7 Limestone 112:1-4 (F)BFDA 1-4 Marble 112:4 Minerals Fine Sandy 131:1 Monchiquite 103:3 Loam **BFDB 1-5** Flood Plain (F)BFGC 1 Nitrates 123:4 Gravel Obsidian 101:1 (F)BFHB 1 Ores Land (Aerial) (F)BF 1-3 (Miscellaneous) 131:1 Loam **BFEA 1-7** Peridotite 103:3 BFEB 2 Precambrian Loamy Sand BFCB 1 Adamellite Marshland (F)FB 6 101:5, 6

.

.

•

Minerals	BFK 1-2	Cotton	54-56
Miscellaneous	BF 1-10	Cottonwood	109-113
	BFD 1	Dogwood	67
	(F)BF 3-5	Elm	86
Podsol	(F)BF 7		BGD 22
Rock	BFH 1	Fern	BG 9, 12
	BFHD 1		BGC 1, 15
	(F)BFHC 1, 2	Fescue	BGC 7, 10
Sand	BFCA 1-7	Field	(F)BG 6
Balla	(F)BFCA 1-6	Fireburn	(F)BG 1
Sandy Loam	BFDA 1-4	Flax	
Sanuy Loam			(F)BGC 6, 7
	(F)BFDA 1-4	Foxtail Geranium	(F)BGC 1,2
Shale	(F)BF 6		BGD 13, 16, 20, 21
Silt	(F)BF 3	Golden Rod	BGD 4
Silt Loam	BFEB 1-7	Grass	57-61
Wet Soils	(F)BH 7		BGC 9, 11, 12
			(F)BGC 1
Terrain		Green Beans	(F)BGC 12, 3
Field	(F)BE 1, 8-10	Haloxylon Tree	(F)BG 2
Fleiu		Hawthorne	BG 1
	(F)BH 6 (F)DE 0 2 5 8 10 14		
Flat	(F)BE 2, 3, 5-8, 12-14	Hay	(F)BG 4
	(F)BF 6	Hazelnut	68 (T)))) (C)
Hilly	(F)BE 3-7, 10, 11, 13	Heather	(F)BGC
Miscellaneous	BE 1	Hibiscus	BGC 7, 8
Mountains	(F)BE 4, 7, 12	Hickory	69
	(F)BF 5	Holly	BGD 14, 15
Vegetation		Hornbeam	BGD 7
Alfalfa	64 CE	Horse Brush	(F)BGD 2
Alder	64, 65	Ilyas	62-63
	(F)BGD 5	Indian Mallow	BGC 7
American Larch		Ironwood	BGD 7
Ash	74-76	Tantanna	BG 9-12
Aspen	77, 78	Laurel	BGD 6, 14
Azalea	BGD 18, 19	Lee	BGC 5
Bark	70, 73, 125	Lentil	(F)BGC 18, 20
Barley	38, 39	Lichens	(F)BG 4
Basswood	79-81	Lilac	BGD 7, 8, 14
Beech	82	Lima Beans	(F)BGC 11
Birch	83, 84	Linden	(F)BGD 4
Birdsfoot		Locust	BGD 1, 2, 18
Trefoil	BGC 9	Madione	BGD 1, 2, 10 BGD 16, 17
Black Oak	99,100		BGD 10, 11 BGD 1, 9
Bleeding Heart	BG 9, 10	Magnolia	
Bramble Briar	BG 5	Manzanita	BGC 11, 12
Buckwheat	(F)BGC 17	Maple	87,88
Burr Oak	101, 102	Meadow	(F)BGC 13, 14
Cabbage	BGC 2	Mesquite	(F)BGD 1
Calabash Tree		Milkweed	BGC 5
Catalpa	BG 3	Millet	(F)BGC 18, 19
Cedar	85	Mint	BGC 14
	BGC 15	Miscellaneous	BG 1-8
Chestnut	70		BGC 3, 4
Clover	66		BGD 2-6, 8-10, 21, 13
Coklebur	BGC 6		(F)BG 1, 2
Coffee Plant	BGC 1		(F)BGD 3
Coleus	BGD 15, 19, 20, 22	Miscellaneous	
Corn	16-26	(Dead)	BG 5
		(2010)	BGC 13

Mass BGB 1 (F)BG 1, 4, 5 Mustard BGC 2 Oak 95.96 Oats 27,28 Palm Leaves BG Paulowina **Peanuts** Peas Pigweed Pine Pinyon Plantain Plum Poplar Potato Privet Punk Leaves Rabbit Bush Ragweed Red Maple **Red Pine** Reeds **Rice** Plant Rubber Plant Rye Sagebrush Sassafras Scotch Pine Sedge Selin Silver Maple Sorghum 40, 41

Soybeans

Spruce

BGD 23, 24 BGD 2 (F)BGC 3-5 (F)BGC 16 (F)BGC 5 124 (F)BGD 2 BGC 1 (F)BGC 15 71,72 108 BGC 8, 9 (F)BGC 17 BGD 2 BG 10, 11 (F)BGD 3 BGC 1 94 126-130 (F)BGC 13 BGC 13, 14 BGD 11, 15, 21 BGC 4 (F)BGC 19, 20 (F)BGD 1 BGD 1, 9, 10 131-133 (F)BGC 15 (F)BGC 16 89-93

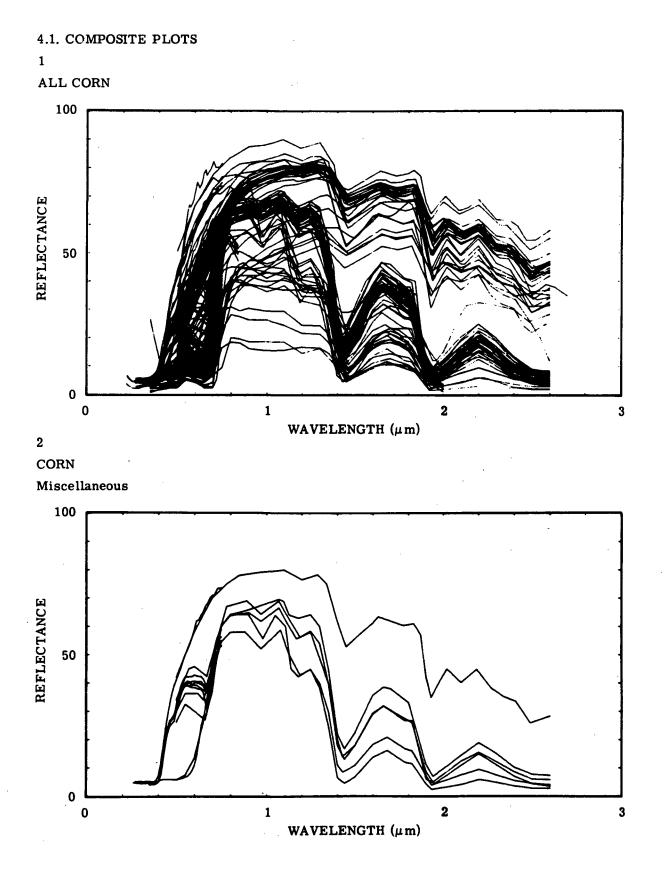
29-37

134

(F)BGC 10 Squash Straw **BG 6** String Bean BGC 2 Sugar Beets (F)BGC 7-9 BGD 3, 4 Sumac Sunflower (F)BGC 17 BGC 4, 5 Suivon 114-116 Sweet Gum Sweet Potato Vine BGC 2 Sycamore 117-123 Timothy **BGC 10 Tomato Plant** (F)BGC 11, 12, 18 Tree (F)BGC 2 (F)BGD 3, 4 **Tulip Tree** 103-107 BG 1, 3 Tupilo Vetch (F)BGC 16 Virginia Creeper **BG 2** Weeds (F)BG 2.3 Wheat 42-53 White Oak 97,98 Willow BG 1, 6 (F)BG 3 (F)BGE 1 Wormwood (F)BGD 4 Yantak (Camel Grass) (F)BG 3 Yucca (F)BGD 1 Water Liquid BH 1,2 (F)BG 1.2 (F)BGC 15 (F)BH 1-3, 6, 8 Snow BH 2

(F)BH 4-6, 8-12

4 DATA PLOTS

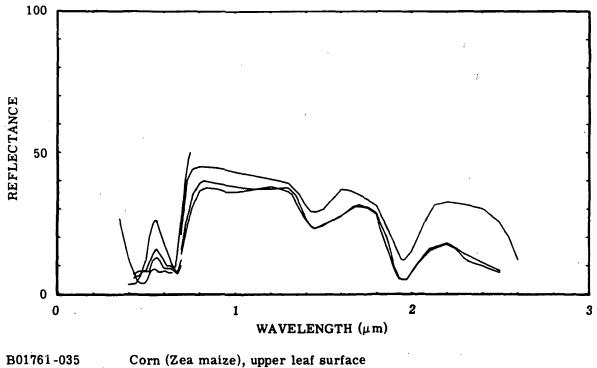

This section contains a summary of the information contained in the NASA ERSIS. Most of the data have been categorized by subject, and the curves in those categories are plotted on a single graph in the form of a composite plot. However, the rock, mineral, soil, and water data were not plotted as composites because there were too few curves per category. These and some of the miscellaneous vegetation curves were plotted as single curve graphs.

The method of presenting the data as composite plots has two advantages for remote sensing applications. It quickly informs the user of the amount of data available in that category

and illustrates the variability of data within the category. Knowledge of the source of this variability is important remote sensing applications. In many cases, spectra in a given category may have been obtained by several different experimenters under a variety of conditions and direct comparison of these data is misleading. There are four major sources of variability of primary concern. First, the environmental conditions may vary greatly among data sets. The best examples of this are the environmental differences between laboratory and field data and the sporadic natural contamination of sample surfaces by dust and water. Second, the instrumentation and experimental setup can vary considerably among measurement programs, i.e., a set of spectra may be bidirectional (directions of sample illumination of 2π sr) reflectance measurements. To circumvent some of the environmental and instrumentation variability, separate, composite plots from documents B-01643 (USAERDL Field Data) and B-03995 (Krinov Field Data) have been prepared because they represent measurements made under different experimental conditions from the rest of the data. (See Appendix I for a discussion of measurement techniques.)

Third, different parts of the same plant may exhibit dissimilar reflectance spectra; this may introduce variations if a spectrum of some part of the plant (leaf) is compared with a spectrum of the whole plant (tree). Analytical models which account for these factors have yet to be developed. A fourth source of variability is found within broad categories of vegetation spectra; namely, the states of maturity and plant vigor vary from sample to sample. This is well illustrated in the composite plots by the "corn" category. This plot contains spectra for different parts of the plant at different stages of maturity and vigor. All of the spectra of young, vigorous corn, for instance, display distinct reflection minima near 0.63 μ m (chlorophyll band), 1.4 μ m (water band), and 1.9 μ m (water band). The yellowing and brown mature corn, by contrast, exhibit a reflection minimum at 2.1 μ m corresponding to the cellulose band, and diminished water and chlorophyll bands. One can gain an appreciation of these variations by first examining the composite plots entitled "All Corn" and then comparing this with the subcate-gories of corn in the following plots.

The remaining parts of this report contain the composite and single curve plots of all the ERSIS spectra; these plots are organized into subgroups of reasonable homogeneity. Whenever there are curves on the composites which have apparently been misclassified by the experimenter, the corresponding descriptors are noted. Below each composite plot is a list of all of the curves appearing in that plot.

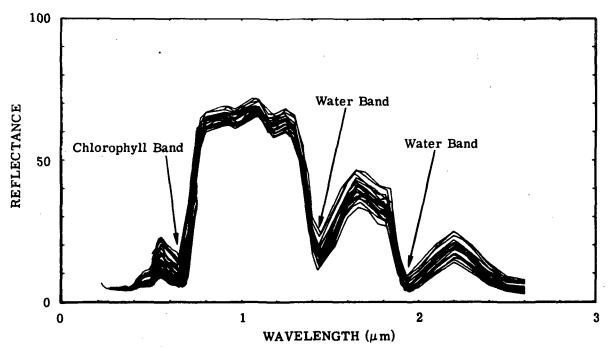


B02418-054	Corn leaf, dry, center vein near base, UV
B02418-055	Corn leaf, dry, center vein near base, visible
B02418-056	Corn leaf, dry, center vein near base, IR
B02418-115	Corn leaf, reddish color, UV
B02418-116	Corn leaf, reddish color, visible
B02418-117	Corn leaf, reddish color, IR
B02418-134	Corn leaf vein, wide vein near base of leaf, UV
B02418-135	Corn leaf vein, wide vein near base of leaf, visible
B02418-136	Corn leaf vein, wide vein near base of leaf, IR
B02418-137	Corn leaf vein, wide vein near base of leaf, UV
B02418-138	Corn leaf vein, wide vein near base of leaf, visible
N02418-139	Corn leaf vein, wide vein near base of leaf, IR
B02418-140	Corn leaf vein, wide vein near base of leaf, visible
B02418-141	Corn leaf vein, wide vein near base of leaf, IR
B02418-142	Corn leaf vein, wide vein near base of leaf, visible
B02418-143	Corn leaf vein, wide vein near base of leaf, IR

3

CORN

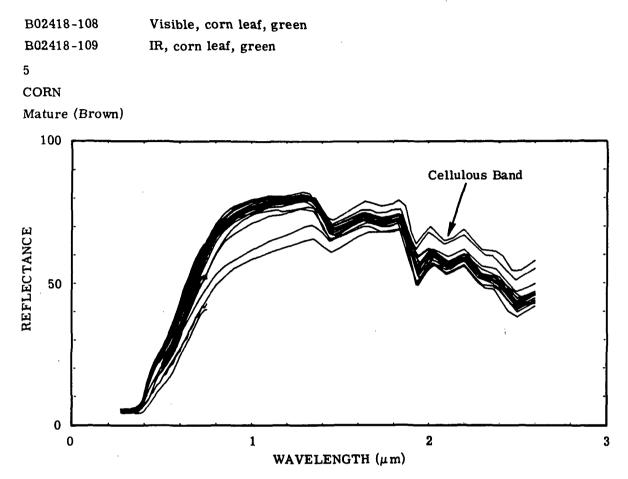
Miscellaneous Leaves


B01761-036 Corn (Zea maize), lower leaf surface

B01948-002	Corn, leaf
B01948-010	Maize, leaf
B01948-011	Maize, lower leaf surface
B01948-012	Maize, upper leaf surface
B20000-459	Corn leaf (Zea maize), killed by frost, upper leaf surface
B20000-460	Corn leaf (Zea maize), killed by frost, upper leaf surface
B20000-461	Corn leaf (Zea maize), killed by frost, upper leaf surface
B20000-462	Corn leaf (Zea maize), killed by frost, lower leaf surface
B20000-463	Corn leaf (Zea maize), killed by frost, lower leaf surface
B20000-464	Corn leaf (Zea maize), killed by frost, lower leaf surface

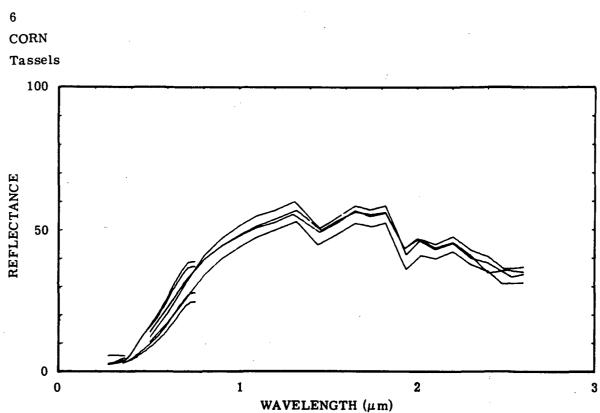
4

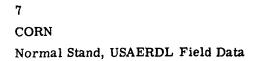
CORN

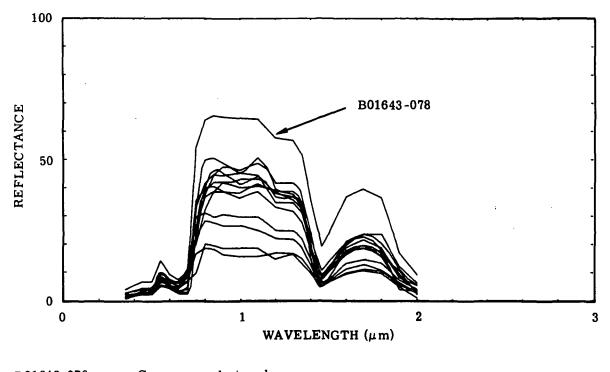

Live and Healthy

B02418-063	UV, corn leaf, green, tip of leaf, 2nd leaf from top of plant
B02418-064	Visible, corn leaf, green, tip of leaf, 2nd leaf from top of plant
B02418-065	IR, corn leaf, green, tip of leaf, 2nd leaf from top of plant
B02418-066	UV, corn leaf, green, center of leaf, 2nd leaf from top of plant
B02418-067	Visible, corn leaf, green, center of leaf, 2nd leaf from top of plant
B02418-068	IR, corn leaf, green, center of leaf, 2nd leaf from top of plant
B02418-069	UV, corn leaf, green, base of leaf, 2nd leaf from top of plant
B02418-070	Visible, corn leaf, green, base of leaf, 2nd leaf from top of plant

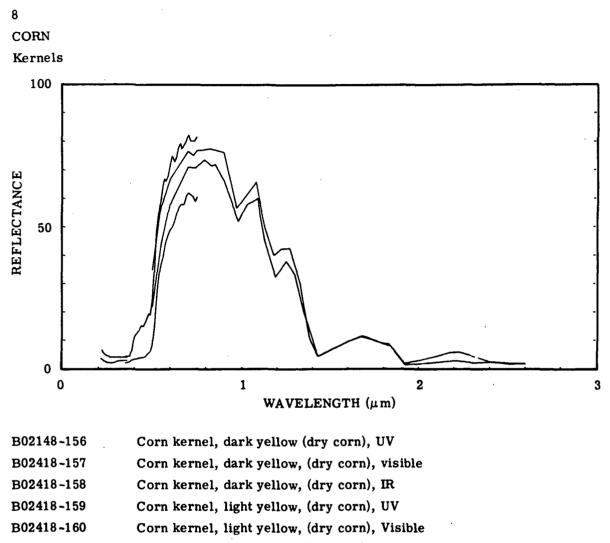
B02418-071	IR, corn leaf, green, base of leaf, 2nd leaf from top of plant
B02418-072	UV, corn leaf, green, tip of leaf, 2nd leaf from top of plant
B02418-073	Visible, corn leaf, green, tip of leaf, 2nd leaf from top of plant
B02418-074	IR, corn leaf, green, tip of leaf, 2nd leaf from top of plant
B02418-075	UV, corn leaf, green, center of leaf, 2nd leaf from top of plant
B02418-076	Visible, corn leaf, green, center of leaf, 2nd from top of plant
B02418-077	IR, corn leaf, green, center of leaf, 2nd leaf from top of plant
B02418-078	UV, corn leaf, green, base of leaf, 2nd leaf from top of plant
B02418-079	Visible, corn leaf, green, base of leaf, 2nd leaf from top of plant
B02418-080	IR, corn leaf, green, base of leaf, 2nd leaf from top of plant
B02418-081	Visible, corn leaf, green, tip of leaf, leaf from center of plant
B02418-082	IR, corn leaf, green, tip of leaf, leaf from center of plant
B02418-083	Visible, corn leaf, green, center of leaf, leaf from center of plant
B02418-084	IR, corn leaf, green, center of leaf, leaf from center of plant
B02418-085	Visible, corn leaf, green, base of leaf, leaf from center of plant
B02418-086	IR, corn leaf, green, base of leaf, leaf from center of plant
B02418-087	Visible, corn leaf, green, tip of leaf, leaf from base of plant
B02418-088	IR, corn leaf, green, tip of leaf, leaf from base of plant
B02418-089	Visible, corn leaf, green, center of leaf, leaf from base of plant
B02418-090	IR, corn leaf, green, center of leaf, leaf from base of plant
B02418-091	Visible, corn leaf, green, base of leaf, leaf from base of plant
B02418-092	IR, corn leaf, green, base of leaf, leaf from base of plant
B02418-093	UV, corn leaf, green
B02418-094	Visible, corn leaf, green
B02418-095	IR, corn leaf, green
B02418-096	Visible, corn leaf, green
B02418-097	IR, corn leaf, green
B02418-098	Visible, corn leaf, green
B02418-099	IR, corn leaf, green
B02418-100	Visible, corn leaf, green
B02418-101	IR, corn leaf, green
B02418-102	IR, corn leaf, green
B02418-103	IR, corn leaf, green
B02418-104	IR, corn leaf, green
B02418-105	Visible, corn leaf, medium green
B02418-106	IR, corn leaf, medium green
B02418-107	UV, corn leaf, green


.

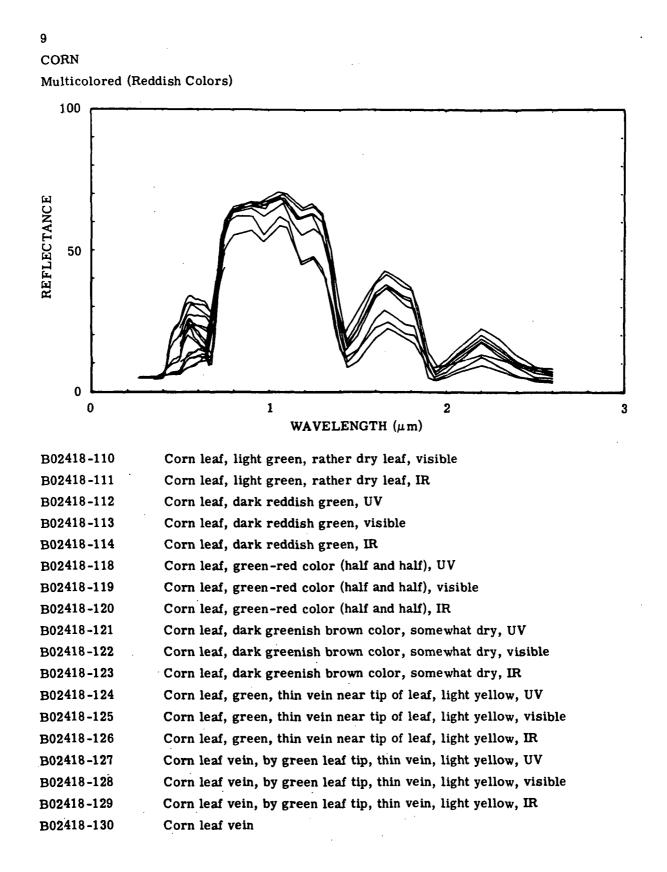

B02418-001	UV, corn leaf, dry, brown, tip of leaf
B02418-002	Visible, corn leaf, dry, brown, tip of leaf
B02418-003	IR, corn leaf, dry, brown, tip of leaf
B02418-004	UV, corn leaf, dry, brown, center of leaf
B02418-005	Visible, corn leaf, dry, brown, center of leaf
B02418-006	IR, corn leaf, dry, brown, center of leaf
B02418-007	UV, corn leaf, dry, brown, center of leaf
B02418-008	Visible, corn leaf, dry, brown, center of leaf
B02418-009	IR, corn leaf, dry, brown, center of leaf
B02418-010	UV, corn leaf, dry, brown, base of leaf
B02418-011	Visible, corn leaf, dry, brown, base of leaf
B02418-012	IR, corn leaf, dry, brown, base of leaf
B02418-013	IR, corn leaf, dry, brown, base of leaf
B02418-014	UV, corn leaf, dry, brown, center of leaf
B02418-015	Visible, corn leaf, dry, brown, center of leaf
B02418-016	IR, corn leaf, dry, brown, center of leaf



B02418-017	UV, corn leaf, dry, brown, base of leaf, reddish brown
B02418-018	Visible, corn leaf, dry, brown, base of leaf, reddish brown
B02418-019	IR, corn leaf, dry, brown, base of leaf, reddish brown
B02418-020	UV, corn leaf, dry, brown, center of leaf
B02418-021	Visible corn leaf, dry, brown, center of leaf
B02418-022	IR, corn leaf, dry, brown, center of leaf
B02418-023	UV, corn leaf, dry, brown
B02418-024	Visible, corn leaf, dry, brown
B02418-025	IR, corn leaf, dry, brown
B02418-026	Visible, corn leaf, dry, brown
B02418-027	IR, corn leaf, dry, brown
B02418-028	IR, corn leaf, dry, brown
B02418-029	IR, corn leaf, dry, brown
B02418-030	IR, corn leaf, dry, brown
B02418-031	IR, corn leaf, dry, brown
B02418-032	Visible, corn leaf, dry, brown, lower surface
B02418-033	IR, corn leaf, dry, brown, lower surface
B02418-034	Visible, corn leaf, dry, brown, lower surface
B02418-035	IR, corn leaf, dry, brown, lower surface
B02418-036	UV, corn leaf, dry, brown, base of leaf, much black smut
B02418-037	Visible, corn leaf, dry, brown, base of leaf, much black smut
B02418-038	IR, corn leaf, dry, brown, base of leaf, much black smut
B02418-039	UV, corn leaf, dry, brown, tip of leaf, much black smut
B02418-040	Visible, corn leaf, dry, brown, tip of leaf, much black smut
B02418-041	IR, corn leaf, dry, brown, tip of leaf, much black smut
B02418-042	UV, corn leaf, dry, brown, tip of leaf, very smutty
B02418-043	Visible, corn leaf, dry, brown, tip of leaf, very smutty
B02418-044	IR. corn leaf, dry, brown, tip of leaf, very smutty

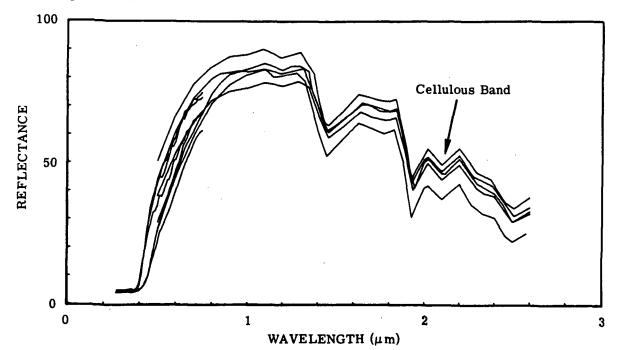


B02418-144	Corn tassel, dry, UV
B02418-145	Corn tassel, dry, visible
B02418-146	Corn tassel, dry, IR
B02418-147	Corn tassel, dry, UV
B02418-148	Corn tassel, dry, visible
B02418-149	Corn tassel, dry, IR
B02418-150	Corn tassel, dry, UV
B02418-151	Corn tassel, dry, visible
B02418-152	Corn tassel, dry, IR
B02418-153	Corn tassel, dry, UV
B02418-154	Corn tassel, dry, visible
B02418-155	Corn tassel, dry, IR



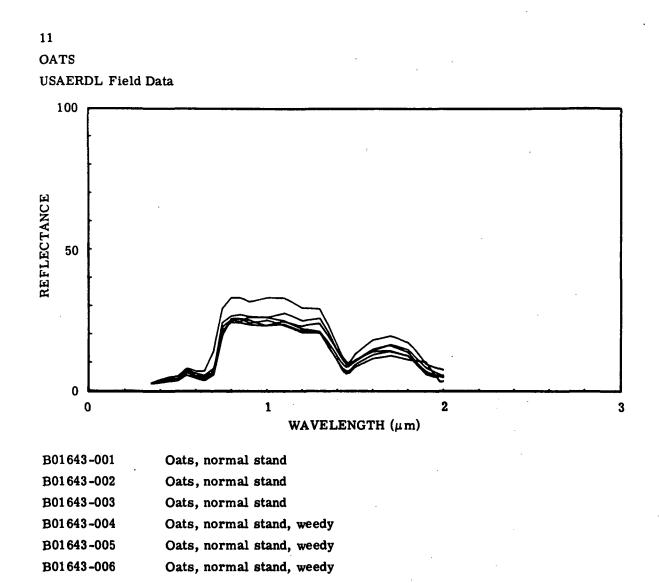
B01643-078	Corn, normal strand
B01643-079	Corn, normal strand
B01643-080	Corn, normal stand
B01643-081	Corn, thin stand
B01643-082	Corn, thin stand
B01643-083	Corn, thin stand
B01643-084	Corn, normal stand, weedy
B01643-085	Corn, normal stand, weedy
B01643-086	Corn, normal stand, susceptible
B01643-087	Corn, normal stand, susceptible
B01643-088	Corn, normal stand, disease resistant
B01643-089	Corn, normal stand, disease resistant
B01643-090	Corn, normal stand, disease resistant

B02418-161 Corn kernel, light yellow (dry corn), IR


B02418-131	Corn, green leaf, thin pale light yellow vein by leaf tip, IR
B02418-132	Corn, green leaf, thin pale light yellow vein by leaf tip, visible
B02418-133	Corn, green leaf, thin pale light yellow vein by leaf tip, IR

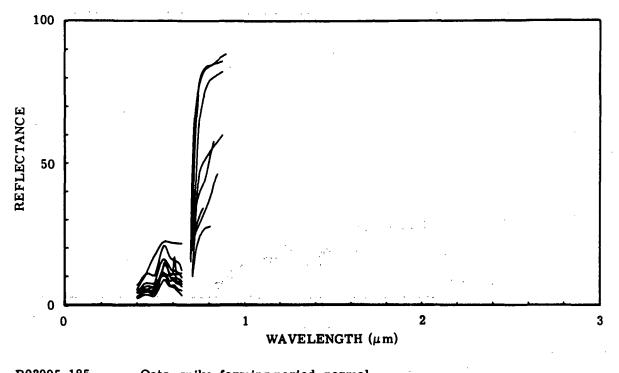
10

, , ,


CORN

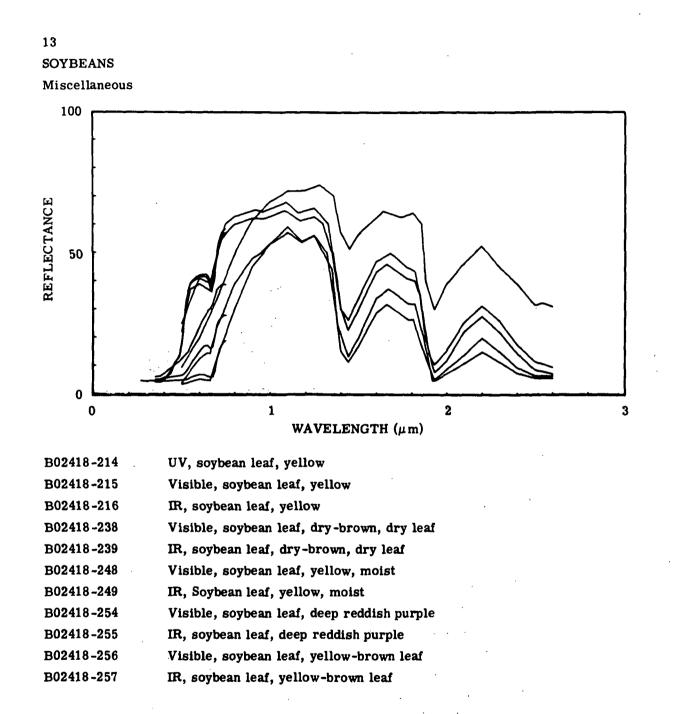
Maturing (Yellow)

B02418-045	UV, corn leaf, dry vein, light yellow, thin
B02418-046	Visible, corn leaf, dry vein, light yellow, thin
B02418-047	IR, corn leaf, dry vein, light yellow, thin
B02418-048	UV, corn leaf, dry, center vein near tip, light yellow, thin
B02418-049	Visible, corn leaf, dry, center vein near tip, light yellow, thin
B02418-050	IR, corn leaf, dry, center vein near tip, light yellow, thin
B02418-051	UV, corn leaf, dry, center vein near tip, bright yellow, thin
B02418-052	Visible, corn leaf, dry, center vein near tip, bright yellow, thin
B02418-053	IR, corn leaf, dry, center vein near tip, bright yellow, thin
B02418-057	UV, corn leaf, dry, center vein near base, light yellow
B02418-058	Visible, corn leaf, dry, center vein near base, light yellow
B02418-059	IR, corn leaf, dry, center vein near base, light yellow
B02418-060	UV, corn leaf, dry, center vein near base, bright yellow
B02418-061	Visible, corn leaf, dry, center vein near base, bright yellow
B02418-062	IR, corn leaf, dry, center vein near base, bright yellow


...

12

OATS


Spiked Field, Krinov Field Data

ţ

į.

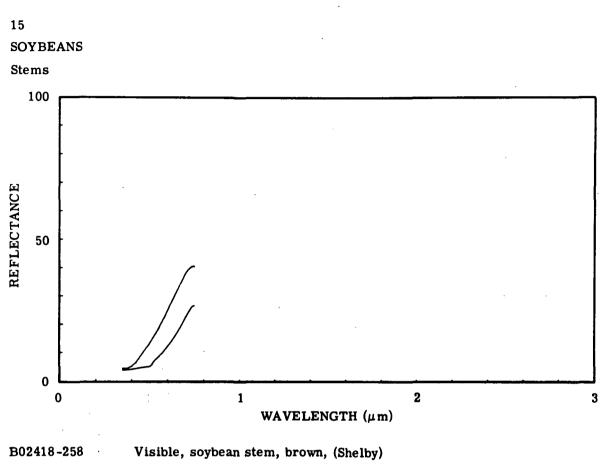
B03882-192	Oats, spike-forming period, normal
B03995-186	Oats, with spikes, on tundra
B03995-187	Oats, with spikes, on tundra
B03995-188	Oats, with spikes, on tundra
B03995-189	Oats, with spikes, lighter in color, cloudy
B03995-190	Oats, with spikes, lighter in color, cloudy
B03995-191	Oats, with spikes, lighter in color, cloudy
B03995-193	Oat field, stubble, normal
B03995-217	Oat straw, in sheaves, normal, black earth

14 SOYBEANS Live and Healthy 100 REFLECTANCE 50 0 2 0 1 3 WAVELENGTH (μm) B02418-199 UV, soybean leaf, medium light green B02418-200 Visible leaf, medium light green B02418-201 IR, soybean leaf, medium light green B02418-202 UV, soybean leaf, light green B02418-203 Visible, soybean leaf, light green B02418-204 IR, soybean leaf, light green B02418-205 UV, soybean leaf, light green B02418-206 Visible, soybean leaf, light green B02418-207 IR, soybean leaf, light green B02418-208 UV, soybean leaf, medium dark green B02418-210 IR, soybean leaf, medium dark green B02418-211 UV, soybean leaf, light greenish yellow B02418-212 Visible, soybean leaf, light greenish yellow B02418-213 IR, soybean leaf, light greenish yellow B02418-217 UV, soybean leaf, dark green B02417-218 Visible, soybean leaf, dark green B02418-219 IR, soybean leaf, dark green B02418-220 Visible, soybean leaf, dark green

•

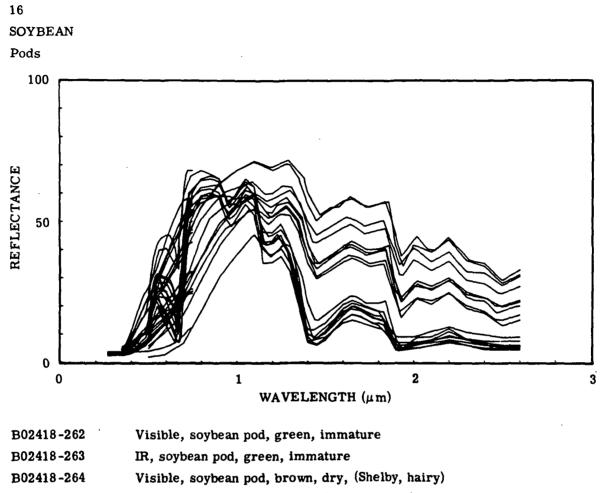
:

B02418-221	IR, soybean leaf, dark green
B02418-222	Visible, soybean leaf, dark green
B02418-223	IR, soybean leaf, dark green
B02418-224	Visible, soybean leaf, dark green
B02418-225	IR, soybean leaf, dark green
B02418-226	Visible, soybean leaf, dark green
B02418-227	IR, soybean leaf, dark green
B02418-228	Visible, soybean leaf, dark green
B02418-229	IR, soybean leaf, dark green
B02418-230	Visible, soybean leaf, dark green
B02418-231	IR, soybean leaf, dark green
B02418-232	Visible, soybean leaf, medium green
B02418-233	IR, soybean leaf, medium green
B02418-234	Visible, soybean leaf, medium green
B02418-235	IR, soybean leaf, medium green
B02418-236	Visible, soybean leaf, yellow greenish brown leaf, frost damaged
B02418-237	IR, soybean leaf, yellow greenish brown leaf, frost damaged
B02418-240	Visible, soybean leaf, dark green, with red pustules appearing as rust
B02418-241	IR, soybean leaf, dark green, with red pustules appearing as rust
B02418-242	Visible, soybean leaf, dark green, blackish green, frost damage
B02418-243	IR, soybean leaf, dark green, blackish green, frost damage
B02418-244	Visible, soybean leaf, yellow-green leaf with veins almost brown
B02418-245	IR, soybean leaf, yellow-green leaf with veins almost brown
B02418-246	Visible, soybean leaf, dark green, healthy, moist
B02418-247	IR, soybean leaf, dark green, healthy, moist
B02418-250	Visible, soybean leaf, light greenish brown, wilted, frost damaged
B02418-251	IR, soybean leaf, light greenish brown, wilted, frost damaged
B02418-252	Visible, soybean leaf, dark green, healthy, little frost damage
B02418-253	IR, soybean leaf, dark green, healthy, little frost damage


.

.

31


- -

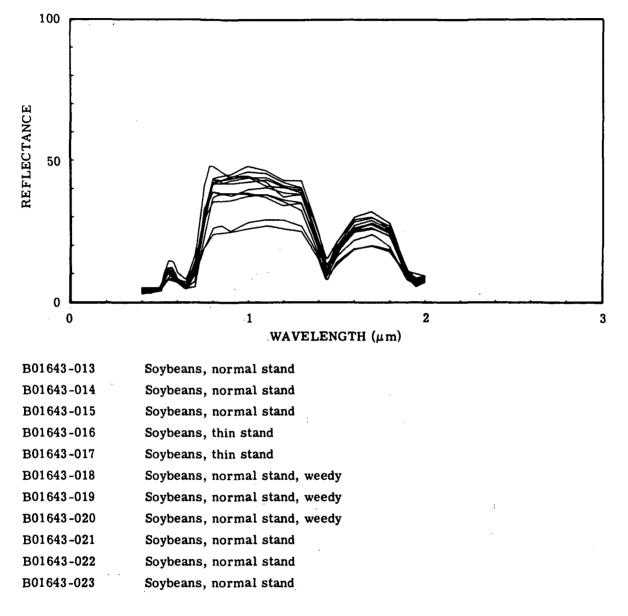
,

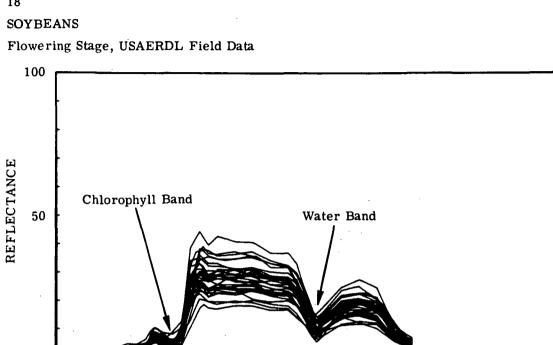
B02418-260

Visible, soybean stem, light brown (Hawkeye 63)

В	302418-204	visible, soybean pod, brown, dry, (shelby, halry)
В	302418-265	IR, soybean pod, brown, dry, (Shelby, hairy)
B	302418-266	Visible, soybean pod, light brown, dry, (Hawkeye 63)
В	302418-267	IR, soybean pod, light brown, dry, (Hawkeye 63)
B	302418-268	Visible, soybean pod, immature, green
В	302418-269	IR, soybean pod, immature, green
B	302418-270	Visible, soybean pod, immature, green, frost damaged
B	302418-271	IR, soybean pod, immature, green, frost damaged
В	302418-272	Visible, soybean pod, immature, yellow, beginning to mature
В	302418-273	IR, soybean pod, immature, yellow, beginning to mature
В	302418-274	UV, soybean pod, immature, green, a few brown hairs
В	302418-275	Visible, soybean pod, immature, green, a few brown hairs
B	302418-276	IR, soybean pod, immature, green, a few brown hairs
В	302418-277	UV, soybean pod, immature, yellow, a few brown hairs
В	302418-278	Visible, soybean pod, immature, yellow, a few brown hairs
В	302418-279	IR, soybean pod, immature, yellow, a few brown hairs
B B B B B B	302418-272 302418-273 302418-274 302418-275 302418-276 302418-277 302418-278	Visible, soybean pod, immature, yellow, beginning to mature IR, soybean pod, immature, yellow, beginning to mature UV, soybean pod, immature, green, a few brown hairs Visible, soybean pod, immature, green, a few brown hairs IR, soybean pod, immature, green, a few brown hairs UV, soybean pod, immature, yellow, a few brown hairs Visible, soybean pod, immature, yellow, a few brown hairs

B02418-280	UV, soybean pod, immature, green, white hairs
B02318-281	Visible, soybean pod, immature, green, white hairs
B02418-282	IR, soybean pod, immature, green, white hairs
B02418-283	UV, soybean pod, immature, yellow, white hairs
B02418-284	Visible, soybean pod, immature, yellow, white hairs
B02418-285	IR, soybean pod, immature, yellow, white hairs
B02418-286	UV, soybean pod, mature, purplish black, hairless
B02418-287	Visible, soybean pod, mature, purplish black, hairless
B02418-288	IR, soybean pod, mature, purplish black, hairless
B02418-289	UV, soybean pod, mature, whitish brown, white hairs
B02418-290	Visible, soybean pod, mature, whitish brown, white hairs
B02418-291	IR, soybean pod, mature, whitish brown, white hairs
B02418-292	UV, soybean pod, mature, orange-brown, brown hairs
B02418-293	Visible, soybean pod, mature, orange-brown, brown hairs
B02418-294	IR, soybean pod, mature, orange-brown, brown hairs
B02418-295	UV, soybean pod, mature, dark grayish brown pod
B02418-296	Visible, soybean pod, mature, dark grayish brown pod
B02418-297	IR, soybean pod, mature, dark grayish brown pod
B02418-298	Visible, soybean pod, mature, light brown (Hawkeye 63)
B02418-299	IR, soybean pod, mature, light brown (Hawkeye 63)
B02418-300	Visible, soybean pod, mature, dark brown (Shelby)
B02418-301	IR, soybean pod, mature, dark brown (Shelby)
B02418-302	Visible, soybean pod, mature, (Harosody 63)
B02418-303	IR, soybean pod, mature, (Harosody 63)
B02418-304	Visible, soybean pod, mature, (Harosody 63)
B02418-305	IR, soybean pod, mature, (Harosody 63)
	•


34

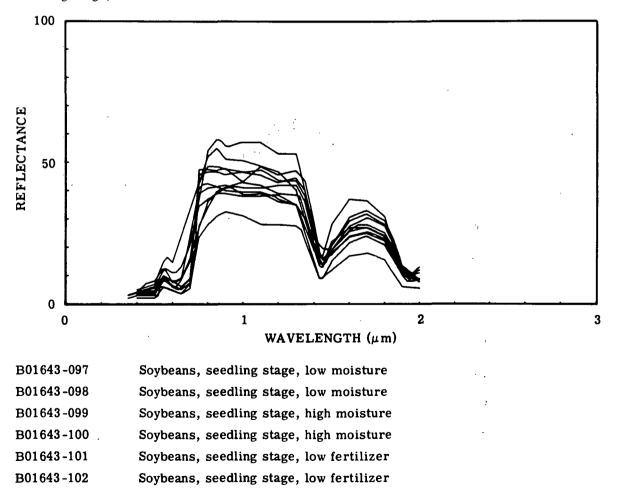

· .

17

SOYBEANS

Normal Stand, USAERDL Field Data

WAVELENGTH (µm)

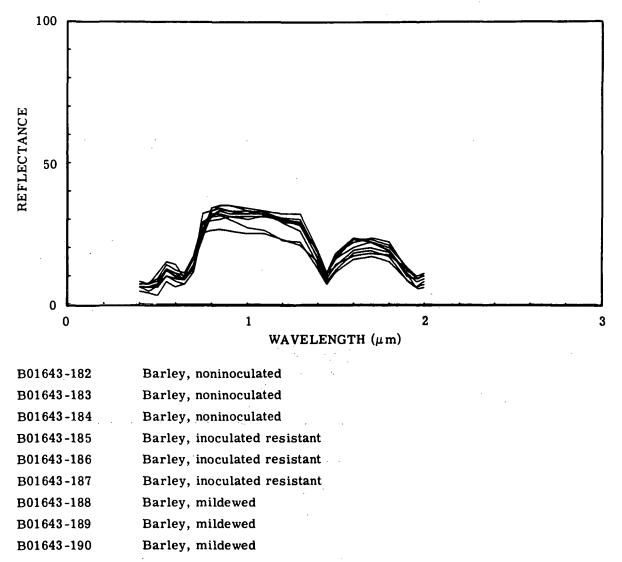

B01643-048	Soybeans, flowering stage, low moisture
B01643-049	Soybeans, flowering stage, low moisture
B01643-050	Soybeans, flowering stage, low moisture
B01643-051	Soybeans, flowering stage, low moisture
B01643-052	Soybeans, flowering stage, low moisture
B01643-053	Soybeans, flowering stage, high moisture
B01643-054	Soybeans, flowering stage, high moisture
B01643-055	Soybeans, flowering stage, high moisture
B01643-056	Soybeans, flowering stage, high moisture
B01643-057	Soybeans, flowering stage, high moisture
B01643-058	Soybeans, flowering stage, low fertilizer
B01643-059	Soybeans, flowering stage, low nitrogen
B01643-060	Soybeans, flowering stage, low nitrogen
B01643-061	Soybeans, flowering stage, low nitrogen
B01643-062	Soybeans, flowering stage, low nitrogen
B01643-063	Soybeans, flowering stage, high fertilizer
B01643-064	Soybeans, flowering stage, high nitrogen
B01643-065	Soybeans, flowering stage, high nitrogen

B01643-066	Soybeans, flowering stage, high nitrogen
B01643-067	Soybeans, flowering stage, high nitrogen
B01643-068	Soybeans, flowering stage, light background
B01643-069	Soybeans, flowering stage, light background
B01643-070	Soybeans, flowering stage, light background
B01643-071	Soybeans, flowering stage, light background
B01643-072	Soybeans, flowering stage, light background
B01643-073	Soybeans, flowering stage, normal background
B01643-074	Soybeans, flowering stage, normal background
B01643-075	Soybeans, flowering stage, normal background
B01643-076	Soybeans, flowering stage, normal background
B01643-077	Soybeans, flowering stage, normal background

19

SOYBEANS

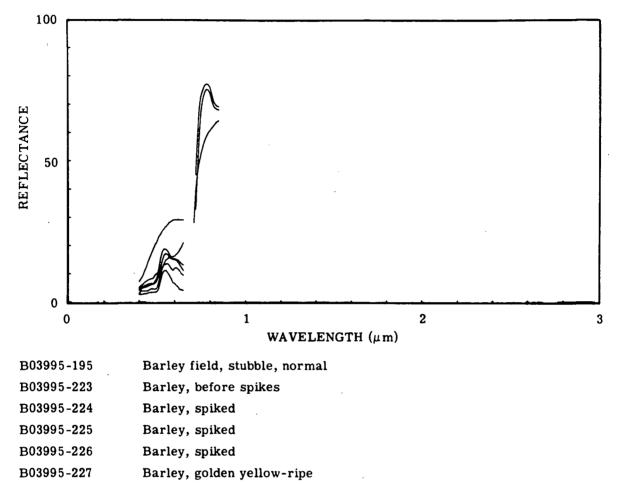
Seedling Stage, USAERDL Field Data



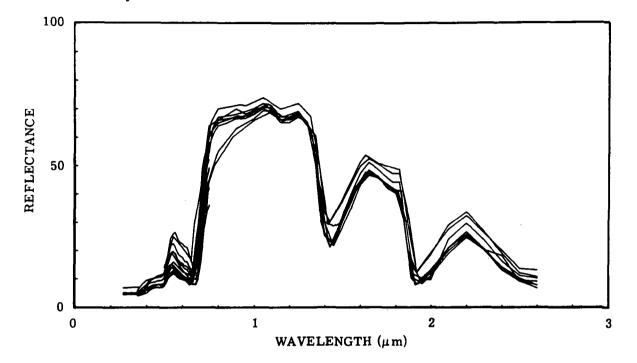
B01643-103 Soybeans, seedling stage, high fertilizer	
B01643-104 Soybeans, seedling stage, high fertilizer	
B01643-105 Soybeans, seedling stage, light background	
B01643-106 Soybeans, seedling stage, light background	
B01643-107 Soybeans, seedling stage, normal backgroun	d
B01643-108 Soybeans, seedling stage, normal backgroun	d

20

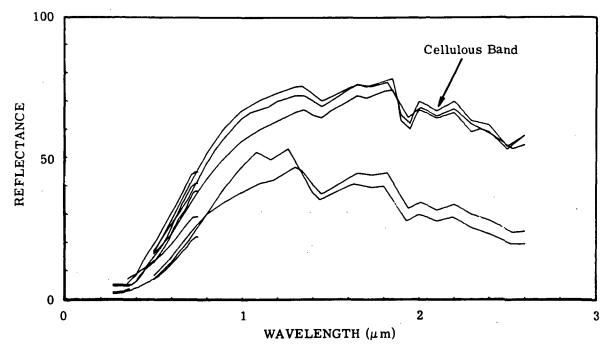
BARLEY

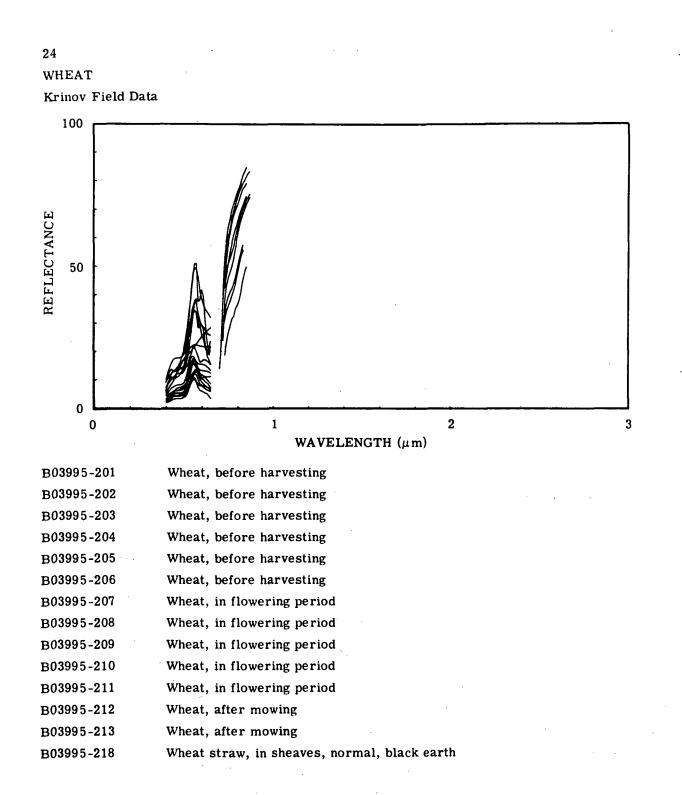

USAERDL Field Data

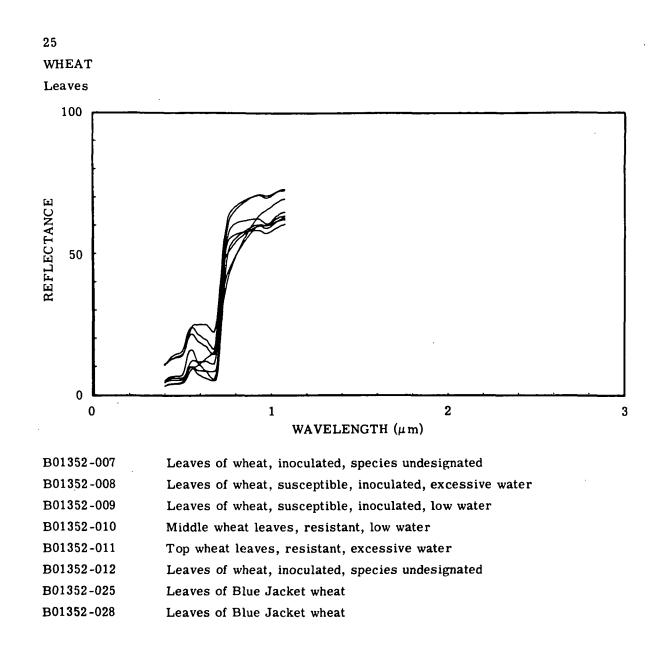
21

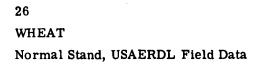

BARLEY

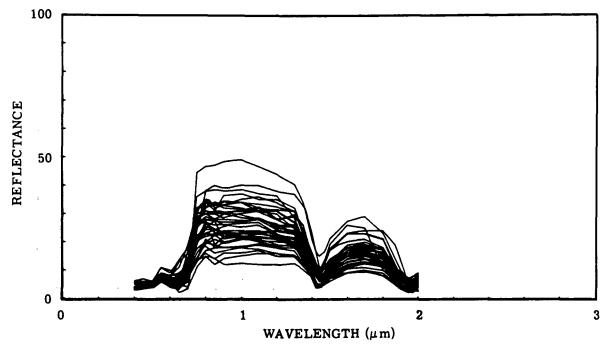
Spiked Field, Krinov Field Data


Live and Healthy

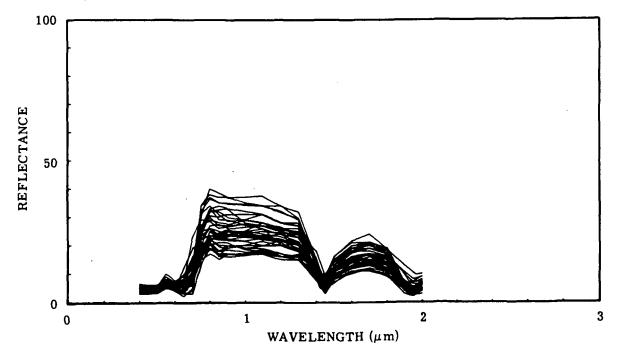

B02418-162	UV, sorghum leaf, dark green, moist, Pioneer 940
B02418-163	Visible, sorghum leaf, dark green, moist, Pioneer 940
B02418-164	IR, sorghum leaf, dark green, moist, Pioneer 940
B02418-165	UV, sorghum leaf, light green, moist, Atlas
B02418-166	Visible, sorghum leaf, light green, moist, Atlas
B02418-167	IR, sorghum leaf, light green, moist, Atlas
B02418-168	Visible, sorghum leaf, dark green, moist, tall variety by Recorder
B02418-169	IR, sorghum leaf, dark green, moist, tall variety by Recorder
B02418-170	Visible, sorghum leaf, light green, moist, tall variety by Recorder
B02418-171	IR, sorghum leaf, light green, moist, tall variety by Recorder
B02418-172	UV, sorghum leaf, green, (seed head green) (grain sorghum)
B02418-173	Visible, sorghum leaf, green, (seed head green) (grain sorghum)
B02418-174	IR, sorghum leaf, green, (seed head green) (grain sorghum)
B02418-175	UV, sorghum leaf, yellowish green, (seed head green)
B02418-176	Visible, sorghum leaf, yellowish green, (seed head green)
B02418-177	IR, sorghum leaf, yellowish green, (seed head green)
B02418-178	UV, sorghum leaf, (grain sorghum), green, (seed head red)
B02418-179	Visible, sorghum leaf, (grain sorghum), green, (seed head red)


- B02418-180IR, sorghum leaf, (grain sorghum), green, (seed head red)B02418-181UV, sorghum leaf, grain sorghum, yellowish green, (seed head red)B02418-182Visible, sorghum leaf, grain sorghum, yellowish green, (seed head red)B02418-183IR, sorghum leaf, grain sorghum, yellowish green, (seed head red)
- 23
- SORGHUM


Almost Dead



B02418-184	UV, sorghum leaf, grain sorghum, dry, brown leaf, (seed head red)
B02418-185	Visible, sorghum leaf, grain sorghum, dry, brown leaf, (seed head red)
B02418-186	IR, sorghum leaf, grain sorghum, dry, brown leaf, (seed head red)
B02418-187	UV, sorghum leaf, very dry, dark brown leaf (seed head green)
B02418-188	Visible, sorghum leaf, very dry, dark brown leaf (seed head green)
B02418-189	IR, sorghum leaf, very dry, dark brown leaf (seed head green)
B02418-190	UV, sorghum leaf, dry, (milkmaker variety)
B02418-191	Visible, sorghum leaf, dry, (milkmaker variety)
B02418-192	IR, sorghum leaf, dry, (milkmaker variety)
B02418-193	UV, sorghum head, dry, reddish brown, Pioneer 940
B02418-194	Visible, sorghum head, dry, reddish brown, Pioneer
B02418-195	IR, sorghum head, dry, reddish brown, Pioneer 940
B02418-196	UV, sorghum head, dry, brownish black, NK 300
B02418-197	Visible, sorghum head, dry, brownish black, NK 300
B02418-198	IR, sorghum head, dry, brownish black, NK 300

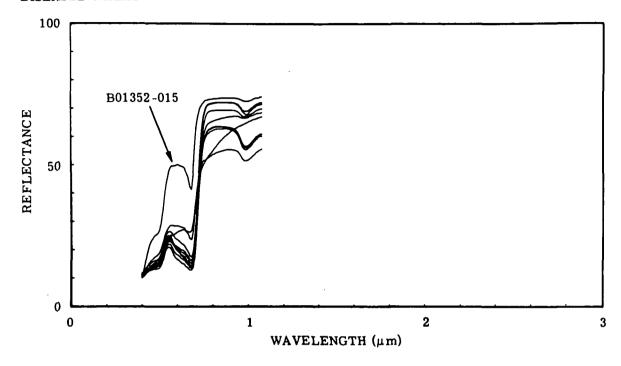


B01643-161	Wheat, mature, normal stand, low moisture
B01643-162	Wheat, mature, normal stand, low moisture
B01643-163	Wheat, mature, normal stand, low moisture
B01643-164	Wheat, mature, normal stand, high moisture
B01643-165	Wheat, mature, normal stand, high moisture
B01643-166	Wheat, mature, normal stand, high moisture
B01643-167	Wheat, mature, normal stand, low fertilizer
B01643-168	Wheat, mature, normal stand, low fertilizer
B01643-169	Wheat, mature, normal stand, low fertilizer
B01643-170	Wheat, mature, normal stand, high fertilizer
B01643-171	Wheat, mature, normal stand, high fertilizer
B01643-172	Wheat, mature, normal stand, high fertilizer
B01643-173	Wheat, mature, normal stand, light background
B01643-174	Wheat, mature, normal stand, light background
B01643-175	Wheat, mature, normal stand, light background
B01643-176	Wheat, mature, normal stand, normal background
B01643-177	Wheat, mature, normal stand, normal background

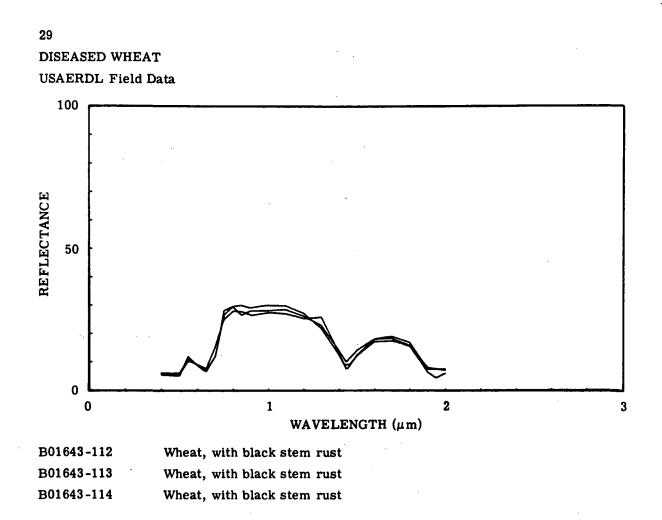
B01643-178	Wheat, mature, normal stand, normal background
B01643-179	Wheat, Thatcher, normal stand
B01643-180	Wheat, Thatcher, normal stand
B01643-228	Wheat, normal stand, low moisture
B01643-229	Wheat, normal stand, low moisture
B01643-230	Wheat, normal stand, low moisture
B01643-231	Wheat, normal stand, high moisture
В01643-232	Wheat, normal stand, high moisture
B01643-233	Wheat, normal stand, high moisture
B01643-234	Wheat, normal stand, low fertilizer
B01643-235	Wheat, normal stand, low fertilizer
B01643-237	Wheat, normal stand, high fertilizer
B01643-238	Wheat, normal stand, high fertilizer
B01643-239	Wheat, normal stand, high fertilizer
B01643-240	Wheat, normal stand, light background
B01643-241	Wheat, normal stand, light background
B01643-242	Wheat, normal stand, light background
B01643-243	Wheat, normal stand, normal background
B01643-244	Wheat, normal stand, normal background
B01643-245	Wheat, normal stand, normal background
27	

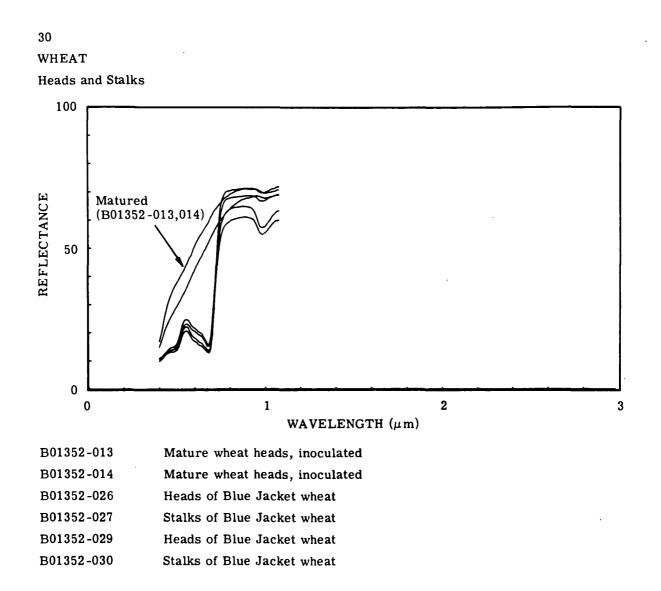
WHEAT

Thin Stand, USAERDL Field Data

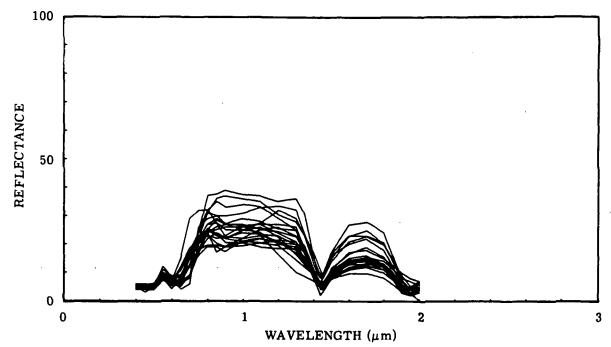


.


B01643-144	Wheat, mature, thin stand, low moisture
B01643-145	Wheat, mature, thin stand, low moisture
B01643-146	Wheat, mature, thin stand, low moisture
B01643-147	Wheat, mature, thin stand, high moisture
B01643-148	Wheat, mature, thin stand, high moisture
B01643-149	Wheat, mature, thin stand, low fertilizer
B01643-150	Wheat, mature, thin stand, low fertilizer
B01643-151	Wheat, mature, thin stand, low fertilizer
B01643-152	Wheat, mature, thin stand, high fertilizer
B01643-153	Wheat, mature, thin stand, high fertilizer
B01643-154	Wheat, mature, thin stand, high fertilizer
B01643-155	Wheat, mature, thin stand, light background
B01643-156	Wheat, mature, thin stand, light background
B01643-157	Wheat, mature, thin stand, light background
B01643-158	Wheat, mature, thin stand, normal background
B01643-159	Wheat, mature, thin stand, normal background
B01643-160	Wheat, mature, thin stand, normal background
B01643-181	Wheat, Thatcher, thin stand
B01643-211	Wheat, thin stand, low moisture
B01643-212	Wheat, thin stand, low moisture
B01643-213	Wheat, thin stand, high moisture
B01643-214	Wheat, thin stand, high moisture
B01643-215	Wheat, thin stand, high moisture
B01643-216	Wheat, thin stand, low fertilizer
B01643-217	Wheat, thin stand, low fertilizer
B01643-218	Wheat, thin stand, low fertilizer
B01643-219	Wheat, thin stand, high fertilizer
B01643-220	Wheat, thin stand, high fertilizer
B01643-221	Wheat, thin stand, high fertilizer
B01643-222	Wheat, thin stand, light background
B01643-223	Wheat, thin stand, light background
B01643-224	Wheat, thin stand, light background
B01643-225	Wheat, thin stand, normal background
B01643-226	Wheat, thin stand, normal background
B01643-227	Wheat, thin stand, normal background

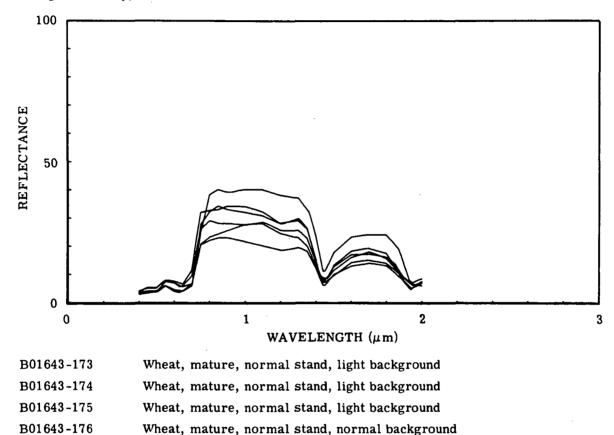

28

DISEASED WHEAT



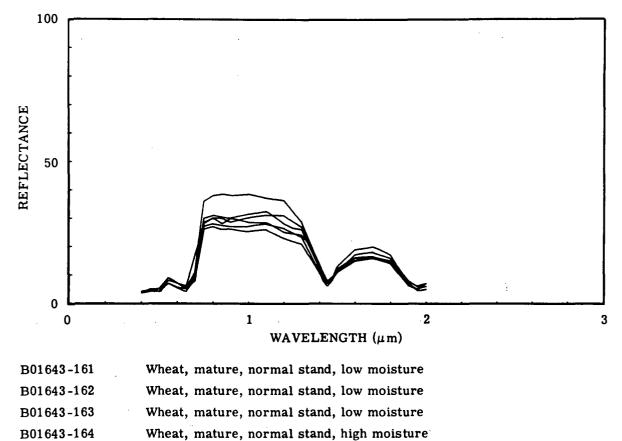
B01352-015	Leaves of Westar wheat, high rust severity
B01352-016	Heads of Westar wheat, high rust severity
B01352-017	Stalks of Westar wheat, high rust severity
B01352-018	Leaves of Westar wheat, low rust severity
B01352-019	Heads of Westar wheat, low rust severity
B01352-020	Stalks of Westar wheat, low rust severity
B01352-021	Heads of Wichita wheat, high rust severity
B01352-022	Stalks of Wichita wheat, high rust severity
B01352-023	Heads of Wichita wheat, low rust severity
B01352-024	Stalks of Wichita wheat, low rust severity

31 WHEAT Seedling Stage, USAERDL Field Data


B01643-191	Wheat, seedling stage, normal stand, low moisture
B01643-192	Wheat, seedling stage, normal stand, low moisture
B01643-193	Wheat, seedling stage, normal stand, low moisture
B01643-194	Wheat, seedling stage, normal stand, high moisture
B01643-195	Wheat, seedling stage, normal stand, high moisture
B01643-196 ·	Wheat, seedling stage, normal stand, high moisture
B01643-197	Wheat, seedling stage, normal stand, low fertilizer
B01643-198	Wheat, seedling stage, normal stand, low fertilizer
B01643-199	Wheat, seedling stage, normal stand, low fertilizer
B01643-200	Wheat, seedling stage, normal stand, high fertilizer
B01643-201	Wheat, seedling stage, normal stand, high fertilizer
B01643-202	Wheat, seedling stage, normal stand, high fertilizer
B01643-203	Wheat, seedling stage, normal stand, light background
B01643-204	Wheat, seedling stage, normal stand, light background
B01643-205	Wheat, seedling stage, normal stand, light background
B01643-206	Wheat, seedling stage, normal stand, normal background
B01643-207	Wheat, seedling stage, normal stand, normal background
B01643-208	Wheat, seedling stage, normal stand, normal background

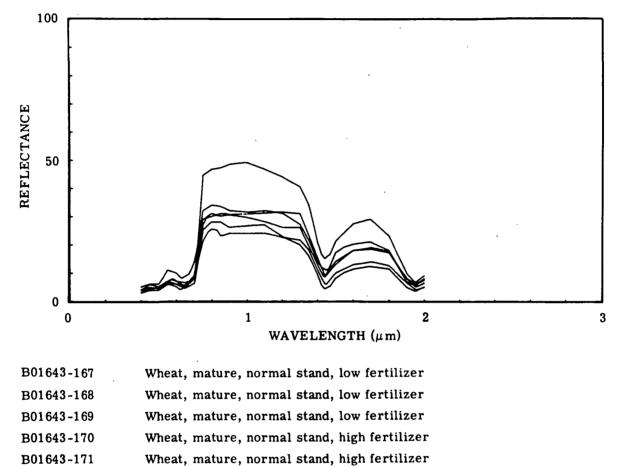
B01643-209 Wheat, seedling stage, normal stand, normal background B01643-210 Wheat, seedling stage, normal stand, normal background

32

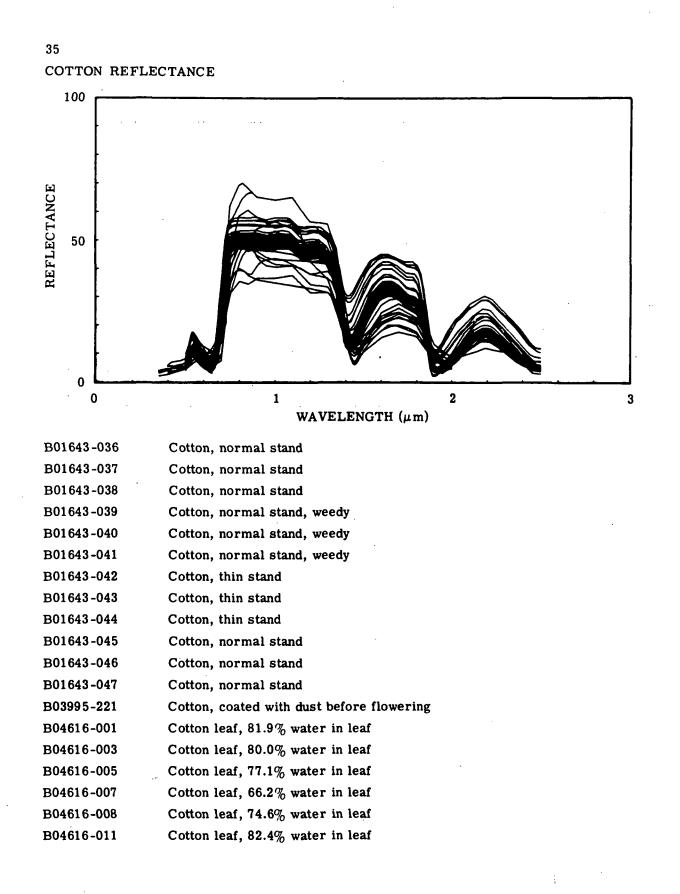

WHEAT

Background Study, USAERDL Field Data

B01643-177	Wheat, mature, normal stand, normal background
B01643-178	Wheat, mature, normal stand, normal background


33 WHEAT Moisture Study, USAERDL Field Data

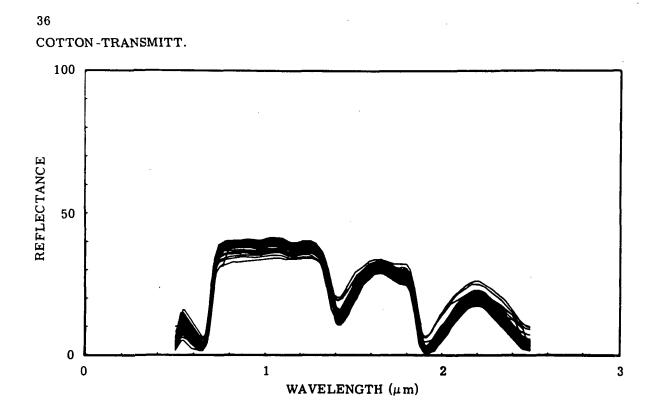
B01643-165Wheat, mature, normal stand, high moistureB01643-166Wheat, mature, normal stand, high moisture


34 WHEAT

Fertilizer Study, USAERDL Field Data

B01643-172	Wheat, mature, no	ormal stand, high fertilizer

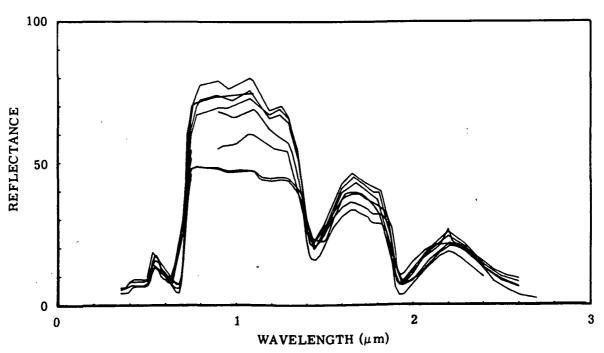
6



B04616-013	Cotton leaf, 80.7% water in leaf
B04616-015	Cotton leaf, 78.0% water in leaf
B04616-017	Cotton leaf, 75.6% water in leaf
B04616-018	Cotton leaf, 67.8% water in leaf
B04616-021	Cotton leaf, 80.3% water in leaf
B04616-023	Cotton leaf, 76.9% water in leaf
B04616-025	Cotton leaf, 82.5% water in leaf
B04616-027	Cotton leaf, 56.3% water in leaf
B04616-028	Cotton leaf, 73.1% water in leaf
B04616-031	Cotton leaf, 82.3% water in leaf
B04616-033	Cotton leaf, 80.2% water in leaf
B04616-035	Cotton leaf, 76.8% water in leaf
B04616-037	Cotton leaf, 49.4% water in leaf
B04616-038	Cotton leaf, 71.6% water in leaf
B04616-041	Cotton leaf, 84.0% water in leaf
B04616-043	Cotton leaf, 83.0% water in leaf
B04616-045	Cotton leaf, 81.2% water in leaf
B04616-047	Cotton leaf, 68.4% water in leaf
B04616-048	Cotton leaf, 78.5% water in leaf
B04616-051	Cotton leaf, 78.9% water in leaf
B04616-053	Cotton leaf, 76.9% water in leaf
B04616-055	Cotton leaf, 73.6% water in leaf
B04616-057	Cotton leaf, 58.5% water in leaf
B04616-058	Cotton leaf, 69.8% water in leaf
B04616-061	Cotton leaf, 82.7% water in leaf
B04616-063	Cotton leaf, 81.3% water in leaf
B04616-065	Cotton leaf, 78.6% water in leaf
B04616-067	Cotton leaf, 62.0% water in leaf
B04616-068	Cotton leaf, 75.3% water in leaf
B04616-071	Cotton leaf, 80.6% water in leaf
B04616-073	Cotton leaf, 78.9 $\%$ water in leaf
B04616-075	Cotton leaf, 76.2% water in leaf
B04616-077	Cotton leaf, 60.7% water in leaf
B04616-078	Cotton leaf, 72.8% water in leaf
•	

.

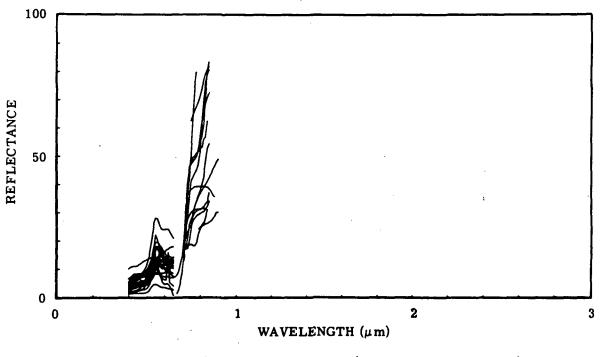
ī


i

B04616-002	Cotton leaf, 81.9% water in leaf
B04616-004	Cotton leaf, 80.0% water in leaf
B04616-006	Cotton leaf, 77.1% water in leaf
B04616-009	Cotton leaf, 74.6% water in leaf
B04616-010	Cotton leaf, 66.2% water in leaf
B04616-012	Cotton leaf, 82.4% water in leaf
B04616-014	Cotton leaf, 80.7% water in leaf
B04616-016	Cotton leaf, 78.0% water in leaf
B04616-019	Cotton leaf, 67.8% water in leaf
B04616-020	Cotton leaf, 75.6% water in leaf
B04616-022	Cotton leaf, 80.3% water in leaf
B04616-024	Cotton leaf, 76.9% water in leaf
B04616-026	Cotton leaf, 82.5% water in leaf
B04616-029	Cotton leaf, 73.1% water in leaf
B04616-030	Cotton leaf, 56.3% water in leaf
B04616-032	Cotton leaf, 82.3% water in leaf
B04616-034	Cotton leaf, 80.2% water in leaf
B04616-036	Cotton leaf, 76.8% water in leaf
B04616-039	Cotton leaf, 71.6% water in leaf

B04616-040	Cotton leaf, 49.4% water in leaf
B04616-042	Cotton leaf, 84.0% water in leaf
B04616-044	Cotton leaf, 83.0% water in leaf
B04616-046	Cotton leaf, 81.2% water in leaf
B04616-049	Cotton leaf, 78.5% water in leaf
B04616-050	Cotton leaf, 68.4% water in leaf
B04616-052	Cotton leaf, 78.9% water in leaf
B04616-054	Cotton leaf, 76.9% water in leaf
B04616-056	Cotton leaf, 73.6% water in leaf
B04616-059	Cotton leaf, 69.8% water in leaf
B04616-060	Cotton leaf, 58.5% water in leaf
B04616-062	Cotton leaf, 82.7% water in leaf
B04616-064	Cotton leaf, 81.3% water in leaf
B04616-066	Cotton leaf, 78.6% water in leaf
B04616-069	Cotton leaf, 75.3% water in leaf
B04616-070	Cotton leaf, 62.0% water in leaf
B04616-072	Cotton leaf, 80.6% water in leaf
B04616-074	Cotton leaf, 78.9% water in leaf
B04616-076	Cotton leaf, 76.2% water in leaf
B04616-079	Cotton leaf, 72.8% water in leaf
B04616-080	Cotton leaf, 60.7% water in leaf
37	

GRASS

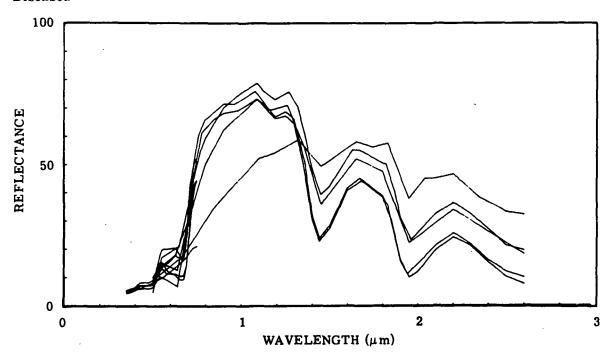


B02418-342	Visible, orchard grass, green, normal, healthy
B02418-343	IR, orchard grass, green, normal, healthy
B02418-344	Visible, orchard grass, green, normal, healthy
B02418-345	IR, orchard grass, green, normal, healthy
B02418-346	Visible, orchard grass, green, normal, healthy
B02418-347	IR, orchard grass, green, normal, healthy
B00829-099	Grass (Agrostis palustris), top, old foliage
B00829-103	Bermuda grass
B20000-221	Grass blades, upper leaf surface
B20000-222	Grass blades, lower leaf surface

-38

GRASS

Krinov Field Data

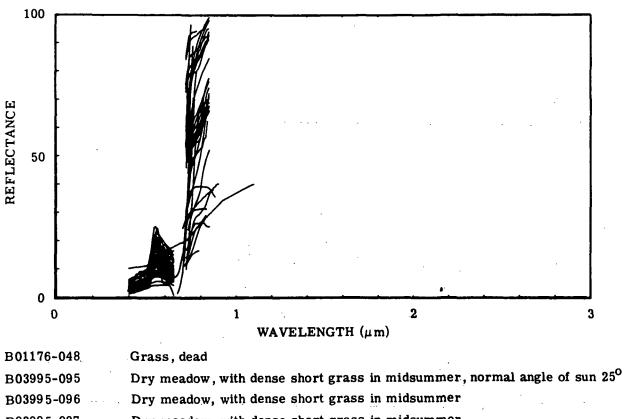

B03995-070	Turf hillocks, covered with grass (European blueberry, etc.) in the summer, normal
B03995-071	Edge of ravine, covered with sparse grass almost dry, beginning of autumn, normal
B03995-072	Edges of river bank, covered with sparse grass almost dry, beginning of autumn, normal
B03995-073	Alpine meadow, on mountain tops, covered with sparse grass, dried, be- ginning of autumn, normal
B03995-074	Alpine meadow, on mountain tops, covered with sparse grass, dried, mowed, beginning of autumn, normal

В	03995-082	Meadow with clover and timothy, dense growth, with flowers, midsummer
В	03995-083	Meadow with clover and timothy, dense growth, with flowers, midsummer
в	03995-084	Meadow with clover and timothy, dense growth, with flowers, midsummer
В	03995-085	Meadow with clover and timothy, mowed
В	03995-086	Meadow with clover and timothy, mowed, wet after rain, cloudy sky
В	03995-087	Meadow with clover and timothy, mowed, wet after rain, cloudy sky
В	03995-088	Meadow with clover and timothy, mowed, wet after rain, cloudy sky
В	03995-089	Meadow with crow foot, dense grass with abundant flowers
В	03995-090	Meadow with crow foot, dense grass with abundant flowers
В	03995-091	Meadow with crow foot, dense grass with abundant flowers
В	03995-092	Sedge meadow, dense grass in midsummer
в	03995-093	Meadow with daisies, in the period of abundant bloom
в	03995-094	Lush meadow (flood land), with lush dense grass at the beginning of autumn, before mowing, normal

39

GRASS

Diseased



B02418-348	Visible, orchard grass, fall, rust infected (small brown spots) top of leaf
B02418-349	IR, orchard grass, fall, rust infected (small brown spots) top of leaf
B02418-350	Visible, orchard grass, fall, rust infected (small brown spots) top of leaf
B02418-351	IR, orchard grass, fall, rust infected (small brown spots) top of leaf
B02418-352	Visible, orchard grass, fall, rust infected (small brown spots) top of leaf
B02418-353	IR, orchard grass, fall, rust infected (small brown spots) top of leaf
B02418-354	Visible, orchard grass, fall, rust infected (small brown spots) bottom of leaf
B02418-355	IR, orchard grass, fall, rust infected (small brown spots) bottom of leaf
B02418-356	Visible, orchard grass, dry, brown leaves, apparently rust infected
B02418-357	IR, orchard grass, dry, brown leaves, apparently rust infected

40

GRASS

Dying (Brown), Mostly Krinov Field Data

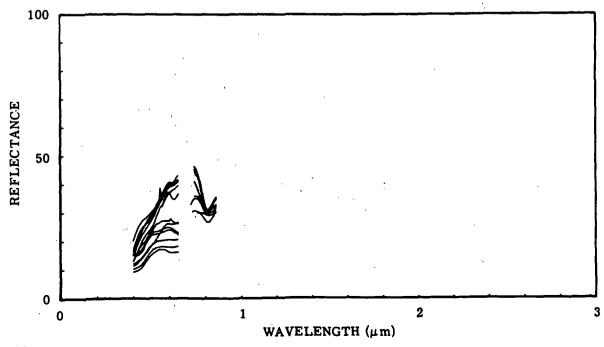
B03995-097Dry meadow, with dense short grass in midsummerB03995-098Dry meadow, with dense short grass in midsummer

B03995-099Dry meadow, with dense short grass in midsummerB03995-100Dry meadow, with dense short grass in midsummer

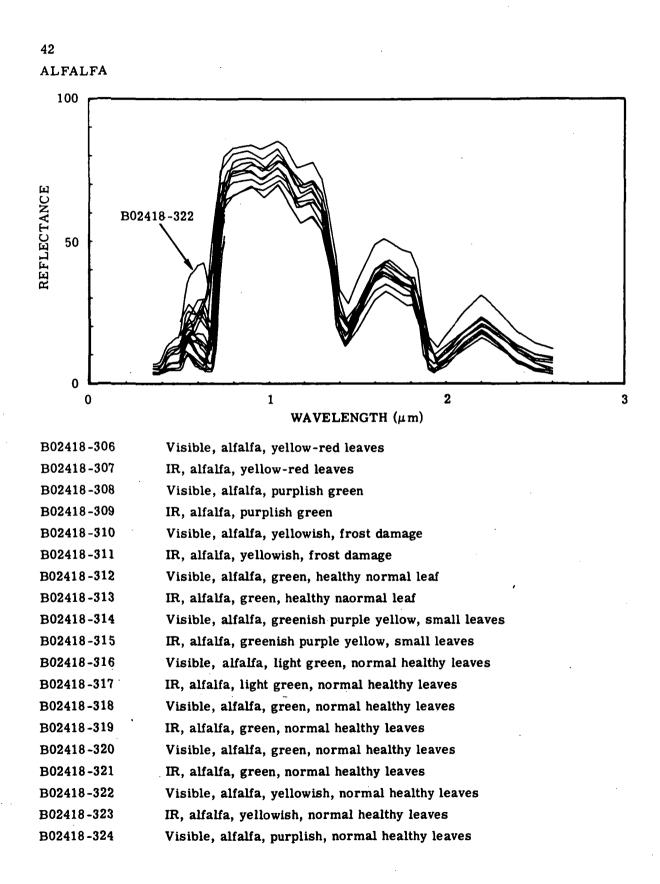
B03995-101 Dry meadow, with dense short grass in midsummer

	· · · · · · · · · · · · · · · · · · ·
B03995-102	Dry meadow, with dense short grass in midsummer
B03995-103	Dry meadow, with dense short grass in midsummer
B03995-104	Dry meadow, with dense short grass in midsummer
B03995-105	Dry meadow, with dense short grass in midsummer
B03995-106	Dry meadow, with dense short grass in midsummer
B03995-107	Dry meadow, with dense short grass in midsummer
B03995-108	Dry meadow, with dense short grass in midsummer
B03995-109	Dry meadow, with dense short grass in midsummer
B03995-110	Dry meadow, with dense short grass in midsummer
B03995-111	Dry meadow, with dense short grass in midsummer
B03995-112	Dry meadow, with dense short grass in midsummer
B03995-113	Dry meadow, with dense short grass in midsummer
B03995-114	Dry meadow, with dense short grass in midsummer, normal, angle of sun = 45°
B03995-115	Dry meadow, with dense short grass in midsummer
B03995-116	Dry meadow, with dense short grass in midsummer
B03995-117	Dry meadow, with dense short grass in midsummer
B03995-118	Dry meadow, with dense short grass in midsummer
B03995-119	Dry meadow, with dense short grass in midsummer
B03995-120	Dry meadow, with dense short grass in midsummer
B03995-121	Dry meadow, with dense short grass in midsummer
B03995-122	Dry meadow, with dense short grass in midsummer
B03995-123	Dry meadow, with dense short grass in midsummer
B03995-124	Dry meadow, with dense short grass in midsummer
B03995-125	Dry meadow, with dense short grass in midsummer
B03995-126	Dry meadow, with dense short grass in midsummer
B03995-127	Dry meadow, with dense short grass in midsummer
B03995-128	Dry meadow, with dense short grass in midsummer
B03995-129	Dry meadow, with dense short grass in midsummer
B03995-130	Dry meadow, with dense short grass in midsummer
B03995-131	Dry meadow, with dense short grass in midsummer
B03995-132	Dry meadow, with dense short grass in midsummer
B03995-133	Dry meadow, with dense short grass in midsummer
B03995-134	Dry meadow, with dense short grass in midsummer
B03995-135	Dry meadow, with sparse low grass, normal
B03995-136	Dry meadow, with sparse low grass
B03995-137	Dry meadow, with sparse low grass
B03995-138	Dry meadow, with dense low grass, normal

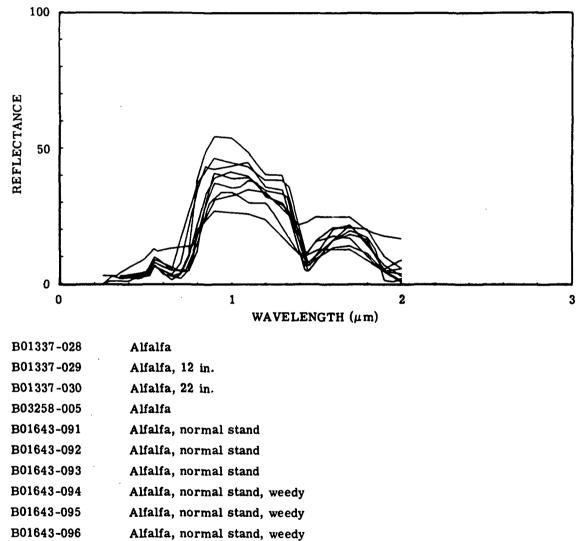
61

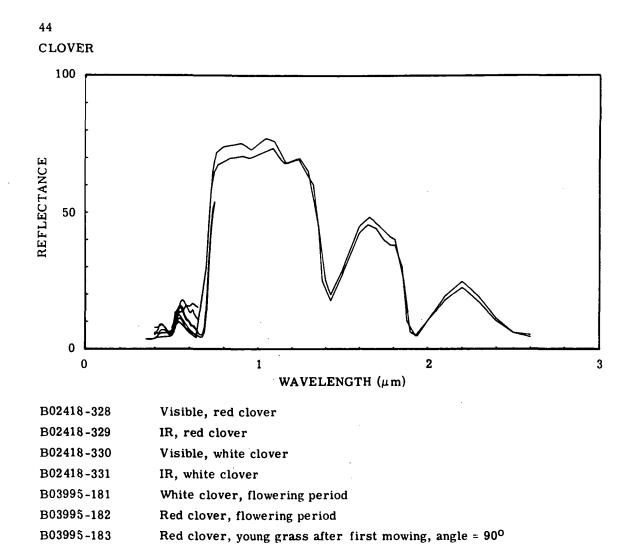

.

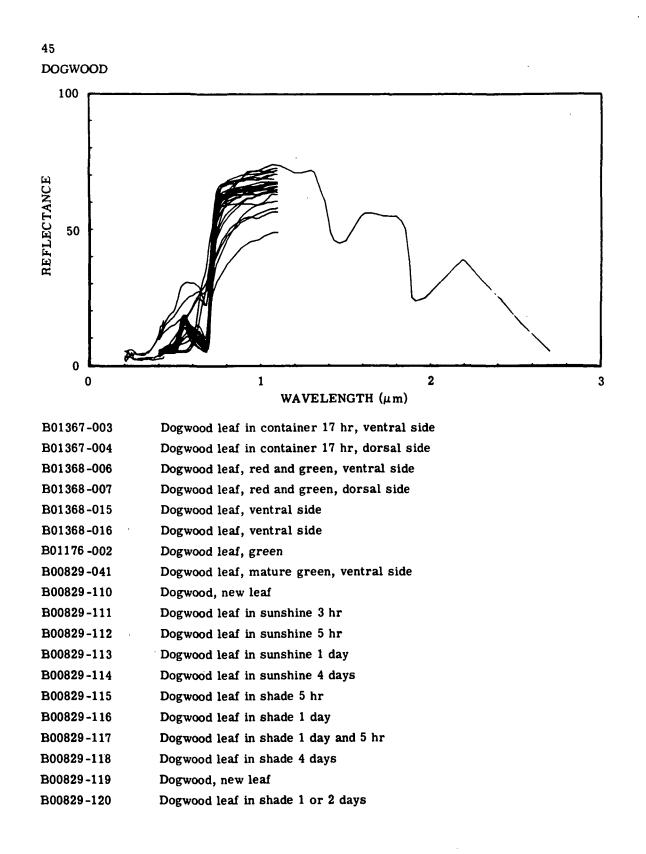
- B03995-139 Dry meadow, with dense low grass
- B03995-140 Dry meadow, with dense low grass
- B03995-141 Dry meadow, with sparse dry grass on hills (early autumn) normal
- B03995-142 Meadow, with dense but low grass (early autumn), aircraft altitude 300 miles
- B03995-143 Meadow, with sparse grass, grazed, aircraft altitude 300 miles
- B03995-146 Shallows of river (in high water), covered with grass
- B03995-154 Mountain side, with low sparse grass, early autumn, normal
- B03995-155 Virgin steppe, with low grass burnt by sun, early autumn cloudy sky, normal
- B03995-156 Virgin steppe, with low grass burnt by sun, early autumn cloudy sky, angle = 30⁰
- B03995-157 Virgin steppe, with low grass burnt by the sun, early autumn, angle = 60°
- B03995-158 Virgin steppe, with low grass burnt by the sun, but fresher and wetter after rain, early autumn, cloudy sky, normal
- B03995-159 Virgin steppe, with low grass burnt by the sun, but fresher and wetter after rain, early autumn, cloudy sky, angle = 30⁰
- B03995-160 Virgin steppe, with low grass burnt by the sun, but fresher and wetter after rain, early autumn, cloudy sky, angle = 60°
- B03995-161 Grass, near road, dusty, normal
- B03995-162 Grass, young, green


B03995-163 Grass, last year's (dry), spring

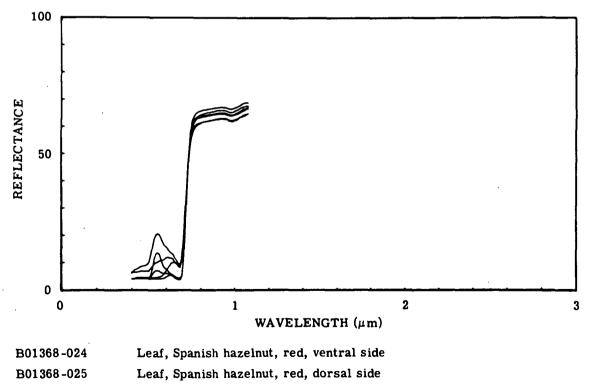
- B03995-164 Grass, summer green
- B03995-167 Hillside, short grass, normal
- 41
- ILYAS


Krinov Field Data



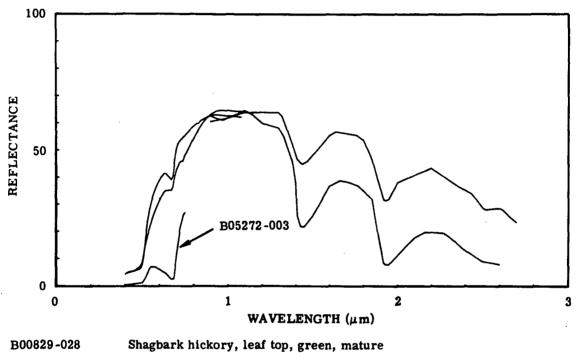

B03995-056	Ilyas, sparse and dry (yellowish) grass on sand at the end of summer, normal
B03995-057	Ilyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-058	llyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-059	Ilyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-060	Ilyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-061	Ilyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-062	Ilyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-063	Ilyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-064	Ilyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-065	Ilyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-066	llyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-067	llyas, sparse and dry (yellowish) grass on sand at the end of summer
B03995-068	Ilyas, sparse and dry (yellowish) grass on sand at the end of summer

B02418-325	IR, alfalfa, purplish, normal healthy leaves
B02418-326	Visible, alfalfa, purplish, normal healthy leaves
B02418-327	IR, alfalfa, purplish, normal healthy leaves
43	
ALFALFA	
USAERDL Field D	ata

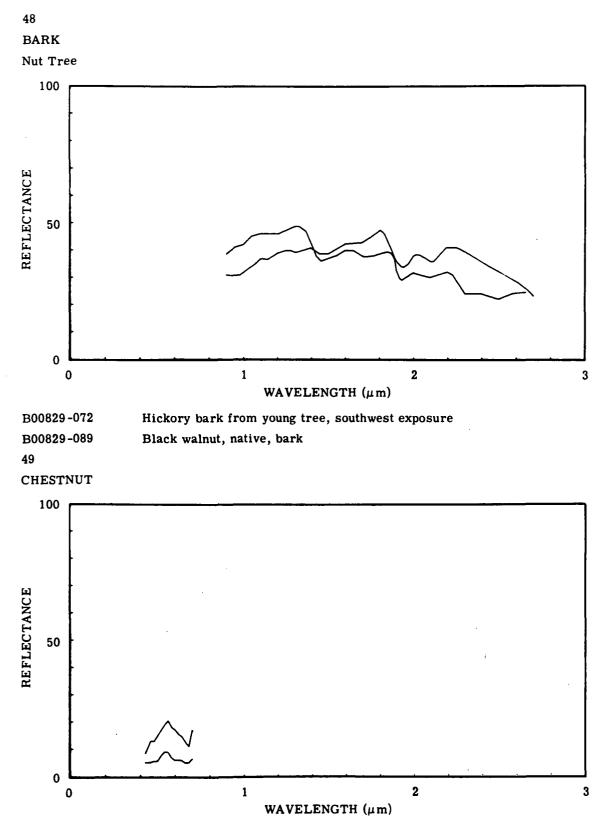


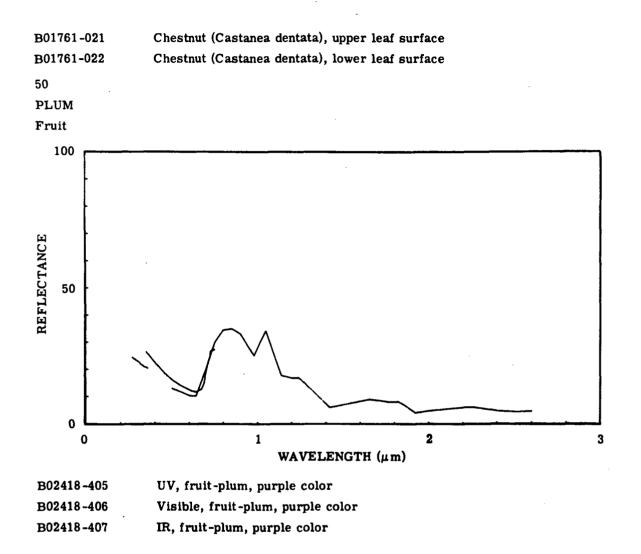
B00829-121	Dogwood leaf in shade 5 days
B00829-122	Dogwood leaf in shade 9 days
B00829-123	Dogwood, new leaf
B00829-124	Dogwood leaf in a room for 1 day
B00829-125	Dogwood leaf in a room for 2 or 5 days
B00829-126	Dogwood leaf in a room for 8 days
B00829-127	Dogwood leaf in a room for 69 days
B00829-152	Dogwood, new leaf
B00829-153	Dogwood leaf exposed on roof for 1 day
B00829-154	Dogwood leaf exposed on roof for 2 days
B00829-155	Dogwood leaf exposed on roof for 5 days
B00829 -156	Dogwood leaf exposed on roof for 9 days
B14004-032	Dogwood leaf, dorsal side
B14004-033	Dogwood leaf, 2 days old
B14004-035	Dogwood leaf, ventral side
B14004-037	Dogwood leaf, 2 days old

46

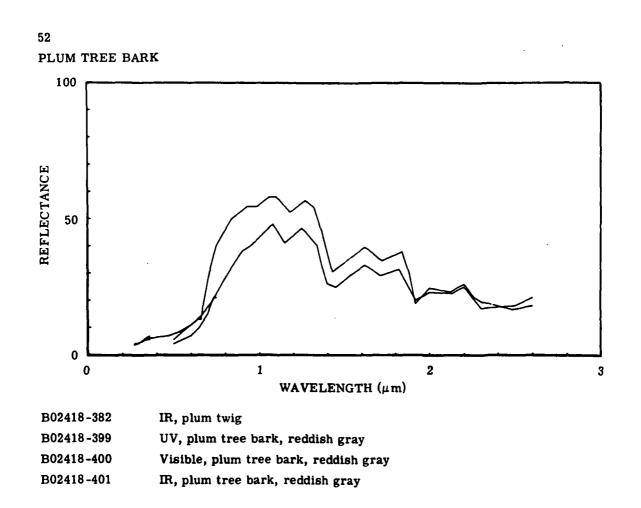

HAZELNUT

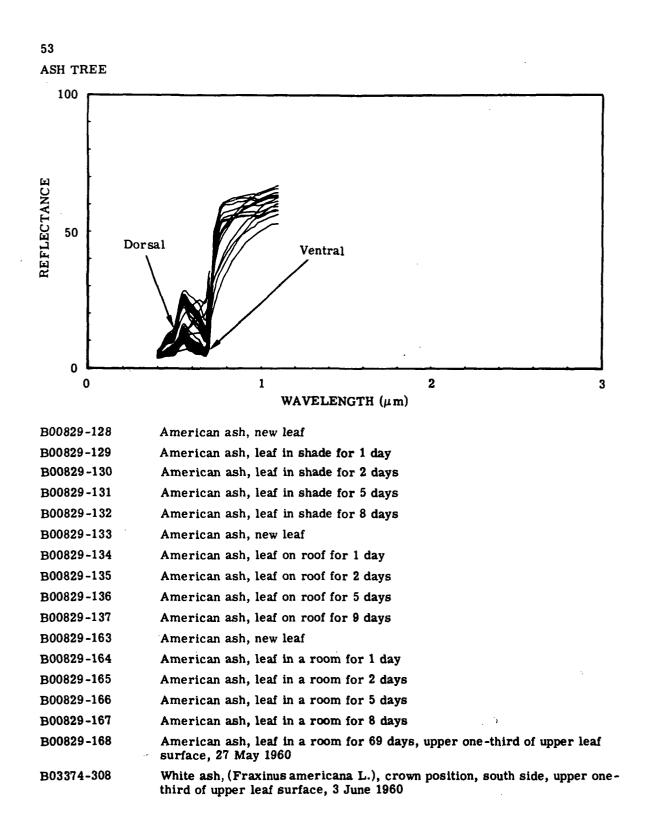
B01368-026 Leaf, Spanish hazelnut, red and green, ventral side


B01368-027	Leaf, Spanish hazelnut, red and green, dorsal side
B01368-028	Leaf, Spanish hazelnut, green spot, ventral side
B01368-029	Leaf, Spanish hazelnut, green spot, dorsal side
47	


HIC KORY

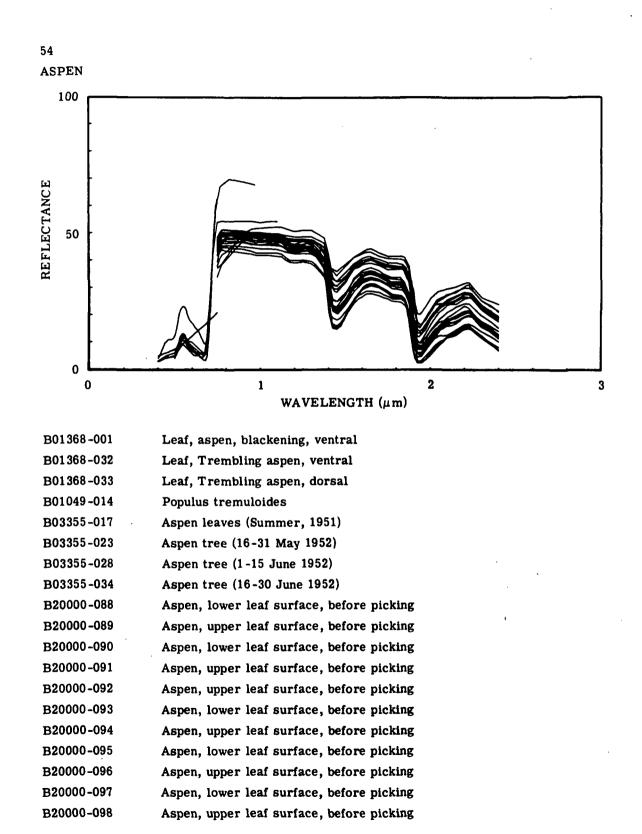
B00829-030 Hickory leaf, top yellowed, not fallen


B05272-003 Hickory leaves



B14004-040 Japanese plum leaf

- WILLOW RUN LABORATORIES ------

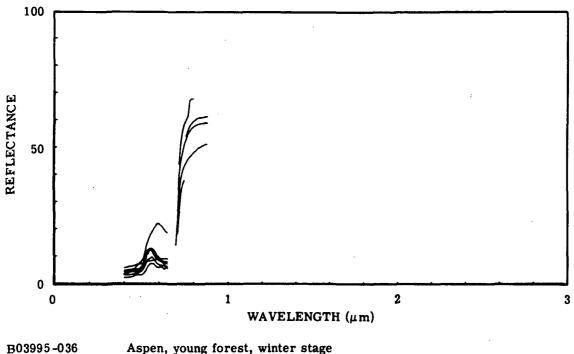

B03374-309	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 10 June 1960
B03374-310	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 17 June 1960
B03374-311	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 24 June 1960
B03374-312	White ash, (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 8 July 1960
B03374-313	White ash, (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 15 July 1960
B03374-314	White ash,(Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 22 July 1960
B03374-315	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 29 July 1960
B03374-316	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 5 August 1960
B03374-317	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 22 August 1960
B03374-318	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 26 August 1960
B03374-319	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 2 September 1960
B03374-320	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 9 September 1960
B03374-321	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 16 September 1960
B03374-322	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface 21 September 1960
B03374-323	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface 28 September 1960
B03374-324	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 5 October 1960
B03374-325	White ash, (Fraxinus americana L.), crown position, south side, upper one-third of upper leaf surface, 12 October 1960
B03374-326	White ash (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 20 October 1960
B03374-327	White ash, (Fraxinus americana L.), crown position, south side, upper one- third of upper leaf surface, 26 October 1960
B03374-328	White ash (Fraxinus americana L.), crown position, south side, upper one- third of lower leaf surface, 27 May 1960
B03374-329	White ash (Fraxinus americana L.), crown position, south side, upper one- third of lower leaf surface, 3 June 1960
B03374-330	White ash (Fraxinus americana L.), crown position, south side, upper one- third of lower leaf surface, 10 June 1960

-

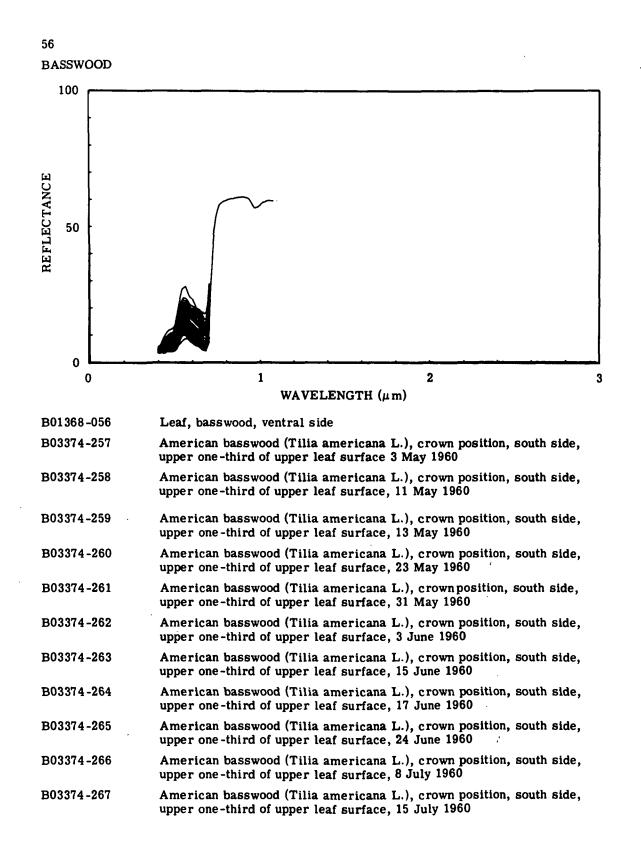
_ _ _

-- --

- B03374-331 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 17 June 1960
- B03374-332 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 24 June 1960
- B03374-333 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 8 July 1960
- B03374-334 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 15 July 1960
- B03374-335 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 22 July 1960
- B03374-336 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 29 July 1960
- B03374-337 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 5 August 1960
- B03374-338 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 22 August 1960
- B03374-339 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 26 August 1960
- B03374-340 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 2 September 1960
- B03374-341 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 9 September 1960
- B03374-342 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 16 September 1960
- B03374-343 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 21 September 1960
- B03374-344 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 28 September 1960
- B03374-345 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 5 October 1960
- B03374-346 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 12 October 1960
- B03374-347 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 20 October 1960
- B03374-348 White ash (Fraxinus americana L.), crown position, south side, upper onethird of lower leaf surface, 26 October 1960


?*

B20000-099	Aspen, lower leaf surface, before picking
B20000-102	Aspen, upper leaf surface, 1 hr after picking
B20000-103	Aspen, lower leaf surface, 1 hr after picking
B20000-104	Aspen, upper leaf surface, 2 hr after picking
B20000-105	Aspen, lower leaf surface, 2 hr after picking
B20000-106	Aspen, upper leaf surface, before picking
B20000-107	Aspen, lower leaf surface, before picking
B20000-108	Aspen, upper leaf surface, before picking
B20000-109	Aspen, lower leaf surface, before picking
B20000-110	Aspen, upper leaf surface, before picking
B20000-111	Aspen, lower leaf surface, before picking

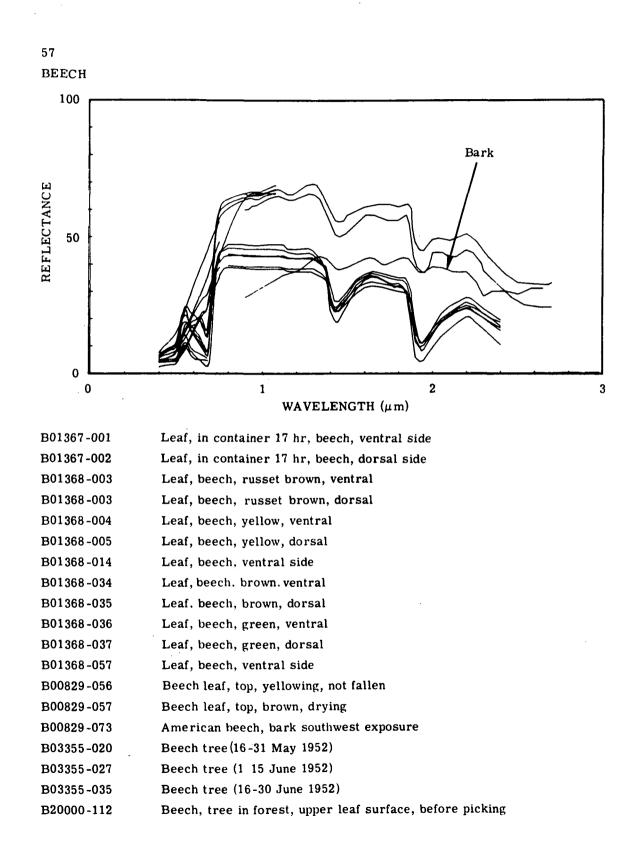

55

ASPEN

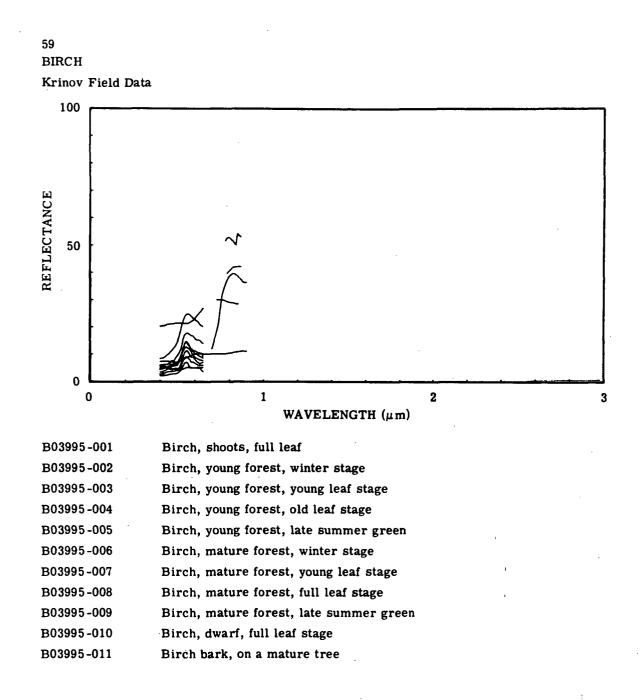
Krinov Field Data

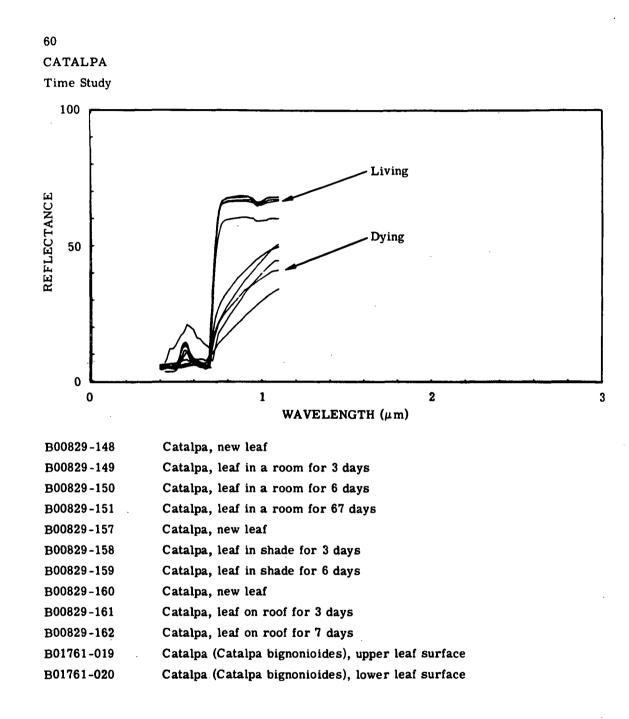
B03995-036	Aspen, young forest, winter stage
B03995-037	Aspen, young forest, young leaf stage
B03995-038	Aspen, young forest, full leaf stage
B03995-039	Aspen, mature forest, young leaf stage
B03995-040	Aspen, mature forest, full leaf stage
B03995-041	Aspen, mature forest, late summer green
B03995-042	Aspen, mature forest, autumn color

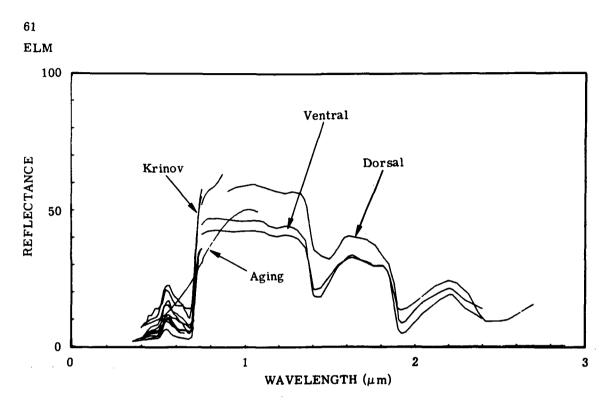
----- WILLOW RUN LABORATORIES ------


B03374-268	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 22 July 1960
B03374-269	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 29 July 1960
B03374-270	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 5 August 1960
B03374-271	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 22 August 1960
B03374-272	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 26 August 1960
B03374-273	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 2 September 1960
B03374-272	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 9 September 1960
B03374-275	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 16 September 1960
B03374-276	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 21 September 1960
B03374-277	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 28 September 1960
B03374-278	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 5 October 1960
B03374-279	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 12 October 1960
B03374-280	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 20 October 1960
B03374-281	American basswood (Tilia americana L.), crown position, south side, upper one-third of upper leaf surface, 26 October 1960
B03374-282	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 3 May 1960
B03374-282	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 11 May 1960
B03374-284	American vasswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 13 May 1960
B03374-285	American basswood (Tilia-americana L.), crown position, south side, upper one-third of lower leaf surface, 23 May 1960
B03374-286	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 31 May 1960
B03374-287	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 3 June 1960
B03374-288	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 15 June 1960
B03374-289	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 17 June 1960

.


------ WILLOW RUN LABORATORIES ------


B03374-290	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 24 June 1960
B03374-291	American basswood (Tilia americana L.), crown position, south side, upper one -third of lower leaf surface, 8 July 1960
B03374-292	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 15 July 1960
B03374-293	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 22 July 1960
B03374-294	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 29 July 1960
B03374-295	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 5 August 1960
B03374-296	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 22 August 1960
B03374-297	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 26 August 1960
B03374-298	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 2 September 1960
B03374-299	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 9 September 1960
B03374-300	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 16 September 1960
B03374-301	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 21 September 1960
B03374-302	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 28 September 1960
B03374-303	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 5 October 1960
B03374-304	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 12 October 1960
B03374-305	American basswood (Tilia americana L.), crown position, south side, upper one-third of lower leaf surface, 20 October 1960
B03374-306	American basswood (Tilia americama L.), crown position, south side, upper one-third of lower leaf surface, 26 October 1960
B01761-037	Basswood (Tilia americana), young, upper leaf surface
B01761-038	Basswood (Tilia americana), medium, upper leaf surface
B01761-039	Basswood (Tilia americana), old, upper leaf surface



B20000-113 Beech, tree in forest, lower leaf surface, before picking B20000-120 Beech, upper leaf surface, before picking B20000-121 Beech, lower leaf surface, before picking B20000-122 Beech, upper leaf surface, 10 min after picking Beech, lower leaf surface, 10 min after picking B20000-123 58 BIRCH 100 B02418-374, 375, 376 B03355-016 REFLECTANCE B01368-058, 059 50 B01337-005 B03355-022, 029, 033 0 0 1 2 3 WAVELENGTH (µm) B02418-374 UV, paper birch twing, white

D02410-314	ov, paper birch twing, white
B02418-375	Visible, paper birch twig, white
B02418-376	IR, paper birch twig, white
B01368-058	Leaf, white birch, ventral side
B01368-059	Leaf, yellow birch, ventral side
B01337-005	Dwarf birch
B03355-016	Birch leaves (summer, 1951)
B03355-022	Birch tree (16-31 May 1952)
B03355-029	Birch tree (1-15 June 1952)
B03355-033	Birch tree (16-30 June 1952)
B01761-068	White birch (Betula alba), upper leaf surface
B01761-069	White birch (Betula alba), lower leaf surface

B01368-038 Leaf, white elm, ventral

B01368-039	Leaf, whit	e elm,	dorsal

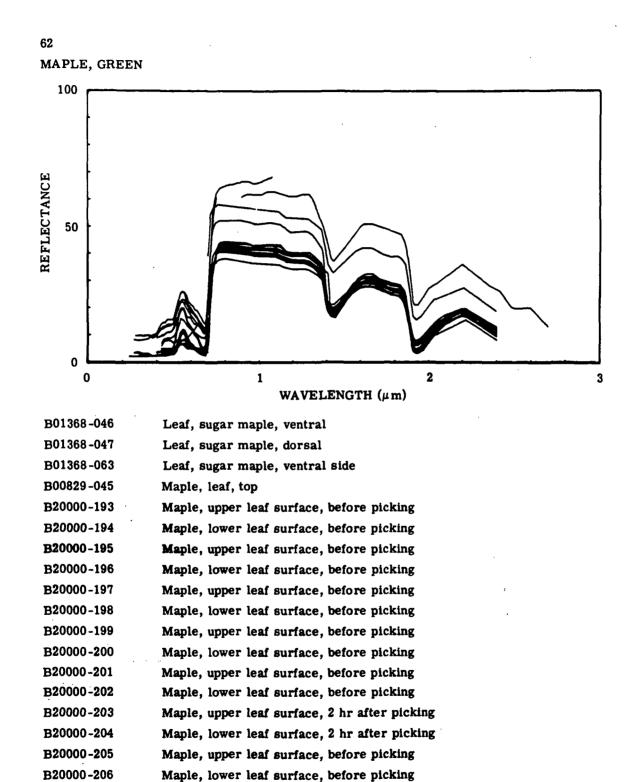
Duisvo-voi Deal, while eini, vential bio	B01368-061	Leaf.	white elm.	, ventral sid
--	------------	-------	------------	---------------

B00829-055 Elm leaf, aging, top, brown, not fallen

B03995-012 Elm, mature forest, young leaf stage

B03995-013 Elm, mature forest, full leaf

B03995-027 Elm, black, mature forest, late summer, coated with dust

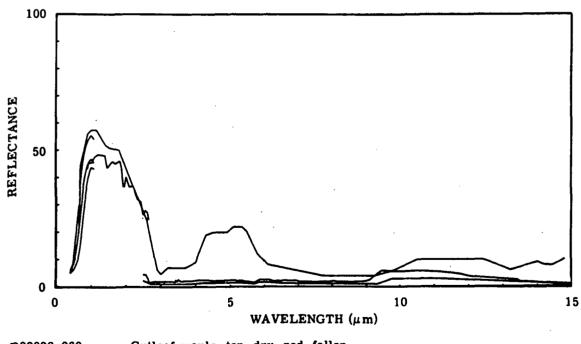

- B20000-303 Elm leaf, upper surface, freshly picked
- B20000-304 Elm leaf, lower surface, freshly picked
- B20000-305 Elm leaf, upper surface, freshly picked
- B20000-306 Elm leaf, lower furface, freshly picked

B01761-001 American elm (Ulmus americana), upper leaf surface

B01761-002 American elm (Ulmus americana), lower leaf surface

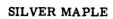
B01761-003 American elm (Ulmus americana), upper leaf surface

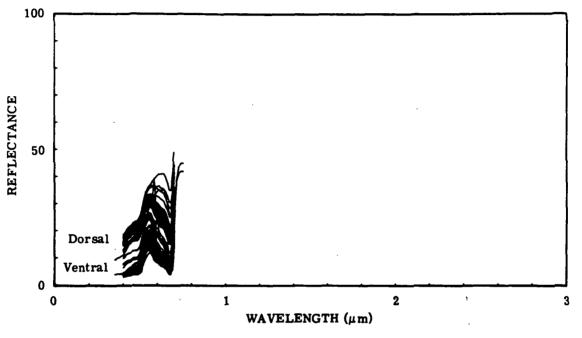
B01761-004 American elm (Ulmus americana), lower leaf surface


Maple, upper leaf surface, before picking

B20000-207

B20000-208	Maple, lower leaf surface, before picking
B20000-209	Maple, upper leaf surface, before picking
B20000-210	Maple, lower leaf surface, before picking
B20000-211	Maple, upper leaf surface, before picking
B20000-212	Maple, lower leaf surface, before picking
B20000-218	Maple, upper leaf surface, before picking
B20000-378	Maple (Acer sacharum), upper leaf surface, brilliant red resulting from seasonal color change, freshly picked
B20000-379	Maple (Acer sacharum), upper leaf surface, brilliant red resulting from seasonal color change, freshly picked
B01761-005	Maple (Acer platanoides), upper leaf surface
B01761-006	Maple (Acer platanoides), lower leaf surface
B01761-007	Maple (Acer platanoides), upper leaf surface
B01761-008	Maple (Acer platanoides), lower leaf surface
B01761-063	Maple (Acer palmatum atropurpureum), upper leaf surface
B01761-064	Maple (Acer palmatum atropurpureum), lower leaf surface


63


MAPLE, DEAD

B00829-060	Cutleaf maple, top, dry, red, fallen
B01368-064	Leaf, Sugar maple, light brown, ventral side
B01368-065	Leaf, Sugar maple, medium brown, ventral side
B01368-066	Leaf, Sugar maple, dark brown, ventral side

B01818-012	Maple leaf, pressed dormant, top (Acer rubrum) dry
B01370-001	Maple tree (Orlando, Florida)
B03333-016	Sugar maple

B03374-101	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 2 May 1960
B03374-102	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 6 May 1960
B03374-103	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 13 May 1960
B03374-104	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 23 May 1960
B03374-105	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 27 May 1960
B03374-106	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 6 June 1960
B03374-107	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 10 June 1960
B00374-108	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 20 June 1960
B03374-109	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 24 June 1960

.

B03374-110	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 8 July 1960
B03374-111	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 15 July 1960
B03374-112	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 22 July 1960
B03374-113	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 29 July 1960
B03374-114	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 5 August 1960
B03374-115	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 19 August 1960
B03374-116	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 26 August 1960
B03374-117	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 2 September 1960
B03374-118	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 12 September 1960
B03374-119	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 16 September 1960
B03374-120	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- thire of upper leaf surface, 21 September 1960
B03374-121	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 28 September 1960
B03374-122	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 5 October 1960
B03374-123	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 12 October 1960
B03374-124	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 20 October 1960
B03374-125	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 26 October 1960
B03374-126	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 2 November 1960
B03374-127	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of lower leaf surface, 2 May 1960
B03374-128	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of lower leaf surface, 6 May 1960
B03374-129	Silver maple, (Acer saccharinum L.), crownposition, south side, upper one- third of lower leaf surface, 13 May 1960
B03374-130	Silver maple, (Acer saccharinum L.), crown position, south side, upper one- third of lower leaf surface,23 May 1960
B03374-131	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of lower leaf surface, 27 May 1960

.

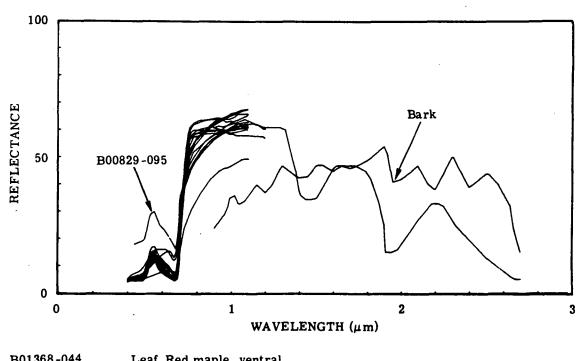
.

•

.

Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-132 third of lower leaf surface. 6 June 1960 B03374-133 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 10 June 1960 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-134 third of lower leaf surface, 20 June 1960 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-135 third of lower leaf surface, 24 June 1960 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-136 third of lower leaf surface, 8 July 1960 B03374-137 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 15 July 1960 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-138 third of lower leaf surface, 22 July 1960 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-139 third of lower leaf surface, 29 July 1960 B03374-140 Silver maple (Acer saccharinum L.), crown position, sourn side, upper onethird of lower leaf surface, 5 August 1960 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-141 third of lower leaf surface, 19 August 1960 B03374-142 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 26 August 1960 B03374-143 Silver maple (Acer saccharinum L), crown position, south side, upper onethird of lower leaf surface, 2 September 1960 B03374-144 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 12 September 1960 B03374-145 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 16 September 1960 B03374-146 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 21 September 1960 B03374-147 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 28 September 1960 B03374-148 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 5 October 1960 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-149 third of lower leaf surface, 12 October 1960 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-150 third of lower leaf surface, 20 October 1960 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-151 third of lower leaf surface, 26 October 1960 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-152 third of lower leaf surface, 2 November 1960 B03374-519 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of upper leaf surface, 16 May 1961

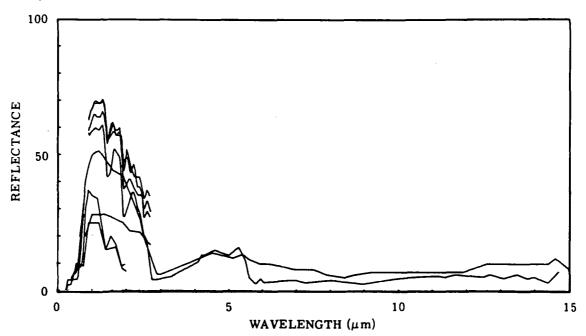
------ WILLOW RUN LABORATORIES ------

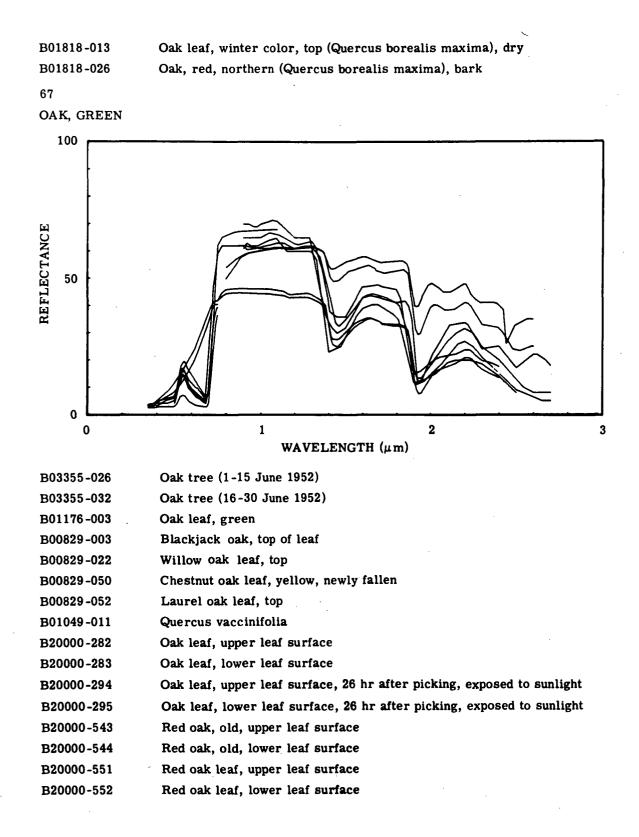

B03374-520	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 25 May 1961
B03374-521	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 2 June 1961
B03374-522	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 6 June 1961
B03374-523	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 13 June 1961
B03374-524	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 21 June 1961
B03374-525	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 27 June 1961
B03374-526	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 5 July 1961
B03374-527	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 11 July 1961
B03374-528	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 18 July 1961
B03374-529	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 26 July 1961
B03374-530	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 1 August 1961
B03374-531	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 8 August 1961
B03374-532	Silver maple (Acer saccharinum L), crown position, south side, upper one- third of upper leaf surface, 15 August 1961
B03374-533	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 22 Aubust 1961
B03374-534	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 29 August 1961
B03374-535	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 6 September 1961
B03374-536	Silver maple (Acer saccharinum L.) crown position, south side, upper one- third of upper leaf surface, 11 September 1961
B03374-537	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 18 September 1961
B03374-538	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 26 September 1961
B03374-539	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 2 October 1961
B03374-540	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 9 October 1961
B03374-541	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of upper leaf surface, 17 October 1961

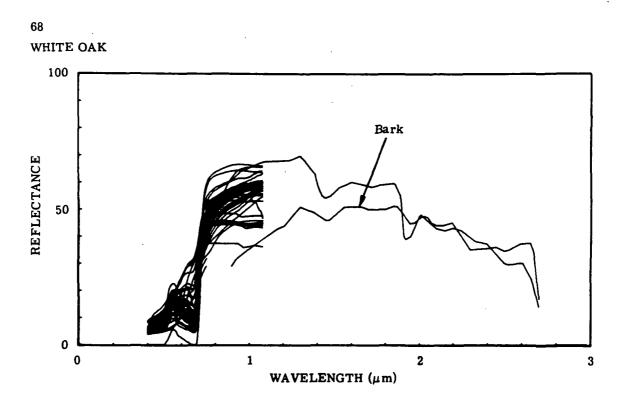
B03374-542 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of upper leaf surface, 25 October 1961 B03374-543 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 16 May 1961 B03374-544 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 25 May 1961 B03374-545 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 2 June 1961 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-546 third of lower leaf surface, 6 June 1961 B03374-547 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 13 June 1961 B03374-548 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 21 June 1961 B03374-549 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 27 June 1961 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-550 third of lower leaf surface, 5 July 1961 B03374-551 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 11 July 1961 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-552 third of lower leaf surface, 18 July 1961 B03374-553 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 26 July 1961 B03374-554 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 1 August 1961 B03374-555 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 8 August 1961 B03374-556 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 15 August 1961 B03374-557 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 22 August 1961 B03374-558 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 29 August 1961 B03374-559 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 6 September 1961 B03374-560 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 11 September 1961 B03374-561 Silver maple (Acer saccharinum L.), crown position, south side, upper onethird of lower leaf surface, 18 September 1961 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-562 third of lower leaf surface, 26 September 1961 Silver maple (Acer saccharinum L.), crown position, south side, upper one-B03374-563 third of lower leaf surface, 2 October 1961

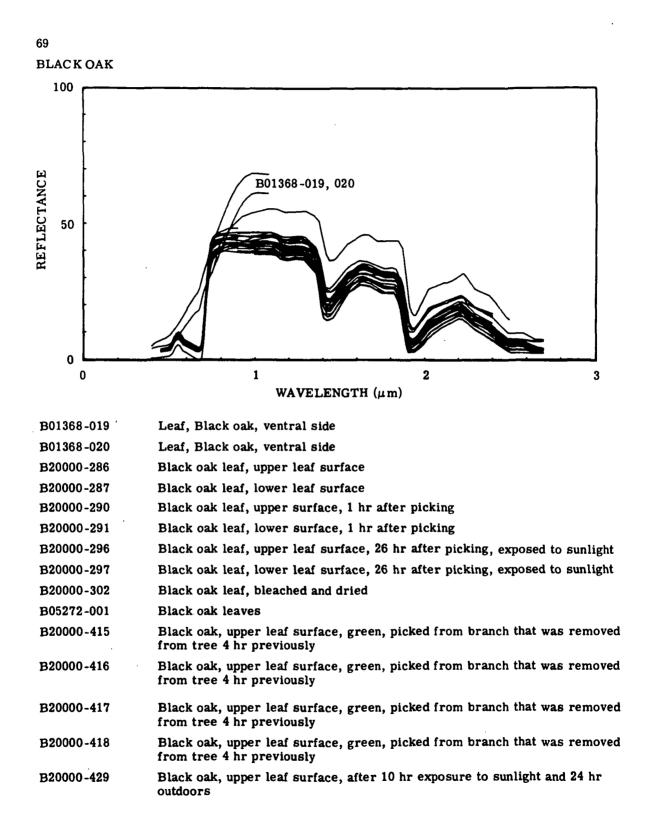
B03374-564	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of lower leaf surface, 9 October 1961
B03374-565	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of lower leaf surface, 17 October 1961
B03374-566	Silver maple (Acer saccharinum L.), crown position, south side, upper one- third of lower leaf surface, 25 October 1961
B20000-356	Silver maple, upper leaf surface, 20 hr after picking
B20000-357	Silver maple, lower leaf surface, 20 hr after picking
<u></u>	

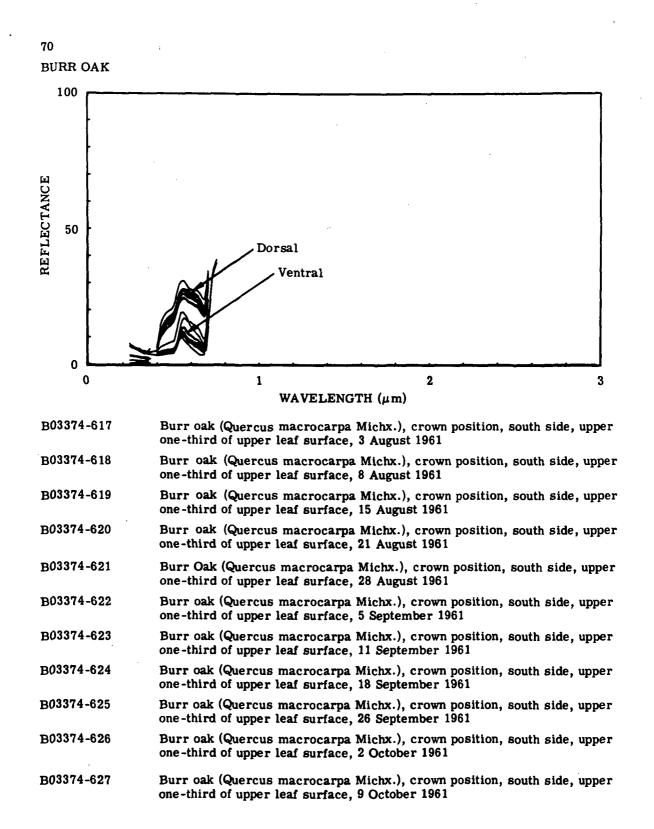
65


RED MAPLE

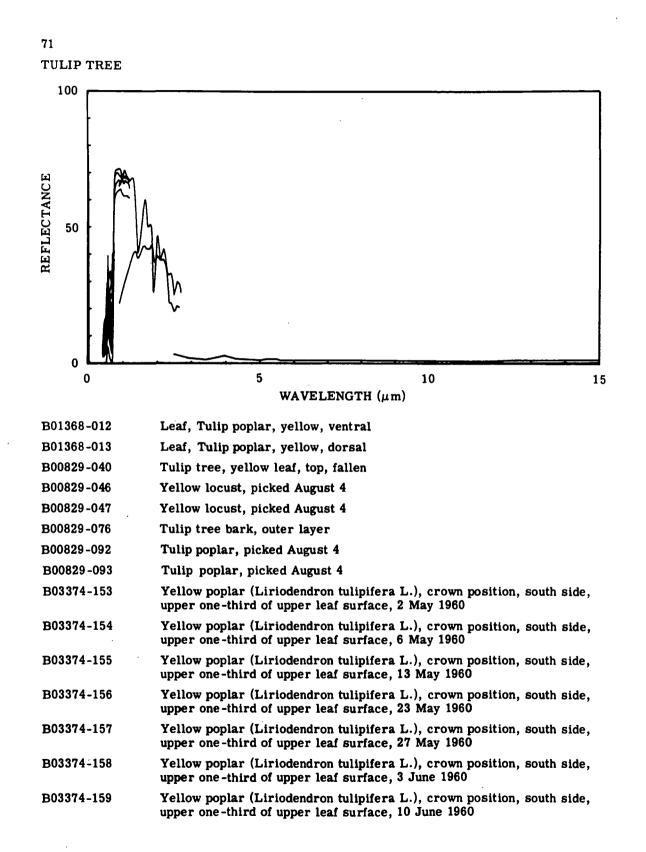

B01368-044	Leaf, Red maple, ventral
B01368-045	Leaf, Red maple, dorsal
B00829-004	Red maple leaf, top
B00829-007	Red maple, new leaf
B00829-008	Red maple, leaf in a room for 2 days
B00829-009	Red maple, leaf in a room for 5 days
B00829-010	Red maple, leaf in a room for 8 days
B00829-011	Red maple, leaf in a room for 69 days
B00829-094	Red maple, outside, picked August 4
B00829-095	Red maple, underside, picked August 4
B00829-096	Red maple bark


B00829-138	Red maple, new leaf
B00829-139	Red maple, leaf on roof for 1 day
B00829-140	Red maple, leaf on roof for 2 days
B00829 141	Red maple, leaf on roof for 5 days
B00829-142	Red maple, leaf on roof for 9 days
B00829-143	Red maple, new leaf
B00829-144	Red maple, leaf in shade for 1 day
B00829 -145	Red maple, leaf in shade for 2 days
B00829-146	Red maple, leaf in shade for 5 days
B00829-147	Red maple, leaf in shade for 8 days


B01368-008	Leaf, scarlet oak, red, ventral
B01368-009	Leaf, scarlet oak, red, dorsal
B01337-014	Scrub oak
B01337-026	Scrub oak
B00829-023	Southern Red oak leaf, back
B00829-048	Southern Red oak leaf, top, dry, brown, fallen
B00829-049	Southern Red oak leaf, back, dry, brown, fallen
B00829-051	Chestnut oak leaf, dry, fallen


B01353-001 Leaf, White oak, ventral, kept dry, 0.5 hr after picking Leaf, White oak, ventral, kept dry, 3 hr after picking B01353-002 B01353-003 Leaf, White oak, ventral, kept dry, 5 hr after picking B01353-004 Leaf, White oak, ventral, kept dry, 22 hr after picking B01353-005 Leaf, White oak, ventral, kept dry, 27 hr after picking B01353-006 Leaf, White oak, ventral, kept dry, 45.5 hr after picking B01353-007 Leaf, White oak, ventral, kept dry, 51.5 hr after picking B01353-008 Leaf, White oak, ventral, kept dry, 121 hr after picking Leaf, White oak, ventral, kept dry, 1 week after picking B01353-009 B01353-010 Leaf, White oak, ventral, kept dry, 2 weeks after picking B01353-011 Leaf, White oak, ventral, kept dry, 3 weeks after picking B01353-012 Leaf, White oak, ventral, kept dry, 4 weeks after picking B01353-013 Leaf, White oak, ventral, kept dry, 5 weeks after picking B01353-014 Leaf, White oak, ventral, kept dry, 10 weeks after picking B01353-015 Leaf, White oak, ventral, kept dry, 12 weeks after picking B01353-016 Leaf, White oak, ventral, kept dry, 16 weeks after picking B01353-017 Leaf, White oak, ventral, kept dry, 20 weeks after picking B01353-018 Leaf, White oak, ventral, kept dry, 24 weeks after picking B01353-019 Leaf, White oak, ventral, kept dry, 28 weeks after picking

B01353-020	Leaf, White oak, ventral, kept dry, 32 weeks after picking
B01353-021	Leaf, White oak, ventral, kept dry, 36 weeks after picking
B01353-022	Leaf, White oak, ventral, kept dry, 40 weeks after picking
B01353-023	Leaf, White oak, ventral, kept dry, 44 weeks after picking
B01353-024	Leaf, White oak, ventral, kept dry, 48 weeks after picking
B01353-025	Leaf, White oak, ventral, kept dry, 52 weeks after picking
B01353-026	Leaf, White oak, ventral, kept dry, 52 weeks after picking
B01353-027	Leaf, White oak, ventral, kept dry, 52 weeks after picking
B01367-007	Leaf, in container 17 hr, White oak, ventral side
B01367-008	Leaf, in container 17 hr, White oak, dorsal side
B01339-002	Outer bark, White oak, sample No. 95
B01368-010	Leaf, White oak, red brown, ventral
B01368-011	Leaf, White oak, red brown, dorsal
B01368-021	Leaf, White oak, ventral side
B01368-022	Leaf, White oak, green, ventral side
B01368-023	Leaf, White oak, reddish, ventral side
B00829-044	White oak leaf, top, sere, brown
B00829-065	White oak bark
B03333-003	White oak leaves, 0.5 hr after picking, Spring 1964
B03333-004	White oak leaves, 0.5 hr after picking, Spring 1964
B03333-005	White oak leaves, 0.5 hr after picking, Spring 1964
В03333-006	White oak leaves, 0.5 hr after picking, Spring 1964
B03333-007	White oak leaves, 0.5 hr after picking, Fall 1964
B03333-008	White oak leaves, 0.5 hr after picking, Fall 1964
B03333-009	White oak leaves, 0.5 hr after picking, Fall 1964
B03333-010	White oak leaves, 0.5 hr after picking, Fall 1964
B03333-011	White oak leaves, 0.5 hr after picking, Fall 1964
B05272-004	White oak leaves



B20000-430	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-431	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-432	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-433	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-434	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-435	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-436	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-437	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-438	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-439	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-440	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-441	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-442	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-443	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-444	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-445	Black oak, upper leaf surface, bleached
B20000-446	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-447	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-448	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors
B20000-449	Black oak, upper leaf surface, after 10 hr exposure to sunlight and 24 hr outdoors

;

- B03374-628 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of upper leaf surface, 25 October 1961
- B03374-629 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 3 August 1961
- B03374-630 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 8 August 1961
- B03374-631 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 15 August 1961
- B03374-632 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 21 August 1961
- B03374-633 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 28 August 1961
- B03374-634 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 5 September 1961
- B03374-635 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 11 September 1961
- B03374-636 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 18 September 1961
- B03374-637 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 26 September 1961
- B03374-638 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 2 October 1961
- B03374-639 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 9 October 1961
- B03374-640 Burr oak (Quercus macrocarpa Michx.), crown position, south side, upper one-third of lower leaf surface, 25 October 1961
- B20000-126 Burr oak, upper leaf surface, before picking
- B20000-127 Burr oak, lower leaf surface, before picking
- B20000-154 Burr oak, upper leaf surface, before picking
- B20000-155 Burr oak, lower leaf surface, before picking
- B20000-156 Burr oak, upper leaf surface, before picking
- B20000-157 Burr oak, lower leaf surface, before picking
- B20000-158 Burr oak, upper leaf surface, before picking
- B20000-159 Burr oak, lower leaf surface, before picking

------ WILLOW RUN LABORATORIES -----

B03374-160	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 17 June 1960
B03374-161	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 24 June 1960
B03374-162	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 8 July 1960
B03374-163	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 15 July 1960
B03374-164	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 22 July 1960
B03374-165	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 29 July 1960
B03374-166	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 5 August 1960
B03374-167	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 22 August 1960
B03374-168	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 26 August 1960
B03374-169	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 2 September 1960
B03374-170	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 9 September 1960
B03374-171	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 16 September 1960
B03374-172	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 21 September 1960
B03374-173	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 28 September 1960
B03374-174	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 5 October 1960
B03374-175	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 12 October 1960
B03374-176	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 20 October 1960
B03374-177	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 26 October 1960
B03374-178	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 2 November 1960
B03374-179	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 2 May 1960
B03374-180	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 6 May 1960
B03374-181	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 13 May 1960

------ WILLOW RUN LABORATORIES ------

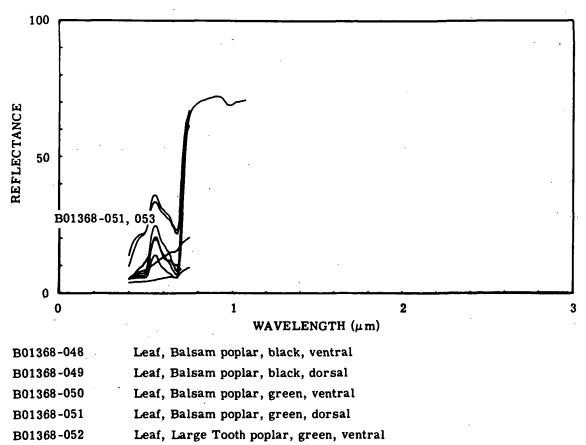
B03374-182	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 23 May 1960
B03374-183	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 27 May 1960
B03374-184	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 3 June 1960
B03374-185	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 10 June 1960
B03374-186	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 17 June 1960
B03374-187	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 24 June 1960
B03374-188	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 8 July 1960
B03374-189	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 15 July 1960
B03374-190	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 22 July 1960
B03374-191	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 29 July 1960
B03374-192	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 5 August 1960
B03374-193	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 22 August 1960
B03374-194	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 26 August 1960
B03374-195	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 2 September 1960
B03374-196	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 9 September 1960
B03374-197	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 16 September 1960
B03374-198	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 21 September 1960
B03374-199	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 28 September 1960
B03374-200	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 5 October 1960
B03374-201	Yellow poplar (Liriodendrontulipifera L.), crown position, south side, upper one-third of lower leaf surface, 12 October 1960
B03374-202	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 20 October 1960
B03374-203	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 26 October 1960

105

. _ _

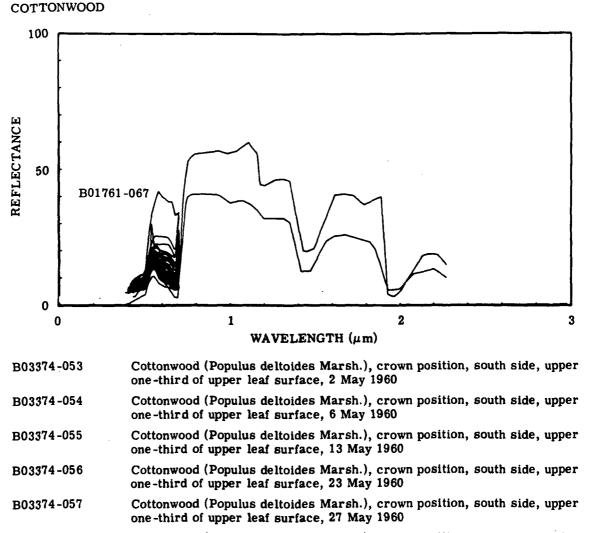
- WILLOW RUN LABORATORIES ------

B03374-204	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 2 November 1960
B03374-567	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 15 May 1961
B03374-568	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 24 May 1961
B03374-569	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 29 May 1961
B03374-570	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 5 June 1961
B03374-571	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 12 June 1961
B03374-572	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 19 June 1961
B03374-573	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 26 June 1961
B03374-574	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 3 July 1961
B03374-575	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 10 July 1961
B03374-576	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 17 July 1961
B03374-577	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 24 July 1961
B03374-578	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 31 July 1961
B03374-579	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 7 August 1961
B03374-580	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 14 August 1961
B03374-581	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 21 August 1961
B03374-582	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 28 August 1961
B03374-583	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 5 September 1961
B03374-584	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 12 September 1961
B03374-585	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 19 September 1961
B03374-586	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 27 September 1961
B03374-587	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 3 October 1961


------ WILLOW RUN LABORATORIES ------

B03374-588	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 10 October 1961
B03374-589	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 16 October 1961
B03374-590	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface 24 October 1961
B03374-591	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of upper leaf surface, 2 November 1961
B03374-592	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 15 May 1961
B03374-593	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 24 May 1961
B03374-594	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 29 May 1961
B03374-595	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 5 June 1961
B03374-596	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 12 June 1961
B03374-597	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 19 June 1961
B03374-598	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 26 June 1961
B03374-599	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 3 July 1961
B03374-600	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 10 July 1961
B03374-601	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 17 July 1961
B03374-602	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 24 July 1961
B03374-603	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 31 July 1961
B03374-604	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 7 August 1961
B03374-605	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 14 August 1961
B03374-606	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 21 August 1961
B03374-607	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 28 August 1961
B03374-608	Yellow poplar (Liriodendron tulipifera L.), crown positiion, south side, upper one-third of lower leaf surface, 5 September 1961
B03374-609	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 12 September 1961

B03374-610	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 19 September 1961
B03374-611	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 27 September 1961
B03374-612	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 3 October 1961
B03374-613	Yellow poplar (Lirodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 10 October 1961
B03374-614	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 16 October 1961
B03374-615	Yellow poplar (Liriodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 24 October 1961
B03374-616	Yellow poplar (Lirodendron tulipifera L.), crown position, south side, upper one-third of lower leaf surface, 2 November 1961
B05272-002	Tulip tree leaves
B04696-045	Tulip poplar leaf (Liriodendron tulipifera), upper leaf surface


72

POPLAR

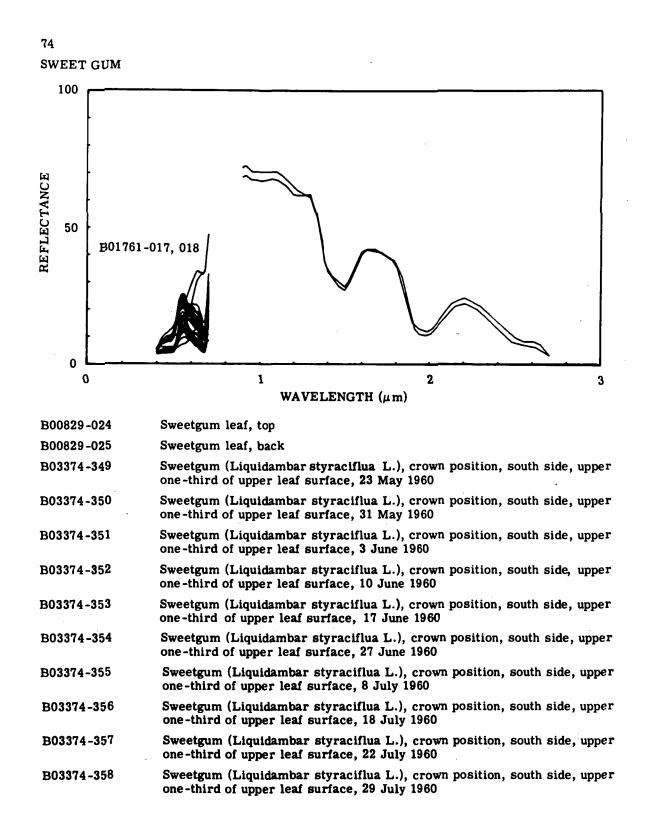
B01368-053	Leaf, Large Tooth poplar, green, dorsal
B01368-054	Leaf, Large Tooth poplar, white, ventral
B01368-055	Leaf, Large Tooth poplar, white, dorsal
B01368-067	Leaf, Balsam poplar, ventral side
B01337-010	Balsam poplar
B01761-028	White poplar (Populus alba), upper leaf surface
B01761-056	White poplar (Populus alba), upper leaf surface
B01761-057	White poplar (Populus alba), lower leaf surface

73

B03374-058 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 6 June 1960

B03374-059 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 10 June 1960

B03374-060	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 17 June 1960
B03374-061	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 24 June 1960
B03374-062	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 8 July 1960
B03374-063	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 15 July 1960
B03374-064	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 22 July 1960
B03374-065	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 29 July 1960
B03374-066	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 5 August 1960
B03374-067	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 19 August 1960
B03374-068	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 26 August 1960
B03374-069	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 2 September 1960
B03374-070	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 9 September 1960
B03374-071	Cottonwood (Populus deltoides Marsh,), crown position, south side, upper one-third of upper leaf surface, 16 September 1960
B03374-072	Cottonwood (Populus deltoides Marsh,), crown position, south side, upper one-third of upper leaf surface, 21 September 1960
B03374-073	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 28 September 1960
B03374-074	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 5 October 1960
B03374-075	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 12 October 1960
B03374-076	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 20 October 1960
B03374-077	Cottonwood (Populus deltoides Marsh.), crown position, south side, lower one-third of upper leaf surface, 2 May 1960
B03374-078	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 6 May 1960
B03374-079	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 13 May 1960
B03374-080	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 23 May 1960
B03374-081	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 27 May 1960


B03374-082	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 6 June 1960
B03374-083	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 10 June 1960
B03374-084	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 17 June 1960
B03374-085	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 24 June 1960
B03374-086	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 8 July 1960
B03374-087	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 15 July 1960
B03374-088	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 22 July 1960
B03374-089	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 29 July 1960
B03374-090	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 5 August 1960
B03374-091	Cottonwood (Populus deltiodes Marsh.), crown position, south side, upper one-third of lower leaf surface, 19 August 1960
B03374-092	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 26 August 1960
B03374-093	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 2 September 1960
B03374-094	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 9 September 1960
B03374-095	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 16 September 1960
B03374-096	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 21 September 1960
B03374-097	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 28 September 1960
B03374-098	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 5 October 1960
B03374-099	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 12 October 1960
B03374-100	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 20 October 1960
B03374-475	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 15 May 1961
B03374-476	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 28 May 1961
B03374-477	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 1 June 1961

111

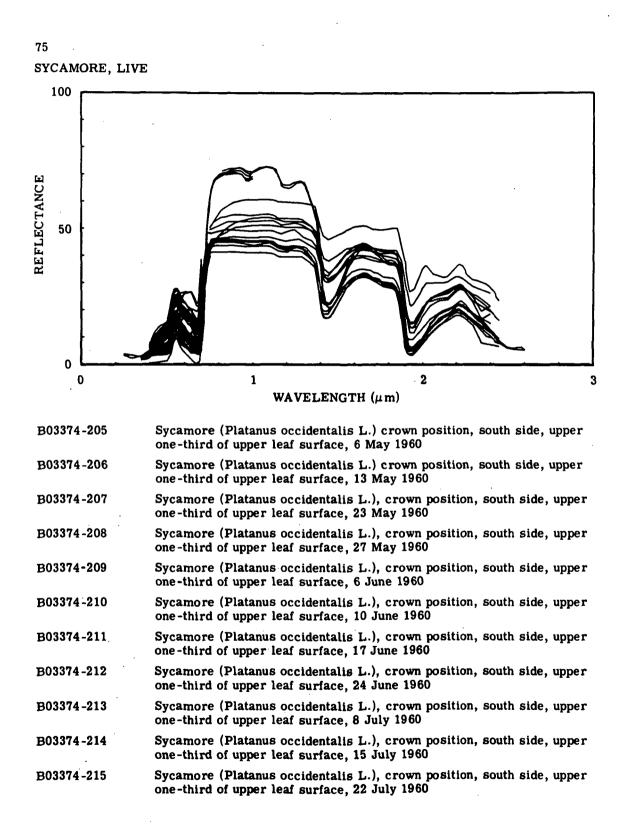
B03374-478	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 7 June 1961
B03374-479	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 14 June 1961
B03374-480	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 21 June 1961
B03374-481	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 26 June 1961
B03374-482	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 3 July 1961
B03374-483	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 10 July 1961
B03374-484	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 17 July 1961
B03374-485	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 25 July 1961
B03374-486	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 31 July 1961
B03374-487	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 7 August 1961
B03374-488	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 14 August 1961
B03374-489	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 21 August 1961
B03374-490	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 28 August 1961
B03374-491	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 6 September 1961
B03374-492	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 11 September 1961
B03374-493	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 18 September 1961
B03374-494	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 26 September 1961
B03374-495	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 2 October 1961
B03374-496	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of upper leaf surface, 9 October 1961
B03374-497	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 15 May 1961
B03374-498	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 23 May 1961
B03374-499	Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 1 June 1961

ک ر

- B03374-500 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 7 June 1961 B03374-501 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 14 June 1961 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper B03374-502 one-third of lower leaf surface, 21 June 1961 B03374-503 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 26 June 1961 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper B03374-504 one third of lower leaf surface, 3 July 1961 B03374-505 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 10 July 1961 B03374-506 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 17 July 1961 B03374-507 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 25 July 1961 B03374-508 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 31 July 1961 B03374-509 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 7 August 1961 B03374-510 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 14 August 1961 B03374-511 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 21 August 1961 B03374-512 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 28 August 1961 B03374-513 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 6 September 1961 B03374-514 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 11 September 1961 B03374-515 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 18 September 1961 B03374-516 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 26 September 1961 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper B03374-517 one-third of lower leaf surface, 2 October 1961 B03374-518 Cottonwood (Populus deltoides Marsh.), crown position, south side, upper one-third of lower leaf surface, 9 October 1961 B01761-040 Cottonwood (Populus deltoides), young, upper leaf surface B01761-041 Cottonwood (Populus deltoides), old, upper leaf surface Cottonwood (Populus deltoides), upper leaf surface B01761-067 B03070-001 **Populus deltoides** B03070-002 Populus deltoides
 - 113

B03374-359	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 5 August 1960
B03374-360	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-thrid of upper leaf surface, 2 August 1960
B03374-361	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 26 August 1960
B03374-362	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 2 September 1960
B03374-363	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 9 September 1960
B03374-364	Sweetgum (Liquidambar sytraciflua L.), crown position, south side, upper one-third of upper leaf surface, 16 September 1960
B03374-365	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 21 September 1960
B03374-366	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 28 September 1960
B03374-367	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 5 October 1960
B03374-368	Sweetgum (Liquidambar stryaciflua L.), crown position, south side, upper one-third of upper leaf surface, 12 October 1960
B03374-369	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 20 October 1960
B03374-370	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 26 October 1960
B03374-371	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 2 November 1960
B03374-372	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of upper leaf surface, 10 November 1960
B03374-373	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 23 May 1960
B03374-374	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 31 May 1960
B03374-375	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower oeaf surface, 3 June 1960
B03374-376	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 10 June 1960
B03374-377	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-thire of lower leaf surface, 17 June 1960
B03374-378	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 27 June 1960
B03374-379	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 8 July 1960
B03374-380	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 18 July 1960

115


- -

B03374-381	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 22 July 1960
B03374-382	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 29 July 1960
B03374-383	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 5 August 1960
B03374-384	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 22 August 1960
B03374-385	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 26 August 1960
B03374-386	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 2 September 1960
B03374-387	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 9 September 1960
B03374-388	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 16 September 1960
B03374-389	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 21 September 1960
B03374-390	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 28 September 1960
B03374-391	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 5 October 1960
B03374-392	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 12 October 1960
B03374-393	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 20 October 1960
B03374-394	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 26 October 1960
B03374 -395	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 2 November 1960
B03374-396	Sweetgum (Liquidambar styraciflua L.), crown position, south side, upper one-third of lower leaf surface, 10 November 1960
B01761-017	Sweetgum (Liquidambar styraciflua), upper leaf surface
B01761-018	Sweetgum (Liquidambar styraciflua), lower leaf surface

116

-

.

- WILLOW RUN LABORATORIES ------

B03374-216	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 29 July 1960
B03374-217	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 5 August 1960
B03374-218	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 19 August 1960
B03374-219	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 26 August 1960
B03374-220	Sycamore (Platanus occidentalis L.), crown position, south side, upper one third of upper leaf surface, 2 September 1960
B03374-221	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 9 September 1960
B03374-222	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 16 September 1960
B03374-223	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 21 September 1960
B03374 224	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 28 September 1960
B03374-225	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 5 October 1960
B03374-226	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 12 October 1960
B03374-227	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 20 October 1960
B03374-228	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 26 October 1960
B03374-229	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 2 November 1960
B03374-230	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 10 November 1960
B03374-231	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 6 May 1960
B03374-232	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 13 May 1960
B03374-233	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 23 May 1960
B03374-234	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 27 May 1960
B03374-235	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 6 June 1960
B03374-236	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 10 June 1960
B03374-237	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 17 June 1960

------ WILLOW RUN LABORATORIES -----

.

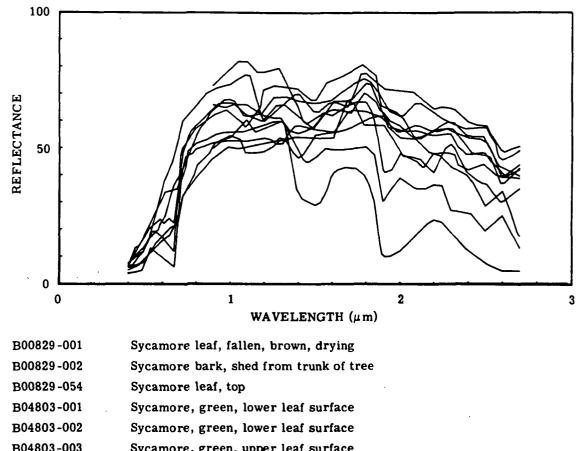
.

B03374-238	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 24 June 1960
B03374-239	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 8 July 1960
B03374-240	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 15 July 1960
B03374-241	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 22 July 1960
B03374-242	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 29 July 1960
B03374-243	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 5 August 1960
B03374-244	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 19 August 1960
B03374-245	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 26 August 1960
B03374-246	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 2 September 1960
B03374-247	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 9 September 1960
B03374-248	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 16 September 1960
B03374-249	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 21 September 1960
B03374-250	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 28 September 1960
B03374-251	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 5 October 1960
B03374-252	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 12 October 1960
B03374-253	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 20 October 1960
B03374-254	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 26 October 1960
B03374-255	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 2 November 1960
B03374-256	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 10 November 1960
B03374-641	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 17 May 1961
B03374-642	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 23 May 1961
B03374-643	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 1 June 1961

.

.

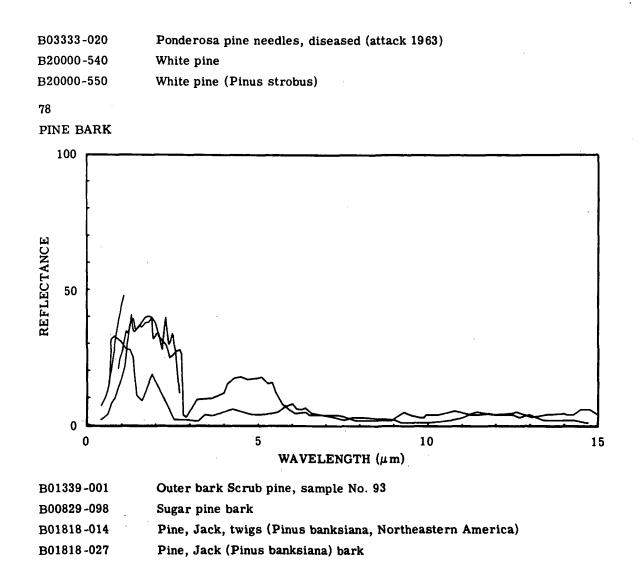
- B03374-644 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 5 June 1961
- B03374-645 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 12 June 1961
- B03374-646 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 20 June 1961
- B03374-647 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 27 June 1961
- B03374-648 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 5 July 1961
- B03374-649 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 11 July 1961
- B03374-650 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 18 July 1961
- B03374-651 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 25 July 1961
- B03374-652 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 1 August 1961
- B03374-653 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 8 August 1961
- B03374-654 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 15 August 1961
- B03374-655 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 22 August 1961
- B03374-656 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 29 August 1961
- B03374-657 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 7 September 1961
- B03374-658 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 13 September 1961
- B03374-659 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 19 September 1961
- B03374-660 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 27 September 1961
- B03374-661 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 3 October 1961
- B03374-662 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 10 October 1961
- B03374-663 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 16 October 1961
- B03374-664 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 24 October 1961
- B03374-665 Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of upper leaf surface, 2 November 1961


B03374-666	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 17 May 1961
B03374-667	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 23 May 1961
B03374-668	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 1 June 1961
B03374-669	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 5 June 1961
B03374-670	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 12 June 1961
B03374-671	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 20 June 1961
B03374-672	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 27 June 1961
B03374-673	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 5 July 1961
B03374-674	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 11 July 1961
B03374-675	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 18 July 1961
B03374-676	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 25 July 1961
B03774-677	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 1 August 1961
B03374 -678	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 8 August 1961
B03374-679	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 15 August 1961
B03374-680	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 22 August 1961
B03374-681	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 29 August 1961
B03374-682	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 7 September 1961
B03374-683	Sycamore (platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 13 September 1961
B03374-684	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 19 September 1961
B03374-685	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 27 September 1961
B03374-686	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 3 October 1961
B03374-687	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 10 October 1961

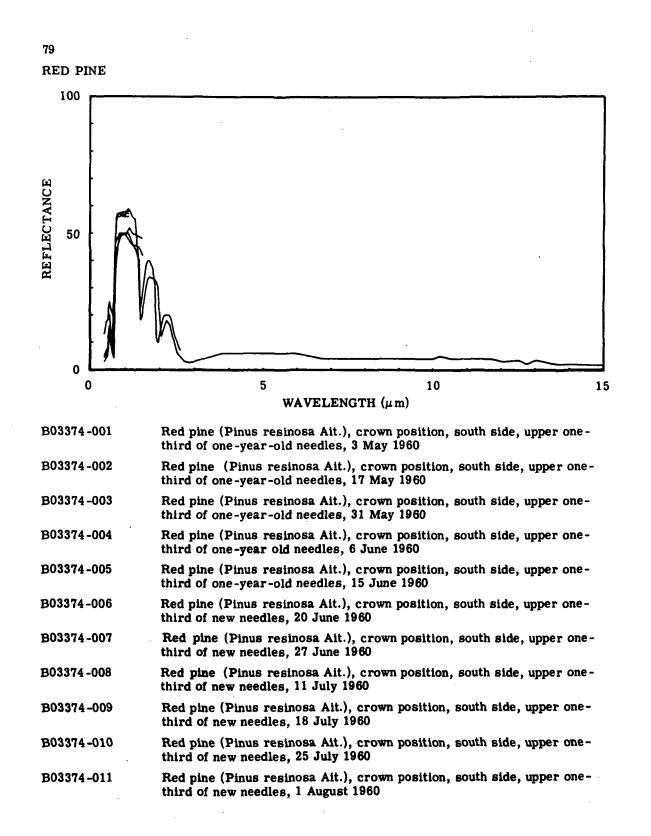
------ WILLOW RUN LABORATORIES -

B03374-688	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 16 October 1961
B03374-689	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 24 October 1961
B03374-690	Sycamore (Platanus occidentalis L.), crown position, south side, upper one-third of lower leaf surface, 2 November 1961
B20000-181	Sycamore, upper leaf surface, before picking
B20000-182	Sycamore, lower leaf surface, before picking
B20000-183	Sycamore, upper leaf surface, 10 min after picking
B20000-184	Sycamore, lower leaf surface, 10 min after picking
B20000-315	Sycamore, upper leaf surface, from a branch cut and exposed to sunlight 5 days
B20000-316	Sycamore, upper leaf surface, 1 hr after picking
B20000-317	Sycamore, upper leaf surface, leaf was picked and put in an evacuated bell jar for 30 min
B20000-318	Sycamore, upper leaf surface, from a branch cut and exposed to sunlight 5 days
B20000-319	Sycamore, upper leaf surface, 1 hr after picking
B20000-320	Sycamore, upper leaf surface, leaf was picked and put in an evacuated
	bell jar for 30 min
B20000-321	Sycamore, upper leaf surface, 1 hr after picking
B20000-322	Sycamore, lower leaf surface, 1 hr after picking
B20000-325	Sycamore, upper leaf surface, from a branch cut and exposed to sunlight 4 hr
B20000-326	Sycamore, upper leaf surface, 1 min after picking
B20000-327	Sycamore, upper leaf surface, from a branch cut and exposed to sunlight 4 hr
B20000-328	Sycamore, lower leaf surface, from a branch cut and exposed to sunlight 4 hr
B20000-329	Sycamore, upper leaf surface, from a branch cut 26 hr and exposed to sun- light 1 day
B20000-330	Sycamore, lower leaf surface, from a branch cut 26 hr and exposed to sun- light 1 day
B20000-331	Sycamore, upper leaf surface, from a branch cut 26 hr and exposed to sun- light 1 day
B20000-332	Sycamore, lower leaf surface, from a branch cut 26 hr and exposed to sun- light 1 day
B20000-333	Sycamore, upper leaf surface, from a branch cut and exposed to sunlight 48 hr
B20000-334	Sycamore, lower leaf surface, from a branch cut and exposed to sunlight 48 hr
B20000-335	Sycamore, upper leaf surface, from a branch cut and exposed to sunlight

B20000-336	Sycamore, lower leaf surface, from a branch cut and exposed to sunlight 48 hr
B05272-006	Sycamore leaves (Summer, 1961)
B20001-313	Sycamore leaves, freshly picked, 4 leaves thick, upper leaf surface
B20001-319	Sycamore leaves, freshly picked, 4 leaves thick, upper leaf surface
B20001-325	Sycamore leaves, freshly picked, 4 leaves thick, upper leaf surface
B20001-331	4 fresh sycamore leaves
B20001-337	4 fresh sycamore leaves


D04003-	-003	Sycamore, green,	upper	leai	Surface	
		-				

B04803 004	Sycamore, gree	n, upper leaf surface
------------	----------------	-----------------------


B04803 005	Sycamore leaves, newly fallen, upper leaf surface
B04803-006	Sycamore leaves, newly fallen, upper leaf surface
B04803-007	Sycamore leaves, newly fallen, lower leaf surface
B04803-008	Sycamore leaves, newly fallen, lower leaf surface

В04803-009	Sycamore leaves, weathered, upper leaf surface
B04803-010	Sycamore leaves, weathered, upper leaf surface
B04803-011	Sycamore leaves, weathered, lower leaf surface
B04803-012	Sycamore leaves, weathered, lower leaf surface
B04803-013	Sycamore leaves, weathered, lower leaf surface
B04803-014	Sycamore leaves, weathered, lower leaf surface
B04803-015	Sycamore leaves, weathered, upper leaf surface
B04803-016	Sycamore leaves, weathered, upper leaf surface
77	
PINE	
100	
REFLECTANCE	N
0	5 10 15
	WAVELENGTH (μ m)
B01049-023	Pine forest, north-facing
B01049-024	Pine forest, west-facing
B03355-019	Pine needles (Summer, 1951)
B03355-025	Pine tree(16-31 May 1952)
B03355-031	Pine tree (1-15 June 1952)
B03355-037	Pine tree (16-30 June 1952)
B03070-003	Pinus strobus
B03333-012	Pinus ponderosa, healthy

- B03333-013 Pinus ponderosa, diseased (attack 1964)
- B03333-014 Pinus ponderosa, diseased (attack 1963)
- B03333-019 Ponderosa pine needles, healthy

WILLOW RUN LABORATORIES

----- WILLOW RUN LABORATORIES -----

B03374-012	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 8 August 1960
B03374-013	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 22 August 1960
B03374-014	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 26 August 1960
B03374-015	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 6 September 1960
B03374-016	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 12 September 1960
B03374-017	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 19 September 1960
B03374-018	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 27 September 1960
B03374-019	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 4 October 1960
B03374-020	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 11 October 1960
B03374 <i>-</i> 021	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 18 October 1960
B03374-022	Red pine (Pinus resinosa Ait.), crown position, south side, upper-one third of new needles, 25 October 1960
B03374-023	Red pine (Pinus resinosa Ait.), crown poisition, south side, upper one- third of new needles, 1 November 1960
B03374 <i>-</i> 024	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 10 November 1960
B03374-025	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 16 November 1960
B03374-026	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 22 November 1960
B03374-397	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 2 February 1961
B03374-398	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 4 March 1961
B03374-399	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 26 April 1961
B03374-400	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- thire of one-year-old needles, 16 May 1961
B03374-401	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 26 May 1961
B03374-402	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 31 May 1961
B03374-403	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 7 June 1961
	,

•

. .

127

•

.

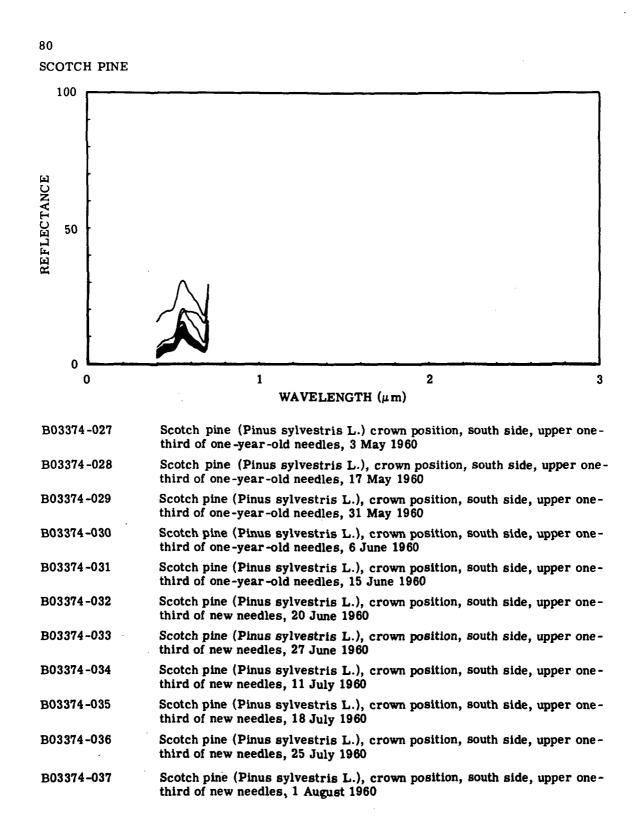
B03374-404	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 14 June 1961
B03374-405	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 22 June 1961
B03374-406	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 28 June 1961
B03374-407	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 6 July 1961
B03374-408	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 12 July 1961
B03374-409	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 19 July 1961
B03374-410	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 26 July 1961
B03374-411	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of one-year-old needles, 2 August 1961
B03374-412	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- thire of one-year-old needles, 11 August 1961
B03374-413	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 14 June 1961
B03374-414	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 22 June 1961
B03374-415	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 28 June 1961
B03374-416	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 6 July 1961
B03374-417	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 12 July 1961
B03374-418	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 19 July 1961
B03374-419	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 26 July 1961
B03374-420	Red pine (Pinus resinosa Ait., crown position, south side, upper one- third of new needles, 2 August 1961
B03374-421	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 11 August 1961
B03374-422	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 16 August 1961
B03374-423	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 24 August 1961
B03374-424	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 29 August 1961
B03374-425	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 6 September 1961

`

----- WILLOW RUN LABORATORIES -----

.

•


× .

•

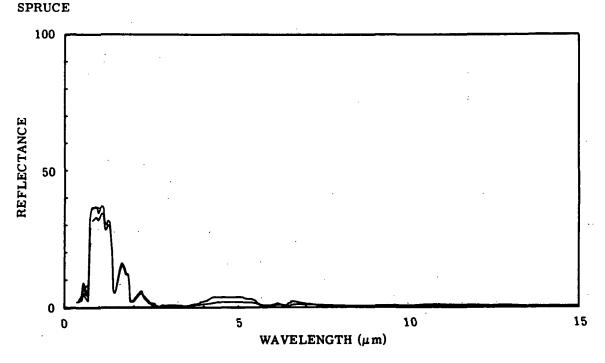
B03374-426	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 19 September 1961
B03374-427	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 25 September 1961
B03374-428	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 3 October 1961
B03374-429	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 10 October 1961
B03374-430	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 17 October 1961
B03374-431	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 25 October 1961
B03374-432	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 3 November 1961
B03374-433	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 8 November 1961
B03374-434	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 17 November 1961
B03374-435	Red pine (Pinus resinosa Ait.), crown position, south side, upper one- third of new needles, 7 December 1961
B03559-001	Pinus resinosa, needles, sample No. 217
B03559-004	Pinus resinosa, needles, sample No. 219
B03559 -007	Pinus resinosa, needles, sample No. 223
B03559-010	Pinus resinosa, needles, sample No. 240
B03559-013	Pinus resinosa, needles, sample No. 242
B03559-016	Pinus resinosa, needles, sample No. 248
B03559-019	Pinus resinosa, needles, sample No. 204, healthy
B03559-022	Pinus resinosa, needles, sample No. 205, healthy
B03559-025	Pinus resinosa, needles, sample No. 206, healthy
B03559-028	Pinus resinosa, needles, sample No. 207, poisoned with sodium arsenite
B03559-031	Pinus resinosa, needles, sample No. 208, poisoned with sodium arsenite
B03559-034	Pinus resinosa, needles, brown portion of needles, new area, sample No. 208, poisoned with sodium arsenite
B03559-035	Pinus resinosa, needles, sample No. 209, poisoned with sodium arsenite
B03559-038	Pinus resinosa, needles, sample No. 210, healthy
B03559-041	Pinus resinosa, needles, sample No. 211, healthy
B03559-044	Pinus resinosa, needles, sample No. 212, healthy
B03559-047	Pinus resinosa, needles, sample No. 213, poisoned with sodium arsenite
B03559-050	Pinus resinosa, needles, sample No. 214, poisoned with sodium arsenite
B03559-053	Pinus resinosa, needles, sample No. 215, poisoned with sodium arsenite
B03559-056	Pinus resinosa, needles, control, tree No. 201

129

B03559-059	Pinus resinosa, needles, control, tree No. 202
B03559-062	Pinus resinosa, needles, control, tree No. 203
B03559-065	Pinus resinosa, treated, tree No. 281
B03559-068	Pinus resinosa, treated, tree No. 283
B03559-071	Pinus resinosa, treated, tree No. 284
B03559-074	Pinus resinosa, needles, sample No. 217
B03559-076	Pinus resinosa, needles, sample No. 219
B03559-078	Pinus resinosa, needles, sample No. 223
B03559-080	Pinus resinosa, needles, sample No. 240
B03559-082	Pinus resinosa, needles, sample No. 242
B03559-084	Pinus resinosa, needles, sample No. 248
B03559-086	Pinus resinosa, needles, sample No. 204, healthy
B03559-088	Pinus resinosa, 1 in. from base of needles, sample No. 204, healthy
B03559-090	Pinus resinosa, needles, sample No. 205, healthy
B03559-092	Pinus resinosa, needles, sample No. 206, healthy
B03559-094	Pinus resinosa, needles, sample No. 207, poisoned with sodium arsenite
B03559-096	Pinus resinosa, needles, sample No. 208, poisoned with sodium aresnite
B03559-098	Pinus resinosa, one inch from base of needles, sample No. 208, poisoned with sodium arsenite
B03559-100	Pinus resinosa, needles, sample No. 209, poisoned with sodium arsenite
B03559-102	Pinus resinosa, needles, sample No. 210, healthy
B03559-104	Pinus resinosa, needles, sample No. 211, healthy
B03559-106	Pinus resinosa, needles, sample No. 212, healthy
B03559-108	Pinus resinosa, needles, sample No. 213, poisoned with sodium arsenite
B03559-110	Pinus resinosa, needles, sample No. 214, poisoned with sodium arsenite
B03559-112	Pinus resinosa, needles, sample No. 215, poisoned with sodium arsenite
B03559-114	Pinus resinosa, control, tree No. 201
B03559-116	Pinus resinosa, control, tree No. 202
B03559-118	Pinus resinosa, control, tree No. 203
B03559-120	Pinus resinosa, treated, tree No. 281
B03559-122	Pinus resinosa, treated, tree No. 283
B03559-124	Pinus resinosa, treated, tree No. 284
B20000 -542	Red pine
B20000-548	Red pine (Pinus resinosa)

B03374-038	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 8 August 1960
B03374-039	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 22 August 1960
B03374-040	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 29 August 1960
B03374-041	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 6 September 1960
B03374-042	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 12 September 1960
B03374-043	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 19 September 1960
B03374-044	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 27 September 1960
B03374-045	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 4 October 1960
B03374-046	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 11 October 1960
B03374-047	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 18 October 1960
B03374-048	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 25 October 1960
B03374-049	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 1 November 1960
B03374-050	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 10 November 1960
B03374-051	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 16 November 1960
B03374-052	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of ndw needles, 22 November 1960
B03374-436	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 2 February 1961
B03374-437	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 4 March 1961
B03374-438	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 26 April 1961
B03374-439	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 17 May 1961
B03374-440	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 26 May 1961
B03374-441	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 31 May 1961
B03374-442	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 7 June 1961

. •


B03374-443	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 14 June 1961
B03374-444	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 22 June 1961
B03374-445	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 28 June 1961
B03374-446	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 6 July 1961
B03374-447	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 12 July 1961
B03374-448	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 19 July 1961
B03374-449	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 25 July 1961
B03374-450	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of one-year-old needles, 2 August 1961
B03374-451	Scotch pine (Pinus sylvestris L.), crown position, south side,upper one- third of one-year-old needles, 11 August 1961
B03374-452	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 22 June 1961
B03374-453	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 28 June 1961
B03374-454	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 6 July 1961
B03374-455	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 12 July 1961
B03374-456	Sctotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 19 July 1961
B03374-457	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 25 July 1961
B03374-458	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 2 August 1961
B03374-459	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 11 August 1961
B03374-460	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 16 August 1961
B03374-461	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 24 August 1961
B03374-462	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 29 August 1961
B03374-463	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 6 September 1961
B03374-464	Scotch pine (Pinus sylvestris L.), crown position, south side, upper one- third of new needles, 13 September 1961

. -

. -

· • • • • • • •

Scotch pine (Pinus sylvestris L.), crown position, south side, upper one-B03374-465 third of new needles, 19 September 1961 B03374-466 Scotch pine (Pinus sylvestris L.), crown position, south side, upper onethird of new needles, 25 September 1961 B03374-467 Scotch pine (Pinus sylvestris L.), crown position, south side, upper onethird of new needles, 3 October 1961 B03374-468 Scotch pine (Pinus sylvestris L.), crown position, south side, upper onethird of new needles, 10 October 1961 B03374-469 Scotch pine (Pinus sylvestris L.), crown position, south side, upper onethird of new needles, 17 October 1961 B03374-470 Scotch pine (Pinus sylvestris L.), crown position, south side, upper onethird of new needles, 25 October 1961 B03374-471 Scotch pine (Pinus sylvestris L.), crown position, south side, upper onethird of new needles, 3 November 1961 B03374-472 Scotch pine (Pinus sylvestris L.), crown position, south side, upper onethird of new needles, 8 November 1961 B03374-473 Scotch pine (Pinus sylvestris L.), crown position, south side, upper onethird of new needles, 17 November 1961 Scotch pine (Pinus sylvestris L.), crown position, south side, upper one-B03374-474 third of new needles, 7 December 1961 B20000-517 Scotch pine, twig and needles B20000-541 Scotch pine B20000-547 Scotch pine (Pinus sylvestris) 81

B03355-018	Spruce leaves (Summer, 1951)
B03355-024	Spruce tree (16-31 May 1952)
B03355-030	Spruce tree (1-15 June 1952)
B03355-036	Spruce tree (16-30 June 1952)
B03333-015	Black spruce
B20000-545	Blue spruce needles
B20000-546	Red spruce needles
B20000-553	Blue spruce
B20000-554	Red spruce
B04696-043	Black spruce (Picea mariana), mosaic of needles

.

4.2. SINGLE PLOTS

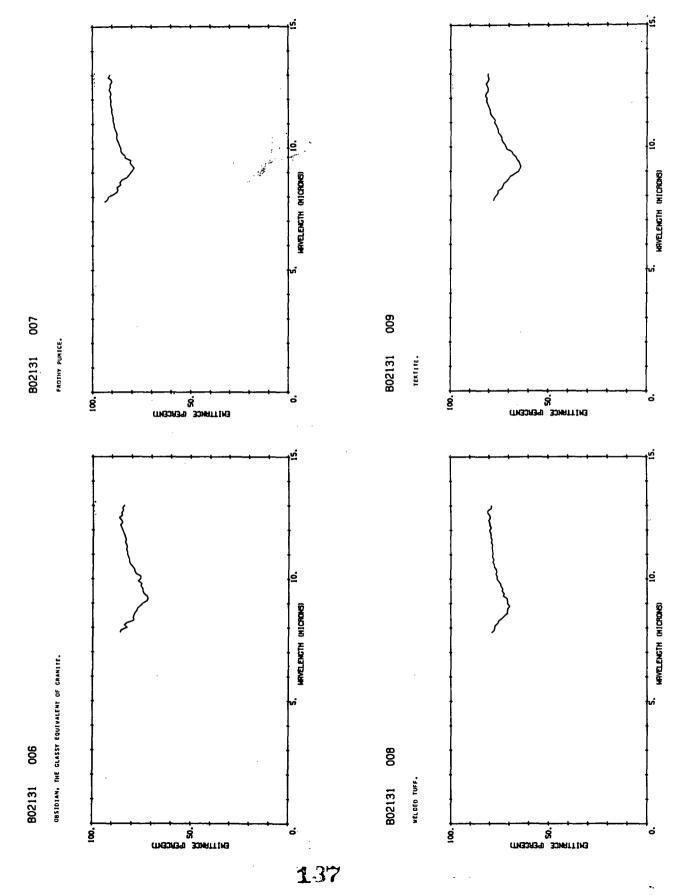
. -

•

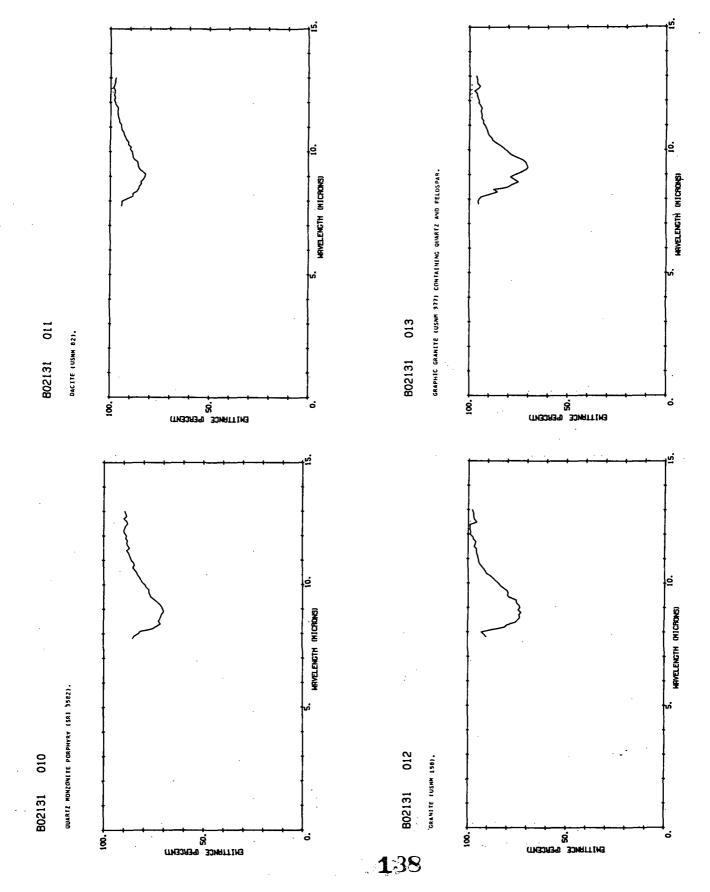
4.2.1. LABORATORY DATA

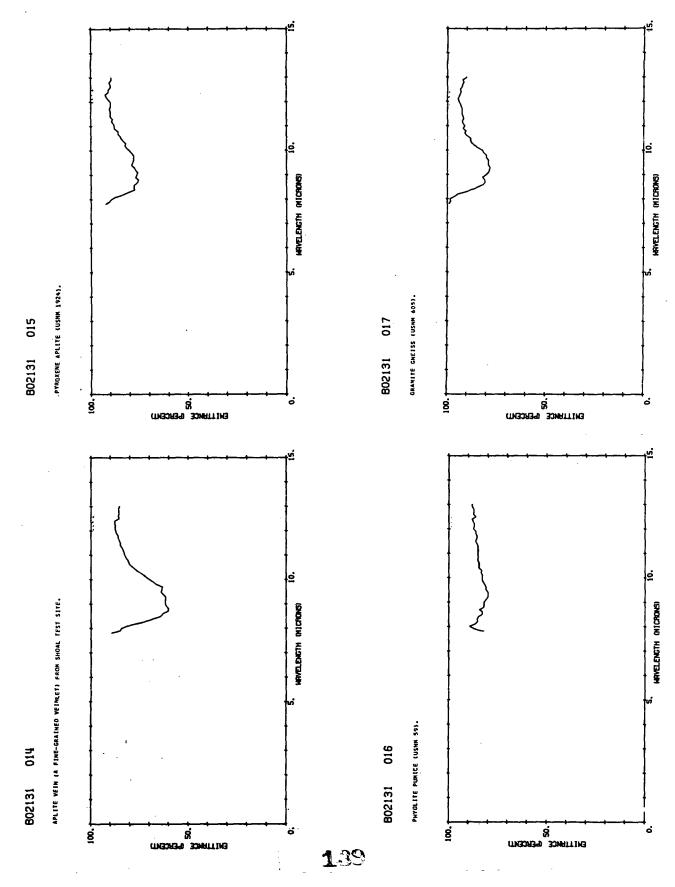
Data contained in this Section were obtained from the following documents:

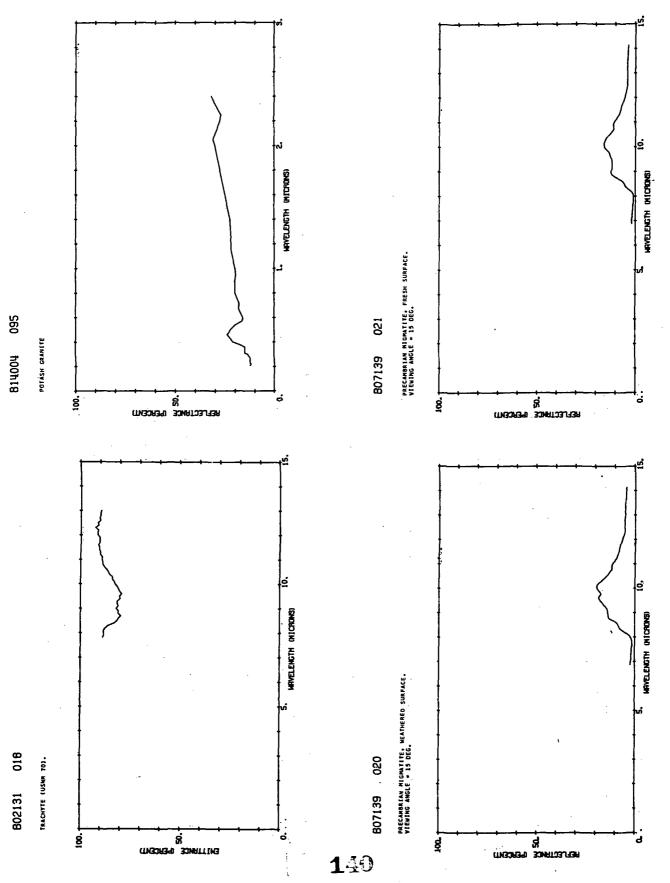
۰.-

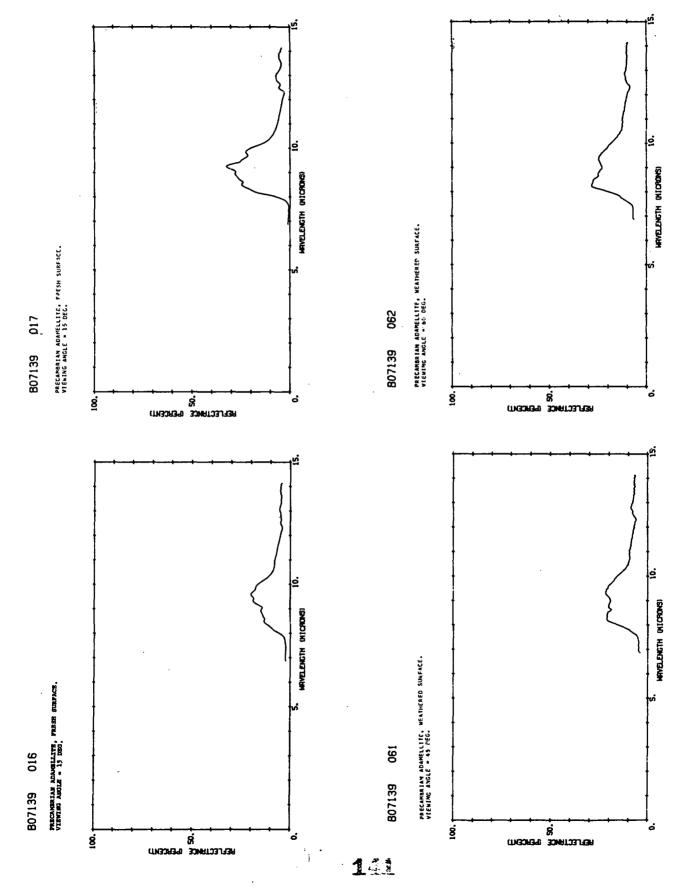

A0* * *	B03355
B00829	B03995
B00830	B04424
B01049	B04696
B01176	B04802
B01339	B04803
B01352	B04804
B01367	B04979
B01368	B05272
B01761	B07139
B01818	B13946
B01948	B14004
B02131	B20000
B02418	
B03258	
B03333	

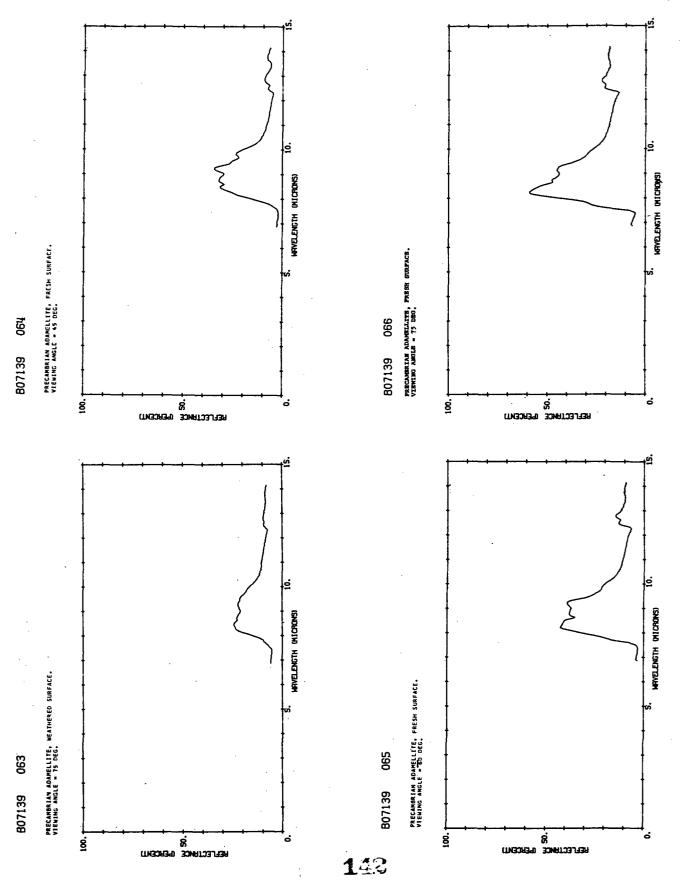
101

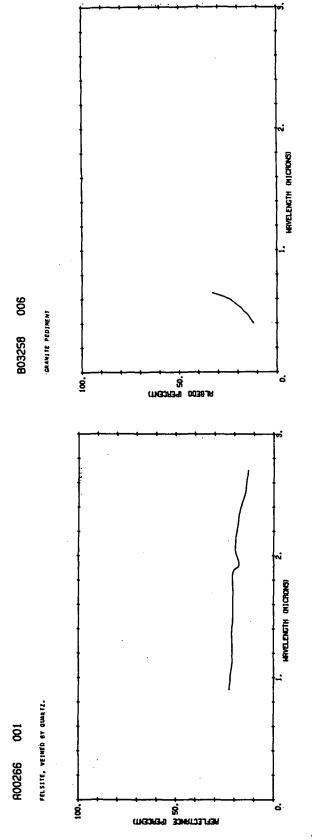

IGNEOUS ROCKS

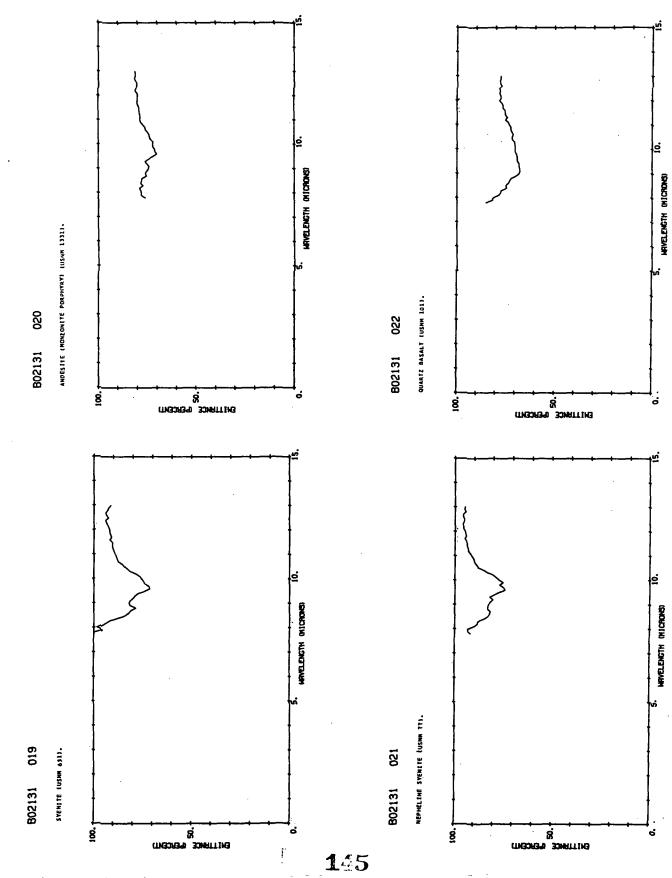

Acidic (greater than 65% SiO₂) Silicate Rocks

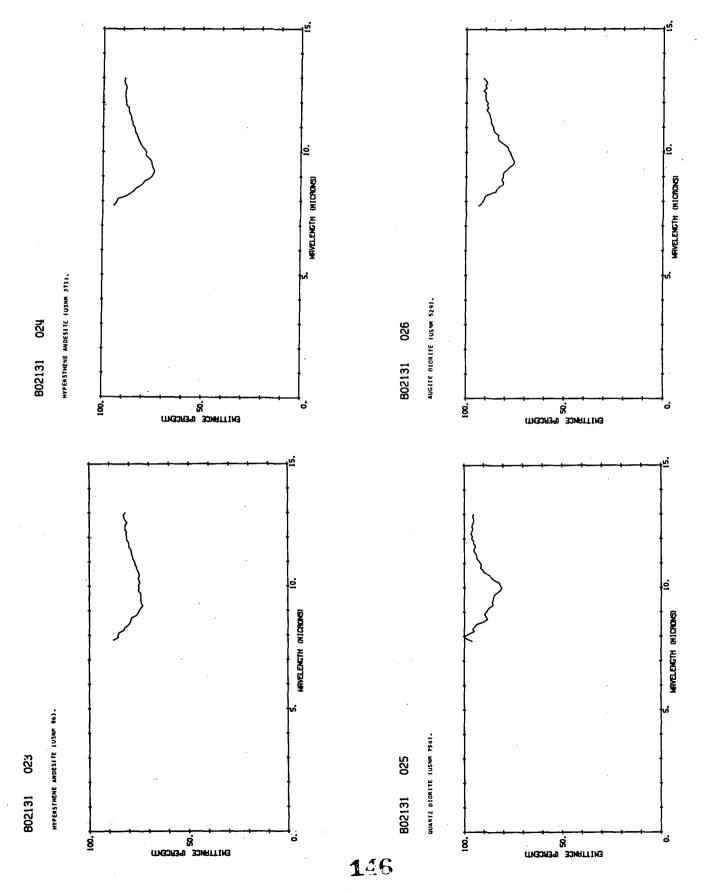

ļ

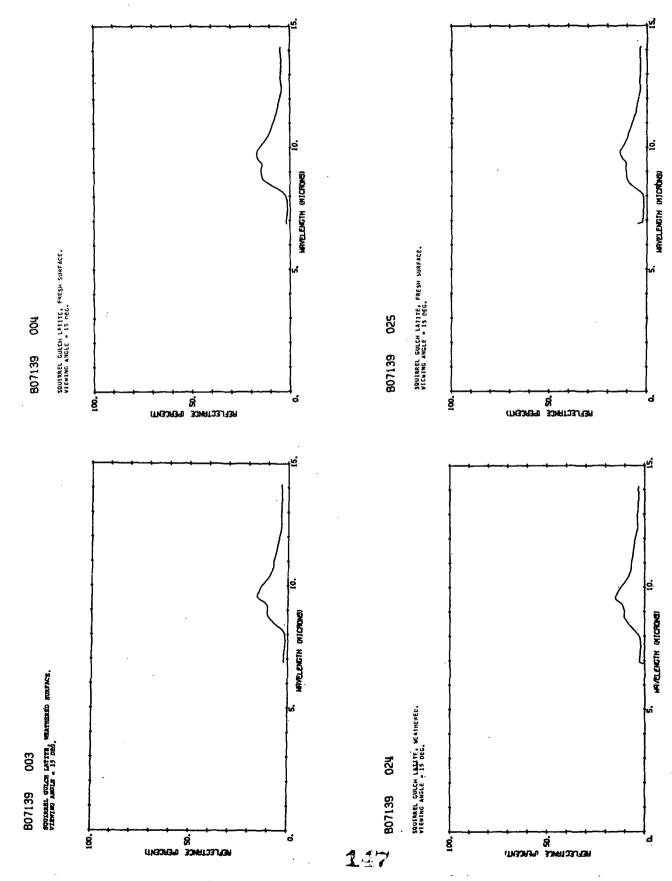


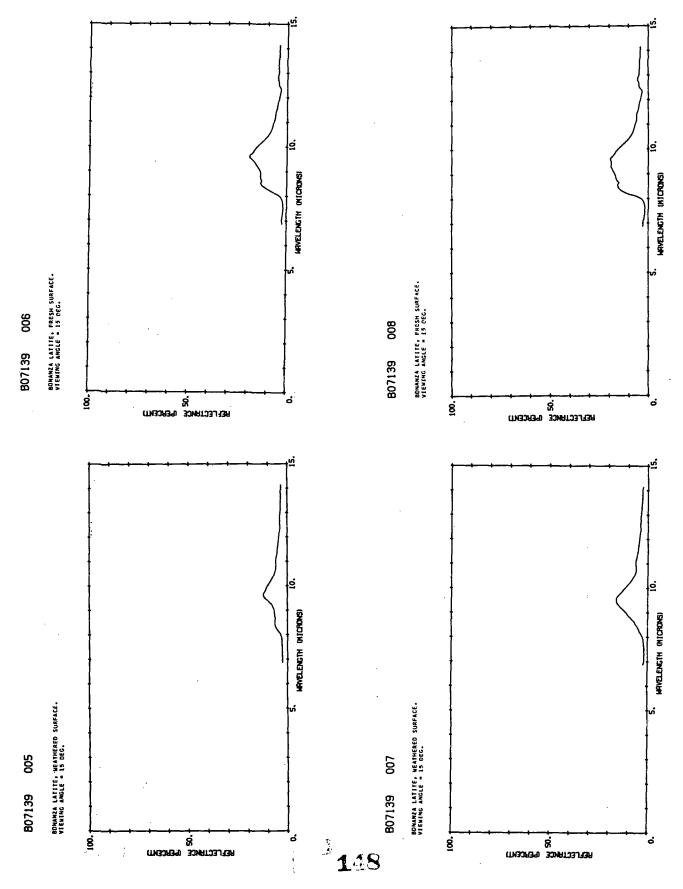

s.,

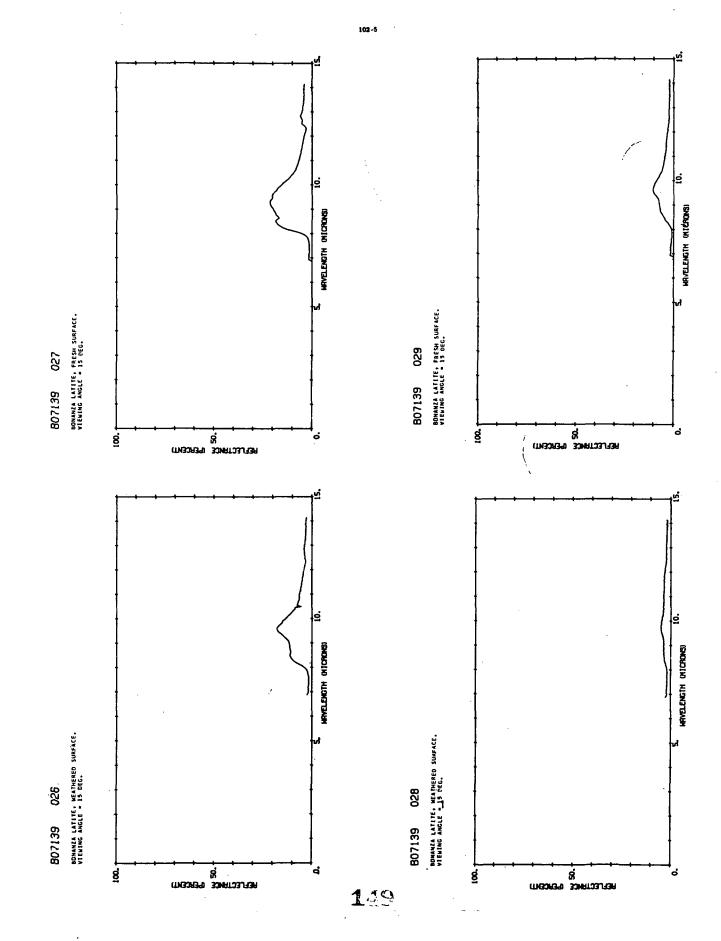


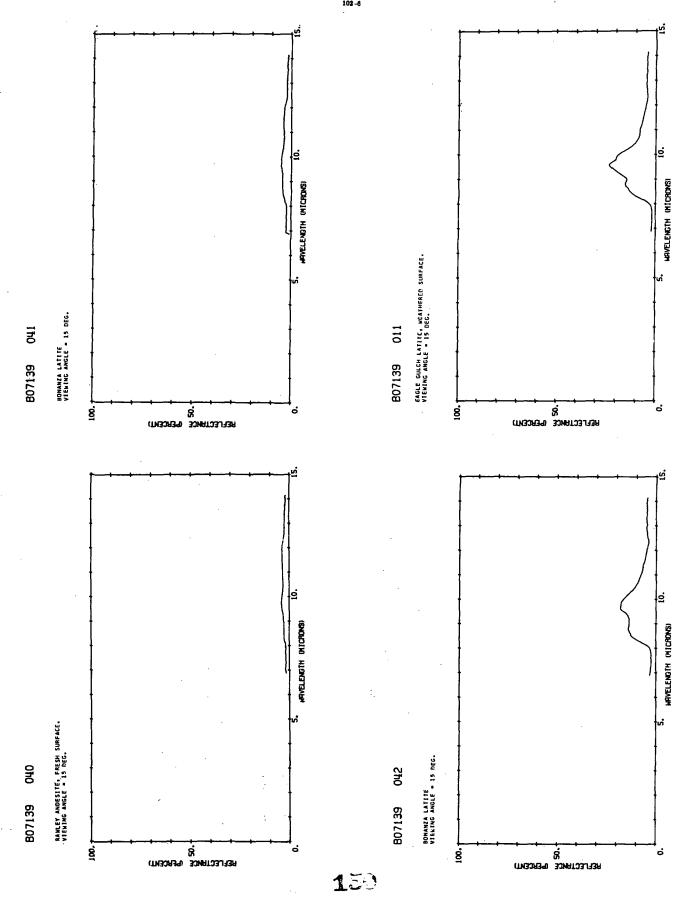


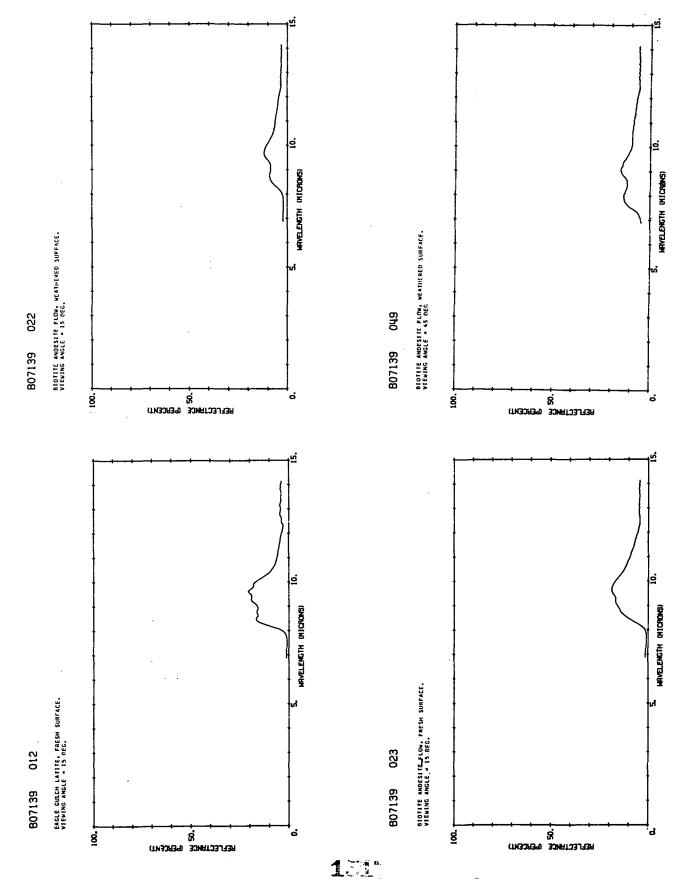

102

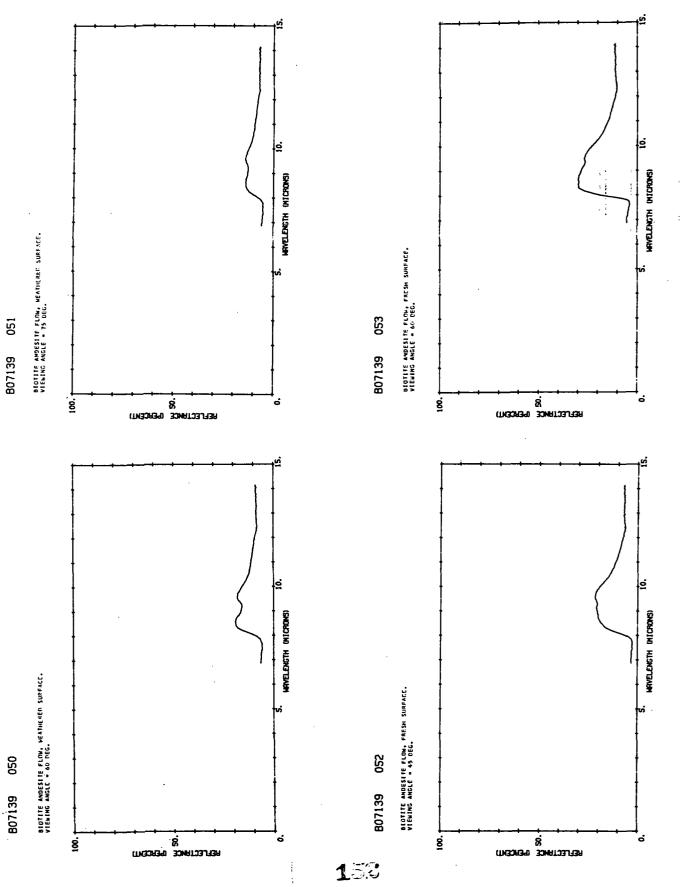

IGNEOUS ROCKS

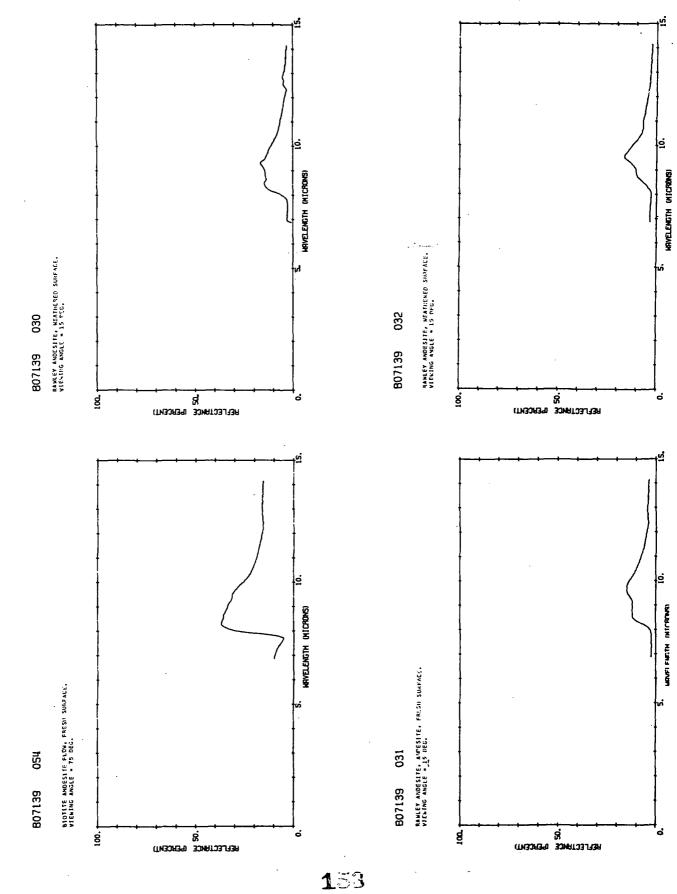

Intermediate (53 to 65% SiO₂) Silicate Rocks

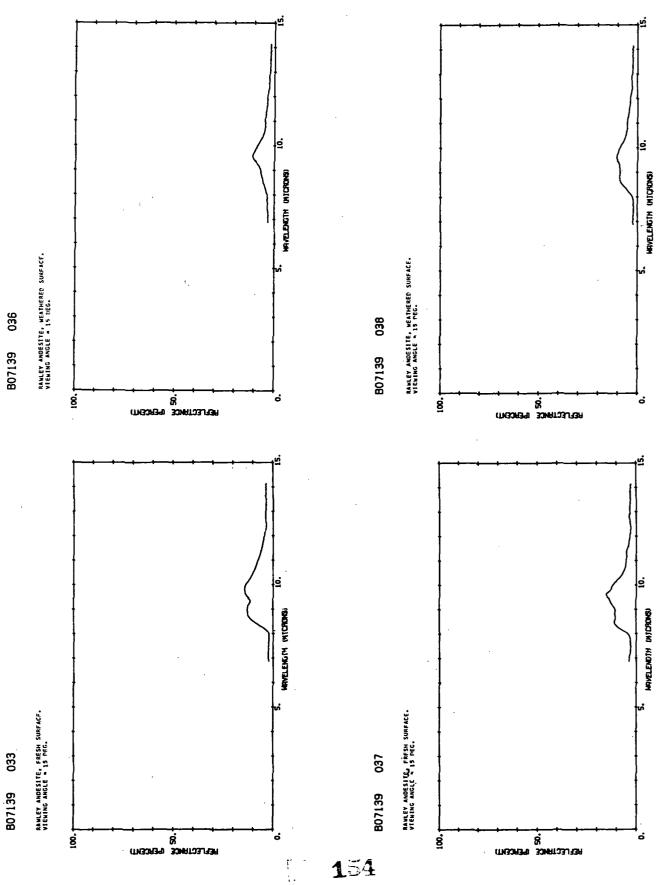

144

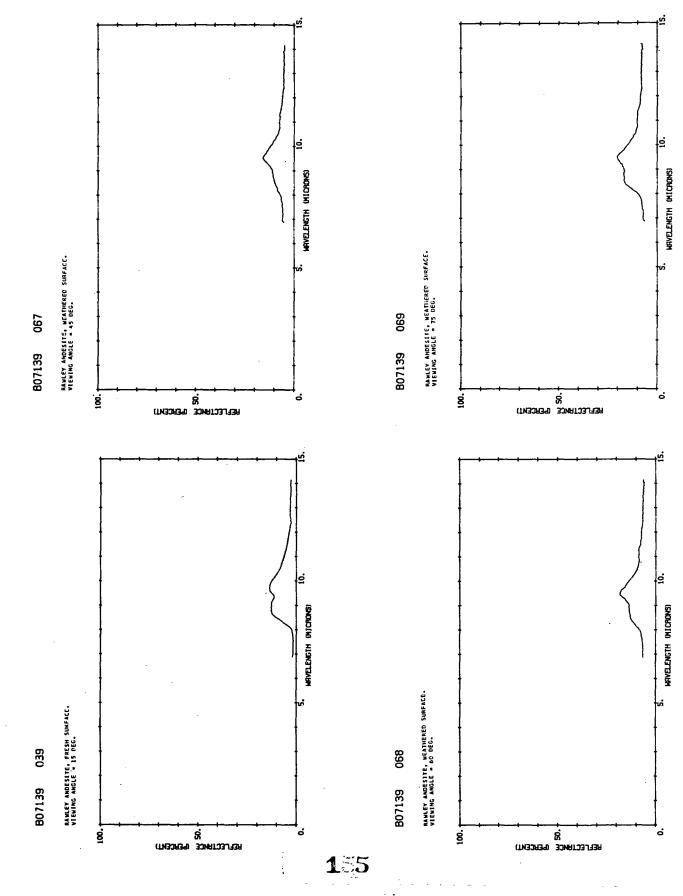


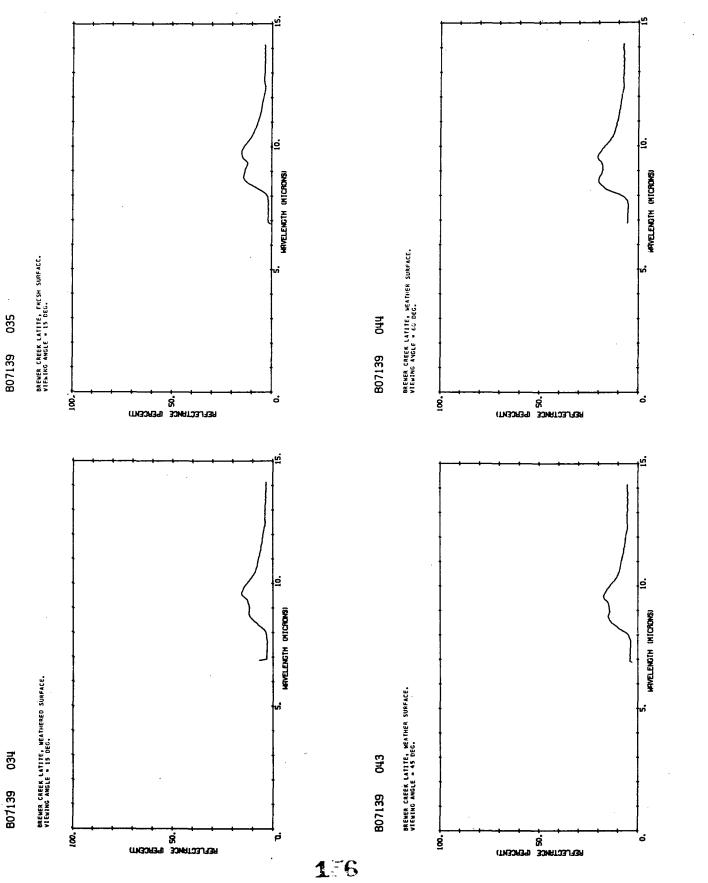


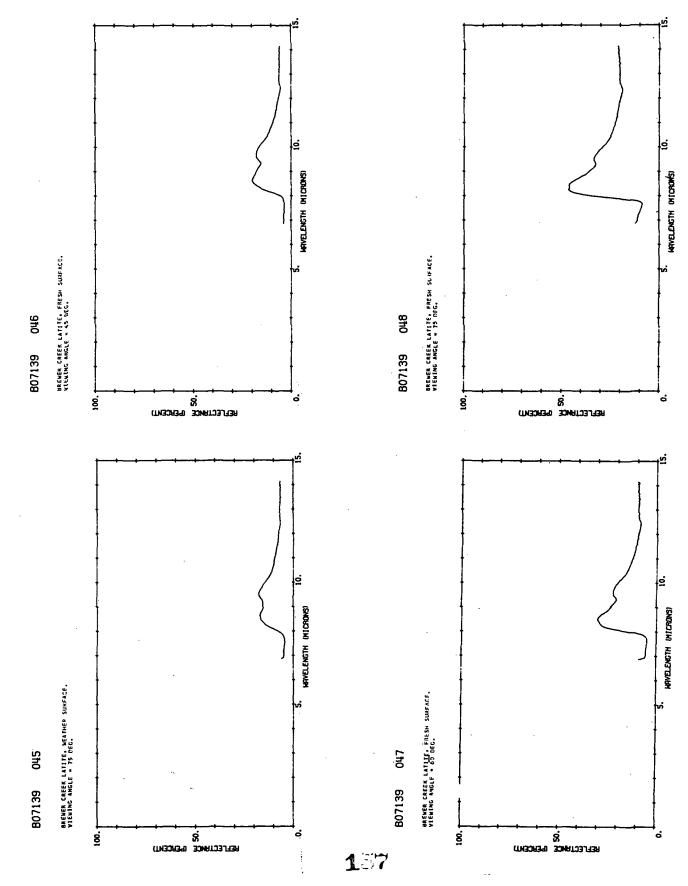


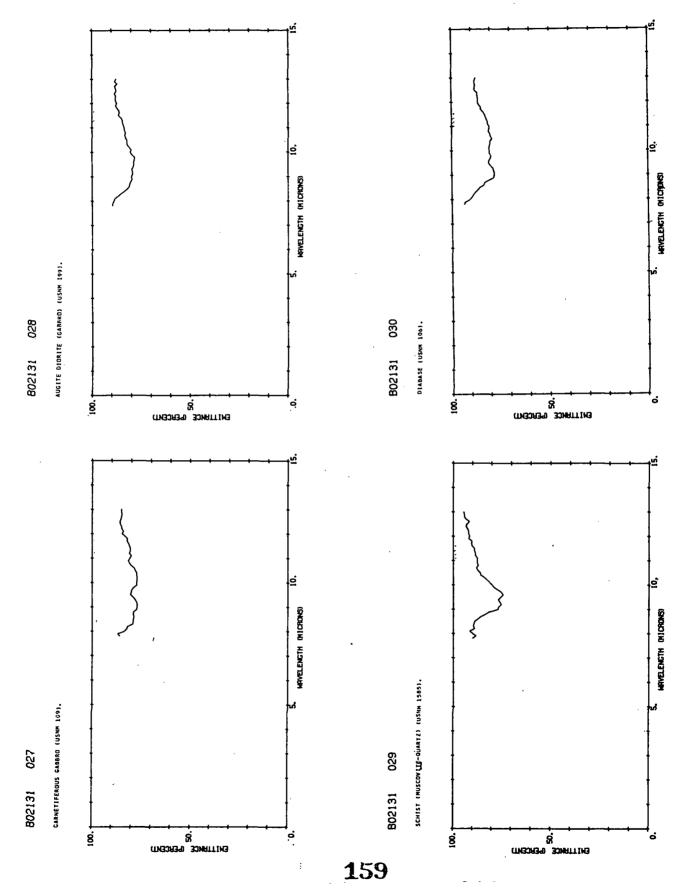


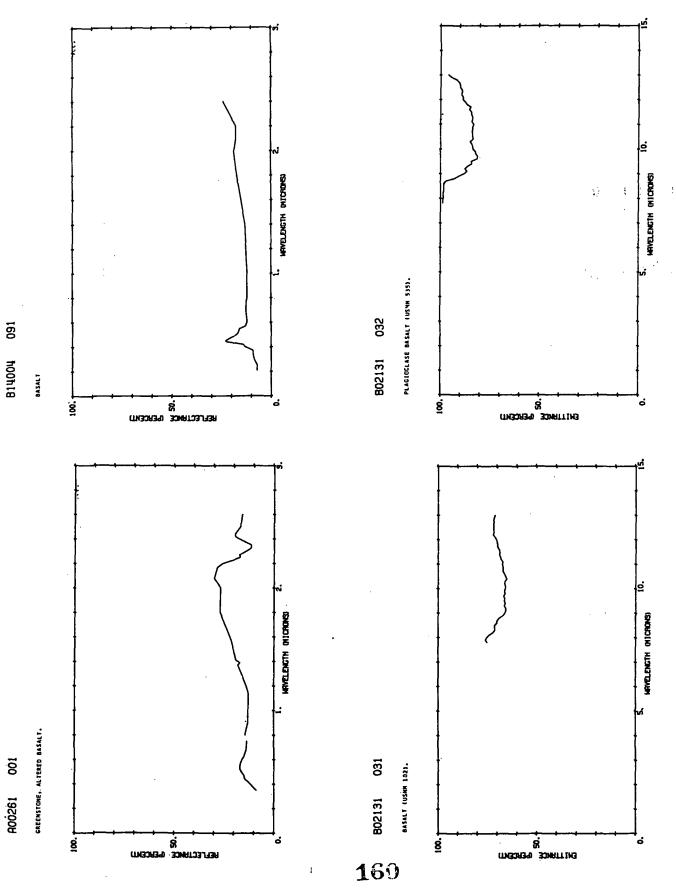


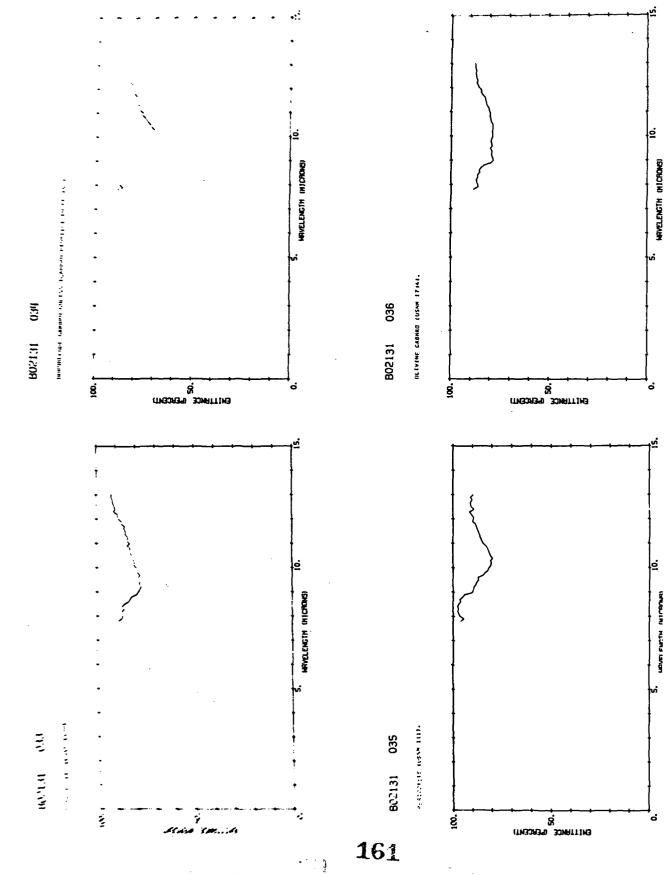




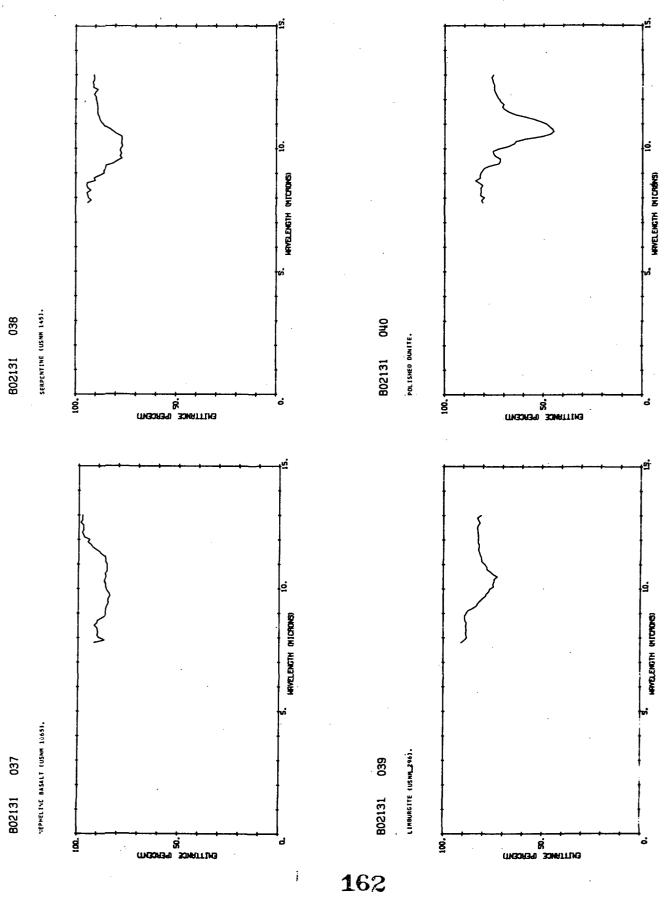


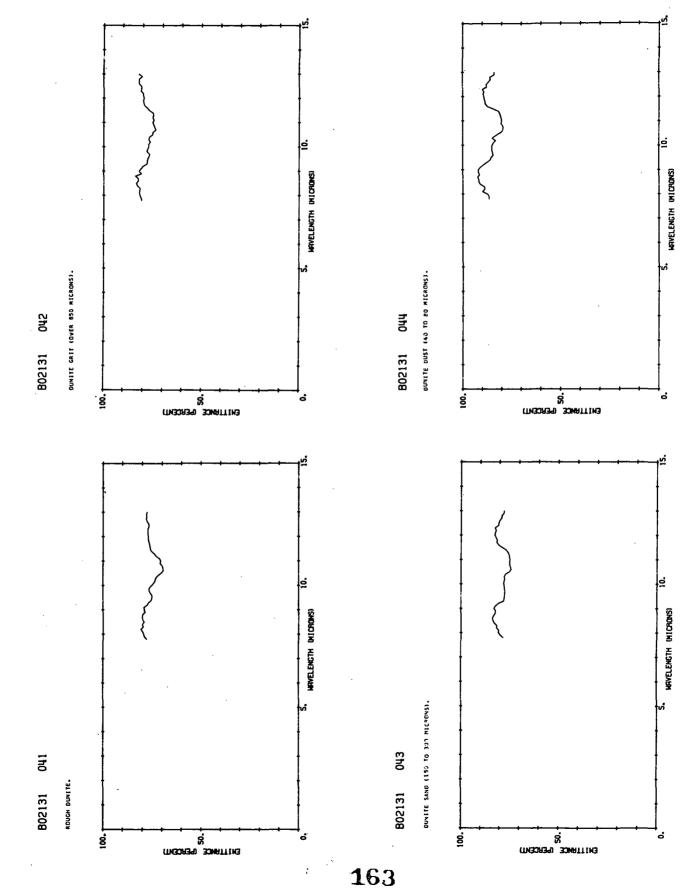


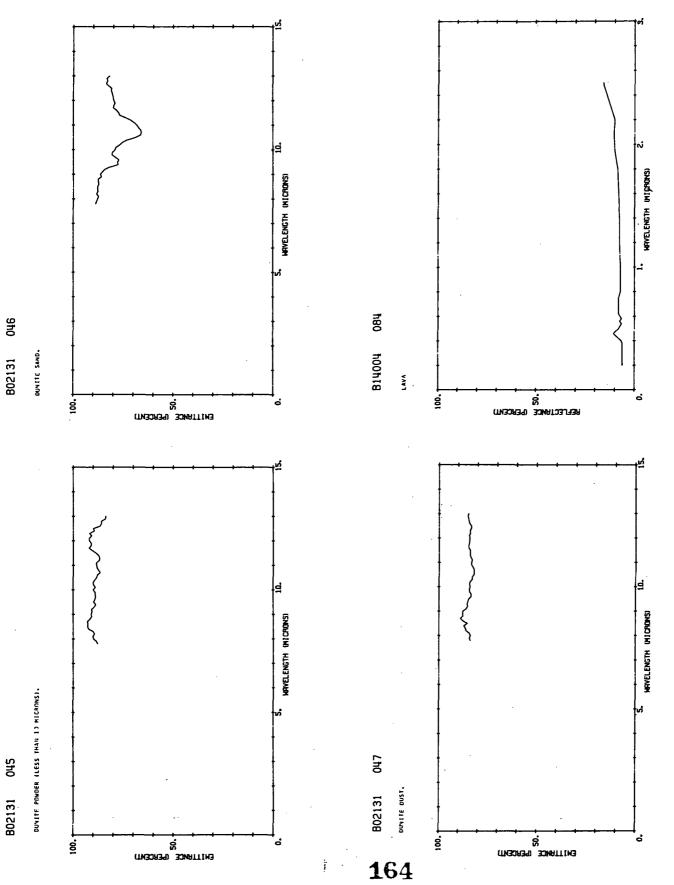


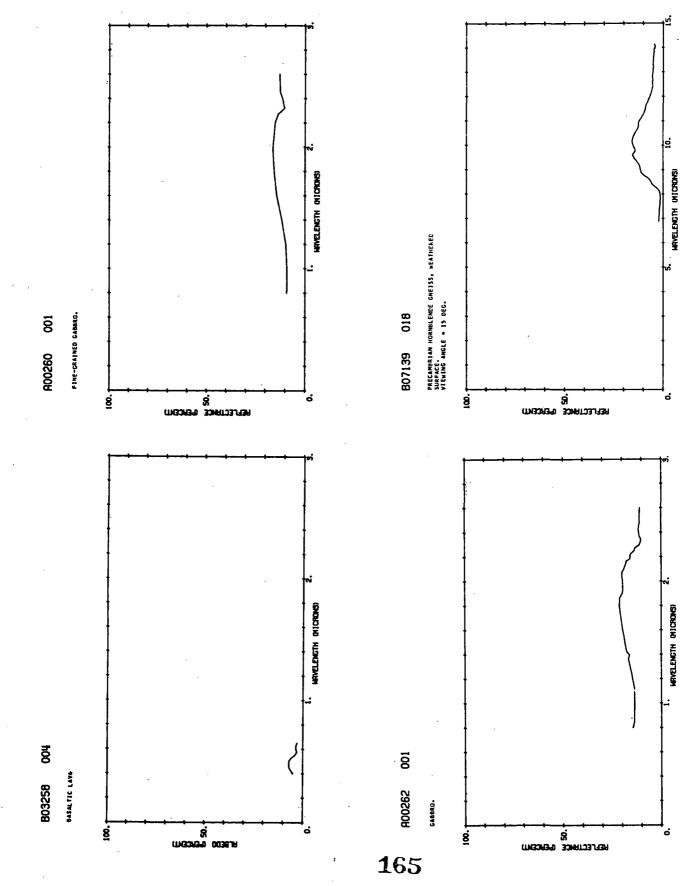

103 IGNEOUS ROCKS

Basic and Ultrabasic (less than 53% SiO₂) Silicate Rocks

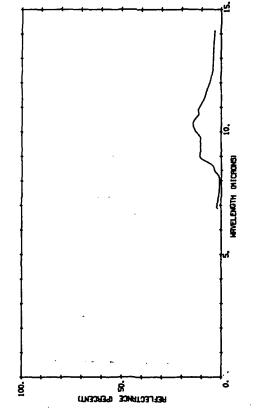

158



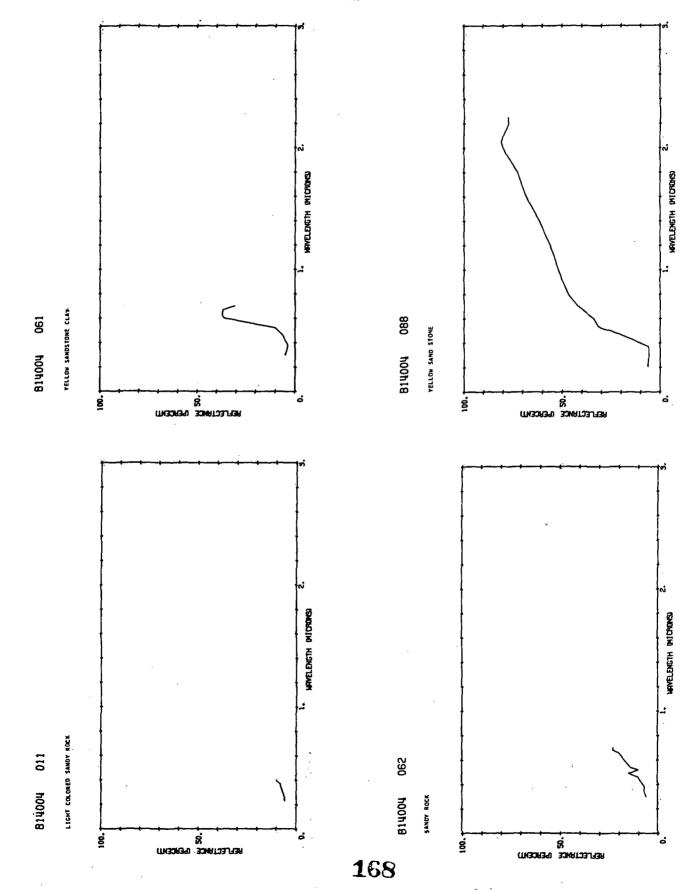


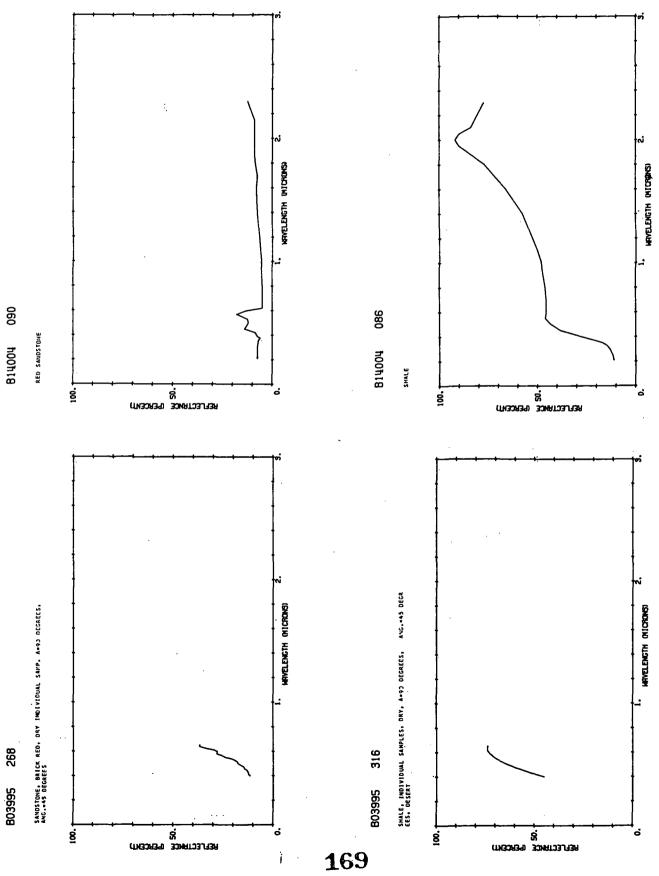


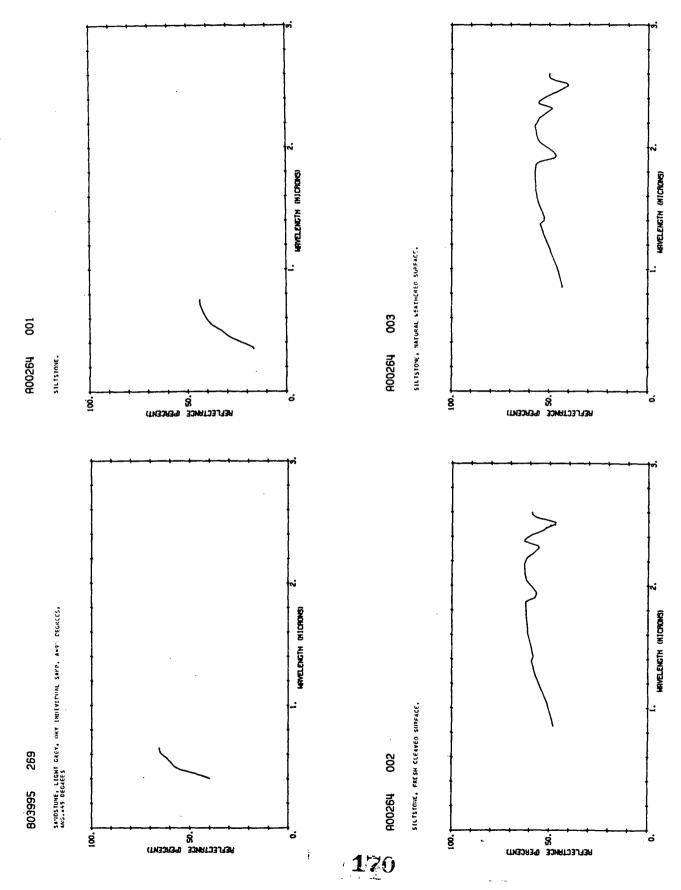
105.5

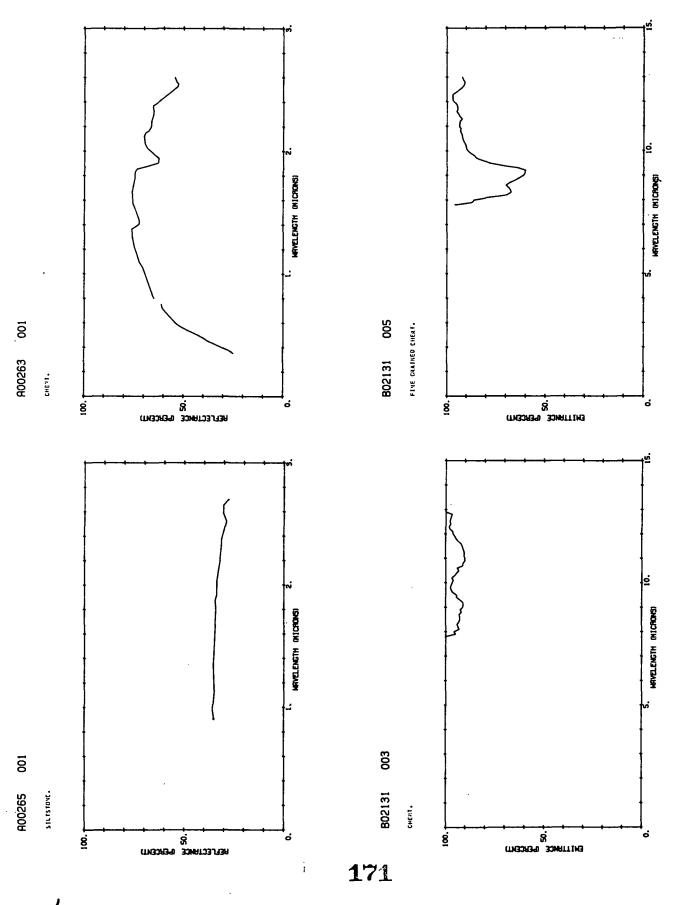


Precionaliam econolânce guelss, Presen survace. Vientro angla = 15 deg.

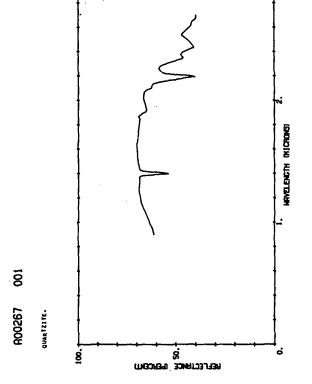


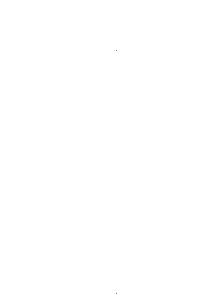

166


SEDIMENTARY AND METAMORPHIC ROCKS Silicate Sedimentary and Metamorphic Rocks


111

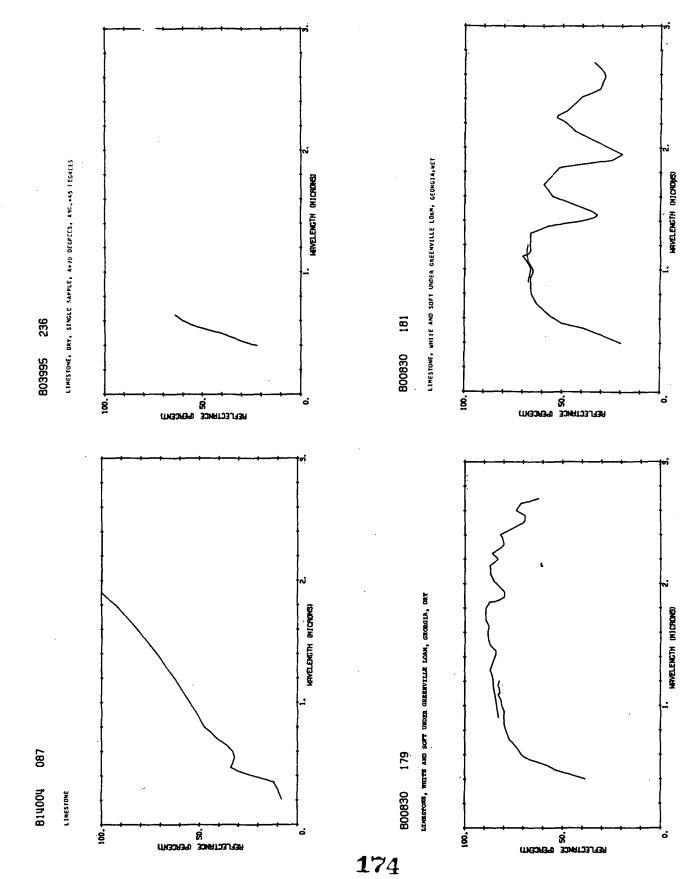
167

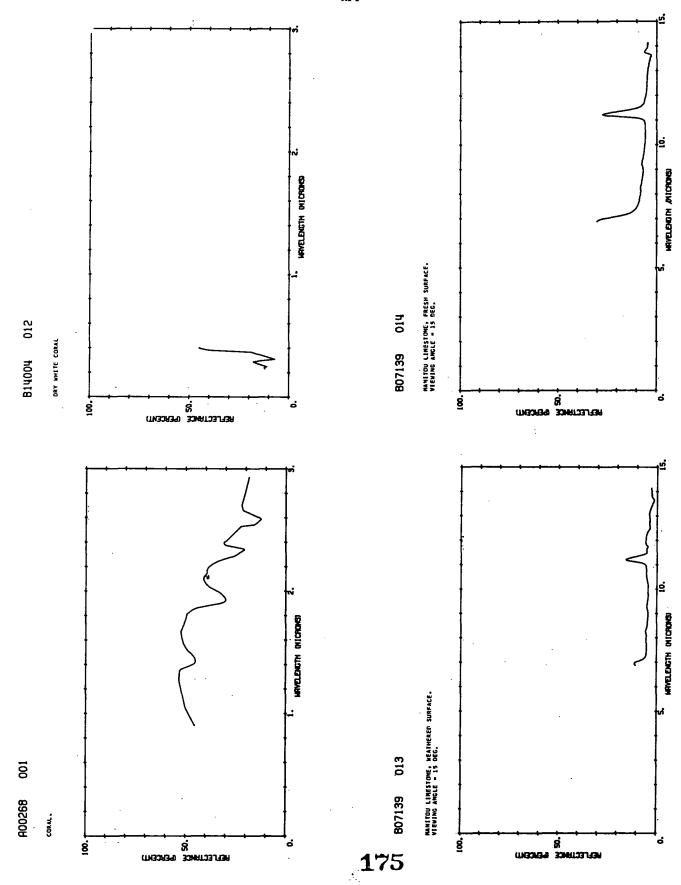


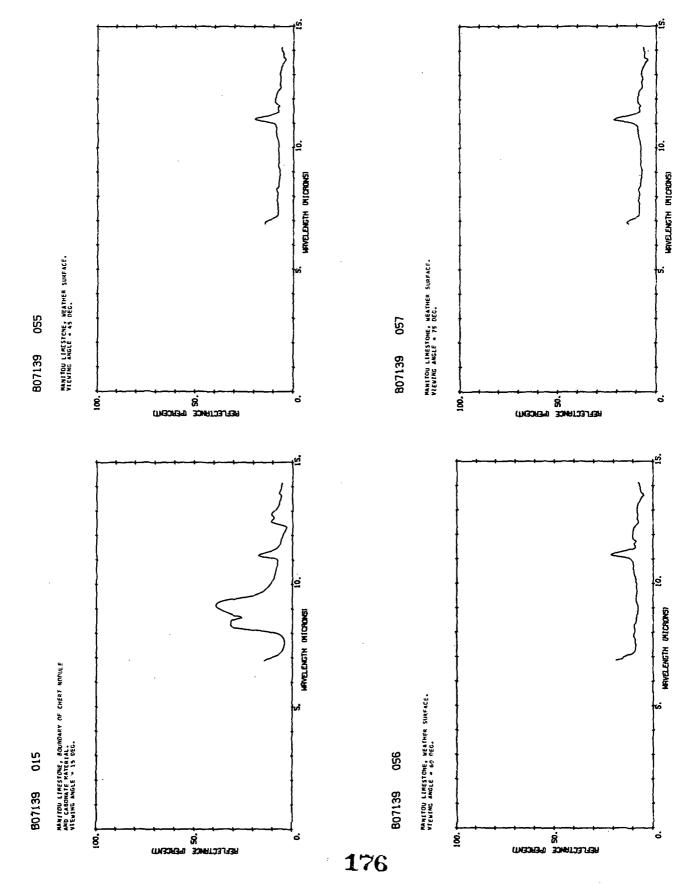


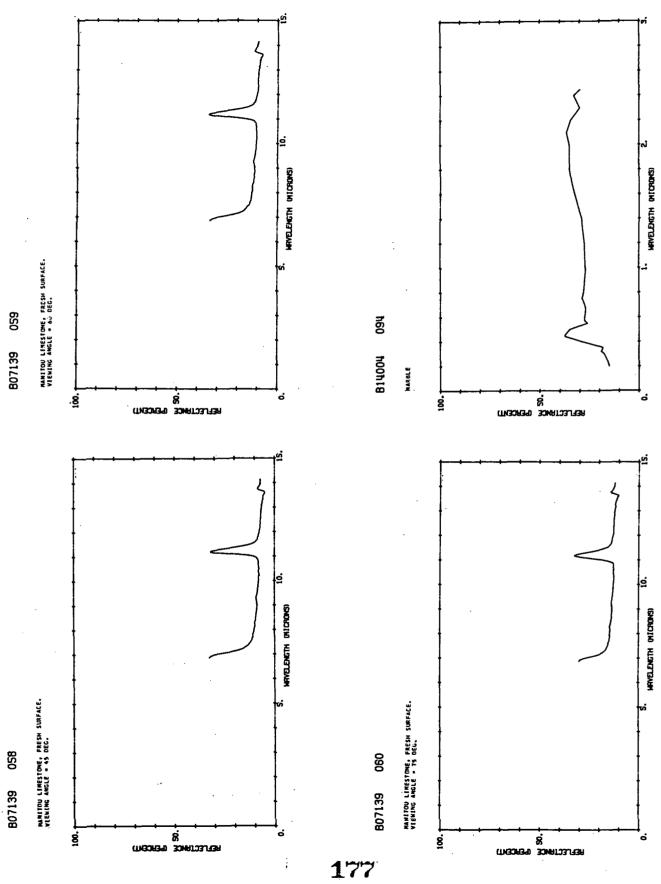
C= 4

7

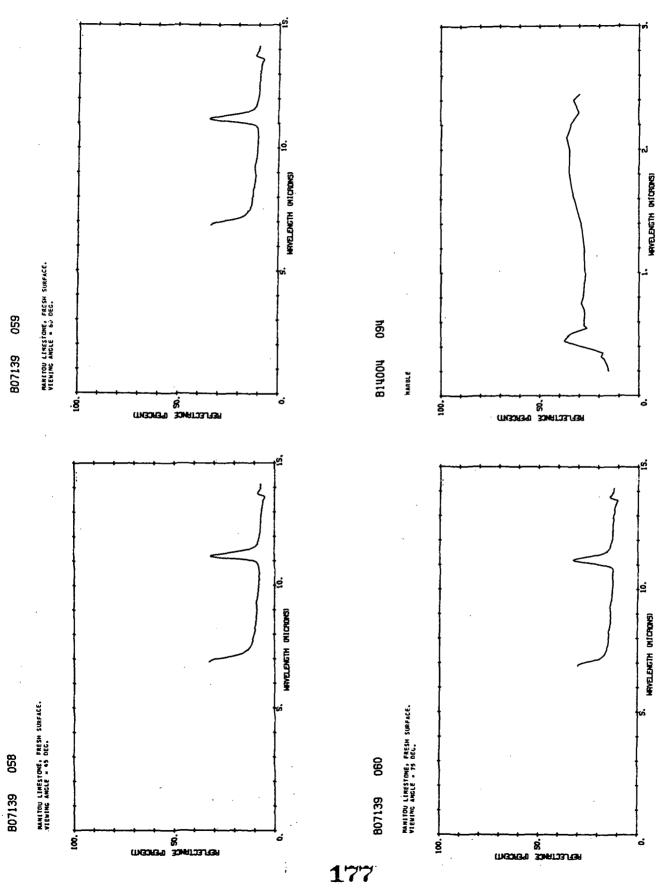


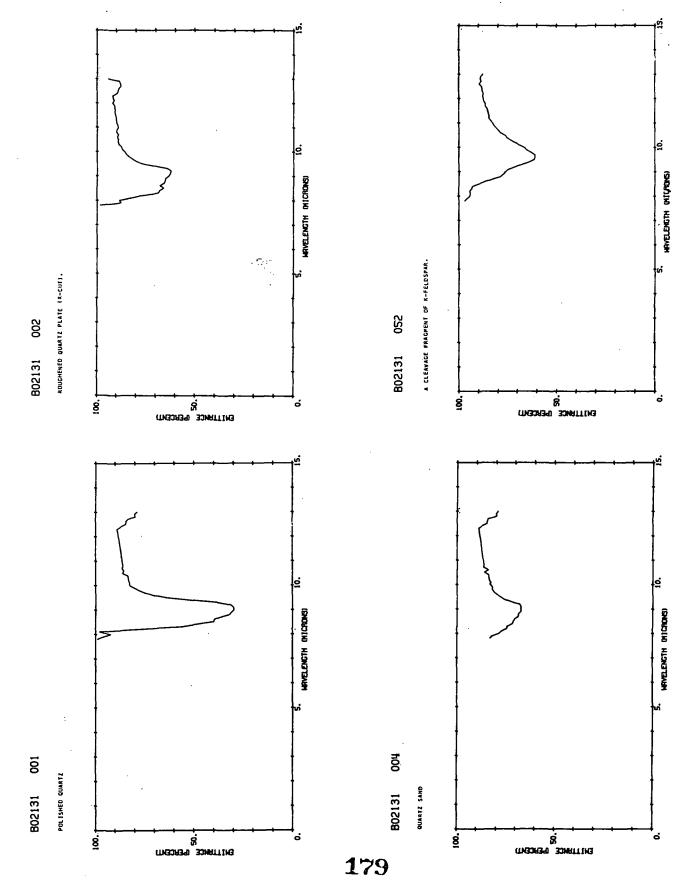


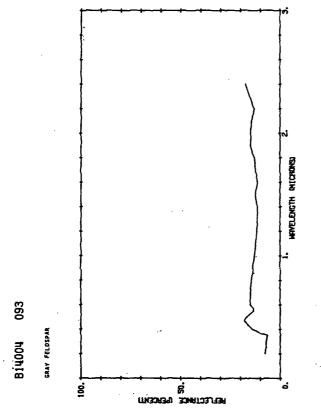

.


.

112 SEDIMENTARY AND METAMORPHIC ROCKS Carbonate Sedimentary and Metamorphic Rocks

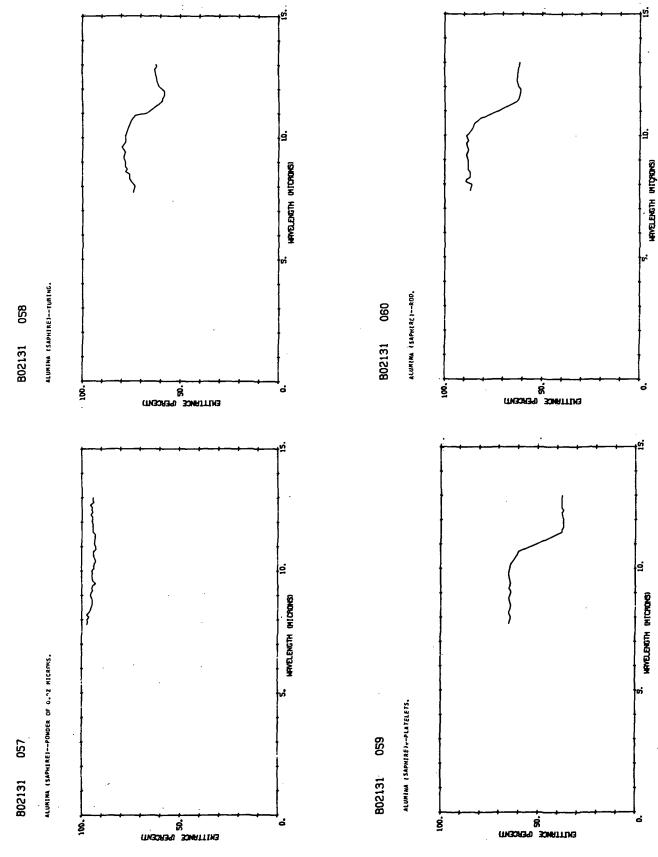


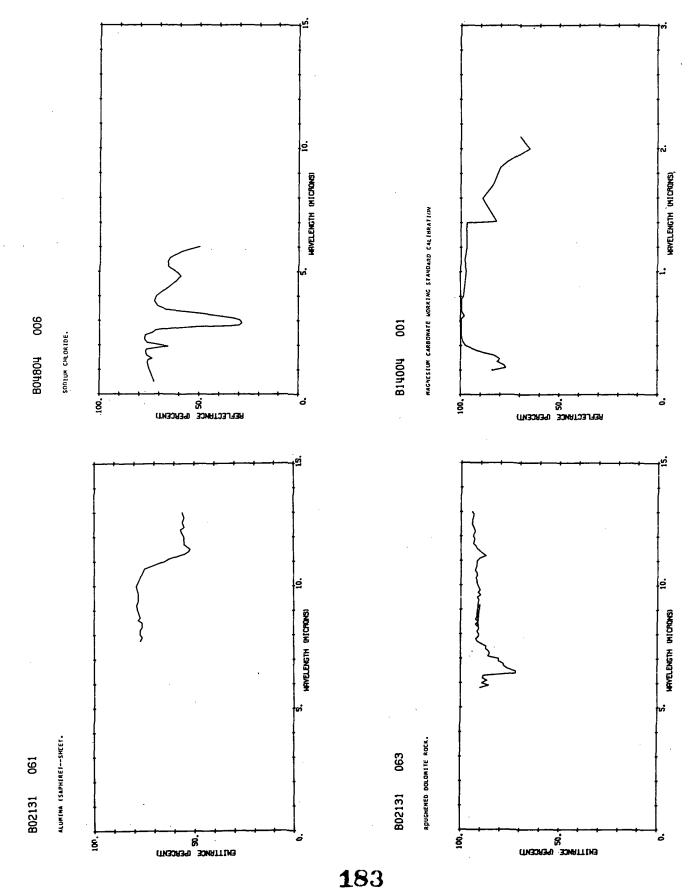




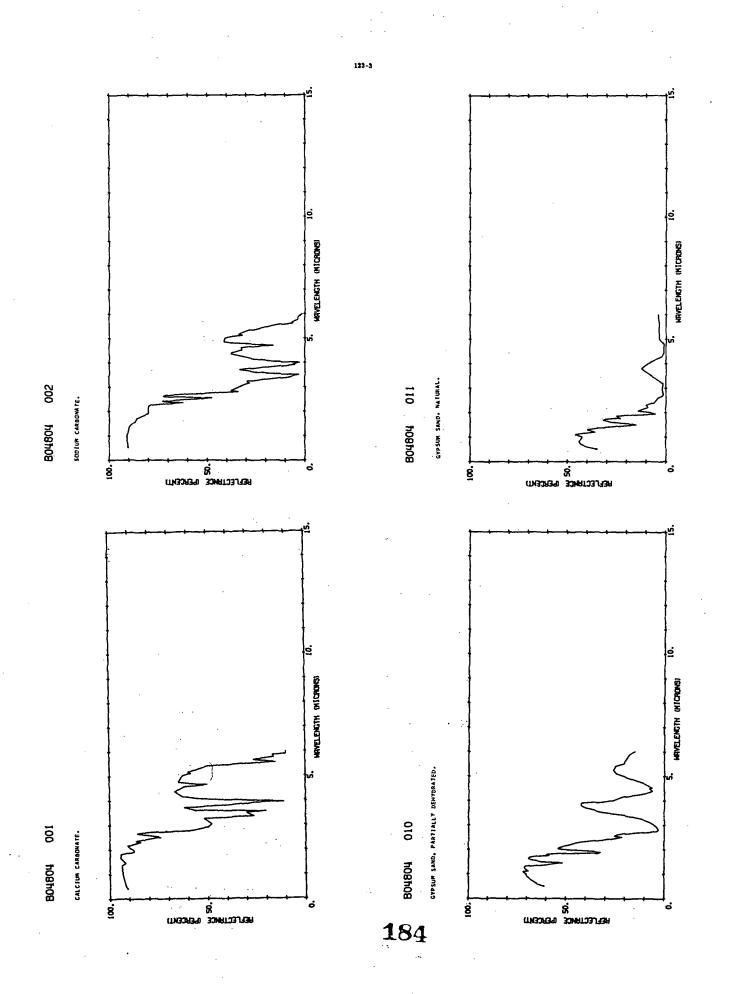
121 MINERALS Silicate Minerals

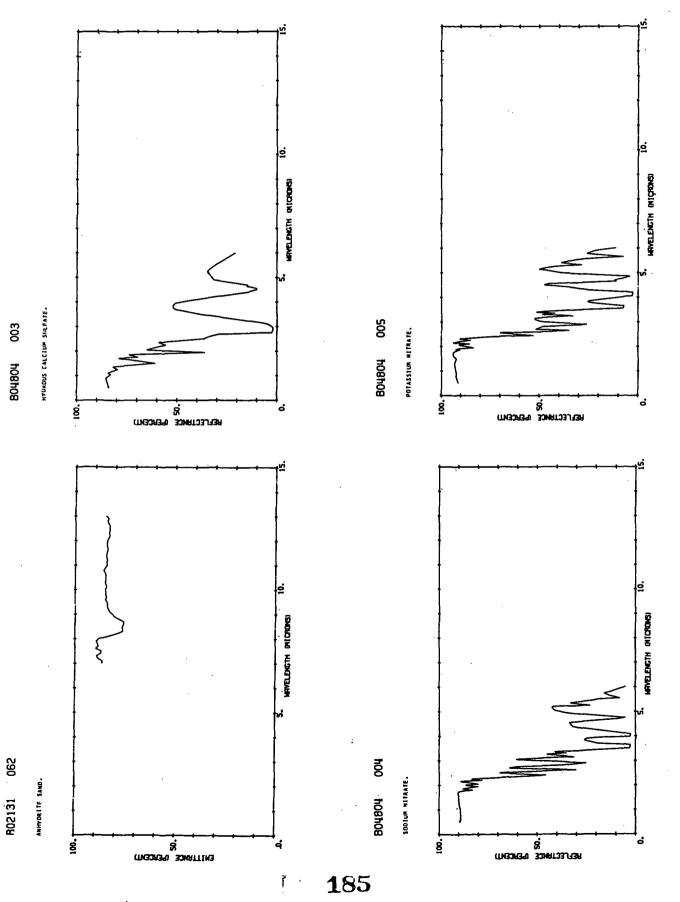
.

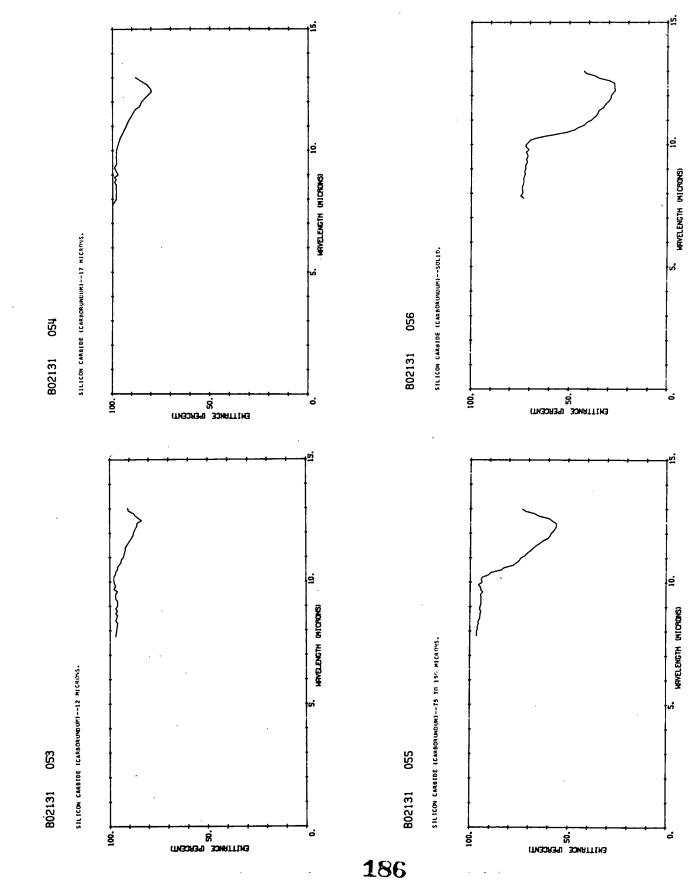



123 MINERALS Accessory Minerals

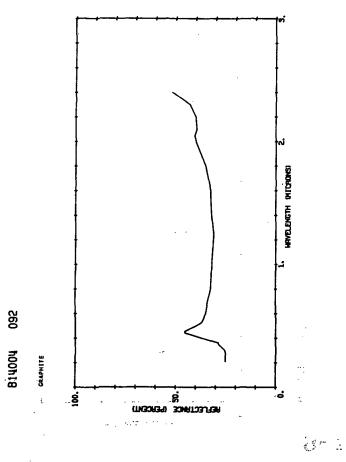
181


. .



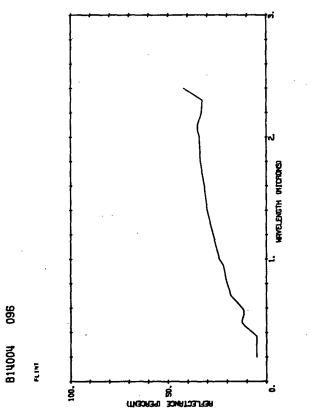

182

.



. . .

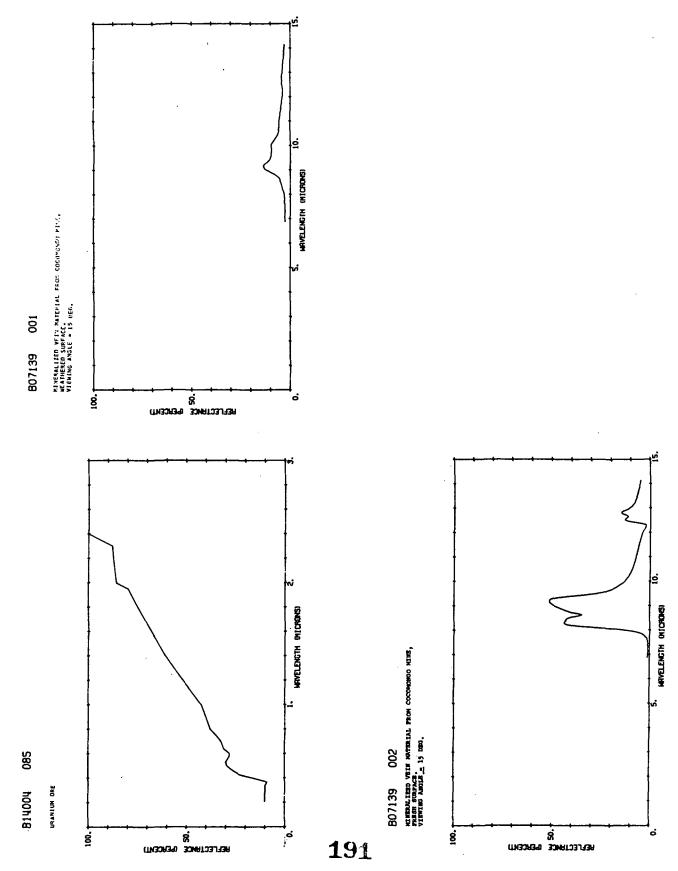
.


·. .

.

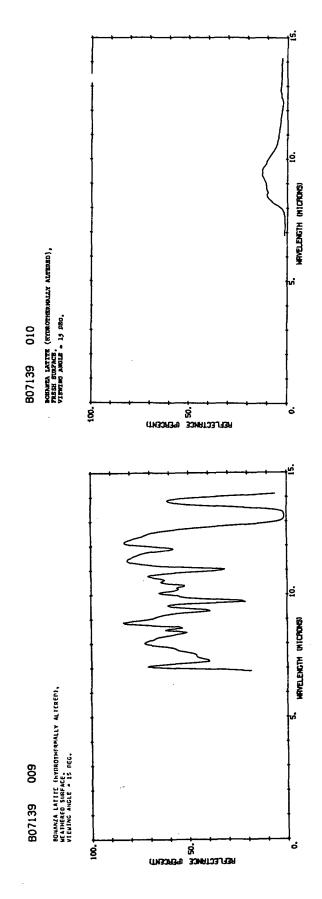
.

ORES AND HYDROTHERMALLY ALTERED ROCK



189

ORES AND HYDROTHERMALLY ALTERED ROCK

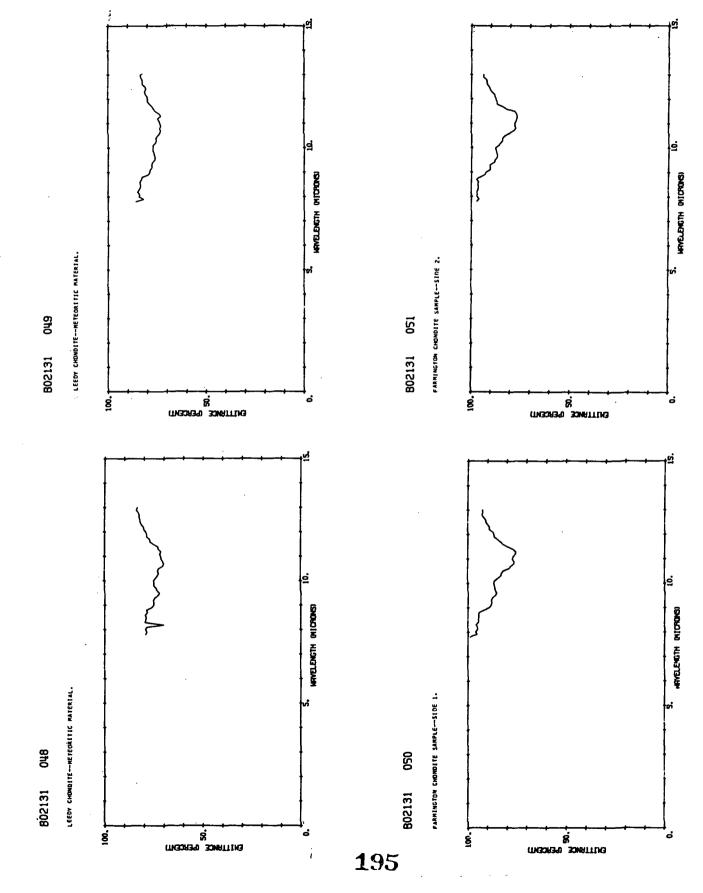

131

Ores

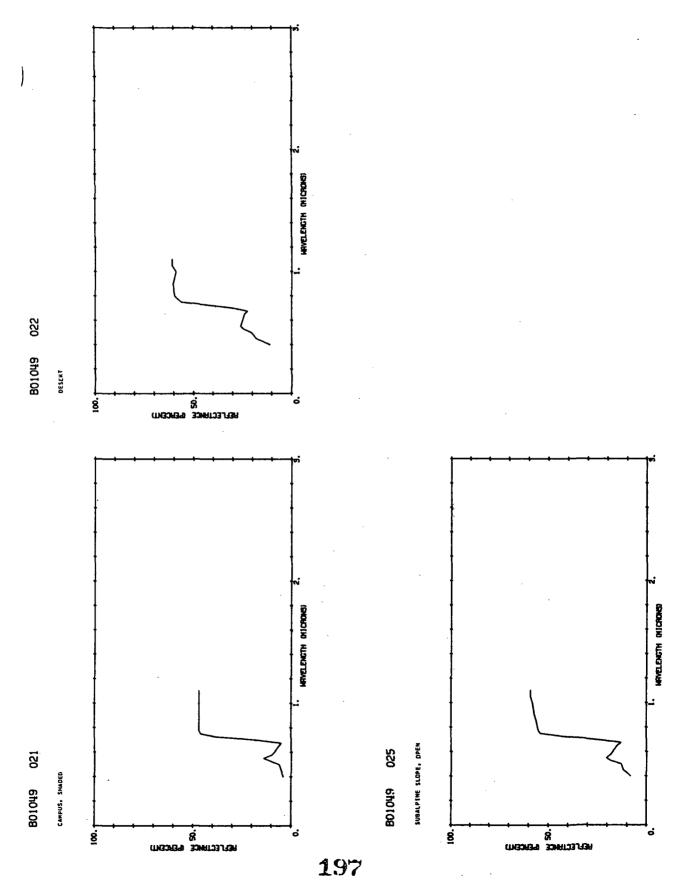
132

ORES AND HYDROTHERMALLY ALTERED ROCK Hydrothermally Altered Rock

193


141 METEORITES Chondrites

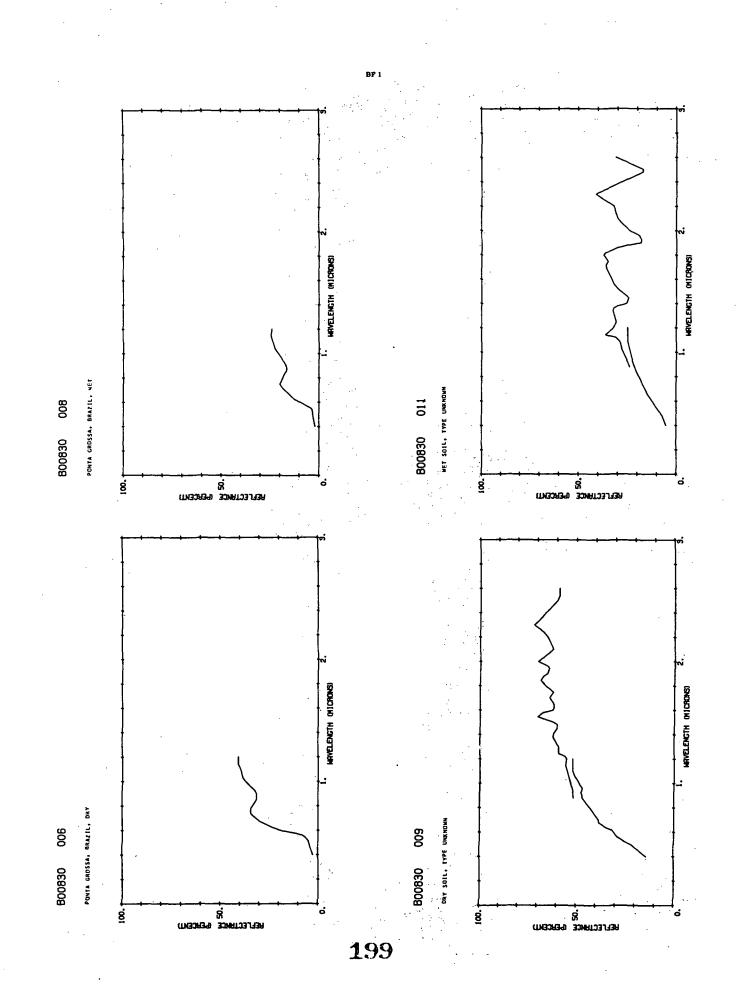
. .

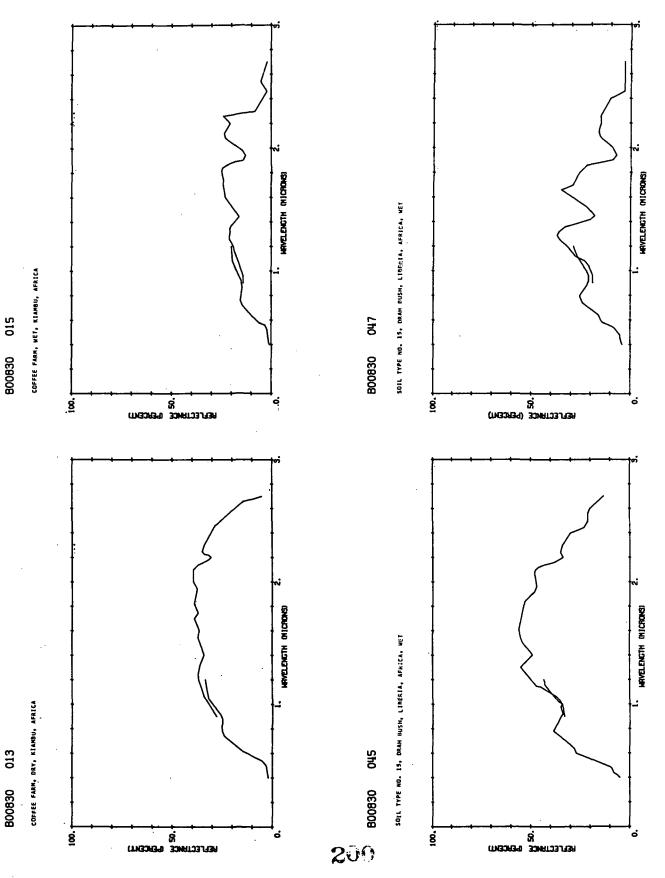

194

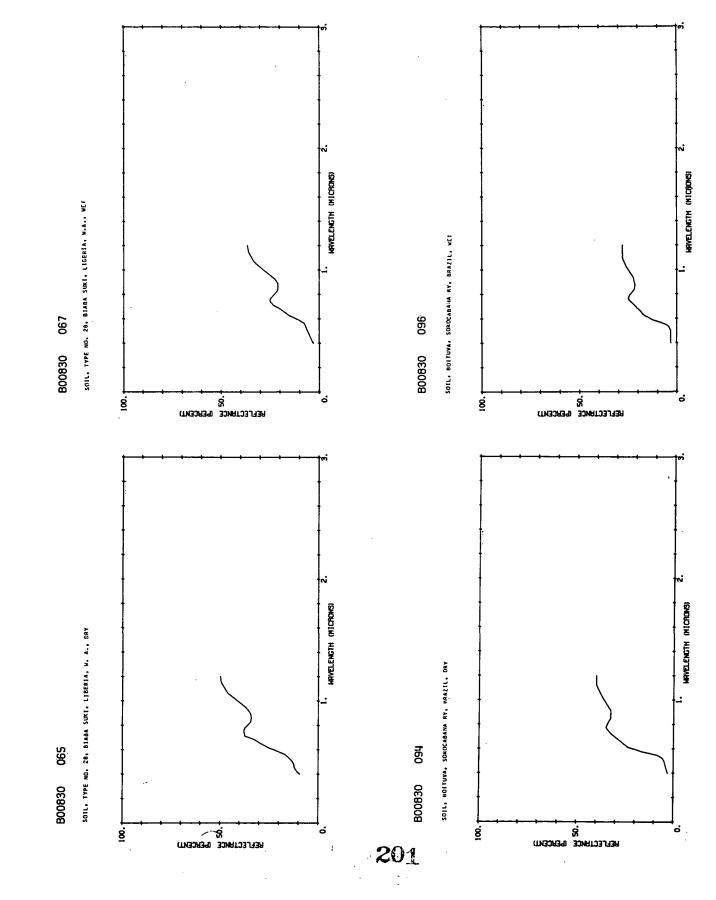
. *

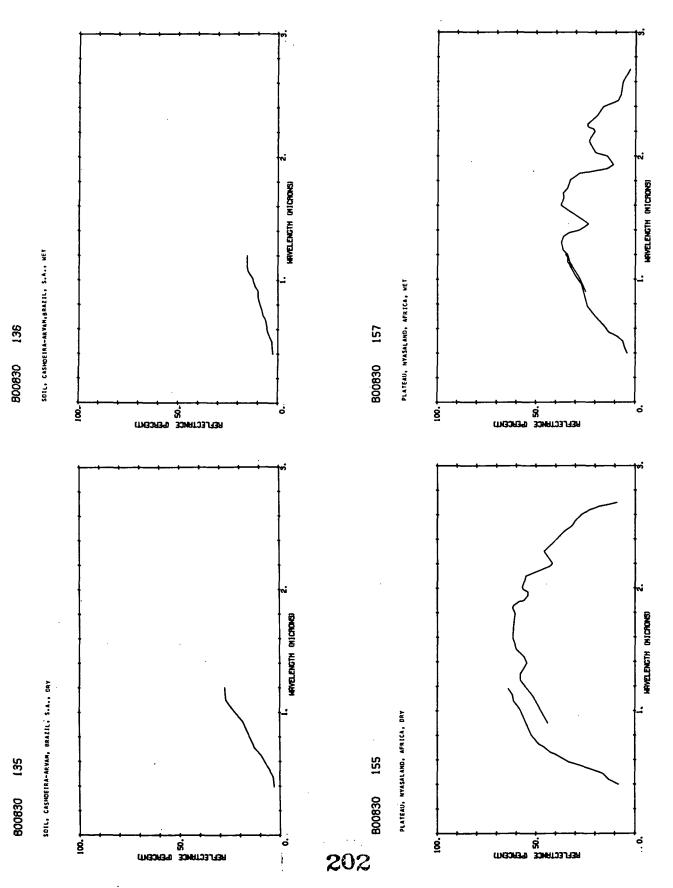
.

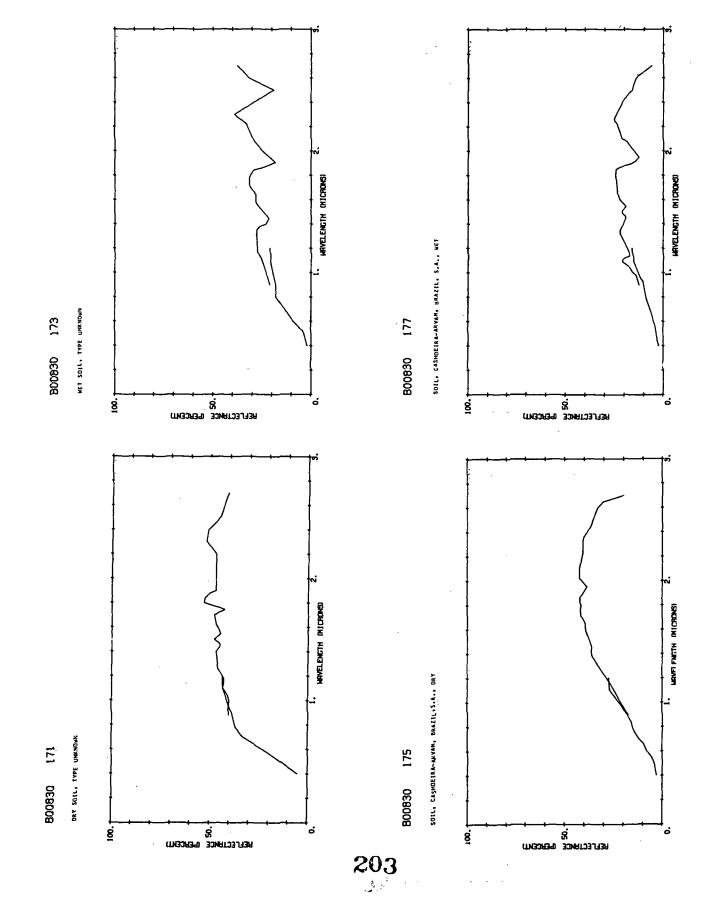
BE TERRAIN UNIFORMITY

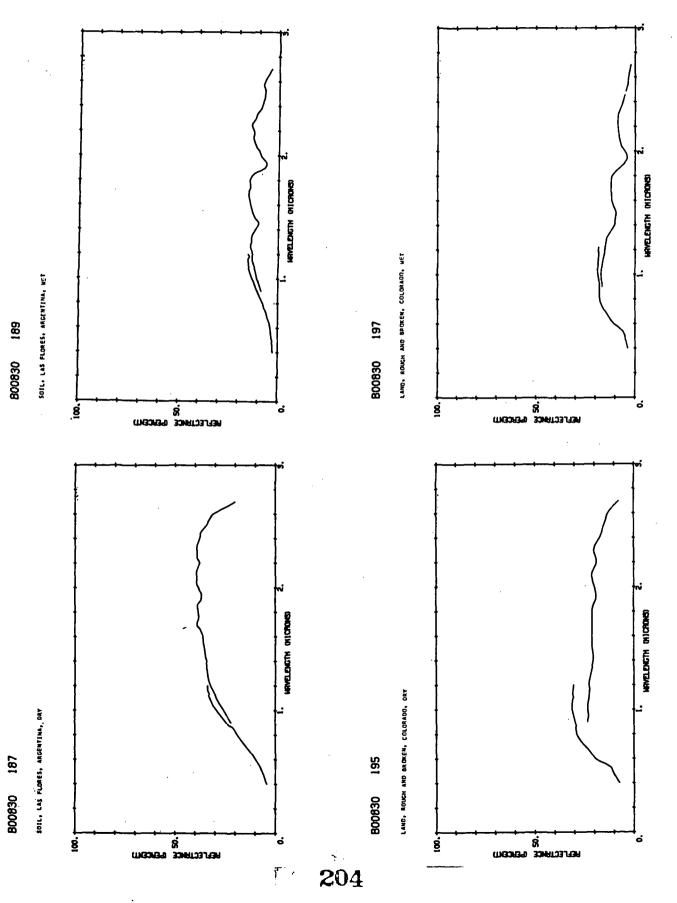


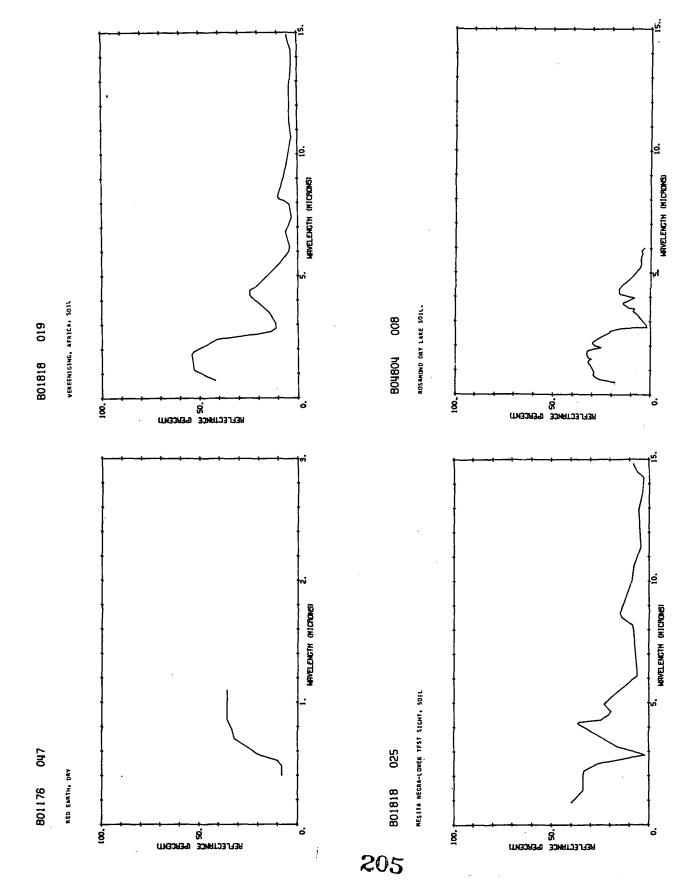

BE 1

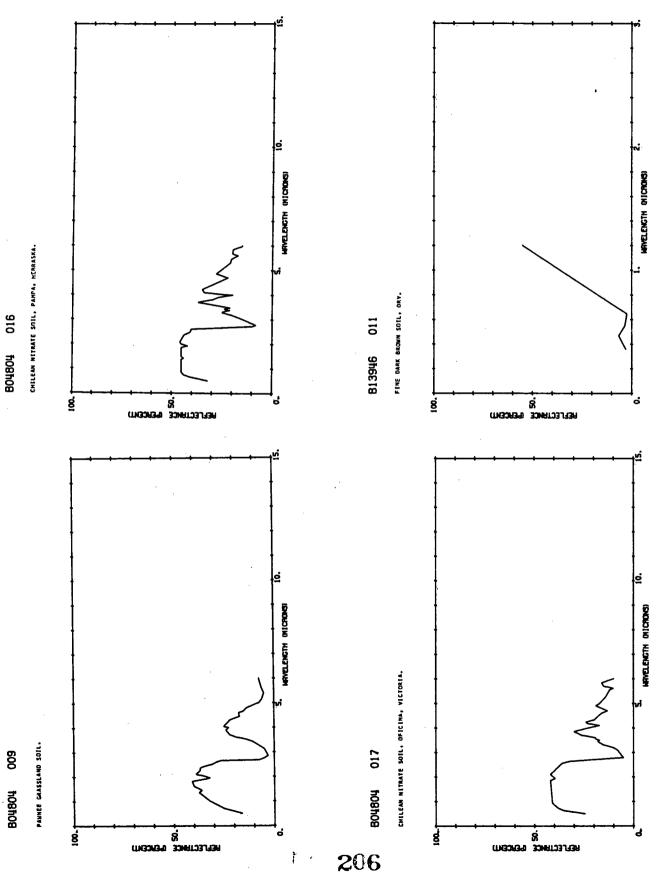

BF SOIL

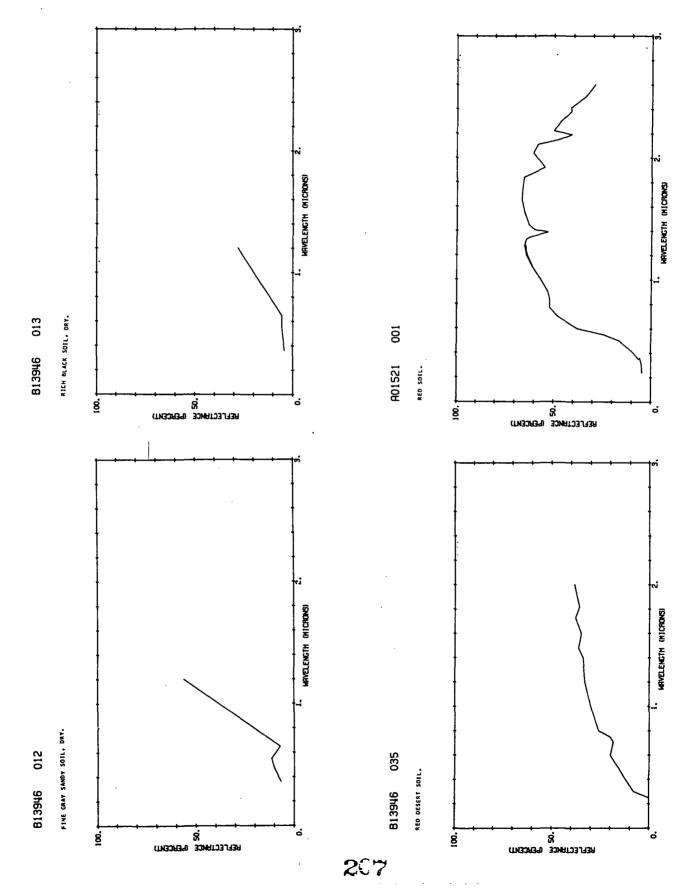

198

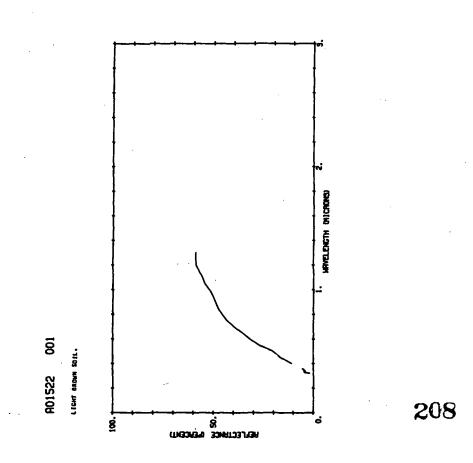

.



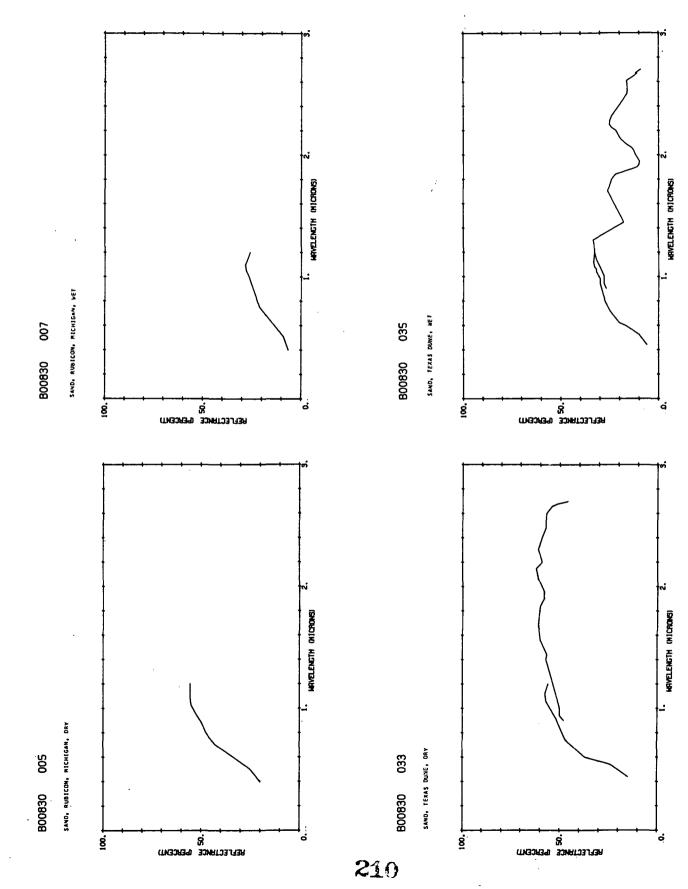


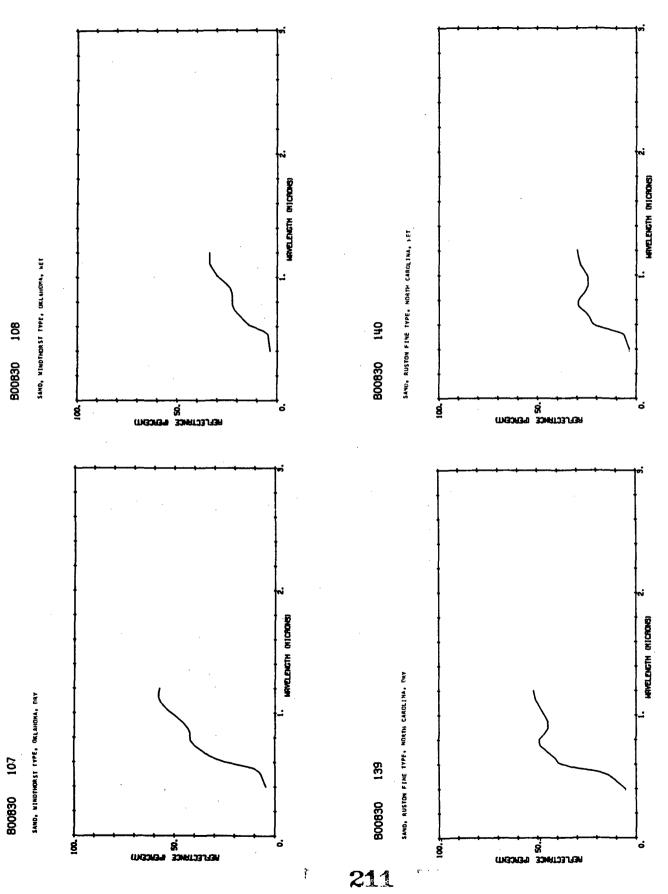


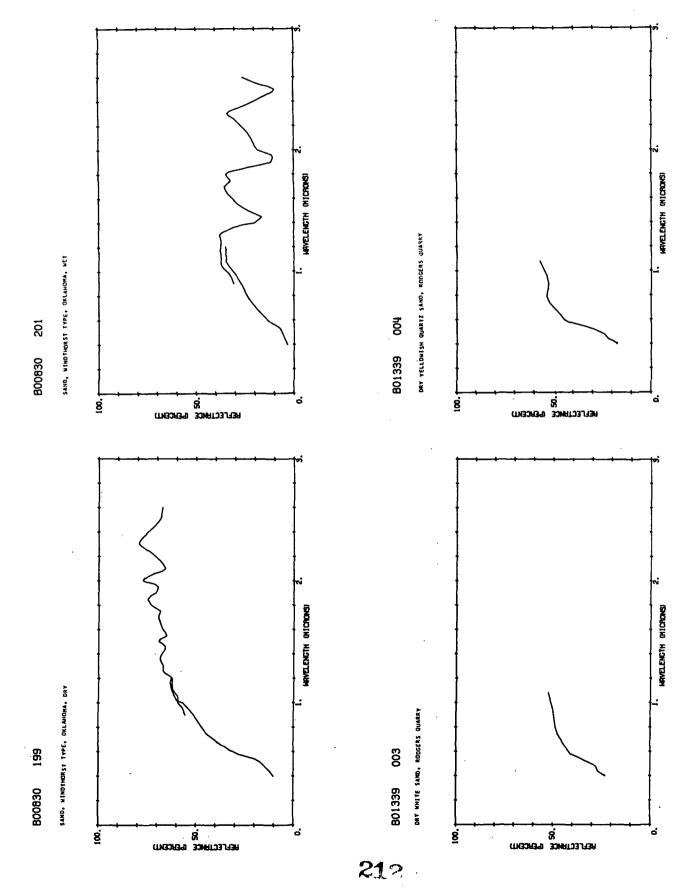


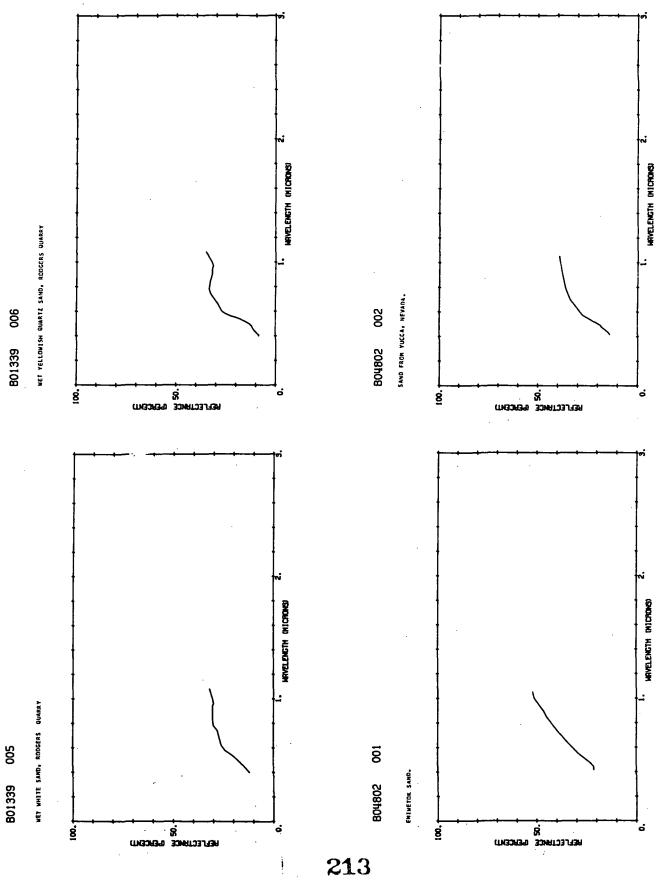


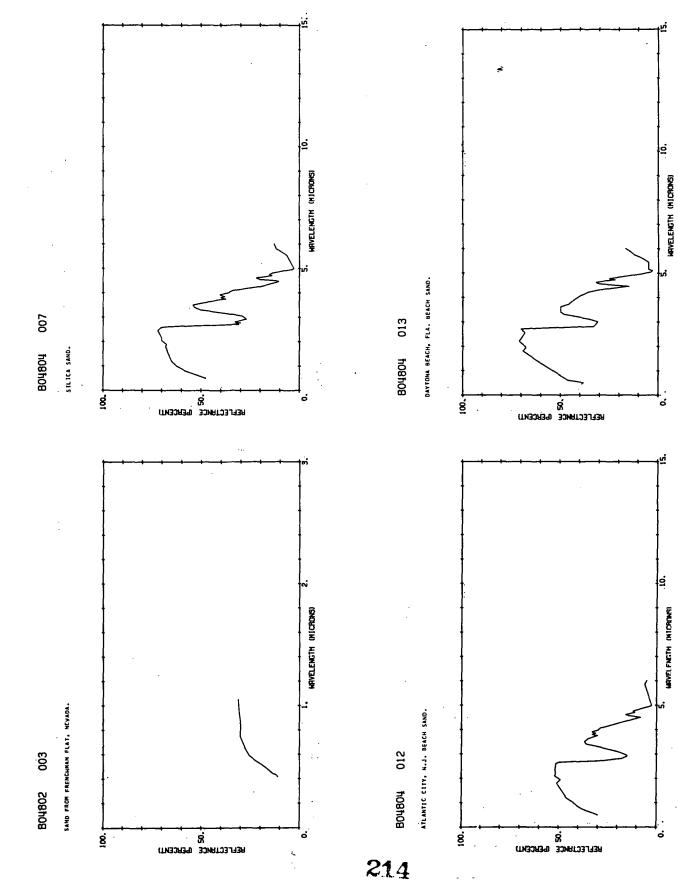
BF 9 .

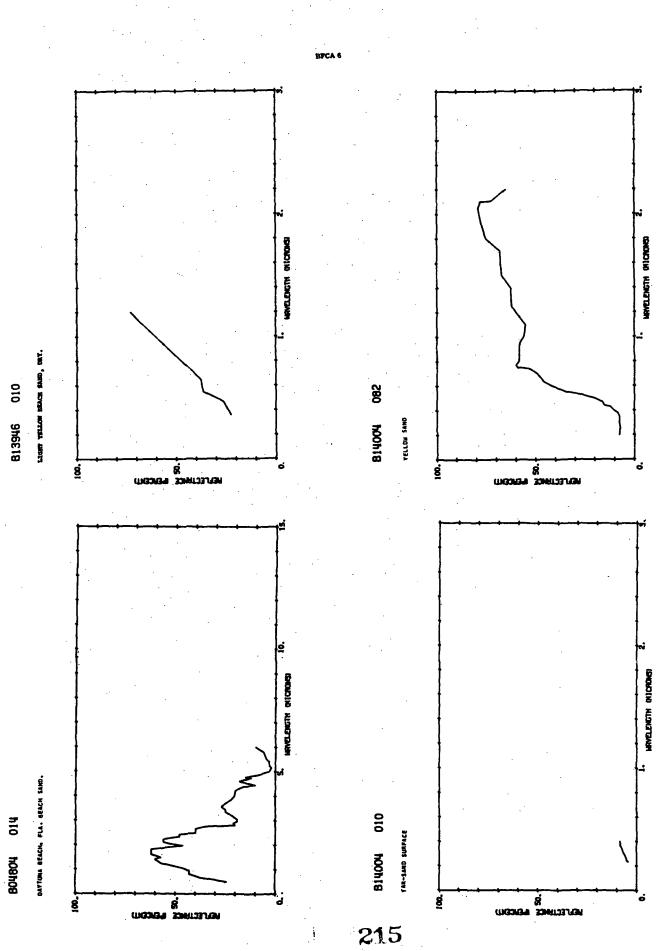

BF 10

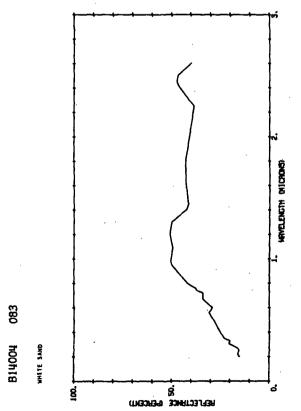

·


BFCA SOIL


209


.





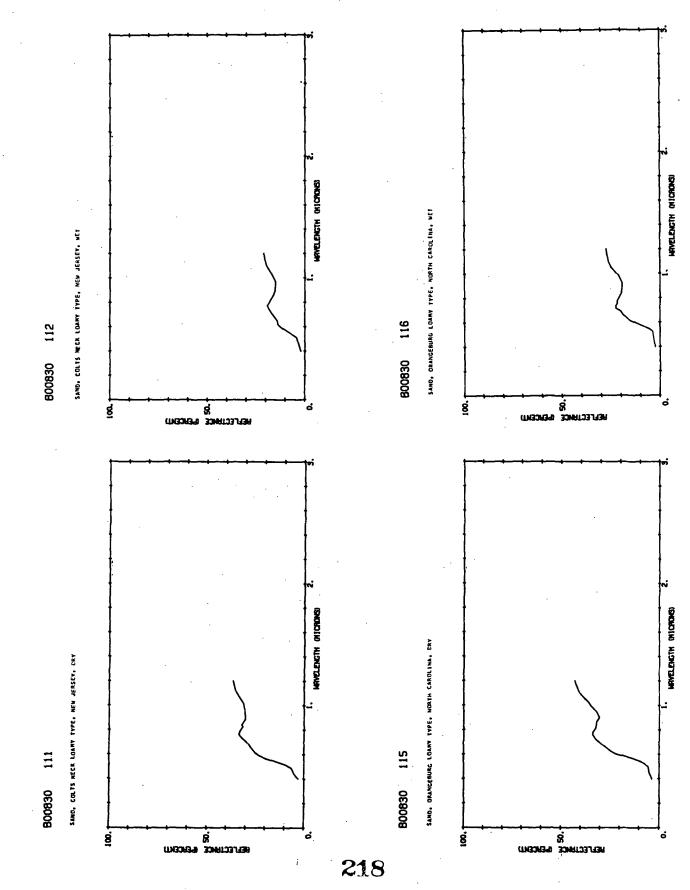
.

· ·

BPCA T

.

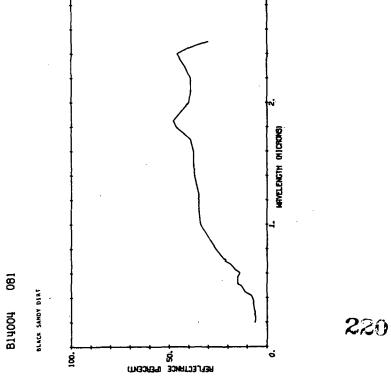
.


·

• •

BFCB SOIL Loamy Sand

217

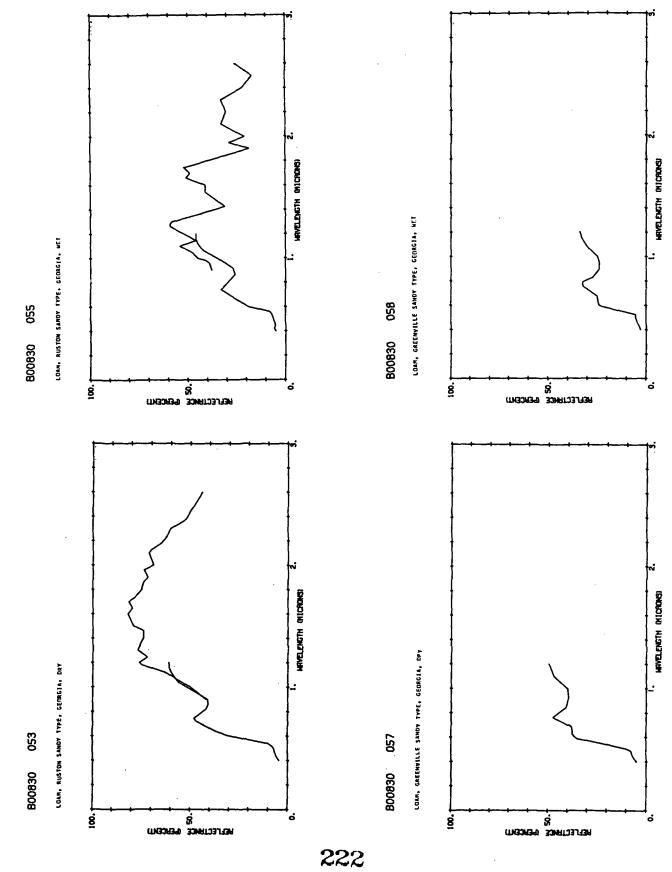

BPCB 1

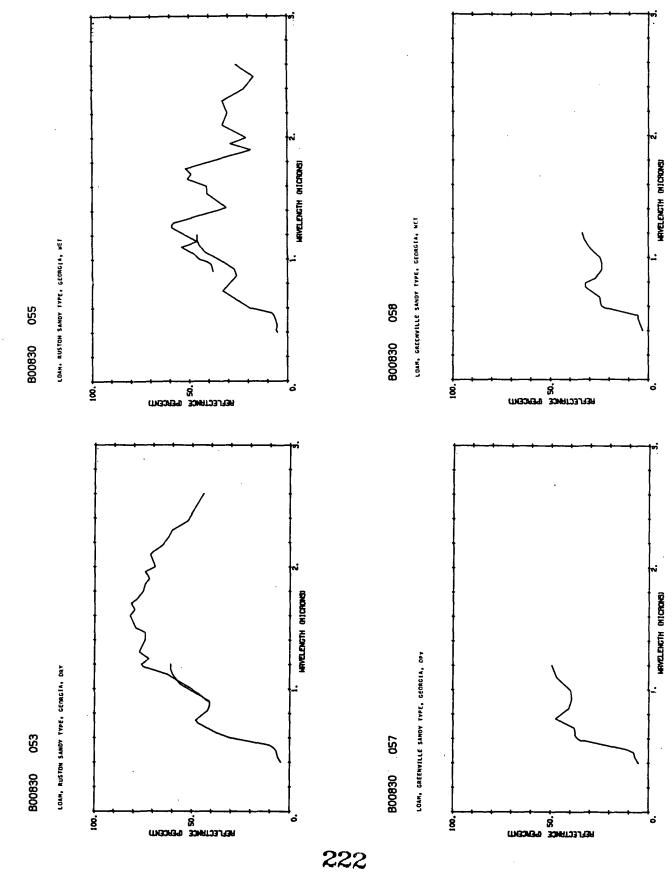
BFD SOIL

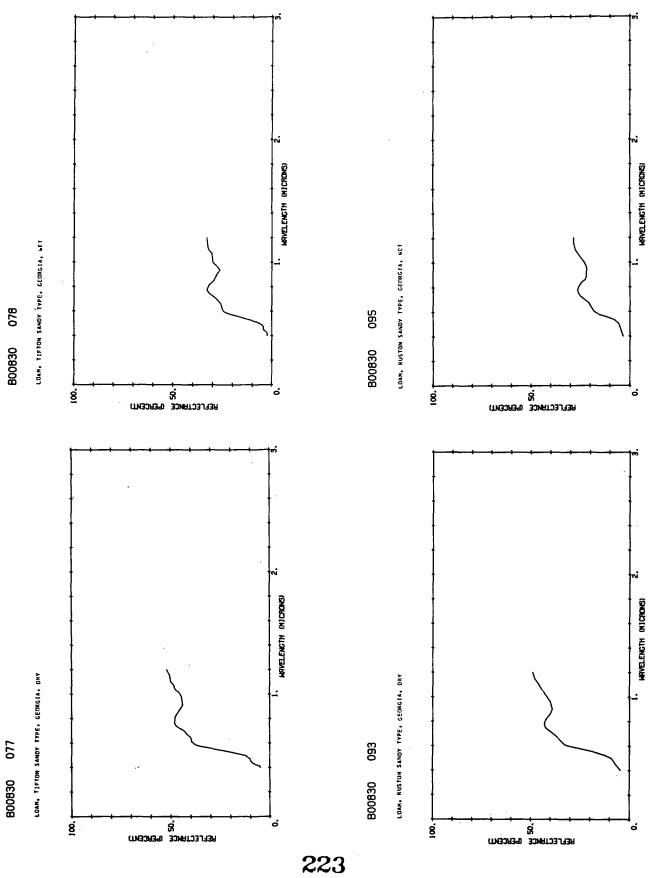
Moderately Coarse Textured

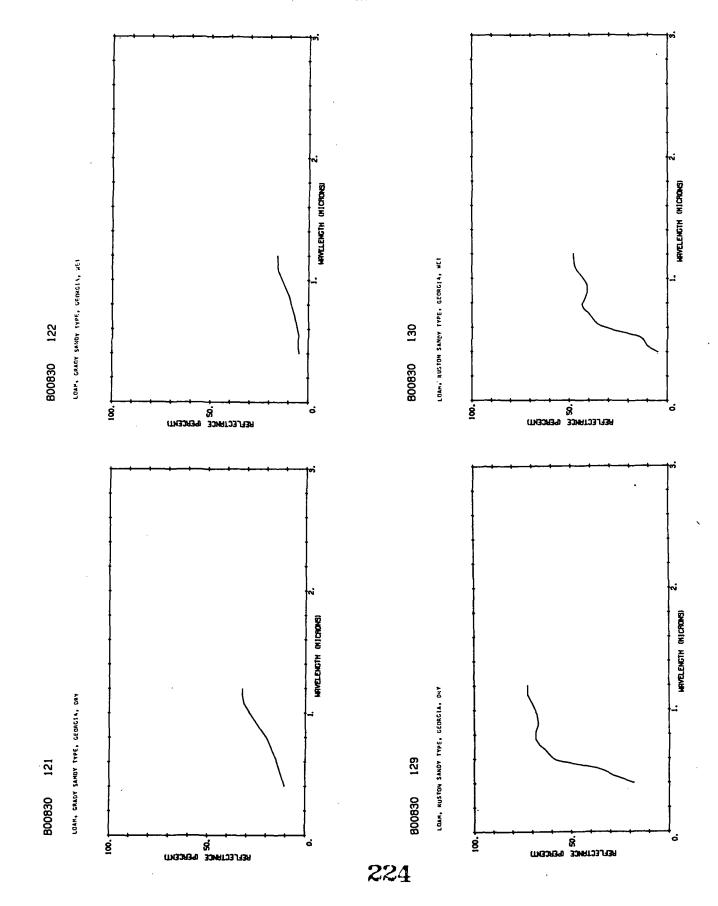
. .

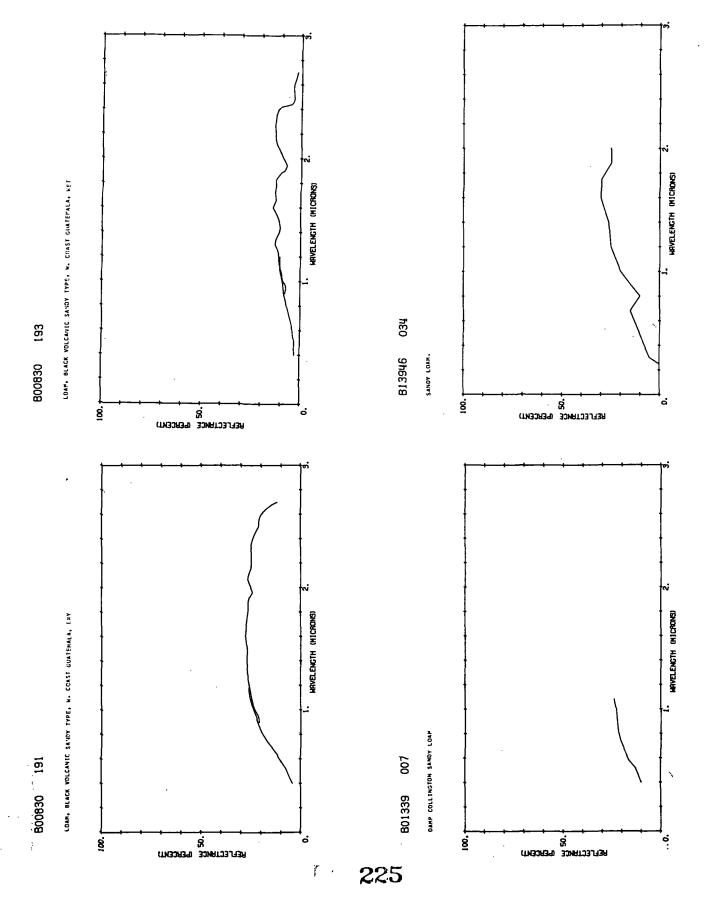
219




BFD 1

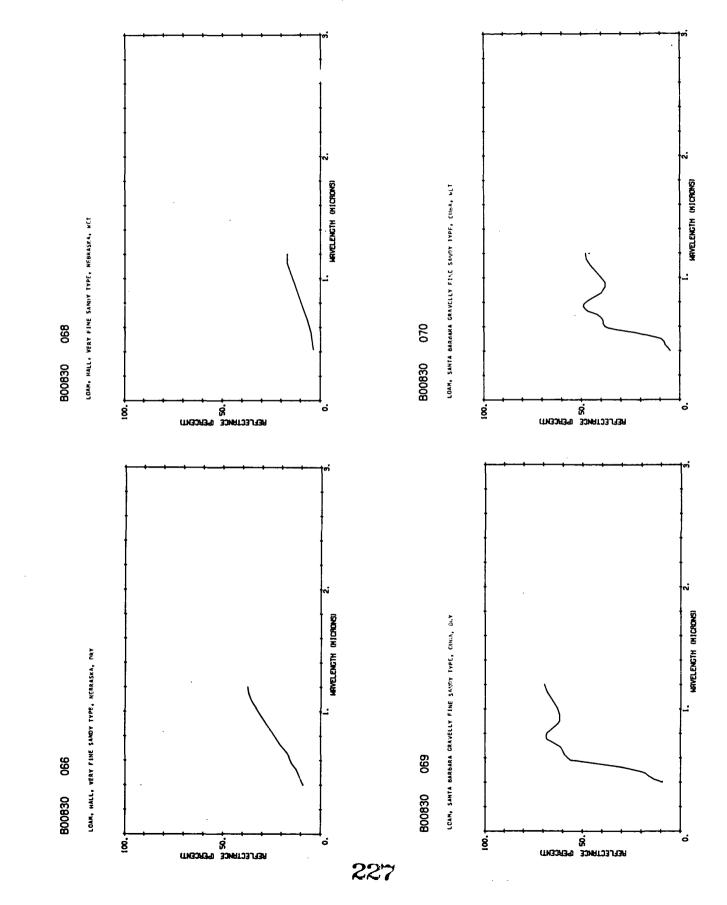

BFDA SOIL Sandy Loam

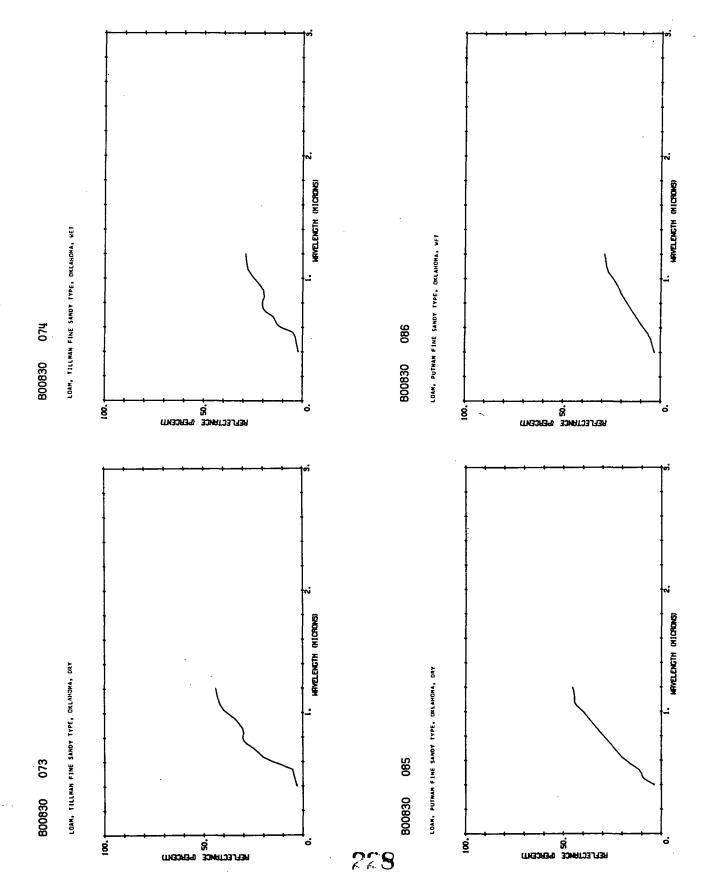

221

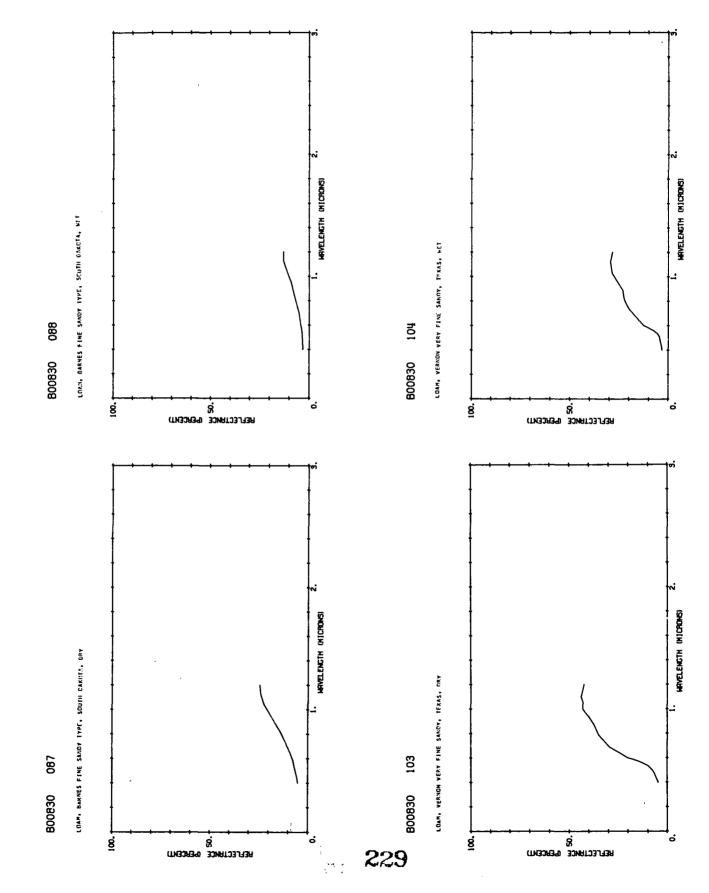


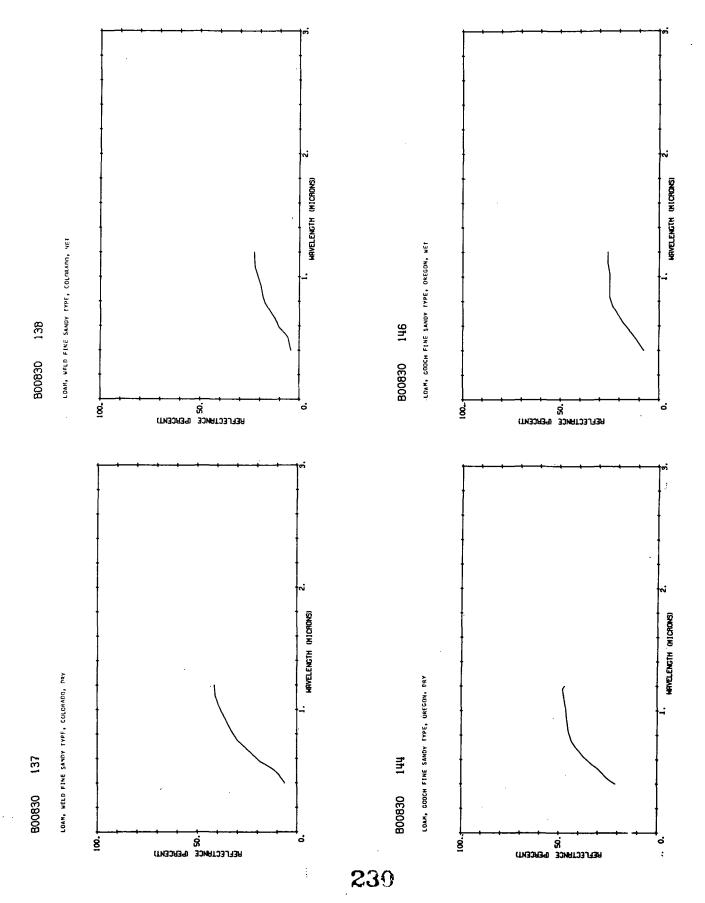
BPDA 1

.


•

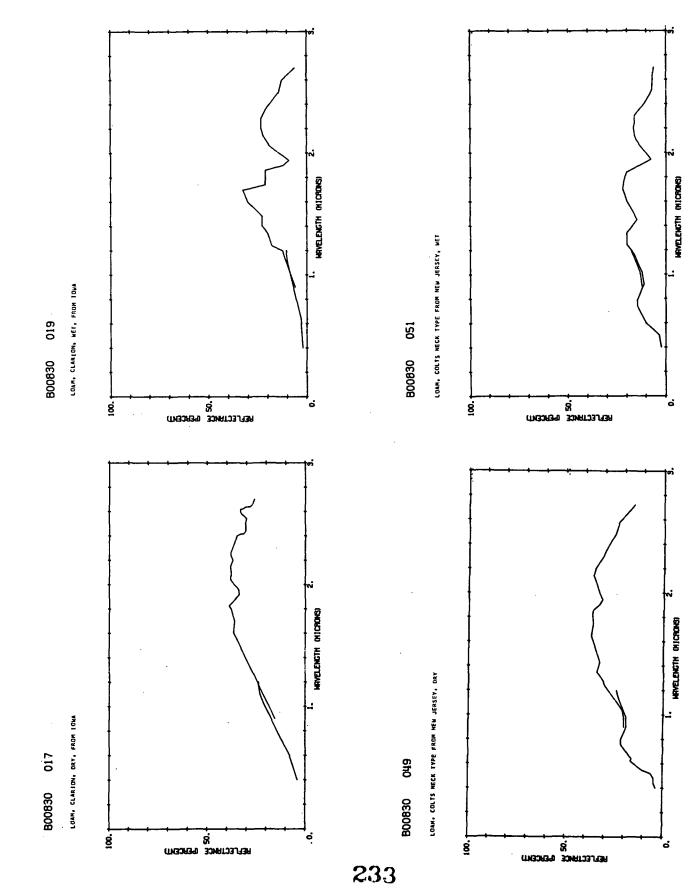

÷-


,

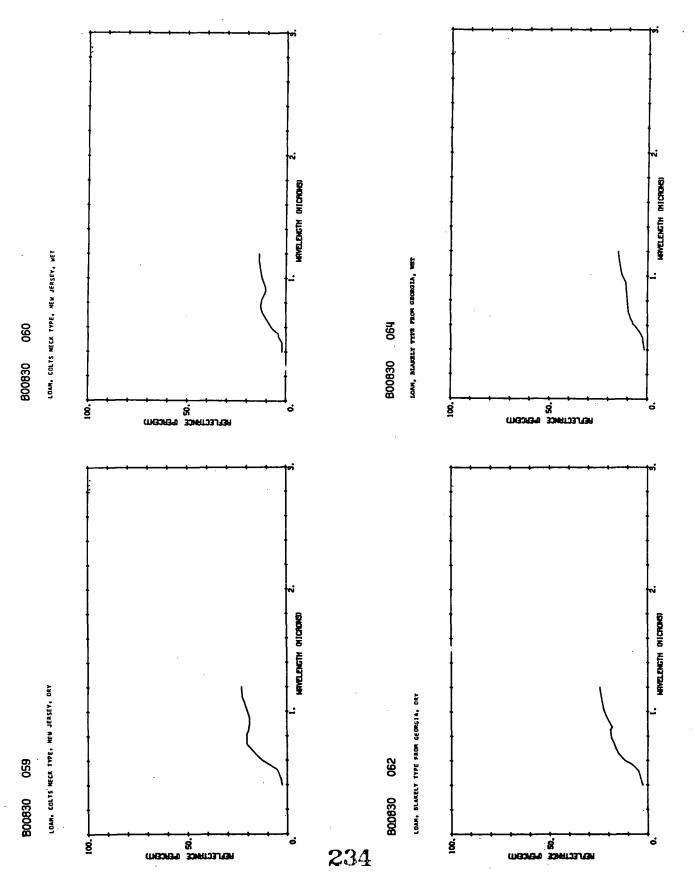

•••

.

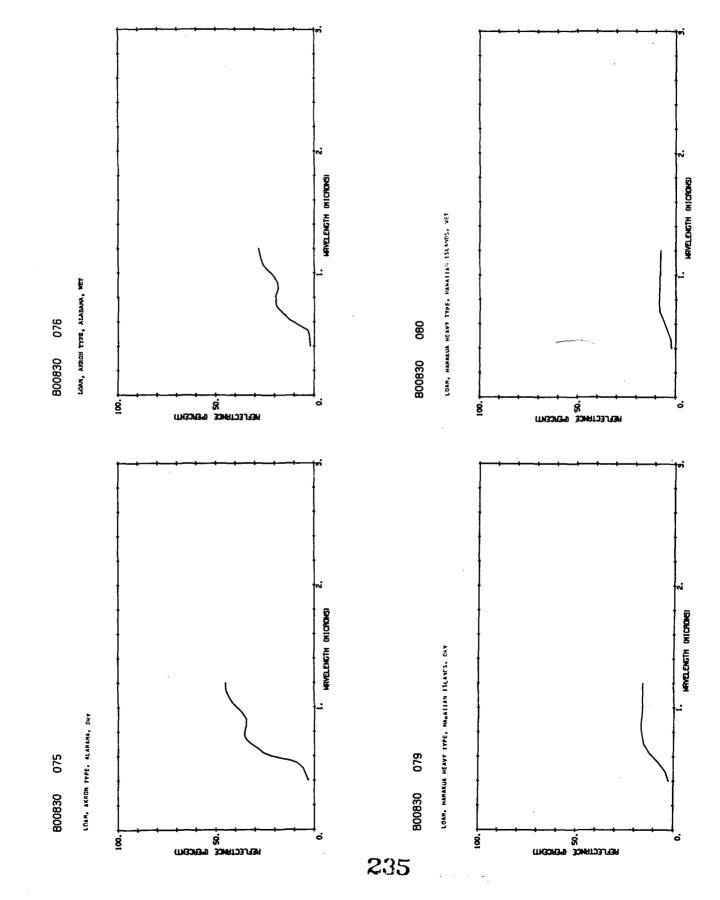
c-5

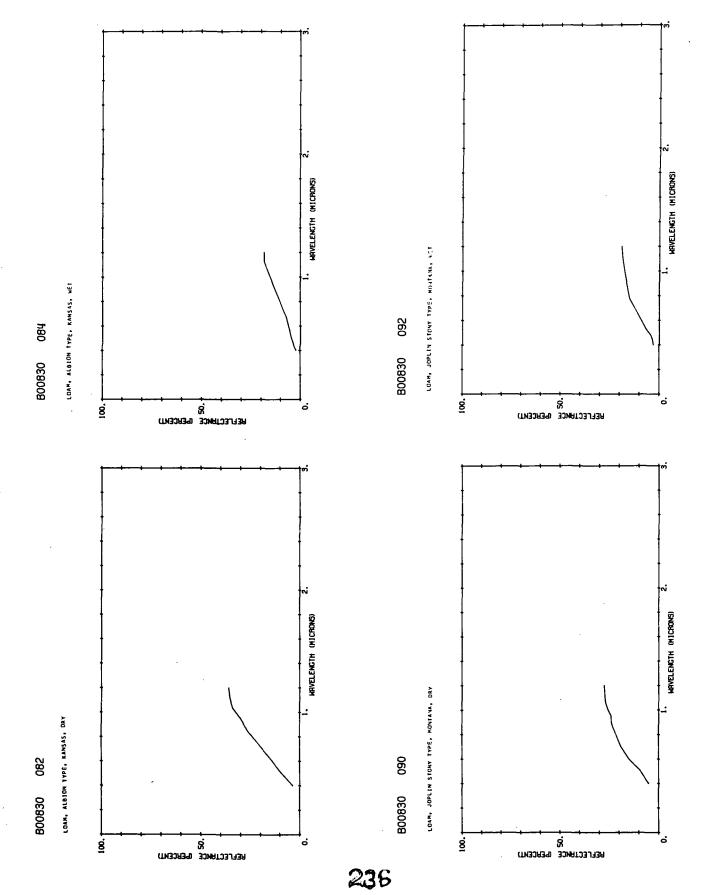


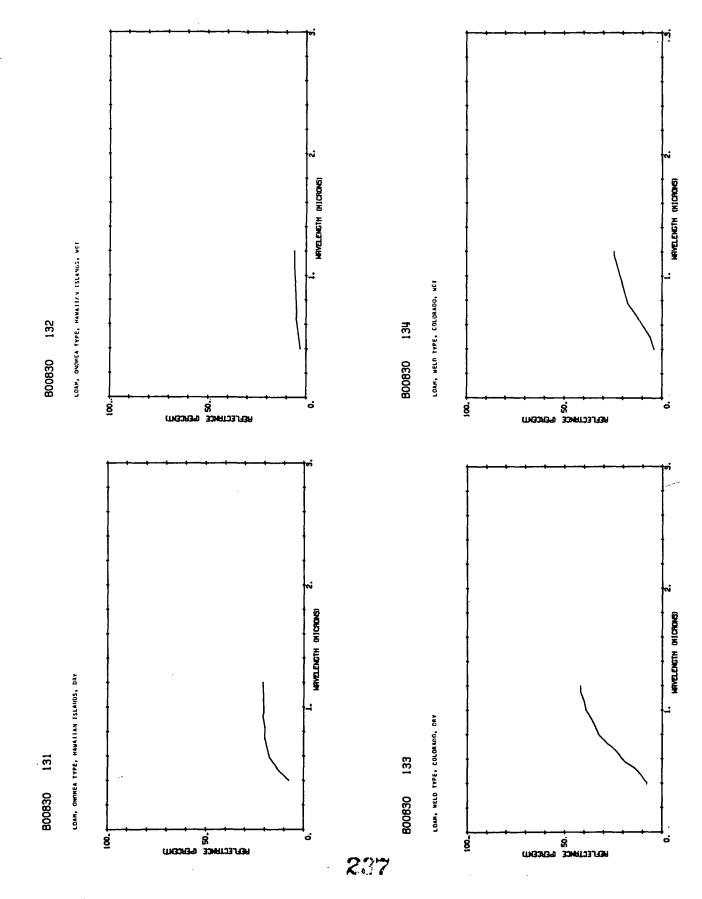
232

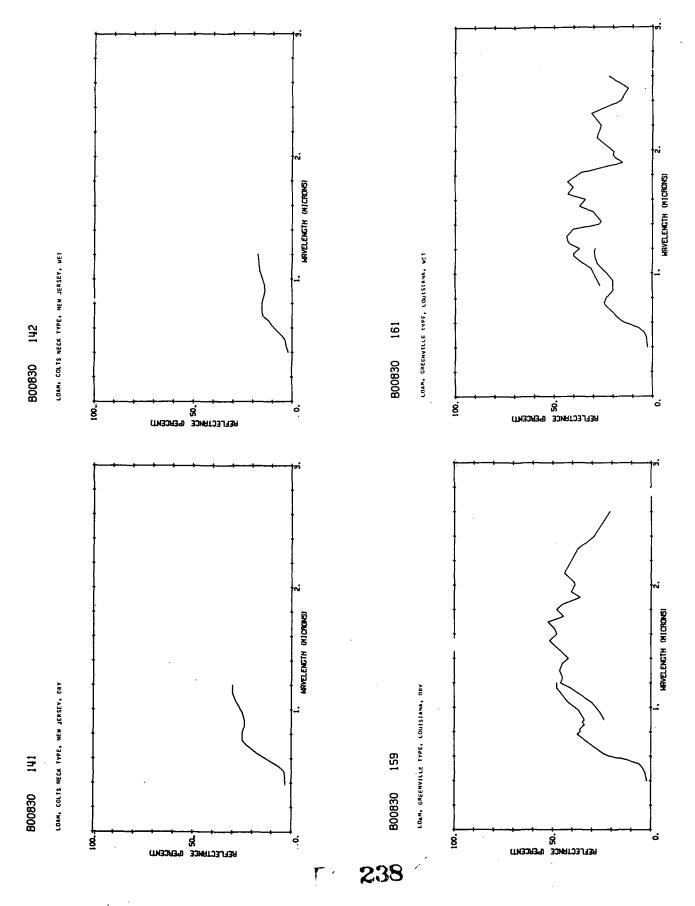

.

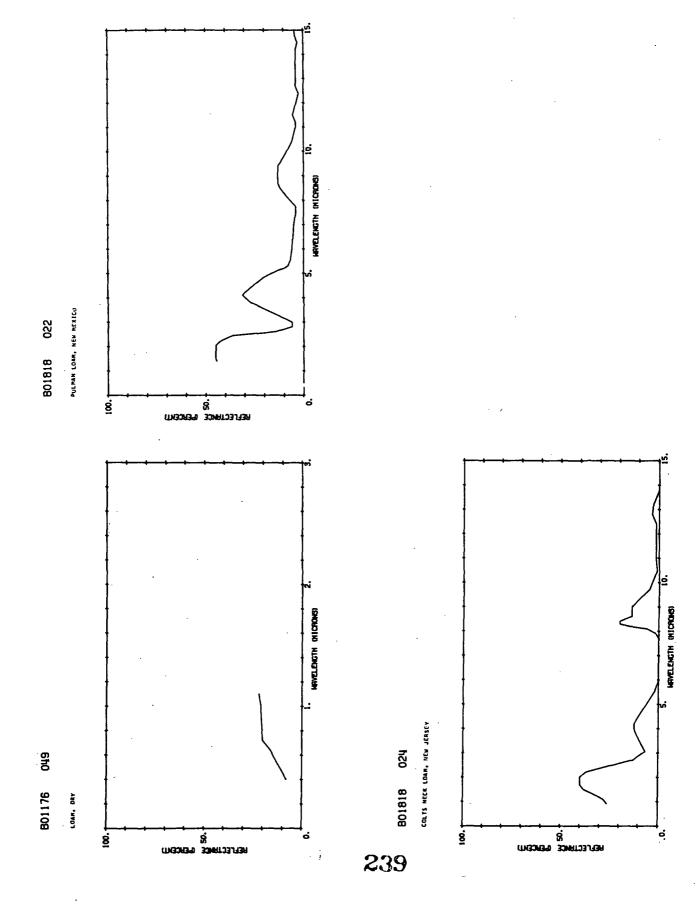
BFEA SOIL Loam


r


BPEA 1


BFEA 3


BPEA 3


BFEA 4

BFBA 5

BFEA 6

BFEA 7

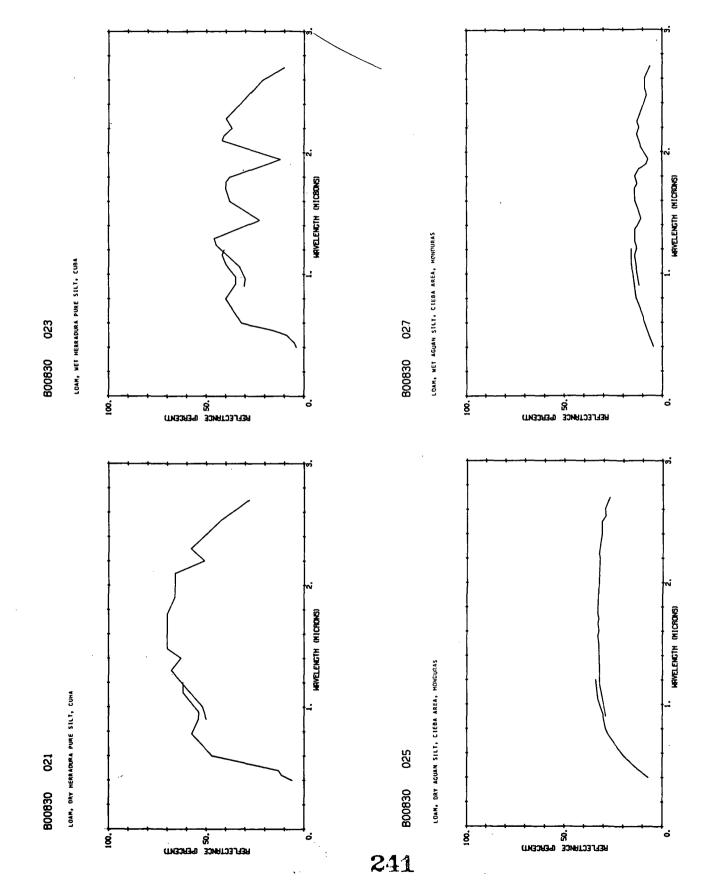
BFEB SOIL Silt Loam •

,

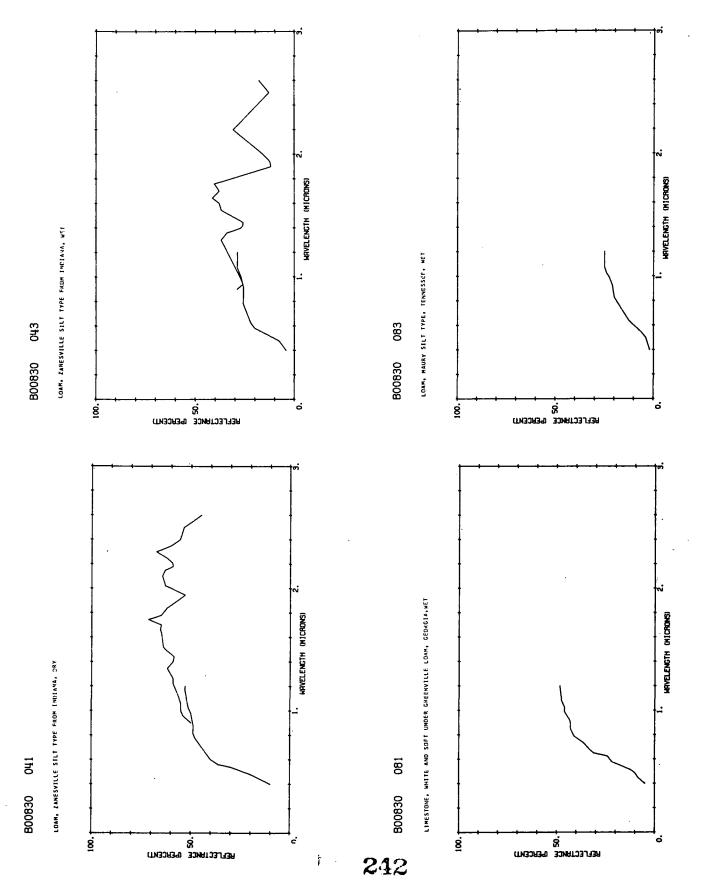
.

.

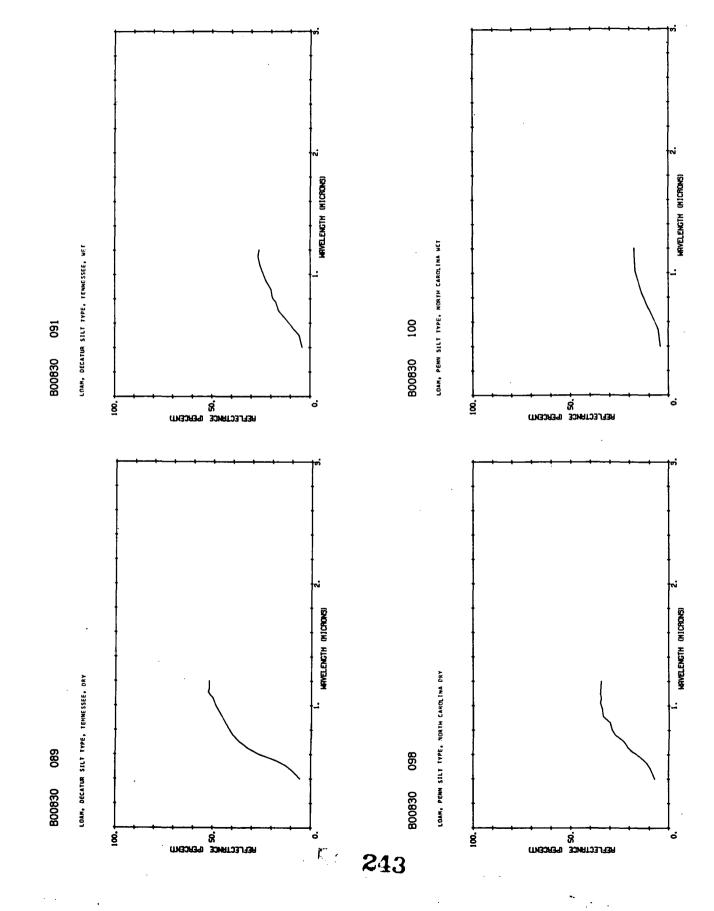
.

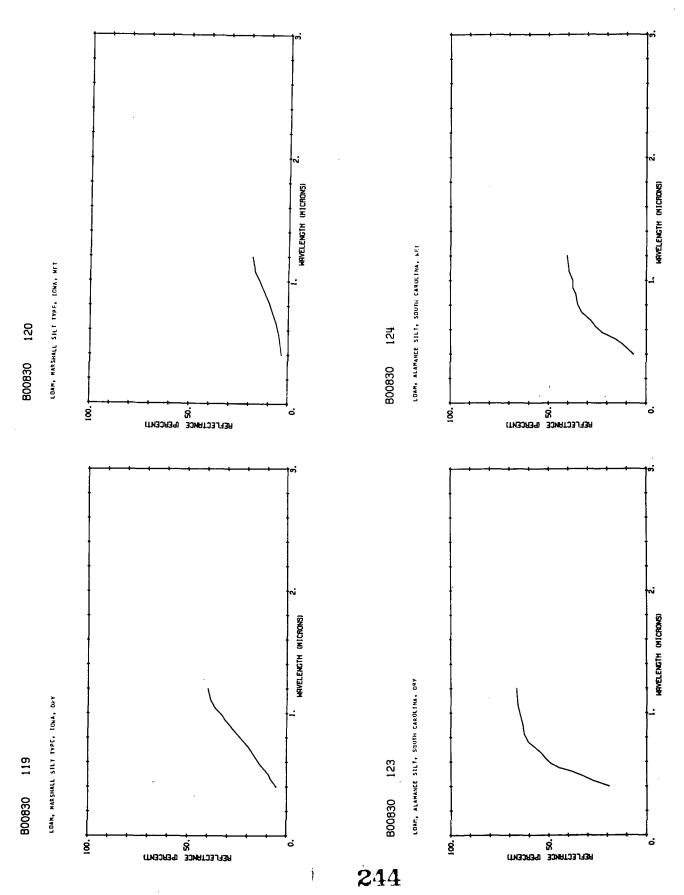

.

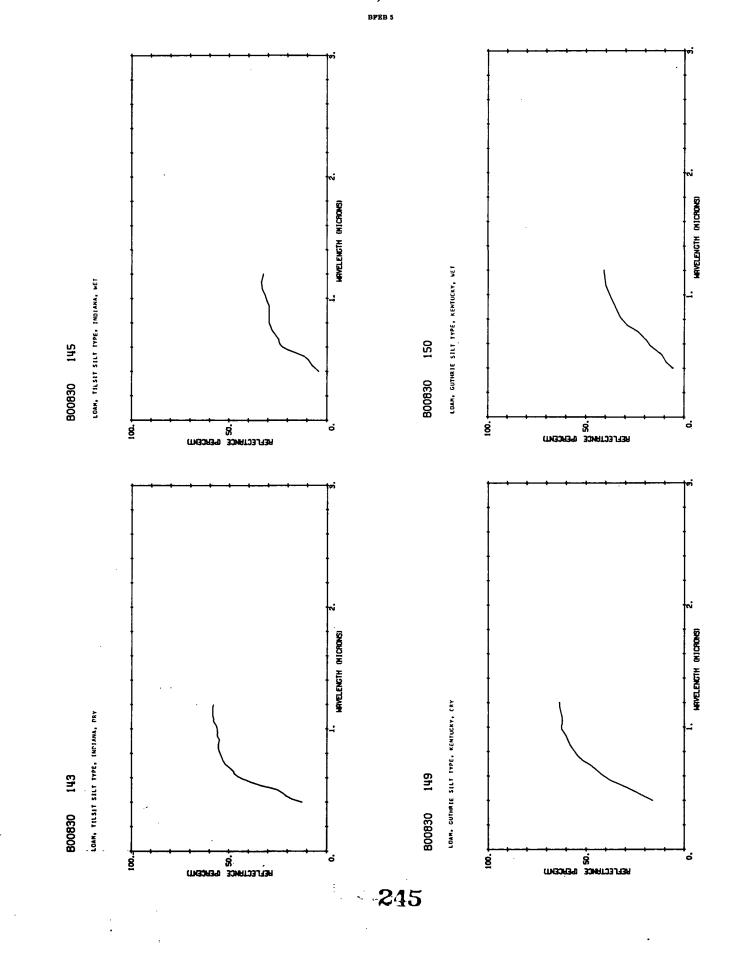
. •

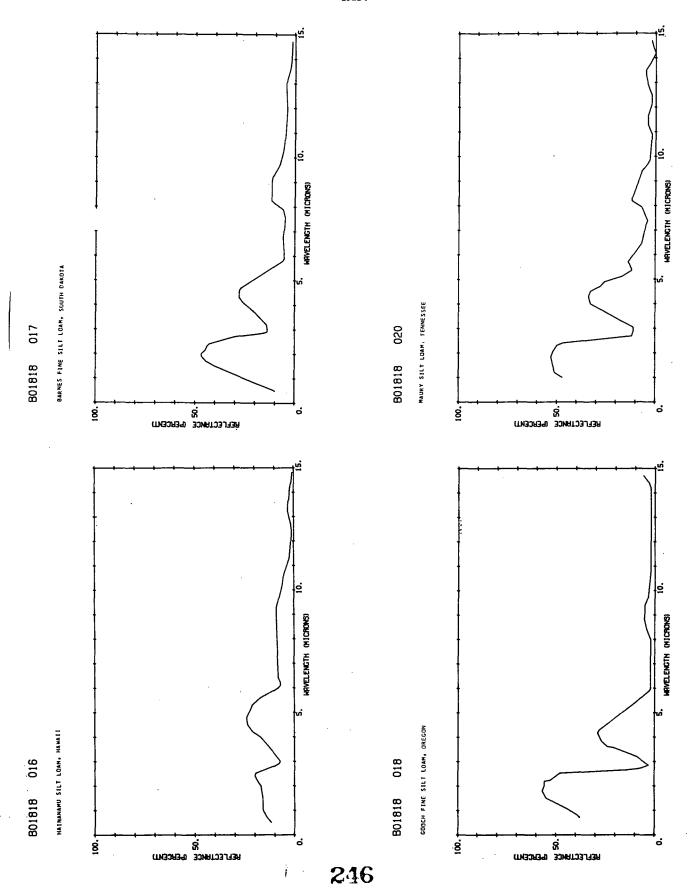

. .

•

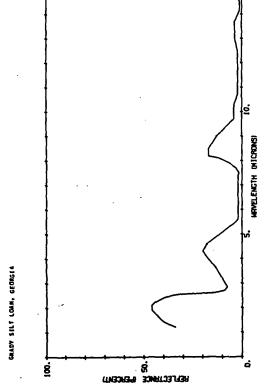

240

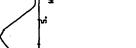


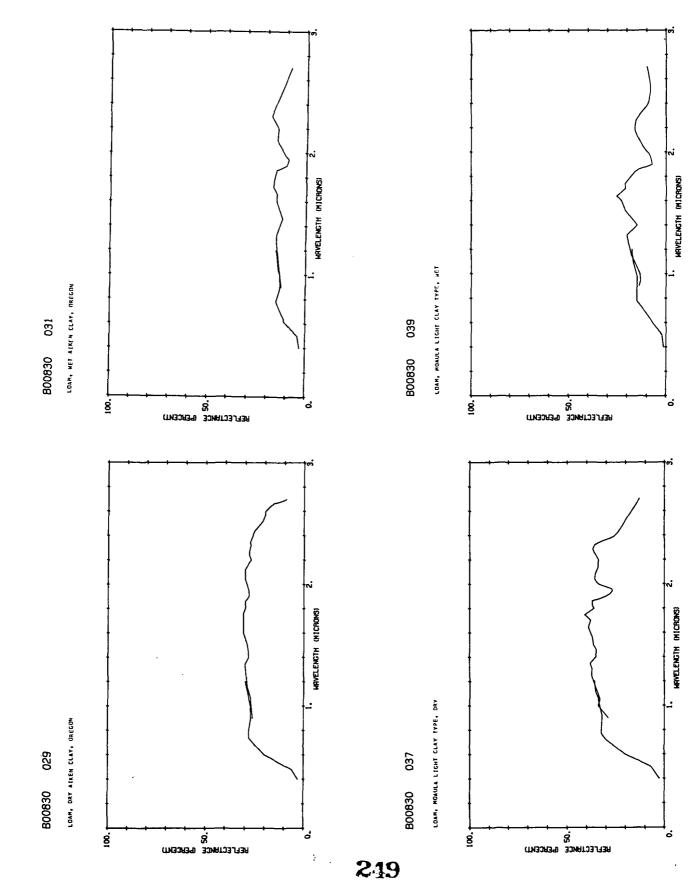

BFEB 1

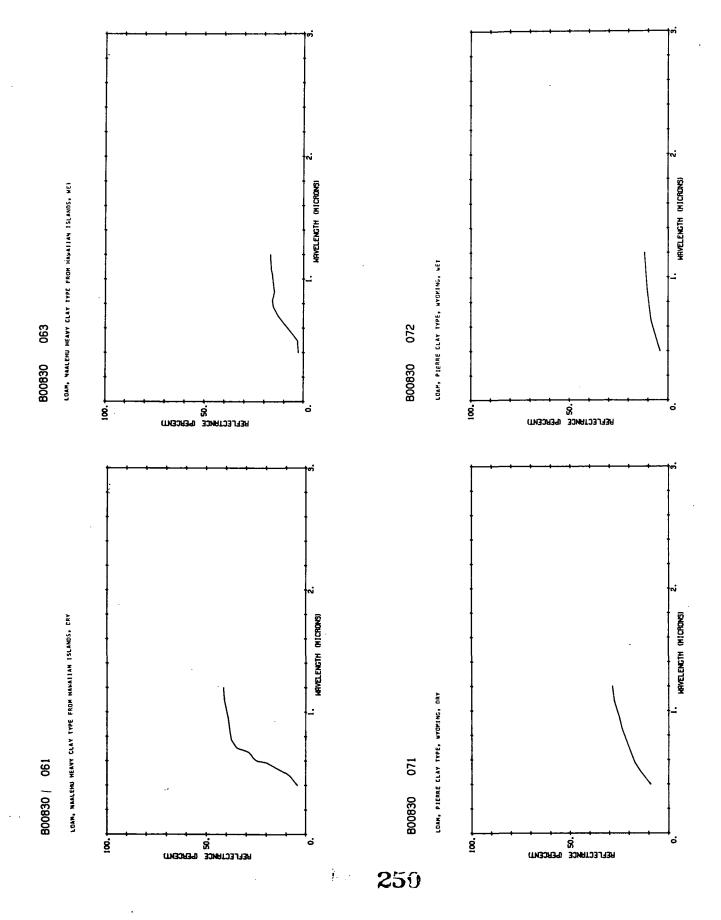


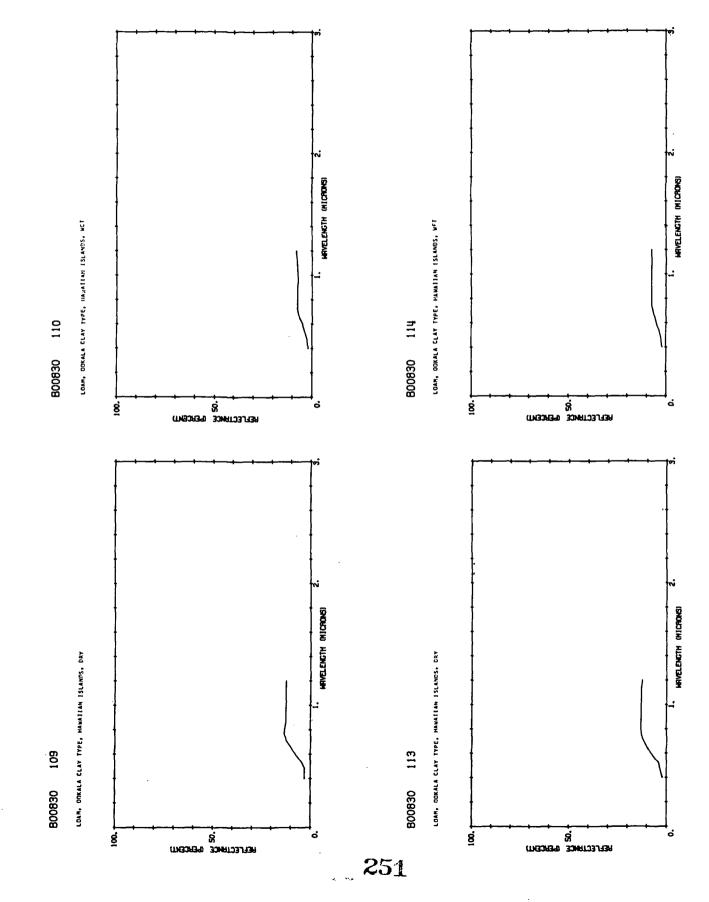
BFEB 2

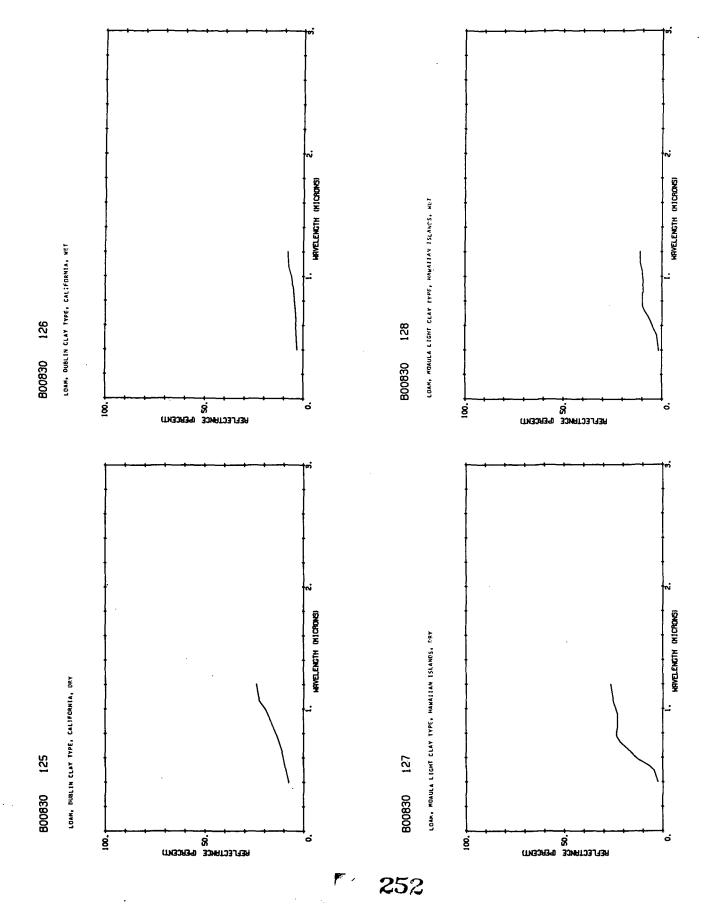


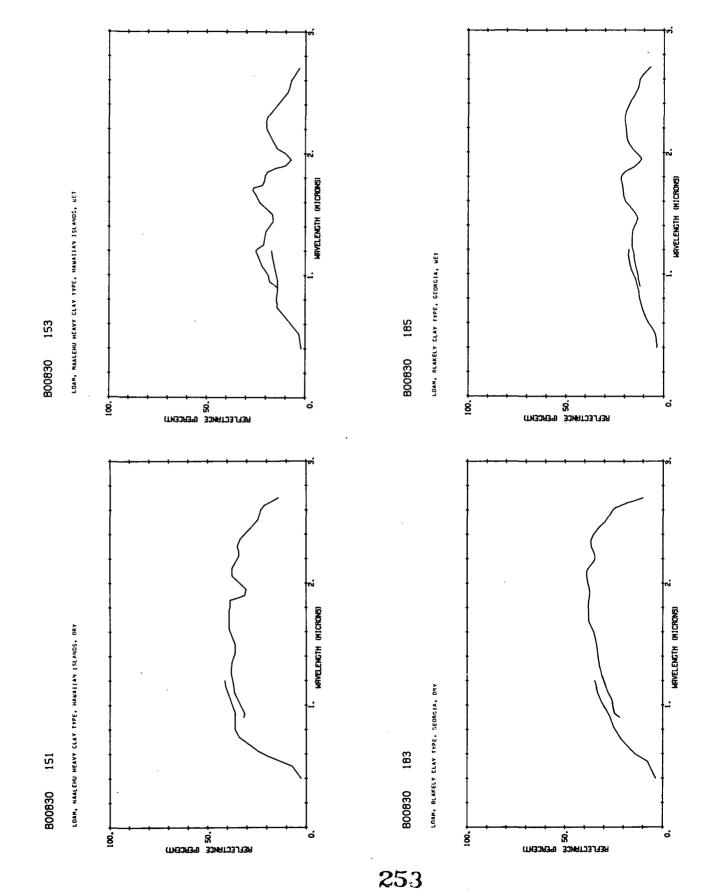


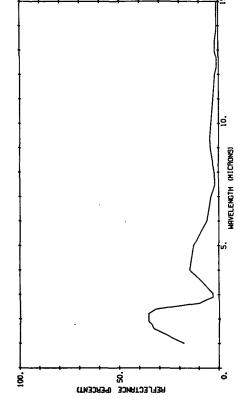


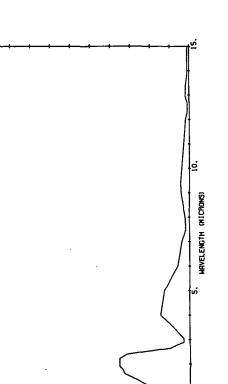






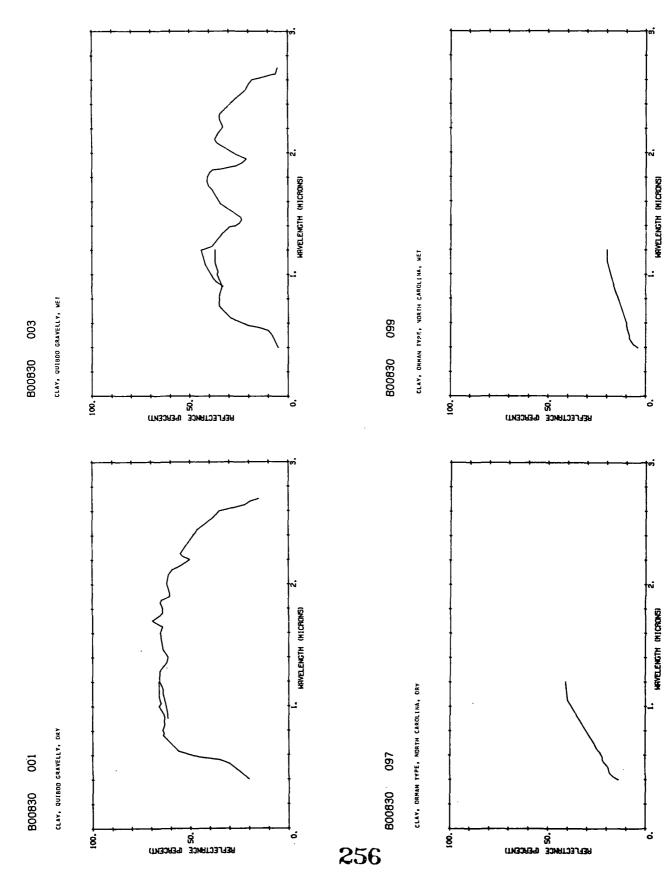

BFFA SOIL Clay Loam

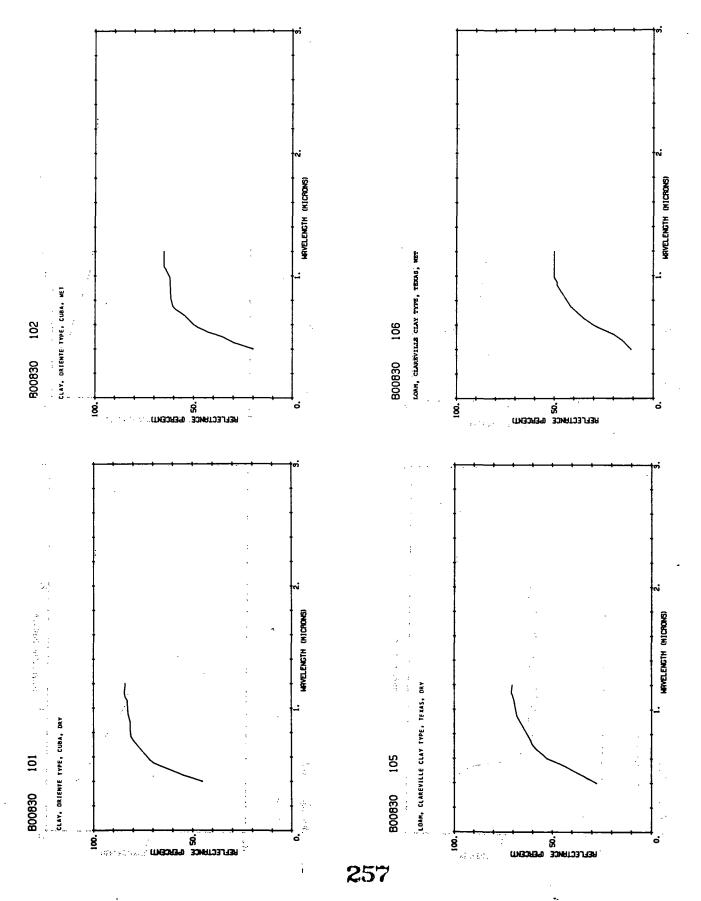


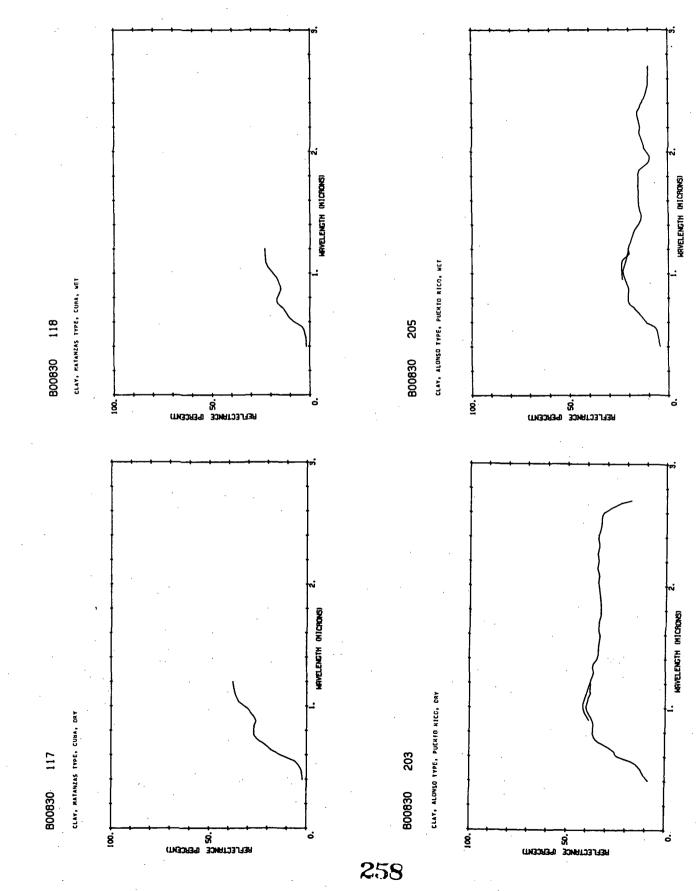

BPFA 5

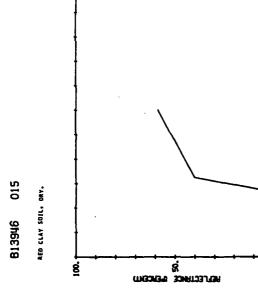


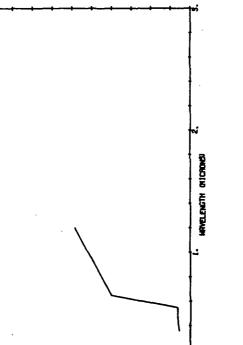




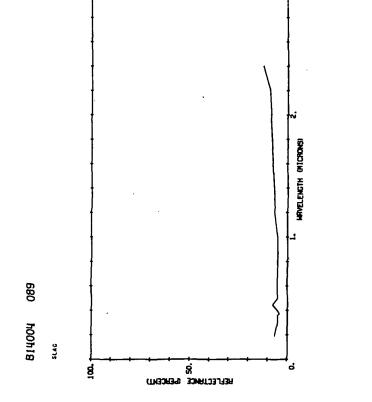



BFGC SOIL Clay


BFGC 1

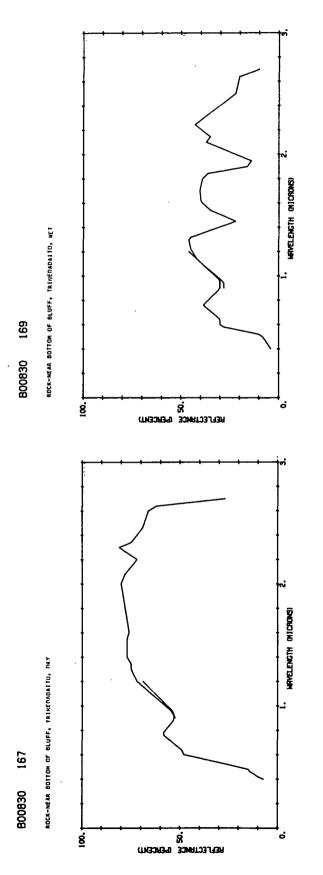


BFGC 2


BPGC 3

BFGC 4

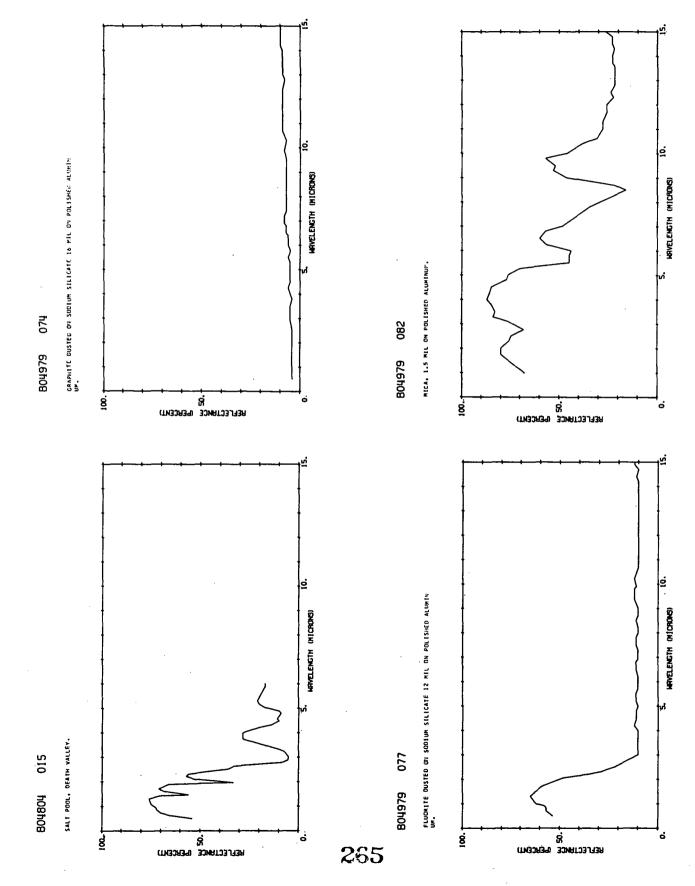
BFH SOIL Other Constituents

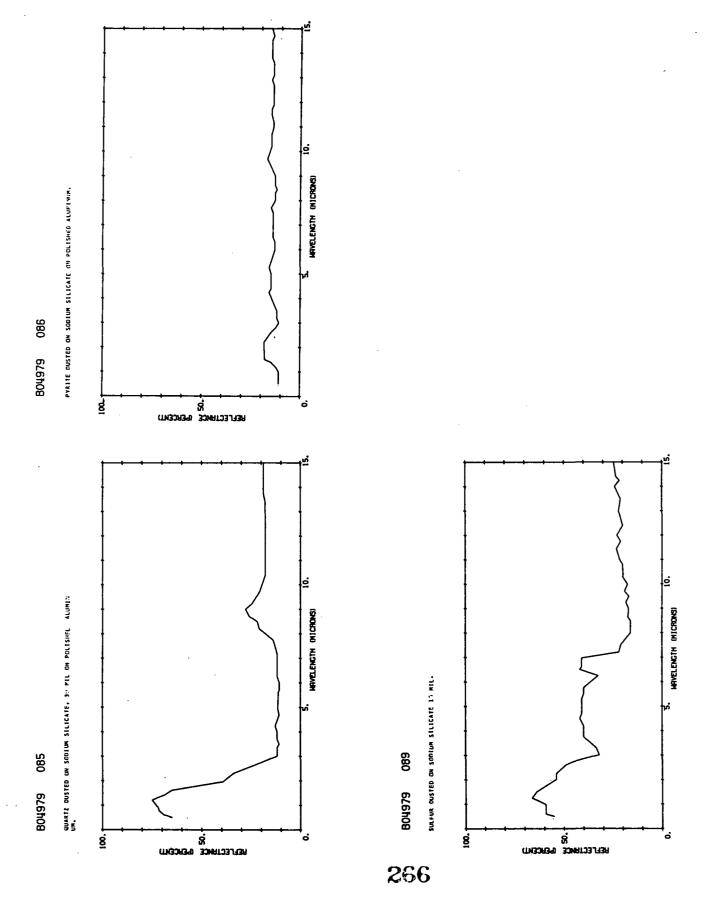


BFR 1

BFHD

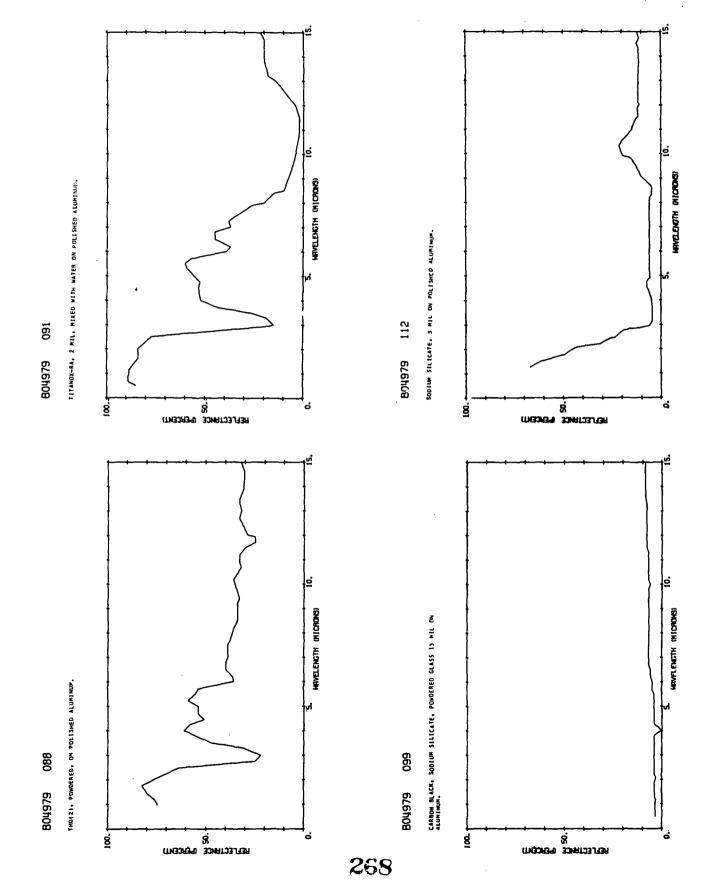
SOIL

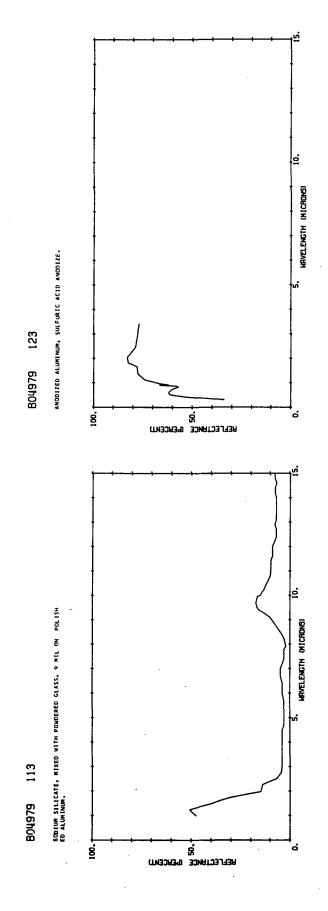

Stones (greater than 10-in. diameter)


263

BFHD 1

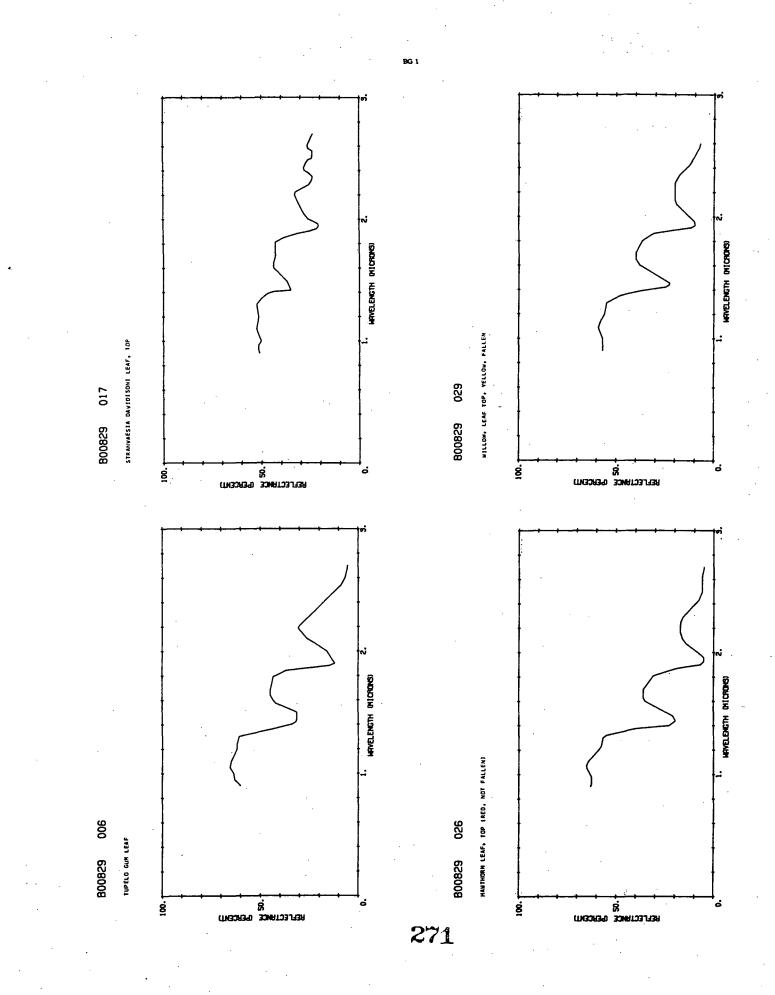
BFK SOIL Minerals

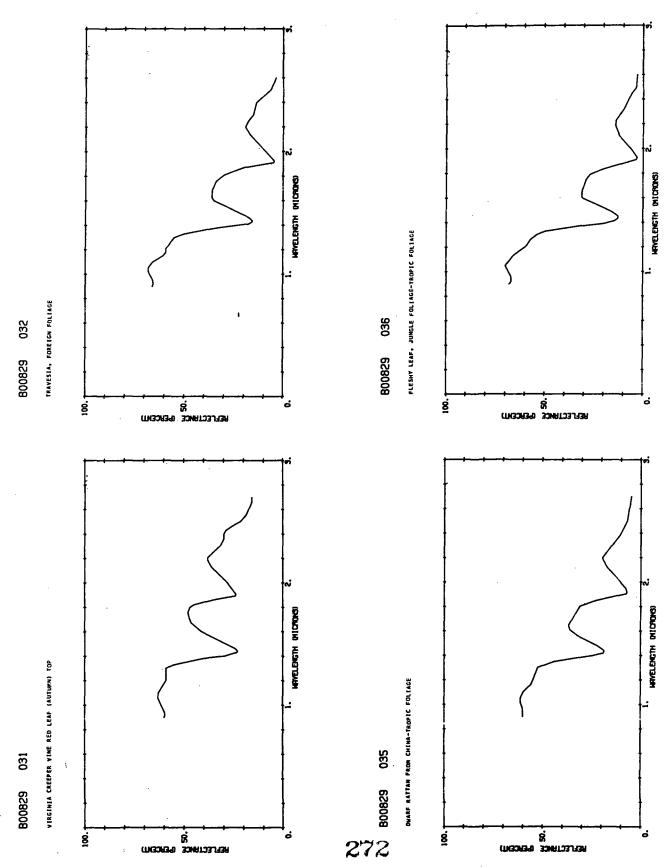

BFK 1

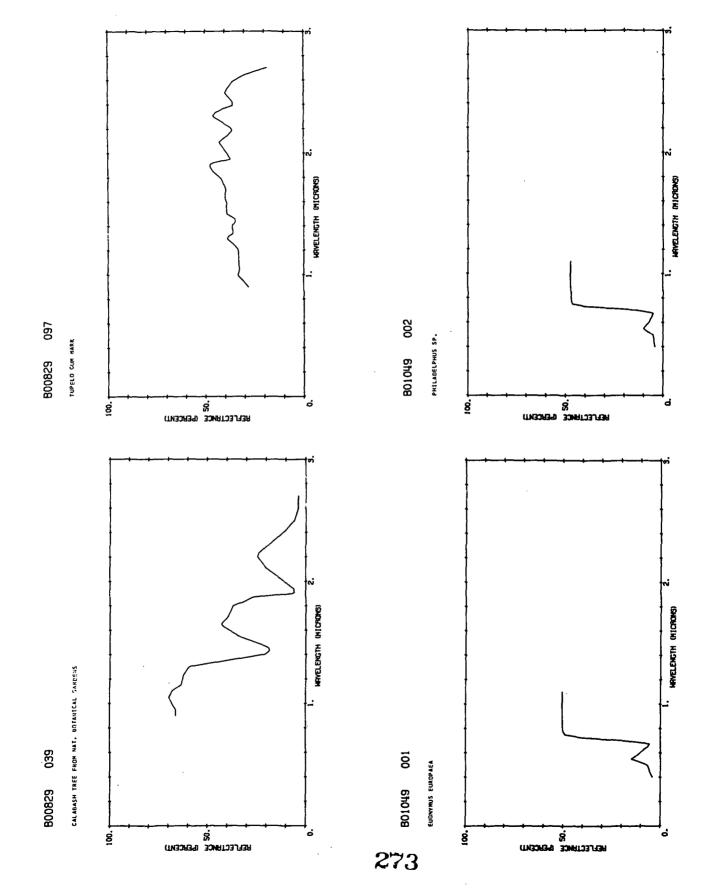

BPK 2

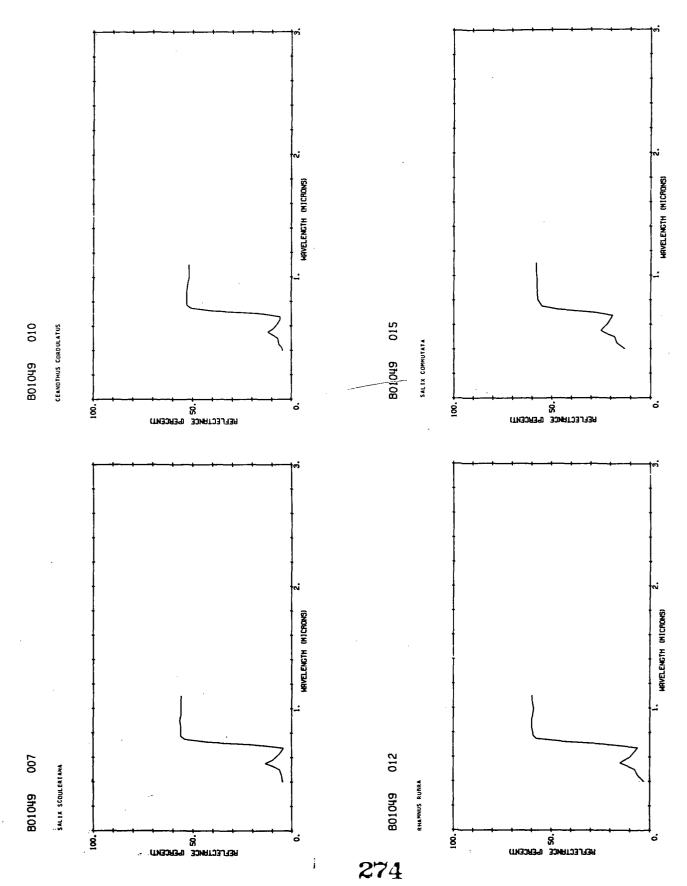
BFL SOIL Chemicals **х**.,

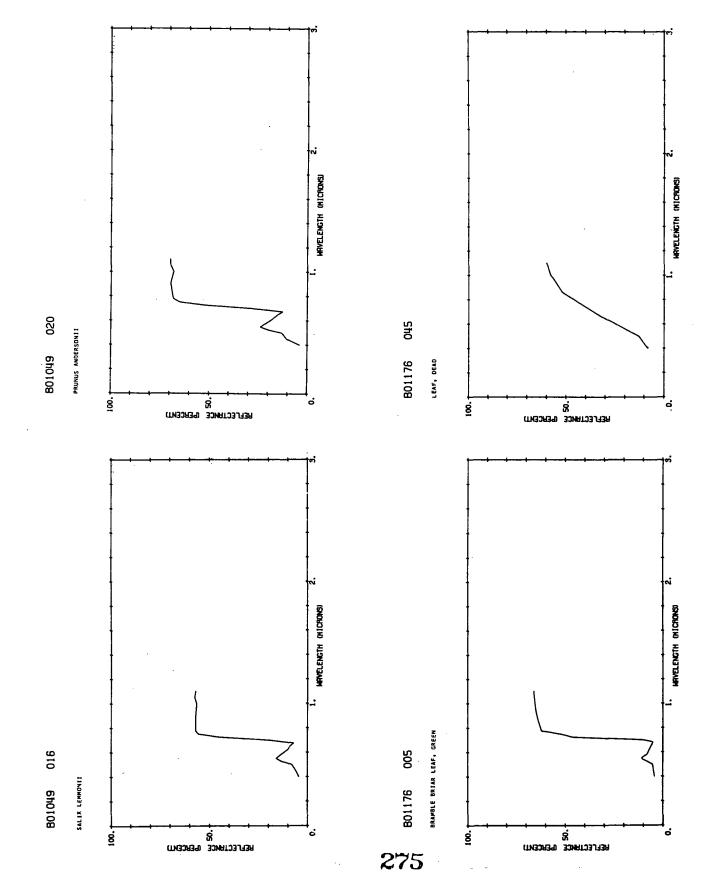
267

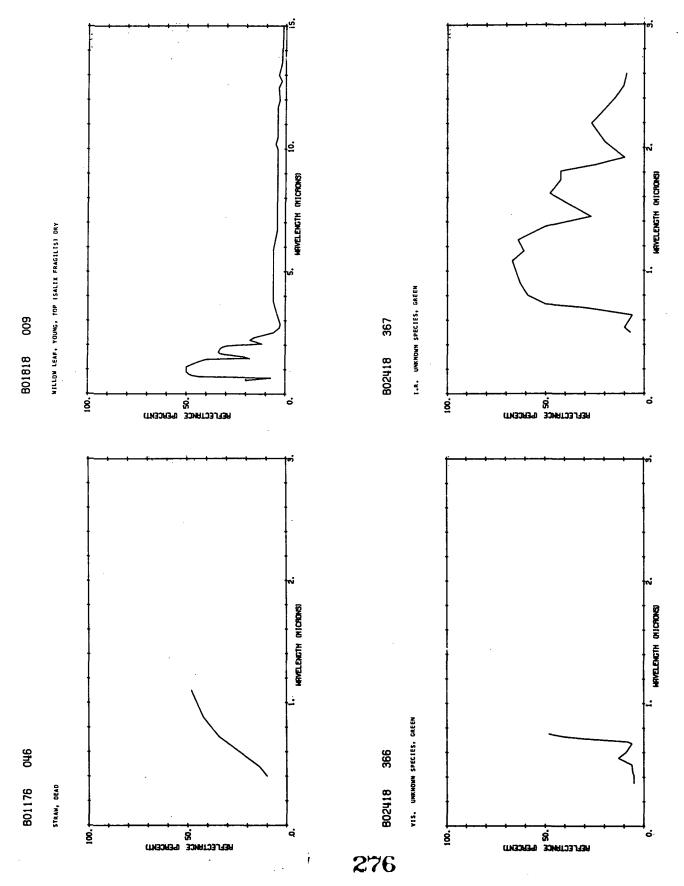


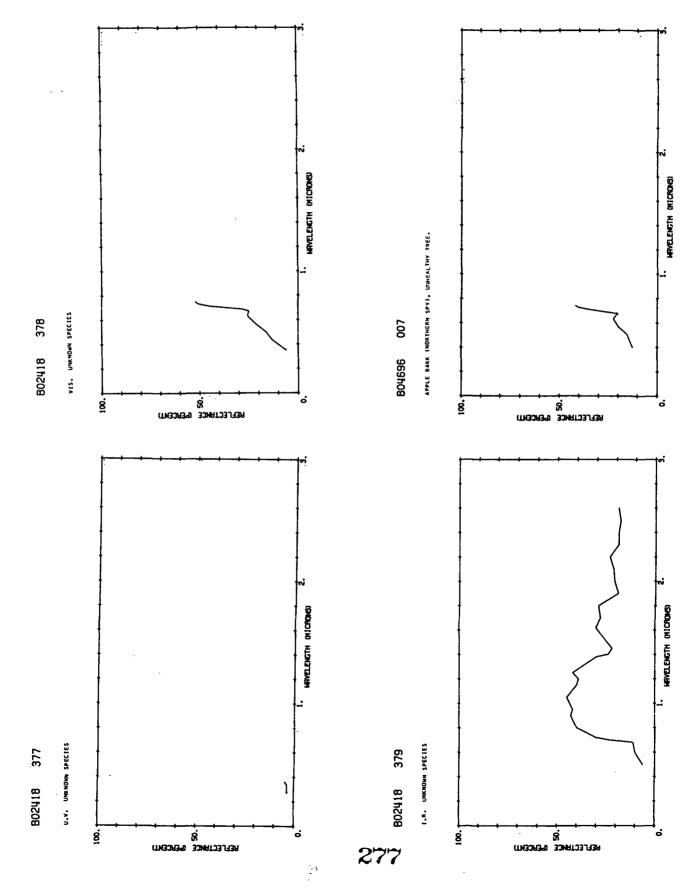

BFL 1

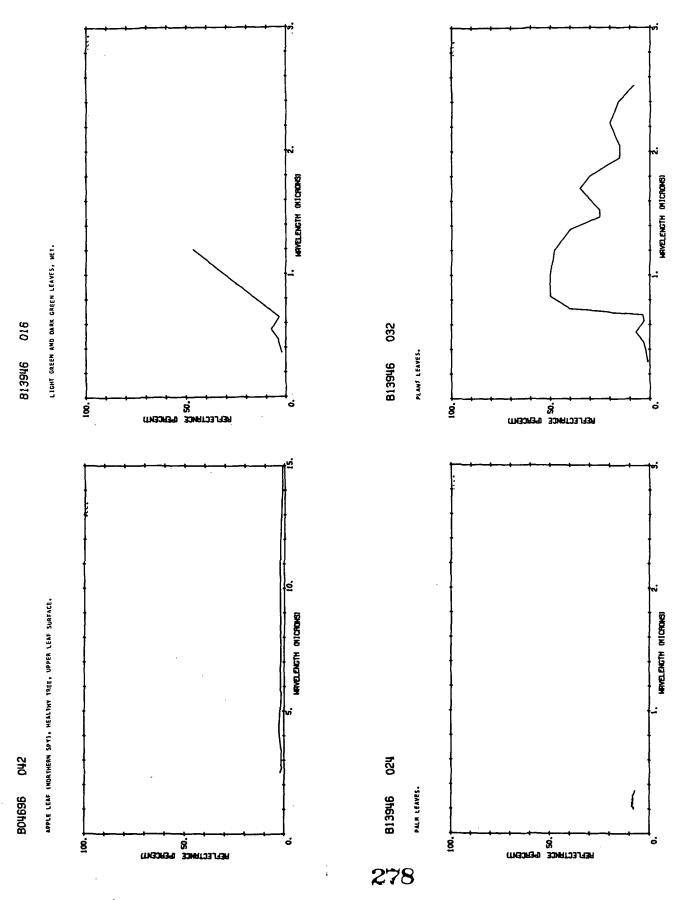


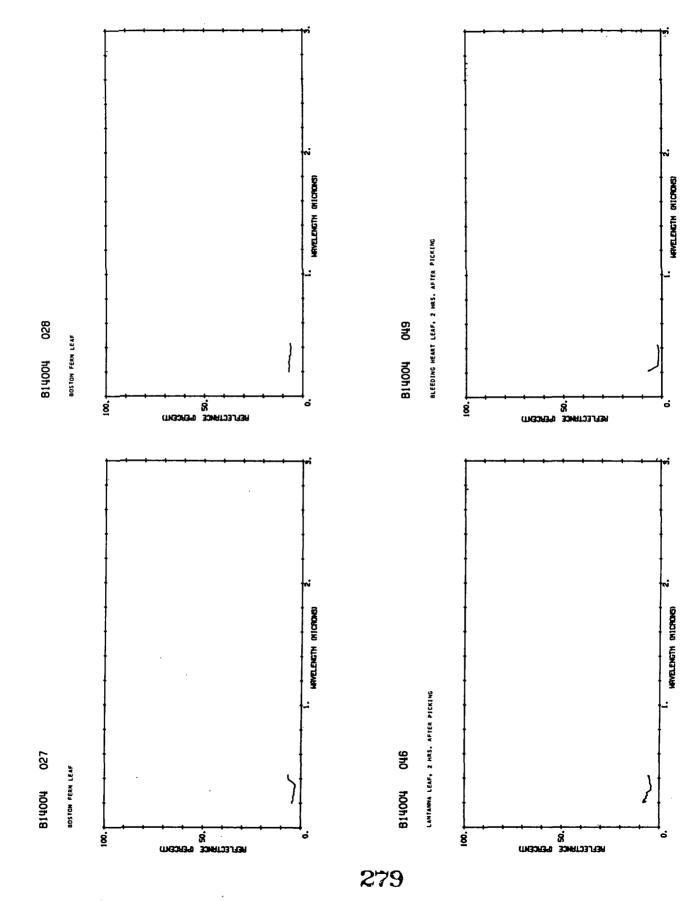

BFL 2

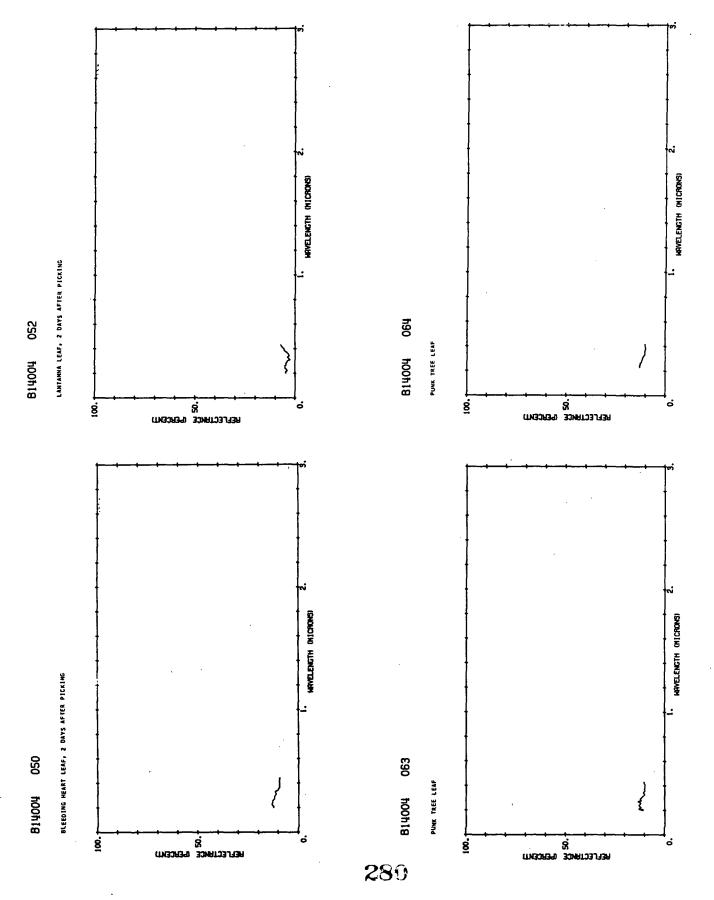

BG VEGE TATION

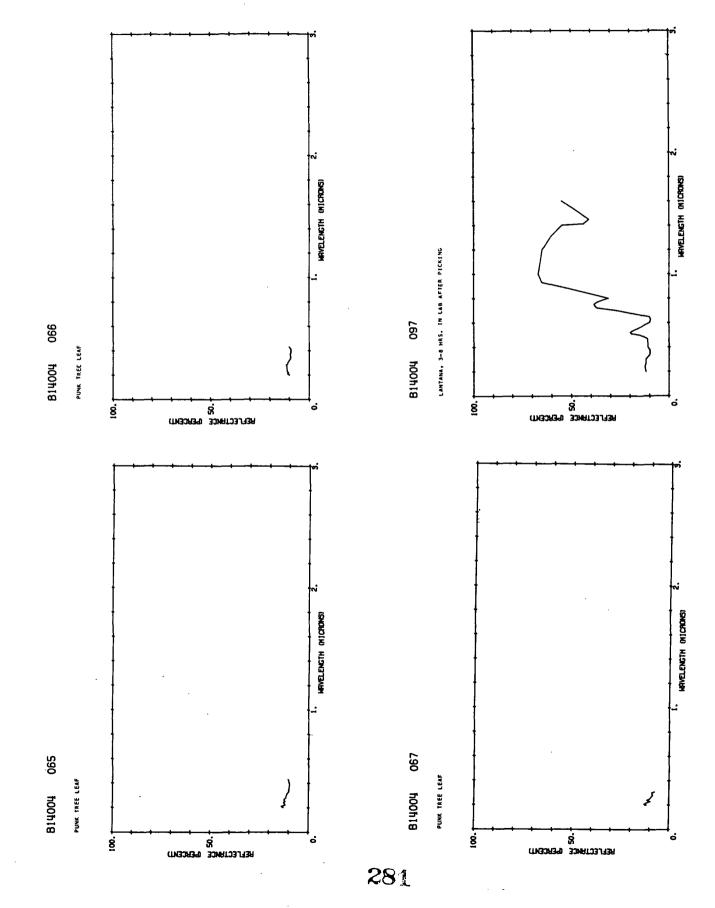


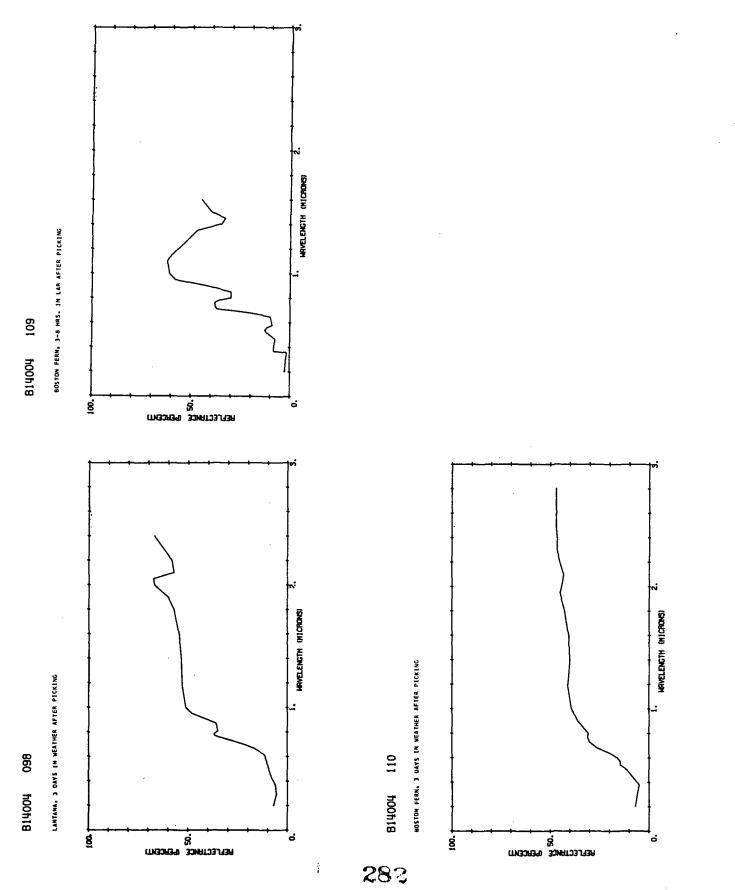




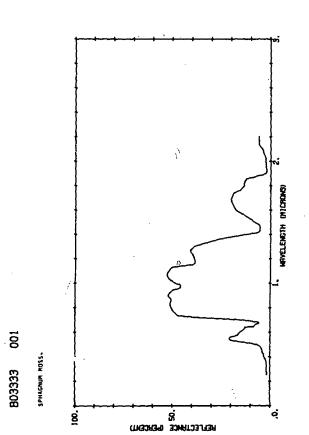








BGB VEGETATION Moss-Liverwort


.

. .

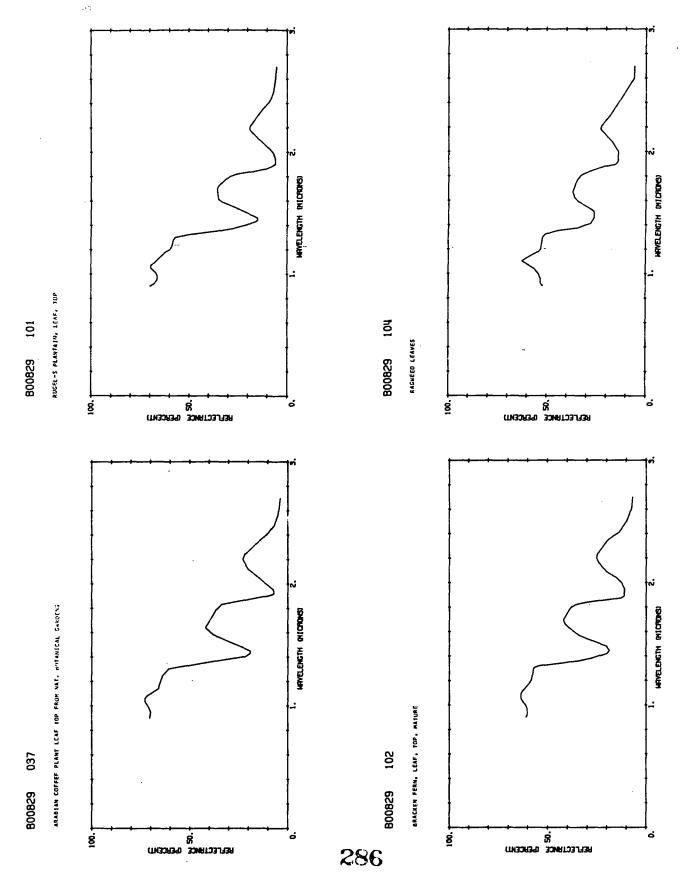
.

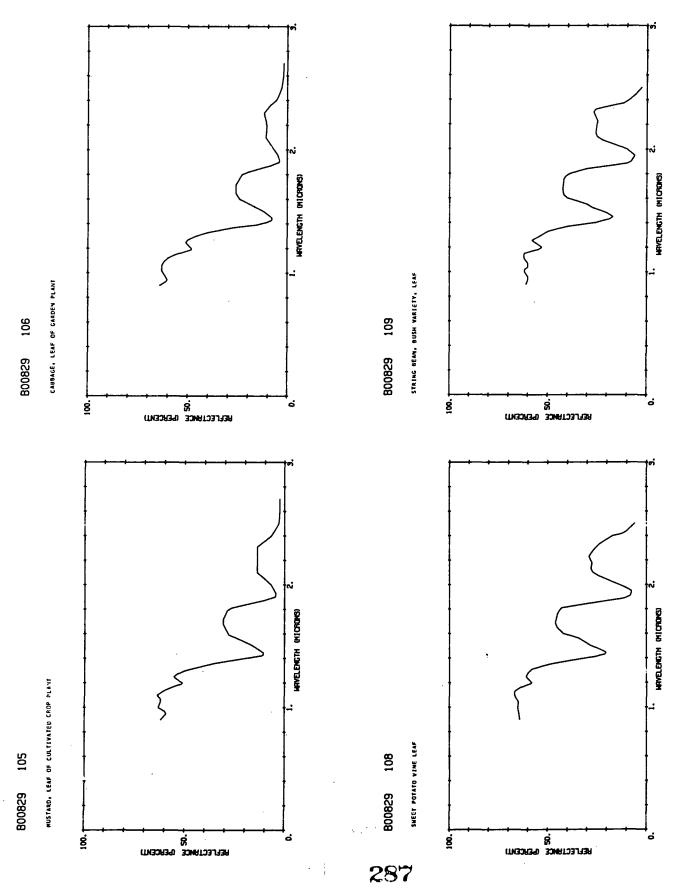
283

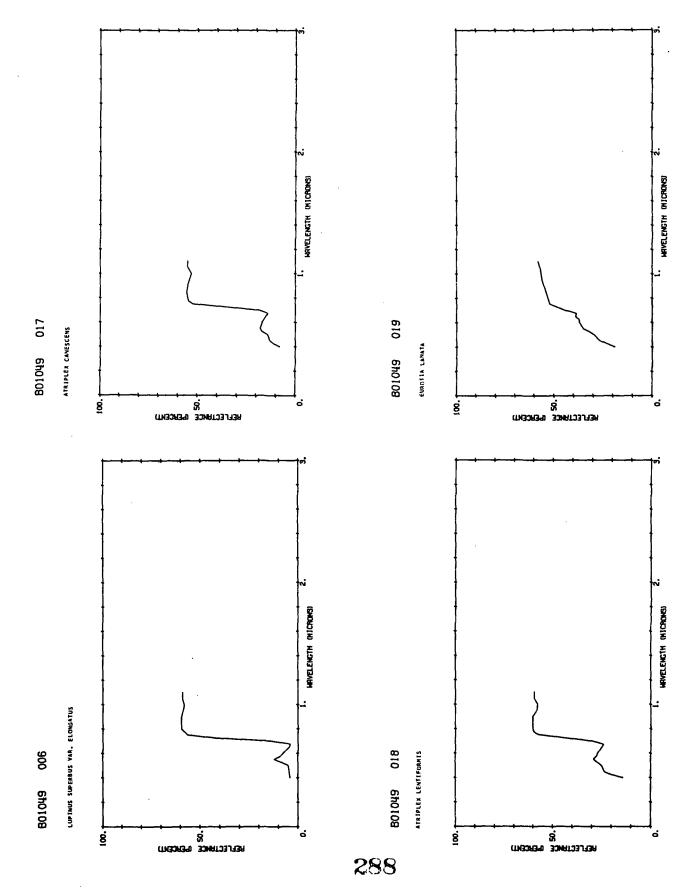
BGB 1

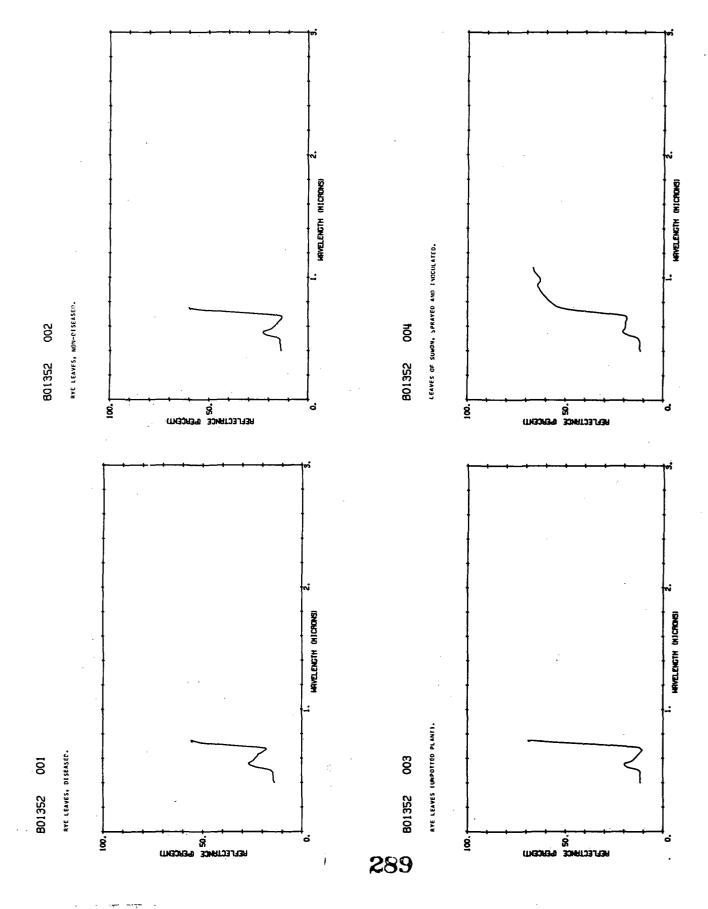
. . .

· · · ·

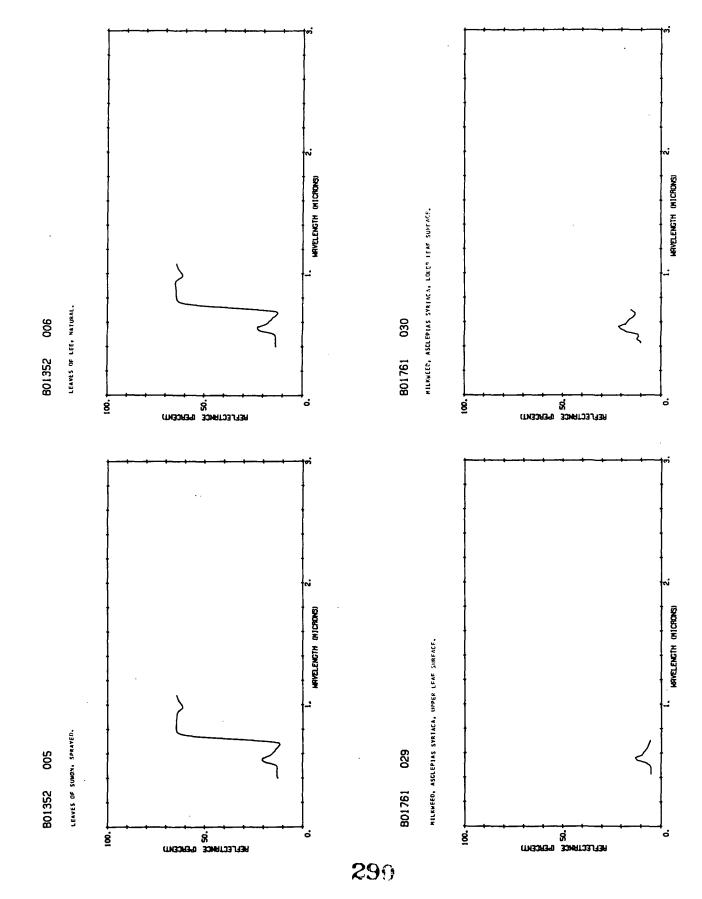

.

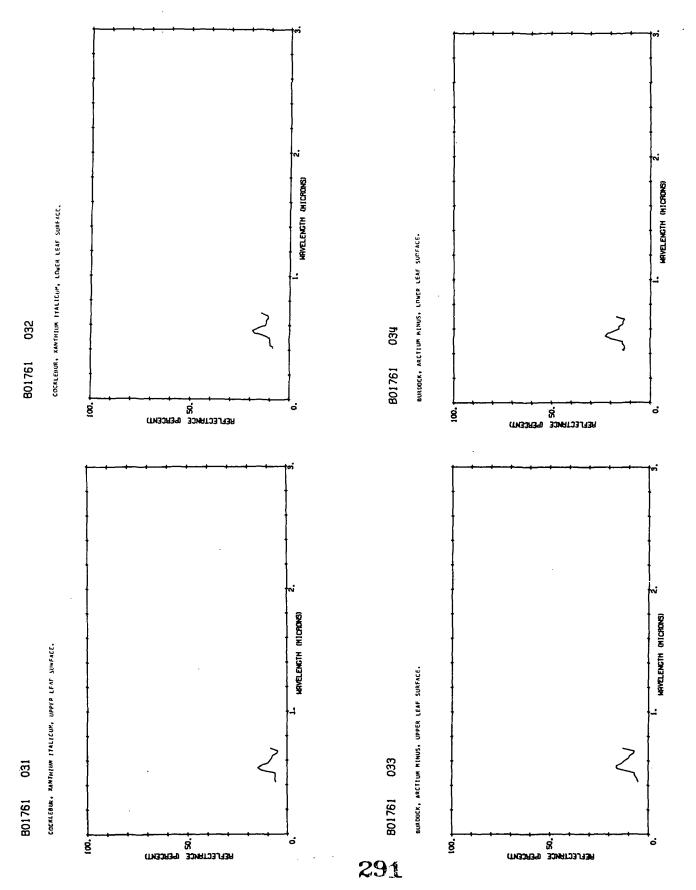

284

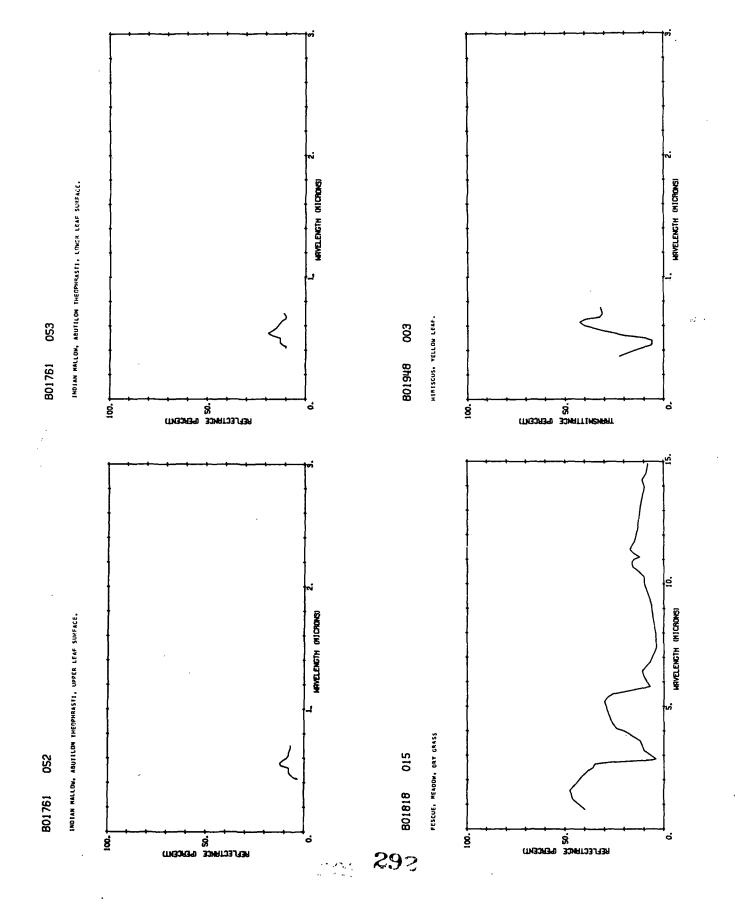

BGC VEGETATION Vascular

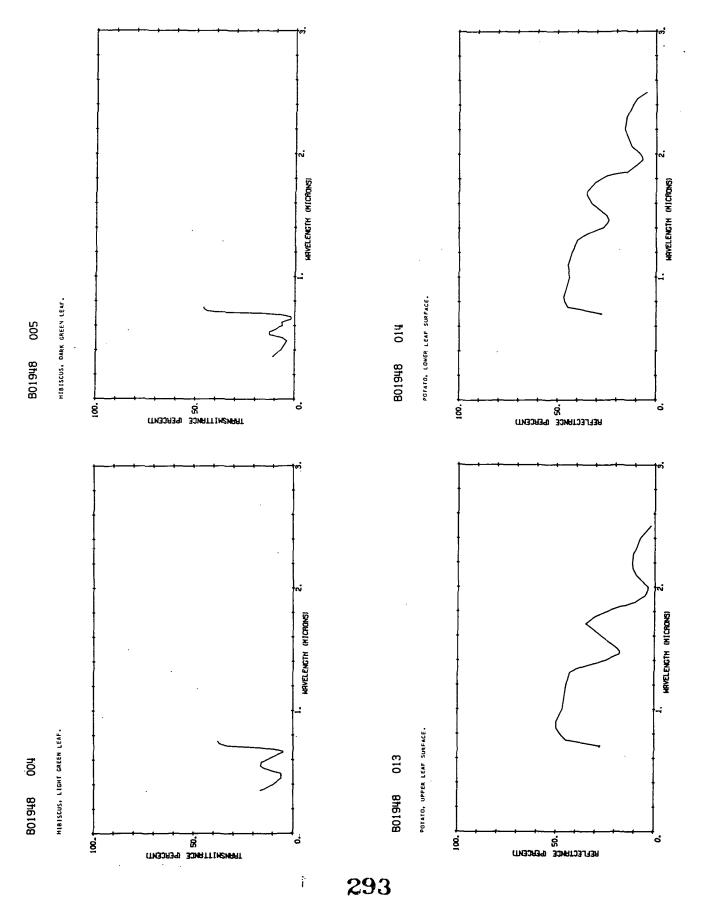

285

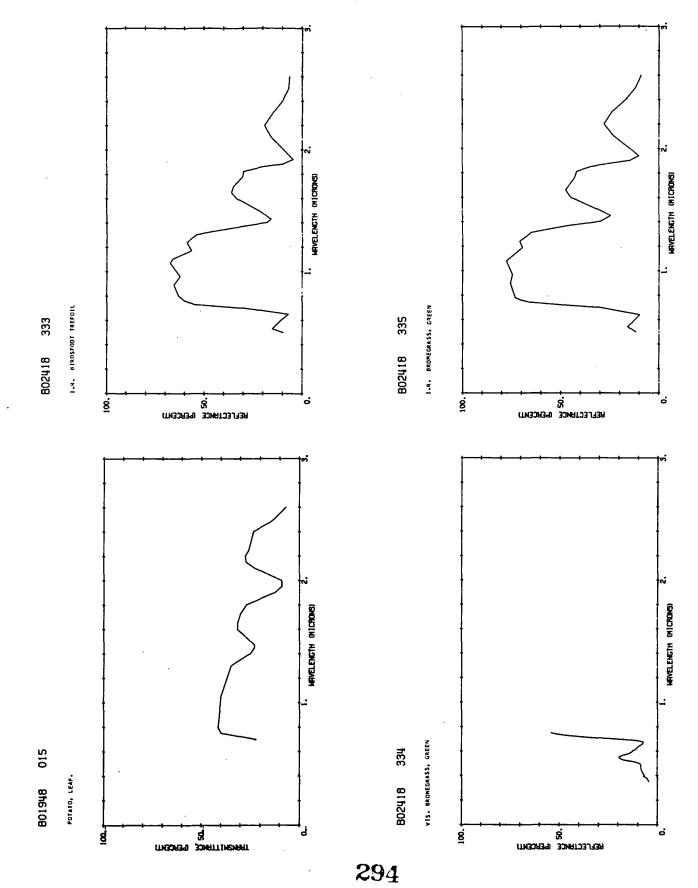
• •

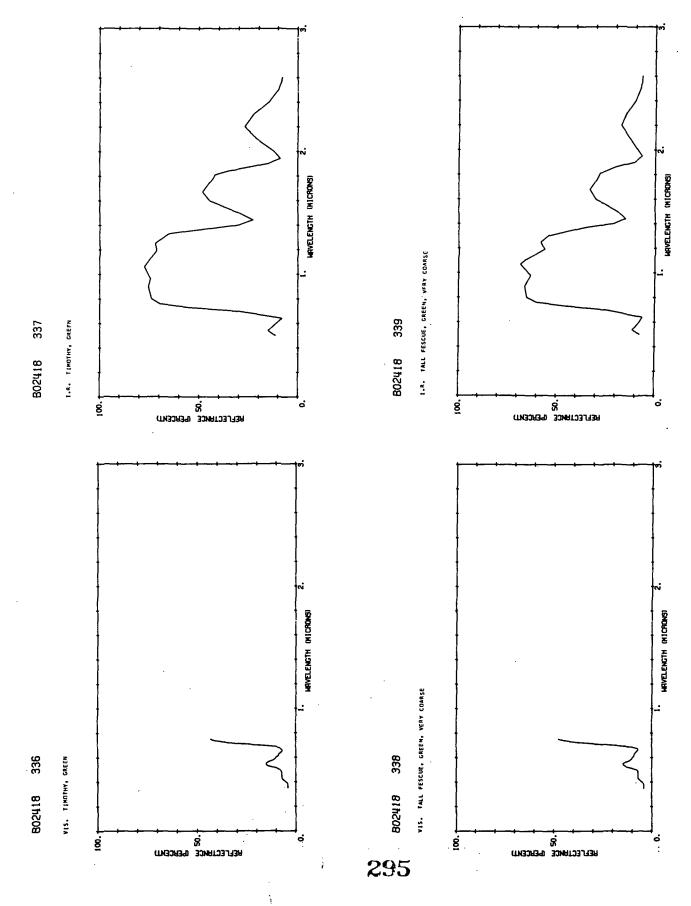


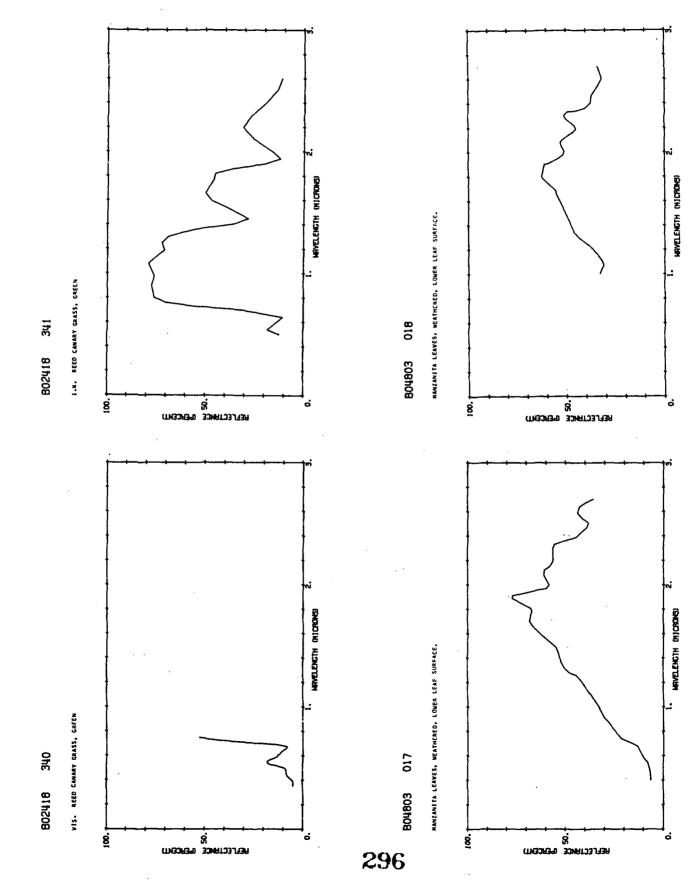


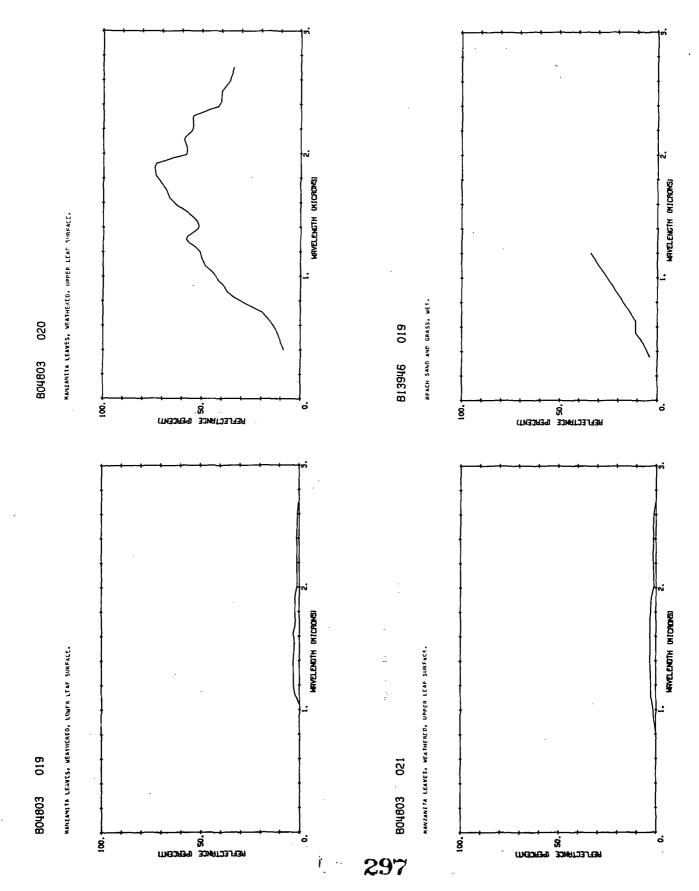


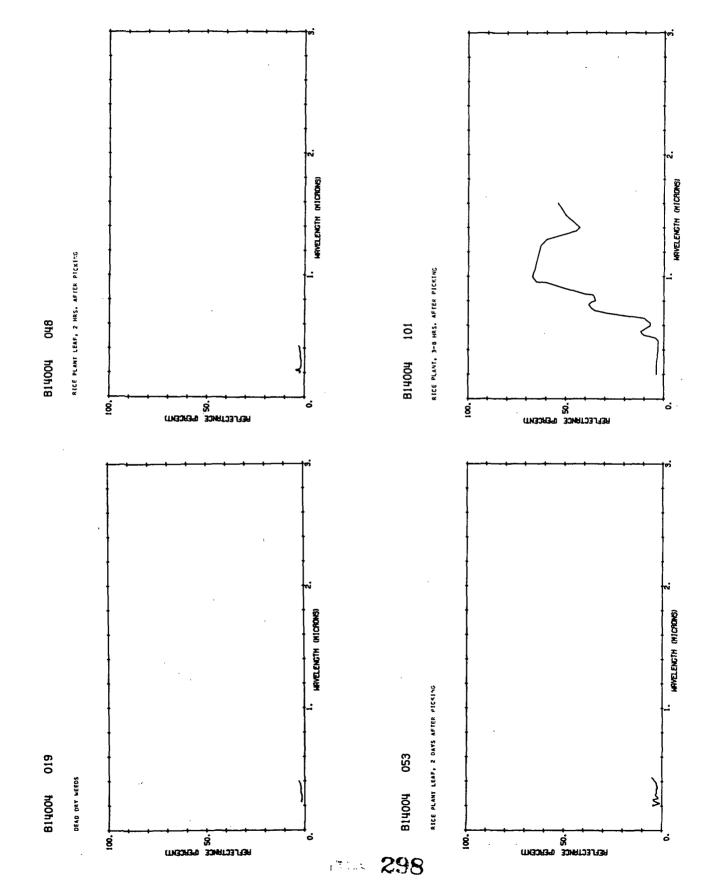


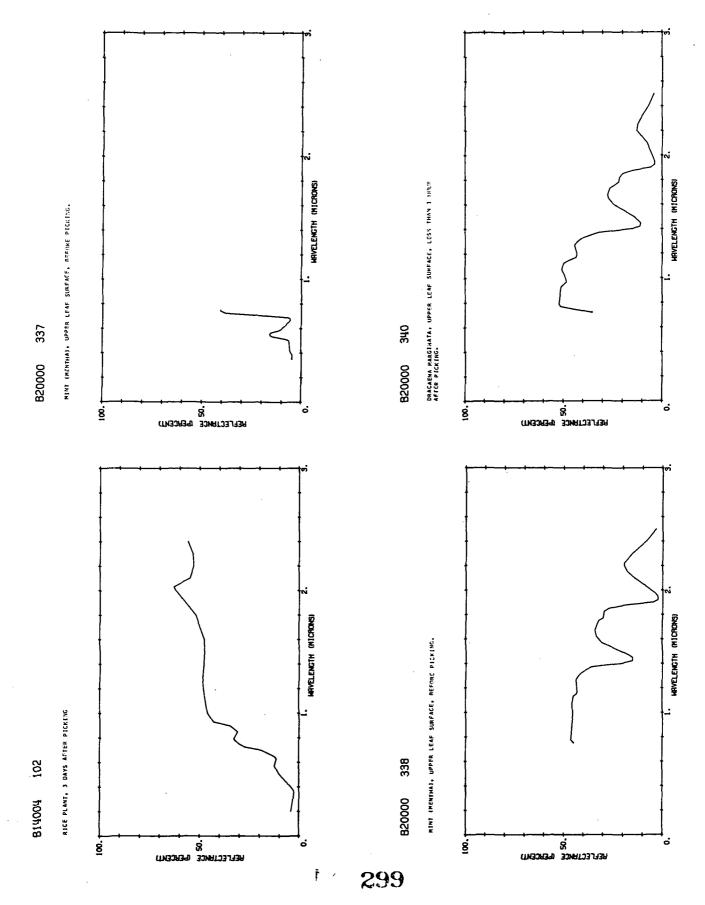

Ĩ

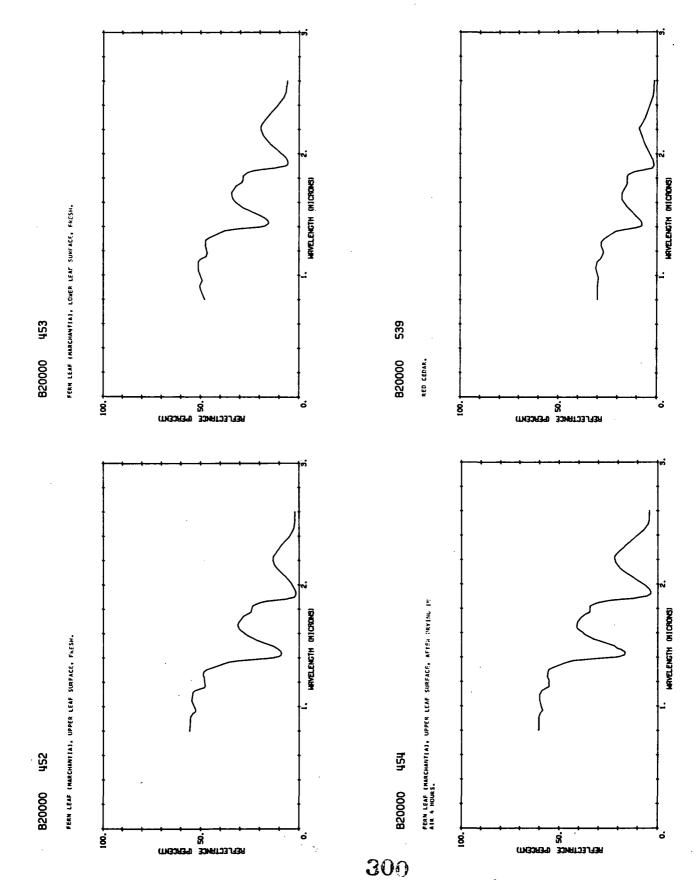


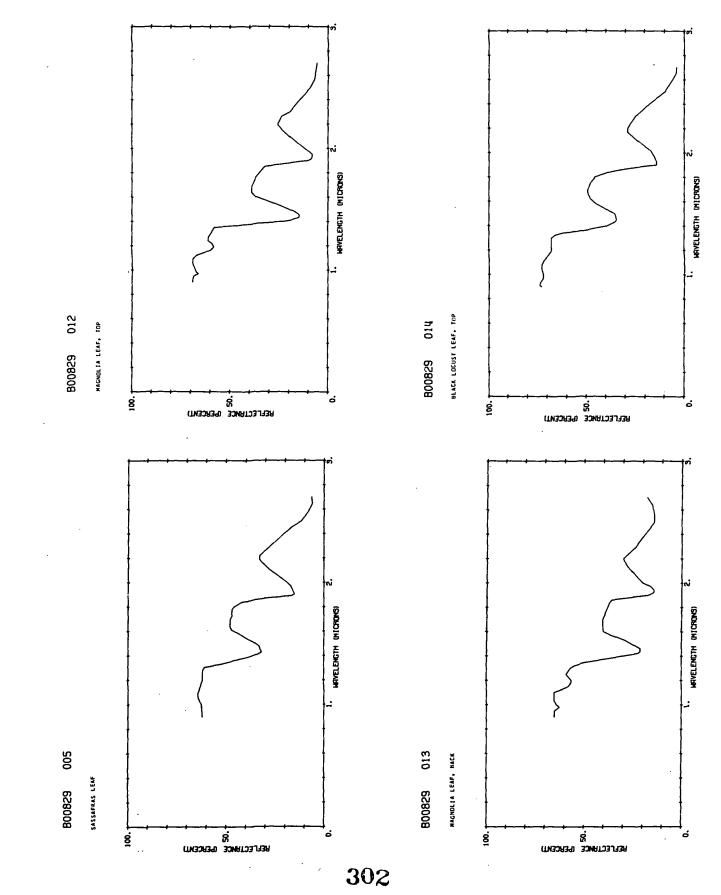


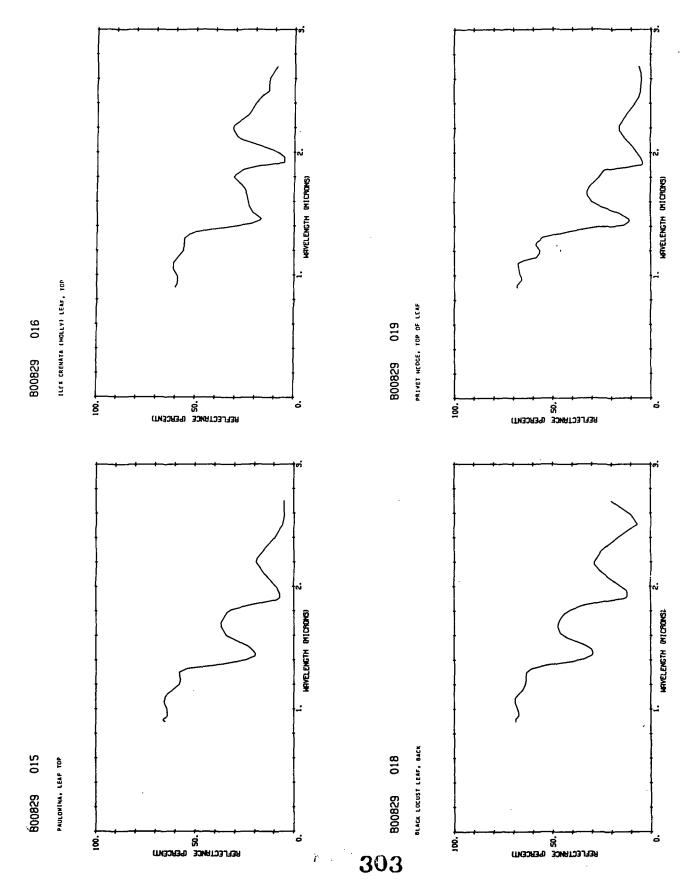


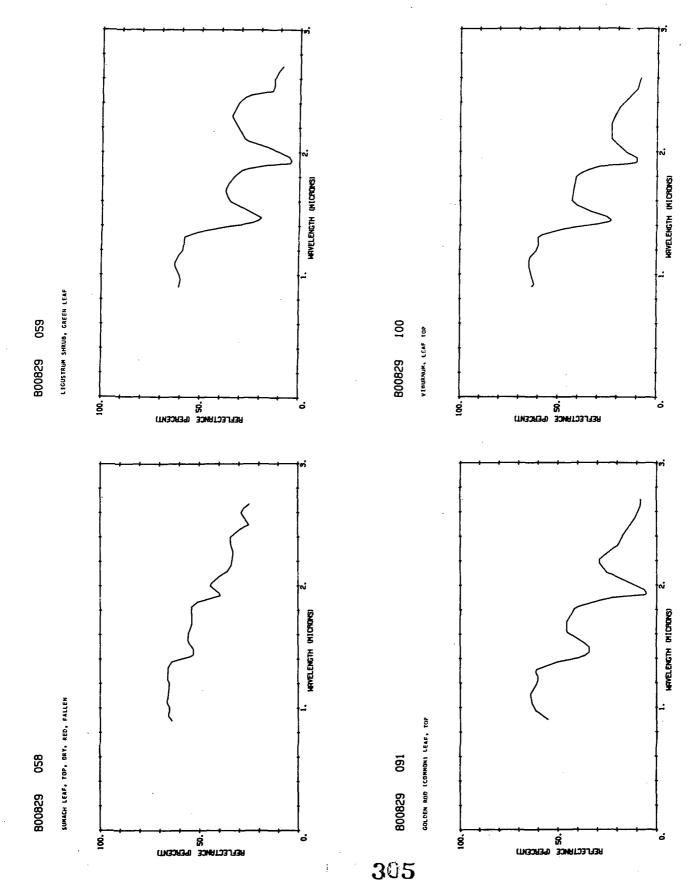


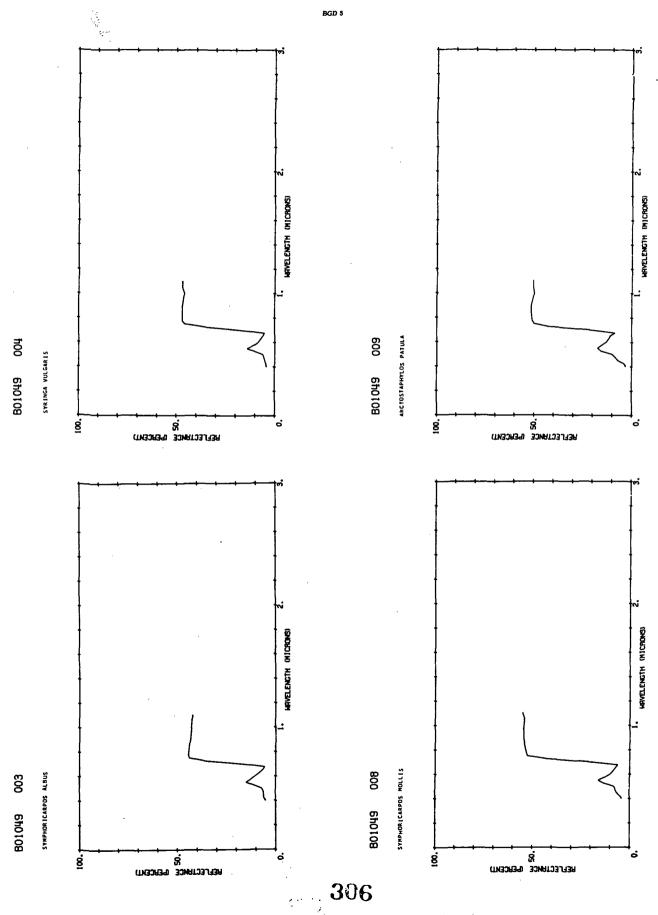


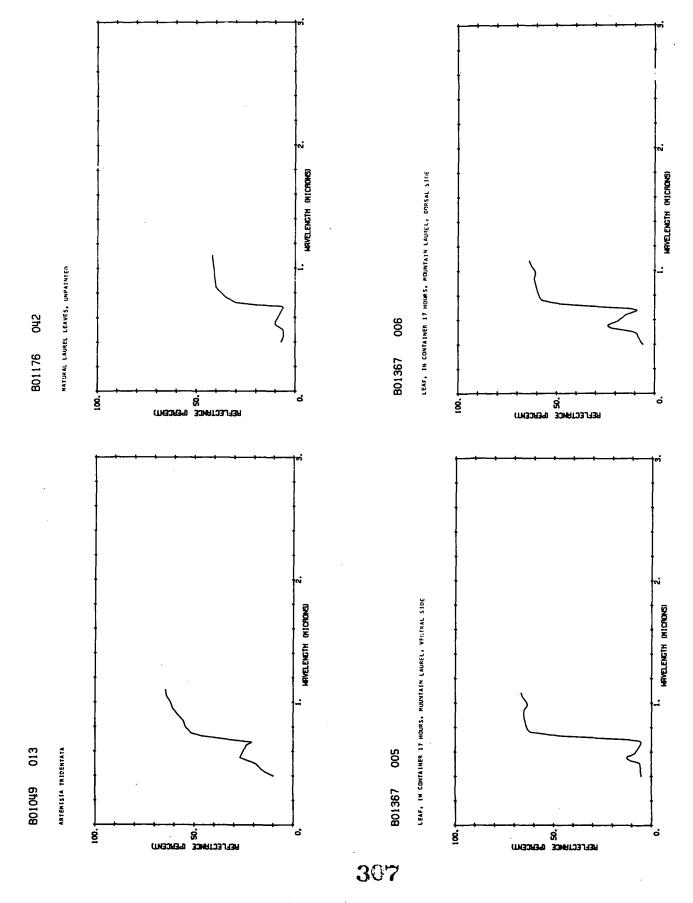


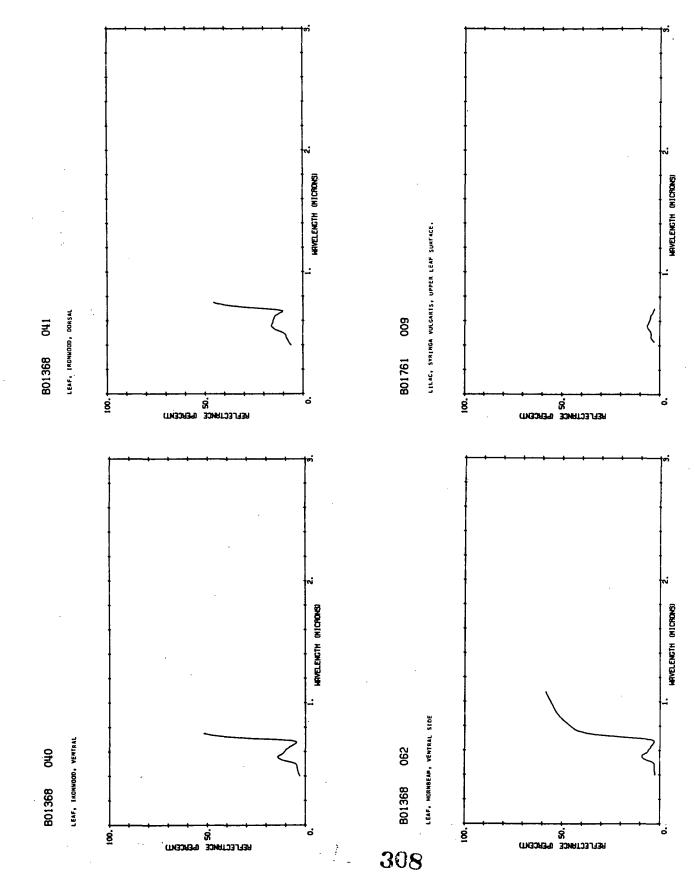


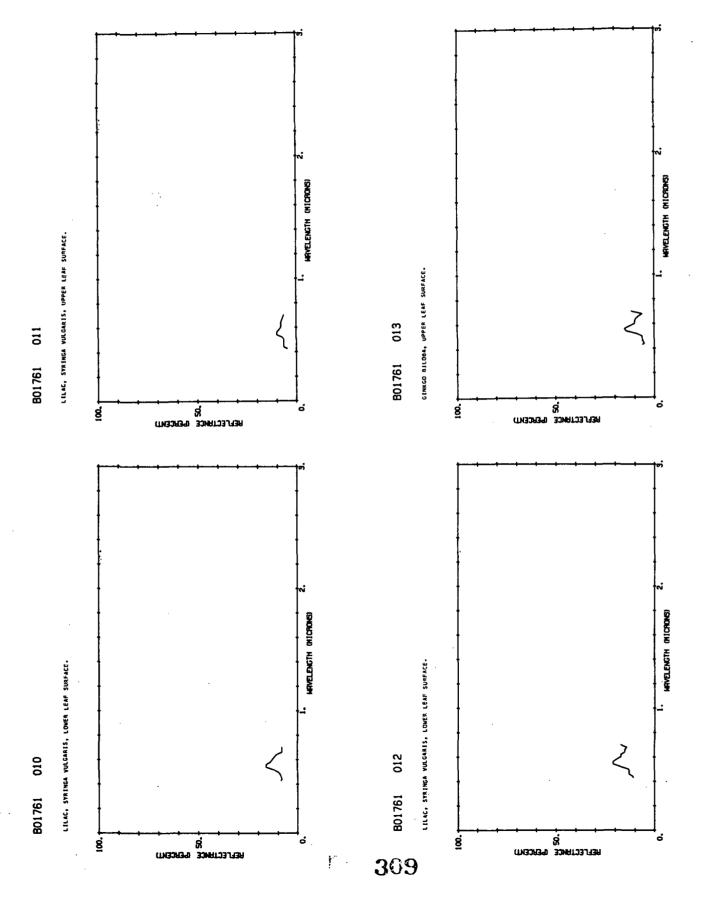


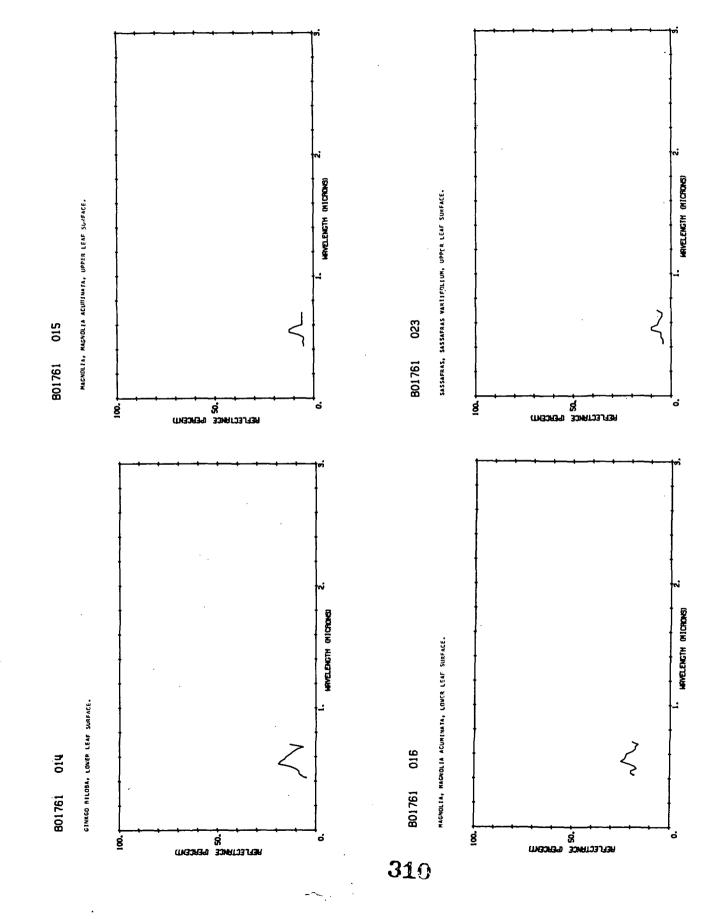

BGD VEGETATION Ligneous

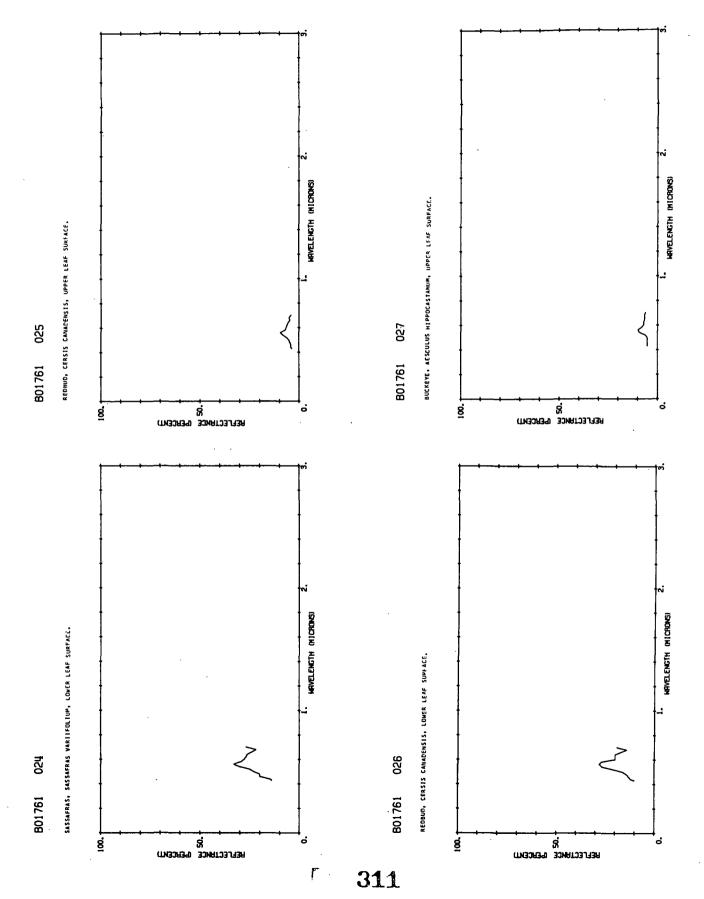

301

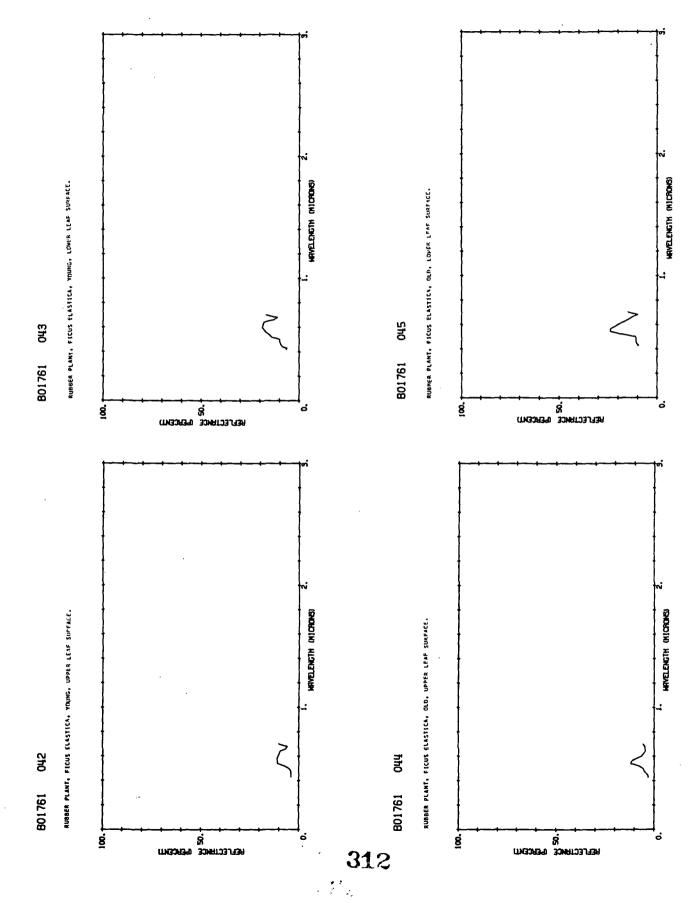


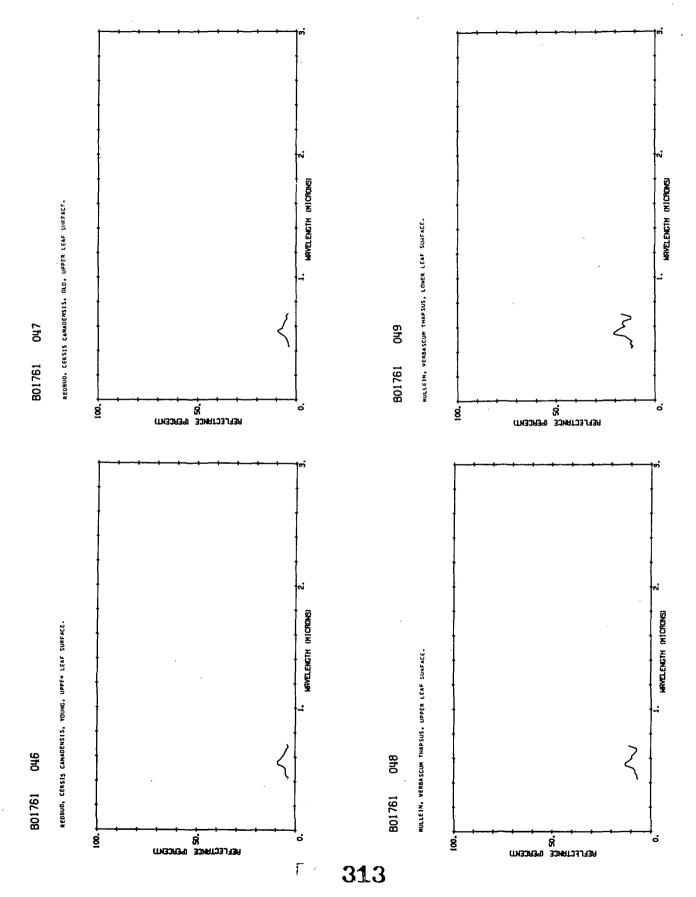


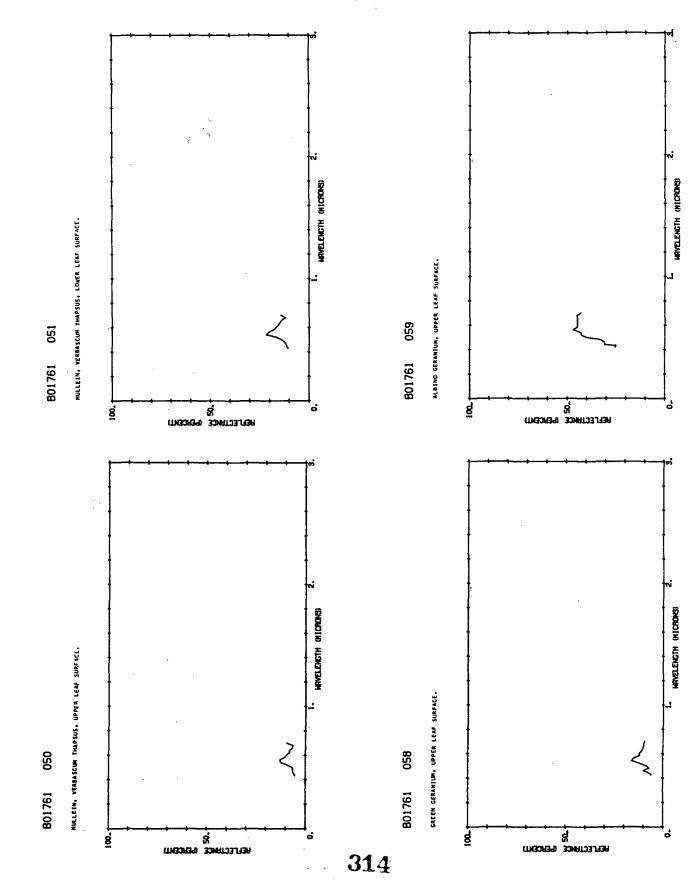


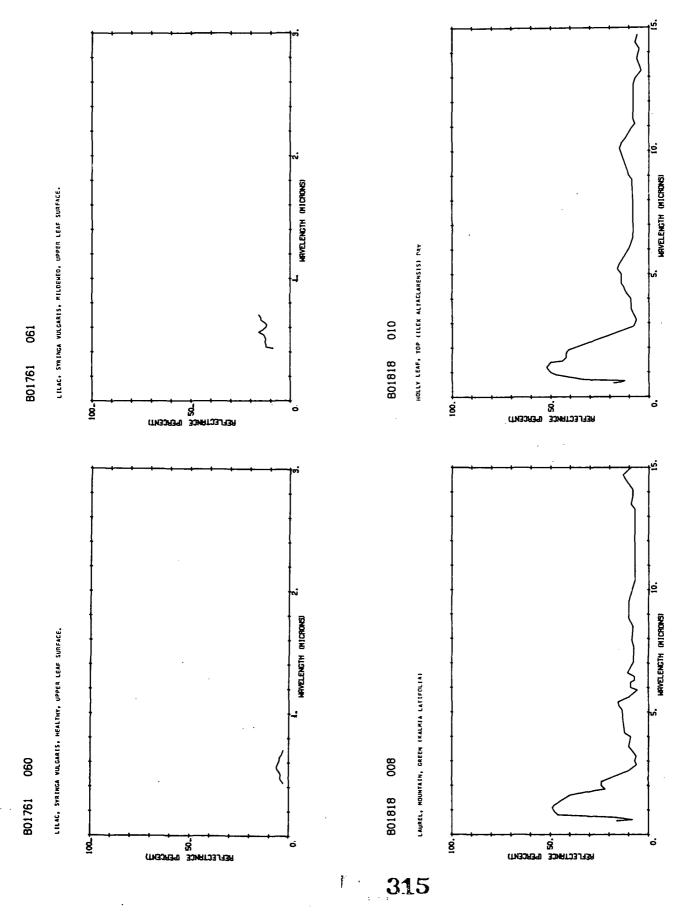


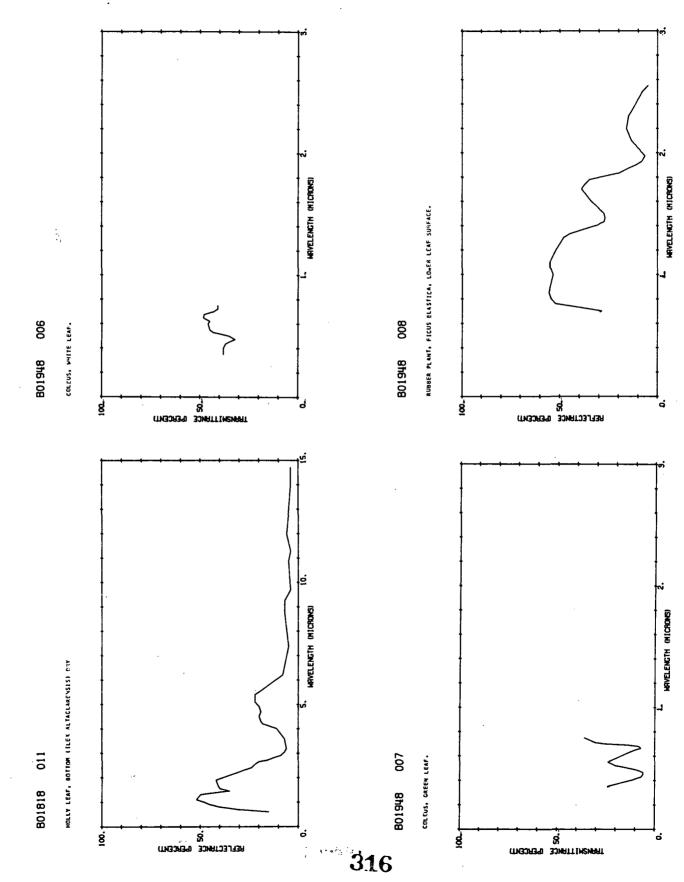


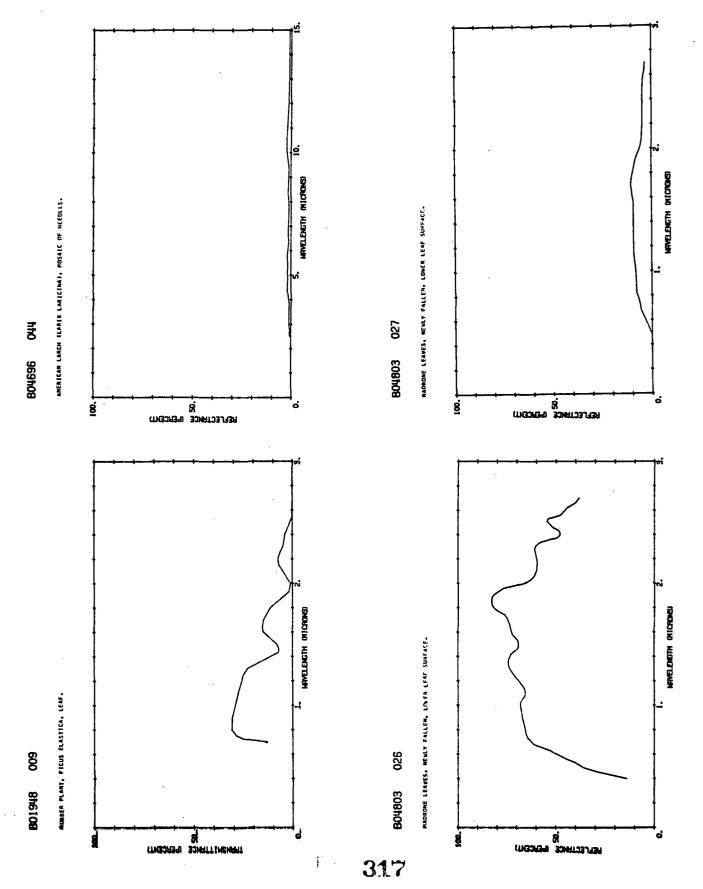


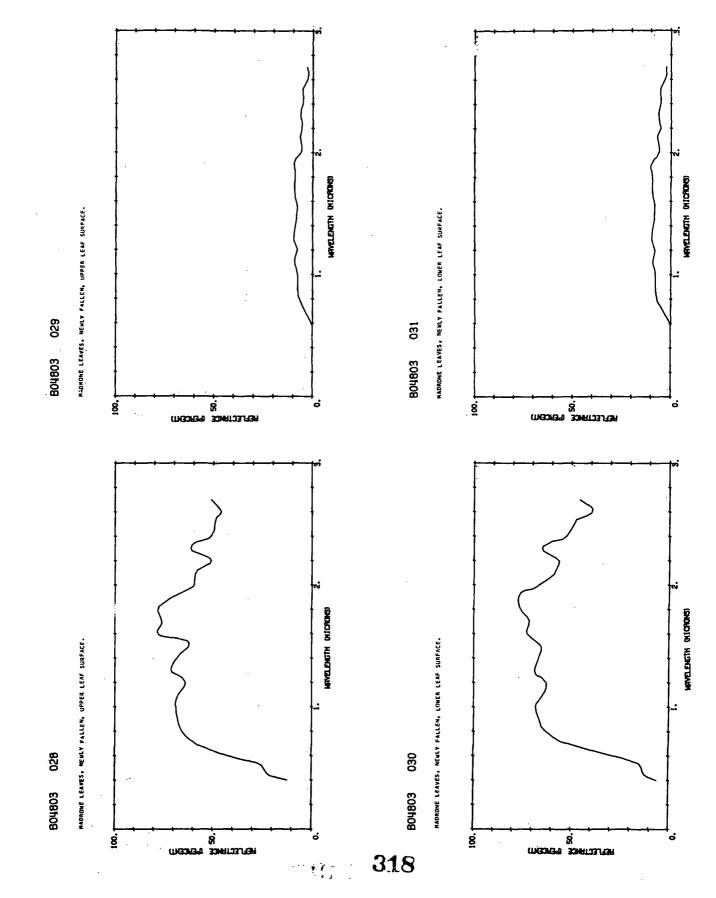


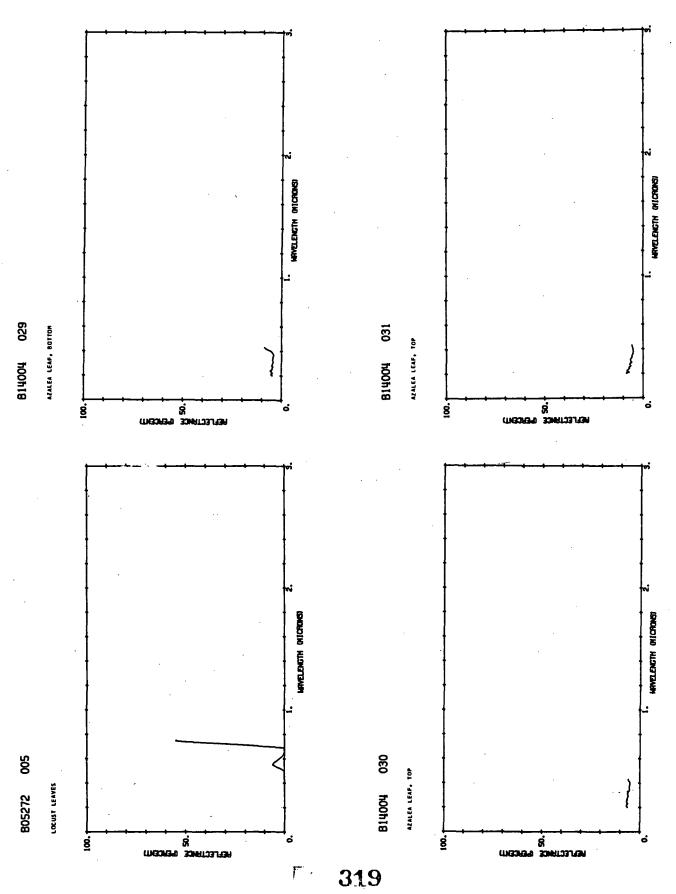


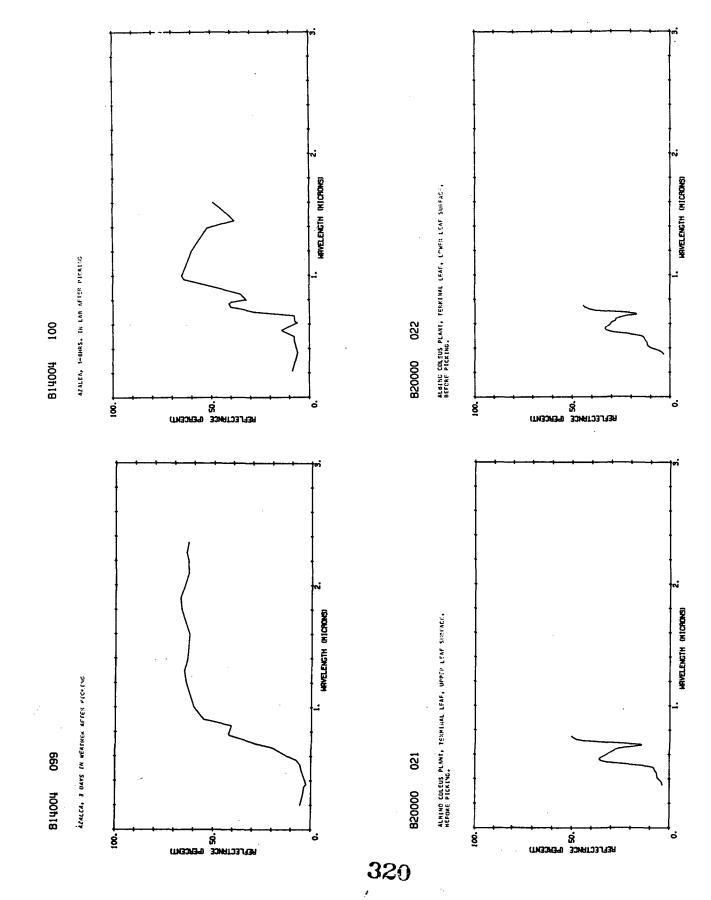


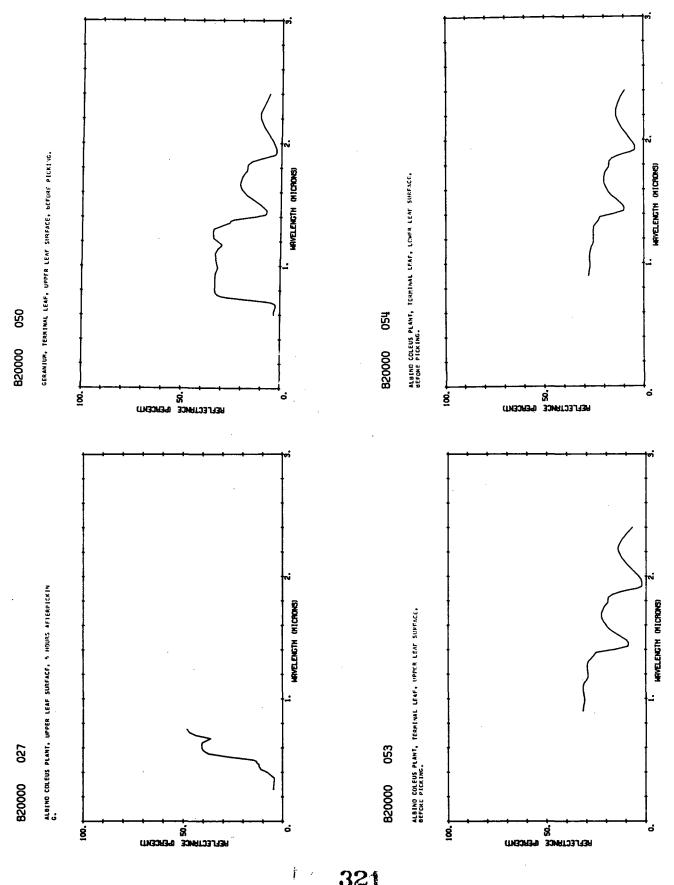



. · .

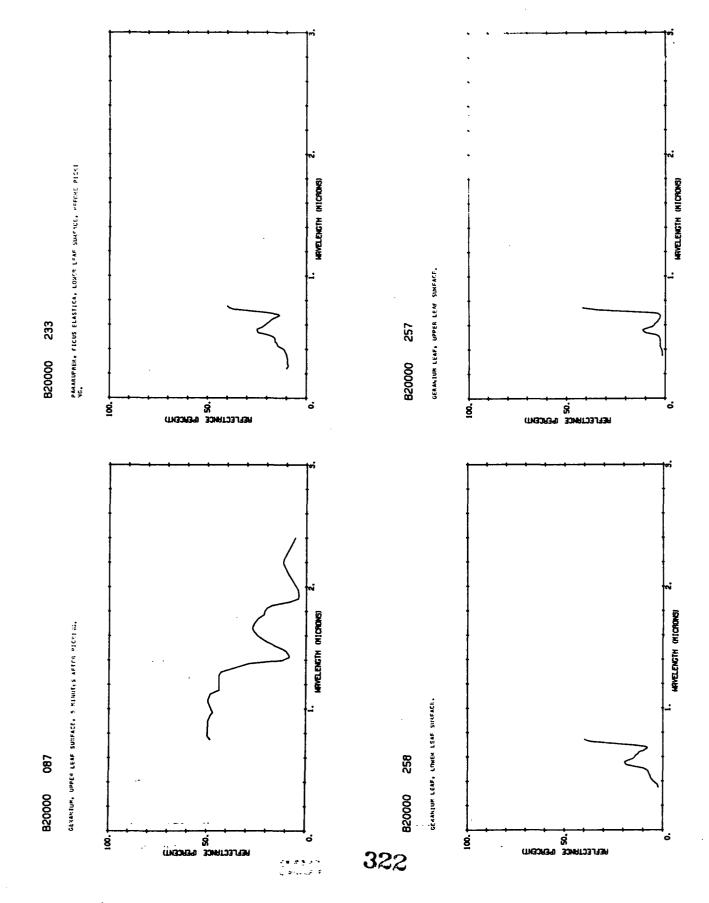


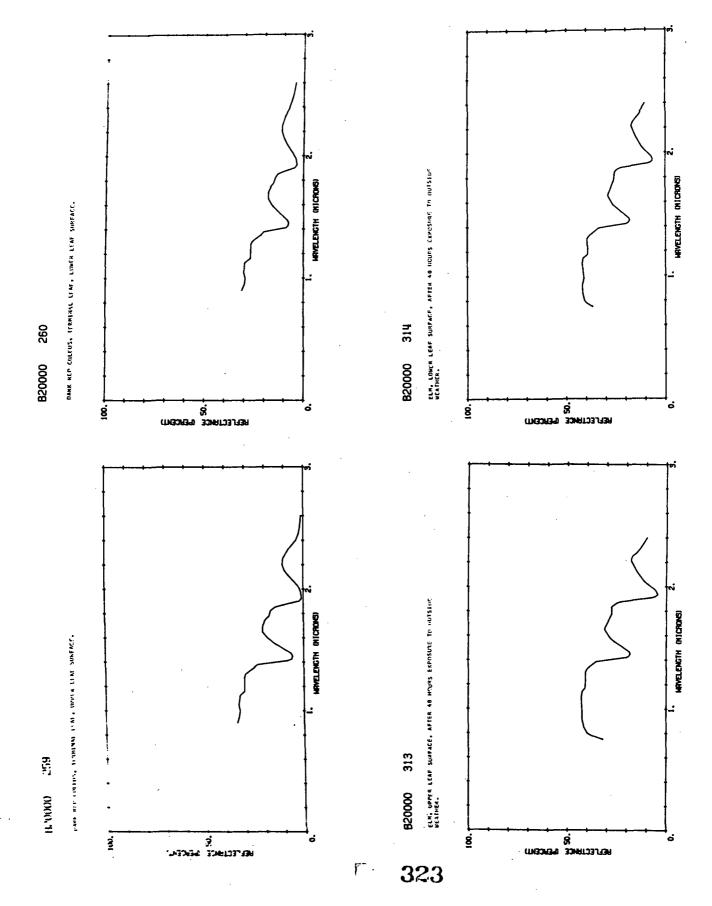


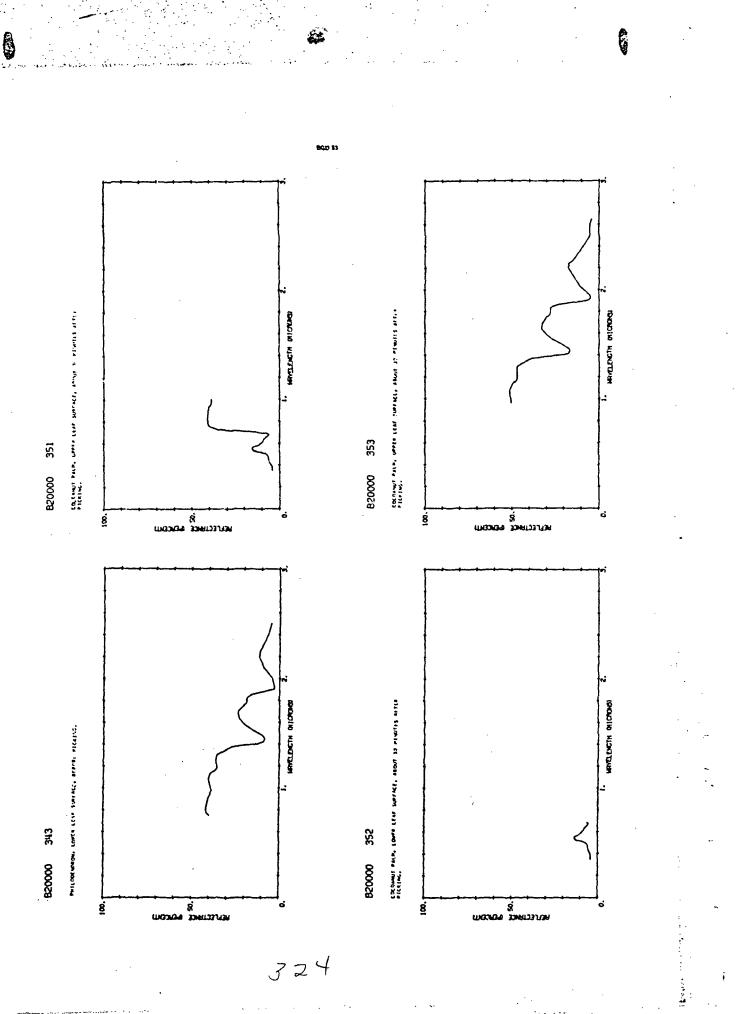




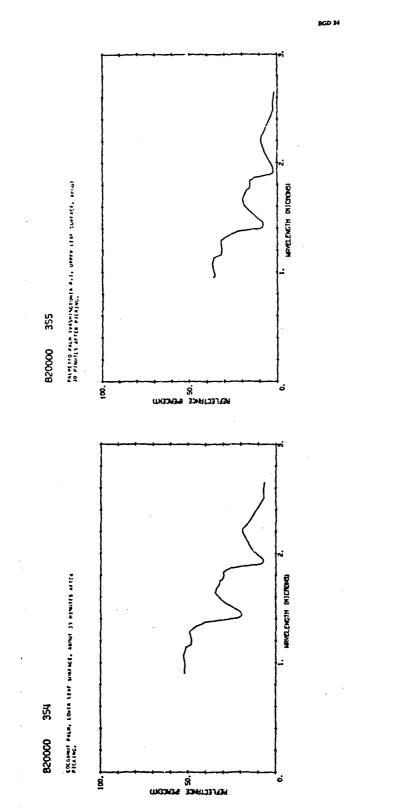
÷





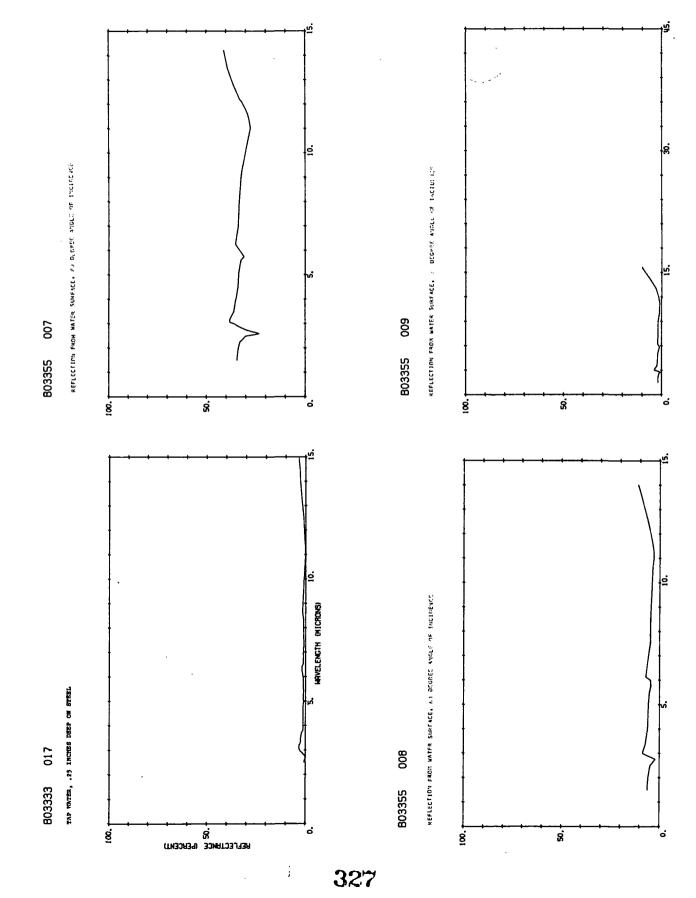


321

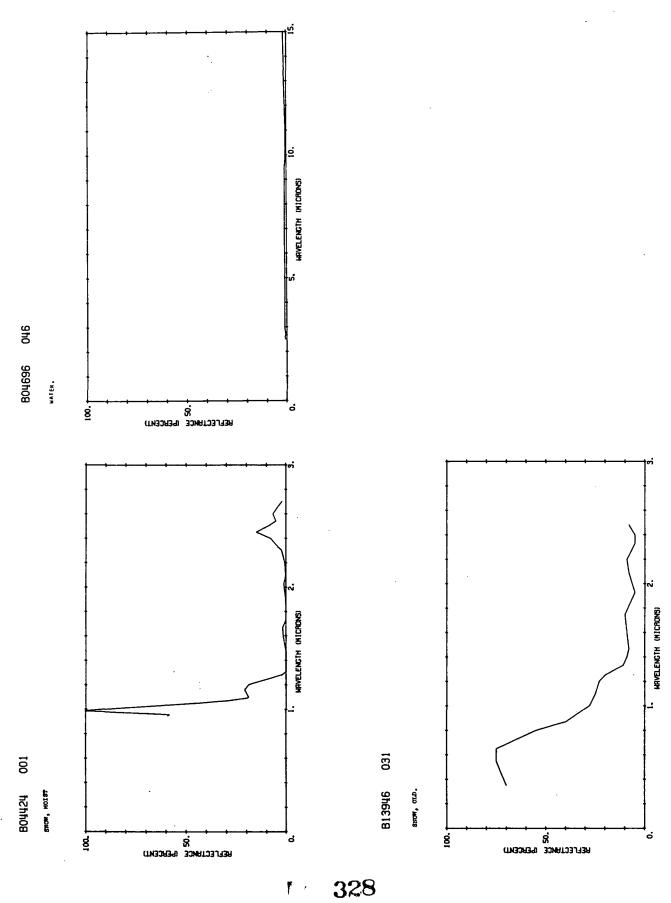

19312 23

·· •

••••



THREW HIN THREW T


326

WATER

BH

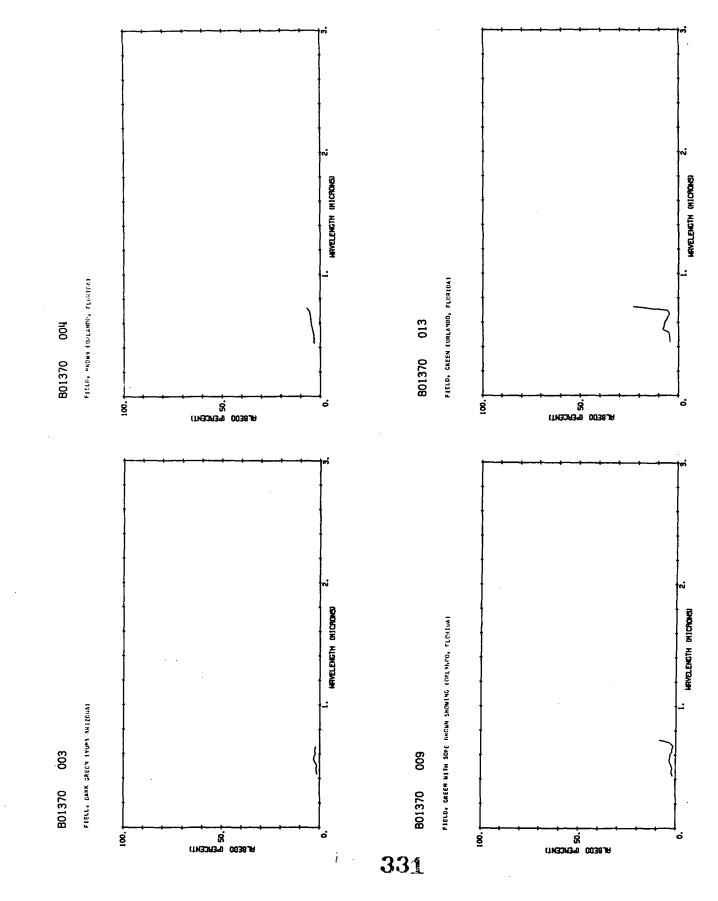
BH 1

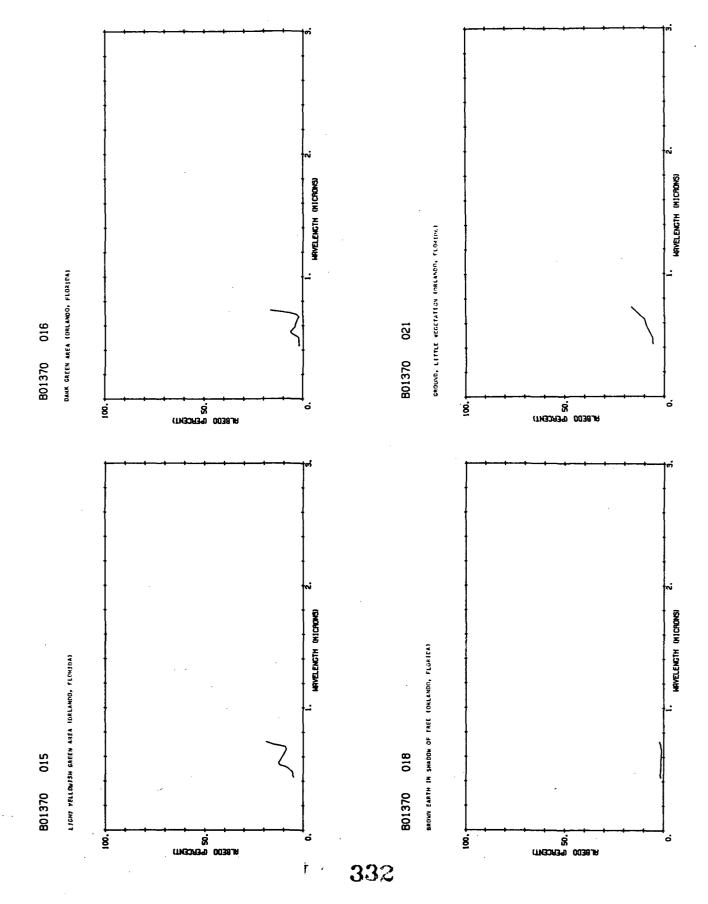
BH 2

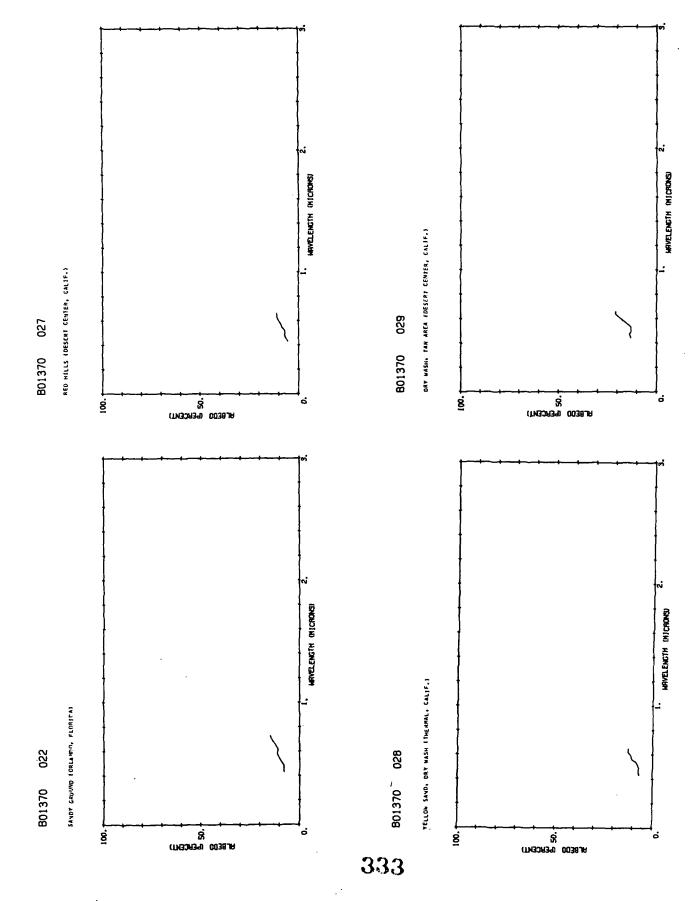
4.2.2. FIELD DATA

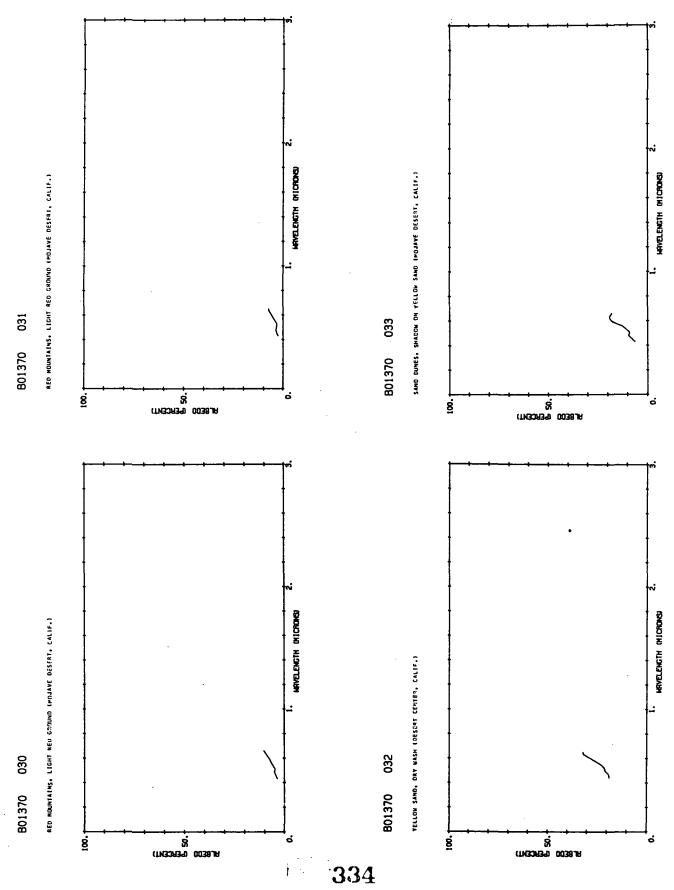
Data contained in this Section were obtained from the following documents:

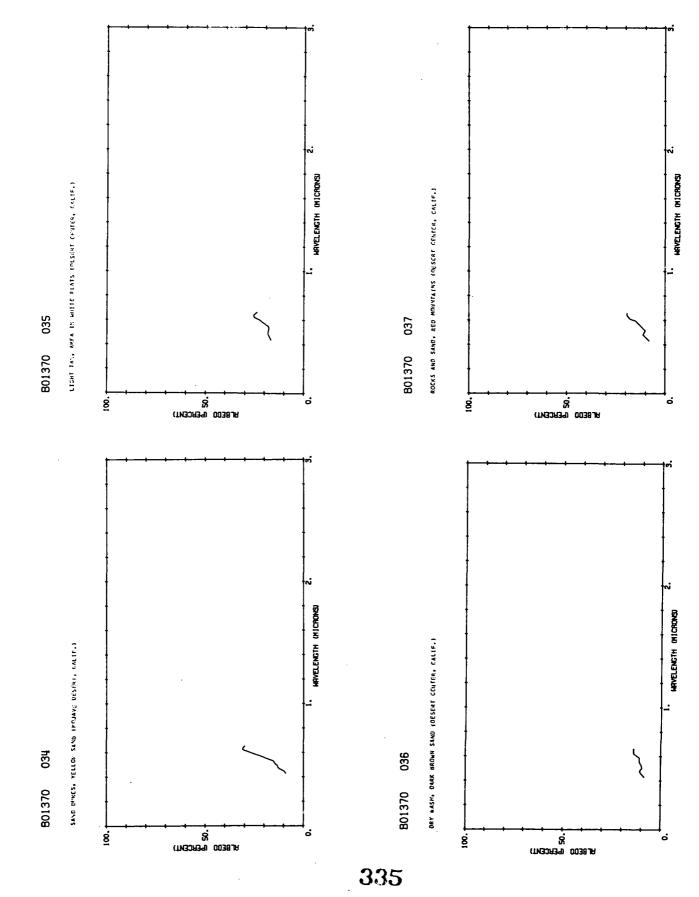
Airborne Measurements-B01035 B01370

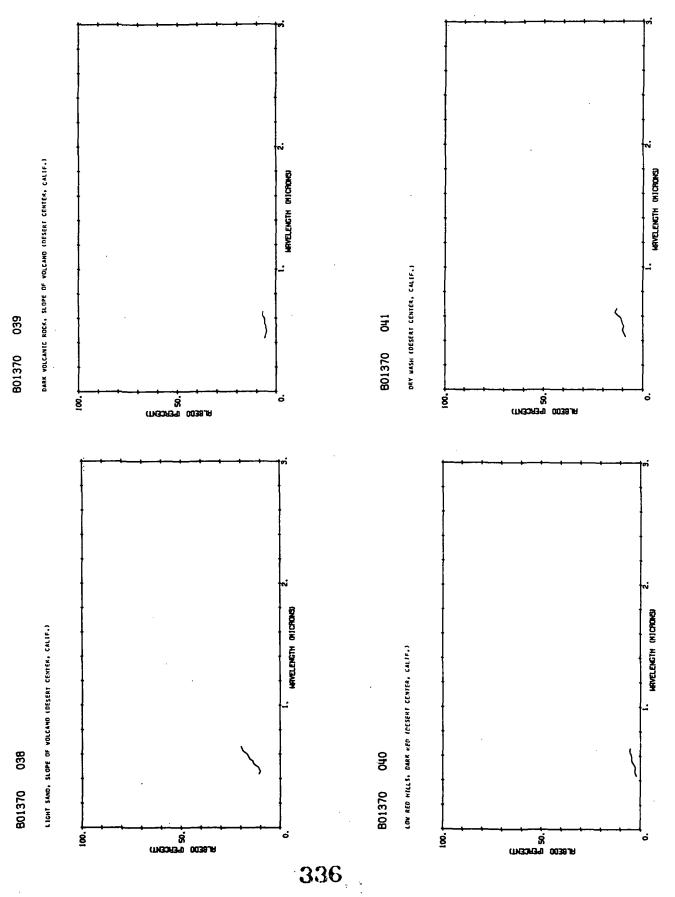

Ground Measurements-B01337 B01643

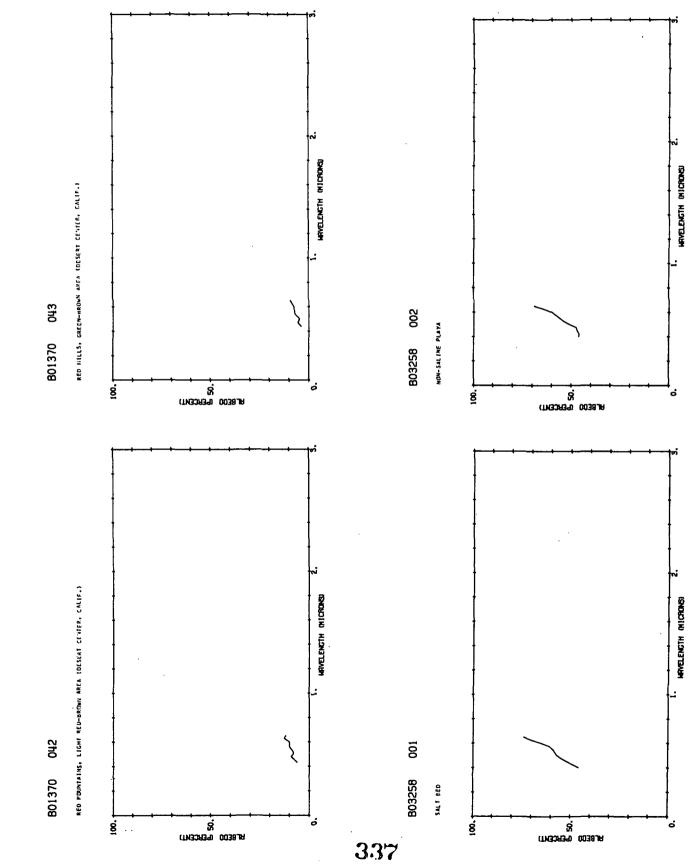

Ground and Airborne Measurements-B03258 B03995

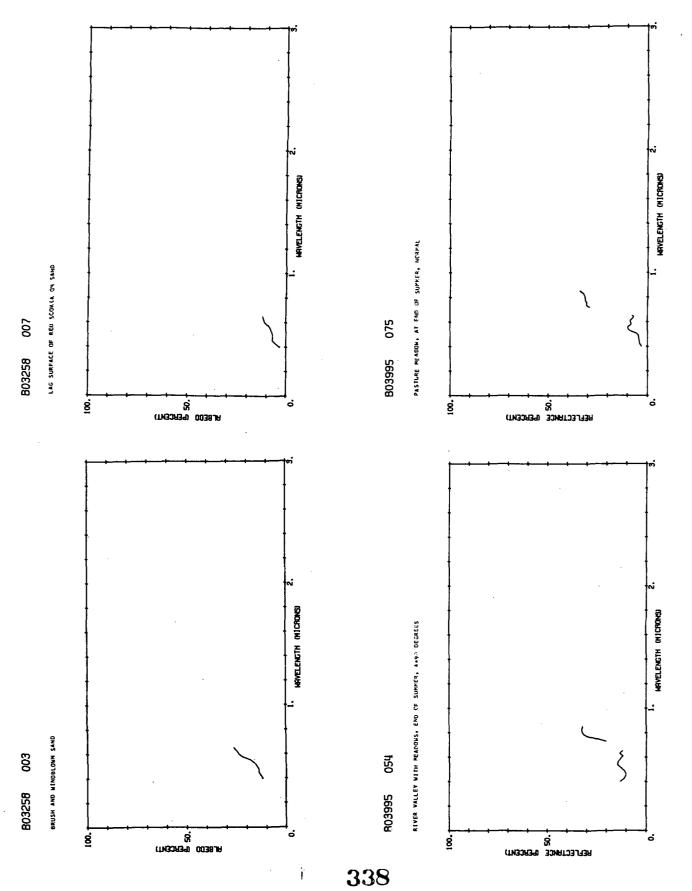

329

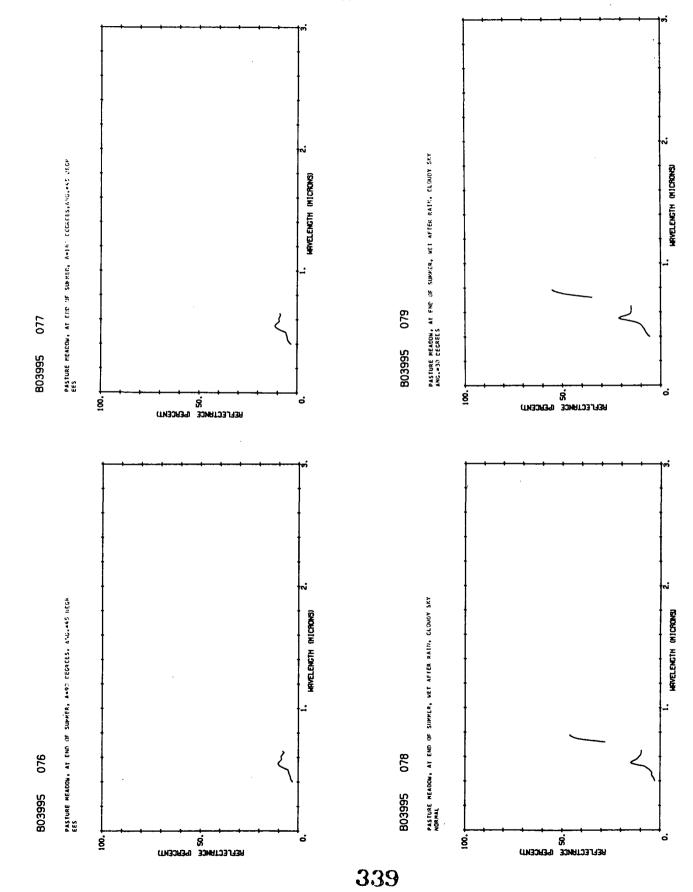

(F)BE TERRAIN UNIFORMITY

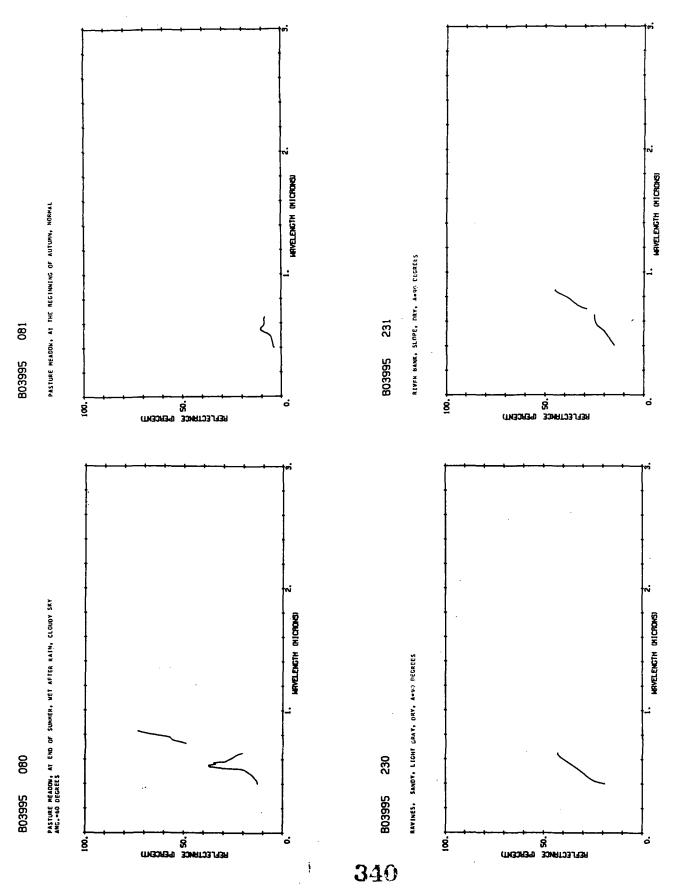

330

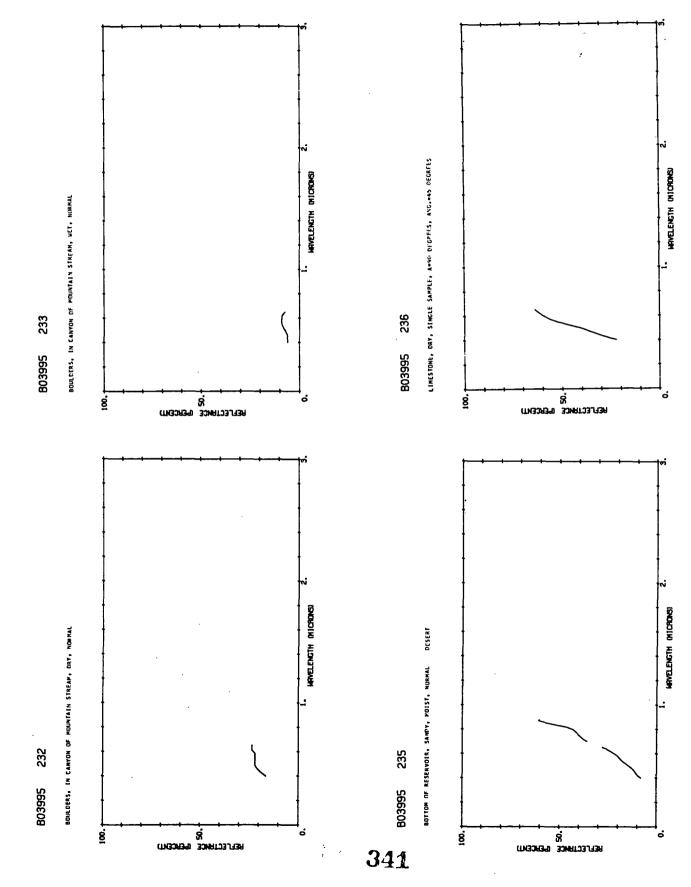


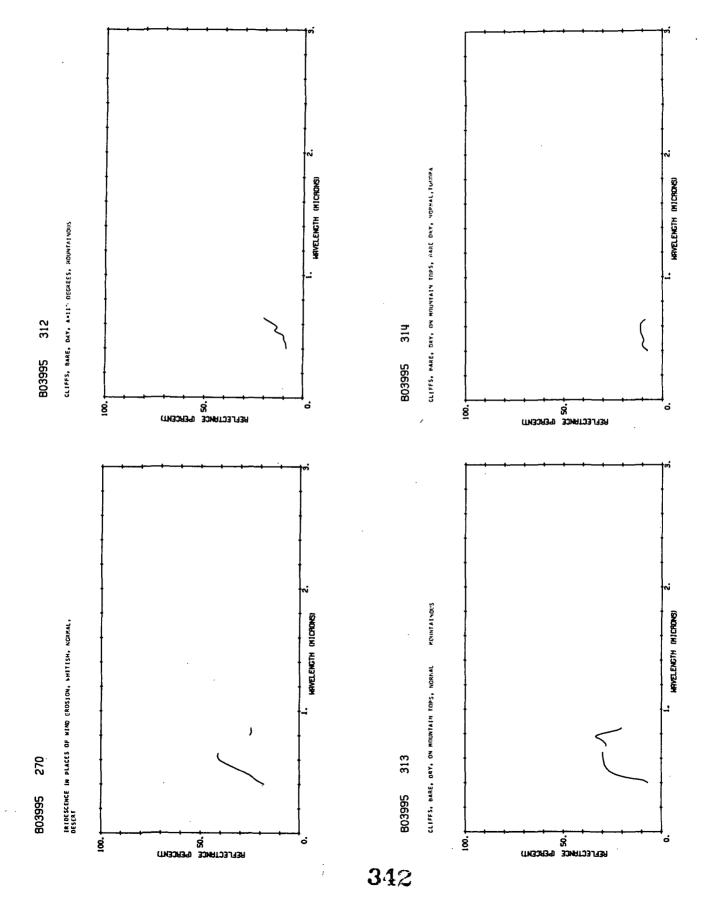


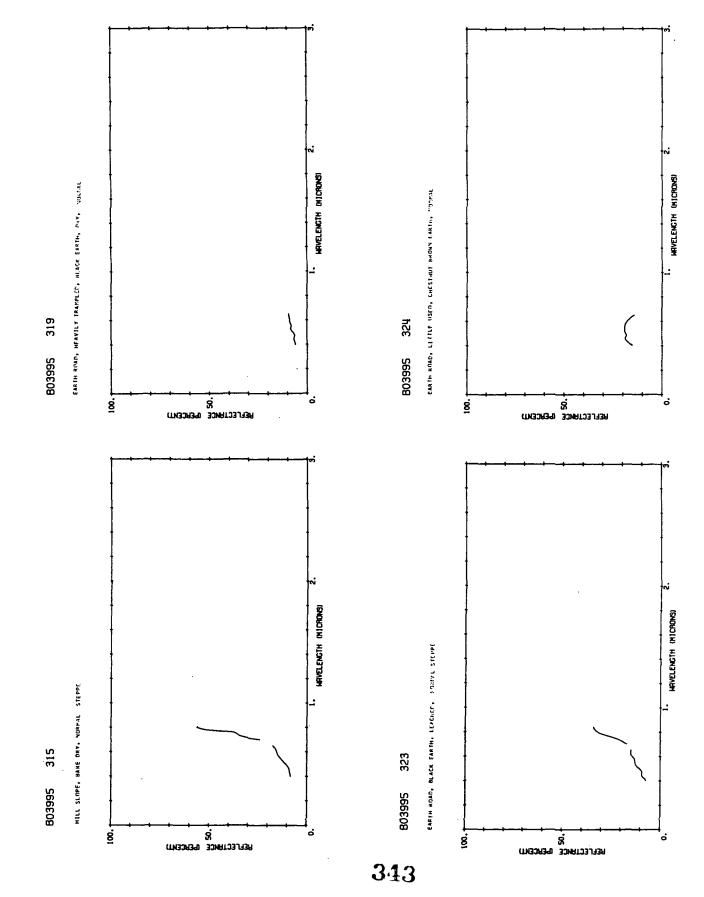


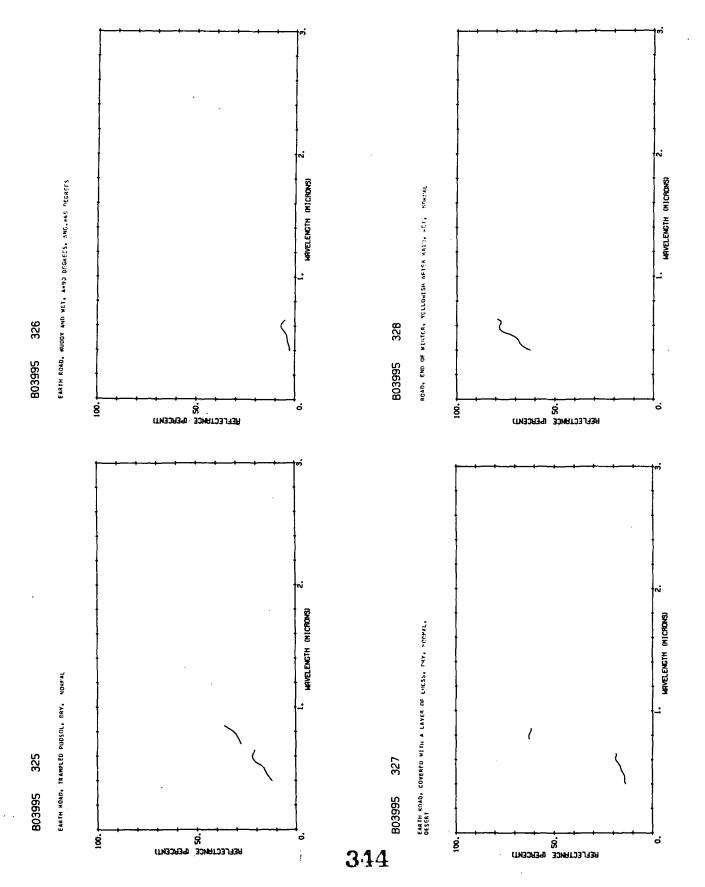




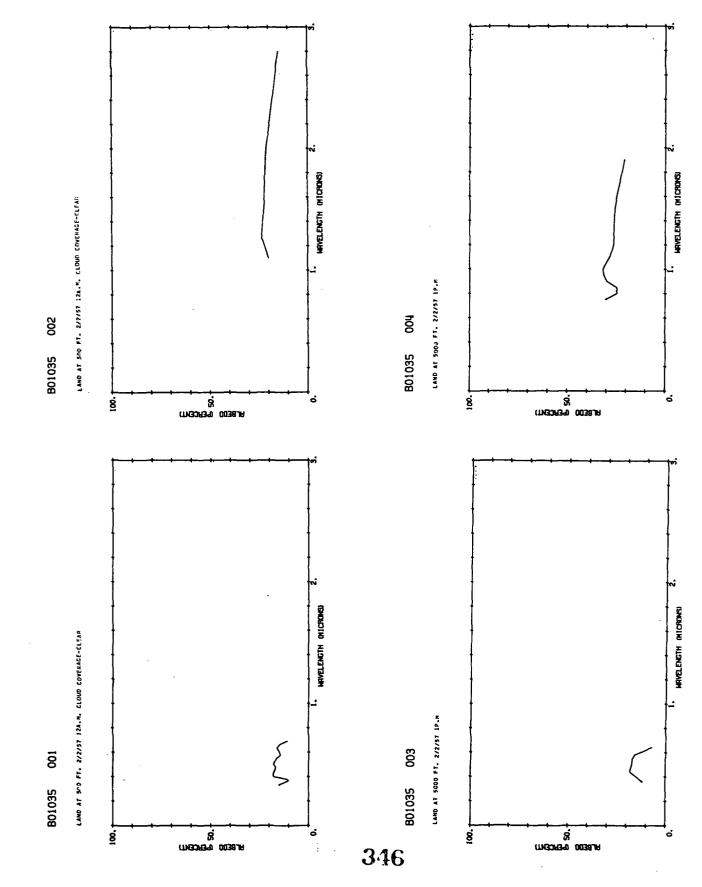


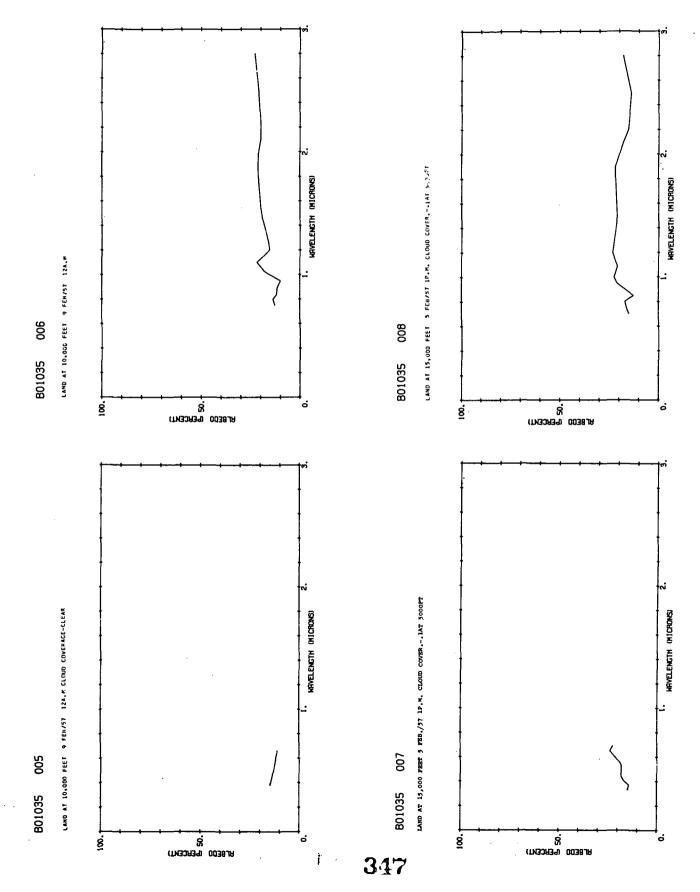


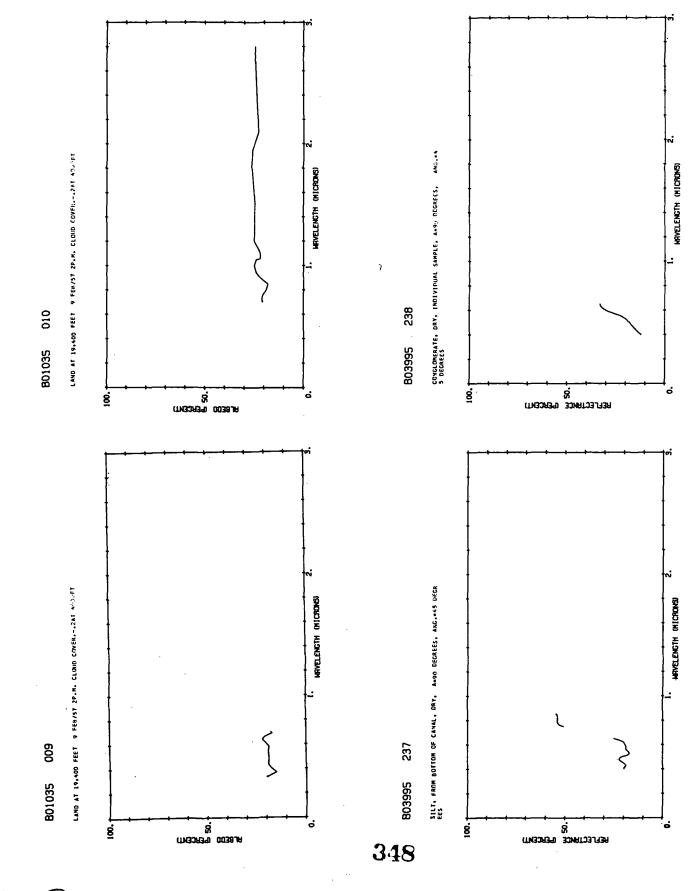




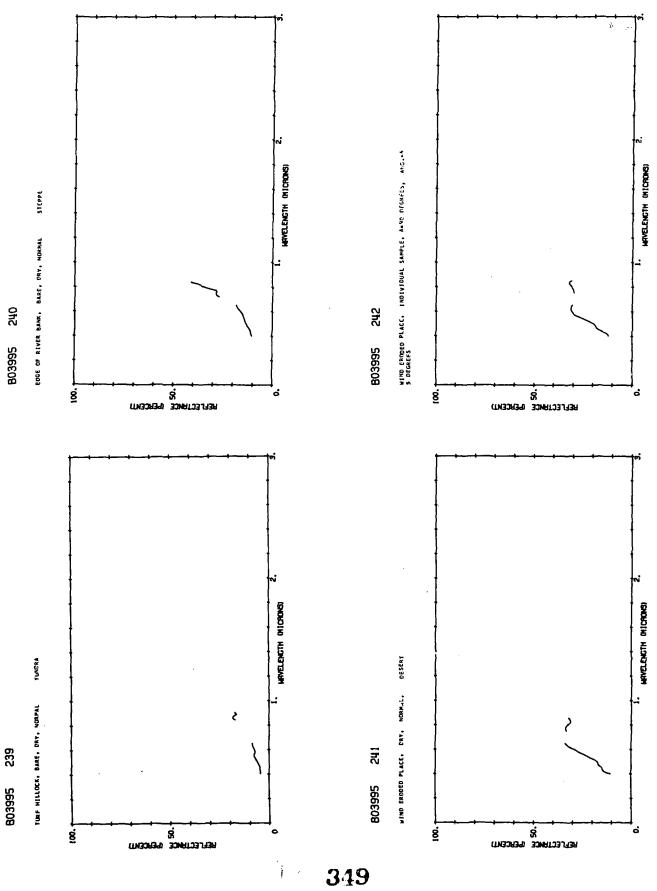
. . :

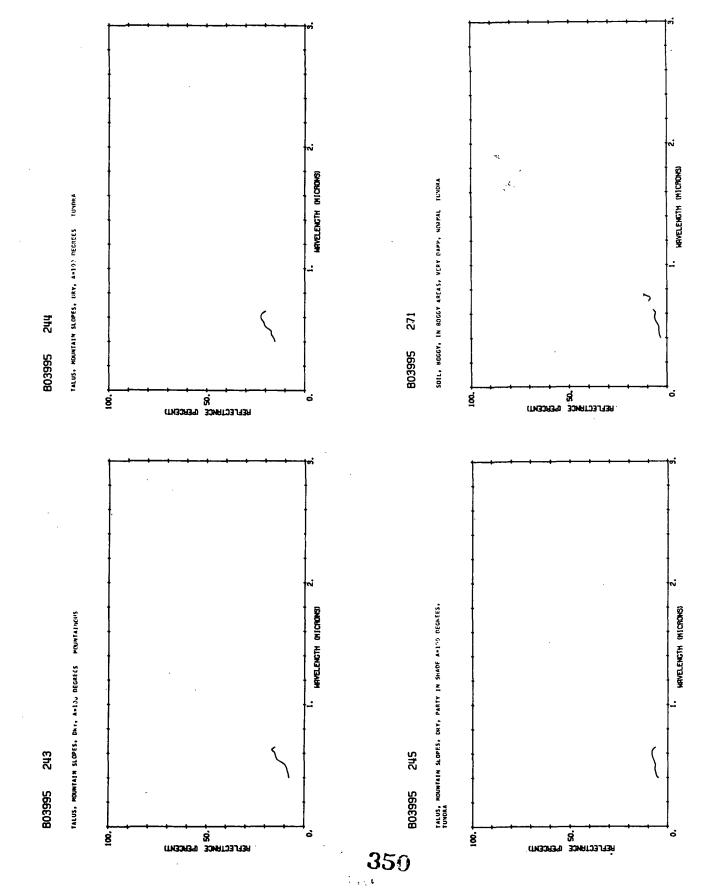


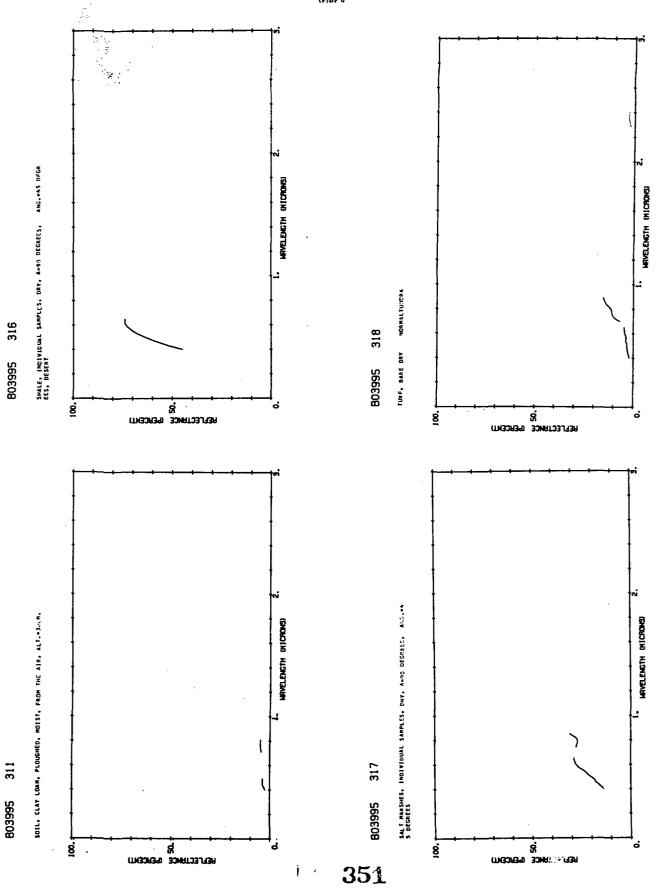


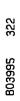

. .

(F)BF SOIL

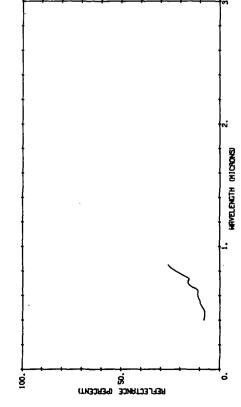

345

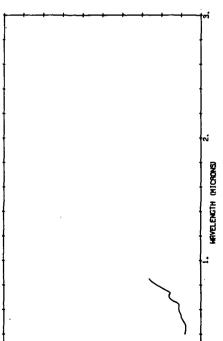




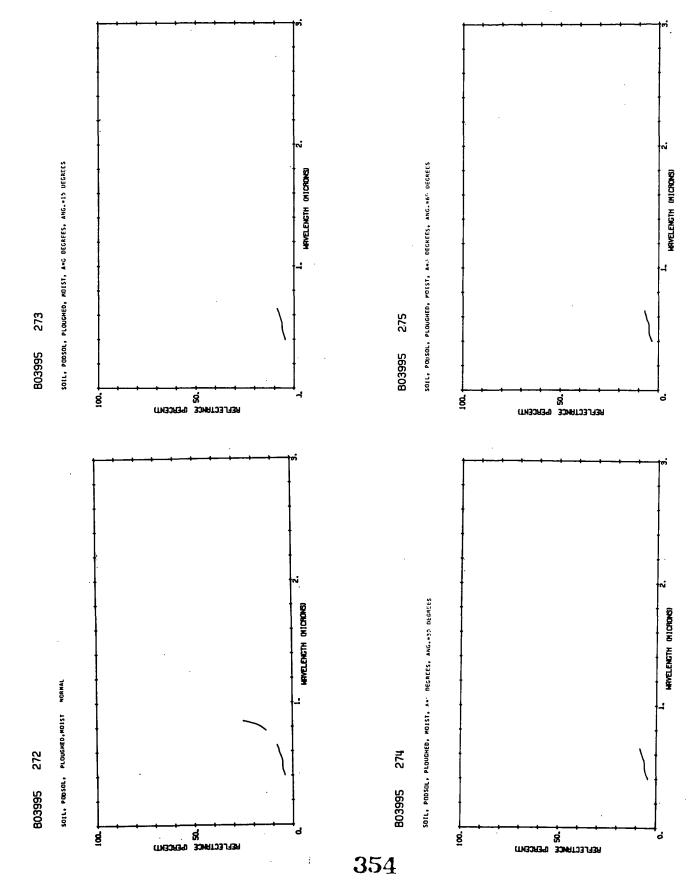

C-7

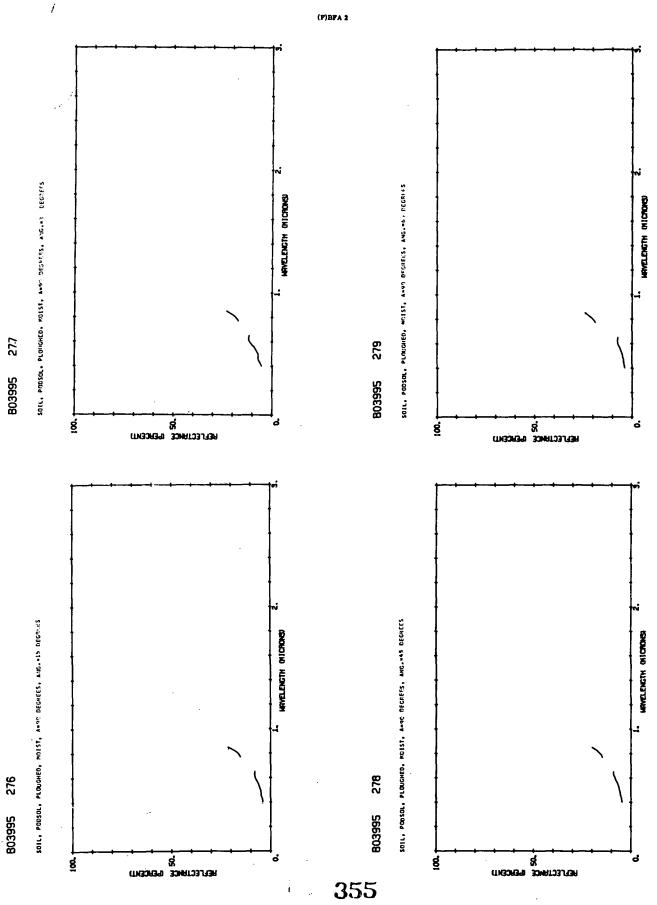
(F)BP 5

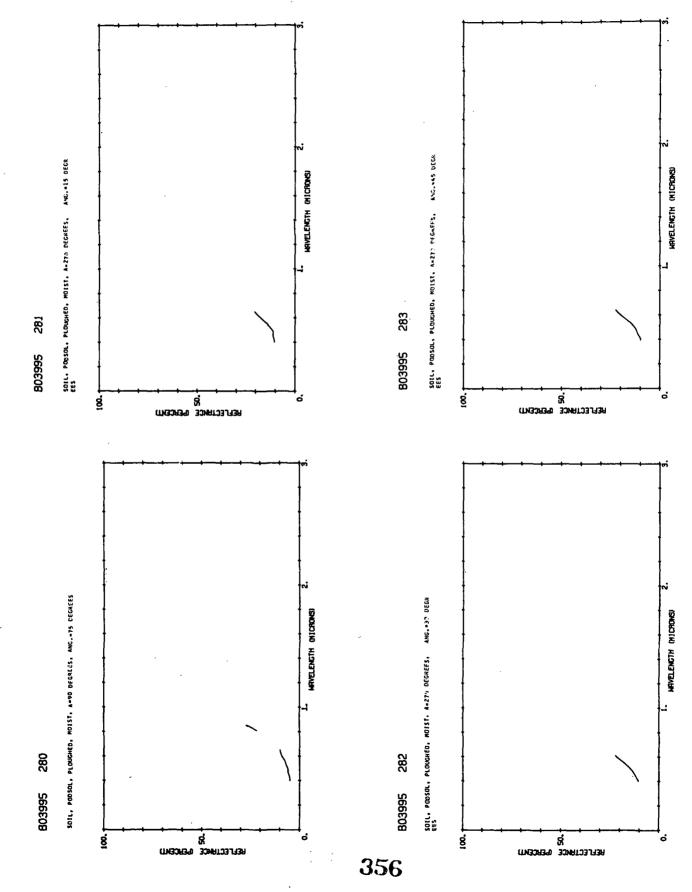


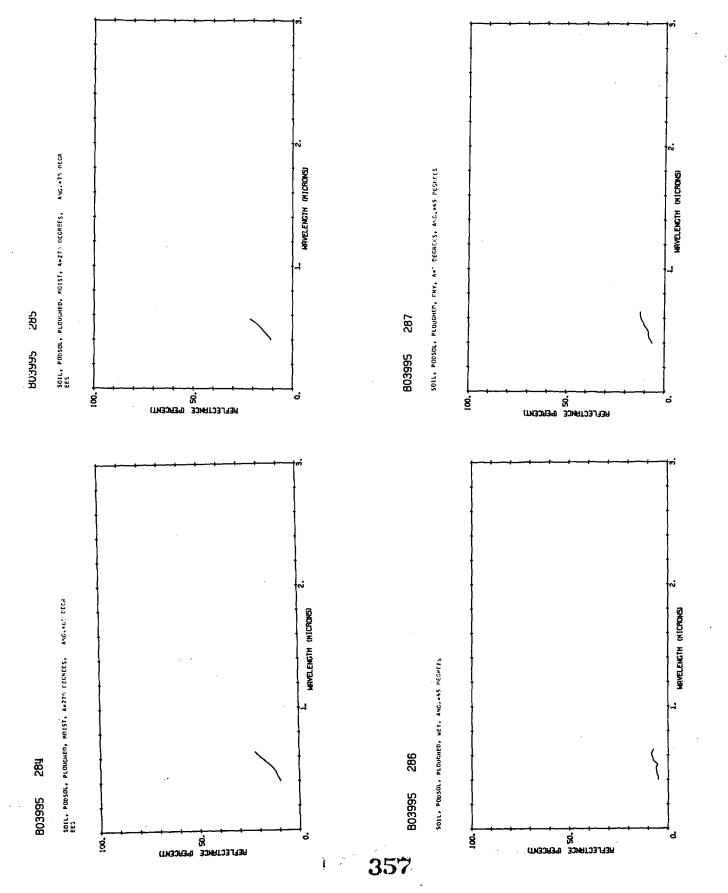

.

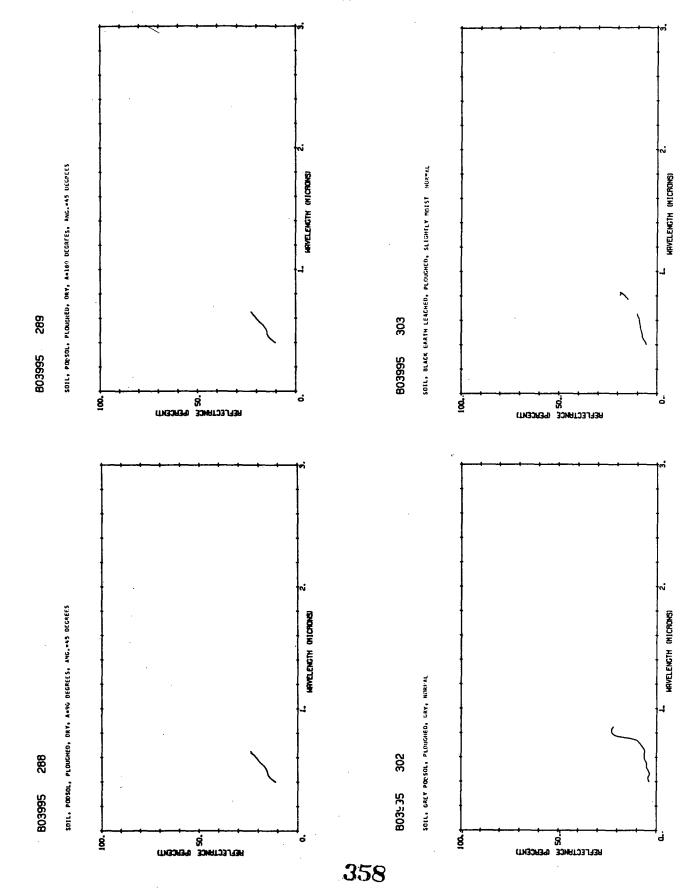
ı

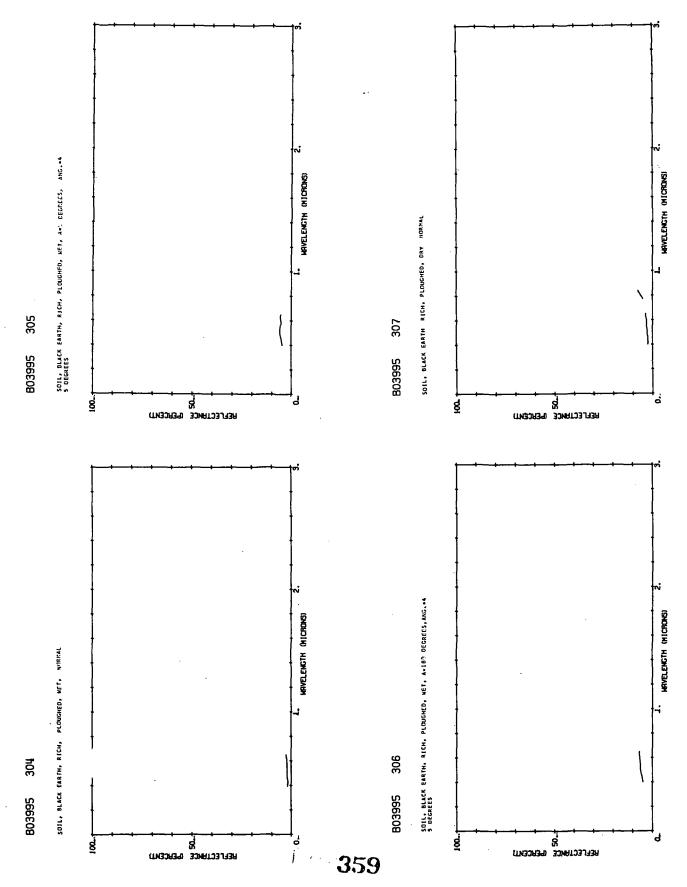

352

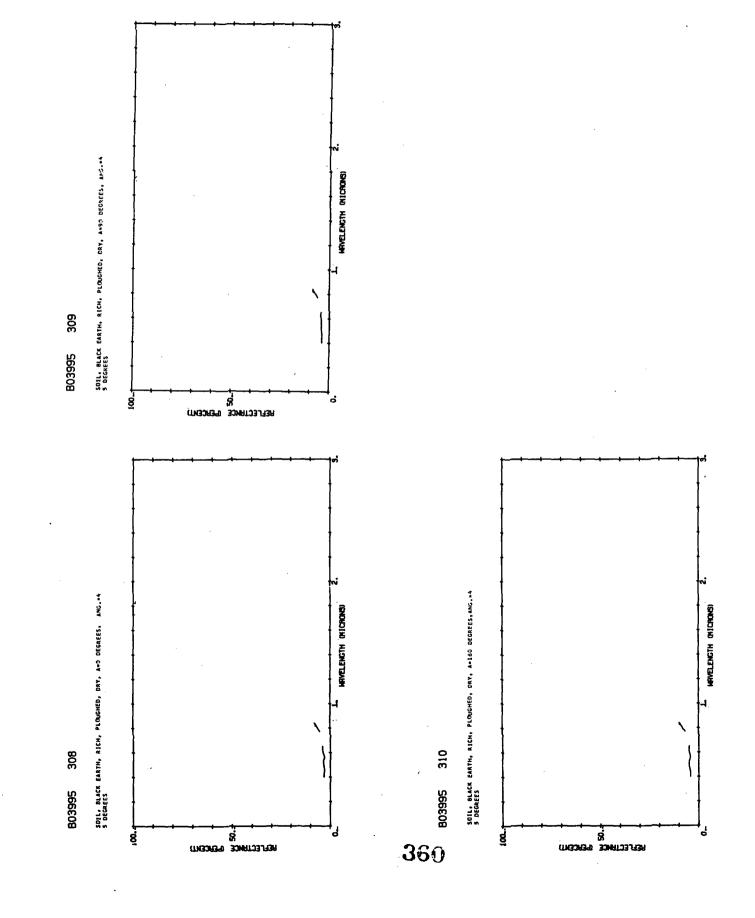

• :

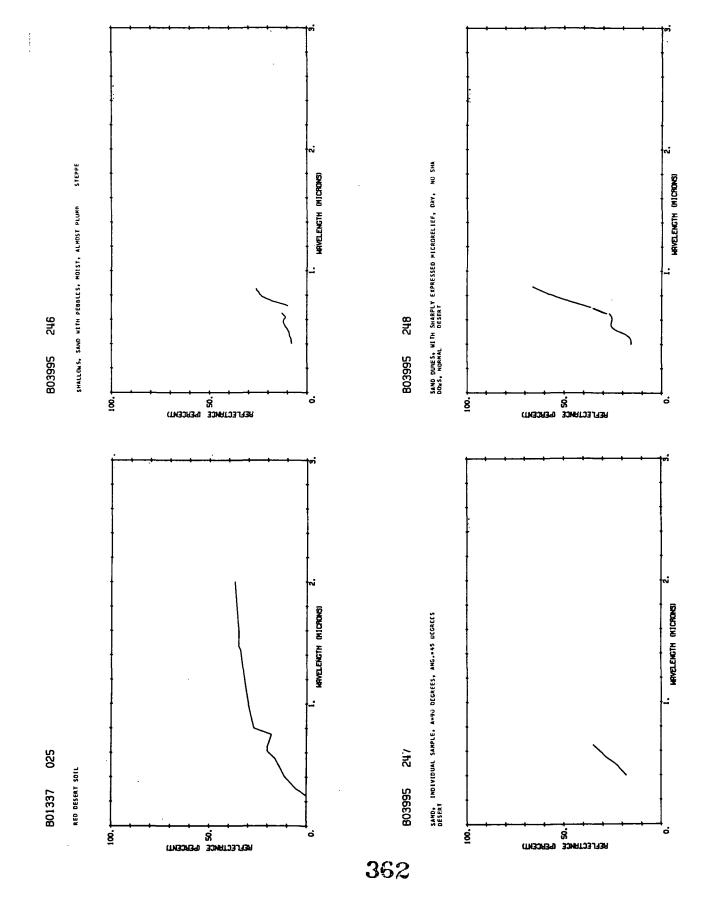

(F)BFA SOIL Cultivated

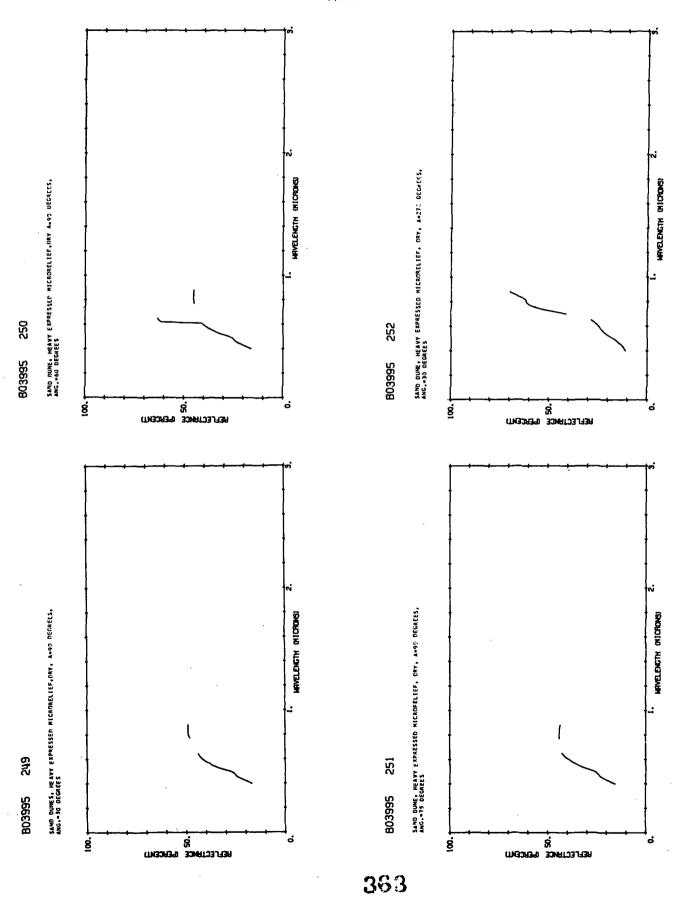

353



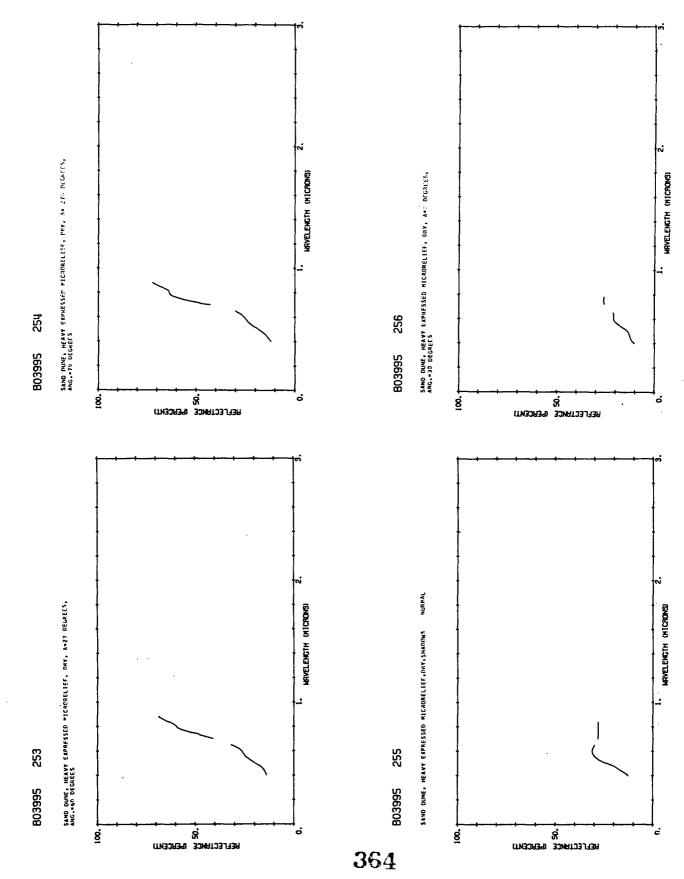


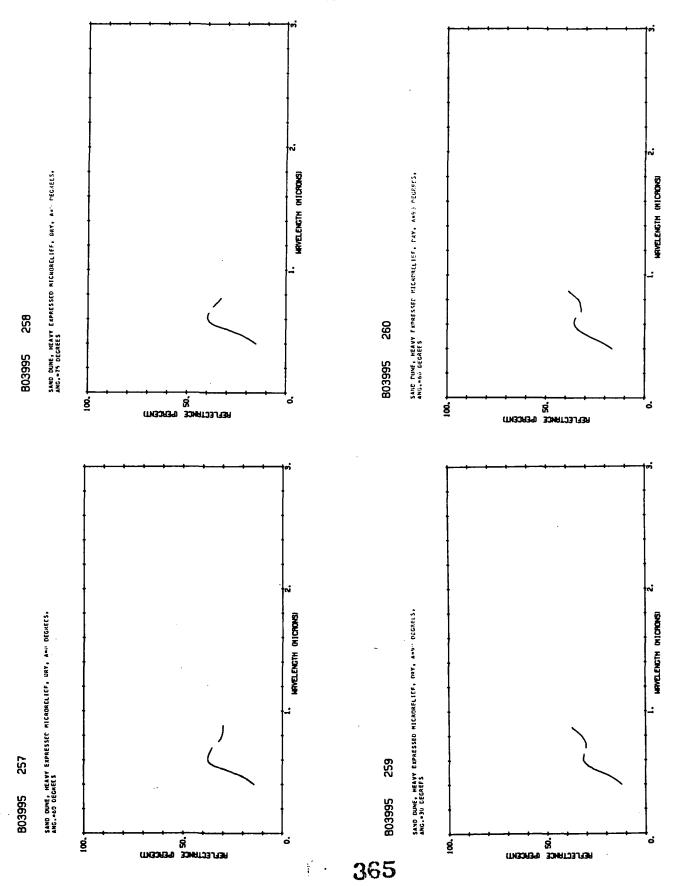

;

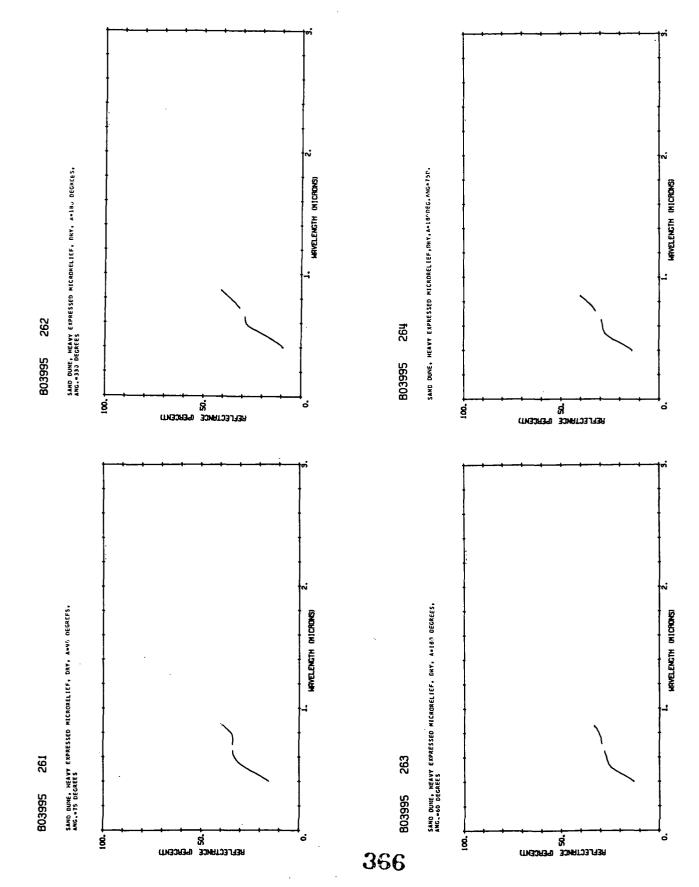




(F)BFCA SOIL Sand

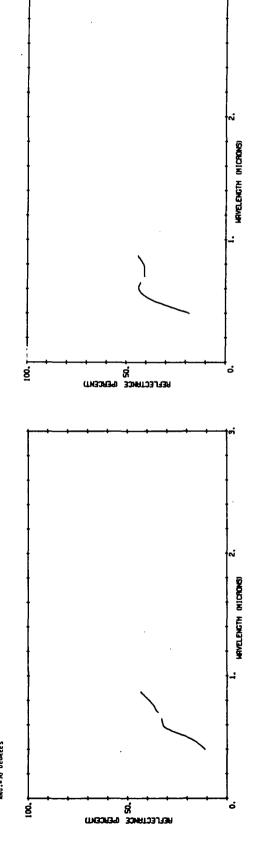

361

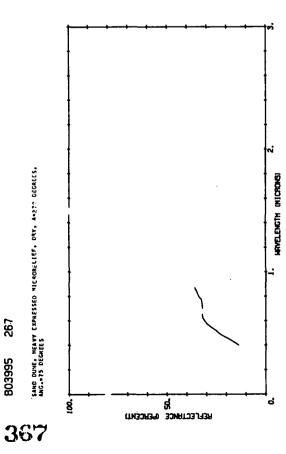

(P)BFCA 1

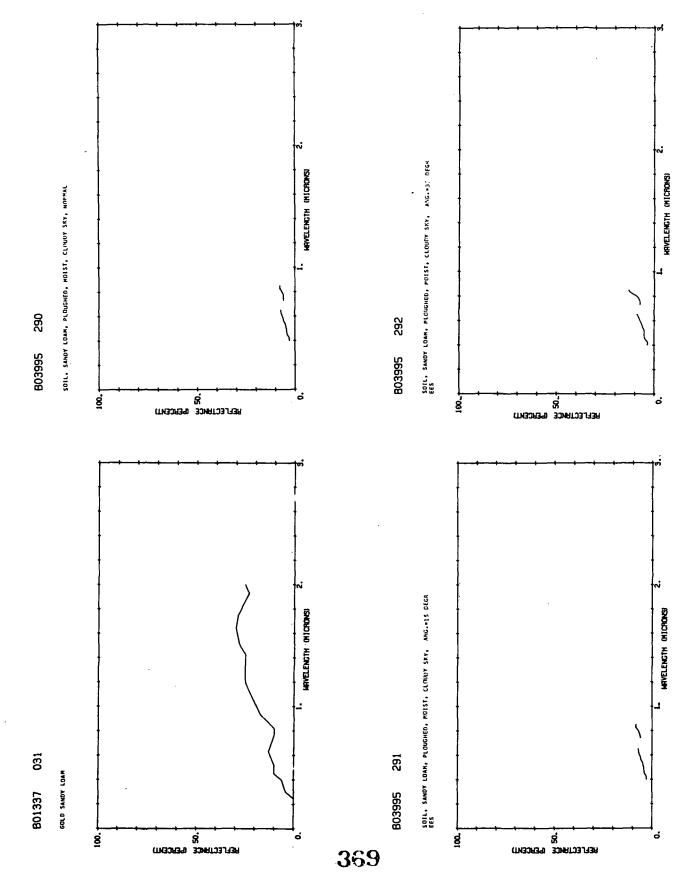

(P)BFCA 2

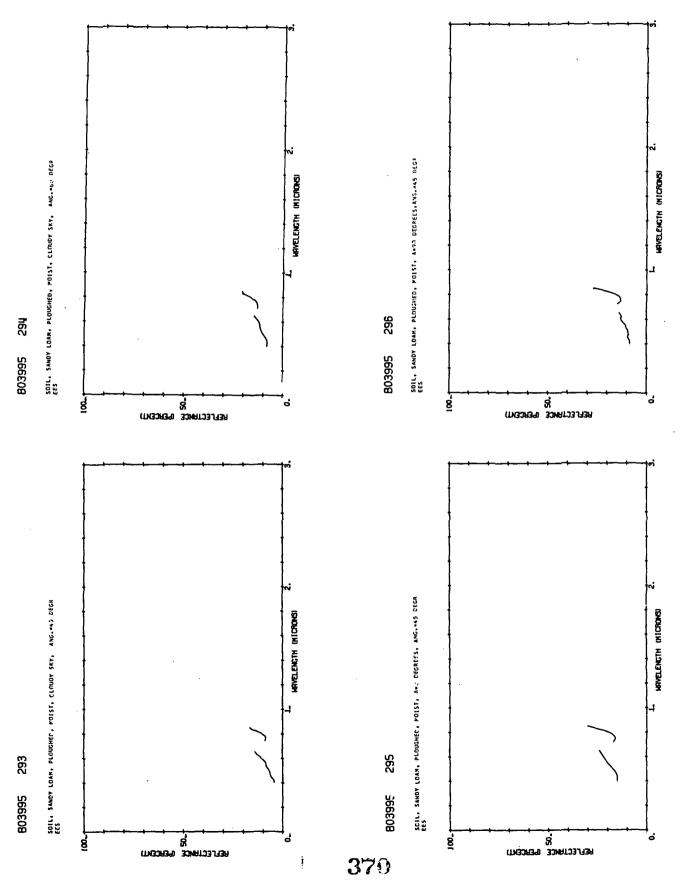
. .

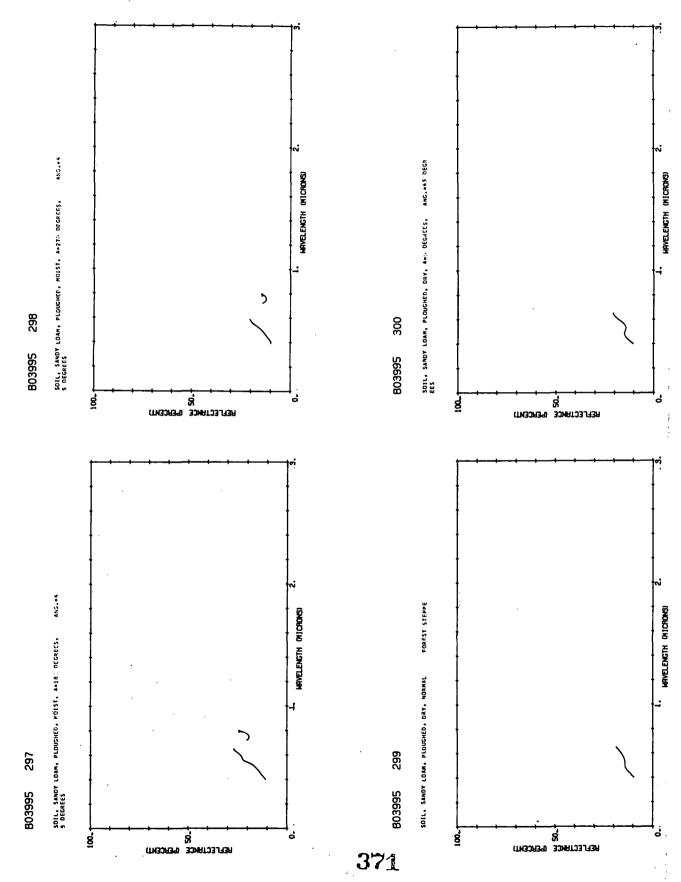
(F)BPCA 4

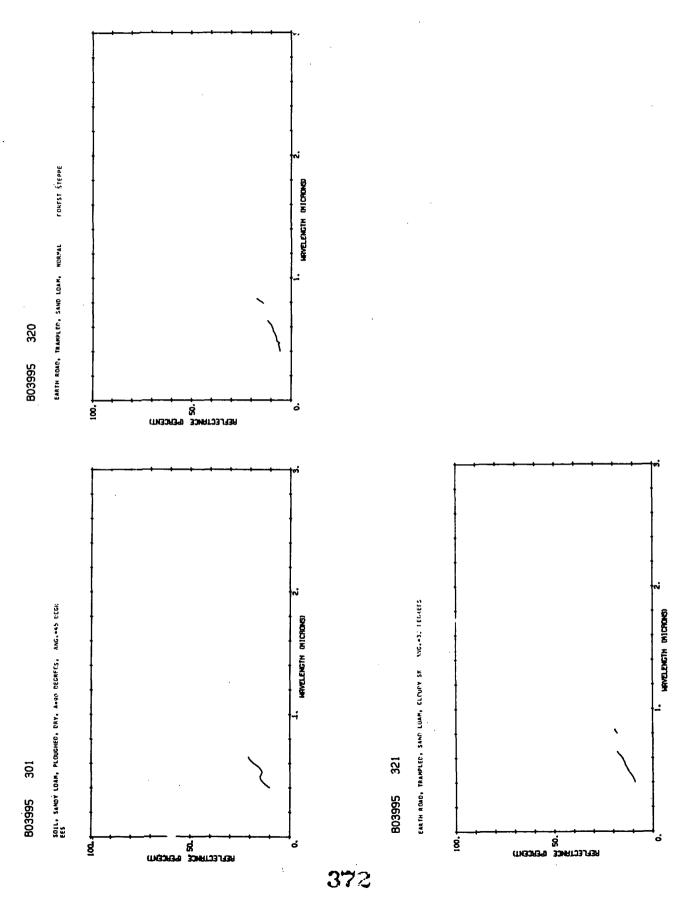

(P)BPCA 5



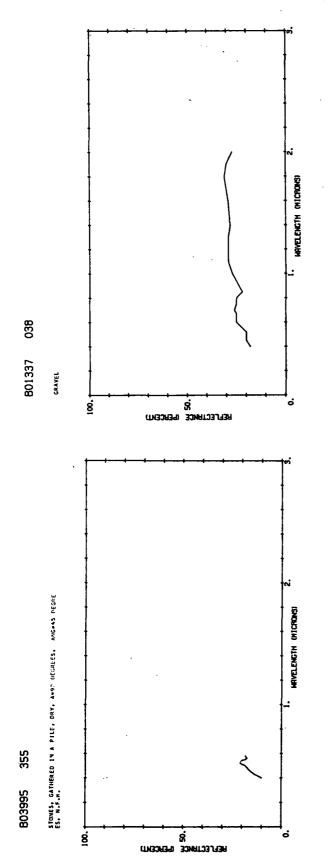

803995 267


į


(F)BFDA SOIL Sandy Loam


368

.

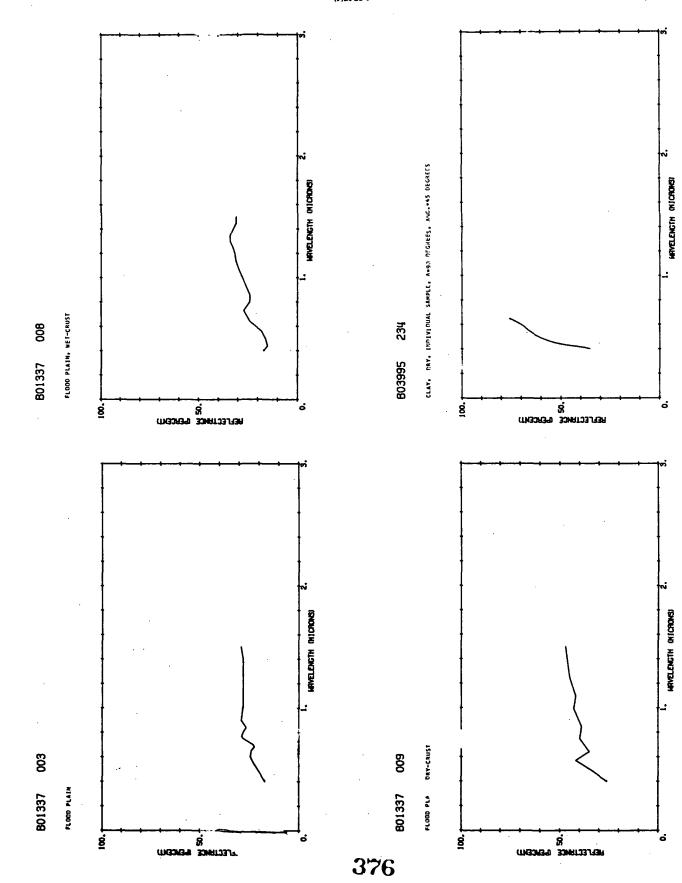


(F)BFHB SOIL Gravel (less than 3-in. diameter)

373

(F)BFHB 1

374

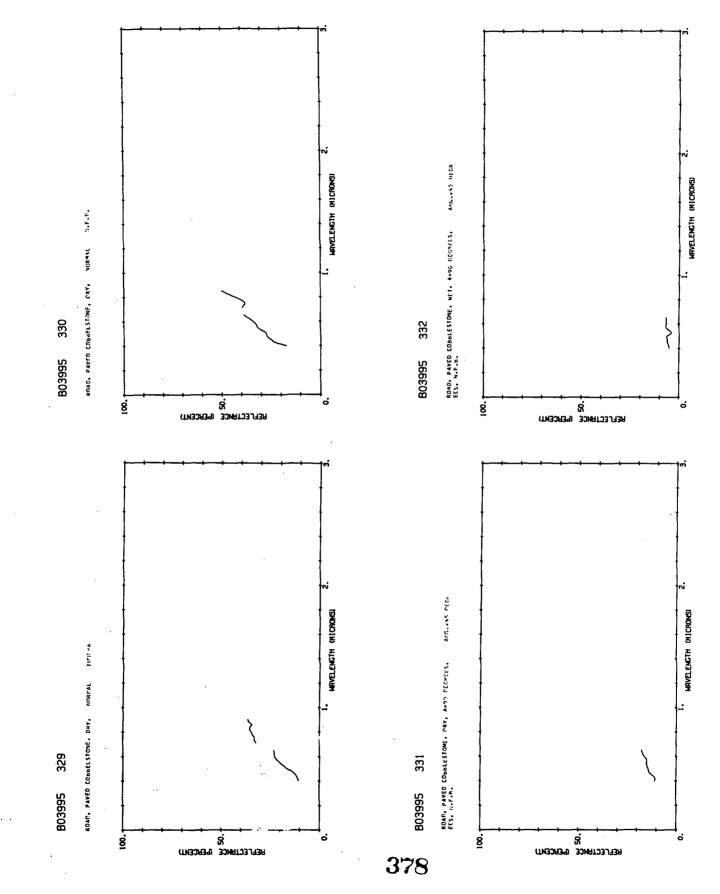

¥:

. . .

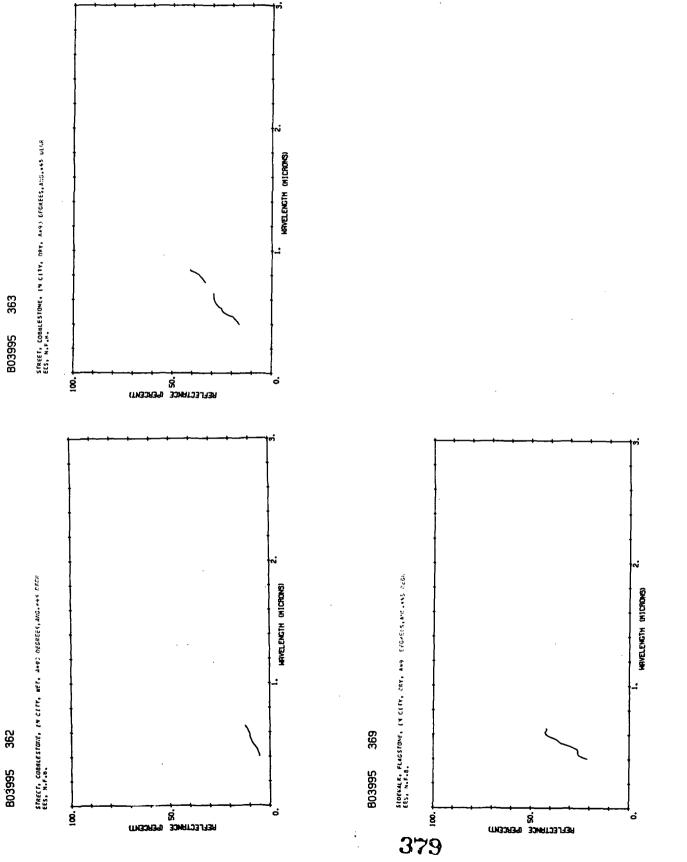
, e^{i • •}

. . .

(F)BFGC SOIL Clay 375 ÷.



(F)BFGC 1


(F)BFHC SOIL Cobbles (3- to 10-in. diameter)

÷1

377

(F)BPHC 1

(F)BFHC 2

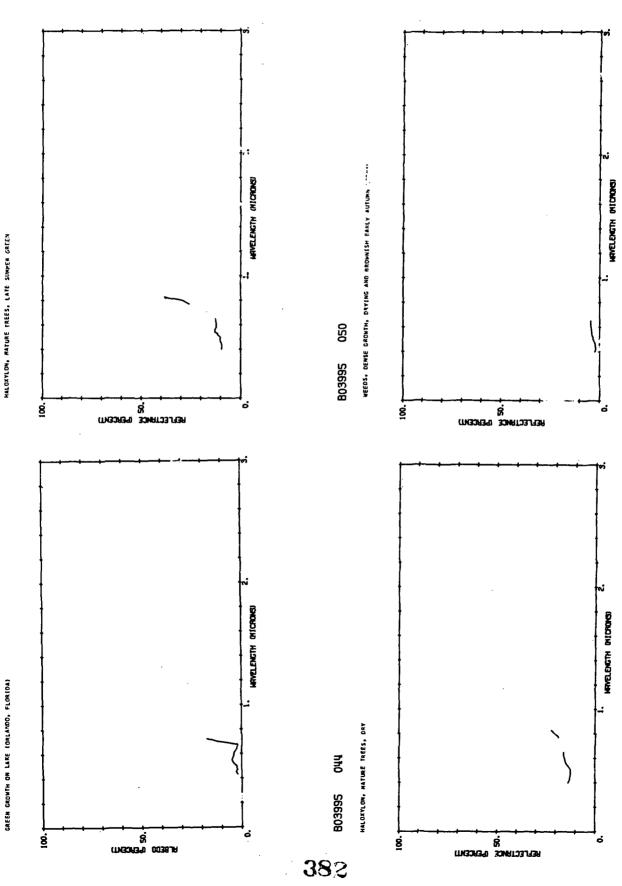

(F)BG VEGETATION

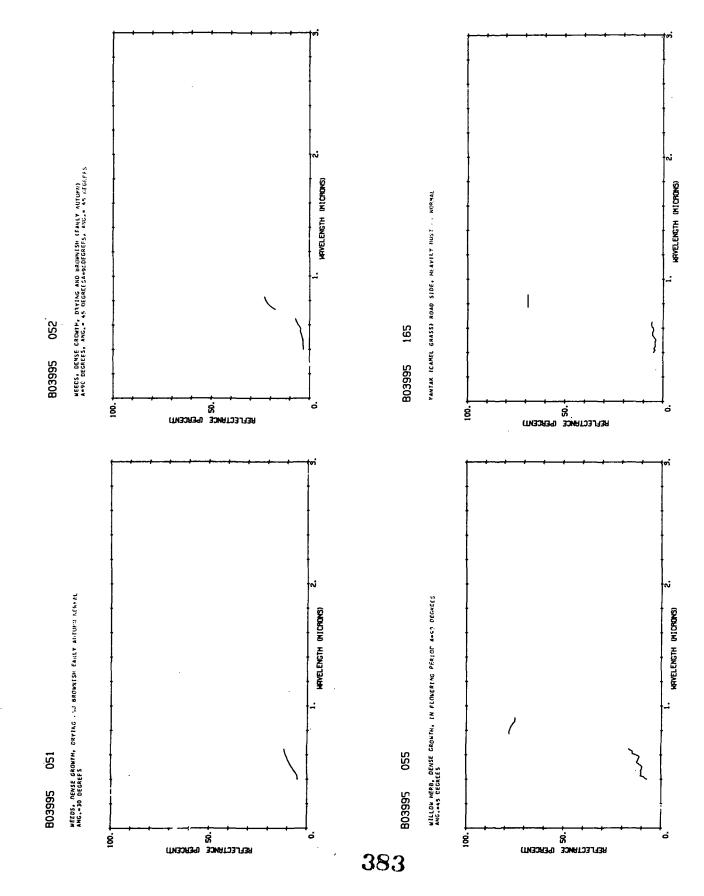
÷

 $\mathbf{380}$

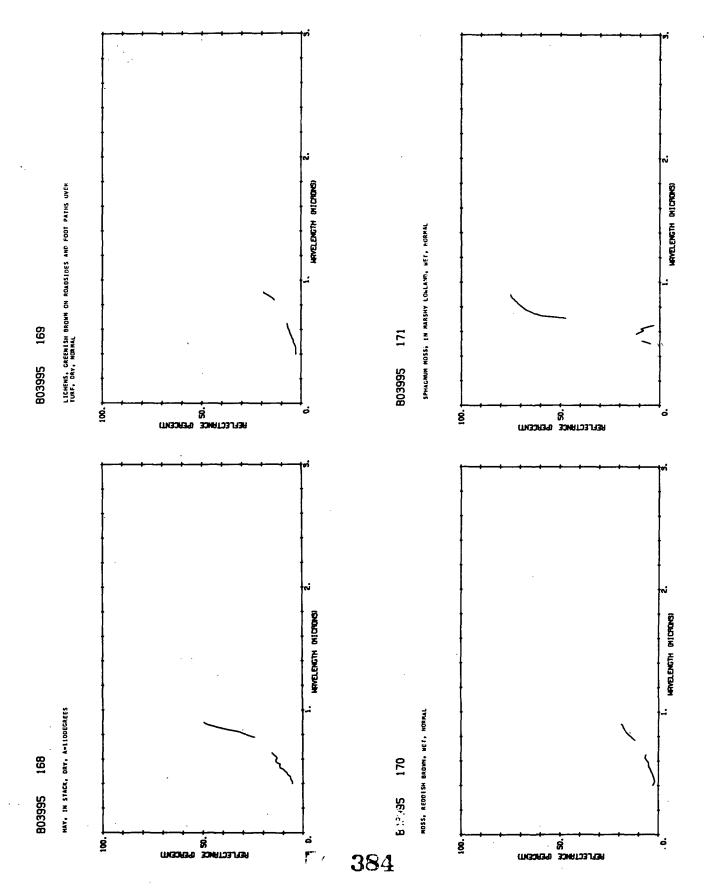
7

.

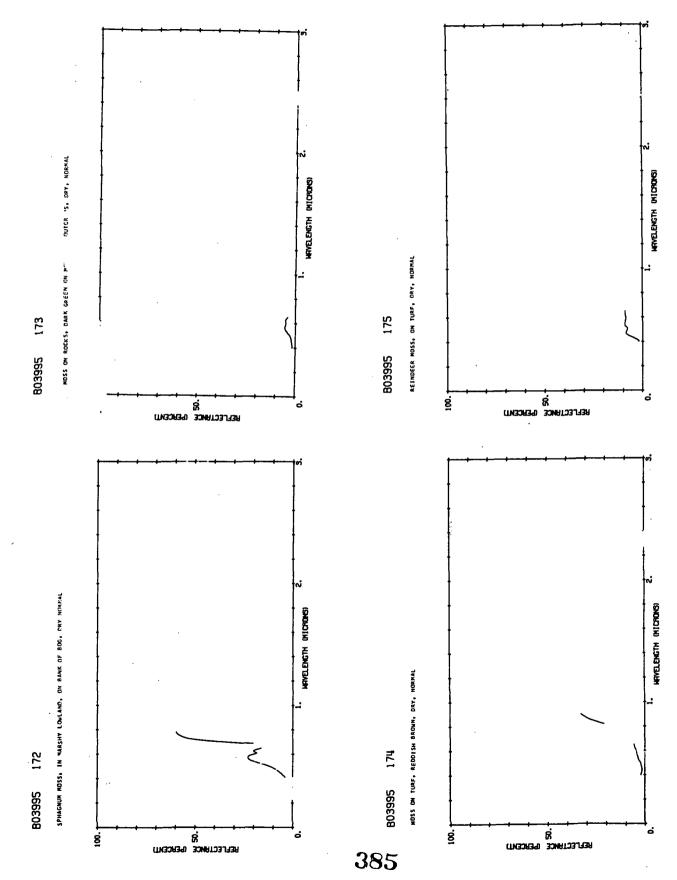

(P)BG 1



043



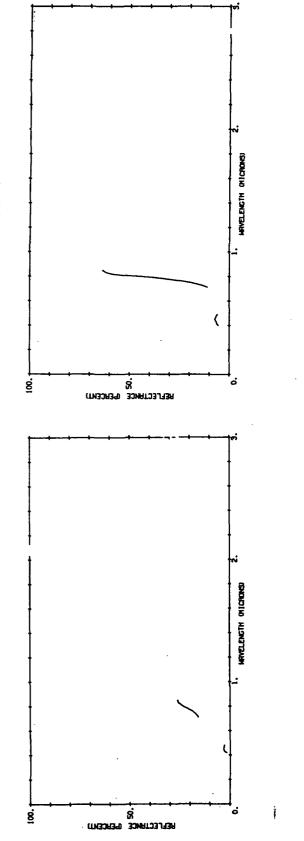
(F)BG 2



(F)BG 3

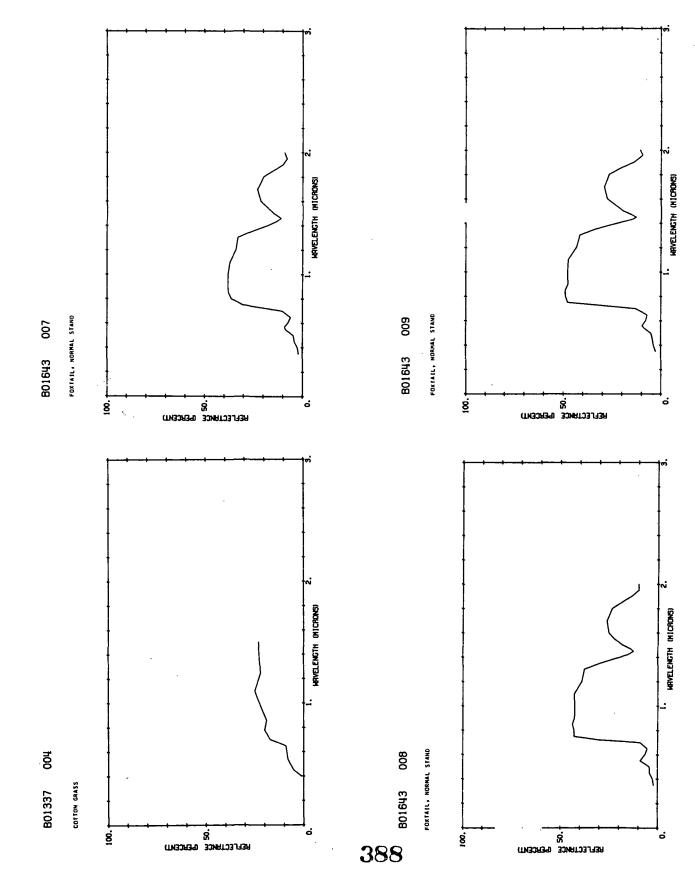
Ø.

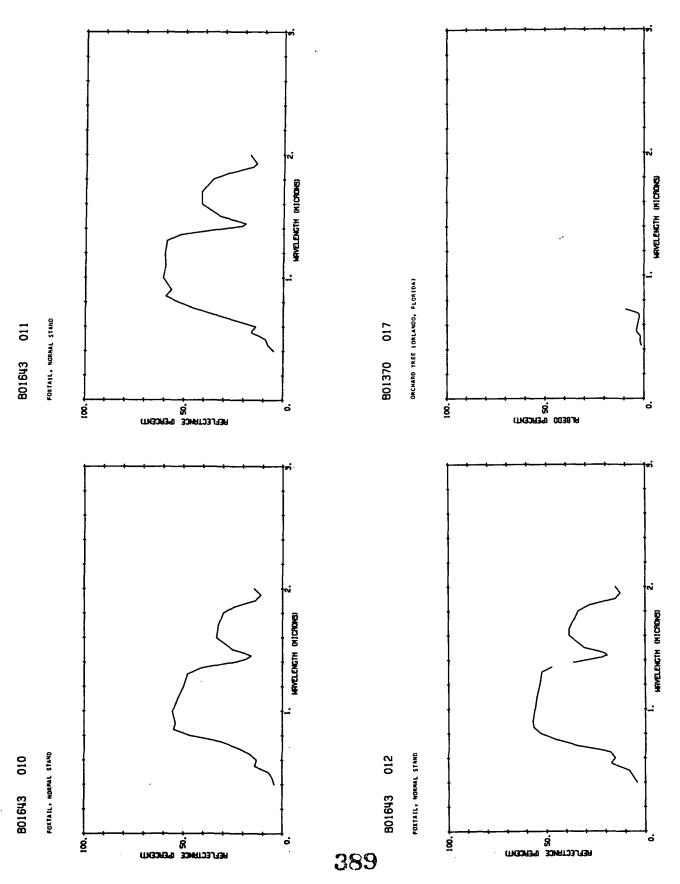
(F)BG 4

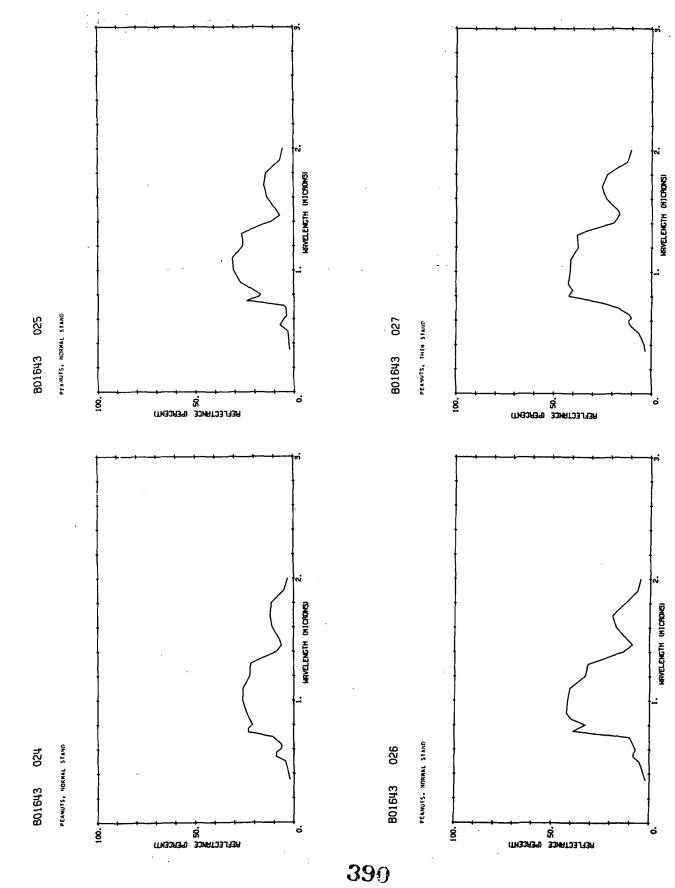

(F)BG 5

B03995 229

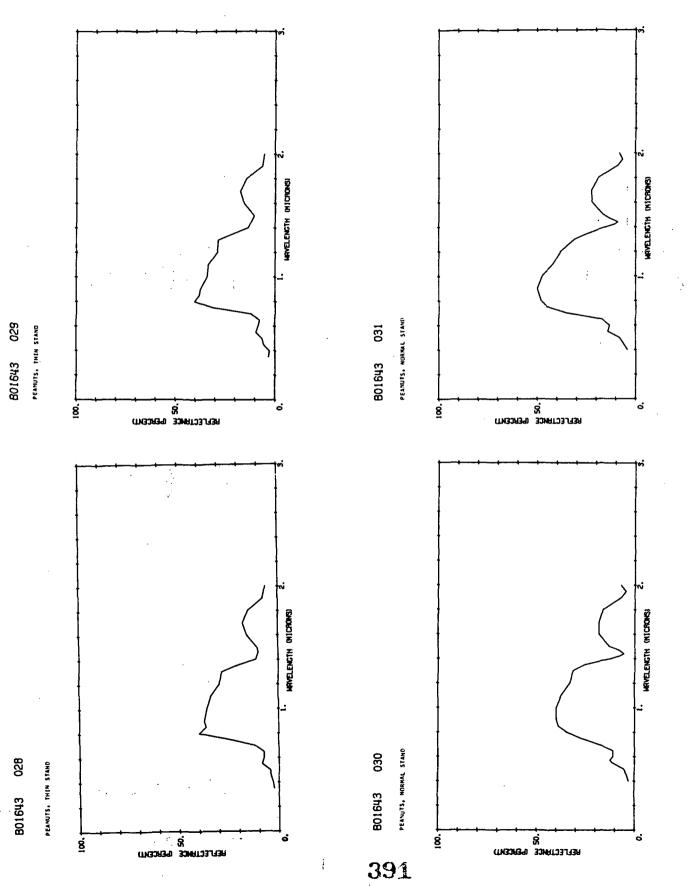
FIELD, WITH GREEN CRNPS, FROM THE AIR, ALL.=30DY.

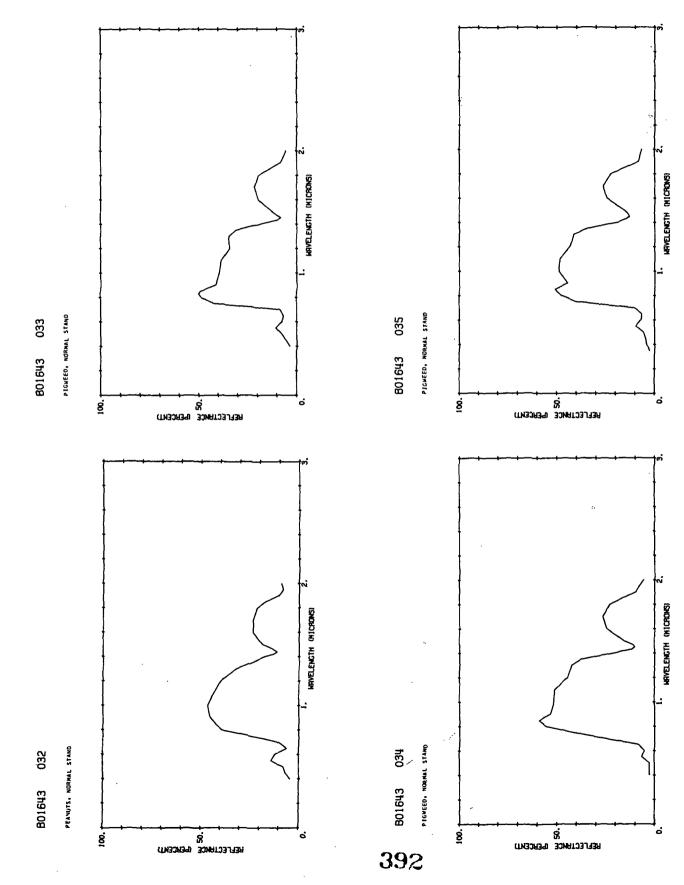


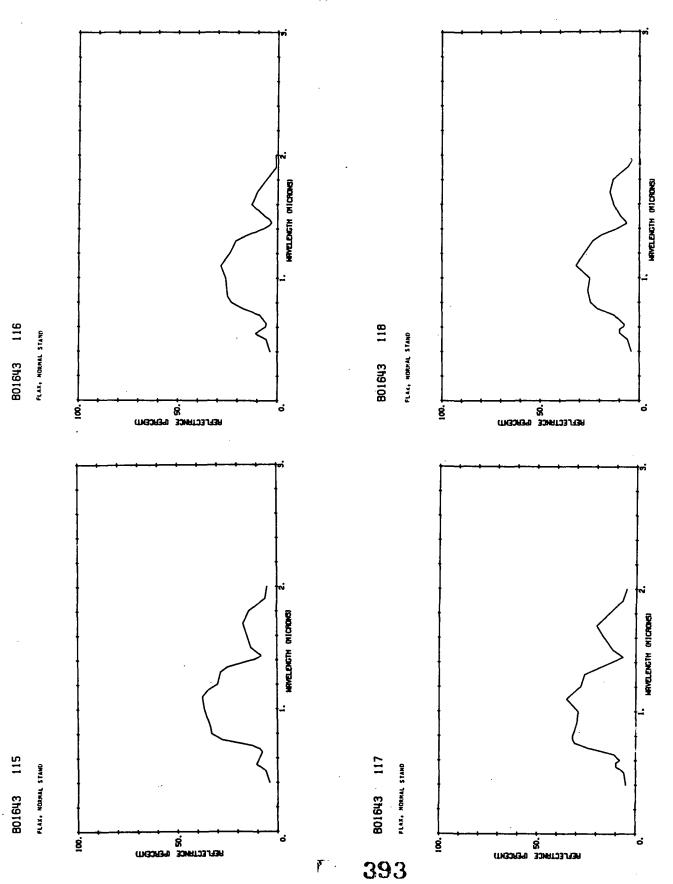

(F)BG 6


386

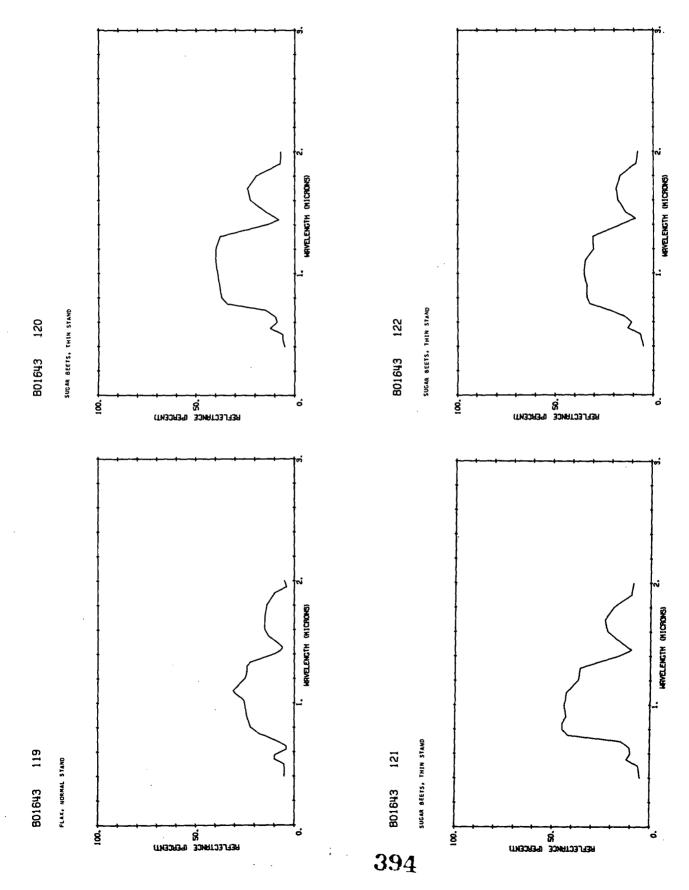
(F)BGC VEGETATION Vascular

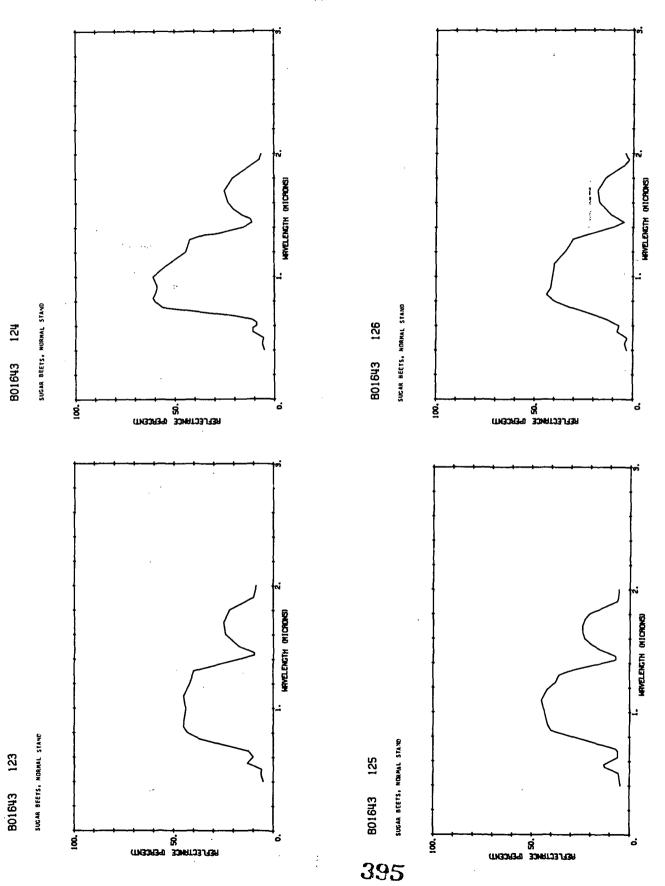

387

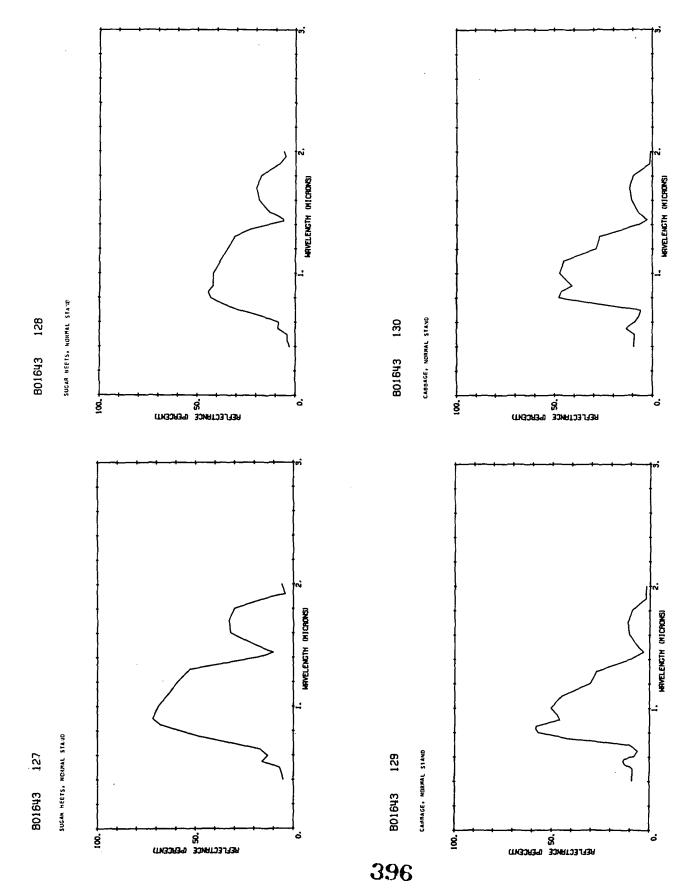


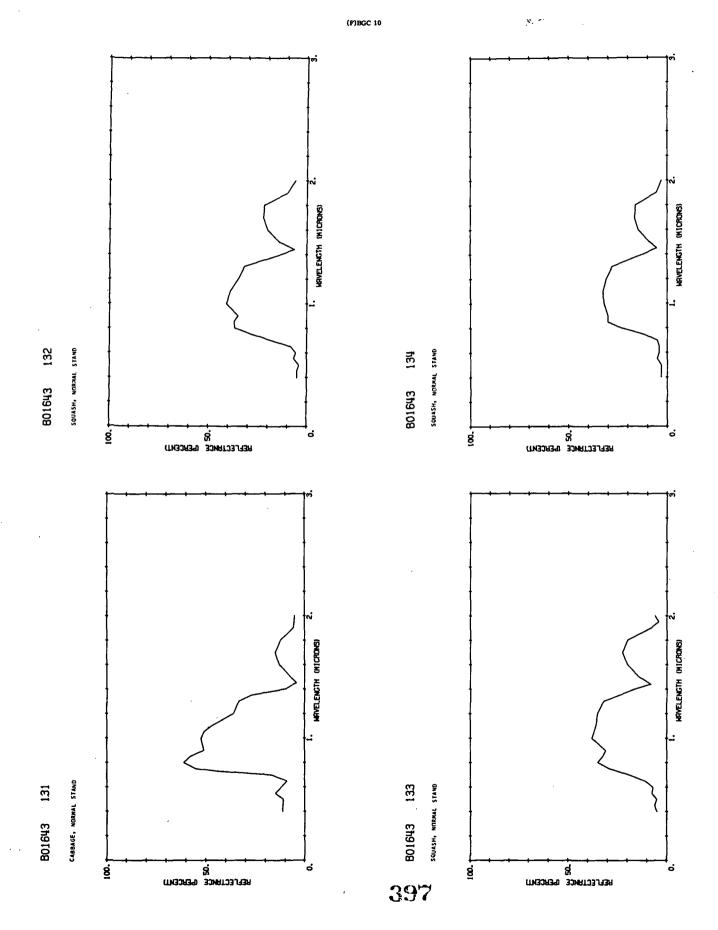


, ‡

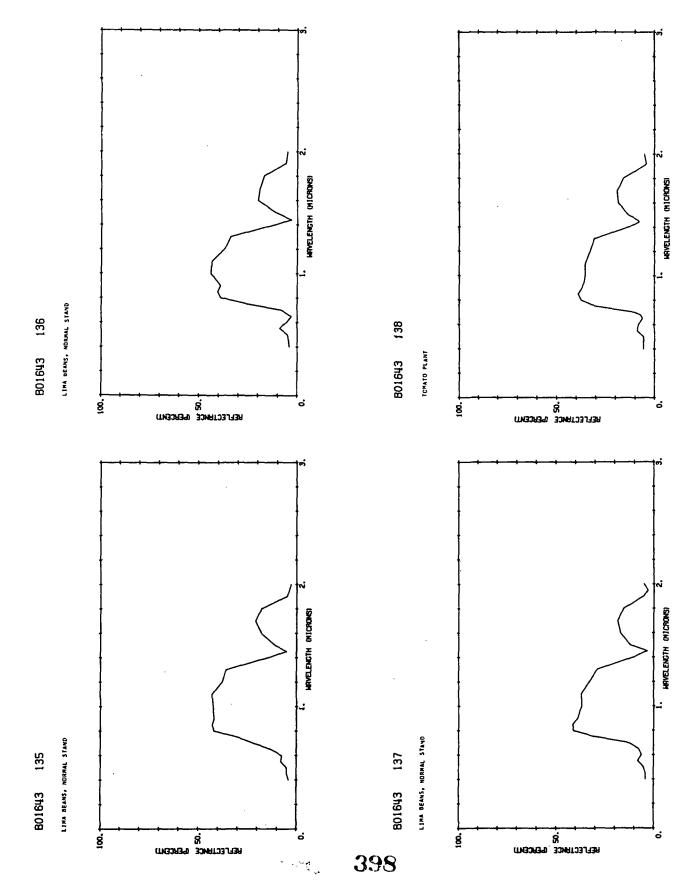


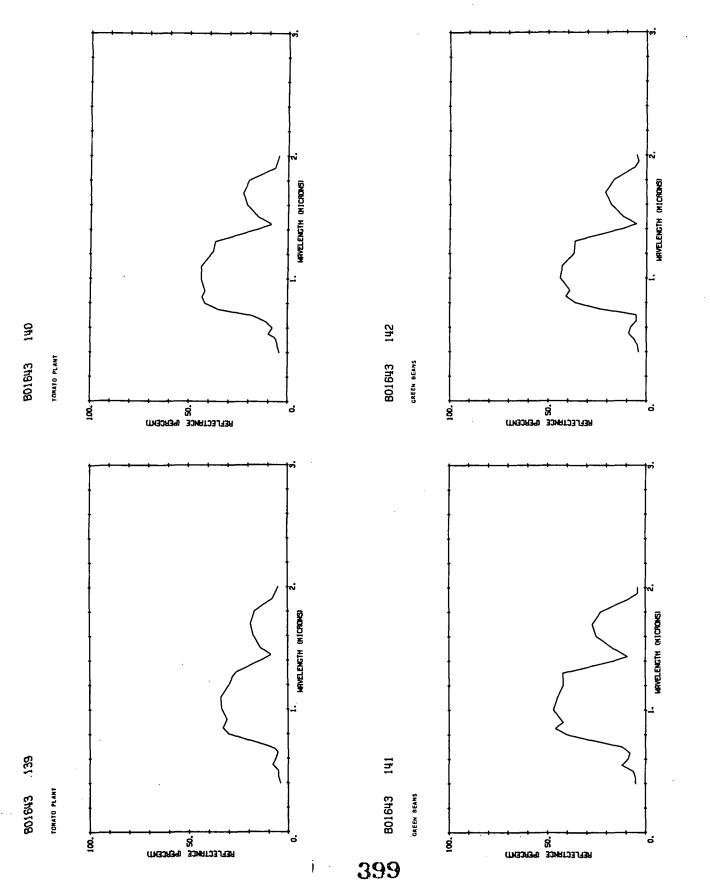


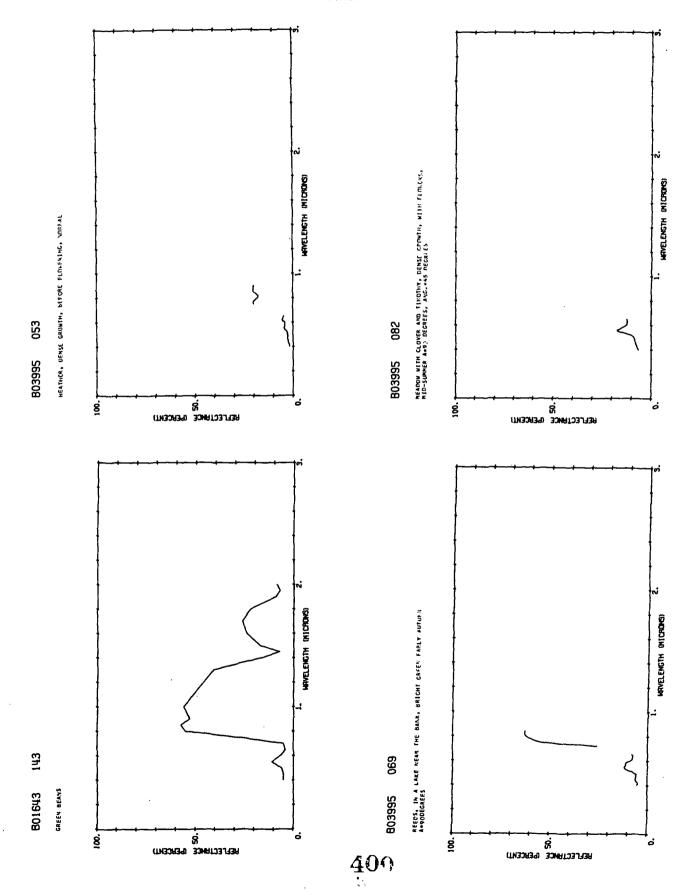


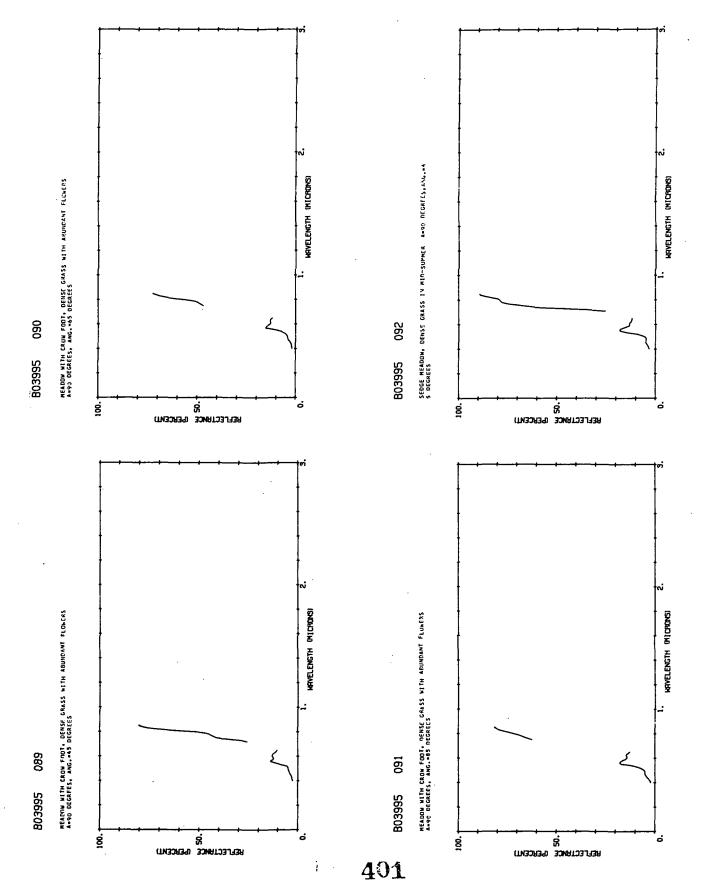

;

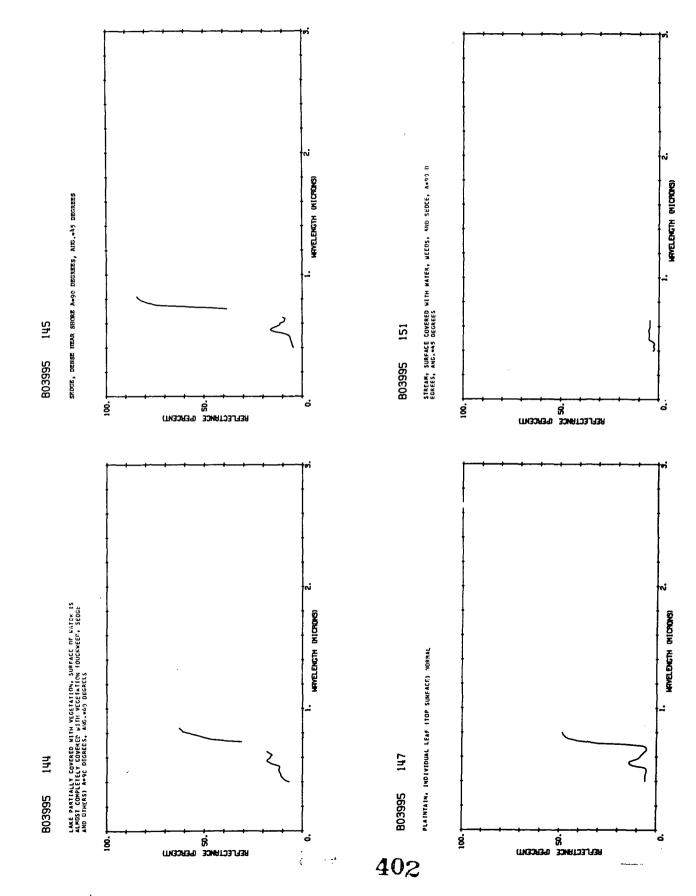
(P)BGC 6

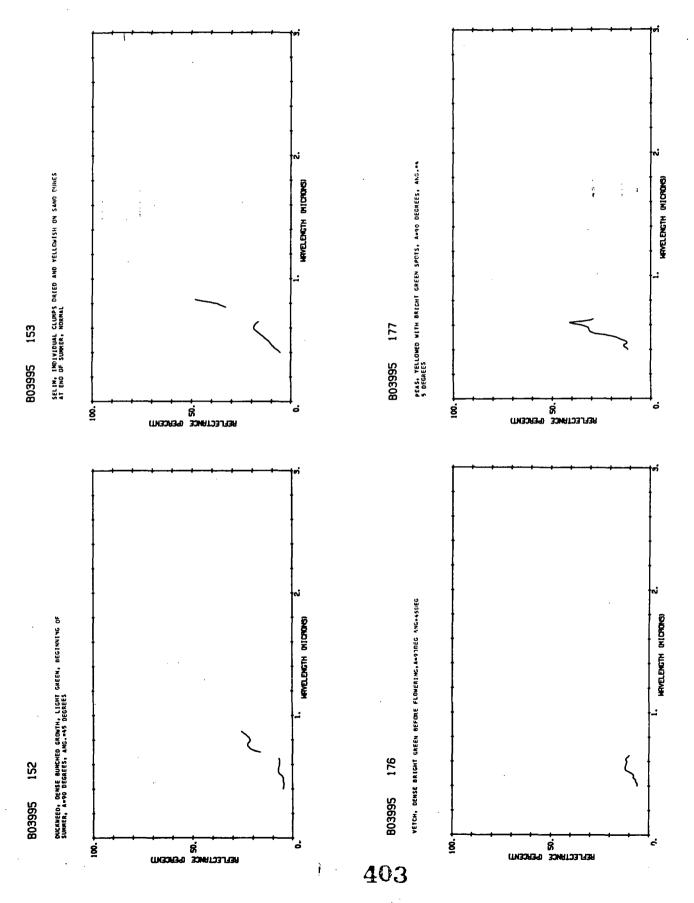


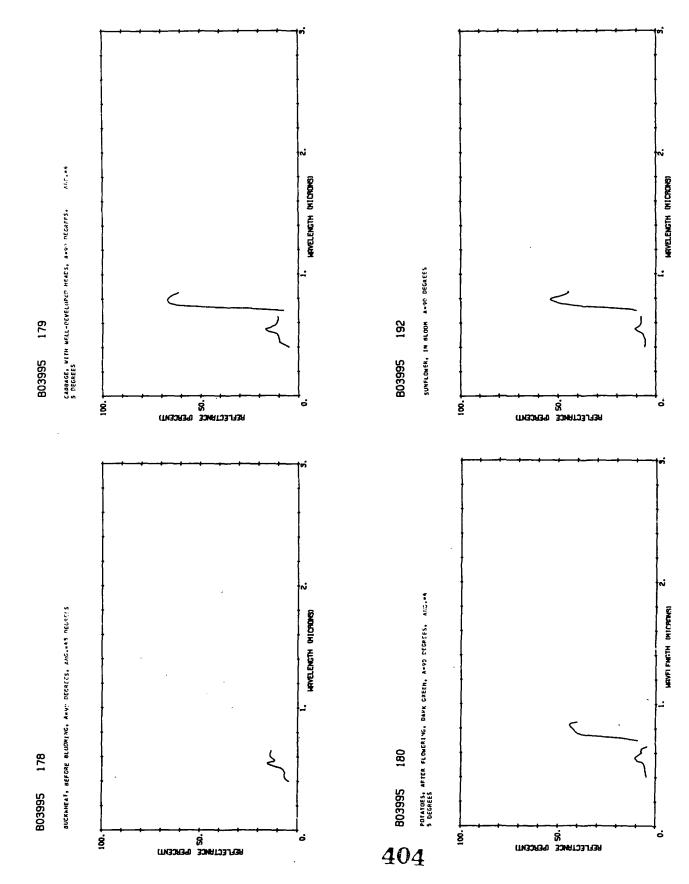


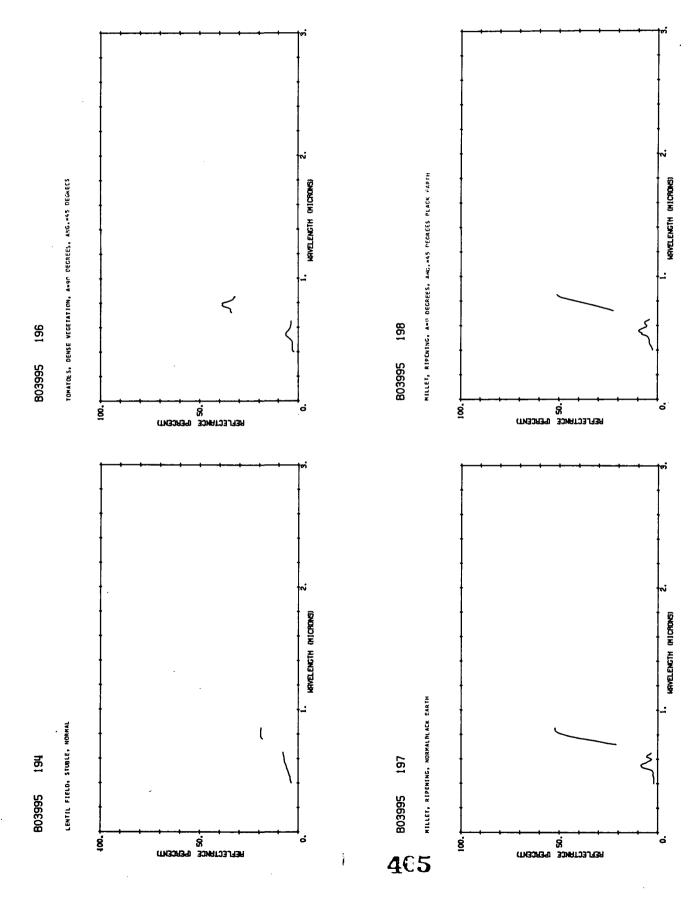


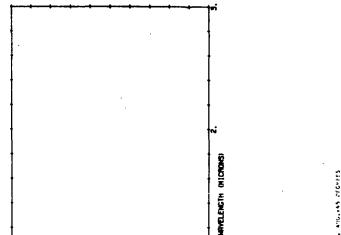



•





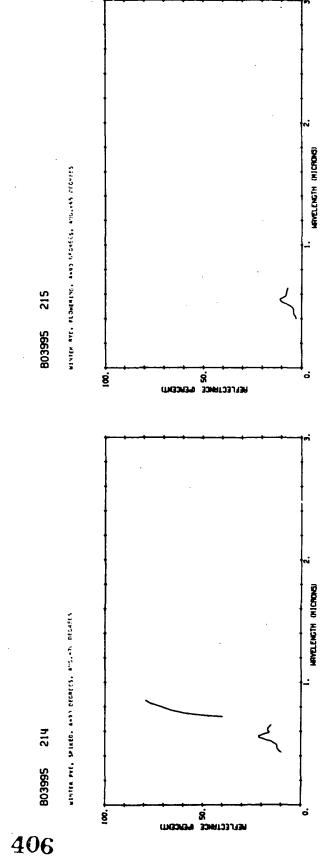




(P)BGC 16

ò

WARENCTH MICROGI


6

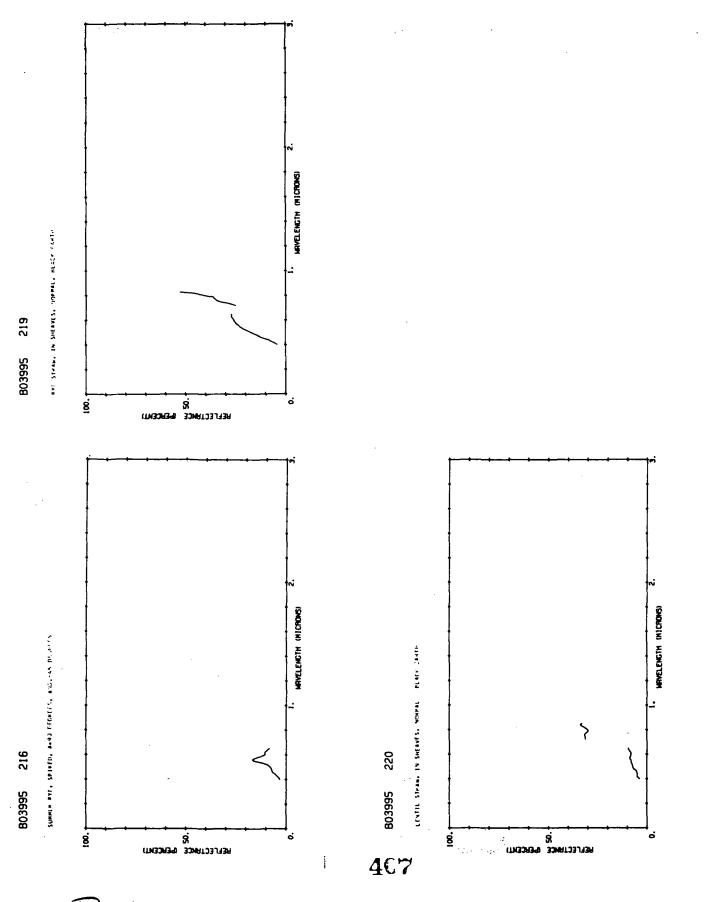
'n.

NEFLECTANCE PENCENT)

พยายอาเลอ ออกเออาเออ ชี

MILLERS REPEATINGS ANDED DEGALESS, NAMARAS MORESS GLACH ENTER

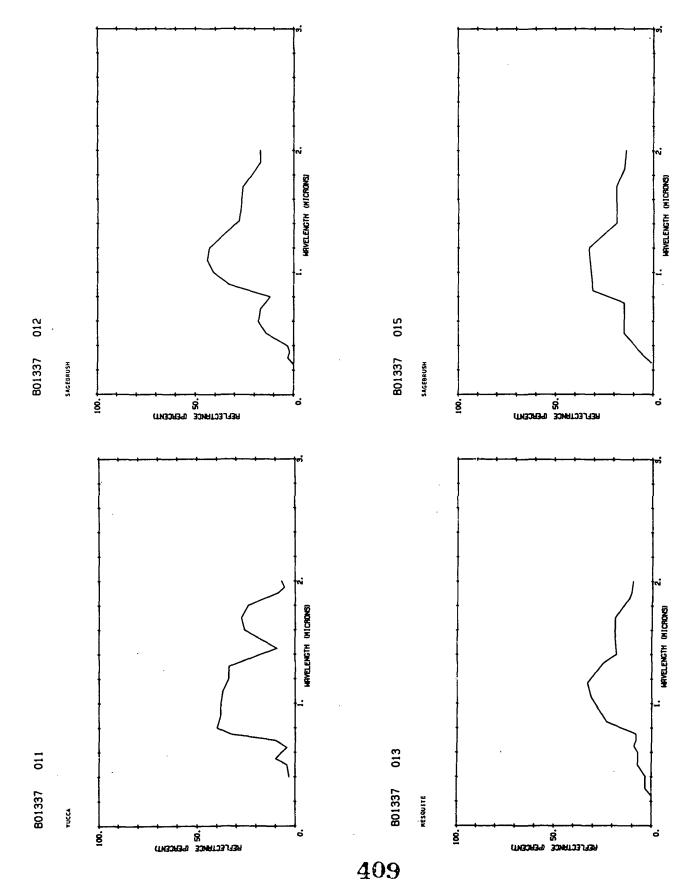
<u>8</u>

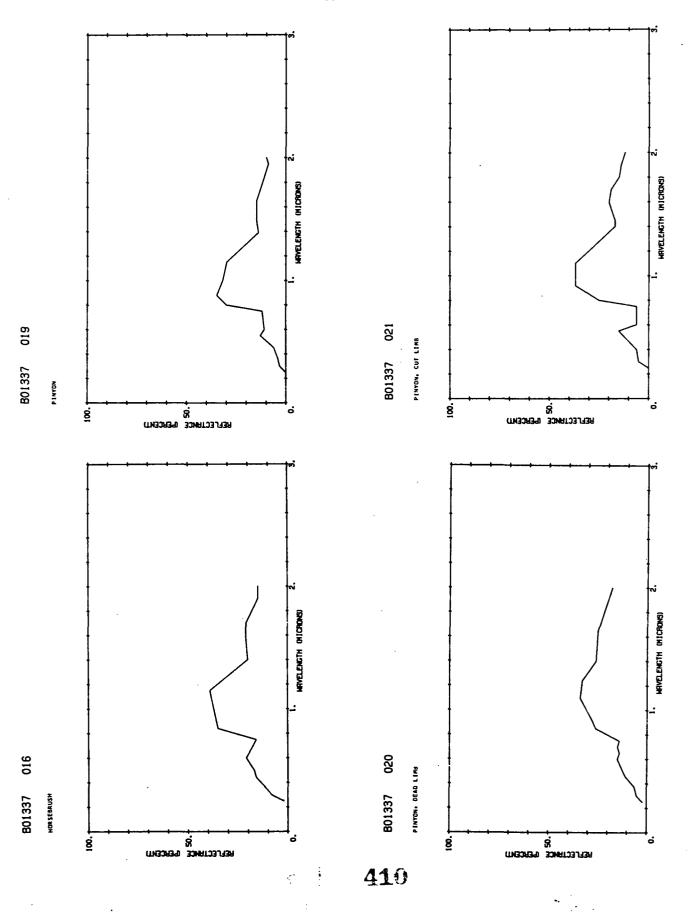

200

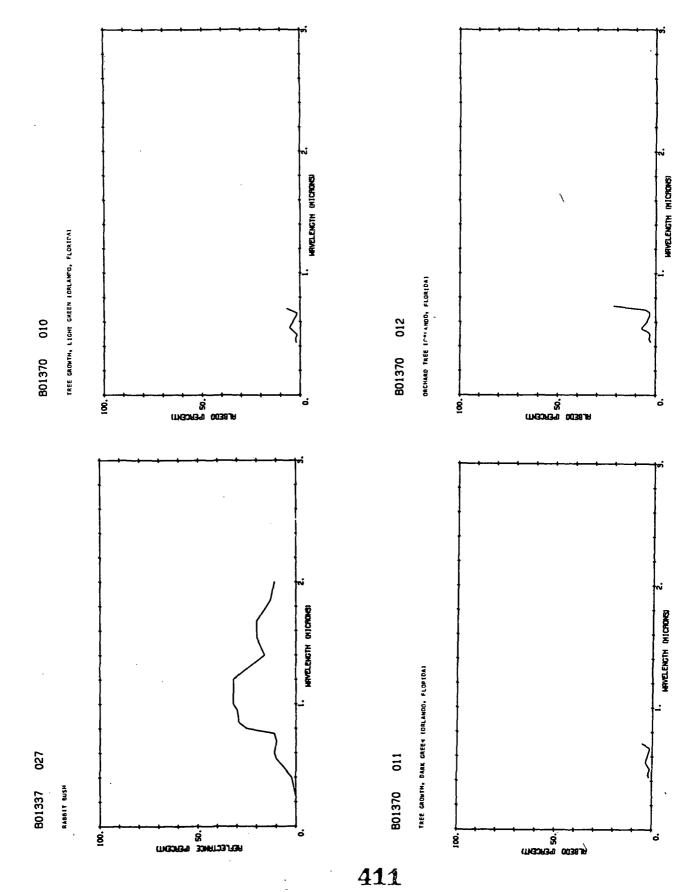
803995

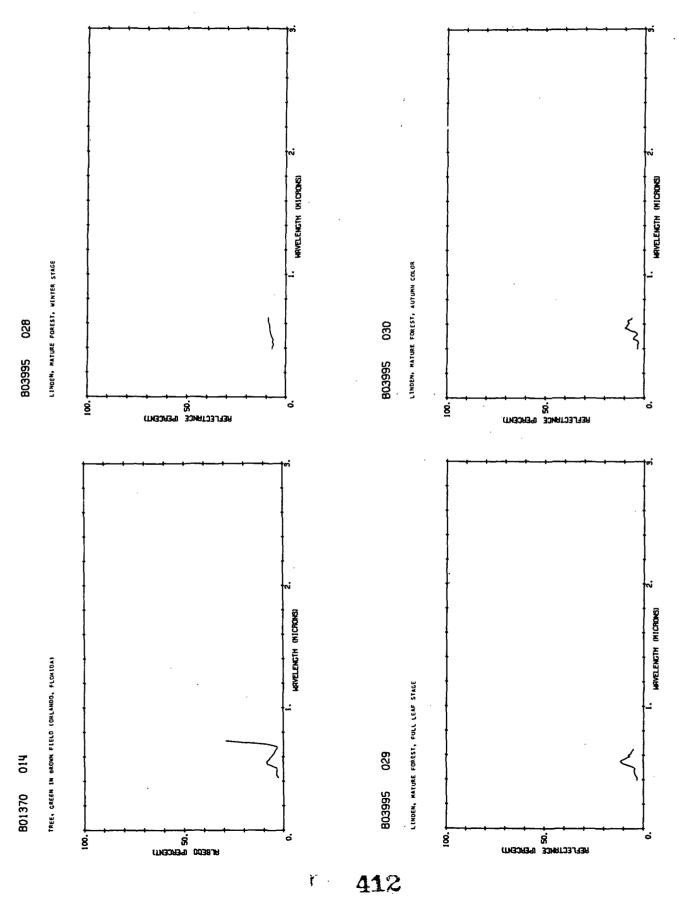
803995 199

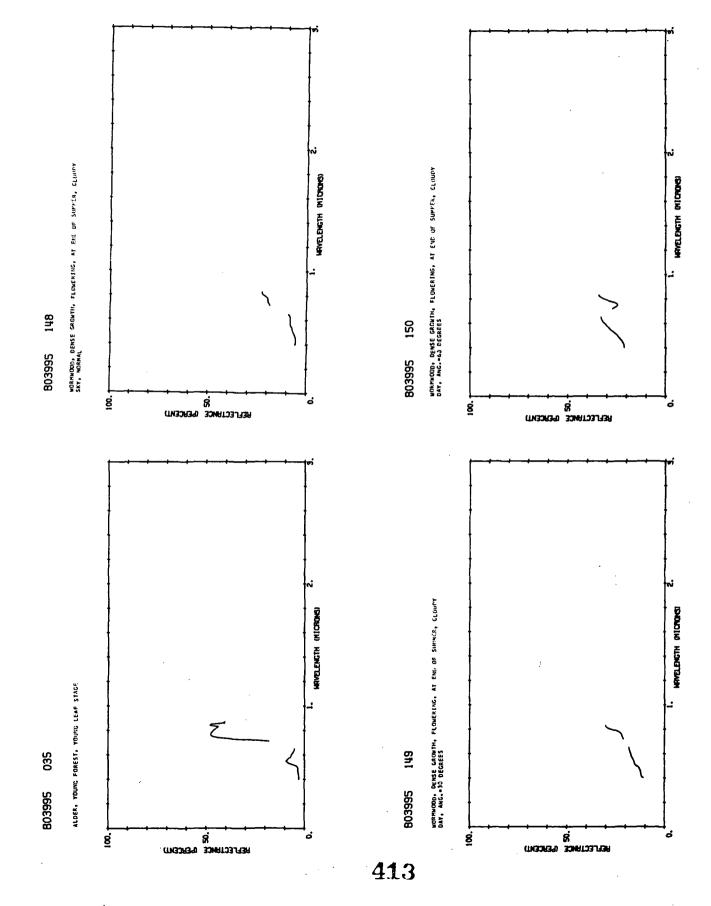
MILLET, RIPENIML, 4-90 DEGREES, ANG. 445 DEGREES HENDE

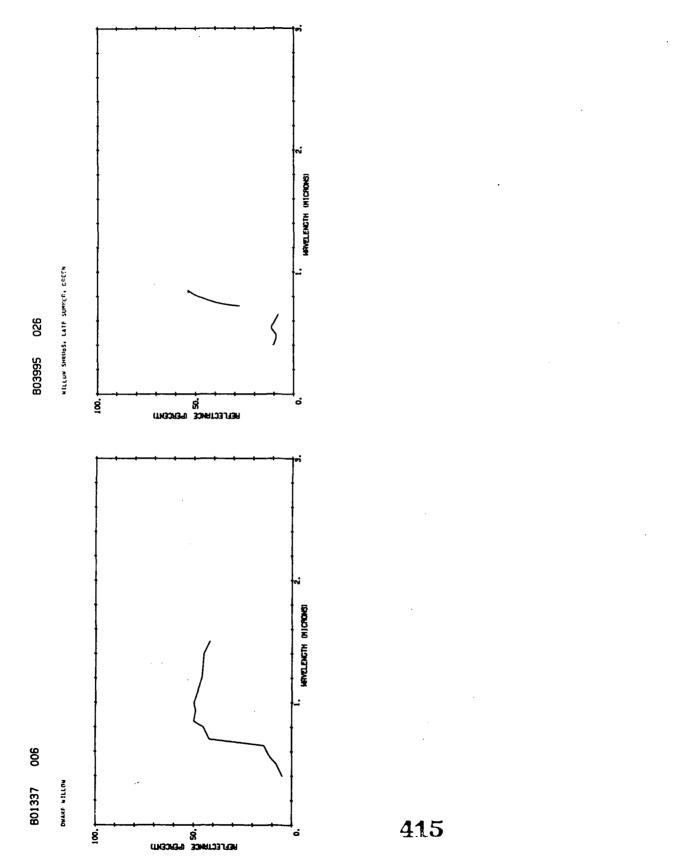

8




C-8


(F)BGD VEGETATION Ligneous


408

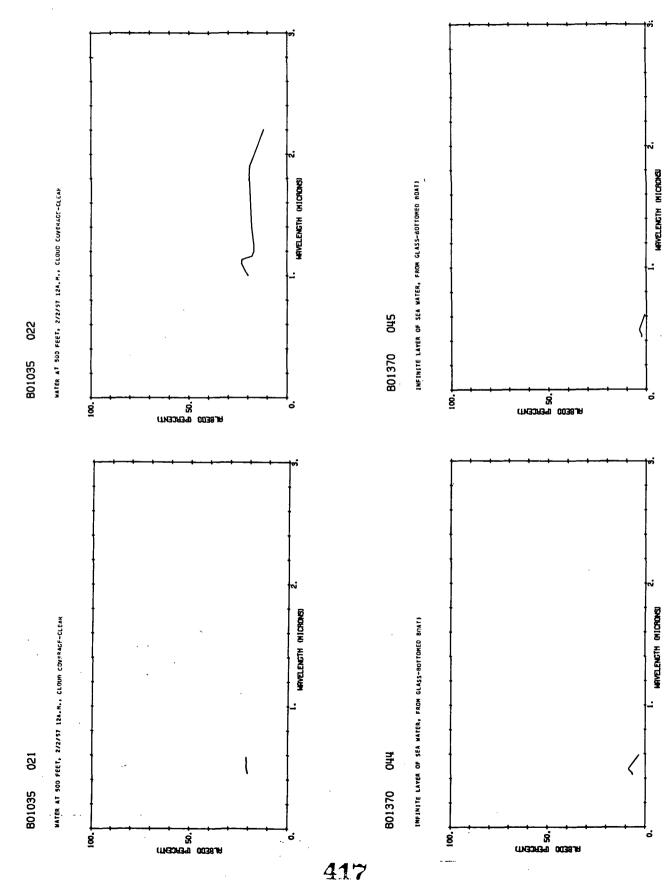


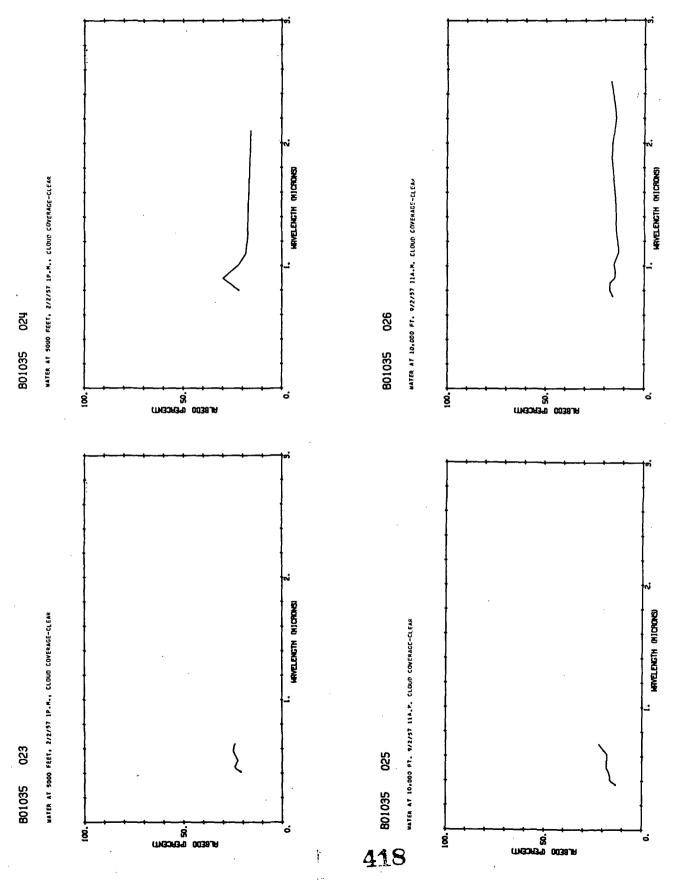
(P)BGD 5

(F)BGE VEGETATION Ligneous (Continued)

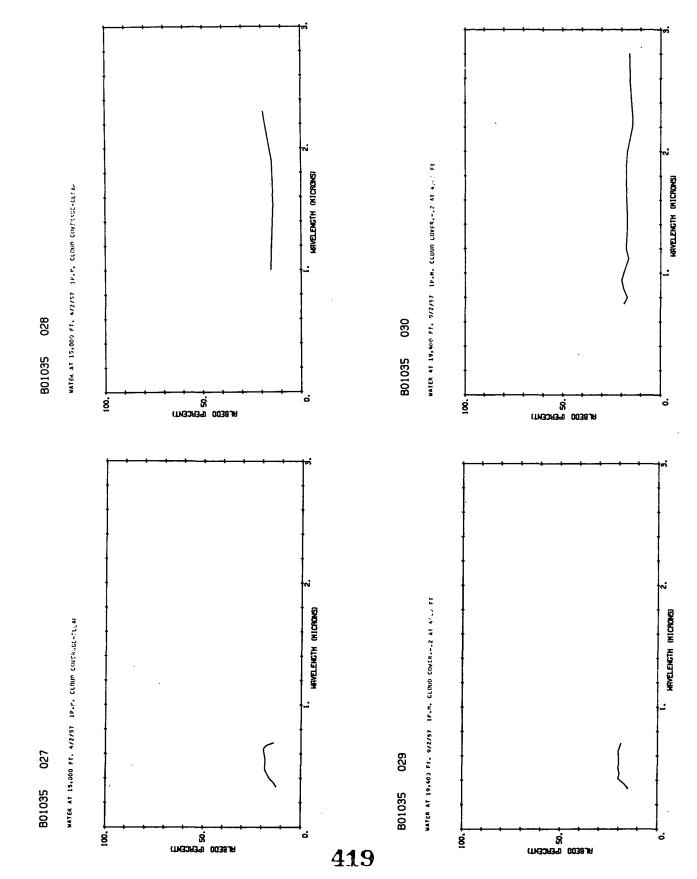
414

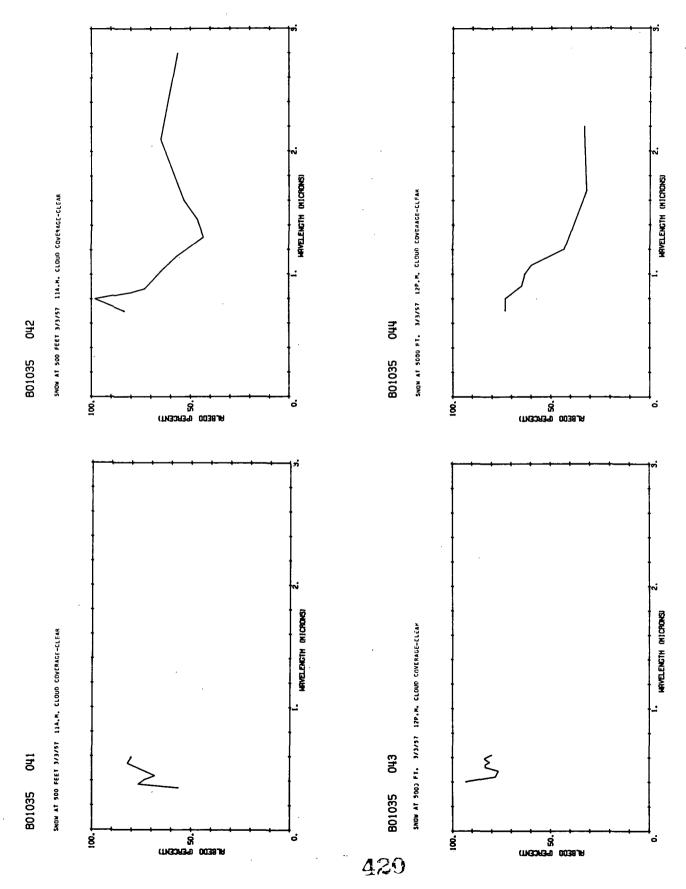
(P)BGE 1

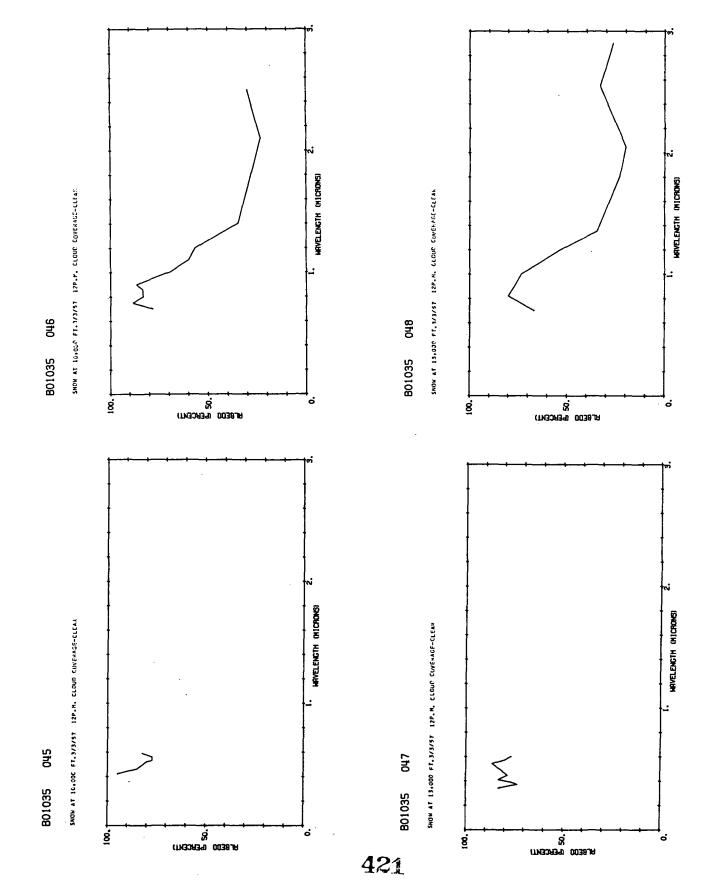

(F)BH WATER .

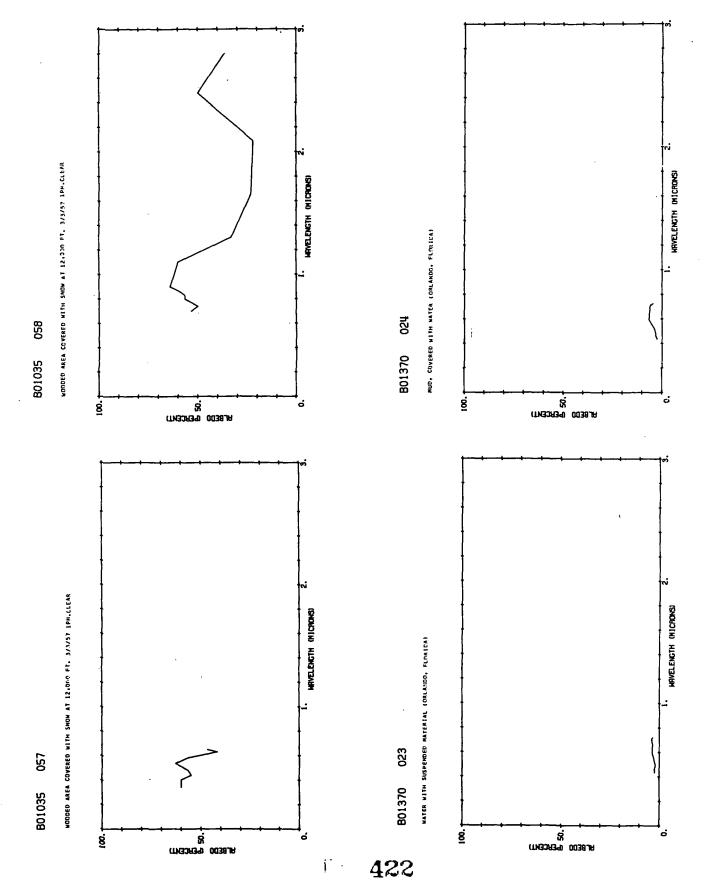

416

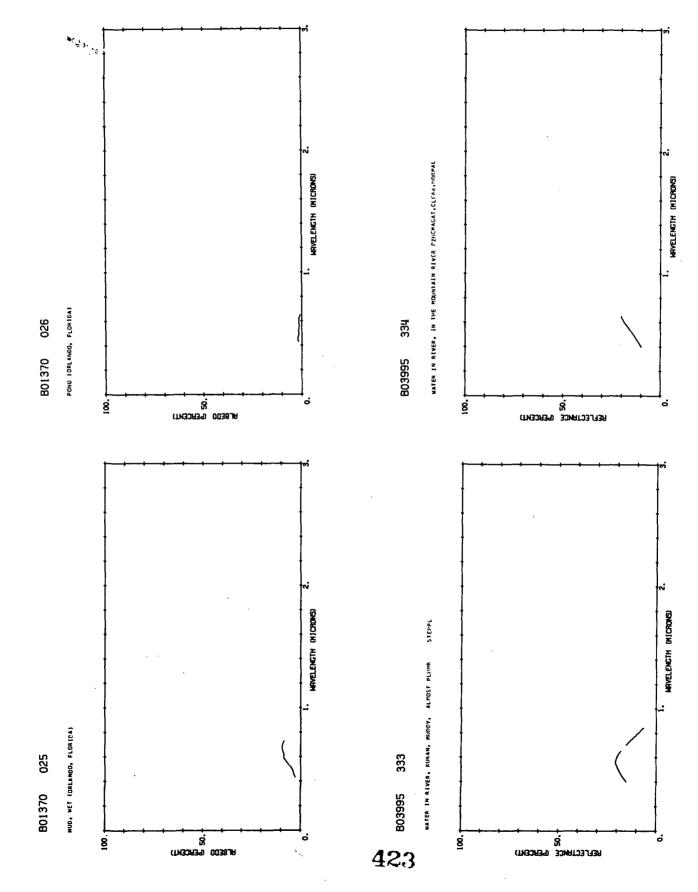
.

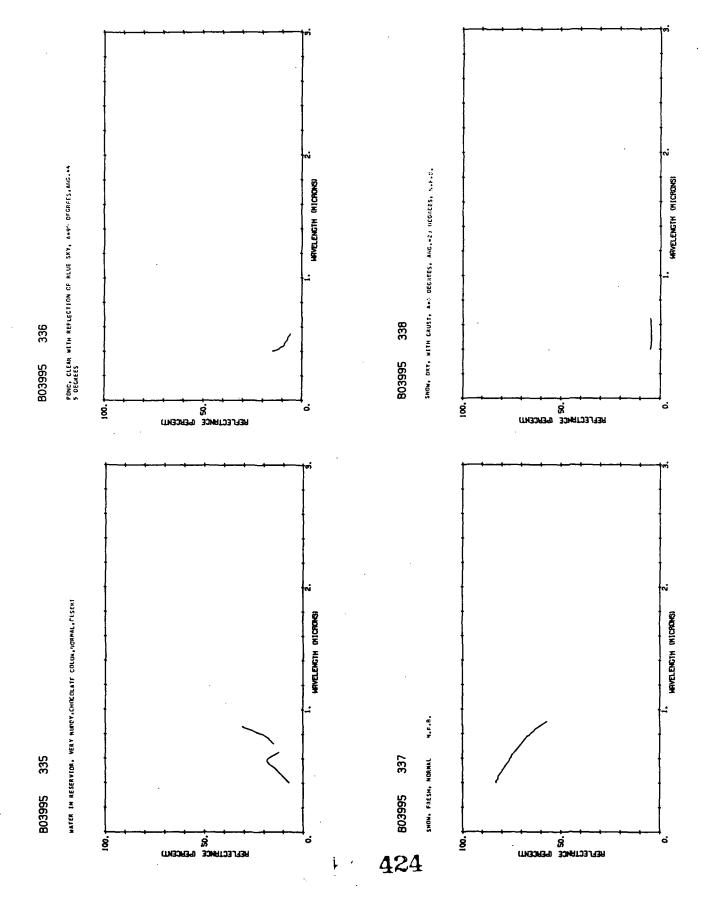

.


.

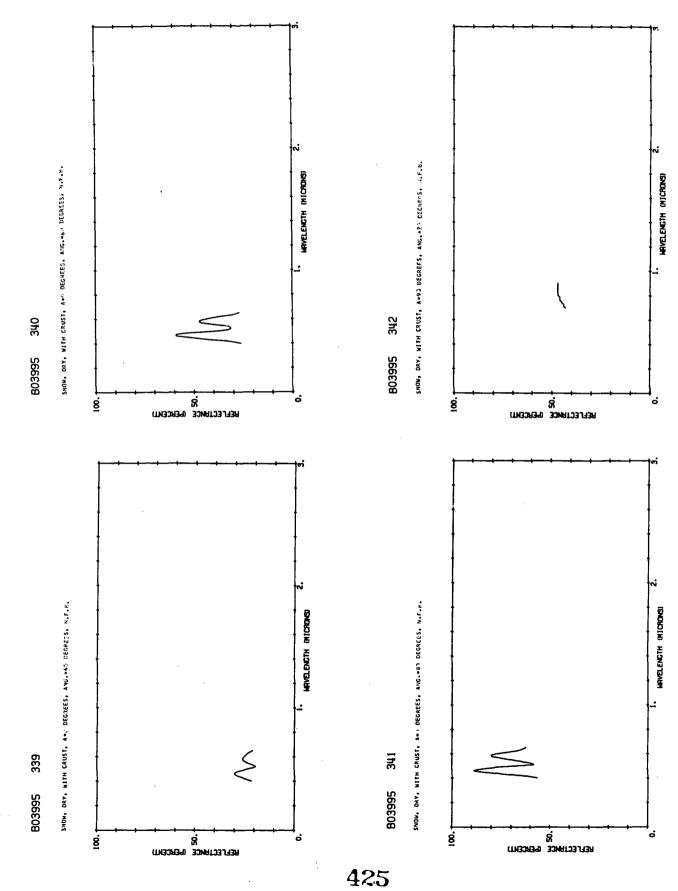


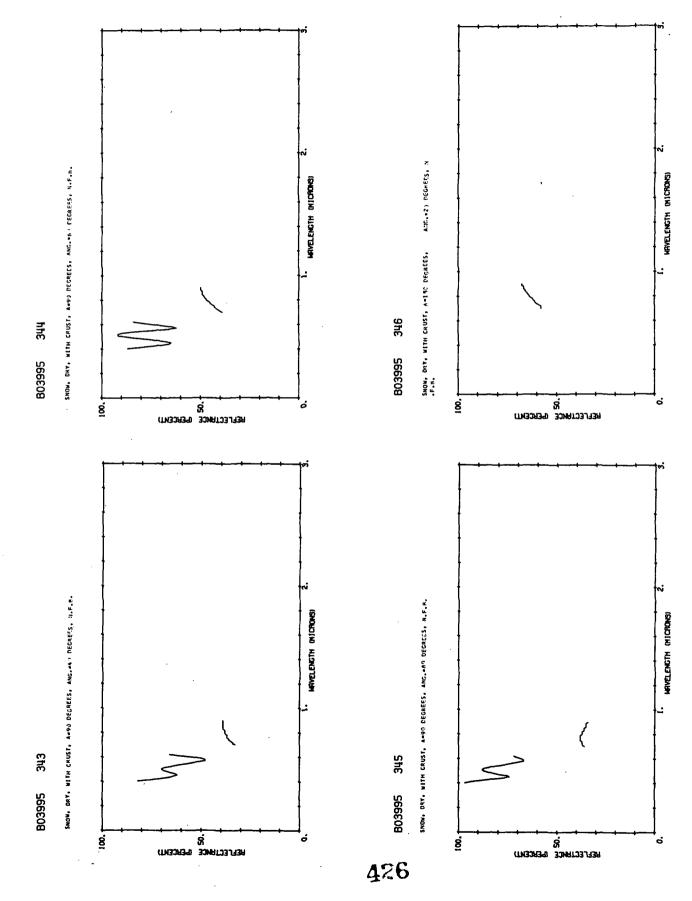

· · · · · ·

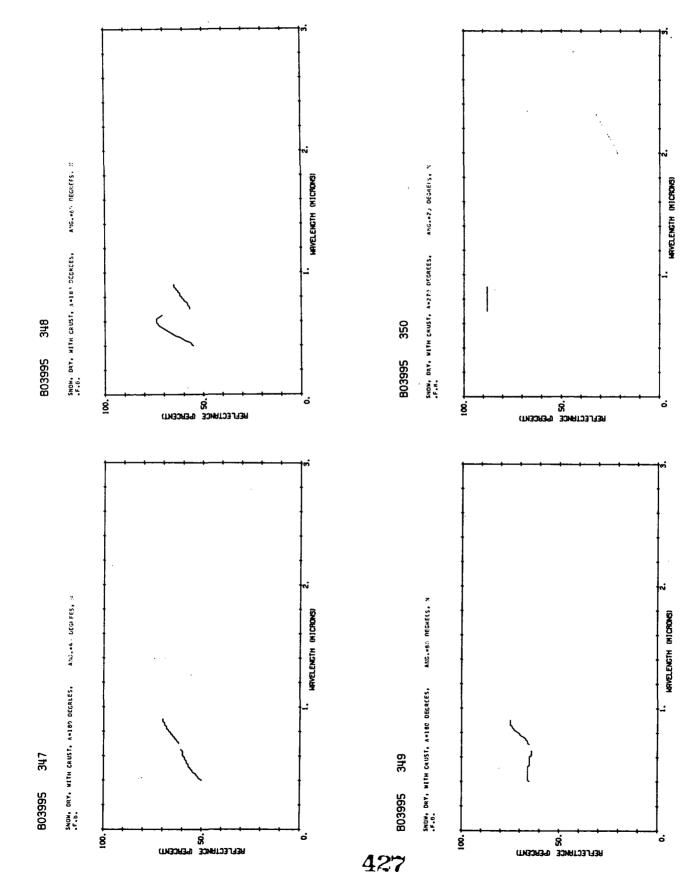


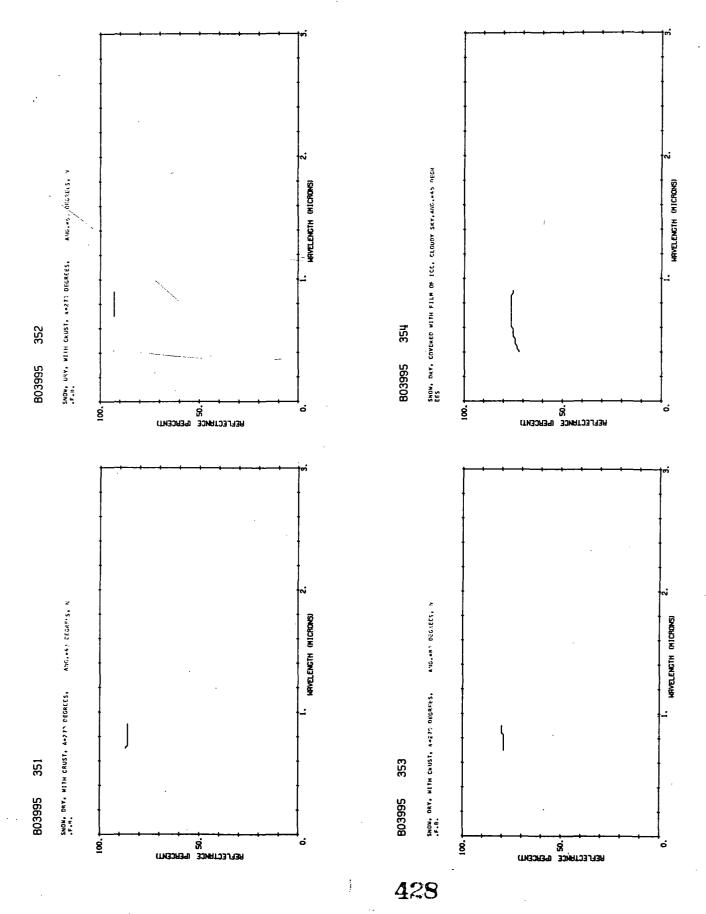


(P)BH 4









••

Appendix I* DATA INSTRUMENTATION TECHNIQUES

1.1. THEORY OF REFLECTANCE

The purpose of this discussion is to enable the user of this data compilation to consider the data in a proper perspective. The "reflectance" alone, for example, does not sufficiently describe the results of an experiment to allow the results to be used indiscriminately. One must have knowledge of the measuring instrument's characteristics, since they have measurable effect on interpretation of the output. Some important instrument parameters include spectral resolution, the solid angle of effective viewing, and characteristics of the radiation source.

Our present understanding of radiation theory does not permit an analytical description, in closed form, of the exact relationship between the radiation emitted by a source (whether natural or artificial) and the radiation received by a remote sensor after this radiation has been reflected by an object under surveillance. There are well known laws to describe the simple case of an electromagnetic wave incident upon a perfectly planar interface between two media. In this case, the reflected wave depends upon the radiation wavelength, the angle of incidence, and the physical properties (permittivity, permeability, and conductivity) of the two adjoining media. The laws governing such a case are sufficiently understood so that the refractive index and extinction coefficient of materials involved may be found by determining the reflection coefficients of the materials. For the more complicated case involving a surface with periodic or random surface irregularities, an analytic determination of the properties of the reflected electromagnetic field may only be approximated.

In the past 10 years, many papers have been published on scattering or reflection from rough surfaces. Many theories have been developed, but none is both general and rigorous at the same time. To perform reasonably simple numerical calculations on the basis of these theories, certain simplifying assumptions are introduced, usually including one or more of the following:

- (1) The dimensions of scattering elements of the rough surface are either much smaller or much greater than the wavelength of the incident radiation.
- (2) The radii of curvature of the scattering elements are much greater than the wavelength of the incident radiation.
- (3) Shadowing or obscuration effects occurring at the surface may be neglected.
- (4) Only the far field is to be considered.
- (5) Multiple reflections may be neglected.
- (6) Consideration is restricted to a particular model of surface roughness (e.g., sawtooth, sinusoidal protrusions of definite shape and in random position, with random variations in height given by their statistical distribution and correlation function).

* Most of the material in this appendix was developed under Air Force Contract AF 33(657)-10974 and was previously reported in Ref.[1].

429

Eq. (1) over all incident directions, which yields

$$L_{\mathbf{r}}(\theta_{\mathbf{r}}^{\prime}, \phi_{\mathbf{r}}^{\prime}) = \int \rho^{\prime} L_{\mathbf{i}}(\theta_{\mathbf{i}}^{\prime}, \phi_{\mathbf{i}}^{\prime}) \cos \theta_{\mathbf{i}}^{\prime} d\omega_{\mathbf{i}}^{\prime}$$
(2)

Also, by Helmholtz's reciprocity theorem, if the directions of the incident and reflected pencils are interchanged, the bidirectional reflectance is unchanged, i.e.,

$$\rho'(\theta_1', \phi_1'; \theta_2', \phi_2'; \mathbf{P}; \lambda) = \rho'(\theta_2', \phi_2'; \theta_1', \phi_1'; \mathbf{P}; \lambda)$$
(3)

Since the optical constants of materials may change from point to point, bidirectional reflectance becomes a function of the location of dA. If it is then assumed that the surface can be described by z' = f(x', y'), the correct functional dependence for reflectance is

$$\rho'(\theta'_i, \phi'_i; \theta'_r, \phi'_r; P; \lambda; x', y', z')_{z'=f(x',y')}$$

Generally, the direction of the normal to dA is also a function of the location of dA on the surface of the object. Hence, even if the incident and reflected radiation have a constant direction with respect to the (x', y', z') coordinates, the angles (θ'_i, ϕ'_i) and (θ'_r, ϕ'_r) (taken with respect to the local normal) would be a function of location of the surface element dA. For convenience, a second, absolute coordinate system is usually introduced, viz., (x, y, z). The x-y plane of this system is coincident with the average value of z' = f(x', y') along the surface A, and is, therefore, the "average" plane of the reflector. The normal to this average plane is parallel to the z axis. Instead of referring the incident and reflected radiation to the local coordinates, they are then referred to the absolute system, with θ as the polar angle and ϕ as the azimuthal angle. The bidirectional reflectance with respect to this system is

$$\rho'(\theta_{i}, \phi_{i}; \theta_{r}, \phi_{r}; \mathbf{P}; \lambda; \mathbf{x}, \mathbf{y})$$

Another type of reflectance commonly considered is the directional reflectance ρ_d which is a function of only one direction, either the incident or reflected direction. In the case where reflected power is integrated over a hemisphere and incident power is from a specific direction, directional reflectance is denoted by ρ_{di} . The incident power $d\Phi_i$ is

$$d\Phi_{i} = dL_{i}(\theta_{i}, \phi_{i}) \cos \theta_{i} d\omega_{i} dA$$
(4)

and with Eq. (2),

$$dL_{r} = \rho' \frac{d\Phi_{i}}{dA}$$
(5)
430

Since the reflected power $d\Phi_r$ is given by

$$d\Phi_{\mathbf{r}} = dA \int_{2\pi} dL_{\mathbf{r}} \cos \theta_{\mathbf{r}} d\omega_{\mathbf{r}} = d\Phi_{\mathbf{i}} \int_{2\pi} \rho' \cos \theta_{\mathbf{r}} d\omega_{\mathbf{r}}$$
(6)

therefore,

$$\rho_{di}(\theta_{i}, \phi_{i}; \mathbf{P}; \lambda; \mathbf{x}, \mathbf{y}) = \int_{2\pi} \rho' \cos \theta_{\mathbf{r}} d\omega_{\mathbf{r}}$$
(7)

When dA is uniformly illuminated from all directions ($L_i = \text{constant}$), the corresponding directional reflectance, ρ_{dr} , is defined as the ratio of the radiance reflected in a given direction to the incident radiance. To proceed as previously,

$$\mathbf{L}_{\mathbf{r}} = \int_{2\pi} \rho' \mathbf{L}_{\mathbf{i}} \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}} = \mathbf{L}_{\mathbf{i}} \int_{2\pi} \rho' \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}}$$

and, thus,

$$\rho_{dr}(\theta_{r}, \phi_{r}; \mathbf{P}; \lambda; \mathbf{x}, \mathbf{y}) = \int_{2\pi} \rho' \cos \theta_{i} d\omega_{i}$$
(8)

From comparison of Eqs. (7) and (8),

$$\rho_{di}(\theta, \phi; \mathbf{P}; \lambda; \mathbf{x}, \mathbf{y}) = \rho_{dr}(\theta, \phi; \mathbf{P}; \lambda; \mathbf{x}, \mathbf{y}) = \rho_{d}$$
(9)

 ρ_d is called directional reflectance.

I.2. INSTRUMENTATION

This section describes several types of instruments used to generate the optical data included in this compilation. An expression is derived for the "reflected quantity" measured by each type.

I.2.1. GENERAL ELECTRIC SPECTROPHOTOMETER [3]

A schematic diagram of this measurement apparatus is presented in Fig. 2. Monochromatic radiation from the source passes through a Nicol prism (N_1) and then through a Wollaston prism (W_1) oriented to N_1 at an azimuth angle α . The prism W_1 converts the radiation into two linearly polarized beams, the polarization of one of which is perpendicular to that of the other. The beams then pass through a rapidly rotating Nicol prism (N_2) and into the integrating sphere where, with the same angle of incidence, one impinges on a reference and the other on the sample materials. A detector looks into the sphere in a direction perpendicular to the plane of the two incident beams. The integrating sphere is coated with a diffuse reflector (MgO), the reflectance of which is assumed independent of polarization.

If f is used to denote the frequency of rotation of N_2 , t to denote the time, the subscripts 1 and 2 to distinguish the beams incident on reference and sample respectively, the symbols $\frac{1}{2}$

Electromagnetic scattering theory has been used in the past to compute radiation backscatter from targets in the microwave region of the spectrum, where the radiation wavelength is much greater than the minute irregularities of the target surface, and where the conductivity of the target material is infinite. In the optical region, where materials have finite conductivity and the surface irregularities have a wide range in size relative to the radiation wavelength, present electromagnetic scattering theory is applicable to only a few special cases, so the only way to determine reflectance in this region for target and background objects is by experimentation.

One can arrive at the most general definition of reflectance ρ' (called bidirectional reflectance [2]) by considering an infinitesimal element of surface, dA, upon which radiation of infinitesimal solid angle $d\omega_i$ and radiance L_i is incident. Taking a coordinate system fixed with respect to dA, with polar angle θ' measured from the normal and azimuth angle ϕ' measured from a fixed line (see Fig. 1), the contribution to the reflected radiance, $dL_r(\theta'_r, \phi'_r)$, in the reflected pencil for the direction (θ'_r, ϕ'_r) is

$$dL_{r}(\theta_{r}^{\prime}, \phi_{r}^{\prime}) = \rho^{\prime}L_{i}(\theta_{i}^{\prime}, \phi_{i}^{\prime})\cos \theta_{i}^{\prime}d\omega_{i}^{\prime}$$
(1)

Generally, ρ' is a function of the incident and reflected directions $(\theta'_i, \phi'_i \text{ and } \theta'_r, \phi'_r \text{ respectively})$, the polarization (P), the wavelength (λ) , and the optical parameters of the material on either side of the surface. Total radiance in a given reflected direction is obtained by integrating

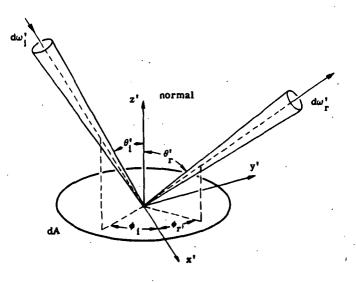


FIGURE 1. LOCAL COORDINATE SYSTEM FOR DETERMINING BIDIRECTIONAL REFLECTANCE

432

142 .

١.

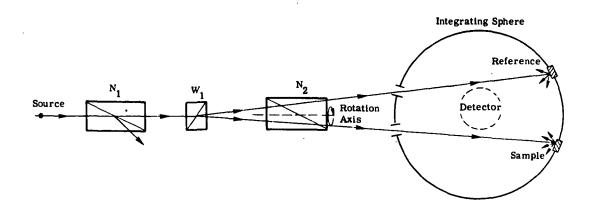


FIGURE 2. SCHEMATIC OF THE GENERAL ELECTRIC SPECTROPHOTOMETER

and || to represent the polarizations perpendicular to each other, and the superscripts i and r to represent incident and reflected radiation respectively, then the power at the detector (except for a factor dependent on the reflectance of the sphere) is

$$\Phi = \Phi_1^r + \Phi_2^r \tag{10}$$

The beams emerging from W_1 are linearly polarized and their powers given by

$$\Phi'_{1} = \Phi_{0} \sin^{2} \alpha$$

$$\Phi'_{2} = \Phi_{0} \cos^{2} \alpha$$
(11)

where Φ_0 is the power from N₁. The prism N₂ passes that portion of the power polarized in a fixed direction, so that

$$\Phi_{1}^{i} = \Phi_{1}^{'} \sin^{2} (2\pi ft) = \Phi_{0} \sin^{2} \alpha \sin^{2} (2\pi ft)$$

$$\Phi_{2}^{i} = \Phi_{2}^{'} \cos^{2} (2\pi ft) = \Phi_{0} \cos^{2} \alpha \cos^{2} (2\pi ft)$$
(12)

If it is assumed that the directional reflectance of the reference $\rho_{d,1}(\lambda)$ is independent of polarization,

$$\Phi_{1}^{r} = \rho_{d,1}^{(\lambda)} \Phi_{1}^{i} = \rho_{d,1}^{(\lambda)} \Phi_{0} \sin^{2} \alpha \sin^{2} (2\pi ft)$$
(13)

If the polarization symbols || and || are taken to refer to the polarization parallel to the directions in which beam 2 emerging from N₂ is maximum and minimum, respectively, then the power reflected from the sample is

$$\Phi_2^{\mathbf{r}} = \Phi_0 \cos^2 \alpha \cos^2 (2\pi ft) \left[\rho_{d,2}(||, \lambda) \cos^2 (2\pi ft) + \rho_{d,2}(\underline{|}, \lambda) \sin^2 (2\pi ft) \right]$$
(14)

433

The power at the detector is then*

$$\Phi = \Phi_0 \left\{ \rho_1 \sin^2 \alpha \sin^2 (2\pi ft) + \cos^2 \alpha \cos^2 (2\pi ft) \left[\rho_2(||, \lambda) \cos^2 (2\pi ft) + \rho_2(||, \lambda) \sin^2 (2\pi ft) \right] \right\}$$
(15)

Rearranging terms gives

$$\begin{split} \mathbf{b} &= 1/2 \left\{ \rho_1(\lambda) \sin^2 \alpha + \cos^2 \alpha \left[\frac{3}{2} \rho^2(||, \lambda) + \frac{1}{2} \rho_2(\underline{|}, \lambda) \right] \right\} \\ &- 1/2 \left[\rho_1(\lambda) \sin^2 \alpha - \rho_2(||, \lambda) \cos^2 \alpha \right] \cos \left(4\pi ft\right) \\ &+ 1/8 \left[\rho_2(||, \lambda) - \rho_2(\underline{|}, \lambda) \right] \cos \left(8\pi ft\right) \cos^2 \alpha \end{split}$$
(16)

The a-c portion of the output from the detector, having a frequency of 2f, is fed to a motor which rotates N_1 so that it takes that position for which

$$\rho_1(\lambda) \sin^2 \alpha = \rho_2(||, \lambda) \cos^2 \alpha$$
(17)

A simple measurement of α allows $\rho_2(||, \lambda)$ to be computed from

$$\rho_2(||, \lambda) = \rho_1 \tan^2 \alpha \tag{18}$$

when the reflectance of the reference, $\rho_1(\lambda)$, is known. The directional reflectance ρ_2 is, of course, a function of the direction of incidence, and, therefore, the calculated value is correct only for that particular direction.

Since the incident beam is not infinitesimally narrow, it illuminates a finite, albeit small, area of the sample. Therefore, the computed directional reflectance of the sample is really the true reflectance averaged over the illuminated area,

$$\overline{\rho}_{2}(||, \lambda) = \frac{1}{A} \int_{A} \rho_{2}(||; \lambda; \mathbf{x}, \mathbf{y}) \, d\mathbf{x} \, d\mathbf{y}$$
(19)

where A is the illuminated area of the sample, and similarly for ρ_1 . Hence, in terms of the reference $\overline{\rho}_1$, the reflectance of the sample is

$$\frac{\overline{\rho}_2(||, \lambda)}{\overline{\rho}_1(\lambda)} = \tan^2 \alpha$$

1.2.2. BECKMAN DK-2 SPECTROPHOTOMETER WITH REFLECTANCE ATTACHMENT

Figure 3 is an illustration of this measuring device. Monochromatic light is reflected from an oscillating plane mirror (M_1) alternately to one of two spherical mirrors (M_2) and

*The subscript d has been dropped.

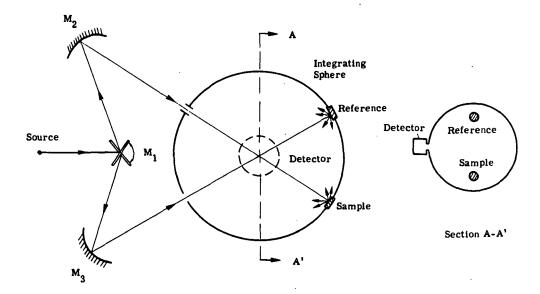


FIGURE 3. SCHEMATIC OF THE BECKMAN SPECTROPHOTOMETER WITH REFLECTANCE ATTACHMENT

 M_3). M_1 is positioned in the focal planes of M_2 and M_3 . Thus, the radiation is reflected alternately, with little divergence, onto the reference and the sample at normal incidence. The detector compares the reflected power from the reference and sample and gives the ratio of the two.

Because the monochromator is a prism instrument, the radiation incident on M_1 is slightly polarized. More polarization results from reflection from the plane and spherical mirrors. Radiation entering the integrating sphere is probably elliptically polarized. If the subscripts 1 and 2 are used for quantities referring to the reference and sample respectively, and $\rho_d(P, \lambda, n)$ is taken to represent the directional reflectance at normal incidence, wavelength λ , and polarization P, the reflected powers are

$$\Phi_1^{\mathbf{r}} = \rho_{\mathbf{d},1}(\lambda, \mathbf{n})\Phi_0$$

$$\Phi_2^{\mathbf{r}} = \rho_{\mathbf{d},2}(\mathbf{P}, \lambda, \mathbf{n})\Phi_0$$
(20)

where Φ_0 is the incident power of wavelength λ and polarization P. It is assumed that the reflectance of the reference is not polarization dependent.

Because the radiation is incident normal to the reflectors, that portion of the power which is specularly reflected will exit through the entrance ports undetected. If $\rho_{\rm g}({\rm P},\lambda,{\rm n})$ is taken as the specular reflectance for normal incidence, wavelength λ , and polarization P, then the specularly reflected powers are $\rho_{\rm g,1}(\lambda,{\rm n})\Phi_0$ and $\rho_{\rm g,2}({\rm P},\lambda,{\rm n})\Phi_0$ for the reference and sample respectively. If the incident radiation had no divergence and filled the whole entrance port,

none of the specularly reflected radiation would be detected. However, because of the divergence of the incident beam and the configuration of the equipment, only a fraction k of this radiation would be undetected. Therefore, the detected powers are

$$\Phi_{1}^{\mathbf{r}} = [\rho_{d,1}^{(\lambda, n)} - k\rho_{s,1}^{(\lambda, n)}]\Phi_{0}$$

$$\Phi_{2}^{\mathbf{r}} = [\rho_{d,2}^{(P, \lambda, n)} - k\rho_{s,2}^{(P, \lambda, n)}]\Phi_{0}$$
(21)

The same value of k is used for both reference and sample because of symmetry. The value reported by the detector represents the ratio

$$\frac{\rho_{d,2}(\mathbf{P},\lambda,\mathbf{n}) - k\rho_{s,2}(\mathbf{P},\lambda,\mathbf{n})}{\rho_{d,1}(\lambda,\mathbf{n}) - k\rho_{s,1}(\lambda,\mathbf{n})} = \frac{\Phi_1^r}{\Phi_2^r}$$

Again, the indicated reflectances are averages over the illuminated areas.

1.2.3. COBLENTZ HEMISPHERE USED BY NEW YORK UNIVERSITY

This measurement apparatus uses a hemispherical specular reflector (see Fig. 4) with the sample and detector located a small distance from and diametrically opposite to the center of the sphere. Through an entrance port, well-collimated, monochromatic radiation becomes incident on the sample at a fixed angle. Because of imaging problems associated with the off-center location of the sample, the aperture of the detector should be larger than the sample to guarantee that most of the radiation reflected from the hemisphere is detected. With $L_i(\lambda; P_i; \theta_i, \phi_i)$ representing the radiance with wavelength λ and polarization P_i incident on the sample in the direction (θ_i, ϕ_i), the radiance reflected by the sample, L_r , is

$$\mathbf{L}_{\mathbf{r}}(\lambda; \mathbf{P}_{\mathbf{r}}; \theta_{\mathbf{r}}, \phi_{\mathbf{r}}) = \rho'(\lambda; \mathbf{P}_{\mathbf{i}}; \theta_{\mathbf{r}}, \phi_{\mathbf{r}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}) \mathbf{L}_{\mathbf{i}} \cos \theta_{\mathbf{i}} d\omega_{\mathbf{r}}$$
(22)

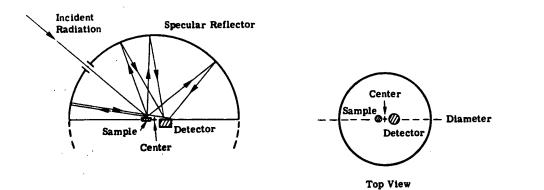


FIGURE 4. SCHEMATIC OF THE COBLENTZ HEMISPHERICAL REFLEC-TANCE ATTACHMENT USED BY NEW YORK UNIVERSITY

426

where the subscript r designates reflected radiation and ρ' is the bidirectional reflectance for incident polarization P_i . Given the directions of incidence and reflection, P_i , and λ , P_r may be determined.

If it can be assumed that the distance from the sample to the center of the sphere is very small compared to the radius of the sphere and that the area being illuminated is small, then the reflected radiance is approximately normally incident on the sphere. For normal incidence, the reflectance of the sphere, ρ_s , is independent of polarization of the incident radiation and depends only on its wavelength. The power Φ at the detector is, thus,

$$\Phi = \rho_{s}(\lambda) \mathbf{L}_{i} \cos \theta_{i} d\omega_{i} \Lambda \int_{\omega_{r}} \rho'(\lambda; \mathbf{P}_{i}; \theta_{r}, \phi_{r}; \theta_{i}, \phi_{i}) \cos \theta_{r} d\omega_{r}$$
(23)

where N_i is taken as uniform across the illuminated area A, ω_r as the solid angle for reflection from the sample, and ρ' as the bidirectional reflectance averaged over A. From the definition for ρ_d ,

$$\Phi = \mathbf{L}_{i} \cos \theta_{i} d\omega_{i} A \rho_{s}(\lambda) \rho_{d}(\lambda; \mathbf{P}_{i}; \theta_{i}, \phi_{i})$$
(24)

By making two measurements, one with the sample and one with a reference having a directional reflectance $\rho_{d,1}$ which is known,

$$\frac{\rho_{\mathbf{d}}^{(\lambda; \mathbf{P}_{i}; \theta_{i}, \phi_{i})}}{\rho_{\mathbf{d}, \mathbf{l}}^{(\lambda; \mathbf{P}_{i}; \theta_{i}, \phi_{i})} = \frac{\Phi}{\Phi_{1}}}$$
(25)

is obtained, where the power reflected from the reference and the reflectances are averaged over the illuminated areas.

Equation (24) represents the power incident in the plane of the detector. In reality, however, the acceptance angle of the detector, ω_d , is less than 2π , so the power received by the detector, Φ_{rec} , is given by

$$\Phi_{\rm rec} = (\omega_{\rm d}/2\pi)\Phi$$

At angles of grazing incidence in the plane of the detector, radiation is reflected by the detector and is strongly polarized. This radiation is reflected off the hemisphere and onto the sample. Therefore, there will be some error caused by multiple reflections, and these reflections will be more strongly polarized than the initial radiation from the monochromator.

1.2.4. PORTABLE SPECTROPHOTOMETER USED BY USAERDL

This instrument is shown in Fig. 5. White, unpolarized radiation from the source is reflected from a plane mirror (M_1) onto the sample. Radiation reflected from the sample is focused onto the detector aperture by a spherical mirror (M_2) . The detector is located in the focal plane

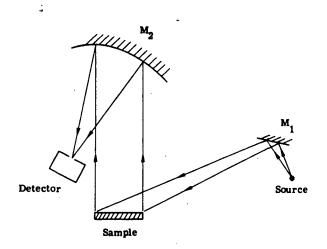


FIGURE 5. SCHEMATIC OF THE USAERDL PORTABLE SPECTROPHOTOMETER

of M_2 and thus receives only the radiation reflected normally from the sample. In practice, the detector is a monochromator, so only radiation at a particular wavelength λ is sensed. The source and M_1 can be moved about to give different angles of incidence on the sample. As a result of reflection from M_1 the radiance incident on the sample is probably partially polarized.

The spectral radiance incident on an area dA of the sample located at (x, y) is $L_i(\lambda; P; \theta_i, \phi_i; x, y)$, where P is the polarization for the incident direction (θ_i, ϕ_i) . For this particular configuration, (θ_i, ϕ_i) is determined by (x, y). The spectral power reflected normally $(\theta_r = 0^\circ)$ by each dA is d Φ :

$$d\Phi = dAL_{i}(\lambda, P)\left[\int_{\Delta\omega_{i}}^{\cdot} \rho'(\lambda; P; \theta_{i}, \phi_{i}; n; x, y) \cos \theta_{i} d\omega_{i}\right] d\omega_{r}$$
(26)

where ρ' is the spectral bidirectional reflectance for radiation of polarization P which is incident from (θ_i, ϕ_i) on the area at (x, y) and reflected normally (indicated by the symbol n); $\Delta \omega_i$ is the solid angle of the source as seen from the sample, and it is assumed that L_i is constant^{*} in each $\Delta \omega_i$. The total power Φ reflected normally by the sample (of area A) is

$$\Phi = \mathbf{L}_{i}(\lambda, \mathbf{P}) \left[\int_{\mathbf{A}} \int_{\Delta \omega_{i}} \rho'(\lambda; \mathbf{P}; \theta_{i}, \phi_{i}; \mathbf{n}; \mathbf{x}, \mathbf{y}) \cos \theta_{i} d\omega_{i} d\mathbf{A} \right] d\omega_{\mathbf{r}}$$
(27)

^{*}It has been assumed that $\Delta \omega_i$ is small enough so that a constant, meaningful polarization can be associated with the pencil of radiation.

For a reference with bidirectional reflectance ρ'_r that is independent of position and polarization, the detected power Φ is

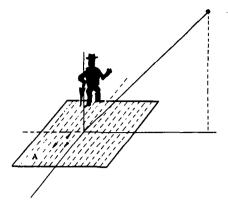
$$\Phi' = \mathbf{L}_{i}(\lambda, \mathbf{P}) \mathbf{A} \left[\int_{\Delta \omega} \rho_{\mathbf{r}}'(\lambda; \theta_{i}, \phi_{i}; \mathbf{n}) \cos \theta_{i} d\omega_{i} \right] d\omega_{\mathbf{r}}$$
(28)

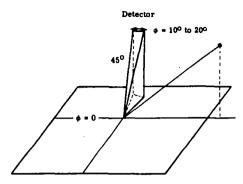
The ratio of the power detected from the sample to that from the reference is

$$\frac{\Phi}{\Phi'} = \frac{\int_{\Delta\omega_{i}} \overline{\rho}'(\lambda; \mathbf{P}; \theta_{i}, \phi_{i}; \mathbf{n}) \cos \theta_{i} d\omega_{i}}{\int_{\Delta\omega_{i}} \rho_{\mathbf{r}}'(\lambda; \theta_{i}, \phi_{i}; \mathbf{n}) \cos \theta_{i} d\omega_{i}}$$
(29)

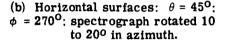
where $\overline{\rho}$ is the average of ρ' over the area A, i.e.,

$$\overline{\rho}' = \frac{1}{A} \int_{A} \rho' \, dA \tag{30}$$


With $\Delta \omega_i$ so small that quantities may be considered constant throughout it, Eq. (29) becomes


$$\frac{\rho'(\lambda; \mathbf{P}; \theta_{i}, \phi_{i}; \mathbf{n})}{\rho'_{r}(\lambda; \theta_{i}, \phi_{i}; \mathbf{n})} = \frac{\Phi}{\Phi'}$$
(31)

In practice, the beam incident on the sample in this case is divergent. Since reflectance for most objects exhibits angular dependence, and since a divergent beam represents a range of incidence angles, it intuitively appears that the divergence angle will affect the final reflectance value.


I.2.5. KRINOV'S FIELD MEASUREMENTS [4]

The methods described in this section were used for field measurements with the sun and a clear sky as the radiation source. The measurement procedure varied depending upon whether the surface measured was horizontal or vertical. For horizontal surfaces, the detector was oriented in one of two positions: looking directly downward or looking downward at 45° to the vertical. To establish a reference system for further discussion, all azimuth values are relative to the sun which is defined to be at an azimuth of 180° ; angles are considered positive when measured clockwise from the zero-azimuth line. When looking downward, the detector was either moved back and forth along the $90^{\circ}-270^{\circ}$ line over a large area (cf. Fig. 6a) or rotated 5° to 10° about a vertical axis coincident with its viewing direction (cf. Fig. 6b). In the first case, when the detector was moved back and forth over a large area of the ground being observed, the instrument was always oriented normal to the ground. In effect, the measurement was bidirectional if it can be assumed that all the incident radiation emanates from the sun. Under this assumption, $\rho'(\theta_i, \phi_i; \theta_r, \phi_r) = \rho'(\theta_{sun}, 180; 0, 0)$. This measurement is

(a) Horizontal surfaces: man walks over area A to be measured with the spectrograph; spectrograph is oriented normal to ground and looking downward for as much as 30 min.

FIGURE 6. SCHEMATIC OF MEASUREMENT CONFIGURATION USED BY KRINOV

integrated over the area of the ground observed. In the second case, the spectrograph was mounted on a tripod and directed at the sample at an angle of 45° from the normal and an azimuth of 270° . The spectrograph was then rotated on the tripod through an azimuth of 10° to 20° . When measuring vertical surfaces, i.e., trees, cliffs, or walls, the spectrograph was directed horizontally or slightly upward at the surface and at azimuths of 45° or 315° , and the instrument was then also rotated through a small azimuth.

Because the incident radiation comes from the sun and clear sky, the incident spectral radiance is very dependent on angle and not quite unpolarized (particularly in the blue region of the spectrum): $L_i(\lambda; P_i; \theta_i, \phi_i)$, with (θ_i, ϕ_i) the direction of incidence and P_i the polarization. Also, the time of day, season, and atmospheric condition act as variables. $d\Phi_g$ is the spectral power reflected by a surface element dA and into the rather large solid angle ω_D which subtends the detector:

$$d\Phi_{\mathbf{s}}(\lambda) = dA \int_{\omega_{\mathbf{D}}} d\omega_{\mathbf{D}} \int_{\omega_{\mathbf{i}}=2\pi} \rho'(\lambda; \mathbf{P}_{\mathbf{i}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}; \theta_{\mathbf{r}}, \phi_{\mathbf{r}}) \mathbf{L}_{\mathbf{i}}(\lambda; \mathbf{P}_{\mathbf{i}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}) \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}}$$
(32)

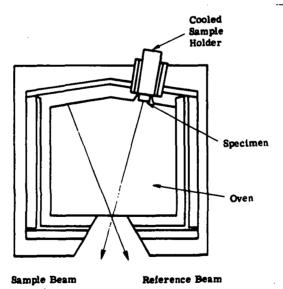
where (θ_r, ϕ_r) is the direction of reflectance, ω_i the solid angle of incidence, and ρ' the bidirectional reflectance. The recorder for this system is photographic film, hence the system records energy. Assuming the detector views an area A at any time and scans at a constant rate over a time T, and that L_i is independent of time, then the spectral energy reflected by the sample, $Q_s(\lambda)$, is

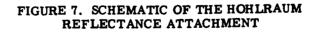
$$Q_{s}(\lambda) = TA \int_{\omega_{D}} d\omega_{D} \int_{\omega_{i}=2\pi} \overline{\rho}(\lambda; P_{i}; \theta_{i}, \phi_{i}; \theta_{r}, \phi_{r}) L_{i}(\lambda; P_{i}; \theta_{i}, \phi_{i}) \cos \theta_{i} d\omega_{i}$$
(33)
440

where $\overline{\rho}$ ' is ρ ' averaged over the scanned area A_i, i.e.,

$$\overline{\rho}' = \frac{1}{A_s} \int_A \rho' \, dA$$

The sample can be replaced by a reference the reflectance of which, ρ'_{r} does not vary with position, and the film exposed for a time T without scanning. The reflected spectral energy $Q_{p}(\lambda)$ is then


$$Q_{\mathbf{R}}(\lambda) = \mathbf{T}\mathbf{A} \int_{\boldsymbol{\omega}_{\mathbf{D}}} d\boldsymbol{\omega}_{\mathbf{D}} \int_{\boldsymbol{\omega}_{\mathbf{i}}=2\pi} \rho_{\mathbf{r}}^{\prime}(\lambda; \mathbf{P}_{\mathbf{i}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}; \theta_{\mathbf{r}}, \phi_{\mathbf{r}}) \mathbf{L}_{\mathbf{i}} \cos \theta_{\mathbf{i}} d\boldsymbol{\omega}_{\mathbf{i}}$$
(34)


A comparison of $Q_{g}(\lambda)$ and $Q_{R}(\lambda)$ may then be made.

For a second case referred to above, the results are the same if A_s is set equal to A, since it may be assumed that A is imaged onto a small area of the film and the average of $Q_s(\lambda)$ over this small area is taken. With the detector pointed downwards at 45° to the vertical and at an azimuth of 90° or 225° the results are obtained as shown with appropriate changes in θ_r and ϕ_r . Similar equations may be derived for vertical surfaces.

I.2.6. HOHLRAUM REFLECTANCE ATTACHMENT

This interesting apparatus for determining spectral reflectance is shown in Fig. 7. It consists of a blackbody cavity with a viewing port. The viewing port is small enough so that the

radiation in the cavity closely approximates the blackbody case, and the portions of the inner wall visible through the port occupy only a small solid angle. The sample is water cooled and is oriented with its normal at an angle of 13° to the viewing direction. If dA is again taken to represent the area of the sample viewed and ρ' to represent the bidirectional reflectance, the spectral power Φ_r reflected by the sample through the viewing port is

$$\Phi_{\mathbf{r}}(\lambda) = dAL_{\mathbf{r}}(\lambda) \cos(13^{0}) d\omega_{\mathbf{r}} = d\Sigma d\omega_{\mathbf{s}}L_{\mathbf{r}}(\lambda)$$
(35)

where $L_r(\lambda)$ is the reflected spectral radiance, $d\omega_r$ the solid angle subtended by the viewing port at the sample, $d\Sigma$ the area of the detector (considered small), and $d\omega_s$ the solid angle subtended by the sample at the detector ($d\omega_s$ is considered normal to $d\Sigma$).

$$\mathbf{L}_{\mathbf{r}}(\lambda) = \int_{\omega_{\mathbf{i}}} \rho^{\mathbf{i}}(\lambda; \mathbf{P}_{\mathbf{i}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}; \theta_{\mathbf{r}}, \phi_{\mathbf{r}}) \mathbf{L}_{\mathbf{i}}(\lambda) \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}}$$
(36)

where $L_i(\lambda)$ is the incident spectral radiance, (θ_i, ϕ_i) the incident direction, ω_i the angle subtended at the sample by the entrance to the sample holder, and P_i the polarization of the incident radiation. The incident radiation is blackbody type and hence <u>unpolarized</u>; furthermore, the incident spectral radiance is a constant. Therefore,

$$\Phi_{\mathbf{r}}(\lambda) = d\Sigma d\omega_{\mathbf{s}} \mathbf{L}_{i}(\lambda) \int_{\omega_{i}} \rho'(\lambda; \mathbf{P}_{i}; \theta_{i}, \phi_{i}; \mathbf{13^{o}}, \phi_{\mathbf{r}}) \cos \theta_{i} d\omega_{i}$$
(37)

Next, the detector is moved to view a flat area dA of the cavity wall far from the sample holder. The resulting spectral power, Φ_w , there is

$$\Phi_{\mathbf{w}}(\lambda) = d\mathbf{A} d\omega_{\mathbf{w}} \mathbf{L}_{\mathbf{i}}(\lambda) \cos \theta_{\mathbf{w}} = d\Sigma d\omega_{\mathbf{s}} \mathbf{L}_{\mathbf{i}}(\lambda)$$
(38)

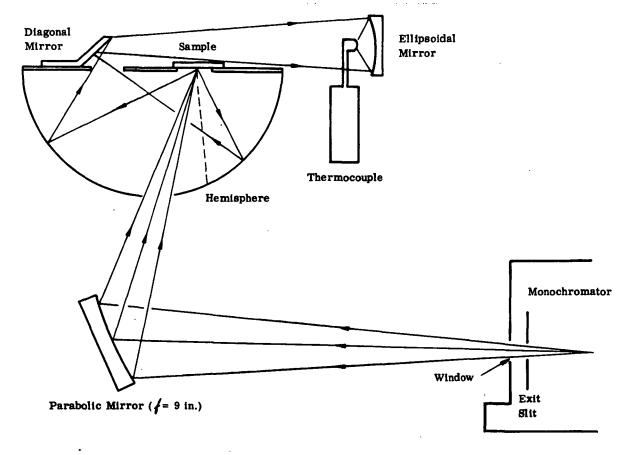
where θ_{w} is the angle between the viewing direction and the normal to the wall, and $d\omega_{w}$ is the solid angle subtended by the viewing port at the area dA on the wall. The ratio of the spectral powers detected is

$$\frac{\Phi_{\mathbf{w}}^{(\lambda)}}{\Phi_{\mathbf{s}}^{(\lambda)}} = \int_{\omega_{\mathbf{i}}} \rho'(\lambda; \mathbf{P}_{\mathbf{i}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}; 13^{\circ}, \phi_{\mathbf{r}}) \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}}$$
(39)

Hence, the detector can be interpreted as giving the spectral bidirectional reflectance for unpolarized light, integrated over the projected solid angle of the source (as seen by the sample). Since it was assumed that the detector viewed only a very small area, dA, of the sample, the

-442

bidirectional reflectance appearing under the integral applies only to that area. In some instances, the sample has been placed at the wall of the Hohlraum cavity instead of further into the sample holder. The ratio of powers detected is then


$$\frac{\Phi_{\mathbf{w}}^{(\lambda)}}{\Phi_{\mathbf{s}}^{(\lambda)}} = \int_{\omega_{i}=2\pi} \rho'(\lambda; \mathbf{P}_{i}; \theta_{i}, \phi_{i}; \mathbf{13^{o}}, \phi_{\mathbf{r}}) \cos \theta_{i} d\omega_{i} = \rho_{\mathbf{d}}^{(\lambda; \mathbf{P}_{i}; \mathbf{13^{o}}, \phi_{\mathbf{r}})$$

Once again, the reflectance measured is an average over the illuminated area.

1.2.7. DETROIT ARSENAL REFLECTANCE MEASUREMENTS [5]

7)

The measurements reported herein from the Detroit Arsenal were made with a Perkin-Elmer Recording Spectrometer and a Coblentz hemispherical reflectance attachment. Figure 8 is a schematic diagram of the measurement apparatus. Basically, the incident radiation, which is very nearly monochromatic, is focused on the sample through a small hole in the hemisphere. The sample is located at a small distance from the sphere's center. Energy reflected by the sample in any direction is re-reflected by the gold-coated hemisphere (a specular reflector)

FIGURE 8. COBLENTZ HEMISPHERE USED BY DETROIT ARSENAL

and focused at a spot in the sample plane diametrically opposite the sample. By a system of mirrors the collected energy is focused on the detector.

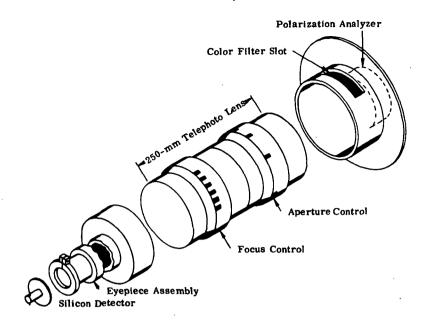
The instrument was calibrated separately for specular reflectors and for diffuse reflectors. For specular reflectors, an evaporated aluminum standard of known reflectance was placed in the sample location, and the instrument slit widths were adjusted until the reading coincided with the predetermined value. The slit width was recorded for that wavelength and the procedure repeated at $1.0-\mu$ m intervals between 1 and 12 μ m. The first wavelength read was 1 μ m. The resulting set of slit widths was used for all samples considered specular, and the reading was recorded as reflectance. In the case of a diffuse reflector, the same procedure was followed using a smoked MgO standard.

I.2.8. NOTS POLARIZATION MEASUREMENTS [6]

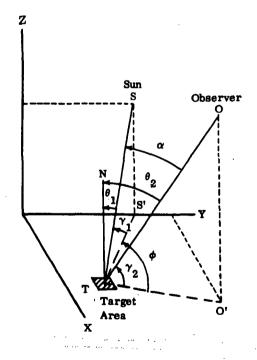
The data obtained at the Naval Ordinance Test Station (NOTS), China Lake, Calif., consist of measurements of the degree of linear polarization of light reflected from target and background objects. The data result from a joint laboratory and field study and are reported in three forms:

- (1) P_L vs. λ
- (2) P_{I} vs. θ
- (3) P_{I} vs. ϕ

where $P_{T} = degree$ of linear polarization


- λ = wavelength
- θ = zenith angle of observation
- ϕ = azimuth angle of observation

Field measurements were made using a specially designed polarimeter consisting of a Polaroid HN-22 high extinction linear polarization filter, an f/4 250-mm telephoto lens, an eyepiece to observe the field of view, and an RCA 200-4-25-2.0 silicon photodetector (Fig. 9). The wavelength was monitored by inserting any one of a series of $20-\mu m$ optical bandpass filters behind the polarization analyzer. The filters were centered at the following peak wavelengths: 486, 520, 546, 579, 589, 656, and 706 μm . The detector field of view was 2° .


The polarimeter was mounted on a tripod for measuring terrain. The positions of the sun and polarimeter with respect to the observed ground were recorded using the notation shown in Fig. 10. The polarization analyzer was then rotated and currents corresponding to the maximum and minimum transmitted fluxes (I_1 and I_2) were recorded. The degree of linear polarization was calculated from the following equation:

$$\mathbf{P}_{\mathbf{L}} = \frac{\mathbf{I}_{1} - \mathbf{I}_{2}}{\mathbf{I}_{1} + \mathbf{I}_{2}}$$

1 .

Laboratory measurements were conducted in much the same way as the field studies. The instrument (Fig. 11) differed basically from the field instrument in two respects: (1) an artificial source was used rather than the natural illumination, and (2) the source and the detector were coplanar; for the field measurements, the detector could be situated at any desired azimuth in relation to the sun. The source was fixed, while the sample could be tilted to allow various incidence angles. The detector could also be moved independent of the sample holder to permit several viewing angles.

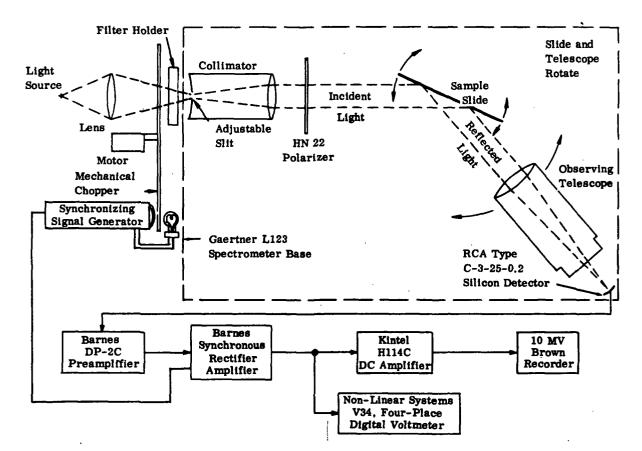


FIGURE 11. LABORATORY POLARIMETER AND INSTRUMENTATION

The illumination angles used in this study were 30° , 60° , and 80° , and the observation angle varied from 5° to 85° .

The polarizer was inserted in the incident beam in first the perpendicular and then the parallel orientation. Light reflected from the sample, V_{\parallel} and V_{\parallel} respectively, was recorded.

Here the degree of linear polarization, $P_{I_{i}}$, is given by

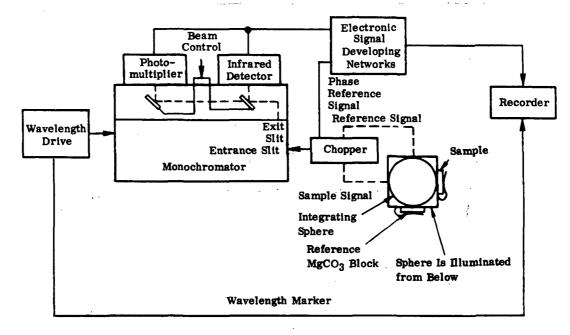
$$\mathbf{P}_{\mathbf{L}} = \frac{\mathbf{V}_{\perp} - \mathbf{C}\mathbf{V}_{\parallel}}{\mathbf{V}_{\perp} + \mathbf{C}\mathbf{V}_{\parallel}}$$

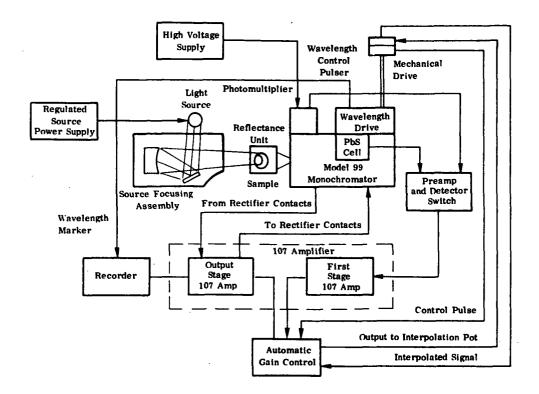
where V_{\perp} = voltage observed upon reflection in the direction $\theta_{\mathbf{r}}$ of perpendicularly polarized i,r light at an incidence angle $\theta_{\mathbf{i}}$

 V_{ii} = voltage observed upon reflection in the direction θ_r of parallel polarized light i,r at an incidence angle θ_i

I.2.9. CARY 14R REFLECTOMETER

This instrument is shown schematically in Fig. 12. Sample illumination was achieved by placing a high intensity source at a small port in the bottom of the integrating sphere. The sample is thus illuminated by a broad spectral band, hemispherical source. A double prism grating monochromator then alternately looks at a MgCO₃ reference and the sample. This instrument may be operated over the 0.2- to 2.2- μ m range.




FIGURE 12. CARY 14R REFLECTOMETER [7]

I.2.10. PERKIN-ELMER NORMAL INCIDENCE REFLECTOMETER

This instrument is shown schematically in Fig. 13. In operation, broad spectral band light is collected and focused on the sample at the reflectance unit (Fig. 14). Light reflected from the sample is collected and focused onto the entrance slit of a Perkin-Elmer Model 99 monochromator where it is analyzed spectrally from 0.2 to 0.4 μ m. The measurements were made using a MgCQ₂ reflectance standard.

I.3. ABSOLUTE REFLECTANCE

As is apparent from the earlier discussion, the measurement of reflectance is usually made relative to an arbitrary standard, and it is presented in that manner in many cases in this com-

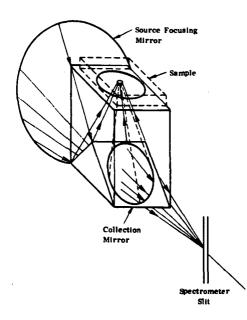


FIGURE 14. PERKIN-ELMER REFLECTANCE UNIT [7]

pilation. To convert such data to absolute values requires knowledge of the absolute reflectance of the standard used. An absolute measurement is of the following form:

$$\rho_{d}\left(\theta_{i}, \phi_{i}\right)_{abs} = \frac{P_{r,x}}{P_{i}}$$
(40)

where p_i is the power incident on the sample in the direction (θ_i, ϕ_i) , and $p_{r,x}$ is the power reflected into a hemisphere by the sample. On the other hand, a relative measurement has the form

$$\rho_{d}\left(\theta_{i}, \phi_{i}\right)_{rel} = \frac{p_{r,x}}{p_{r,st}}$$
(41)

where, again, $p_{r,x}$ is the power reflected into a hemisphere by the sample, while $p_{r,st}$ is the power reflected into a hemisphere by some reflectance standard.

If the absolute directional reflectance of the standard, $\rho_{d,st} \begin{pmatrix} \theta_i, \phi_i \\ i \end{pmatrix}$ is known, the absolute reflectance of the sample can be calculated:

$$\rho_{d}\left(\theta_{i}, \phi_{i}\right)_{abs} = \frac{P_{r,st}}{P_{i}}$$

$$\rho_{r,st} = \rho_{d,st}\left(\theta_{i}, \phi_{i}\right)_{abs} P_{i}$$
(42)

Substituting Eq. (42) into Eq. (41) yields

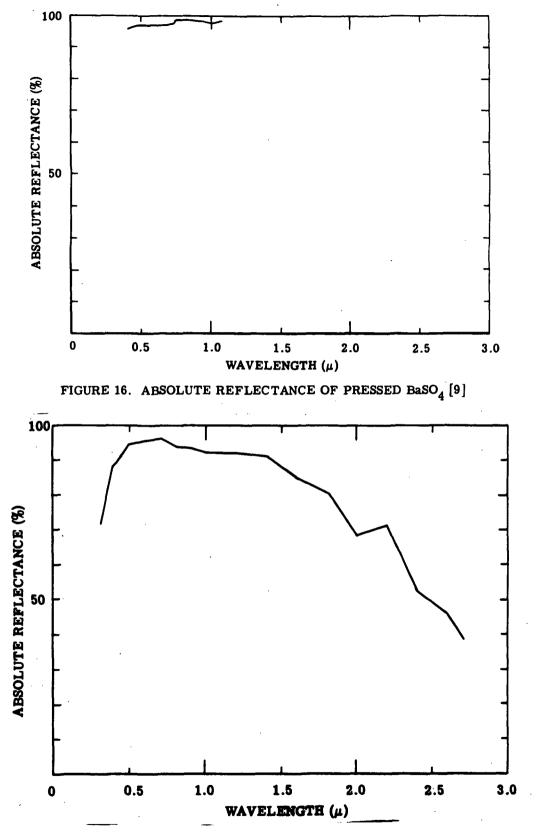
$$\rho_{d}\left(\theta_{i}, \phi_{i}\right)_{rel} = \frac{\rho_{r,x}}{\rho_{d,st}\left(\theta_{i}, \phi_{i}\right)_{abs} p_{i}}$$
$$\rho_{d}\left(\theta_{i}, \phi_{i}\right)_{rel} = \frac{\rho_{d}\left(\theta_{i}, \phi_{i}\right)_{abs}}{\rho_{d,st}\left(\theta_{i}, \phi_{i}\right)_{abs}}$$

and, therefore,

or

$$\rho_{d}\left(\theta_{i}, \phi_{i}\right)_{abs} = \rho_{d}\left(\theta_{i}, \phi_{i}\right)_{rel} \rho_{d,st}\left(\theta_{i}, \phi_{i}\right)_{abs}$$

Thus, to obtain absolute values of the reflectance of a sample, it is necessary to multiply the relative reflectance of the sample by the absolute reflectance of the standard as measured at the same wavelength, incidence angle, etc.


To facilitate these computations, recommended values for the absolute reflectance of three commonly used reflectance standards, MgO, $BaSO_4$, and $MgCO_3$, are presented in Figs. 15 through 17. The reader is cautioned that although these curves are considered to represent the best data currently available, they are nevertheless subject to the errors inherent in the instrumentation used. If highly accurate results are necessary, the references cited should be consulted for a description of the measurement techniques and error analyses associated with the data. Section I.4 indicates which of the optical data are reported as absolute and which as relative. For the relative data, the reflectance standard has also been designated.

It should also be noted that even after corrections for the standard are applied to data in this compilation, the curves may or may not more truly represent absolute reflectance. This is because the reflectance of such standards may vary within a few percent on the basis of preparation techniques, thickness and age of the samples, their exposure to ultraviolet radiation, etc. Since very few of the experiments considered have indicated in their reports the absolute reflectance of the standard used or completely described its preparation, it is impossible to say that the absolute reflectance shown in Figs. 15 through 17 is identical to that of the standard used in a given experiment.

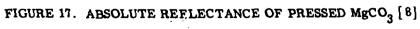


FIGURE 15. ABSOLUTE REFLECTANCE OF SMOKED MgO [8, 9, 10]

450

٠,

I.4. SUMMARY OF EXPERIMENTS YIELDING OPTICAL DATA

Each of the data curves published in this report has an identification number consisting of nine characters. The first of these is an alphabetic symbol, and the remaining eight are numeric. The alphabetic symbol is used to designate the original source of the data and to differentiate between measurements coordinated under various sponsored efforts.

The symbol A, used as a prefix to the identification number, implies that measurements have been made by The University of Michigan, Willow Run Laboratories under the Air Force Target Signatures Measurement Program.* The next five digits designate a specific sample which has been registered at The University of Michigan. For these, a complete sample description is maintained on file. The last three digits in the identification number are used to identify a particular area of the sample or a particular condition of measurement. Thus, for all measurements coordinated under the Target Signatures Measurements Program, the following hold true:

- (1) All measurements of the same sample are linked together by identification number regardless of where the measurements were made.
- (2) Parametric studies (such as moisture content and contamination on the same sample may be readily identified by the last three digits.
- (3) Uniformity of descriptive information is obtained for data on the same samples.

The symbol B, used as a prefix to the identification number, is used to identify data taken from reports kept on file at The University of Michigan, Willow Run Laboratories or data which were obtained prior to the sample registration system. In these cases, the first five digits identify the document from which the data were taken.

The documents from which the optical data have been extracted are briefly summarized on the following pages. These summaries are included to facilitate use of the data presented in Section 4. Information on the experimental platform, instrumentation, reflectance standards (for relative data), and other related matters has been included, and additional references describing some of the instrumentation in greater detail are cited. Bibliographical information on each of the documents is stated; the user is referred to the original source if more detailed information is required.

B-00829. Hopkins: Reflectance Curves of Various Leaves, USAERDL, Ft. Belvoir, Virginia, ca. 1955 (unpublished).

Platform: laboratory

*The Air Force Target Signatures Measurements Program is sponsored by the Air Force Avionics Laboratory under Contract No. F33615-70-C-1698.

Instrument: USAERDL spectrophotometer (original design) Quantity measured: ρ_d Wavelength range: 0.9 to 2.7 μm Reflectance attachment: integrating sphere Reflectance standard: MgO Comments: This instrument is no longer in operation. Basically, it consisted of a Gaertner monochromator coupled with an integrating sphere.

B-00830. Hopkins: Reflectance Curves of Various Soils, USAERDL, Ft. Belvoir, Virginia, ca. 1955 (unpublished).

Platform: laboratory

Instrument 1: Beckman DU spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.2 μm Reflectance attachment: ellipsoidal mirror that collects radiation diffusely reflected from the sample Reflectance standard: MgO Additional Ref.: [11]

Instrument 2: USAERDL spectrophotometer (original design) Quantity measured: ρ_d Wavelength range: 0.9 to 2.7 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Comments: This instrument is no longer in operation. Basically, it consisted of a Gaertner monochromator coupled with an integrating sphere.

B-01035. Sigler: Airborne Rapid Scan Spectrometer and Earth Reflectance Measurements as a Function of Altitude (Final Report), Instrument Division, Radiation, Inc., Orlando, Florida, July 1957.

Platform: airborne

Instrument: Perkin-Elmer 108 rapid-scan spectrometer
Quantity measured: α(albedo)
Wavelength range: 0.4 to 3.0 μm
Reflectance standard: data are absolute
Comments: These data were obtained by rotating a periscope (installed through a hole in the side of the aircraft) 180° to alternately view the sky radiation and that reflected by the earth.

B-01049. Billings: Reflection of Visible and Infrared Radiation from Leaves of Different Ecological Groups, Am. J. Bot., Vol. 38, 1951.

Platform: laboratory

Instrument: Beckman DU spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.1 μm Reflectance attachment: ellipsoidal mirror that collects radiation diffusely reflected from the sample Reflectance standard: MgCO₃ Additional Ref.: [11]

B-01175. Derksen, Monahan: A Reflectometer for Measuring Diffuse Reflectance in the Visible and Infrared Regions, J. Opt. Soc. Am., Vol. 42, No. 4, 1952.

Platform: laboratory

Instrument 1: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.0 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

Instrument 2: Perkin-Elmer 12-B spectrometer Quantity measured: ρ_d Wavelength range: 1.0 to 2.7 μ m Reflectance attachment: Coblentz hemisphere Reflectance standard: MgO Additional Refs.: [14], [15] Comments: See Section I.2.3.

B-01176. Wright: Spectral Reflectance Characteristics of Camouflage Greens Versus Camouflage Detection, IRMA III Report No. 1281, USAERDL, Ft. Belvoir, Virginia, March 1953.

Platform: laboratory

Instrument: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.08 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

B-01337. Dwornik, Orr, Young: Reflectance Curves of Soil, Rocks, Vegetation, and Pavement, Report No. 1746R, USAERDL, Ft. Belvoir, Virginia, April 1963.

Platform: ground-based field

Instrument: USAERDL portable spectrophotometer
Quantity measured: ρ'
Wavelength range: 0.25 to 2.5 μm
Reflectance attachment: collecting mirror
Reflectance standard: measured relative to thermoglass and values converted to MgO
Additional Ref.: [16]
Comments: See Section I.2.4.

B-01339. Haas, et al.: Spectrophotometric and Colorimetric Study of Color Transparencies of Some Natural Objects, Report No. 4794, NBS, Washington, D. C., March 1957.

Platform: laboratory

Instrument: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.08 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

B-01352. Haas, et al.: Spectrophotometric and Colorimetric Study of Diseased and Rust Resisting Cereal Crops, Report No. 4591, NBS, Washington, D. C., July 1956.

Platform: laboratory

454

Instrument: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.08 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

B-01353. Hall, Keegan, Schleter: Spectrophotmetric and Colorimetric Change in the Leaf of a White Oak Tree under Conditions of Natural Drying and Excessive Moisture, Report No. 4322, NBS, Washington, D. C., September 1955.

Platform: laboratory

Instrument: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.08 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section 1.2.1.

B-01367. Haas, et al.: Spectrophotometric and Colorimetric Study of Foliage Stored in Covered Metal Containers, Report No. 4370, NBS, Washington, D. C., November 1955.

Platform: laboratory

Instrument: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.08 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

B-01368. Haas, et al.: Spectrophotometric and Colorimetric Record of Some Leaves of Trees, Vegetation, and Soils, Report No. 4528, NBS, Washington, D. C., April 1956

Platform: laboratory

Instrument: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.08 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

B-01370. Duntley: Reflectance of Natural Terrains, Report No. OSRD 6554, Louis Comfort Tiffany Foundation, Oyster Bay, New York, September 1945.

Platform: airborne

Instrument: Eastman Kodak spectrogeograph Quantity measured: α (albedo) Wavelength range: 0.43 to 0.73 μ m Reflectance standard: data are absolute Comments: The data were obtained by rotating a periscope (installed through a hole in the side of the aircraft) 180° to alternately view the sky radiation and that reflected by the earth. The spectrophotometric curves obtained were derived from densitom eter readings of spectrograms.	ł
B-01643. Reflectance Data on Crops, Mine Detection Branch, USAERDL, Ft. Belvoir, Virginia, ca. 1962 (unpublished).	
Platform: ground-based field	
 Instrument: USAERDL portable spectrophotometer Quantity measured: ρ' Wavelength range: 0.25 to 2.5 μm Reflectance attachment: collecting mirror Reflectance standard: measured relative to thermoglass and values converted to MgO Additional Ref.: [16] Comments: See Section 1.2.4. 	
B-01761. Shull: A Spectrophotometric Study of Reflection of Light from Leaf Surfaces, Botan. Gaz., Vol. 87, 1929.	
Platform: laboratory	
Instrument: spectrophotometer (original design) Quantity measured: ρ _d Wavelength range: 0.43 to 0.70 μm Reflectance attachment: integrating sphere Reflectance standard: MgCO ₃	
B-01818. Kronstein: Research, Studies, and Investigations on Spectral Reflectances and Absorption Characteristics of Camouflage Paint Materials and Natural Objects, Final Report, Contract DA-44-009 ENG-1447, New York University, New York, March 1955.	
Platform: laboratory	
Instrument 1: Beckman DK-2 spectrophotometer Quantity measured: ρ _d Wavelength range: 0.4 to 2.5 μm Reflectance attachment: integrating sphere Reflectance standard: data obtained relative to MgCO ₃ , but values converted to absolut Comments: See Section I.2.2.	e
Instrument 2: Perkin-Elmer Model 12 and Model 112 spectrophotometers Quantity measured: ρ _d Wavelength range: 2.5 to 15 μm Reflectance attachment: Coblentz hemisphere Reflectance standard: Specular samples were measured relative to a rhodium mirror and diffuse samples relative to flowers of sulphur. Data have been converted to absolute values.	

- Comments: See Section I.2.3.
- B-01948. Dinger: The Absorption of Radiant Energy in Plants, Ph.D Thesis, Iowa State University, Iowa City, 1941.

Platform: laboratory

Instrument: photometric goniometer (original design)

Quantity measured: ρ', τ' (bidirectional transmittance)

Wavelength range: 0.35 to 0.75 μ m

Reflectance standard: bond paper

Comments: Reflectance data were obtained by focusing monochromatic light on the sample at normal incidence, then examining the reflected component at 10° off normal. Bond paper, believed by the experimenter to have scattering properties similar to those of foliage, was measured in the same way, and the ratio of the two quantities is the reported reflectance. Transmittance measurements relative to bond paper were also made.

B-02418. Spectral Reflectance of Several Crops, Purdue University, Lafayette, Indiana, 1964, (unpublished).

Platform: laboratory

Instrument: Beckman DK-2 spectrophotometer Quantity measured: ρ_d Wavelength range: 0.28 to 2.6 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Comments: See Section I.2.2.

B-03256. Clark, Hardy, Vinegar: Goniometric Spectrometer for the Measurement of Diffuse Reflectance and Transmittance of Skin in the Infrared Region, J. Opt. Soc. Am., Vol. 43, No. 11, 1953.

Platform: laboratory

Instrument: goniometer coupled with a Wadsworth-Littrow spectrometer

Quantity measured: ρ_d

Wavelength range: 0.55 to 2.5 μ m

Reflectance attachment: see comments below

Reflectance standard: data are absolute

- Comments: Measurement of diffuse reflectance was obtained by illuminating the sample with monochromatic light and automatically scanning the detector about the sample. The detector thus recorded the reflectance integrated over 180°. This process was repeated at several discrete wavelengths.
- B-03258. Ashburn, Wilson: Spectral Diffuse Reflectance of Desert Surfaces, J. Opt. Soc. Am., Vol. 46, No. 8, 1956.

Platform: ground-based field and airborne

Instrument: albedometer (original design) Quantity measured: α (albedo) Wavelength range: 0.4 to 0.65 μ m Reflectance attachment: integrating sphere Reflectance standard: unspecified, if any Additional Ref.: [18]

Comments: No information on whether the data are absolute or relative was available.

B-03333. Infrared Optical Measurements, Report No. 8626, NBS, Washington, D. C., December 1964.

Platform: laboratory

Instrument 1: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range : 0.4 to 1.08 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

Instrument 2: Cary 14 spectrophotometer Quantity measured: ρ_d Wavelength range: 0.26 to 2.2 μ m Reflectance attachment: integrating sphere (Cary 1411) Reflectance standard: MgO Additional Ref.: [17] Comments: Operation is similar to that of the integrating

Comments: Operation is similar to that of the integrating sphere discussed in Section I.2.2. However, in this experiment, the sample was illuminated with white light, and the radiation was spectrally dispersed after reflection. Also, the sample was viewed at 60° off normal.

Instrument 3: Cary 90 spectrophotometer Quantity measured: ρ_d Wavelength range: 2.5 to 14 μ m Reflectance attachment: white hemisphere Reflectance standard: data are absolute Additional Ref: [19]

Comments: The White attachment is basically a Coblentz-type hemisphere (see Sec. I.2.3). The sample was hemispherically illuminated with white light, and the reflected radiation was viewed slightly off normal.

B-03559. Barbrow: Calibration on the Spectral Directional Reflectance of Six Samples of Red Pine Needles, NBS, Test No. G-35201-1, Agricultural Research Center, Belleville, Maryland, November 1964, (unpublished).

Platform: laboratory

Instrument 1: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.08 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

Instrument 2: Cary 14 spectrophotometer Quantity measured: ρ_d Wavelength range: 0.26 to 2.2 μ m Reflectance attachment: integrating sphere (Cary 1411) Reflectance standard: MgO Additional ref.: [17]

Comments: Operation is similar to that of the integrating sphere discussed in Section I.2.2. However, in this experiment, the sample was illuminated with white light, and the radiation was spectrally dispersed after reflection. Also, the sample was viewed at 60° off normal.

Instrument 3: Cary 90 spectrophotometer Quantity measured: ρ_d Wavelength range: 2.5 to 15 μ m Reflectance attachment: White hemisphere Reflectance standard: data are absolute Additional Ref.: [19] Comments: The White attachment is basically a Coblentz-type hemisphere (see Sec. I.2.3.) The sample was hemispherically illuminated with white light, and the reflected radiation was viewed slightly off normal.

B-03355. Miscellaneous data from several sources including New York University, Syracuse University and Detroit Arsenal, Warren, Mich., ca. 1950, (unpublished).

Platform: Laboratory

Instrument: see comments below

Quantity measured: ρ_d

Wavelength range: 0.4 to $15.0 \,\mu$ m

Reflectance attachment: see comments below

Reflectance standard: see comments below

Comments: Several unpublished, miscellaneous curves from various sources are collected here. Curves B-0335-001 through B-03355-006 are transmission data on optical materials, and no descriptive information on the instrumentation for them was available. Curves B-03355-007 through B-03355-009 are the reflectance of water from 1 to 15 μ m, for angles of incidence of 0°, 60°, and 80°. Again, no descriptive information on this experiment was available. Curves B-03355-010 through B03355-037 are reflectance data on foliage species for the visible and near-infrared regions and appear to be standard spectrophotometric curves (ρ_d). Curves B-03355-039 through B-03355-046 are the reflectance (ρ_d) of paints in the 0.4- to 2.6- μ m interval and are believed to have been obtained, relative to MgO, on the Beckman DK-2 spectrophotometer (see Sec. I.2.2.). Curves B-03355-047 through B-3355-053 were obtained on the Bausch and Lomb spectrophotometer (see under B04642).

B-03374. Olson, et al.: An Analysis of Measurements of Light Reflectance from Tree Foliage Made During 1960 and 1961, Report on Contract NR-387-025, Agricultural Experimental Station, University of Illinois, Urbana, Illinois, June 1964, AD 608-114.

Platform: laboratory

Instrument: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 0.7 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

B-03995. Krinov: Spectral Reflectance Properties of Natural Formations (translated by Belkov), Technical Translation No. 439, Natural Resources Council of Canada, Ottawa, 1953.

Platform: Ground-based field and airborne

Instrument: several spectrographs Quantity measured: ρ' Wavelength range: 0.4 to 0.9 μ m Reflectance attachment: none Reflectance standard: barite paper, gypsum Comments: See Section I.2.5.

the Institute of Science and Technology, The University of Michigan, Ann Arbor, ca.1965, (unpublished).
Platform: laboratory
Instrument: interferometric device Quantity measured: ρ' Wavelength range: 0.95 to 2.7 μ m Reflectance standard: flowers of sulphur
B-04616. Myers, Thomas: Reflectance of Cotton Leaves Under Various Conditions of Drying, U. S. Dept. of Agr., Agricultural Research Center, Weslaco, Texas, June 1966, (unpublished).
Platform: laboratory
Instrument: Beckman DK-2 spectrophotometer Quantity measured: ρ_d , τ_d Wavelength range: 0.5 to 2.5 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO for ρ_d , but values of τ_d are absolute Comments: For transmittance measurements, the sample was positioned at one of the entrance ports of the integrating sphere, and MgO was placed at both the sample and reference ports (cf. Fig. 3). Thus, energy transmitted into a hemisphere was seen by the detector. (See Section 1.2.2.)

ì.

B-04802. Korbel: Thermal and Optical Characteristics of Eniwetok Sand (Final Report), Materials Laboratory, New York Naval Shipyard, Brooklyn, New York, November 1952.

Platform: laboratory

Instrument: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.08 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

B-04803. Cooper, Derksen: Spectral Reflectance and Transmittance of Forest Fuel Materials (Final Report), Material Lab, New York Naval Shipyard, Brooklyn, New York, March 1952.

Platform: laboratory

170

Instrument 1: General Electric spectrophotometer

Quantity measured: ρ_d , τ_d

Wavelength range: 0.4 to 1.0 μ m

Reflectance attachment: integrating sphere

Reflectance standard: ρ_d data obtained relative to MgO, but values converted to absolute; value of τ_d are absolute

Additional Refs.: [3], [12], [13]

Comments: For transmittance measurements, the sample was placed at one of the entrance ports of the integrating sphere, and MgO covered both the sample and reference ports. Also see Section I.2.1.

460

i

Instrument 2: Perkin-Elmer infrared spectrometer Quantity measured: ρ_d , τ_d Wavelength range: 1.0 to 2.7 μ m Reflectance attachment: Coblentz hemisphere Reflectance standard: ρ_d data obtained relative to MgO, but converted to absolute; values of τ_d are absolute Additional Refs.: [14], [15] Comments: See Section I.2.3.

B-04804. Hovis: Infrared Reflectivity of Some Common Minerals, Appl. Opt., Vol. 5, No. 2, 1966

Platform: laboratory

Instrument 1: Beckman DK-2 spectrophotometer Quantity measured: ρ_d Wavelength range: 0.5 to 2.5 μ m Reflectance attachment: integrating sphere Reflectance standard: unspecified Comments: See Section I.2.2.

Instrument 2: Cary 90 spectrophotometer Quantity measured: ρ_d Wavelength range: 2.5 to 6.0 μ m Reflectance attachment: White hemisphere Reflectance standard: data are absolute Additional Ref.: [19]

Comments: The White attachment is basically a Coblentz type hemisphere (see Sec. I.2.3.) The sample was hemispherically illuminated with white light, and the reflected radiation was viewed slightly off normal.

B-04979. Edwards, et al.: Basic Studies on the Use and Control of Solar Energy (Annual Report, Aug. 1959 to Aug. 1960), University of California, Los Angeles, October 1960.

Platform: laboratory

Instrument 1: Beckman DK-2 spectrophotometer Quantity measured: ρ_d Wavelength range: 0.25 to 2.5 μ m Reflectance attachment: integrating sphere Reflectance standard: data obtained relative to MgO, but values converted to absolute Comments: See Section I.2.2.

Instrument 2: General Electric spectrophotometer Quantity measured: ρ_d Wavelength range: 0.4 to 1.0 μ m Reflectance attachment: integrating sphere Reflectance standard: data obtained relative to MgCO₃, but values converted to absolute Additional Refs.: [3], [12], [13] Comments: See Section I.2.1.

Instrument 3: Perkin-Elmer spectrophotometer Quantity measured: ρ_d Wavelength range: 1.25 to 15 μ m Reflectance attachment: Hohlraum Reflectance standard: data are absolute Comments: See Section I.2.6.

- WILLOW RUN LABORATORIES -----

F

B-14004. Williamson: Night Reconnaissance Subsystem (U), (Final Technical Documentary Report), Martin-Marietta Corp., Orlando, Florida, November 1964, AD 355 324 (CONFIDENTIAL).
Platform: laboratory
Instrument 1: Cary Model 14R spectrophotometer Quantity measured: ρ_d Wavelength range: 0.2 to 2.2 μ m Reflectance attachment: integrating sphere Reflectance standard: MgCO ₃ Additional Ref.: [12] Comments: See discussion in Section I.2.9
Instrument 2: Perkin-Elmer normal incidence spectrophotometer Quantity measured: ρ' Wavelength range: 0.2 to 0.42 μm Reflectance attachment: Perkin-Elmer reflectance unit Reflectance standard: MgCO ₃ Comments: See discussion in Section I.2.10.
B-14438. Report on Measurement on the Paint of Russian and Danish Warships (U), Research on Camouflage Spectral Analysis (U), Danish Defence Research Board, Copenhagen, Denmark, ca. 1964, AD 370 905L (SECRET).
Platform: laboratory
 Instrument: Beckman DU spectrophotometer Quantity measured: reflectance; however, it was not specified whether directional or bi- directional Wavelength range: 0.4 to 1.15 μm Reflectance attachment: not specified Reflectance standard: not specified, but probably MgO as was used in B-11356 Comments: Very little documentation of experimental procedure was given. These data, therefore, should only be used qualitatively.
B-19999. Trytten, Flowers: Reflectance of Target and Background Materials, Willow Run Lab- oratories of the Institute of Science and Technology, The University of Michigan, Ann Arbor, unpublished, (CONFIDENTIAL).
Platform: laboratory
Instrument: Beckman DK-2 spectrophotometer Quantity measured: ρ_d , τ_d Wavelength range: 0.28 to 2.6 μ m Reflectance attachment: integrating sphere Reflectance standard: MgO for ρ_d , but values of τ_d are absolute Comments: See discussion in Section I.2.2. For transmittance measurements, the sample was positioned at the entrance ports of the integrating sphere, and MgO was placed at both the sample and reference ports. Thus, energy transmitted into a hemisphere was seen by the detector.
B-02131. Lyon: Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Soils: Rough and Powdered Surfaces, (Final NASA Report, Part II), Stanford Research Institute, Menlo Park, California, February 1964.

Platform: laboratory

Instrument: Perkin-Elmer Model 112 infrared spectrophotometer Quantity measured: ρ'

Wavelength range: 7.8 to 13.0 μ m

Emittance standard: Razor blade blackbody

- Comments: Although the data are very well documented, the normalization process does not produce correct absolute emissivities for all samples. This data is excellent, however, for relative emissivity use.
- B-07139. Martin Marietta: Application of Remote Sensor Data to Geologic and Economic Analysis of the Bonanza Test Site, Colorado; First Year Summary Report, Martin Marietta, Denver, Colorado, March 31, 1970.

Platform: laboratory

Instrument: Perkin-Elmer Model 98 monochromator with Gier Dunkle Parabolic Reflectometer Quantity Measured: ρ_{λ}

Wavelength range: 7 to 14 μ m

Reflectance standard: Not stated

Comments: The data looks quantitatively accurate, although no statement is made about the reflectance standard. Reflection measurements are plotted as $1 - \rho_{\lambda}$. Sample is illuminated over 2π radians by parabolic reflector.

Source: Heated cavity source with 2.5-in. round aperture

Detector: High sensitivity radiation thermocouple

Appendix II LIST OF RELATED REPORTS

The following reports describe additional remote sensing work performed by the Infrared and Optics Laboratory, Willow Run Laboratories, Institute of Science and Technology, The University of Michigan, Ann Arbor, Michigan.

THE INVESTIGATION OF A METHOD FOR REMOTE DETECTION OF LIFE ON A PLANET, L. D. Miller, Report No. 6590-4-F, Grant No. NsG 715, November 1965.

UNUSUAL RECONNAISSANCE CONCEPTS INTERIM REPORT, VOLUME II: SOURCES OF EXPERIMENTAL ERRORS IN SPECTROPHOTOMETRIC MEASUREMENTS, D. Goerge and T. Limperis, Report No. 5698-33-P(II), AFAL-TR-65-331, January 1966, AD 481 796, RC019423.

UNUSUAL RECONNAISSANCE CONCEPTS INTERIM REPORT, VOLUME III: A BIBLIOGRAPHY OF RECENT CONTRIBUTIONS ON ELECTROMAGNETIC AND ACOUSTIC SCATTERING, J. Ulrich, Report No. 5698-33-P(III), AFAL-TR-65-331, January 1966, AD 481 817.

TARGET SIGNATURE ANALYSIS CENTER: DATA COMPILATION, Report No. 7850-2-B, July 1966, AD 489 968

Second Supplement: Report No. 8492-5-B, July 1967, AD 819 712 Fifth Supplement: Report No. 8492-15-B, August 1968, AD 840 091 Addendum: Report No. 8492-26-B, October 1968 Seventh Supplement: Report No. 8492-35-B, January 1969, AD 856 343 Tenth Supplement: Report No. 8492-49-B, July 1969, AD 864 957

DISPERSIVE MULTISPECTRAL SCANNING: A FEASIBILITY STUDY, FINAL RE-PORT, J. Braithwaite, Report No. 7610-5-F, U.S.G.S. Department of Interior Contract No. 14-08-001-10053, September 1966.

- AN INVESTIGATIVE STUDY OF A SPECTRUM-MATCHING IMAGING SYSTEM, FINAL REPORT, D. S. Lowe, J. Braithwaite and V. L. Larrowe, Report No. 8201-1-F, Contract NAS 8-21000, October 1966.
- INFRARED AND PHOTO ANALYSIS, VOLUME I: A MATHEMATICAL PREDICTIVE MODEL FOR TARGET TEMPERATURE AS A FUNCTION OF ENVIRONMENT, D. D. Bornemeier and R. Horvath, Report No. 7417-14-F(I), Contract AF 30(602)-3840, November 1966.
- INFRARED AND PHOTO ANALYSIS, VOLUME II: INTERPRETATION OF STRATE-GIC IR IMAGERY, E. Kurath, and R. E. Hamilton, Report No. 7417-14-F(II), Contract AF 30(602)-3840, November 1966.
- INFRARED AND PHOTO ANALYSIS, VOLUME III: INTERPRETATION OF TACTICAL INFRARED IMAGERY, G. E. Gnauck and R. E. Hamilton, Report No. 7417-14-F(III), Contract AF 30(602)-3840, November 1966.
- OPTICAL SENSING OF MOISTURE CONTENT IN FINE FOREST FUELS, FINAL RE-PORT, C. E. Olson, Jr., Report No. 8036-1-F, USDAW-1209-FS-66, Contract 13-220, May 1967.
- MULTISPECTRAL DISCRIMINATION OF SMALL TARGETS, F. Thomson, Report No. 6400-135-T, Contract DA 28-043-AMC-00013(E), December 1967, AD 389 761.
- METALLIC REFLECTION, J. P. Ulrich, Report No. 8492-21-T, Contract F33615-67-C-1293, March 1968.
- USE OF IMAGE-INTENSIFIERS FOR REAL-TIME MULTISPECTRAL VIEWING, C. Paprocki and R. Miller, Report No. 7919-26-T, July 1968.
- CALIBRATION OF AN AIRBORNE MULTISPECTRAL OPTICAL SENSOR, L. M. Larsen and P. G. Hasell, Jr., Report No. 6400-137-T, Contract DA 28-043-AMC-00013(E), September 1968, AD 842 419.
- THE REFLECTANCE OF SOME CLEAN AND CONTAMINATED MILITARY PAINTS, J. P. Ulrich, Report No. 8492-32-T, Contract F33615-67-C-1293, September 1968.
- STATISTICAL SPECTRAL ANALYZER AND TARGET RECOGNITION COMPUTER (SPARC), FINAL REPORT, F. J. Kriegler and M. M. Spencer, Report No. 8640-17-F, Contract F33615-67-C-1384, September 1968, AD 392 774.
- INVESTIGATIONS OF SPECTRUM-MATCHING TECHNIQUES FOR REMOTE SENS-ING IN AGRICULTURE, Report No. 1674-10-F, Contract No. 12-14-100-9503(20), December 1968.
- EFFECTS OF ATMOSPHERIC PATH ON AIRBORNE MULTISPECTRAL SENSORS, R. Horvath, J. Braithwaite and F. Polcyn, Report No. 1674-5-T, NsG 715/23-05-071, January 1969.
- REMOTE SENSING TECHNIQUES FOR THE LOCATION AND MEASUREMENT OF SHALLOW-WATER FEATURES, F. C. Polcyn and R. A. Rollin, Report No. 8973-10-P, January 1969, AD 848 054.
- STUDY OF REQUIREMENTS TO CALIBRATE RECONOFAX IV and RS-7 INFRARED SCANNERS, D. S. Lowe and J. G. Braithwaite, Report No. 2122-8-X, February 1969.
- DEVELOPMENT OF AN AERIAL BACKGROUND MEASUREMENT SYSTEM, P. G. Hasell, Report No. 2134-8-F, March 1969.
- TARGET TEMPERATURE MODELING, D. Bornemeier, R. Bennet and R. Horvath, Report No. 1588-5-F, RADC TR 69-404, December 1969.
- FURTHER INFRARED SYSTEMS STUDIES FOR THE EARTH RESOURCES PROGRAM, J. G. Braithwaite, L. Larsen and E. Work, Report No. 2122-14-F, December 1969.

464

- APPLICATIONS OF MULTISPECTRAL REMOTE SENSING TECHNIQUES TO HYDRO-BIOLOGICAL INVESTIGATIONS IN EVERGLADES NATIONAL PARK, A. L. Higer, N. S. Thomson, F. J. Thomson and M. C. Koplinski, Report No. 2528-5-T, January 1970.
- INVESTIGATION OF MULTISPECTRAL DISCRIMINATION TECHNIQUES, R. Nalepka, Report No. 2264-12-F, Contract 12-14-100-9548(20), January 1970.
- MEASUREMENTS PROGRAM FOR OIL-SLICK CHARACTERISTICS, R. Horvath, W. Morgan and R. Spellicy, Report No. 2766-7-F, February 1970.
- MULTISPECTRAL REMOTE SENSING OF URBAN FEATURES, J. E. Colwell, Report No. 2772-6-F, Contract U.S.G.S. 14-08-0001-11968, March 1970.
- INVESTIGATIONS OF MULTISPECTRAL DISCRIMINATION OF THE EARTH SURFACE FEDTURES, F. Thomson, Report No. 2528-10-F, April 1970.
- AUTOMATIC PROCESSING AND ANALYSIS OF SOILS AND SOIL CONDITIONS, T. Wagner, Report No. 2760-2-F, July 1970.
- A STUDY OF WATERFOWL HABITAT IN NORTH DAKOTA USING REMOTE SENS-ING TECHNIQUES, W. G. Burge and W. L. Brown, Report No. 2771-7-F, July 1970.
- A GONIOREFLECTOMETER FACILITY USING COHERENT AND INCOHERENT SOURCES, M. E. Bair, D. C. Carmer and S. R. Stewart, Report No. 1652-24-T, AFAL-TR-70-161, August 1970, AD 874 434.
- ATMOSPHERIC EFFECTS ON INFRARED MULTISPECTRAL SENSING OF SEA-SURFACE TEMPERATURE FROM SPACE, A. Anding and R. Kauth, Report No. 2676-4-P, August 1970.
- ANALYSIS OF POLARIZATION AND THERMAL PROPERTIES OF TARGETS AND BACKGROUNDS, Report No. 3221-11-P, Contract No. F33615-70-C-1123, August 1970.

REPORTS ON CONTRACT NAS 9-9784

- OPTICAL TRANSFER TECHNIQUES FOR OPTICAL SCANNERS, J. Braithwaite, E. Work, Report No. 3165-21-T, in publication.
- STUDIES OF SPECTRAL DISCRIMINATION, W. A. Malila, R. Turner, R. Crane, C. Omarzu, Report No. 31650-22-T, in publication.
- DETECTOR UTILIZATION IN LINE SCANNERS, L. Larsen, Report No. 3165-29-T, in publication.
- A PROTOTYPE HYBRID MULTISPECTRAL PROCESSOR WITH HIGH THROUGHPUT CAPABILITY, F. Kriegler, R. Marshall, Report No. 3165-23-T, in publication.
- DATA PROCESSING DISPLAYS OF MULTISPECTRAL DATA, F. Kriegler, R. Marshall, Report No. 31650-28-T, in publication.
- CALIBRATION OF MULTISPECTRAL SCANNERS, J. Braithwaite, Report No. 3165-27-L, in publication.
- INVESTIGATIONS OF MULTISPECTRAL SENSING OF CROPS, R. Nalepka, et al., Report No. 31650-30-T, in publication.
- INVESTIGATION OF SHALLOW WATER FEATURES, F. Polcyn, et al., Report No. 31650-31-T, in publication.

NASA EARTH RESOURCES SPECTRAL INFORMATION SYSTEM PROCEDURES MANUAL, V. Leeman, et, al., Report No. 3165-32-T, in publication. DATA GAPS IN THE NASA EARTH RESOURCES SPECTRAL INFORMATION SYS-TEM, R. Vincent, Report No. 31650-25-T, in publication.

REMOTE SENSING DATA ANALYSIS PROJECTS ASSOCIATED WITH THE NASA EARTH RESOURCES SPECTRAL INFORMATION SYSTEM, R. Vincent, et al., Report No. 31650-26-T, in publication.

INVESTIGATIONS RELATED TO MULTISPECTRAL IMAGING SYSTEMS FOR RE-MOTE SENSING, J. Erickson, Report No. 31650-17-P, in publication.

REFERENCES

- 1. Target Signature Analysis Center: Data Compilation, 7850-2-B, Willow Run Laboratories of the Institute of Science and Technology, The University of Michigan, Ann Arbor, July 1966, AD 489 968.
- 2. F. Nicodemus, "Directional Reflectance and Emissivity of an Opaque Surface," Appl. Opt., Vol. 4, 1965, pp. 767-773.
- 3. A. C. Hardy, "A New Recording Spectrophotometer," J. Opt. Soc. Am., Vol. 25, 1935, pp. 305-311.
- 4. E. L. Krinov, Spectral Reflectance Properties of Natural Formations, trans. by G. Belkov, Natl. Res. Council, Canada, Technical Translation No. 439, Ottowa, Ontario, 1953.
- 5. D. K. Wilburn and O. Renius, The Spectral Reflectance of Ordnance Materials at Wavelengths of 1 to 12 Microns (U), Detroit Arsenal, Centerline, Mich., 8 February 1965, AD 087 246 (CONFIDENTIAL).
- 6. V. W. McIntire, Light Polarizing Properties of Terrestrial Backgrounds and Painted Surfaces (U), Naval Ordnance Test Station, China Lake, Calif., September 1964, AD 354 613 (CONFIDENTIAL).
- 7. A. E. Williamson, Night Reconnaissance Subsystem (U) (Final Technical Documentary Report), Martin-Marietta Corp., Orlando, Fla., November 1964, AD 355 324 (CONFIDENTIAL).
- 8. H. T. Betz et al., Determination of Emissivity and Reflectivity Data on Aircraft Structural Materials, Part II: Techniques for Measurement of Total Normal Emissivity, Normal Spectral Emissivity, Solar Absorptivity, and Presentation of Results, Armour Research Foundation, Chicago, October 1958, AD 202 493.
- 9. D. G. Goebel, B. P. Caldwell, and H. K. Hammond, III. "Use of an Auxiliary Sphere with a Spectroreflectometer to Obtain Absolute Reflectance," J. Opt. Soc. Am., Vol. 56, 1966, pp. 783-788.
- 10. W. E. K. Middleton and C. L. Sanders, "The Absolute Spectral Diffuse Reflectance of Magnesium Oxide," J. Opt. Soc. Am., Vol. 41, 1951, pp. 419-424.
- 11. H. H. Cary and A. O. Beckman, "A Quartz Photoelectric Spectrophotometer," J. Opt. Soc. Am., Vol. 31, 1941, pp. 682-689.
- 12. A. C. Hardy, "History of the Design of the Recording Spectrophotometer," J. Opt. Soc. Am., Vol. 28, 1938, pp. 360-371.
- K. S. Gibson and H. J. Keegan, "Calibration and Operation of the General Electric Recording Spectrophotometer of the National Bureau of Standards," J. Opt. Soc. Am., Vol. 28, 1938, pp. 372-385.
- R. B. Barnes, R. S. McDonald, and V. Z. Williams, "Small Prism Infra-Red Spectrometry," J. Appl. Phys., Vol. 16, 1945, pp. 77-86.
- 15. W. L. Derksen and T. I. Monahan, "A Reflectometer for Measuring Diffuse Reflectance in the Visible and Infrared Regions," J. Opt. Soc. Am., Vol. 42, 1962, pp. 263-265.
- W. D. McClellan, J. P. Meiners, and D. G. Orr, "Spectral Reflectance Studies on Plants," Proc. Second Symposium on Remote Sensing of Environment, 15, 16, 17 October 1962, Report No. 4864-3-X, Willow Run Laboratories of the Institute of Science and Technology, The University of Michigan, Ann Arbor, February 1963, AD 299 841, pp. 403-413.

- H. J. Keegan, J. C. Schleter, and D. B. Judd, "Glass Filters for Checking Performance of Spectrophotometer Integrator Systems of Color Measurement," J. Res. Natl. Bur. Std., A, Vol. 66, 1962, p. 203.
- 18. E. V. Ashburn et al., "Narrow Pass Band Albedometer," Rev. Sci. Instr., Vol. 27, 1956, pp. 90-91.
- 19. J. U. White, "New Method for Measuring Diffuse Reflectance in the Infrared," J. Opt. Soc. Am., Vol. 54, 1964, pp. 1332-1337.

468

٦.

يو. مۇرىي