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A LAYERED COMPOSITE WITH A BROKEN LAMINATE*

by
G. D. GUPTA

Lehigh University, Bethlehem, Pennsylvania

ABSTRACT

The problem of a laminate composite in presence of a

crack located normal to the bond lines is considered. Stress

analysis of the l i m i t i n g case when the crack extends to the

bond l i n e s is carried out. Integral transform technique is

used to formulate the problem in terms of a s i n g u l a r integral

equation from which the power of stress singularity around

the crack tip terminating at the interface is obtained. The

s i n g u l a r integral equation is solved numerically and the

effect of material properties on t~he stress "intensity f~ac~to~r

is calculated.

This work was supported by the National Science Foundation
under the Grant GK11977, and the National Aeronautics and
Space Administration under Grant NGR 39-007-011.



INTRODUCTION

The problem of a laminate composite with a crack normal

to the interfaces was studied by Hilton and Sih [1]. The com-

posite geometry in [1] consisted of a cracked layer bonded

between two half planes of different elastic properties. This

is an idealization of a many-layered composite where one con-

centrates on a s i n g l e layer and approximates the effect of

outer layers by prescribing some average elastic properties

to the half-planes.

The aim of this study is to reconsider the same problem

and analyze the case when the crack has propagated through the

layer and is just touching the interfaces. The l i m i t i n g cases

when the matrix is rigid or has zero modulus of rigidity corre-

spond to that of a finite strip with constrained or free sides

respectively. The method of solution uses the displacement

expressions derived by Sneddon [2] where the problem of a

finite strip with a central crack normal to the strip bound-

aries is solved. First a crack problem w i l l be formulated in

terms of dual integral equations which w i l l then be reduced

to give a singular integral equation. This standard technique

has been previously used by Erdogan and Gupta in various papers

concerning crack problems [3]-[5] in composite structures.

The method used by Sneddon [2] and Hilton and Sih [1] enables

them to reduce the problem to a Fredholm equation of second

kind. It also requires the crack tips to be away from the

interface, thus l i m i t i n g its a p p l i c a b i l i t y .
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FORMULATION OF PROBLEM

Consider a laminate composite in plane strain conditions

consisting of a single layer of width 2h, shear modulus y

and Poisson's ratio vi bonded to two half planes having shear

modulus and Poisson's ratio as y and v , respectively (Figure

1). A crack of length 2a (a < h) is located centrally along

the x-axis. Only the symmetric problem w i l l be solved in this

paper. The skew-symmetric case can be treated in an identical

manner. Subscripts or superscripts i and 2 w i l l be used to

refer to the layer and the half-planes, respectively.

Considering symmetric normal tractions on the crack sur-

face being the only loads [1], we have the following boundary

and continuity conditions.

Continuity conditions at x = h

^(h^) = u2(h,y) ; vjh.y) = v2(h,y)

(1)
aJL(h,y) = a2 (h,y) ; a' (h,y) = a* (h,y)A A X.A *,y *y

Homogeneous conditions at y = 0

ol (x,0) = 0 , |x| < h ; axy(x'0) = ° > lxl > h

(2)

vz(x,0) =0 , |x| > h

Mixed boundary conditions at y = 0

^ ' (3)

v1(x,0) = 0 , a < |x| < h
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The displacement field for the layer as derived by

Sneddon [2] is a superposition of well-known transform solu-

tions [3] for a body with x = 0 and y = 0 as planes of sym-

metry and an upper half plane symmetrical about the y-axis.

It may be expressed as

u(x,y) =-!/{!i a 0 i|

xgl (n)cosh(nx)}cosnydn

O co A (?) K -1 r

y- (~2 -- Cy)e-
?ysinx

(4)

= f / {1 [f^n) + ^

xgi(n)sinh(nx)}sinnydn

? °° *,(?) K+l
/ -^— (-- +

where

K. = 3 -

The corresponding stress field is given by the equations

a (x,y)
x (n) sinh(nx) ]cosnydn
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y|y*
iy = I / { [^ (n) + 2 g i ( n ) ] c o s h ( n x )

j (n)sinhnx}cosnydn (5)

002? { *1

n x g i ( n ) c o s h ( n x ) } s i n n y d n

Condition a* (x,0) = 0 is identically satisfied by this repre-

sentation .

Simi lar ly , d i sp lacement and s t ress f ie lds for the half

p lane can be e x p r e s s e d as

U
2

( x ' y ) = I / {JT [ f2 ( T l ) + ~f~ g
2

( r i ) ] + xg^nJ je-^c

v , ( x , y ) = ( f , ( n ) - ~ 9 , (n) ] + xg (n) J e ' s i nnydn
0

• 2 i v »/ ̂

• nL 2v '' 2 a2
 v ''J /xa2

= - / [f2(n) + nxg2(n)]e-
T1Xcosnydn

^Y[f2(n) + (nx-2)g2(n)]e'
rixcosnydn (7)
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Again this representation identically satisfies the homogene-

ous boundary conditions (2). The unknowns f 1 , g , f , g and

cj>i w i l l be solved by using four continuity conditions (1) and

the mixed boundary conditions (3). Continuity conditions (1)

may be written as

[f2(n) + ( -f- + nh)g2(n)]e'
Tlh =

I-
- — 91(n)]sinh(nh) - nhg x (n)cosh(nh)

°° 4> U) K -3
/ — l- - =- [2n2 + 4—
o 2 + 2 ^ 2

Cf(n) - ( - - nh)g(n)]e-rih =2

K +1
-— 9(n)]cosh(nh) + nh9 (n)sinh(nh)

oo 4>. (5) K +1
2

p [f2(n) + nhg2(n)]e-
ri = f i (n)cosh(nh)

nhgi(n)sinh(nh) 71 o U2+n2r

^ [f2(n) + (nh-l)g2(n)]e"
nh = [f^n) + 91 (n)]sinh(nh)

?2<f> U)

2
1

nhgi(n)cosh(nh) - n. g
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Mixed boundary conditions (3) can be expressed as

aiv(x,0) „
=

0

1 im
y-»-o"

cj^ . |x|<a (9)

3Vi K +1 oo

9^- (x,0) = - -i— - / $ (£)sin?xd£ = 0 » a<|x|<h (10)
£ 0 -

Note that in (10) the boundary condition for displacement

derivative instead of displacement is used. This is done to

have same dimensions of the equations (9) and (10).

In order to reduce the dual integral equations (9) and

(10) to a singular integral equation, we define a new unknown

function G(x) as follows.

3v
T;r-(-x-0-)-=-6-(-x-)̂  |-x-|-<-h (-1-1-)-

From (10), it is clear that .G(x) = 0 for a<|x|<h. Inverting

(10) and using (11), we obtain

K +1 a
G(t)sin5tdt (12)

0

From (8), e l i m i n a t i n g f2 and g2, we find

'Displacement vt is half the crack opening displacement.
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u • u •
— )en + a ( )f( + — 1 he1"1

K 2 s i n h ( n h ) + - (enh + < i e-n h) ] = E X ( T I )

(13)

g i ( n ) [ s i n h ( n h ) - ( -?-
i

= E 2 ( n )

where

y
E . ( n ) = - ^ a ^ 2 1 z

(14 )

i y 3 X i j x ' J 2 1

E 2 ( r l ) = y

and

D ( n , . n Cos?hd5
77 o U'+n

2)2

D ( n , = a /
u o U 2 + n 2 )

(J) (£) K -3

2

0 2 0° < } > ( ? ) K +1

D (n) = ^3- / - l- - y [2?2 + -i—

( 15 )

(13) must now be s o l v e d for f and g : and subs t i tu ted in (9)

to ob ta in an integral equat ion in <f> , or, by using ( 1 2 ) , for
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G(x). Combining (12) with the first integral of (9), a simple

Cauchy kernel is obtained [3]-[4]. Second integral in (9)

would i n v o l v e integrals in (15) w h i c h , when combined with (12),

give the following results.

^n) = / G(t)n(h-t)e-n(h-t)dt

a /, , »
(iVl)D2(n) = / G(t)[n(h-t) - l]e'

n^h'tjdt

(16)
a K -1 /, . x

(K + 1)D (n) = - / G(t)[n(h-t) + -*— le'^-^dt
-a £-

a K+l /. . \ a
(K +l)D.(n) = / G(t)[n(h-t) - -4— ]e"nl ^dt + / G(t)dt

1 k -a -a

G(t) being an odd function in t makes the second term in D (n)

vanish. The details of above reduction may be found in Appen-

dix A.

Using (16), the singular integral equation from (9) can

"be expressed as

a r, » a irp(x) (1 +K )
/ ^- dt + / G(t)K(t,x)dt = T- l— , |x|<a (17)

-a t-x -a 4yi

where
CO / i . \

K(t,x) = / k (t ,x jrije'1^^ ~ ' dr\
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e-nh

- 4*
2

{1 - A2(3+2nh)e~
2nh} - 2nxXiA2sinh(nx)e"

2nh +

A2{1 - 2n(h-t)Hcosh(nx)(3-2nh-Aie~
2r|h) + 2nxsinh(nx

(18)
K y - K y, _ i 2 2_ i

i y + K y
2 2 1

2 y + K y

Kernel K(t,x) is a Fredholm's kernel for a<h as it is

bounded for all values of t and x in (-a,a) is a<h. The singu-

lar integral equation (17) is equivalent to the final Fredholm

equation obtained in [1]. The present formulation of the prob-

lem in terms of a singular integral equation has various advan-

tages. A very simple numerical method is a v a i l a b l e to solve

the equation [6]. However, the most important advantage of

the procedure is that the case when a=h can be studied very

effectively. The integral equation (17) must be solved sub-

ject to the following single-valuedness condition.

a
/ G(t)dt = 0 (19)

-a

The Case of a = h

Referring to Figure 1, when the crack extends to the

interfaces (case of a broken laminate), the Fredholm kernel

-10-



K(t,x) in (17) is no longer bounded and contains point singu-

larities at t = h and x = ±h. To extract these singularities,

we need to study the infinite integral in the expression for.

K(t,x). It turns out that the asymptotic value of the inte-

grand k(t,x,n) as n -> °° gives rise to these singularities.

The part of the kernel contributing these singularities may

be expressed as

K (t,x) = / kJt.x.nJe'^'^dn (20)b o

where , from (18 ) , k^ is f o u n d ' t o be

kjt.x.n) = e ' n h [ X i C o s h ( n x ) + X 2 { 1 - 2 n ( h - t ) } •

{(3 - 2nh )cosh (nx ) + 2 n xs inh ( n x ) } ] (21)

Using the fol 1 owing\ resu l t [7]

J n m e -n (2h- t ) f s inh tnxH dn = d"1 J e - n (2h - t ) r s i nh (nx
o L c o s h ( n x ) J dtm » X c o s h ( n x )

the s ingu lar kernel K ( t , x ) may be wr i t ten as

K ( t , x ) = (X, + 3XJ 2h - t

s> • ' ' ' 2' (2h - t ) 2 - X2

2X •« 9
2 r [ x^ t - ( 2 h - t ) ^ ( 4 h - 3 t )

[ ( 2 h - t ) 2 - X

' - / O U ^ - Uo. -).. ^-\ i *,<- I C\~<- OU4- «*-+ 4 ( h - t ) ( ( 2 h - t ) ( 2 h - h t - 3 x ) + x ( 6 h - 3 h t - x ) }

{ ( 2 h - t ) 2 - x2}
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To analyze the behavior of the unknown function G(t) near the

end points, we must consider the dominant part of the singular

integral equation which can be expressed as

P(X)(1+K )

= -- T- - l— , |x|<h (24)
Mi

G(t) is now assumed to have an integrable singularity at

t = ±h which can be expressed as [8]

G(t) = "(t) = KV*^ , |t|<h (25)
(h2_t2)Y (t-h)

Y(t+h)Y

where 0<Re(y)<l and H(t) satisfies a Holder condition in the

closed interval -h<t<h. Technique of determining y requires

studying (24) near t = ±h [8, chapter 4] and has been treated

~iTT~cl'e"tiri~l~iir~[~5~]T~["9"]~~a-n-d— [-1-0-]- - e-o-rrs-rd-e-i — t-h-e— f-o-l-l-o-w-i-n-g— s-e-e-

tionally holomorphic function

<f,(z) = 1 I1 |lil dt = 1 / n\y* ^ (26)
- n

According to [8, chapter 4]

(2h)Y SinTry (z + h)Y (2h)Ysin7rY (z_h)
Y

(27)

where <j>0(z) is bounded everywhere except at the end points ±h
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where it has the following behavior

H (±h)
I4>0(z)| < — - ^- , Re(Y0) < Re(y) (28)

| z±h | o

To consider (24) we need to reduce (27) for z = x, 2h+x and

2h-x, obtaining

4,(X ) = nr_ _ _ ^ + * ( x ) } | x | < h

(2h) Y (h+x)Y (2h) Y (h -x ) Y

4 > ( 2 h + x ) = - - - ^J -- - - + 4 > * ( x ) , h<2h+x<3h ( 2 9 )
( 2 h ) Y s i n T r y ( h+x ) Y l

4 » ( 2 h - x ) = -- ^ -- ? - - + c j> * ( x ) , h<2h-x<3h
( 2 h ) Y s i n T r y ( h - x ) Y 2

Subst i tu t ing (29 ) into ( 2 4 ) we obta in

- — ! - - [ H ( - h ) c o S 7 T Y - ̂  {4X Y(Y + 1 ) - 1 2 X Y - X ^ S A }]
( 2 h ) Y s i n - r r Y ( h + x ) Y 2 2 2 1 2

-- ^^ - - [ C O S T T Y + \ {4A Y ( Y + 1 ) - 1 2 X Y - X / 3 A }]
( 2 h ) Y s i m r Y ( h - x ) Y ^ 2 2 1 2

= P ( x ) (30)

where P(x) contains all the bounded functions.

Noting that for this solution of a symmetric problem G(t) is

an odd function, hence, H(t) is odd, i.e., H(t) = - H(-t),

m u l t i p l y i n g (30) by (h+x)Y and substituting x = -h and then

m u l t i p l y i n g it by (h-x)Y and substituting x = h , we obtain the

following characteristic equation for the determination of Y:

-13-



The equation is identical to the one obtained in [9]. The

root of (31) satisfying 0<Re(Y)<l turns out to be a real con-

stant for any material combination. If a<h in Figure 1, the

only singular kernel w i l l be the Cauchy kernel l/(t-x). In

that case, above analysis gives the characteristic equation as

cotTTY = 0 , Y = 1/2 (32)

which is the well-known singularity at the crack tip in a

homogeneous material away from any boundaries. Singular

integral equation (17) now takes the following form.

a ri ,\ a a
/ f^- dt + / G(t)K (t,x)dt + / G(t)Kf(t,x)dt

-a t-x -a -a

irp(x)(l+K )
= _ L_ f |x|<a, a<h (33)

i

Kf(t,x) = 7 [k(t,x,n) - ko8(t,x,n)]e"
n(h"t)dn

T 0

K (t,x) given by (23) is a Fredholm's kernel for a<h and be-

comes singular for a = h. k(t,x,n) and kOT(t,x,n) are given

by equations (18) and (21) respectively and are such that

Kf(t,x) is a Fredholm's kernel for a<h.

Solution of the Integral Equation

To solve (33), we first normalize the dimensions with

respect to a, by introducing the following transformations

•
G(t) = G(a-r) = <|)(T) , p(x) = p(ay) = s(y)

-14-



Hence (32) can be expressed as

/ *(T) [ ̂ y + aKs(aT,ay) + aKf (ax ,ay) ]d

TTS(y)(l+K )

(35)

As indicated in the previous section, we can express <|>(T) as

*(T) = -*&— (36)
(1-T2)Y

where y is given by (32) if a f l<l and by (31) if ao = l- (35)

can be solved quite conveniently for a <1 by using the method

developed in [6]. The method may be extended for aQ = l as

described in [5, 9, 10], where the Gauss-Jacobi integration

formulas are used. Thus, (35) may be approximated by

.-.ay.) + Kf (at.. ,ay.
j = l J J J -M

= - ̂ l*0**** (37)

where

, .
N J

N-l ">

and A.'s are the corresponding weighting constants [5]. This
J

provides us with N-l linear algebraic equations for N unknowns

^(T-)> j=l,...,N. The additional equation is obtained by
J

using the single valuedness condition (19):

-15-



I A^(T.) = 0 (38)
j = l J J

IJJ(T.) are numerically evaluated from (37) and (38). We haveu
the derivative of the crack surface displacement (11) as

^r ( x>°> = G<x) = a u v ' l x l < a ' a^h <39)8x (a2-x2)Y

where

H(x) = <M|)

Using the most common definition of the stress intensity factor

as being the strength of the stress singularity ahead of the

crack, we can write for the crack tip x=a as

K = lim /2~ (x-a)Ya (x,0) (40)
x+a yy

It can be shown [9] that

lim avv(x,0) = - 2y* lim g-Mx,0) (41)
x->a,(x>a) yy x->a,(x<a)

where

2y
' = T+xT ' a<h

..*] ^ (42)

v Simry ^i+Ki^2
 y

2
+K2yi

Hence the stress intensity factor K can be expressed as

H(a) = - 2/? y* () i|»(l) (43)

-16-



NUMERICAL RESULTS AND DISCUSSION

The numerical results are obtained for a uniform pressure

distribution on the crack surface. Also, since the case of

a<h has been treated previously* [1], results only for a = h

are presented. Thus the input function is

°yy(x,0) = - p(x) = - PQ , |x|<h (44)

Figures 2 and 3 show the variation of the stress intensity

factor with respect to the ratio of matrix-to-1ayer shear mod-

uli u /y for different Poisson's ratio combinations. These
2 1

results are also presented in Table I. From this table and

Figures 2 and 3, it is seen that the stress intensity factor

ratio K/p hY decreases with a decrease in V2/W1 • This value

as y /y •* « corresponds to the semi-i nf ini te strip fixed along

x = ±h, where the power of stress singularity and the stress

intensity factor depend only on Poisson's ratio of the layer.

As y2/y decreases, the power y of the stress singularity

increases, reaching a maximum when vjv^ = ° (i • e • » wnen tne

layer is rigid). In this case, a non-integrable singularity

Y = 1 is obtained. Effect of Poisson's ratio on the stress

intensity factor is also well depicted by these graphs and

Table I. Keeping the same Poisson's ratio for-the layer and

increasing it. for the matrix, increases the stress intensity

factor. A reverse effect is noted if we increase the Poisson's

Since a different method of solution was used in [1], spot
check of a few points was made using the method presented
here. The results were in good agreement with those in UJ-

-17-



ratio of the layer and keep the matrix unchanged.

TABLE I

Stress Intensity Factor K/p

^2

Hi

0.1

0 .5

1 .0

2.0

5 .0

10.0

30.0
00

v : = 0.2

v 2 = 0 . 2

0 . 2 4 9

0 .644

1 .000

1 .611

2.881

4.084

5 . 7 5 7

7 . 3 3 2

v 2 = 0 . 3 5

0 .289

0 .836

1 .343

2.128

3 . 5 8 7

4 . 7 6 9

6.183

7 . 3 3 2

Vj = 0 . 3 5

v 2 = 0 . 2

0 . 2 2 8

0 . 5 4 2

0 .789

1 .122

1 .657

2 . 0 4 2

2 . 4 6 0

2 .831

v =0 .35
2

0 .258

0 .683

1 .000

1.408

1 . 9 4 5

2 . 2 6 6

2 . 5 7 2

2 .831

Figure 4 shows the crack surface displacement for two

sets of material combinations. The left ordinate scale corre-

sponds to Epoxy-Aluminum combination. When the crack lies in

-e-p.o.x-v—'La-v,e.r_ we observe much larger crack surface displacement

in the center of the crack than when the aluminum layer con-

tains the crack. Right ordinate scale corresponds to Aluminum-

Steel combination in which the displacements are one order of

magnitude smaller than Epoxy-Aluminum combination.

Stress fields in both materials can be quite easily com-

puted by using appropriate equations. Stresses in the neigh-

borhood of the crack tip in such a case have been presented in

[9]. Another question of interest is that if loads are

-18-



increased, would the crack tend to propagate into the material

2, would it reflect back in 1 at some angle, or would debonding

take place along the interface. A fracture criterion based on

the "maximum stress" concept has been proposed in [9] and can

very well be applied here. V a l i d i t y of this criterion (or any

other criterion) would have to be established by experimental

studies .
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APPENDIX A

Consider the integrals given in (15). Substituting from

(12) and changing the order of integration we obtain

1
(K + 1)D (n) = -2 / G(t)dt 4H1 / ^us^nsinc;.. rf?

71 o U2+n2)2

(n) = -2 / G(t)dt ^
(?2+n2)

(A-l)

ic -3 ,

= -2 / G(t)dt

t)s-i-ng—t-h-e—pro-pe-r-t-i-es— o-f—t-r-i-g-o-nome-t-r-i-e—f-u-nc-t-i-on-s—a-nd—t-h-e

fact that G(t) is an odd function, the integrals can be reduced

to the following form.

-20-



= -/G(t)dt|aj [-f̂ 2
(A-2)

K -3
]cos?(h-t)d£

K +1 n

-i -- ! - ]sin5(h-t)d£

From the tables of Fourier Transform in [7] we have

? 1 sin^yd? = -JL. (! . e-
ny) (A-3)

o ?U
2+n2) 2n2

(A-4)

Therefore, by appropriate differentiation on both sides, we

obtain

(A-5)

cosgydg = - (1

Using (A-3) - (A-5) with y = h-t in equations (A-2), we

obtain the desired result in (16) as

-21-



= / G ( t ) n ( h - t ) e - r i ( h - t ) d t

G ( t ) [ n ( h - t ) -
-a

G ( t ) [ n ( h - t )
-a

G ( t ) [ n ( h - t ) -
-a

( A - 6 )

' d t

G ( t ) d t
-a

-22-
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Figure 1. Geometry of the laminate composite
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Figure 2. Stress intensity factor vs. y
Layer Poisson's ratio = 0.2.
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Figure 3. Stress intensity factor vs. V
Layer Poisson's ratio = 0.35.
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Figure 4. Crack surface displacement for
different material combinations


