N72-28665

NASA TECHNICAL MEMORANDUM

NASA TM X-64680

HEAD STAR TRACKER SEARCH PROGRAM

William J. Weiler
Program Development

CASE FILE COPY

March 6, 1972

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. PROGRAM GENERAL DESCRIPTION 1
III. DEFINITIONS 3
IV. PROGRAM DESCRIPTION 12
V. PROGRAM RESULTS 19
APPENDIX A. STAR TRACKER SEARCH PROGRAM LISTING 23
APPENDIX B. EXPLANATIONS AND DERIVATIONS 27
APPENDIX C. PREPARATION OF THE STAR CATALOG 31
APPENDIX D. EXAMPLE RUNS 33

LIST OF ILLUSTRATIONS

Figure Title Page

1. Coordinate systems 5
2. Overall flow diagram 13
3. Detailed flow diagram 14
4. Star-empty look directions, northern hemisphere 21
5. Star-empty look directions, southern hemisphere 22
B-1. Spherical trapezoid derivation 29

TECHNICAL MEMORANDUM X-64680

HEAO STAR TRACKER SEARCH PROGRAM

I. INTRODUCTION

Abstract

The High Energy Astronomy Observatory (HEAO) requires a highly accurate and flexible control system to accommodate its scientific payload. One of the critical elements in this system is the star tracker subsystem which defines an accurate attitude reference about all three axes. The ability of a particular star tracker configuration to meet the requirements for attitude reference at various vehicle orientations can best be evaluated by a star search computer program in conjunction with an adequate star catalog. Such a program could provide information on star availability, recognition, and occultation. This information is needed to determine tracker system characteristics such as number and orientation of trackers, field-of-view, sensitivity, and gimbaled versus fixed-head trackers. The purpose of this report is to describe a specific star search program used in the HEAO studies, discuss its operation, and present some typical results. This particular program was originally adapted from a Teledyne Brown Engineering Company program and was modified to meet the specific requirements of this study.

II. PROGRAM GENERAL DESCRIPTION

This section_will_be_devoted-to-a-general-description of the capabilities, limitations, and use of the star search program developed for this study. This program gives star availability information throughout all or a portion of a year. It is set up for a vehicle which maintains one axis pointing at the sun and may rotate to any angle about this axis. This is the general pattern for HEAO, although the HEAO sunline axis will be permitted to move off the sun by as much as 30 degrees to allow the experiment axis to acquire a target out of plane. The parameters of earth orbit are not considered; therefore, earth occultation is not considered. Since one axis is held along the sunline, sun occultation is avoided by not pointing any trackers within some cone angle of this axis. Star pattern recognition was not attempted because present needs did not require such information. This program was originally intended for fixed-head star trackers. It may, however, be applied to gimbaled trackers if a circular effective field-of-view may be assumed. All of the inputs and outputs would pertain to the effective field-of-view, and no information would be gained on the instantaneous field-of-view.

The star search program is presently set up for the CDC- 3200 computer (32 K core). The program can handle a catalog of 7000 stars and up to 10 star trackers in any orientation. This is more than sufficient for a catalog of stars of magnitude 6.00 and brighter. If, however, a larger catalog is required, the program could be modified to accept the catalog in batches.

At the beginning of a set of cases, the user enters the specially prepared star catalog into the computer. The preparation of this catalog is covered in detail in Appendix C. He then enters the number of trackers, program control variables, and specification of each tracker. The program control variables consist of initial and terminating conditions, and program increment sizes. The specification of a tracker consists of the diameter of the field-of-vew, the magnitude of the dimmest star which can be seen, and components of a unit vector along the look direction of the tracker given in a bodyfixed reference coordinate system. Then, the number of stars found in the catalog and all of the inputs are printed.

The program begins at the specified initial sunline, and increments the vehicle through a full revolution about this sunline. The direction of the sunline is then incremented, and another revolution is performed. This continues until the specified final sunline direction is reached. At each vehicle orientation, a search through the star catalog is performed for each tracker. At the completion of each sun angle, the following data summarizing the results for this sun angle are printed:

1. Sun angle.
2. Percent fix (percent of vehicle orientations for which at least one star was seen in two or more star trackers simultaneously).
3. For each tracker:
a. Tracker number.
b. Percent coverage (percent of vehicle orientations for which this tracker saw at least one star).
c. Average number of stars seen per look direction.
d. Greatest number of stars seen at any one look direction.

At the completion of each case, the program prints the following data:

1. Total number of vehicle orientations.
2. Percent fix over entire case.
3. For each tracker: identical data to sun angle print, but computed over entire case.

At the completion of a case, the program will read the set of data for the next case. A blank card following the data for the last case causes the program to terminate.

Since a.star search program inherently involves a large number of computations, efforts have been made to reduce computing time and make the program reasonably efficient. A rather elaborate search routine is used, and subscripting is held to a minimum within the search loop.

A discussion of runs which have been made with this program is contained in a later section, and some example runs are given in Appendix D.

III. DEFINITIONS

This section will be devoted to defining the form of the star catalog, the coordinate systems used, and the program variables.

The star catalog is compiled into_the_required special form and recorded onto magnetic tape by a separate program. The entry for each star contains right ascension, declination, and magnitude information in integer form. The rules for the integer conversion are as follows:
(Star right ascension)
(Star declination)
(Star visual magnitude)

$$
\text { ISTRA }=50 . *(\text { STRA }-180 .)
$$

$$
\text { ISTDC }=100 . * \text { STDC }
$$

$$
\text { ISTMG }=100 . * \text { STMG }
$$

where STRA is given in degrees from the ascending line of nodes (0 to 360 degrees), STDC in degrees (± 90 degrees), and magnitude in its conventional form. Converting the catalog to integer form reduces computer storage requirements for the catalog by a factor of two. The stars are ordered in the catalog according to increasing declination. This ordering is germane to the search routine. Thus, the integer forms of right ascension and declination
have a range of ± 9000, integer magnitude has a nominal range of -160 to +900 , and the integer declination increases monotonically through the catalog. The details of the program which prepares the catalog, and a discussion of the problems encountered in preparing the catalog which is presently being used are contained in Appendix C.

At the beginning of execution of the star search program, the star catalog is read from magnetic tape into the computer core memory. Because of core size limitations, the catalog may contain no more than 7000 stars. If a larger star catalog is required, the program could be modified to accept the catalog in batches, or the program could be moved to a larger computer. Alternately, the program could be moved to a computer which has fast access mass storage (i.e., disk), and the program modified to perform the search directly from mass storage rather than from core memory. At present a catalog of 4827 stars of magnitude 6.00 and brighter is being used.

Four coordinate systems are used (Fig. 1). A reference coordinate system (X_{r}, Y_{r}, Z_{r}) is body-fixed, with X_{r} always pointing along the sunline. For HEAO-C, Y_{r} is taken to be the experiment pointing axis. The orientation of each star tracker is specified by inputing the components of a unit vector in the direction of the tracker in the reference coordinate system. A solar-fixed coordinate system $\left(X_{S}, Y_{S}, Z_{S}\right)$ has X_{S} directed from the earth to the sun in the ecliptic plane, and Z_{S} perpendicular to the ecliptic plane directed northward. The X_{r}, Y_{r}, Z_{r} system rotates through an angle θ_{r} from the X_{S}, Y_{S}, Z_{S} system about the $X_{S}=X_{r}$ axis (vehicle rotating about the sunline). An inertial ecliptic coordinate system (X_{1}, Y_{1}, Z_{1}) has X_{1} directed from the earth along the line of ascending nodes (Aries), and $Z_{1}=Z_{S}$ is perpendicular to the ecliptic plane. The sunline X_{S} rotates through an angle θ_{S} from X_{1} about the $Z_{1}=Z_{S}$ axis. Thus, θ_{S} is a measure of the time of year from vernal equinox. A geocentric inertial system $\left(X_{g}, Y_{g}, Z_{g}\right)$ has $X_{g}=X_{1}$ pointing toward Aries with Z_{g} perpendicular to the equatorial plane in the northward direction. The X_{1}, Y_{1}, Z_{1} system is rotated through an angle θ_{e} of 23.45 degrees from the X_{g}, Y_{g}, Z_{g} system about the $X_{g}=X_{1}$ axis. Alternately, a direction in the X_{g}, Y_{g}, Z_{g} system may be given by right ascension from the X_{g} axis and declination above the equatorial plane. This is the system in which the star catalog is given, and the system in which the star search is carried out.

Figure 1. Coordinate systems.
Table 1 is a list of the names and definitions of variables used in the star search_program. The_dimensions-of-ar-ray-variables-are-given-within-the subscript parentheses. In general, the variable N is used to refer to the Nth star for the three arrays which contain the star catalog, and M is used to refer to the Mth star tracker for the tracker-related variables. The variables are grouped into the following categories:

1. Constants and Miscellaneous
2. Coordinate System Variables
3. Star Variables
4. Tracker Variables
5. Bookkeeping Variables

Within each group the variables are ordered in approximately the order in which they occur in the program. The implied specification of integer and floating point variables is followed throughout (any variable name beginning with I, J, K, L, M, or N is an integer variable, all others are floating point).

TABLE 1. PROGRAM VARIABLES

Constants and Miscellaneous

PI	$\pi, 3.1415926536$
TOPI	2π
DTOR	degree to radian conversion multi- plier, PI/180.
RTOD	radian to degree conversion multi- plier, 180./PI
DUM1, DUM2, DUM3	dummy variables used in reading from magnetic tape
JFLG	logic flag variable which controls step search mode

Coordinate System Variables
THTE
$\theta_{e}=23.45$ degrees, angle of inclination between ecliptic plane and equatorial plane

STE, CTE $\sin \theta_{e}, \cos ^{\prime} \theta_{e}$
THTS $\quad \theta_{s}$, angle from line of ascending nodes to sunline

STS, CTS
$\sin \theta_{\mathrm{s}}, \quad \cos \theta_{\mathrm{s}}$
PTHS

DELTS
θ_{S} converted and saved for print
$\Delta \theta_{s}$, inputed sun angle step size

TABLE 1. (Continued)

Coordinate System Variables (Concluded)	
THTSF	θ_{s} final, final value of sun angle, used to terminate case
THTR	θ_{r}, angle reference coordinate system (body-fixed) has rotated from solarfixed system, measured about sunline
STR, CTR	$\sin \theta_{\mathbf{r}}, \quad \cos \theta_{\mathbf{r}}$
PTHR	θ_{r} converted and saved for print
DELTR	$\Delta \theta_{r}$, inputed step size for roll about sunline
Star Variables	
NSTRS	number of stars found in catalog
$\operatorname{ISTRA}(7000))$	integer arrays in which the star cata-
$\operatorname{ISTDC}(7000)$ ISTMG(7000)	log is stored (right ascension, decli-
$\operatorname{ISTMG}(7000)$	nation, and magnitude)
N	subscript used with arrays containing
	star catalog, to specify the nth star
NMIN, NMAX	lower and upper bounds of N, used in successive halving process of the octave search
N0	$N_{\text {zero }}$, used in the step search to
	retain the original value of N
STRA, STDC	right ascension and declination of a star, converted to floating point
STPJ	projection of a unit vector directed toward a star into the X_{g}, Y_{g} plane

TABLE 1. (Continued)
\(\left.$$
\begin{array}{|cl|}\hline \text { Star Variables (Concluded) } & \\
\text { STXG, STYG, STZG } & \begin{array}{l}\text { components in } X_{\mathrm{g}}, \mathrm{Y}_{\mathrm{g}}, \mathrm{Z}_{\mathrm{g}} \text { coordinate } \\
\text { system of a unit vector directed } \\
\text { toward a star }\end{array} \\
\text { DOTPR } & \begin{array}{l}\text { dot product of a unit vector directed } \\
\text { toward a star with a unit vector }\end{array}
$$

directed along the look direction of a\end{array}\right\}\)| tracker |
| :--- |

TABLE 1. (Continued)

Tracker Variables (Concluded)

TRXG, TRYG, TRZG

TRRA, TRDC

PTRA(10), PTDC(10)

ITRRA, ITRDC, ITRMG

IRFOV

SRFOV, CRFOV
MAXDC, MINDC

DLRA

IDLRA

MAXRA, MINRA
components of unit vector along look direction of a tracker in geocentric inertial coordinate system
right ascension and declination of a unit vector along the look direction of a tracker
used to retain TRRA and TRDC of each tracker for an optional print

TRRA, TRDC, and TRMG(M) converted to integer form according to the conversion rules of the star catalog
radius of the field-of-view of a tracker converted to integer form according to the rule IRFOV $=(50 . * T F O V(M))$
sine, cosine of radius of field-of-view.
upper and lower declination limits (in integer form) of a spherical trapezoid containing the field-of-view of a tracker-for-present-look-direction-
half of the right ascension diameter of a spherical trapezoid containing the field-of-view of a tracker for the present look direction

DLRA converted to integer form according to the rule IDLRA = (50.* DLRA)
maximum and minimum right ascension bounds (in integer form) of a spherical trapezoid containing the field-of-view of a tracker for present look direction

TABLE 1. (Continued)

Bookkeeping Variables	
NSEE	number of stars seen by a tracker during search for present look direction
NSEEN(10)	stores the values of NSEE for each tracker so that they are available for optional printout
NSN(10)	running total of number of stars each tracker has seen during the search for the present sunline
NSNT (10)	running total of number of stars each tracker has seen during the entire case
NGNS (10)	greatest number of stars each tracker has seen at any single look direction during the search of the present sunline
NGNST (10)	greatest number of stars each tracker has seen at any single look direction during the entire case
NLD	number of look directions per tracker, or vehicle orientations, which have been searched for the present sunline
NLDT	number of vehicle orientations which have been searched during the entire case
RNLD, RNLDT	NLD and NLDT converted to floating point so that arithmetic operations involving these variables will be performed in floating point
NLHS (10)	number of look directions each tracker had at least one star during the search of the present sunline

TABLE 1. (Concluded)
Bookkeeping Variables (Concluded)

NLHST (10)

LFIX

NFIX

NFIXT

AVNS (10)
$\operatorname{PCCOV}(10)$

PCFIX
number of look directions each tracker had at least one star during the entire case
integer variable used to determine if a fix (two or more trackers having at least one star each) was obtained for the present vehicle orientation
number of vehicle orientations for which a fix was obtained during the search of the present sunline.
number of vehicle orientations for which a fix was obtained during the entire case
for each tracker, the average number of stars seen per look direction during this sunline or over the entire. case, as applicable
for each tracker, the percent coverage, or percent of look directions it had at least one stār, cō $\bar{m} p \bar{u} t \overline{\text { en }}$ for each sunline, and again for entire case
percent of vehicle orientations at which a fix (two or more trackers having at least one star each) was obtained, computed for each sunline, and again for the entire case

IV. PROGRAM DESCRIPTION

This section will be devoted to a detailed functional description of the star search program.' First, the overall flow of the program will be given, as shown in Figure 2. Then the details of the actual search routine will be covered, as shown in Figure 3.

A dimension statement allocates storage for the subscripted arrays for 10 star trackers and a catalog of 7000 stars. The star catalog arrays are stored in COMMON to prevent exceeding core because of temporary storage required by the computer during loading. All of the required format statements are given, and logical unit 6 (assigned to magnetic tape unit 3 at execution time) is rewound. Since the specially prepared star catalog being used is the second file contained on a reel of magnetic tape, a dummy read statement is used to locate the end of the first file. The star catalog is then read, one star at a time, from magnetic tape and stored into the arrays allocated in core memory. The read is terminated when an end-of-file mark is encountered, and the tape is rewound. The integer variable NSTRS contains the number of stars which were contained in the catalog.

The set of data cards for the first case is then read. This data consists of one card containing NTRKS, DELTS, DELTR, initial THTS, and THTSF; and one card per tracker containing $\operatorname{TRXR}(\mathrm{M}), \operatorname{TRYR}(\mathrm{M}), \operatorname{TRZR}(\mathrm{M})$, TRMG(M) and TFOV (M). The input vectors which specify the orientation of each tracker are corrected to unit length, and all of the input data is printed. For convenience, all angle inputs and outputs from this program are in degrees. Variables are initialized as necessary, initial computations are performed, THTR is set to zero, and the search loop is entered. The search loop finds for the present vehicle orientation how many stars from the star catalog can be seen by each tracker. The outputs of the search routine are updated values of LFX and, for each tracker, NSEEN(M), NGNS(M), NSN(M), and NLHS(M). Upon completion of the search loop, LFX is checked to see if a fix was obtained for this vehicle orientation, and NFIX is updated accordingly. An optional print may be added following statement number 85 to output information at vehicle orientations for which a fix was not obtained. The following information is specifically available for this print: PTRA(M), PTDC(M), NSEEN(M), LFX, PTHS, and PTHR.

A new vehicle orientation is obtained by incrementing THTR by the angle DELTR, and the search process is repeated. This continues until a full revolution about the present sunline is completed. Then bookkeeping variables are updated, statistics for this sunline are computed, and data summarizing the

Figure 2. Overall flow diagram.

Figure 3. Detailed flow diagram.

Figure 3. (Continued).

Figure 3. (Concluded).
results of the search for this sunline are printed. The sunline angle (THTS) is then incremented by an angle DELTS, and the preceding process is repeated. This continues until the final sun angle (THTSF) has been reached. Final bookkeeping computations are then made, data summarizing the entire case are printed, and data cards for the next case are read. An invalid data set, consisting of a single card which sets the number of trackers for this case (NTRKS) to zero, or negative, causes termination of the program.

The details of the search loop are shown in flow diagram form in Figure 3. A search is carried out for each tracker in turn under the control of a DO loop. Bookkeeping variables retain the results from which the information to be printed will be derived.

To perform a search for the Mth tracker, the present look direction of this tracker is found in geocentric inertial coordinates (Fig. 3, first page). This is done by rotating the input unit vector components (TRXR(M), TRYR(M), TRZR(M)) through the angles THTR, THTS, and THTE. The rotated components are then converted to a tracker right ascension and declination (TRRA, TRDC) and changed to integer form compatible with the star catalog (ITRRA, ITRDC).

A spherical trapezoid which contains the circular field-of-view is now calculated. The declination boundaries of this spherical trapezoid in integer form are

$$
\begin{aligned}
& \text { MAXDC }=\text { ITRDC }+ \text { IRFOV } \\
& \text { MINDC }=\text { ITRDC }- \text { IRFOV }
\end{aligned}
$$

where IRFOV $=100 . * \frac{\text { TFOV }}{2}$, and TFOV is the diameter of the field-of-view of the tracker. If the field-of-view is tangent to or encircles a pole (MAXDC ≥ 9000, or MINDC ≤-9000), the entire range of integer right ascensions (-9000 to +9000) is used. In any other case, the right ascension bounds of the spherical trapezoid are computed as follows:

```
DLRA \(=\) ASIN (SRFOV/COS (DTOR*TRDC)) \(*\) RTOD
IDLRA \(=(50 *\) DLRA \()\)
MAXRA \(=\) ITRRA + IDLRA
MINRA \(={ }^{\circ}\) ITRRA - IDLRA
```

The derivation of the first step above is given in Appendix B. It is possible for the above computations to yield MAXRA > +9000, or MINRA < -9000, signifying that the field-of-view straddles the 0 degree $=360$ degree azimuth. This condition is checked for, and correction made when necessary by adding ± 18000 (integer form of ± 360 degrees). Note that if this correction is required, it will be true that MAXRA < MINRA after the correction. In any other case MAXRA > MINRA. The bounds of the computed spherical trapezoid will be used later in the search.

It is now desired to find an advantageous starting point in the star catalog from which to begin the search. This is accomplished by an octave search through the catalog, shown in Figure 3, second page. NMIN is set to 1, and NMAX is set to NSTRS: Recalling that the stars in the catalog are ordered by increasing declination, four possibilities exist. The declination of the tracker look direction (ITRDC) is either greater than or equal to the declination of the last entry in the catalog (ISTDC (NMAX)), less than or equal that of the first entry (ISTDC (NMIN)), equal to the declination of an intermediate entry, or between the declinations of two adjacent entries. The first two possibilities are checked. If either is true, the octave search is exited from with N set to NMAX or NMIN, as appropriate. If neither is true, an iterative process follows to determine the catalog number N of a star for which the third possibility is true or either of two stars for which the fourth possiblity is true. The iterative process is one of successive halving of the catalog until one of the possibilites is met. For a catalog of 7000 stars, a maximum of 13 iterations would be needed to complete the process ($7000<2^{13}$). In any event, the result of the octave search is a catalog number N which is used as a starting point for the search.

A star by star search, shown in Figure 3, third page, is now made beginning with star $\mathrm{NO}=\mathrm{N}$, then incrementing N upward from NO, and then downward. A flag variable JFLG controls the search and will have a value of $1,2,3$, or 4 depending on whether the program is presently checking entry NO, searching upward from NO, searching downward from NO, or is ready to exit from the search. During the search, each candidate star is checked to see if it is within the spherical trapezoid previously computed. When a star is encountered whose declination is not within the trapezoid, it is known that no more candidate stars lie in the present direction of search, and JFLG is incremented. When applying the right ascension part of the trapezoid test, special attention must be given to the case in which the field-of-view straddles the 0 degree $=360$ degree azimuth, as the requirements for passing the test are different for this case. Also, the magnitude is compared with the limiting magnitude of the tracker.

Each star which is found to be within the boundaries of the spherical trapezoid and is of sufficient brightness to be seen by the tracker is then checked to determine if it is within the circular field-of-view. A unit vector directed toward the star is computed. A dot product is formed between this vector and a unit vector along the look direction, yielding the cosine of the angle between the star and the center of the field-of-view. This is compared with the cosine of the radius of the field-of-view to determine if the tracker sees this star. NSEE, the number of stars seen by this tracker in this look direction, is updated accordingly, and the search goes on to the next star. When all candidate stars have been tested, as evidenced by JFLG=4, the program will update the search loop bookkeeping variables and return to the beginning of the search loop to repeat for the next star tracker. When the search has been completed for all trackers for this vehicle orientation, it will exit from the search loop, perform bookkeeping, increment vehicle orientation, and repeat the search process.

The advantage of the spherical trapezoid test is that only integer subtraction is required to determine if a candidate star is contained therein. Thus, the majority of the stars within the proper declination band of the table are eliminated without the necessity of time-consuming trigonometric calculations.

V. PROGRAM RESULTS

A listing of the star search program and several runs which have been made with the present star catalog are shown in Appendix A. The baseline star trackers (6 th magnitude, 6 degree diameter field-of-view) have been used. A run was made with two trackers, one along-the $\mathrm{Y}-\mathrm{r}$-axis-(experiment ${ }^{-}$ pointing axis) and one along the Z_{r} axis. This is the baseline HEAO-C configuration. The sunline was stepped from 0 degrees to 180 degrees in 3 degree increments, and the vehicle was rolled about each sunline in 3 degree increments. Since both trackers lie in a plane perpendicular to the sunline, a 180 degree rotation of the sunline covers the entire celestial sphere. For program checkout purposes, a similar run was made with the sunline beginning at 180 degrees and stopping at 360 degrees. The results were identical.

The results of the baseline runs show that through the year each tracker has 95 percent coverage. A two tracker fix was obtained 91 percent of the time. Each tracker had an average of 3.4 stars per look direction, and 20 stars was the greatest number seen by one tracker at any look direction. The
poorest coverage was obtained in early June and early December, when the path of the star trackers passes near the galactic poles. Figures 4 and 5 are plots of the star-empty look directions found for a 6th magnitude, 6 degree diameter field-of-view tracker.

Some possibly advantageous alternates to the baseline HEAO_C star tracker configuration have been considered. A computer run is shown in the appendix in which a third star tracker was added in the same plane as the trackers, and pointing midway between their look directions. A two tracker reference was obtained 98.9 percent of the time for this system during the quarter of the year following the equinoxes.

A problem arises with the baseline star tracker configuration if no stars are available within the radius of field_of-view of a desired experiment pointing direction. Since one of the star trackers is aligned with the experiment pointing direction, rotating about this direction will not alleviate the problem. This suggests canting this star tracker a few degrees from the experiment axis so that rolling about the experiment axis will move the look direction of the star tracker and, possibly, acquire a star. The star search program will be used to investigate this and other possible alternates to the baseline configuration.

Figure 4. Star-empty look directions, northern hemisphere.

Figure 5. Star_empty look directions, southern hemisphere.

APPENDIX A. STAR TRACKER SEARCH PROGRAM LISTING

This appendix contains a complete listing of the program written in FORTRAN IV for a Control Data Corporation Model 3200 digital computer. This machine configuration includes a 32 K core memory, four magnetic tape units, a card reader, and a printer.

3200 FORTRAN (3.0)/RTS

```
        PROGRAM STRTRKER
        COMMON ISTAA,ISTOC, ISTMG
        DIMENSION ISTRA(7000),ISTDC(7000),ISTMO(7000),TRXR(10),TRYR(10).
    1TRZR(1;),TRMG(10),PTRA(10),PTDC(10),NSEEN(10),NSN(10),NSNT(10),
    2NLHS(1 ),NLHST(10),NONS(10),NGNST(10),PCCOV(10),AVNS(10),TFOV(10)
    1 FORMAT(2FG.3.F6.?)
2 FORMAT(316)
3 FORMAT(I10,7F10.4)
4 FORMAT(5F10.4)
5 FORMAT(1H1,58X,15HCASE INPUT DATA//4BX,35HNUMBER OF STARS IN CATAL
    50G E,I7/45X,35HNUMBER OF STAR TRACKERS E,17,
    545X,35HINITIAL SIJN ANGLE (DEG) =,57.2%
    545x,35HFINAL SUN ANGLE (DEG), =,F7.21
    545x,35HSUN ANGLE INCREMENT (DEG) =.57.2%
    545X,35HVEHICLE ROTATION INCREMENT (DEG) =,F7.2/)
    O FORMAT(14X, THTRAGKER, I2,6X, JIHDIAMTR OF FIELD OF VIEW (OEG) E,F7,4
    6,10X,2 HLIMITING MAGNITUDE =,F7,4/29X, 3JHUNIT VECTOR DIREGTION CON
    6PONENTS ,6X,6HTRXR =,F7.4.6X,6HTRYR =,F7.4,6X,6HTR2R =,57.4)
    7 FORMAT(1X,4F10.4,110,2F10.4, 110)
    9 FORMAT(///1X,12HSUNLINE DATA/)
10 FORMAT(//////1X,1OHFINAL DATA/)
11 FOPMAT(2X,5HTHTS=,57.2,4X,6HPCFIX=,F6.2,2(6X,7HTRACKER,12,2X,6HPCC
    1OV=,56.2,2X,5HAVNSF,F5,2,2X,5HNGNS,13)/(30X,2(6X,7HTRACKER,12,2X,
    16HPCCOV =,56.2,2X.5HAVNS=,55.2,2X,5NNGNS =, I3))"
12 FORMAT(2X,5HNLDT=,17 ,4X,6HPCFIX=,F6.2,216X,7HTRACKER,12,2X,6HPCC
    2OVZ,F6.2,2x,5HAVNS:,F5,2,2X,5HNGNS=,13)/(30x,2(6x,7HTRACKER,12,2X,
    26HPCCOV=,F6.2;2X,5HAVNS=,55.2,2X,5HNGNS=,13))"
        REWIND }
        FI=3.1415926536
        TOPI=2*P1
        DTOREPI/180.
        RTODF180,/P1
        NSTRS=.
20 READ INPUT TAPE 6,1,DUH1,DUM2,DUM3
        OO TO(21,2#),EOFCKF(6)
    2i CONTINUE
22 PEAD INPUT TAPE 6,2,ISTRA(NSTRS-1).ISTDCTNSTAS+1T.TSTMO(NSTRS+IT
        GO TO(24,23),EOFCKF(6)
23 NSTRS=NSTRS*I
    GO TO 22
24 PEWIND }
25 READ 3,NTRKS,DELTS,DELTR,TMTS, IHTSF
    1F(NTRKS) 100,100,2%
26 READ 4,((TRXH(M).,TRYR(M),TRZR(M),TRMO(M),TFOV(M)),M=1,NTRKS)
    PRINT S,NSTRS,NTRKS,THTS,THTSF,DELPS.DELTR
    NLDT=0
    NF!\timesT=
    DO 27 M=1,NTRKS
    NSNT(M)=0
    NLHST(M)=0
    NGNST(M)=0
    TRVL=SORT(TRXR(M)**2*TRYR(M)**2*TR2R(M)**2)
    TRXA(M)=TRXR(M)/TRVL
        TRYR(M)=TRYR(M)/TRVL
        TRZR(M)=TRZR(H)/TRVL
27 PRINT 6,M,TFOV(M),TRMG(M),TRXR(M),TRYR(M),TRZR(M)
        THTE=DIOR*23;45
        STE=SIN(THTE)
        CTE=COS(THTE)
        DELTS=DELTS*DTOR
```

DELTR:DELTA*DTOR
THTSF:THTSF•DTOR
THTSETHTS*DTOR
PRINT 9
30 STSESIN(THTS)
CTS = COS(ThTS)
THTA=0.0
MFIX:
MLC=f
DO $29 \mathrm{M}=1$, NTRKS
$N L W S(M)=0$
NSN(M)=0
$\operatorname{NGNS}(m)=0$
22° CONTINUE
3: STA=SIN(THTR)
CTR=COS(THTR)
LF $\mathrm{X}=0$
DO 84 Mzi.NTRKS
NSEE = 0
1RFOV=(5).•TFOV(M))
SEFOV=SIN(DTOR*TFOV(M)/2.
CRF OV=COS(DTOR*TFOV(M)/2.)
tresatrar(m)
TRYS = CTR*TRYR(M)-STR*TRZR(M)
TRZSESTR*TRYR(M) + CTR*TRZR(M)
TRXI=CTS*TAXS-STS*TRYS
TRYI=STS*TRXS+CTS*TRYS
TRZ1=TRZS
trxGatRX1
TRYGECTE*TRY1-STE*TRZ1
TRZGESTE*TRY1 + CTE*TRZ1
TRRAEATNA(TRYG.tRXO)*RTOD
TRDC=ASIN(TRTG)*RTOD
PTRA $(M)=T R R A$
PTDC(M)=TRDC
ITRRA $=(50 . *(T R R A-180)$.
1 TRDC=(100.*TRDC)
ITRMG=(100.*TRMG(M))
$M A X D C=I T R D C+I R F O V$
MINDC=ITRDC-IRFOV
IF (MAXDC-9n00)32.37.37
32 IF(MINDC+9000)37137133
33 DLQA=AS!N(SRFOV/COS(DTOR*TRDC))*RTOD
IDLRA=(50.*DLRA)
$M A X R A=1 T R R A+1 D L R A$ MINRA = ITRRA-IDLRA
IF(MINRA+9(000)34,35,35
34 MINRA $=4 I N R_{A}+18000$
35 IF(MAXRA-9000)38,38.36
36 MAXRA $=$ MAXRA-18000
GO TO 38
37 MINRA=-9000
$M A X R A=+9000$
36 CONTINUE
5o NMINEI
NMAX $=$ NSTRS
NENMAX
IF(ITRDC-ISTDC(N))51.59.59
51 NENMIN
IFITRDC-ISTDC(N) $50,50,52$
52 Na(NMAX + NMIN C^{2} IF(ITRDC-1STDC(N))53.50.55
$53 \mathrm{~N}_{2} \mathrm{~N}=1$
1F (17ROC-19TDC(N))54.59.59
54 NMAX: (NMIN+NMAX)/2
GO 1052
$55 N=N+1$
IF (ITRDC-ISTDC(N)I59.59.56
56 NMIN=(NMIN*NHAX)/2
GO TO 52
59 CONTINUE
$60 \mathrm{NO}=\mathrm{N}$
$J F L G=1$
GO 1070
61 NENO
JFLG=JFLG*1
62 GO TO ($63.64,65,80)$, JFLG
$63 J F L G=2$
$64 \mathrm{~N}=\mathrm{N} * 1$
IFIN-NSTRS 166,66,61
$65 \mathrm{NaN-1}$
IF (N) 61,61,66
66 CONTINUE
70 IF (ISTDC(N)-MAXDC)72,72,61
71 IF (ISTDC(N)-MINDC) $1,72,72$
72 IF (ISTMO(N)-ITRMG)73,73,79
73 IF (ISTRA(N)-MINRA)74,77.75
74 IF (MAXRA-MINRA) 76,79,79
75 IF (YAXRA-MINRA) $77,79,76$
76 IF (ISTRA(N)-MAXRA) 77,77.79
77 STRA=DTOR*(ISTRA(N)/50.*180.) $S T D C=D T O R *(I S T D C(N) / 100$.
STPJaCOS(STDC)
STXGESTPJ*COS(STRA)
STYG=STPJ.SIN(STRA)
STZGESIN(STDC)
DOTPR=STXG*TRXG*STYG*TRYG+8TZOETRZO
IF (CRFOV-DOTPR)78.78.79
78 NSEE=NSEE +1
79 GO TO 62
80 CONTINUE
NSEEN(M) INSEE
IF (NSEE) $8_{4}, 84,8_{1}$
81 IF (NSEE-NGNS (M) 83.83 .82
$82 \operatorname{NGN}_{S}(M)=N_{S} E E$
83 LFX=LFX+1
NSN (M) $=N S N(M)+$ NSEE
NLHS $(M)=$ NLHS $(M)+1$
84 CONTINUE
NLD =NLD +1
PTHS FTHTS*RYOD
PTHR ETHTR*RTOD
IF (LFX-2) 85,86,86
85 CONTINUE
Be NFIX:NFIX*1
87 CONTINUE
THTR=THTR + IELTA
1F(THTR-TOPI)31.91.91
91 CONTINUE
$N L D T+N L D T+N L D$
$N F I X Y=N F I X P \rightarrow N F I X$
RNLDENLD
PCFIXII 100 . © NFIX/RNLD

```
    DO 93 ME1,NTRKS
    NLHST(M)ENLHST(M) +NLHS(M)
    NSNT(M) #NSNT(M)*NSN(M)
    PCCOV(M)=100.*NLHS(M)/RNLD
    AVNS(M)=NSN(M)/RNLD
    IF(NGNS(M)-NBNST(M))93.93.92
92 NGNST(M)ENGNS(M)
93 CONTINUE
PRINT 11,PTHS,PCFIX,I(M,PCCOV(M),AVNS(M),NONS(M)),N=1,NTRKS)
.IHTS:THTS+DELTS
IF(THTS-THTSF)30.95.95
95 CONTINUE
QNLDTZNLDT
PCFIX=100.*NFIXT/RNLDT
    DO 9% MEI,NTRKS
    PCCOV(M)=1\capO. NLHST(M)/RNLDT
96 AVNS(M)=NSNT(M)/RNLDT
    PRINT 1C
    PRINT 12,NLDT,PCFIX,((M,PCCOV(M),AVNS(M),NONST(M)),M*I,NTRRKS)
    GO TO 25
100 STOP
END
FORTRAN DIAONOSTIC RESULTS FOR STRYRKER
```

NULL STATEMENT NUMBERS
5060 7
EOUIP, O6, MTCOEOUOS
LOAD. 30
RUN. 10

APPENDIX B. EXPLANATIONS AND DERIVATIONS

This appendix contains an explanation of the computer library subroutines and functions used by the program, and explanation or derivation of program algorithms as deemed necessary.

The library functions and subroutines are listed below:
EOFCKF (i) - End-of-file check function, used to determine if an end-of-file was encountered during the last attempted read from logical unit i. A value of 1 is returned if an end-of-file was encountered, a value of 2 if not. In this program, logical unit 6 is used and is defined to be magnetic tape unit 3.

IOCHKF (i) - (Used in the star catalog preparation program.) Checks the status on the last input/output request on logical unit i to determine if a parity error occurred. A value of 1 is returned if an error occurred, a value of 2 if not. Logical unit 6 is used and is defined to be magnetic tape unit 3.

SQRT (x) - Square root of x.
$\operatorname{SIN}(\mathrm{x})$ - Sine of x , where x is in radians.
$\operatorname{COS}(x)$ - Cosine of x, where x is in radians.
ATNA ($s, c)$ - Arc tangent of $\left(\frac{s}{c}\right)$, where s and c are the sine and cosine-of the-desired-angle-or-are-proportional-to-the-sine-and cosine-by anypositive common factor. The angle returned will be in the range of 0 to 2π radians.

ASIN (x) - Arc sine of x . The angle returned will be in the range of $-\pi / 2$ to $+\pi / 2$ radians.

Most of the algorithms used in the program are adequately explained in preceding sections. Two points, however, bear some further discussion.

The calculation of the spherical trapezoid containing the circular field-of-view of a tracker for a given look direction involves the use of spherical
trigonometry. Referring to Figure B-1, define the following in the celestial sphere:
α. right ascension of look direction
δ declination of look direction, $\delta \geq 0$
γ. half-cone angle of tracker field-of-view
$\phi \quad$ desired spherical angle between meridians NCB and NTA
C center of tracker field-of-view
N. north celestial pole

T point of tangency of the tracker field_of_view and meridian NTA Suppose $\delta+\gamma \leq \frac{\pi}{2}$. (If $\delta+\gamma>\frac{\pi}{2}$, the field-of-view overlaps the north pole and all stars with declination $\geq(\delta-\gamma)$ are tested by the dot product method. Thus, if the field-of-view encircles a pole, a polar cap is used in place of a spherical trapezoid.) The declination limits of the spherical trapezoid are immediately seen to be $(\delta-\gamma)$ and $(\delta+\gamma)$. Also it is obvious that $\gamma \leq \phi \leq \frac{\pi}{2}$, with $\phi=\gamma$ for $\delta=0$, and $\phi=\frac{\pi}{2}$ for $\delta=\frac{\pi}{2}-\gamma$. From the law of sines,

$$
\frac{\sin \phi}{\sin \gamma}=\frac{\sin \frac{\pi}{2}}{\sin \left(\frac{\pi}{2}-\delta\right)}
$$

thus,

$$
\sin \phi=\frac{\sin \gamma}{\cos \delta}
$$

The result is identical for a look direction in the southern hemisphere ($\delta \leq 0$). This equation is used to calculate ϕ. Thus, for a look direction (α, δ), such that the tracker field-of-view does not encircle a pole, the circular field-ofview is guaranteed to be contained in the spherical trapezoid defined by a

declination range of ($\delta-\gamma, \delta+\gamma$) and a right ascension range of ($\alpha-\phi$, $\alpha+\phi$), where $\phi=\operatorname{arc} \sin \frac{\sin \gamma}{\cos \delta}$. Each star found to be within this spherical trapezoid is then tested by the dot product method to determine if it is within the circular field-of-view of the tracker.

The dot product method consists of forming a dot product between a unit vector directed toward a star and a unit vector along the tracker look direction. The result of this dot product, which is identically the cosine of the angle between the two vectors, is compared with the cosine of the half-cone angle of the tracker field-of-view to determine if the star is within the field-of-view. It should be realized that because of the magnitudes of the angles involved and the small angular differences which must be detected, the cosine of the halfcone angle and the result of the dot product must each be accurate to at least eight significant figures for a tracker with a field_of-view diameter of one degree. This point must be considered if a tracker with a narrow field-of-view is to be considered, or if the program is to be run on a less accurate computer.

APPENDIX C. PREPARATION OF THE STAR CATALOG

The star catalog presently being used with the star search program was obtained through the Computation Laboratory at Marshall Space Flight Center from a catalog of 259000 stars compiled by the Smithsonian Astrophysical Observatory ${ }^{1}$. The Smithsonian catalog contains 11 consecutive 36 -bit binary computer words per star and is available on two 2400-foot, 7-track tape reels at 556 bytes per inch. This is an extremely comprehensive star catalog and is recommended as a source whenever star catalog information is required.

The Smithsonian catalog was prepared on tape by an IBM 7094 computer. The tapes may be read and interpreted by most computers which have magnetic tape capability. However, due to differences in tape format, coding, and computer word length, some difficulty is involved, and usually a language closer to basic machine language than Fortran will be required. This problem was circumvented by preparing an intermediate magnetic tape written in IBM 7094 BCD (Binary Coded Decimal) format. This tape was written by a program on a computer at the Computation Laboratory which is fully compatible with the IBM-7094 binary coding. This program searched through the Smithsonian catalog and prepared a reduced catalog containing only right ascension, declination, and magnitude for those stars whose magnitude was listed as less than or equal to 6.00 . IBM 7094 BCD proved to be directly compatible with CDC 3200 BCD. Thus, the CDC computer was able to read the tape containing the reduced catalog.

An initial look at the reduced catalog showed an obvious error. Nearly 1500 stars were listed as having a magnitude of 0.00 . The booklet explaining the Smithsonian Star Catalog was consulted. It was found that for a variable star ${ }^{-f o r}{ }^{-}$which no average magnitude was availāble, a magnitūde of 0.00 was entered in the catalog, and a separate code bit denoted that this was such a star. Since the Computation Laboratory program had not checked these code bits during the search of the catalog, these stars were included in the reduced catalog.

A program was written for the CDC-3200 to read the intermediate star catalog and prepare from it a final star catalog in the form required by the

1. K. L. Haramundanis, SAO Star Catalog Binary Tapes. Smithsonian Institution Astrophysical Observatory, Cambridge, Massachusetts, 1967. Direct inquires to: Star Catalog, Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, Massachusetts, 02138, Telephone 617-864-7910.
star search program. This program reads the data for each star and converts the data to integer form according to the rules given for the program. Because of the problem mentioned above, every star whose magnitude is given as 0.00 is eliminated. The remaining stars are then ordered by increasing declination, and the final star catalog is written on magnetic tape in BCD. The intermediate catalog was retained on tape for future reference, and the final catalog is contained on the same reel of tape immediately following the intermediate catalog. A total of 4827 stars are contained in the present final star catalog.

A listing of the computer program used to prepare this catalog is given below.

```
                                    3200 FORTRAN (3.0)/RTS
    PROGRAM STARCAT
    DIMENSION ISTRA(7000),1STDC(7000),1STMO(7000)
5 FORMAT(2F8.3,F6.2)
6 FORMAT(IX,IJMPARITY ERROR ,2IG)
7 FORMAT(1X,10110)
B FORMAT(3IO)
    REWIND }
    NSTIN=
    NSTRS=
10 READ INPUT TAPE G,S,STRA,STDC.STMO
    GO TO (15,11),EOFCKF(6)
11 NSTINENSTIN+1
    GO TO (12,13), IOCHKF(6)
12 PRINT 6,NSTIN
13 CONTINUÉ
    IMAGE(100.STMG)
    IF (IMAG) 14,10.14
14 NSTRS=NSTRS+1
    ISTRA(NSTRS)=(50.*(STRA-280.))
    ISTDC(NSTRS)=(100.*STDC)
    ISTMG(NSTRS)=IMAG
    GO To 10
15 CONTINUE
    PRINT 7,NSTIN,NSTRS
20 JFLAG=1
    DO 22 N=2,NSTRS
    IF(ISTDC(N-1)-ISTDC(N)) 22.22,21
21 JFLAG=2
    JRA=1STRA(N-1)
    JDC=1STDC(N-1)
    JMG=1STMG(N-1)
    {STRA(N-1)=1STRA(N)
    ISTDC(N-1)=1STDC(N)
    ISTMG(N-1)=ISTMG(N)
    ISTRA(N)=JRA
    ISTDR(N)=JOC
    ISTMG(N)=JMO
22 CONTINUE
GO TO(25,20), JFLAG
2g CONTINUE
    DO 26 N=1,NSTRS
26 WRITE OUTPUYTRSAPE 6,B,ISTRA(N),ISTDC(N),ISTMG(N)
    ENDFILE 6
30 REWIND }
    STOP
FORTRAN DIAQNOSTIC RESULTS FOR STARCAT
```

NULL STATEMENT NUMBERS
EOUIP.06=MTCOEOUOS
LOAD, 56

APPENDIX D. EXAMPLE RUNS

Several example computer runs made with the HEAO Star Tracker Search Program are given in this appendix. A discussion of some of the results is contained previously in this document.
case input data

SUNLINE DATA

THTS:	0	PCFIX:	91.74	TRACKER TRACKER	1	PCCOV:	95.87	AVNS $=$	3.51	NONS:	8	pracker	2	PCCOV=	95,87	AVNSE	3.49	NONS: 8
THTS:	3.00	PCFI $\mathrm{X}=$	93.39	TRACKER Tracker	1	$\mathrm{PCCO}_{V}=$	96.69	$A_{V}{ }^{\text {NS }}=$	3.75	NGNS $=$	11	tracker	2	PCCO_{V}	96.69	$\mathrm{A}_{\mathbf{*}} \mathrm{NS}=$	3.73	NONS = 11
TH'S'	6.00	${ }^{\text {chfl }}$ ¢ $=$	98.35	$\begin{aligned} & \text { TRA }{ }^{K} E^{R} \\ & \text { TRACKER } \end{aligned}$	1	${ }^{\text {ccc }}$ OV $=$	99.17	Avns $=$	3.69	$\mathrm{N}_{\mathrm{G}} \mathrm{NS}=$	10	PrA $C^{K} E^{\text {a }}$	2	$\mathrm{PCCOV}^{\text {a }}$	99.17	AVNS:	3.70	$\mathrm{NaNS}^{\text {S }}=10$
THTS:	9.00	PCFIX.	90.08	TRACKER TRACKER	1	pCCOV	05.04	AVNS $=$	3.55	NGNS $=$	12	tracker	2	PCCOV $=$	95.34	AVNS.	3.54	NGNS $=12$
THTS:	12.00	PCFIX:	92.56	$\begin{aligned} & \text { TRACKER } \\ & \text { TRACKER } \end{aligned}$	1	PCCOV =	95.87	AVNS $=$	3.45	NGNS $=$	11	pracker	2	PCCOV:	95.87	AVNS*	3.42	NONS: 11
THTS:	15.00	PCFIX $=$	95.87	TRACKER TRACKER	1	PCCOV=	97.52	AVNS $=$	3.68	NGNS $=$	10	Tracker	2	PCCOV:	97.52	AYNS:	3.65	NONS: 10
THTSE	18.00	PCFIX X	94.21	TRACKER TRACKER	1	pCCOva	96.69	$A^{\text {UNS }}=$	3.77	NGNS $=$	12	¢RACKER	2	PCCOV=	96.69	AvNS:	3.74	NONS $=12$
THTSa	21.00	PCFIX:	96.69	TRACKER	1	PCCOV_{2}	98.35	AVNS $=$	3.64	NGNS $=$	15	PrAcker	2	PCCOV	98.35	AVNS	3.64	NONS $=15$
THTSa	24.00	PCFI $\mathrm{x}=$	91.74	tracker tracker	1	PCCOV $=$	95.87	$A_{V} N S=$	3.71	NGNS $=$	17	TRACKER	2	$\mathrm{PCCO}_{\mathrm{v}}$ \%	95.67	${ }^{\text {A N N }}$ -	3.71	NONS: 17
TMTS:	27.00	PCFIX:	91.74	TRACKER TRACKER	1	PCCOV $=$	95.87	AVNS:	3.50	NGNS $=$	16	TRACKER	2	PCCOV=	95.87	AVNS:	3.50	NONS: 16
THTS:	30.00	PCFIx $=$	90.08	TRACKER TRACKER TRACKER	1	pCCOVa	95.04	AVNS $=$	3.60	NONS $=$	13	Pracker	2	PCCOV:	95.04	AVNS.	3.60	NGNS $=13$
thts:	33.00	PCFIx=	81.82	tracker tracker	1	PCCOV $=$	90.91	$A_{V} N_{S}=$	3.59	NGN5 ${ }^{\text {\% }}$	12	pracker	2	$\mathrm{PCCO}_{V}=$	90.91	$\mathrm{ArNs}^{\text {a }}$	3.57	NONE $=12$
THTS:	36.00	PCFIX	90.08	tracker TRACKER	1	PCCOV:	95.04	AVNS $=$	3.37	NGNS $=$	13	PRACKER	2	PCCOV:	95.14	AVNS:	3.36	NGNS $=13$
THTS:	39,00	PCF ${ }_{1} \times=$	91.74	$\begin{aligned} & \text { TRACKER } \\ & \text { TRACKER } \end{aligned}$	1	PCCOV $=$	95.87	AVNS $=$	3.65	$\mathrm{N}^{\text {G }} 5=$	18	TRACKER	2	$P C C_{0 V}=$	95.87	A $\mathrm{NHS}^{\text {S }}$	3.65	NONS $=18$
TMTS:	42.00	PCFIX $=$	95.04	TRACKER	1	pCCOV=	97.52	AVNS $=$	3.57	NGNS	18	Tracker	2	PCCOV:	97.52	AVNS:	3. 56	NONS 18
THTS:	45.00	PCFIX $=$	83.47	TRACKER PRACKER	1	PCCOV:	91.74	AVNS	3.22	NGNS:	12	fracker	2	pCCOV $=$	91.74	AVNS:	3.23	NONS $=12$
THTS:	48.00	PcFix:	93.39	$\begin{aligned} & \text { TRACKER } \\ & \text { TRACKER } \end{aligned}$	1	PCCOV $=$	96.69	AVNS $=$	3.39	NGNS	11	P的CKER	2	Pccove	96.69	AVNS $=$	3.40	NoNS $=11$
THTS:	51.00	PCFIX $=$	91.74	tracker TRACKER	1	pCCOV	95.87	AVNS $=$	$3 \cdot 32$	NGNS $=$	17	pracker	2	PCCOV*	95.87	AVNS:	3. 32	NONS $=17$
PHTS:	54.00	PCFIX:	83.47	TRACKER TRACKER	1	pCCOV.	91.74	AVNS $=$	3.26	NONS:	17	Pracker	2	PCCOV	91.94	AYNS:	3.25	NONS: 17

THTS:	57.00	PCFIX $=91.74$
THTS:	60.00	PCFIX $=90.08$.
Thise	63.00	PCFIX $=95.04$
THTS:	68.00	PCFIX $=93.39$
THTS:	69.00	PCFIX $=84.30$
THTS:	72.00	PCFIX $=73.55$
THTS:	75.00	PCFIX $=68.60$
THTSE	78.00	$P_{\text {CFI }} \mathrm{X}=77.69$
THTS:	a 1.00	PCFIX $=80.43$
ThTS:	84.00	PCFIX $=93.39$
THTS:	87.00	Pcfix $=98.69$
THTS ${ }^{\text {T }}$	90.00	
THTS.	93.00	PCFIX $=81.82$
ThTS:	96.00	PCFIX $=81.82$
THTS:	99.00.	PCFIX $=83.47$
thts:	102.00	PCFIX: 86.78
thts:	105.00	PCFIX $=85.12$
thisa	108.00	PCFIX: 85.12
thtsa	111.00	PCFIX $=90.08$
thisa	124.00	PCFIX $=95.87$
thise	117.00	PCFIX $=90.08$
thts:	120.00	PCFIX $=88.43$
this:	123.00	PCFIX $=87.60$
this:	126.00	PCFIX $=91.74$
TMTS*	129.00	PCFIy $=88.43$
THTS:	132.00	
THTS:	135.00	${ }_{p}$ CFIX $=9$ 9. 35
THTS:	238.00	PCFIX $=95.04$

TRACKER $2 \quad$ PCCO $_{V}=93.07$ AVN $_{S} \times 3.12$ NONS $=13$ TRACKER 2 PCCOVE 95.04 AVNSE 3.06 NONSE 12 PRAGKER 2 PCCOV: 97.92 AVNS: 3.07 MEMSE 13 PRACKER 2 PCCOV= 96.69 AVNSE 3.01 NONS: 14 TRACKER 2 PCCOV= 91.94 AVNS 2.92 NONSE 14 TRACKER 2 PCCOY $=66.70$ AVNS 2.66 NONS 26 PRAEKER 2 PCCOVE 83.47 AVNS: 2.66 NONS 15 TRACKER 2 PCCOV= 88.43 AVNS: 2.84 NGNS: 11 TRACKER 2. PCCOV 94.21 AVNSE 3.06 NBNS: 12 PRACKER 2 PCCOV: 96.69 AVNSE 3.06 NBNSE 9 TRAGKER 2 PCCOV: 98.35 AVNS $=3.20$ NGNS 12 PRACKER 2 PCCOV= 93.39 AVNS: 2.98 NONS = 13 PRACKER 2 PCCOV: 90.91 AVNS: 2.79 NONS: 12 TRACKER 2 PCCOV= 90.91 AYNSE $2 . B 5$ NONSE 12 PRACKER 2 PCCOV= 91.74 AVNS 2.98 NONS: 14 TRACKER 2 PCCOV: 93.39 AYNSN 3.00 NONS: 11 TRACKER 2 PCCOV= 91.74 AVNS 2.98 NONS 211 PRACKER 2 PCCOV: 92.36 AYNS: 3.22 NONS: 11 TAACKER 2 PCCOV= 95.34 AVNS: 3.10 NaNg. 11 PRACKER 2 PCCOV 29.32 AVNS: 3.17. NONS 211 TRACKER 2 PCCOV: 95.04 AVNS: 3.22 NGNS: 12 TRACKER 2 PCCOV: 94.21 AVNS $=3.21$ NONS: 16 $T_{R A C K E R} 2 \quad P C C_{O V}=94.21$ AYNS $=3.55$ NONS $=16$ TRACKER 2 PCCOVE 95.87 AVNS: 3.60 NONS: 19 TRACKER 2 PCCOOV 94.21 AVNS 3.62 NON $_{S}=26$ TRACKER 2 PCCOV= 93.87 GNSE 3.64 NQNS 24 $T A^{A C} C_{K} E_{R} 2 \quad P^{C C} C_{0}=90.17 \quad A V_{N} S^{2} 3.50 \quad N^{G} S^{\prime}=10$ PRACKER 2 PCCOV: 97.32 AVNS: 3.50 NONS: 11

Pracker	2	PCCOV: 95.04	AVNS: $3 \cdot 36$	NONS = 12
Pracker	2	Pccova 97.92	AVNS 3.13	NON8: 9
PRACK E_{R}	2	$\mathrm{pCC}_{0} \mathrm{~V}=96.69$	${ }^{*} V_{N} 5^{*} 3.312$	$\mathrm{N}^{0} \mathrm{NS}=14$
Pancker	2	$\mathrm{PCCO}_{v}=97.52$	$\mathrm{A}_{V} \mathrm{NS}=3.60$	NONS = 15
Pr $A_{A C K}{ }^{\text {R }}$	2	$\mathrm{PCCOV}=96.6$, VNS = 3.64	NGNSE 14
PAACKER	2	PCCOV $=98.35$	AVNS $=3.66$	$\mathrm{NaNS}^{\text {a }} 20$
fracker	2	PCCOV 2100.00	AVNS. 3.05	NONS $=15$
T A $^{\text {CKE }}$ R	2	$P^{C C}{ }_{0} V=200.00$	${ }^{1} V_{N S} S^{-3.73}$	$0_{N} \mathbf{S}^{=} 9$
TRACKER $^{\text {a }}$	2	$P C C_{0 V}=97.52$	${ }^{4} \mathrm{~V}_{\mathrm{N}} \mathrm{S}^{*} 3.79$	$N^{0} \mathrm{NS}^{=} 10$
tracker	2	PCCOV 200000	AVNS 3.98	NONS $=$
P $A_{A C K} K_{E}$	2	PCCOV $=97.52$	$A^{\text {VNS }} 4.07$	NaNS= 16
T $^{\text {A }} C_{K} E_{R}$	2	$\mathrm{PCC}_{\mathrm{O}} \mathrm{V}=97.52$	$\mathrm{AV}_{N} \mathrm{~S}^{\circ} \mathrm{S} 3.80$	$\mathrm{Na}^{\mathrm{NS}^{-1}} 17$
tracker	2	PCCOV: 96.69	AVNSE:3-31	HENS: $?$

final data

Case input data

NUMBER OF STARS IN CATALOG	$=$	4827
NUMBER OF STAR TRACKERS	2	
INITIAL SUN ANGLE (DEO)	$=180.00$	
FINAL SUN ANGLE (DEB)	$=100.00$	
SUN ANGLE INCREMENY (DEO)	3.00	
VEHICLE ROTATION INCREMEVT (DEG)	$=3.00$	

tracker i TRACKER 2

DIAMTR OF FIELD OF VIEW (DEG) 3.0000 UNIT VECTOR DIRECTION COMPONENTS DIAMTR OF FIELD OF VIEN (DEG) 6.0000 TRXA 2 UNIT VECTOR DíRECTION COMPONENTS 0000 taxh $=$

Limiting maanitude : 6.0000
LIMPIINO MAONITUDE 0000
IMIIINO MAONITUDE 6.0000

SUNLINE DATA

IM	180.00	PCfIxe 91.74
$\mathrm{H}^{\mathrm{H}} \mathrm{S}=$	183.00	PCFI $\mathrm{I}_{\mathrm{x}}=93.39$
$\mathrm{TH}^{\text {TS }}=$	186.00	$P C_{F I} X=98.35$
THTS*	189.00	PCFIX 90.00
TMTS:	192.00	PCFIX $=92.56$
THTS:	195.00	PCFIX $=95.87$
THTS ${ }^{\text {\% }}$	198.00	PCFIX $=94.21$
TMis.	201.00	PCFIX $=96.69$
THTS*	204.00	PCFIX 91.74
THTS.	207.00	PCFI ${ }^{\text {P }}=91.74$
THTSE	210.00	Pcfix $=90.08$
THTS	213.00	PCFIX ${ }^{\text {P }} 8.82$
THTS:	216.00	PCFIX= 90.08
$\mathrm{T}_{\text {H }} \mathrm{TS}^{\text {E }}$	219.00	$P C_{F I} \mathrm{X}=91.74$
THTS:	222.00	PCFIX $=95.04$
$\mathrm{T}_{\mathrm{H}} \mathrm{T}^{\text {S }}$ E	225.00	$\mathrm{PC}_{\text {Fi }} \mathrm{X}=03.47$
$T_{H}{ }^{\text {TSa }}$	228.00	$\mathrm{PCFIX}_{\text {c }}=93.39$
THTS:	231.00	PCFIXE 91.74
THTS*	234.00	$\mathrm{PCF}_{1} \mathrm{Xa} 83.47$

TRACKER 2 PCCOV: 95.87 AVNS: 3.40 NGNS: 8 TRACKER 2 PCCO $_{V} * 96.69$ A $_{V}$ NS: 3.73 NGNS $=11$ TAACKER 2 PCCOV 29.17 AVNS $=3.70 \quad N_{G} N S=10$ TRACKER 2 PCCOV: 95.04 AVNS: 3.54 NONS: 12 TRACKER 2 PCCOV: 95.07 AVNS: 3.42 NGNEE 11 TRACKER 2 PCCOVE 97.52 AVNSE 3.65 NQNSE 10
 TRACKER $^{2} \quad$ PCCO $_{V}=98.35$ A $_{V} N_{S}=3.64$ NON $_{S}=15$
 TRACKER 2 PCCOV $_{V}=95.67$ AVNS 3.50 NONS: 16 $P_{A C} K_{E} R^{2} \quad P_{C C} O V=95.04 \quad$ ANS: $3.60 \quad N_{0 N S}=23$ TRACKER 2 PCCOV= $9_{0} \cdot \theta_{1}$ AVNSE 3.57 NBNS: 12 TRACKER 2 PCCOV= 95.04 AVNS: 3.30 NGNSE 13 TRACKER 2 PCCOV= 95.87 AVNS: $3.65 \quad N_{B} N S=18$ PAACKER 2 PCCOVE 97.52 AVNS: 3.56 NONS: 18 PRACKER 2 PCCOV= 92.74 AVNS: 3.23 NGN: 12 TAA $C_{C E}{ }^{R} 2 P_{C C}{ }^{O V}=96.69$ AVNS $3.40 \quad N_{B} N S=11$ TRACKER 2 PCCOV: $95 \cdot 87$ aVNSE $3 \cdot 3^{2}$ NONS: 17

THTS:	237.00	PCFIX $=$	${ }^{9} 1.74$	TRACKER tracker	1	PCCOV $=$	95.87	AVNS $=$	3.12	NGNS $=13$
TKTSE	240.00	PCFIX	90.08	TRACKER TRACKER	1	PCCOVa	95.04	AVNS =	3.07	NGNS $=12$
THTS $=$	243.00	Pcfix=	95.04	$\begin{aligned} & \text { TRACKR } \\ & \text { TRACKER } \end{aligned}$	1	Pecove	07.52	AVNS=	3.07	NGNS $=13$
THTS:	246.00	PCFIX:	93.39	TRACKER TRACKER	1	pCCOV	96.69	AVNS $=$	3.00	NGNS $=14$
THTS:	249.00	PCFIX:	84.30	TRACKER PrACKER	1	pCCOV $=$	91.74	AVNS $=$	2.91	NGNS $=14$
THTS:	252.00	PCFIX $=$	73.55	TRACKER TRACKER	1	PCCOV $=$	86.78	AVNS $=$	2.67	NGNS $=16$
THTS ${ }^{\text {c }}$	255.00	PCFIX $=$	68.00	FRACKE	1	$\mathrm{PCCO}_{V}=$	83.47	${ }^{A} V^{N}{ }_{5}=$	2.67	NGN ${ }_{S}=15$
THTSE	258.00	${ }_{P C F}{ }_{1} \mathrm{X}=$	77.69	TRACKER tracker	1	$\mathrm{pCC}_{0} \mathrm{~V}=$	68.43	$A V_{N} S=$	2.85	$N^{G} N_{N S}=11$
THTS:	261.00	PCFIX:	88.43	TRACKER	1	PCCOV:	94.21	AVNS $=$	$3 \cdot{ }_{5}$	NGNS $=12$
THTS:	264.00	PCFIX:	$9^{3.39}$	TRACKER TRACKER TR	1	PCCOVa	96.69	AVNS $=$	3.06	NGNS $=9$
$\mathrm{T}_{\mathrm{H}} \mathrm{T}^{\text {S }}=$	267.00	PCF ${ }_{1} \mathrm{X}=$	96.69	TRACKER tracker	1	pCCov=	98.35	$A V_{N S}=$	3.21	$N^{G} N_{S}=12$
THTS*	270.00	PCFIX $=$	86.78	$\begin{aligned} & \text { RACKEQ } \\ & \text { TRACKER } \end{aligned}$	1	$\mathrm{PCCO}_{V}=$	93.39	$A_{V}{ }^{N}{ }_{S}=$	2.98	$\mathrm{NON}_{S}=13$
THTSa	273.00	PCFIX:	80.99	TRACKER Tracker	1	PCCOV=	90.08	AVNS $=$	2.77	NGNS $=12$
THTS $=$	276.00	PCFIX:	81.82	TRACKER	1	PCCOV $=$	90.91	AVNS $=$	2.84	NGNS = 12
THTS.	279.00	PCFIX $=$	82.64	TRACKER TRACKER	1	PCCOV.	90.91	AVNS	2.96	NGNS $=14$
THTS:	282.00	PCFIX:	06.78	TRACKER TRACKER	i	PCCOV $=$	93.39	AVNS $=$	$3 \cdot 08$	NGNS= 11
$\mathrm{T}^{\text {HTS }}$	285.00	PCFIX:	85.12		1	PCCOV ${ }^{\text {a }}$	91.74	${ }^{4} \mathrm{~N}_{5}=$	3.00	$\mathrm{NGN}_{5}=11$
THTSA	$2_{88.00}$	PCFIXa	$8^{5.12}$		1	Pccove	$9^{2.5} 6$	AVNS $=$	3.23	NGNS $=11$
THTS:	291.00	PCFIX:	90.08	千居ACKE TRACKER	1	PCCOV:	95.04	AVNS $=$	3.17	NGNS $=11$
THTSa	294.00	PCFIX:	95.87	TRACKER TRACKER	1	PCCOV $=$	97.52	AVNS $=$	3.16	NGNS $=11$
THTS:	297.00	PCFIX $=$	${ }^{9} 0 \cdot 0^{8}$	TRACKER TRACKER	1	PCCOV $=$	95.04	AVNS:	$3 \cdot 23$	NGNS $=12$
THTS*	300.00	$p^{C F I X=}$	88.43	TRACKER TRACKER	1	$\mathrm{P}^{C C_{0} V}=$	94.21	${ }^{\text {A }} \mathrm{VNS}=$	3.21	$\mathrm{N}^{6} \mathrm{~N}^{3}=16$
$\mathrm{T}^{\text {Hts }}$	303.00	PCFIx:	87.60	FRACKE	1	$\mathrm{PCCO}_{V}=$	93.39	$A_{V} \mathrm{~N}_{S}=$	3.53	NGN $N_{S}=16$
$\mathrm{T}^{\mathrm{H} T S}{ }^{\text {a }}$	306.00	PCFIX:	91.74	FGACKER	1	$P C C O V=$	95.87	${ }^{4} \mathrm{~V}_{S}=$	3.60	NGN ${ }_{S}=19$
THTS:	309.00	PCFIxy	88.43	TRACKER TRACKER	1	PCCOV $=$	94.21	AUNS $=$	3.61	NGNS $=16$
$\mathrm{T}_{\mathrm{H}}{ }^{\text {TS }}=$	312,00	$P C_{F I} \mathrm{X}=$	91.74	$\begin{aligned} & \text { TRACKER } \\ & \text { TRACKER } \end{aligned}$	1	PCCOV=	95.87	$A \vee N S=$	3.64	$N_{G} N S=14$
THTS.	315.00	PCFIX ${ }^{\text {a }}$	98.35	TRACKER TRACKER	1	PCCOV	99.17	AVNS $=$	3.53	NGNS $=10$
THTSE	$31_{8} .00$	PCFIX $=$	95.04	$T R_{A C} C^{K} E^{R}$ $T R^{A} C K E_{R}$	1	PCCOV $=$	97.52	$A^{\text {V }}$ VNS $=$	3.50	NGNS = 11
THTS.	321.00	PCFIX $=$	90.08	fracker TRACKER	1	PCCOV_{2}	95.04	AVNS $=$	3.37	NGNS $=12$

TRACKER 2 PCCOV= 95.87 AVNS: 3.12 NONS: 13 PAACKER 2 PCCOV 95.04 AVNS: 3.06 NONS 12 TRACKER 2 PCCOVE 9.52 ,VNSE 3.09 NGN8= 13 PRACKER 2 PCCOV: 96.89 AVNS 3.01 NONSE 14 PRACKER 2 PCCOV= 91.74 AVNSU 2.92 NBNG= 14 PRACKER 2 PCCOV= 86. 78 AVNS: 2.66 NONS: 16
 $T R A C_{K} E_{R} 2 \quad P C C_{O} V=80.43 \quad A V_{N} S=2.84 \quad N_{N} S=11$ TRACKER 2 PCCOV 94.21 AVNSE 3.0_{6} NONSE 12 PRACKER 2 PCCOV= 96.69 AVNS: 3.0_{6} NONS $=9$ PRACKER 2 PCC $C_{D}=98.35$ AVNS $=3.20 \quad$ NONSE 12 PRACKER 2 PCCOV $=93.39 A_{V N}=2.98 \quad$ NGN $_{S}=13$ TRACKER 2 PCCOV: 90.91 AVNS: 2.79 NGNSE 12 TRACKER 2 PCCOV= $90 .{ }^{\circ} 1$ AVNS: 2.85 NGNS: 12 TRACKER 2 PCCOV 91.74 AVNS. 298 NONS 214 TRACKER 2 PCCOV: 93.39 AVNS: 3.08 NGNSE 11

 PRACKER 2 PCCOVE 95.04 AVNSa 3.18 NONS 11 TRACKER 2 PCCOV=99.52 AVNS: 3.17 NONS= 11 TRACKER 2 PCCOV: 95.04 AVNSa 3.22 NONS: 22 $T_{R} A^{A C K E} E_{R} 2 \quad P^{C C} C_{D}=94.21 \quad A V_{N S}=3.21 \quad N_{N S}=26$
 TRACKE $_{R} 2$ PCCO $_{V}=95.87 A_{V} N_{S}=3.60$ NON $_{S}=19$ PAACKER 2 PCCOV 94.21 AVNS: 3.62 NONS $=16$ TRACKER 2 PCCOV: 95.87 AVNS $3.64 \quad N_{G N S}=14$ TRACKER 2 PCCOV $=99.17$ AVNS 30 NONS 210 PR $A C K E R 2$ PCCOV= 99.52 ANSS $3.50 \quad$ NGNS $=11$ PRACKER 2 PCCOV 25.04 AVNS $=3.36$ NONS: 12

THTS:	324.00	PCFIX 95.04
THTS*	327.00	PCFIX 93.39
THTSA	330.00	PCFIX 95.04
$\mathrm{T}_{\mathrm{H}}{ }^{\text {TS }}$ -	333.00	PC $\mathrm{FI} \mathrm{X}=03.39$
$\mathrm{T}^{\mathrm{H} T \mathrm{~s}^{\text {a }} \text { - }}$	336.00	$p^{C F I}=96.69$
TMTS:	330.00	PCFIX=100.00
T ${ }^{\text {TS }}$	342.00	PCFIX $=100.00$
$\mathrm{T}^{\text {HTS }}$	345.00	PCFIX $=95.04$
THTSA	348.00	PCFIX $=100.00$
$T_{\text {H }}{ }^{\text {S }}$ S $=$	351:00	${ }^{\text {PCFIX }}$ = 95.04
HHES	854.00	PCFIX $=95.04$
THTS:	357.00	PCFIXE $9^{3.3}{ }^{3}$
TMIS*	360.00	PCFIX ${ }^{\text {P }}$ 91.74

PINAL DATA

	2	PCCOV $=97.92$	AVNS: 3.13	NONS:
tracker	2	PCCOV 96.69	AVNS $=3.31$	NONS 14
pracker 2	2	PCCOV 97.52	AVNS 3.69	NONS ${ }^{\text {a }} 5$
	2	PCCove 96.69	AYnS 3.64	
	2	${ }_{p} \mathrm{CCO}_{0}=90.35$	$\mathrm{A}^{\mathrm{N}} \mathrm{s}^{\text {a }} 3.66$	
ER	2	PCCOV 50000	AVNS 3.85	NONS $=15$
	2			
	2	$\mathrm{PCCO}_{\mathbf{v}}=97$.	$\mathrm{Mr}^{\mathrm{N}} \mathrm{S}=3.19$	NONs $=10$
	2		avNS 3.98	NS:
PAACKER	2	${ }^{\text {P Cc }}$ OV 097.52	AVNS $=4.07$	N3: 16
Pr ACKER	2	PCCOV 97.32	$\mathrm{ArNs}^{\prime}=3.80$	NoMg $=17$
Pracker	2	$v \pm 96.69$	-	N8
	2	$\mathrm{pcc}_{\text {OV }} 95.87$	${ }^{4} \mathrm{Y}_{\mathrm{N}} \mathrm{S} \cdot 3$	$\mathrm{m}^{6}{ }^{\text {s }}$

tracker 2 PCCOV= 96.69 AVNS: 3.31 nonge 14 Pracker 2 pCCOVE 99.52 aVNS: 3.69 nons: 15

 PRACKER 2 PCCOVEgoo.on AVNS 3.05 NONS: 15

 PaCKER 2 PCCOVE\$00.00 aVNSE 3.98 NGNS $=9$ PACKER 2 PcCOV 97.52 AUNS $=4.07 \quad \mathrm{~N}_{\mathrm{G}} \mathrm{NS}=16$ PRACKER 2 PCCOV: 97.32 AVN $=3.00$ NONg= 17

NUMPER OF STARS IN CATALJo		=	4827
NUMBER OF StAR TRACKERS		-	3
INITIAL SUN ANGLE (DEG)		*	0
FINAL SUN ANGLE (DEO)		\%	90.00
SUN ANGLE INCREMENT (DEO)		*	3.00
VEhICLE ROTATION INCREMEVt	(DEG)	$=$	3.00

$\mathrm{T}^{\text {HTS }}$ "	\$7.00	PCFIX 100.00
THTS=	60.00	PCFIX 9 9.35
THTS:	65.00	PCFIT $\mathrm{P}=100.00$
THTSA	66.00	PcFix $=100.00$
TMTSE	69.00	PCFIX 97.52
PHTS:	72.00	PCFIX $=9 \mathrm{~A} .35$
THTS:	75.00	PCFIX $=93.39$
THTS=	78.00	$\mathrm{PC}_{F!} \mathrm{X}=95.87$
THTS	81.00	PCF 1×100.00
THTS.	84.00	PCFIX $=100.00$
THIS*	87.00	PCFIX 100000

final data

HEAD STAR TRACKER SEARCH PROGRAM

By William J. Weiler

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassitied.

This document has also been reviewed and approved for technical accuracy.

Chief, Electronics and Control Division

ERICH E. GOERNER
Director, Preliminary Design Office

INTERNAL

