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FOREWORD

This report was prepared by the Lockheed Missiles & Space

Company, Sunnyvale, California, and presents a technical

summary of results of the Lunar Mission Safety and Rescue

Study performed for the National Aeronautics and Space Ad-

ministration, Manned Spacecraft Center, under Contract NAS9-

10969. This is one of the following four reports document-

ing the contract findings:

MSC-03975, LMSC-A984262A Lunar Mission Safety and

Rescue - Executive Summary

MSC-03976,

MSC-03977,

MSC-03978,

LMSC-A984262B

I_MSC-A984262C

IMSC-A984262D

Lunar Mission Safety and

Rescue - Technical Summary

Lunar Mission Safety and

Rescue - Hazards Analysis

and Safety Requirements

Lunar Mission Safety and

Rescue - Escape/Rescue

Analysis and Plan

iii



LMSC-A984262D

CONTENTS

Section

FOREWORD

GLOSSARY

Page

iii

xi

m

1 INTRODUCTION

i.i Scope and Objectives

1.2 Approach
1.3 Ground Rules

1.4 Assumptions

LUNAR ARRIVAL/DEPARTURE OPERATIONS

2.1 Situation Description
2.1.1 Lunar Orbit Insertion

2.1.2 Trajectory Velocity Vectors

2.2 Lunar Arrival Operations

2.2.1 Propulsion Malfunction

2.2.1.1 Hyperbolic Trajectory
2.2.1.2 Elliptical Orbit

2.2.1.3 Elliptical Orbit Impact Trajectory -
Propulsion 0verburn

2.2.2 Guidance System Failure

2.2.2.1 Escape from Trajectories
2.2.2.2 Escape/Rescue from Hyperbolic

Trajectories

2.3 Lunar Departure Operations

2.3.1 Coplanar Departure

2.3.2 Non-Coplanar Departure

2.4 Nuclear Propulsion Effects

2.4.1 Nuclear Powered Vehicle Trajectories
2.4.2 Nuclear Radiation Effects

2.5 Escape/Rescue Requirements and Concepts for Lunar
Orbit Arrival/Departure

2.5.1 Escape/Rescue Requirements for Lunar Orbit

Arrival/Departure

2.5.1.1 Impact Trajectories

2.5.1.2 Non-Impact Trajectory
2.5.2 Escape/Rescue Concepts for Lunar Orbit

Arrival/Departure

2.5.2.1 Initial Manning Flight

2.5.2.2 Routine Crew Rotation Flights

2.5.2.3 Nuclear Propulsion Effects

1-1

i-i
i-i

1-2

1-3

2-1

2-1

2-1

2-2

2-6

2-6

2-9
2-10

2-i0

2-11

2-11

2-12

2-12

2-12

2-14

2-14

2-14
2-17

2-17

2-17

2-20
2-20

2-20

2-20

2-21

2-21



LMSC-A984262D

Section

2.6

2.5.3 Earth Based Rescue

2.5.3.1 Rescue Vehicle Based in Earth Orbit

2.5.3.2 Rescue Vehicle Based on the Surface

of Earth

2.5.3.3 Lunar Orbit Alignment

2.5.3.4 Earth Based Rescue Requirements

Escape/Rescue Guidelines for Lunar Arrival/Departure

2.6.1 Escape/Rescue Guidelines for Initial Manning

Flight

2.6.2 Escape/Rescue Guidelines for Routine Crew

Rotation Flights

LUNAR ORBITAL OPERATIONS

3.1 Situation Description

3.2 Orbital Station Operations

3.2.1 Initial Manning and Activation

3.2.1.1 Major Subsystem Failure - Station

Inoperative

3.2.1.2 Life Support/Environmental Control

Subsystem Failure

3.2.1.3 Critical Failures

3.2.1.4 Critical Failure - Tug Inoperative

3.2.1.5 Radiation Environment Effects

3.2.1.6 Tumbling Orbiting Lunar Station

3.2.2 Routine Operations

3.2.2.1 Orbiting Lunar Station as Primary

Rescue Operations Base

3.2.2.2 Escape to Lunar Surface Base

3.2.2.3 Orbiting Lunar Station Rescue from

Lunar Surface

3.2.3 EVA Activities

3.2.3.1 Extra Vehicular Crewman Attached to

an Orbiting Station

3.2.3.2 Crewman Separated from Station

3.2.3.3 Pressure Suit Tear

3.3

3.2.4 Deactivation

3.2.4.1 Subsystem Failure on Orbiting Lunar

Station

3.2.4.2 Critical Failure of Orbiting Lunar

Station

3.2.5 Escape/Rescue Guidelines

Lunar Tug Operations

3.3.1 Near Vicinity of Station

3.3.1.1 Orbital Tug Unable to Complete a

Rendezvous and Docking Operation

Page

2-21

2-21

2-23

2-23

2-26

2-26

2-28

2-28

3-1

3-1

3-2

3-2

3-3

3-4

3-g
3-7

3-8

3-9

3-9

3-i0

3-10

3-i0

3-11

3-15

3-15

3-18

3-21

3-22

3-22

3-23

3-23

3-27

3-27

3-27

41

Ill

vi



LMSC-A984262D

Section

3.3.2

3.3.3

3.3.1.2

3.3.1.3

3.3.1.4

3.3.1.5

3.3.1.6

3.3.1.7
Orbital

3.3.2.1

3.3.2.2

Loss of Tug Electrical Power

Critical Failure of an Orbital Tug
Logistics Cargo Transfer to and from

the Orbiting Lunar Station

Orbiting Lunar Station Maintenance

and Repair
Tu_Station Collision

Tug Critical Subsystem Failure
Operations

Scientific Satellite Placement

Lunar Lander Tug Surface Sortie

Flights

3.3.2.3 Lunar Surface Base Logistics Flights
Escape/Rescue Guidelines

Psge

3-28

3-30
3-32

3-33

3-33

3-34

3-36

3-36

3-40

3-41

3-43

4

3.4 ORBITAL PROPELLANT DEPOT OPERATIONS

3.4.1 Vehicle Servicing at the Propellant Depot

3.4.2 Replenishment of Propellant Depot Supplies
3.4.3 Escape/Rescue Guidelines for Propellant

Operations

LUNAR SURFACE OPERATIONS

4.1 Permanent Lunar Surface Base Operations
4.1.1 Base Configurations
4.1.2 Situations

4.2 Lander Tug Local Operations

4.2.1 Operational Phases

4.3 Lunar Surface Traverse Operations
4.3.1 Traverse Situations

4.4 Lunar Surface Escape/Rescue Analysis

3-47

3-48

3-52

3-52

4-1

4-1

4-1

4-4
4-8

4-8
4-9

4-9

4-12

LUNAR SURFACE BASE ESCAPE/RESCUEANALYSIS

5.1 Lunar Surface Base Escape/Rescue Situations

5.2 Lunar Surface Base Escape/Rescue Concept Definition

5.3 Lunar Surface Base Escape/Rescue Operations Analysis

5.3.1 Operations from Rescue Alert to Ready for
Rescue Tug Separation

5.3.1.1 Rescue Alert Signal

5.3.1.2 Rescue Decision Making
5.3.1.3 Orbital Operations

5-1

5-1

5-7

5-12

5-12

5-12

5-16
5--17

vii



LMSC-A98_262D

Section

5.4

5.3.2 Operations from Rescue Tug Separation to
Touchdown

5.3.2.1 Time Phasing of the Orbit

5.3.2.2 Descent and Landing

5.3.2.3 Crew Preparation (Denitrogenization)

5.3.2.4 Rescue Tug Descent Procedure

5.3.3 Escape/Rescue Operations on the Lunar

Surface

5.3.3.1

5.3.3.2

Landing Distance for a Rescue Tug

Denitrogenization of a Distressed

Crew

5.3.3.3 Rescue Equipment Capacities

5.3.3.4 Egress from Tug Rescue Vehicle

5.3.3.5 Unload Mobility Vehicle

5.3.3.6 Traverse to Disabled Base

5.3.3.7 Ingress to Disabled Base

5.3.3.8 Egress from Disabled Base

5.3.3.9 Traverse to Tug

5.3.3.10 Load Escape/Rescue TUg

5.3.3.11 Crew Base-to-Tug Transfer Time

5.3.4 Escape/Rescue Tug Operations to Return to

Orbit

5.3.4.1 Time Phasing for Escape/Rescue Tug
Ascent

5.3.4.2 Escape/Rescue Tug Ascent to Orbit

5.3.4.3 Rendezvous of Tug/Orbiting Lunar
Station

5.3.4.4 Transfer of Rescued Crew from Tug

to Orbiting Station

Lunar Surface Base Escape/Rescue Concept Tradeoffs

5.4.1 Escape from Lunar Surface Base

5.4.1.1 Escape in the EVA Mode to Standby

Tug

5,,¢.1.2 Escape Via Pressurized Cabin Rover

to a Standby Tug

5.4.1.3 EVA Escape in LESS (Lunar Escape

System)

5.4.2 Rescue from Lunar Orbit

5.4.2.1 Rescue Response Times

5.4.2.2 Rescue Crew Pressure Suit Time

Requirements

5.4.2.3 Rescue _V Requirements

5.4.3 Lunar Surface Base Escape/Rescue Concept
Conclusions

5.5 Lunar Surface Base Escape/Rescue Guidelines

P_ ge

5-17

5-18

5-18

5-25

5-27

5-Z8

5-28

5-30

5-32

5-32

5-32

5-33

5-34

5-36

5-41
5-42

5-44

5-45

5-48

5-50

5-52

5-52

5-53
5-53

5-53

5-54

5-55

5-56

5-56

5-58

5-58

5-59

5-60

viii



LMSC-A984262D

@

4",

@

Section

6

7

8

9

i0

ll

LANDER TUG LOCATION OPERATION

6.1 Escape/Rescue Situations

6.2 Escape/Rescue Concepts

6.2.1 Escape
6.2.2 Rescue

6.3 Escape/Rescue Guidelines for Lander Tug Local

Surface Operations

LUNAR SURFACE TRAVERSE OPERATIONS

7.1 Traverse Escape/Rescue Situations

7.1.1 EVA Traverse Escape/Rescue Situations

7.1.1.1 Walking Traverses
7.1.1.2 EVA Rover Vehicle Traverses

7.1.1.3 Lunar Flyer Traverses
7.1.1.4 Ground Effects Machine Traverse

7.1.1.5 EVA Traverse Rescue Requirements

7.1.2 Pressurized Cabin Rover Vehicle Traverses

7.2 Traverse Escape/Rescue Concepts and Analysis

7.2.1 Walkback Escape/Rescue Concept

7.2.2 Escape/Rescue Rover Vehicle from Base

7.2.3 Rescue Flyer from Base
7.2.3.1

7.2.3.2

7.2.3.3
7.2.3.4

7.3

Response Time for Rescue Flyer

Range for Rescue Flyer

Payload Capacity of Rescue Flyer
Search Capabilities from a Rescue

Flyer

Landing Distance for a Rescue Flyer
Conclusions Regarding Rescue Flyer

7.2.4 Lunar Lander Tug for Rescue from Surface
7.2.5 Lunar Lander Tug for Rescue from Orbit

7.2.6 Portable Emergency Escape Systems

7.2.6.1 Surface-to-Surface Concepts

7.2.6.2 Surface-to-0rbit Concepts

7.2.6.3 Comparison of Escape Techniques

7.2.7 Survival Package Drop for Rescue Support

7.2.8 Buddy Vehicles for Escape/Rescue

7.2.9 Comparison of Lunar Surface Traverse

Escape/Rescue Concepts

Escape/Rescue Guidelines for Lunar Surface Traverse

Operations

EFFECT OF NO ORBITING LUNAR STATION ON ESCAPE/RESCUE PLAN

EFFECT OF NO LUNAR SURFACE BASE ON ESCAPE/RESCUE PLAN

EFFECT OF NO FOBEIGN LUNAR 0RBIT/SURFACE OPERATIONS ON

ESCAPE/RESCUE PLAN

DESCRIPTION OF PORTABLE AIRLOCK AND _ERGENCY PRESSURE

SUIT

ix

Page

6-1

6-1

6-3

6-4

6-4
6-7

7-1

7-1
7-2

7-2

7-2

7-5

7-9

7-9

7-9
7-17

7-17

7-17

7-23

7-23

7-23

7-25

7-25

7-28

7-29

7-29
7-32

7-33

7-34

7-36

7-38

7-39

7-41

7-43

7-47

8-1

9-1

i0-I

Ii-i



LMSC-A984262D

Section Page

Appendix

Appendix

Appendix C

A Lunar Escape/RescueOrbital Velocity Needs

B Lunar EmergencyCommunication

Tumbling Vehicle Escape/RescueAnalysis

A-1

B-1

C-1

B

X



L_C-A984262D

Glo§sary

SYMBOLS, ABBREVIATIONS, AND DEFINITIONS

@

AMU

Activation Time

Backpack

Base

Buddy System

CC

Communications Lag

C-PTV

Delta V or

Delta Velocity

Earth Vicinity

EC/LSS

ECS

_4V

Escape

ESS

FD

Flyer

G&N

Hazard

Astronaut Maneuvering Unit (generic term)

The time required to ready the rescue vehicle and crew

for a rescue operation following receipt of the alert
signal

Portable Life Support System (PLSS) carried on the back

of an astronaut (generic term)

Lunar Surface Base (generic term)

Two or more men working together in the same location and
environment

Crew Compar_ent used to house and transport men on the

PTV and tug (generic term)

The time required for the distressed crew to communicate

a request to the rescue crew

Chemically Powered Prime Transport Vehicle (generic term)

Change in vehicle velocity in inertial space

A general, unspecified location in Earth orbit or on Surface

Environmental Control/Life Support System (generic term)

Environmental Control System (generic term)

Extravehicular Maneuvering Unit (generic term)

Utilization of on-hand equipment and resources, _without

outside assistance, to effect immediate removal from the

proximity of danger

Emplaced Scientific Station (generic term)

Propellant Depot (generic term)

Generic term for any flying vehicle designed for limited
travel over the lunar surface (LFV)

Guidance and Navigation

Presence of a potential risk situation caused by an unsafe

condition, environment, or act

xi

L_



LMSC-A984262D

_P

_A

LCG

Lander

LEAP

LESS

LFV

Integrated Program Plan

IntraVehicular Activity

Liquid Cooled Garment

See Lunar Lander Tug (LLT)

Lunar Escape Ambulance Pack

Lunar Emergency Escape System

Lunar Flying Vehicle (Flyer)

L2 Libration Point Point of stable equilibrium in orbit on the far side
of the Moon

LLT

LM

T/_p

LOD

LOI

LRV

LSB

LSSM

Maneuvering
Work Platform

Mev

MOLAB

MPL

N-PTV

OLS

OPS

PDD

PDI

PGA

Lunar Lander Tug (generic term); space tug with landing

gear

Lunar Module

Lunar Module Pilot

Lunar Orbit Departure

Lunar Orbit Insertion

Lunar Roving Vehicle (Rover)

Lunar Surface Base

Lunar Scientific Survey Module

Platform designed for use in working on the exterior

of an Orbiting Lunar Station

Million Electron Volts

Mobile Laboratory

Manned Payload

Nuclear-Powered Prime Transport Vehicle (generic term)

Orbiting Lunar Station (generic term)

Oxygen Purge System (generic term)

Project Description Document (produced by NASA-MSC)

Powered Descent Initiation

Pressure Garment Assembly

xii



LMSC-AgS_262D

Q

PLSS

PTV

RCS

Rescue

rem

Response Time

RIgS

Rover

Safety

SLSS

Survival

Survival Time

Space Tug

Tug

TEl

Tumbling

AV

Pogo

Portable Life Support System or Backpack (generic term)

Prime Transport Vehicle used to transport personnel and
cargo between Earth orbit and lunar orbit (generic term)

Reaction Control System

Utilization of outside assistance to effect a return to

a safe haven

Roentgens equivalent man

The span of time between the occurrence of an emergency

and the placement of the stranded crew into a temporary

or permanent safe haven

Reusable Nuclear Shuttle (N-PTV) (generic term)

Generic term for any lunar surface transport vehicle
moving on tracks, wheels, etc. (LRV)

Freedom from chance of injury/loss

Secondary Life Support System (generic term)

Refers to the utilization of resources immediately at

hand to extend the lives of crewmen to permit escape
or rescue

Refers to the maximum length of time that a crew can live

following an emergency, using resources immediately at
hand

Multipurpose vehicle used to transport men and cargo in
lunar orbit and to the lunar surface (generic term)

Space Tug

Transearth Injection

Random angular motion about any axis

Delta velocity

A minimal weightj cabinless, rocket propelled vehicle for

horizontal flights in which the crew manually stabilizes

and flys the vehicle from a standing position.

xiii



I_SC-A984262D

Section i

INTRODUCTION

This report presents the results of the technical analysis of escape/rescue/

survival situations, crew survival techniques, alternate escape/rescue ap-

proaches and vehicles, and the advantages and disadvantages of each for ad-

vanced lunar exploration. Candidate escape/rescue guidelines are proposed

and elements of a rescue plan developed.

The recommended escape/rescue guidelines and the detailed rescue plan are

extracted from the analysis results contained in this volume and are pre-

sented in MSC-03976, Technical Summary.

i.i Scope and Objectives

This escape/rescue study analysis task has been directed at all hardware and

operational situations associated with advanced lunar missions under consider-

ation. The spectrum of situations starts with the first advanced manned

flight to the lunar area and includes the final deactivation of both surface

and orbital program equipment elements.

The overall study task objective is to identify escape/rescue safety guide-

lines, to develop realistic hardware and operational concepts, and to prepare

an escape/rescue plan applicable to future manned lunar programs.

1.2 Approach

The escape/rescue analysis addressed the use of various hardware elements

such as the orbital lunar station, prime transport vehicle, and lunar sur-

face base, involved in the advanced lunar program, and the activities of the

crewmen operating this equipment. For analysis purposes, the task was

separated into three parts based on hardware element deployment: lunar

arrival/departure; lunar orbit; and lunar surface.

Escape/rescue situations were developed based on both planned operations with

the various types of possible hardware elements and on inputs from the hazards

i-i
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analysis task. A requirements envelope was then established, expressed in

terms of operational and performance limits and constraints. Critical re-

quirements categories are: communications capability, crew survival time

following an emergency, rescue or escape response time, and delta velocity

(Z_V) needs. Candidate concepts including somepossible design solutions -

were then defined, based on operations analyses and tradeoff evaluations.
Recommendedconcepts and guidelines were then re-evaluated from the standpoint

of safety considerations.

1.3 Ground Rules

In accordance with directions from the Statement of Work, the study complied

with the following ground rules:

a. Lunar surface activities commencedwith the final flight phase

immediately preceding spacecraft touchdown on the lunar surface.

b. The lunar surface activities concluded whenthe crew had returned

to a lunar ascent vehicle and ascent had begun.

c. Lunar orbital activities commencedat lunar orbit insertion and

concluded either with spacecraft contact with the lunar surface

or upon completion of the transearth maneuver.

d. It was assumedthat the design and routine intsrnal operation

of major lunar orbital elements such as the tug, nuclear shuttle,

or orbital station were optimized; however, failure of these

elements to accomplish their intended mission was examined.

e. No significant effort was devoted to hardware design.

f. It wasa study goal that results were to be general enough that

the escape/rescue guidelines and plan would be valid regardless

of lunar program hardware and operational plan changes.

1-2
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1.4 Assumptions

The following assumptions were used to establish s baseline from which typi-

cal operational sequencesand escape/rescue situations were developed.

a. Basic hardware elements that will be used in the Lunar program

will be generally similsr in design and function to those de-

scribed in the Integrated ProgramPlan a_ the ProgramDescription
Documents.

b. Apollo Programtechniques and experience can be used as s general

guide, particularly in the area of humanfactors and operational
time lines.

1-3
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Section 2

LUNAR ARRIVAL/DEPARTURE OPERATIONS

@

@

o

2.1 SITUATION DESCRIPTION

The basic relations of velocity and time for lunar arrival and departure

of the Prime Transport Vehicle (PTV) are described in order to determine

the escape/rescue requirements. Consideration is given to both the initial

manning flights and subsequent crew rotation and logistics flights.

Rescue operations for the initial manning flights will not have the benefit

of personnel in the lunar vicinity. Consequently, rescue operations must

be Earth based, either orbit or surface, with a resultant response time

in days. The alternative to rescue is to provide self-contained escape

capability for either autonomous Earth return or escape to a temporary safe

haven to await Earth based assistance. The routine crew rotation flights

will usually be made with the use of a crew compartment in contrast to the

initial manning flights which will probably include fueled tugs. The ab-

sence of autonomous vehicles such as the tug makes escape impossible with-

out augmenting the crew compartment.

In the following sections, the velocity requirements for Lunar Orbit Insertion

(LOI) are given. The family of possible trajectories at lunar arrival/de-

parture in terms of velocity vectors is described and subdivided into two

classes; those that will result in an impact with the lunar surface, and

the so-called safe trajectories, i.e., those that will not result in impact

with the lunar surface. The effects of failure of the propulsion or guidance

system during lunar arrival operations are examined, and the resulting

escape/rescue stiuations are defined. Similarly, lunar departure opera-

tions are analyzed. An examination of the effects on escape/rescue of using

nuclear propulsion in the prime transport vehicle is also included. Escape/

rescue concepts and requirements are presented for both initial manning and

routine logistics flights, including ananalysis of Earth-based rescue con-

cepts. The resulting escape/rescue guidelines for arrival/departure opera-

tions are then listed.

2.1.1 Lunar Orbit Insertion (LOI)

All practical circumlunar trajectories approach the periselene at velocities

exceeding the lunar escape velocity. Therefore, a velocity impulse is re-

quired to insert a vehicle into lunar orbit and prevent it from escaping

2-1
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the lunar sphere of influence. The required velocity impulse to establish

a circular orbit coplanar with the approach asymptote is a function of the

translunar flight time and the inclination of the trajectory plane to the

moon's orbital plane. Figure 2-1 showsthe spread of velocity impulses

required to establish a coplanar, 60 n.m. lunar orbit as a function of flight

time and trajectory inclination (i R). Application of these velocity im-
pulses results in a circumlunar velocity of 5340 ft/sec. The maximumvelooity
to establish a lunar elliptical orbit and thus avoid escaping the lunar sphere

of influence is 7550 ft/sec. Velocity impulses of approximately 2210 ft/sec

less than those shownon Figure 2-1 will provide lunar capture in a high

elliptical orbit. For example, nominal translunar trajectory is 96 hour

flight time at an angle of 75 degrees corresponding to an Earth orbit of
260 n.m. at 55° inclination which requires a AV of 2930 ft/sec to establish

a 60 n.m. coplanar orbit. In an emergency, a_V of 720 ft/sec would provide

a highly elliptic lunar orbit from which a crew could be rescued later.

2.1.2 Trajectory Velocity Vectors

Assuming the PTV has arrived at the 60 n.m. altitude for Lunar Orbit Inser-

tion into a coplanar orbit, two classes of trajectories can be generated

from this point, elliptic or hyperbolic depending on the magnitude and di-

rection of the velocity vector. Figure 2-2 shows the velocity vector di-

viding line between elliptic and hyperbolic trajectories for a point 60 n.m.

above the lunar surface. The velocity vector for a 60 n.m. circular orbit

(5340 ft/sec) is shown along with the velocity vector for arrival and de-

parture from or to a 96-hour flight time trajectory (8270 ft/sec).

Velocity vectors whose flight path angles are above the horizontal are for

trajectories that have passed perilune and are headed for apolune in the

case of ellipses, and outside the lunar sphere of influence for hyperbolas.

Velocity vectors with flight path angle downward are headed directly toward

perilune which may be less than the radius of the lunar surface.

Figure 2-3 presents an envelope of velocity vectors whose trajectories

have perilunes at 50,000 feet above the lunar surface. This envelope is

superimposed on the Figure 2-2 velocity vectors for both ellipses and

hyperbolas (dotted lines). Trajectories with perilunes above 50,000 feet

are those whose velocity vectors terminate to the right of the cone shaped

envelope. However, a hyperbolic trajectory whose velocity vector is above

the horizontal has passed perilune and consequently will not impact. Ellip-

tic trajectories above the horizontal and to the left of the envelope will

2-2
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Fig. 2-2 L_ar Trajecto_Velocity Vectors
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Fig. 2-3 Envelope of Velocities for Trajectories

With Perigees Above 50,000 Feet
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pass through apolune before returning to an impact perilune, thus allowing

longer reaction time than for those below the horizontal. The envelope

of velocity vectors in Figure 2-3 are modified in Figure 2-4 to show the

line between impact and non-impact trajectories. It should be noted that

the difference between the velocity for a 60 n.m. circular orbit and the

velocity of an elliptic orbit with a 50,000 foot perilune is quite small

(approximately 70 ft/sec). The impact/nou-impact envelope is applied to

lunar arrival and departure operations in the following sections.

2.2 LUNARARRIVALOP_ATIONS

As shownin Section 2.1, failure to achieve proper lunar insertion can result

in either a hyperbolic trajectory or an elliptic orbit, either of which may

be on a course that will impact the lunar surface. The crew can be provided

the meansto control propulsion and guidance to avoid extreme conditions,

but the following analysis is presented in the interest of completeness.

Malfunction of either the propulsion system or the guidance system for main-

taining thrust vector control could be responsible for failure to achieve

the planned orbit. The solid circle on Figure 2-5 shows the locus of possible

final velocity vector end points that could result from either type of mal-
function if corrective action is not taken. The example shownis for a case

where the propulsion system imparted the proper _V, but the thrust vector

was misaligned and resulted in a greater than desired velocity magnitude

and a flight path angle downward; an elliptic orbit whoseperilune is below

50,000 feet.

The inner dotted circle is the locus of the resultant velocity vector end-

points of an initial retro velocity impulse whosemagnitude (approximately

1940 ft/sec in this case) is limited to a value that cannot produce an im-

pact trajectory. Thus, if the lunar orbit insertion maneuverwas accomplished

by using a series of such impulses, the magnitude of each being limited in

a fail-safe manner (say by asing solid propellants), the possibility of an

impact trajectory could be eliminated.

2.2.1 Propulsion Malfunction

A propulsion system failure not complicated by guidance malfunction can re-

sult in either underburn or overb_rn including zero burn. The resultant

velocity vector lies along the horizontal in Figure 2-5, and either terminates

to the right of the near-vertical curved line (hyperbolic trajectory) or
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Fig. 2-4 Envelope of Velocities for Non-Impact Trajectories
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to the left of it (elliptic trajectory). Note that an impacting hyper-

bolic trajectory is not possible for a pure propulsion failure because

the resultant velocity vector is coincident with the desired circular

velocity vector.

2.2.1.1 Hyperbolic Trajectory

A zero or partical burn, not complicated by guidance malfunction, which

results in a velocity of more than 7550 ft/sec at periselene places the

prime transport vehicle (PTV) on a hyperbolic escape trajectory out of the

lunar sphere of influence. The approach velocity for a nominal 96-hour

translunar flight exceeds the parabolic escape velocity of 7550 ft/sec for

a 60 n.m. periselene by approximately 720 ft/sec. Complete propulsion

failure at insertion would result in the vehicle continuing back out of the

lunar sphere of influence on a mirror image of its hyperbolic approach

trajectory. For the initial manned flights, no assistance in the form of

rescue from the lunar vicinity is available. Consequently, an escape situ-

ation exists unless the PTV is on a free Earth return trajectory which

passes the problem off to Earth. Assuming complete failure of the propulsion

system, another means of propulsion must be used to effect an escape. This

can be either in the form of an attached, fueled, tug or a crew compartment

with its own propulsion and guidance system. The propuslion requirement to

return to lunar orbit, in terms of velocity imFAlse, is a direct function

of the time from periselene until initiation of the retro maneuver. If pro-

cedures are set up to respond immediately in the event of propulsion failure

during lunar orbit insertion, the crew can detach the crew compartment from

the prime transport vehicle (PTV) and with an expenditure of approximately

lO00 ft/sec attain a lunar elliptical orbit. For times from periselene in

the order of hours, Table 2-1 presents the velocity impulse and time require-

ments to place the crew back in lunar orbit where they could await rescue.

@
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Table 2-1

HYPERBOLICESCAPEVELOCITYREQUIREMENTS

TIMEFROMPERISELENE

(HOURS)

4

6

8

io

12

NOTE:

TOTAL AV (FT SEC) REQUIRED TO RETURN TO 60 N.M.
LUNAR ORBIT IN:

6 HOURS

7,200

9,000

10,700

12,300

14,100

108 Hour Translu_nar Flight Time

12 HOURS I 18 HOURS

5,400 ' 4,800

6,200 5,300

7,000 5,800

7,800 6,300

8,500 6,800

2.2.1.2 Elliptical Orbit

For partial burn resulting in a velocity of less than 7550 ft/sec at 60 n.m.,

the prime transport vehicle would be placed on an elliptic orbit. As the

crew for the initial manning flight would have supplies for a long period of

time, no immediate danger would exist and they could await Earth rescue

similarly to the previous case of returning to lunar orbit. For the case of

overburn in the propulsion system, an excess velocity change of 70 ft/sec

results in a perilune of 50,000 ft which is reached in approximately one hour

from periselene. Any overburn that exceeds the desired by more than 70 ft/sec

will result in an impact trajectory which is considered in the next section.

For the case of a small overburn, corrective action can be taken using sec-

ondary systems such as the ACS to establish the 60 n.m. circular orbit.

2.2.1.3 Elliptical Orbit Impact Trajectory - Propulsion Overburn

Lunar impact trajectory can result from a failure of the propulsion system

to cut off, thereby imparting more velocity impulse than required. For over-

burn the time before lunar impact, consequently the escape time, is a direct

function of the amount of additional velocity change imparted to the PTV.

For a small overburn, in the order of 70 to lO0 ft/sec, a time of 40 to 50

minutes is available before impact. For large overburns, in the order of

1000 to 1300 ft/sec, the time to impact is in the order of 8 to lO minutes.

For the initial manned flight the crew must escape from the PTV for the case

of excessive overburn. The only alternative is to be able to reorient the
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thrust vector and apply a corrective thrust to take out the effects of the

overburn. The time requirements imply that the meansof escape (either
fueled tug or powered crew compartment)must be mannedand activated at
time of lunar insertion.

2.2.2 Guidance System Failure

In the event that the propulsion system imparts the correct magnitude of

velocity impulse, but the guidance system fails to maintain the proper

thrust vector control, the resulting envelope of velocity vectors is shown

by the solid circle on Figure 2-5. By deccupling the propulsion system

and guidance system failures, the resultant velocity vectors must either lie

along the original velocity vector for propulsion failures, or be contained

in the set whose ends lie within or on the circle for guidance system failures.

The possible trajectories that may result from a malfunction at lunar in-

sertion at 60 n.m. altitude are defined by the dotted curve on Figure 2-5.

The area to the right of the dotted curve are those velocities that result

in a non-impacting trajectory. The definition of non-impacting is a trajectory

whose perilune is 50,000 feet or more above the lunar surface. Those velocity

vectors below the horizontal and cone-shaped curve are impact trajectories,

including the hyperbolic escape trajectories which pass through perilune

before escaping. As mentioned earlier, the dividing line between elliptical

and hyperbolic orbits is the near vertical curved line. The velocities above

the horizontal to the left of the dotted cur_e represent elliptical orbits

which will pass through apolune first, but will impact becuase their peri-

lunes are below 50,000 feet. However, the time to react is in the order of

an hour compared to the impact trajectories below the horizontal which are

headed directly towards an impact perilune with reaction times in the order

of minutes.

2.2.2.1 Escape from Impact Trajectories

For those trajectories with an imminent impact (below the curve in Figure

2-5) rescue is not feasible within the few minutes reaction time available.

The crew must take action to provide a corrective impulse to at least get

back on an impact-free trajectory even though it may be hyperbolic. For the

96 hour case illustrated by the circle, the _V for a safe trajectory is in

the order of a I000 feet/sec while that to regain a safe ellipse from the

right hand side of the circle is 4000 ft/sec. For those cases where a fueled

tug is available, the tug could provide the escape _V providing it is manned
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and activated. For normal crew rotation flight with only a crew compartment

and no tug, a separate propulsion capability must be provided.

2.2.2.2 Escape/Rescuefrom Hyperbolic Trajectories

The velocity impulses required for rescue or escape from a hyperbolic tra-

jectory are shownon Table 2-2. The left part of the Table gives theAV
required to leave a 60 n.m. lunar orbit and rendezvous with the distressed

vehicle, while the right hand part gives the AV to return to lunar orbit

either in a rescue or escape mode. These values are based on 108 hour trans-

lunar flight time. Faster flight times will require slightly higher values.

(See Appendix A)

TABLE 2-2

ESCAPE/RESCUE VELOCITY IMPULSE REQUIREMENTS

FROM HYPERBOLIC TRAJECTORIES (108 HOUR TRANSLUNAR FLIGHT TIME)

DISTRESSED VEHICLE TIME I

FROM PERISELENE (DELAY + I RENDEZVOUS INCLUDING

CHASE) I A DELAY TIME OF:

(HoURs) I 2 4 6
4 I 9,600

6 1 5,700
8 _ 4,600

L
10 I 4,000
12 3,600

................................... l.......

16,000

8,600120,000

6,400 _iI,500

5,400 8,300

RETURN TO LUNAR

ORBIT IN:

6 HRS 12 HRS
I

7,200 i 5,400

9,0001 6,200

10,700

12,300

14,100

7,000

7,800

18 HRS

8,500

4,800

5,300

5,800

6,300
i

6,800

(Delay time is the elapsed time from the distressed vehicle passing periselene

until the rescue vehicle leaves the 60 n.m. lunar orbit)

2.3 LGNAR DEPARTURE OPERATTONS

2.3.1 Coplanar Departure

The resulting velocity vectors from a coplanar trans-Earth injection burn

are shown by the solid circle on Figure 2-6 along with the envelope of

impact trajectories. As mentioned previously in the lunar arrival section,

for a straight propulsion failure the resultant vector will lie along the

horizontal. For guidance system failure, but with a proper burntime, the

end point of the resultant velocity vector will lie on or within the circle.

The most severe case is contained within those that result in an immediate

impact trajectory, i.e., below the horizontal and the dotted cone. Reaction
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time is in the order of minutes and any remedial action must be self-generated

in the form of escape capsule, self-propelled crew compartment, or fueled tug.

The magnitude of the correction velocity impulses required can be ascertained

from Figure 2-6 and must be sufficient to get the crew on a non-impact tra-

jectory. If a non-impact trajectory can be attained, then the crew san await

rescue.

2.3.2 Non-Coplanar Departure

Normal lunar departure may require large plane changes in order to properly

align with the Earth-Moon line due to the rotation of the moon about the Earth

while the PTV is in lunar orbit (refer to Section 2.5). For small changes

(less than 20 degrees) a single burn insertion may be satisfactory. However,

for large plane changes, the 3-burn sequence involving an intermediate ellipse

A typical sequence for a 90 degree plane change is shown on

The velocity impulses are as follows:

can be used.

Figure 2-7.

Burnl

Burn 2

Burn3

(36 hour ellipse)

(90 Degrees)

(72 hour TEl)

1960 ft/sec

910 ft/sec

1596 ft/sec

Burn #i involves the same hazards as for a coplanar injection only with

smaller velocities. Burn #2 has the hazard that a failure could result in

an impact trajectory, but magnitude of velocity required to correct is

smaller than previous cases and the reaction time is long enough to allow

rendezvous and rescue to be considered. Burn #3 is of smaller magnitude and

will be made at a higher altitude with a resulting higher pereiselene. In

general the three-burn departure has less stringent escape/rescue require-

ments than the single-burn transEarth injection.

2._ NUCLEAR PROPULSION EFFECTS

The use of nuclear propulsion will _ffect two areas of Lunar Arrival/Departure

Escape/Rescue consideration; the actual arrival and departure altitudes, and

the radiation danger to an escape or rescue effort.

2._.i Nuclear Powered Vehicle Trajectories

A lunar orbit insertion sequence suggested in Appendix E of MSC-03977 for a

nuclear powered Primary Transport Vehicle (PI_) is shown on Figure 2-8.

This sequence uses the cooling V_ises to provide the last increments of

velocity impulse required for lunar insertion. The initial burn for lunar

orbit insertion is initiated at an altitude of I00 n.m. or more. Several

orbits of cooldown pulses are employed to attain the desired 60 n.m. orbit.
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The insertion could be accomplished with a single burn if the cooldown

pulses were nullified by venting them through a null thrust arrangement.

The effect of raising the initial insertion altitude is to open the non-

impact cone of velocities given previously in Figure 2-5. In other words

the higher the altitude the steeper the flight path angle must be for impact

for the samemagnitude of velocity. The velocity requirements for escape

and rescue are of the samemagnitude as the 60 n.m. case, with the difference

in circular velocity approximately 200 ft/sec.

The lunar departure of a nuclear vehicle is quite similar to chemical pro-

pulsion with the exception that the initial impulse is a little less and

the additional velocity is imparted by cooling F_lses after each main burn.

2.4.2 Nuclear Radiation Effects

The dose rates gererated by the NERVA engine immediately after shutdown are

shown in Figure 2-9. For escape or rescue these dose rates must be avoided.

For escape from a vehicle on an immediate impact trajectory the reaction time

is in the order of minutes. Figure 2-9 gives a dose rate of 2 Rem/sec lO0

seconds after shutdown, decreasing to 1 Rem/sec 300 seconds after shutdown.

Escape will have to be accomplished in this time frame with consequent radia-

tion of 1 to 2 Rem/second. This radiation is for the engine viewed at 90

degrees. The crew compartment is located at the end opposite the engine and

consequently is shielded by the PTV. The effect of this shielding is shown

on Figure 2-10 which indicates an attenuation of 10 -3 within an angle of 15

degrees of the center line.

For either escape or rescue, a separate means must be provided so that the

attitude of the PTV can be oriented and held so that escape or rescue can

be accomplished through this safe view angle.

2.5 ESCAPE/RESCUE REQUIREMENTS AND CONCEPTS FOR LUNAR ORBIT ARRIVAL/DEPARTURE

In the preceding sections no distinction has been made between the initial

manning and activation flight and the subsequent routine crew rotation and

logistics flights, because the resulting situations were not dependent on

the flight program. In this section the escape/rescue requirements are

summarized and the escape/rescue concepts for each set of flights are detailed.

2.5.1 Escape/Rescue Requirements for Lunar Orbit Arrival/Departure

Based on the analysis in the previous sections, the lunar orbit arrival/

departure escape/rescue situations have been defined as follows:
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Impact Trajectory

Hyperbolic

Elliptic

Non-Impact Trajectory

Hyperbolic

Elliptic

2.5.1.1 Impact Trajectories

Impact trajectories are not considered realistic, since crew control of either

propulsion or guidance will avoid such trajectories. Any impact trajectory

that could reasonably be allowed to occur can be escaped from by a crew com-

partment with a AV capability of i000 ft/sec used to reach a safe elliptical

orbit.

2.5.1.2 Non-lmpact Trajectory

The elliptical non-impact trajectory is the safest condition outside of the

planned lunar orbit. The crew can be rescued, or if propulsion is available,

they can place themselves in a circular lunar orbit for an additional 2000

ft/sec or less.

For the non-impact hyperbolic orbit, the time to initiate escape or rescae

is still critical. The longer the delay the larger the velocity impulse

required to return to lunar orbit as shown previously in Table 2-2. An on-

board crew compartment or tug propulsion capability of iO00 ft/sec should be

provided in order to avoid a hazardous chase for rescue.

2.5.2 Escape_escue Concepts for Lunar Orbit Arrival/Departure

2.5.2.1 Initial Manning Flight

The initial flight must include the capability for the crew to escape from

the Prime Transport Vehicle (PTV) and to attain either a safe lunar orbit to

await Earth rescue or to return to Earth orbit. For the lunar orbit option,

sufficient consumables should be aboard for the crew to survive in lunar

orbit for 3-4days.

The lunar orbit option requires a total of I000 ft/sec while the Earth orbit

return _ill require an additional i0,000 ft/sec for Earth orbit insertion.

A fully fueled and provisioned tug capable of abort and Earth return provides

the most flexibility.

2-20



L_-A984262D

2.5.2.2 Routine Crew Rotation Flights

For rotation flights, the crew may be transported in a crew compartment

attached to the Prime Transport Vehicle, but without the tug propulsion

module. At lunar arrival, the crew could find itself on an impact trajectory

with no time available to await rescue. The crew compartment should be aug-

mented to provide an escape capability. This will include a propulsion

system with a nominal _V capability of i000 ft/sec to allow the crew to attain

a safe trajectory. The propulsion system must also have quick reaction capa-

bility and long storage life. The guidance system should be separate from

the main PTV and activated and updated before the lunar insertion burn.

Normal emergency life support for 12 hours should be provided.

In order to minimize reaction time to rescue a crew that has achieved a safe

elliptical orbit, the rescue tug in lunar orbit should be fully prepared for

a rescue mission wherever a crew arrival or departure is scheduled.

2.5.2.3 Nuclear Propulsion Effects

The use of nuclear propulsion for the Prime Transport Vehicle (PTV) offers

the advantage that the initial lunar orbit insertion burn will be made at a

higher altitude, thereby decreasing the chance of an impact trajectory some-

what.

A major disadvantage for escape or rescue is the radiation environment. For

either escape or rescue an independent attitude control system is necessary

in order to maintain the PTV in a proper attitude so that the escaping crew

can stay within the 30 degree radiation shadow cone of the PTV while escaping

or being rescued. The system must be capable of maintaining attitude for a

long enough duration for the crew to attain a safe distance of at least 150

n.m.

2.5.3 Earth Based Rescue

Two concepts can be considered for using vehicles based in the Earth vicinity

to rescue personnel from lunar orbit; a rescue vehicle stationed in Earth

orbit and a dedicated rescue vehicle on the surface of Earth.

2.5.3.1 Rescue Vehicle Based in Earth Orbit

The rescue vehicle based in Earth orbit would seem to offer the quickest

reaction. However, the orbit must have the proper relation to the Earth-Moon

line for translunar injection (see Fig. 2-11) and this relation changes at
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a rate of i8 degrees/day (55° x 262 n.m. orbit). Consequently, a waiting

time of up to lO days for orbit alignment could be required. The alternative

is to change the plane of the Earth orbit at a cost in the order of 36,000
ft/secAV for 90 degrees. The use of 36 hour transfer ellipse would save

about 60%of thisAV for the 90 degree case, but this is still not a feasible

solution. To avoid plane changesin Earth orbit for rescue v_icles, the

missions sh_ld be planned to wait out the orbit phasing. The PTVflight
time betweenEarth orbit and lunar orbit is in the order of 96 to 120 hours.

Assuming the need for rescue would not arise until Lunar Orbit Insertion, 5

days from Earth orbit departure, the rescue vehicle in Earth orbit would wait

another 5 days for the proper alignment. Itcan be argued that, since the

fastest transfer time is still 2 days, an additional 5 days will not make

that muchdifference. If the lunar crew can survive for two days, provisions

for five additional days would not be difficult to provide. For lunar de-

partures, the mission could be planned to coincide with the Earth orbit align-
ment for translunar insertion.

Fcr rescuing a lunar crew as a result of a randomindicent, the response time

for a rescue vehicle based in Earth orbit could be as muchas 14 days. If

this modeis planned, then provision must be madefor the crew to survive

for a minimumof 14 days.

2.5.3.2 RescueVehicle Based on the Surface of Earth

A dedicated vehicle on a launch pad on the surface of Earth has the advantage

of the Earth's rotation (15 degrees/hour) to position it for alignment with

the Earth-Moon line; i.e., the surface launched rescue vehicle has two op-

portunities each day to launch into a translunar injection orbit. The prob-

lems of launch, ascent, and orbit insertion of a vehicle capable of perform-

ing a rescue mission to lunar orbit requires further study before the question

of rescue originating from Earth orbit vs. Earth surface can be resolved.

2.5 •3.3 Lunar Orbit Alignment

As shownon Figure 2-12, the Earth orbit/Earth-Moon line alignment is not the

only consideration in avoiding costly plane changes. The Right Ascension
(RA) of the lunar orbit to the Earth-Moonline varies on a fourteen day basis.

As shownin Figure 2-13 the approach asymptote of the lunar trajectory is not

aligned with the Earth-Moon line but is at someangle in terms of the right

ascension. To avoid the necessity of a plane changeat lunar orbit insertion,

the lunar orbit must have the proper angular relation to the approach asymptote.
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Fig. 2-13 Lunar Approach Asymptotes (Simul_aneous Arrival)
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The approach asymptote is a function of several factors, predominately the

translunar flight time which determines the arrival velocity and position

at the lunar sphere of influence.

At first glance, it would appear that varying the flight time, consequently

the RA of the approach asymptote, may be a way of decreasing a plane change

requirement at lunar orbit insertion, but closer examination shows that this

method is quite limited. As shown in Figure 2-13 the approach asymptote will

vary over a range of 54 degrees as a function of translunar flight time.

However, certain delays for TLI are introduced.

In order to change the approach asymptote from 87° to 33° (Figure 2-13) the

translunar injection must be delayed 60 hours (108 minus 48); a rather

heavy penalty for a rescue mission. If the injection is not delayed by the

difference in fSight time, the result is self canceling due to the change in

lunar orbit right ascension. This is illustrated in Figure 2-14 which shows

the arrival conditions for a 48 and a 108 hour flight with the same (Moon's

position) translunar injection time. The right ascension of the lunar orbit

increases at the rate of .55°/hr, while increasing the flight time increases

the approach asymptote right ascension an average of .9°/hr, for a net gain

of .35°/hr or a total of 21 degrees for a 60-hour delay in arrival.

In view of the above, this approach is not practical. Consequently, the

rescue vehicle may require the capability to correct a lunar orbit misalign-

ment of up to 90 degrees.

2.5.3.4 Earth Based Rescue Requirements

The nominal Earth based rescue mission introduces the following approximate

time and A V requirements:

Earth Orbit Alignment

Translunar Injection

Translunar Flight Time

Lunar Orbit Insertion

i0 days

i0,000 ft/sec

60 hours

24 hours and 4,800 ft/sec

(90° plane change using 24 hour ellipse)

Phasing, Rendezvous, and Rescue 12 hours

TOTAL RESCUE TIME AND_V 14 days and 15,OO0 ft/sec

2.6 ESCAPE/_KSCUE GUIDELINES FOR LUNAR ARRIVAL/DEPARTURE

The arrangement of personnel and equipment for the initial manning flight is

quite different from the subsequent routine crew rotation flights. Conse-

quently, two distinct sets of guidelines arise as given in the following.
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The initial manningflight guidelines pertaining to the tug are for the
initial tug only.

2.6.1 Escape/Rescue Guidelines for Initial Manning Flight

1. The initial manning flight should transport the crew to lunar orbit in a

tug which is fueled and provisioned to make an autonomous escape from

the Prime Transport Vehicle (PTV) and choose rendezvous with the Orbiting

Lunar Station or return to Earth orbit.

2. Prior to lunar orbit insertion the tug must be manned and activated for

immediate escape.

3. The guidance system of the tug must be activated and capable of warning

the crew of any maneuvers that place them on a trajectory requiring escape.

4. The tug guidance and navigation system must be capable of generating the

commands for the escape maneuvers.

5. The tug should be able to return to and rendezvous with the orbiting lunar

station following an escape from the PTV.

6. The PTV must contain a redundant attitude control system capable of over-

coming any tumbling sufficiently for the crew to escape in either the

tug or crew compartment. In addition, a nuclear PTV should have an auto-

pilot/attitude control system capable of holding the PTV in a stationary

position long enough for the crew to escape to a safe radiation distance.

7. The PTV redundant attitude control system shall be activated and operated

from the tug or crew compartment.

8. Standby rescue should be available from Earth during the initial manning

flight, or else the tug should have the capability to return to Earth

orbit on an autonomous basis.

2.6.2 Escape/Rescue Guidelines for Routine Crew Rotation Flights

1. The crew compartment of the Prime Transport Vehicle should have its own

propulsion system (1000 ft/sec AV) including attitude control which will

allow the crew to escape in the event of faulty lunar arrival or departure

maneuvers. The propulsion system should have quick activation time coupled

with long dormant storage life.

2. The crew compartment of the prime transport vehicle should contain an

autonomous guidance and navigation (G&N) system capable of monitoring the

effect of any maneuver in the lunar areas. This G&N system should be able
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to generate commandsfor escapemaneuversincluding placing the com-
partment on a safe trajectory.

3. The crew compartment should have a communications system capable of signaling
the station of the need for rescue.

4. The crew compartment should have aids, both electronic and visual, to allow

a rescue vehicle to locate, track, and rendezvous.

5. During arrival and departure maneuversthe standby rescue tug at the station
should be mannedand activated in the event that rescue is needed.
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SECTION 3

LUNAR ORBITAL OPERATIONS

Lunar orbit escape/rescue situations are related to the proposed hardware, its

deployment, and operational utility. The proposed key hardware elements are

the orbital station, space tug, prime transport vehicle (PTV) could contain

either a chemical or nuclear propulsion unit, one or two tugs, or a self-

sufficient crew compartment and cargo. A propellant depot is a possible addi-

tional hardware element; however, it is doubtful if its deployment would occur

until well after initiation of the lunar program.

3•1 SITUATION DESCRIPTION

It is assumed that the advanced lunar exploration program starts with the injection

of the unmanned orbiting lunar station into lunar orbit. In approximately 2

months the first manned flight occurs, using a prime transport vehicle (PTV),

one or two tugs, and delivering the initial crew. After arrival in the lunar area

The PTV injects into lunar orbit and completes rendezvous with the station.

The crew then separates their tug from the PTV and docks with the station. The

station is then activated, checked, and placed on operational status.

Regular and periodic logistics flights are then made between the E,arth vicinity

and the station, bringing up additional crews, lander tugs, and cargo. Surface

landings will be made by the lander tugs at various sites. Each landing and

scientific sortie is for a span of time of up to 28 days.

The orbital station can maintain a nominal manning level of approximately 8

crewmen. Typical station operations include the docking/undocking of tugs,

unloading and loading cargo, station housekeeping and EVA activities in support

of the station.

A propellant depot may be placed into orbit in the near vicinity of the station

at some future date. This depot would act as a storage facility for various

consumables and propellants and would service tugs for various missions. The

range and position of the depot relative to the station has not yet been deter-

mined.
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In the following paragraphs the operations and escape/rescue situations in lunar

orbit are described. The references to Hazard Studies by number pertain to the

studies presented in MSC-03977from which requirements for escape and rescue
were derived.

3.2 ORBITINGLUNARSTATIONOPERATIONS

The escape/rescue situations arising from the orbital station operations listed

below are presented, their requirements are defined, and the escape/rescue

alternatives are analyzed and evaluated;

o Initial Manning and Activation
o Routine Operations
o EVAActivities

o Deactivation

In conclusion the resulting escape/rescue guidelines for the lunar orbital
station are listed.

3.2.1 Initial Manning and Activation (R_fer to Hazard Studies i and _)

The initial activation and manning of the orbiting lunar station is expected

to occur after the unmanned station has been placed in the desired lunar orbit,

has stabilized, and after remote systems status checks have been satisfactorily

completed.

The first manned flight consists of a prime transport vehicle (PTV) and a payload

consisting of initial cargo, a crew, and at least one and possibly two lunar

tugs. The PTV propulsion can be either chemical or nuclear. The planned

mission operation includes insertion into lunar orbit, rendezvous with the lunar

orbital station, unloading of supplies, and station activation and checkout.

For the purposes of this analysis it is assumed that the tug and cargo has success-

fully separated from the PTV and docked with the station. The tug separation from

the PTV and docking with the station is covered in Section 3.3.1, Tug Operations

Near Vicinity of Station.
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3.2.1.1 Major SubsystemFailure - Station Inoperative

The failure of a critical station subsystem, including any backup and emergency
capability could result in a decision to discontinue or even to abort the

initial mission. As a result of the subsystemfailure two immediate options
are available to the crew:

a. Remainat the station and await a flight from Earth with either

repair or subsystemreplacement capability.

b. Abandonthe station and return to Earth in the docked tug vehicle.

Under option (a) the crew could elect, depending on the station failure mode, to

either remain in the station or in the docked tug. If necessary the tug could
support the station, by meansof a tug/station umbilical, in areas such as

communications, station-keeping, attitude control, and perhaps data management

so that a station failure would not necessarily result in total loss of capability.

Such support could enable the crew to continue station activation while awaiting

a repair flight from earth.

If the subsystemfailure was of sucha nature that the crew had to abandon the

station, the docked tug should have sufficient capability to enable the crew

to return to Earth orbit. In order to accomplish this return, the tug must

have life support capability of at least seven days and a _V capability of

15,000 feet per second. The seven days allows 36 hours for phasing, plane

change, and departure maneuvers (including a 24 hour elliptical plane change

maneuver), 60 hour trans-Earth flight time, and a 3 day contingency for rescue in

Earth orbit.

If the tug does not have the required _ V capability (because of performance

inadequacy or because of off-loading tug propellant to satisfy PTV payload

restrictions), the crew must remain in the tug in lunar orbit until a PTV can

either bring a repair crew from Earth to repair the station and enable contin-

uation of the station activation mission or return the stranded crew to the Earth

vicinity. Provisions for iI days are required to await the arrival of a PTV

from Earth orbit.
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3.2. I. 2 Life Support/Environmental Control Subsystem Failure

A failure of the station primary life support/environmental control subsystem

alone would probably not seriously affect the station activation mission because

of station design redundancy and the proposed two pressurized compartment design

philosophy. Asstmning that the failure mode is such that the entire station life

support/ECS subsystem fails (including all backup capability) the crew could

retreat to the docked tug and remain until repairs could be made or until a

repair crew with replacement parts could arrive from Earth. An alternative

is to abandon the station and return to Earth in the docked tug. The operational

decision would be strongly influenced, of course, by the remaining tug life

support/ECS capability with respect to the length of time required to bring a

crew from Earth and to repair the failed subsystem.

3.2.1.3 Critical Failures

In a critical failure situation the station sustains severe physical damage that

results in a sudden loss or deterioration of a critical capability, structural

damage, and crew injury or Jeopardy. Such a failure could be caused by a

collision or meteoroid strike and could be accompanied by fire or an explosion.

Sudden and rapid depressurization may also occur as a result of shrapnel,

explosive force or meteoroid damage. Any serious or critical injuries will

complicate personnel removal from the station and ingress into the docked tug.

Figure 3-I presents some of the possible event sequences and alternatives that

could result following this type of failure.

If a fire occurs, smoke will be produced, oxygen will be consumed in the com-

bustion process, and noxious or perhaps even toxic gases will be produced

or released. Emergency portable oxygen masks and supply bottles or pressure

garments with a built-in portable oxygen supply would provide sufficient

protection from smoke or gases and the effects of depressurization to enable

crewmen to evacuate and perhaps seal-off the affected area or to traverse to the

docked tug.
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If the rate of oxygen depletion or production of smoke or toxic gases was so

rapid that the crewmen could not traverse to the site of stored emergency gear

or could not don and activate an emergency garment rapidly enough, perhaps

due to an injury, the crewman could enter a second pressurized compartment

that would provide a temporary safe haven. Any gases or smoke that filtered

into the compartment with the crewmen could be cleared by a self-contained life

support/ECS subsystem. The crewman would then have sufficient time to don and

activate emergency gear. Such a compartment should be separate but interconnected

and have self-contained and independent life support, environmental control,

power source, lighting, communications, first aid supplies, emergency garments

and a pressurized stretcher. In addition, provisions should be made to convert

the local ambient pressure in the compartment in a programmed manner from the

station pressure to suit pressure in order to provide a denitrogenization cap-

ability and thereby decrease the span of time required to don pressure suits

or emergency garments.

An emergency situation involving an explosion, meteoroid strike or a collision

would probably be complicated by depressurization. A crewman already in a

pressure suit would, of course, have no problem and could proceed directly to the

docked tug. If the crewmen were not in pressure suits, an alternative would

be to don emergency pressure garments and immediately traverse to the docked

tug. A second alternative, depending on the depressurization rate, would be

for the crewman to enter one of the alternate pressurized compartments previously

mentioned.

Once in an alternate compartment the crewman could either await rescue or could

don an emergency pressure garment, depressurize the compartment to the local

station ambient pressure level and translate to the tug. If injuries prevented

this procedure, the crewmen would have to retain a shirtsleeve environment in

the compartment and await rescue. The rescue crew would then proceed to the

compartment through the depressurized station and would require access into

the pressurized compartment through an airlock. If the compartment airlock is

inoperative, or if there was no airlock available, a portable airlock would be
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required. After entering the pressurized compartment the rescue crew would be able

to either assist injured crewmen in donning emergency pressure garments and in

traversing to the tug or could place the crewmen in the pressurized stretcher

for transporting to the tug.

The alternate compartment and its subsystems should be sized for the normal station

crew complement (current thinking is 8 crewmen). Storage space would be needed for

consumables sufficient for 14 days and emergency equipment such as oxygen masks,

portable oxygen supplies, and emergency pressure garments. In addition, dedicated

equipment is needed in the areas of power, first aid supplies, communications

and environmental control.

A properly configured and sized compartment would be quite large, perhaps as

much as 150 feet 2 of floor space and a total of 1,O00 feet3 of volume as a

minimum. Even one compartment will penalize the station in terms of space,

weight, resources, data management, and maintenance and repair, unless it can

perform a normal function for routine operations. One possible solution is to

use the crew sleeping quarters as the alternate compartment. In addition to the

obvious potential savings in space and weight there could be an added advantage

in that 1 or 2 crewmen could, as a minimum, always be in the sleeping quarters/

alternate compartment and immediately available for rescue work.

In order to ensure the availability of a rescue crew and immediate access to

pressure suits, two crewmen should remain in the docked tug at all times during

the station activation period. In this manner, mobile and suited crewmen would

be immediately available for rescue work if required.

3.2.1.4 Critical Failure - Tug Inoperative

A critical failure could result in major damage to both the station and all

docked tugs. In this situation critical personnel injuries are probable,

coupled with rapid depressurization and loss of environmental control. The

only available temporary safe haven would be station alternate compartments.
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It is conceivable that one or more crewmenmight be able to traverse to and

enter an alternate compartmentand hence extend his survival time.

No rescue crew would be available in the lunar area and no meansof escape from

the station would exist since the tug is presumedto be inoperative. A survival

time of 14 days (refer to Table 3-1 for derivation of the 14-day span) would be

required in order to allow for a rescue crew, based in the vicinity of the Earth,

to arrive at and enter the seriously damaged station, search for and find any

crewmen that are still alive, and remove them to the rescue vehicle. It follows

that any station pressurized compartments must have the capability for communi-

cating with the Earth vicinity and must have life support capability for 14 days,

including a contingency allowance to compensate for rescue crew activities after

their arrival at the station.

Table 3-1

RESPONSE TIME FOR RESCUE OF CREW IN LUNAR ORBIT

BY A RESCUE VEHICLE FROM EARTH ORBIT

Event

Phasing

Trans Lunar Injection

Coast

Lunar Orbit Insertion

Phasing, Rendezvous,

Docking, & Rescue

Time

Span

I0 days

6O hr

ACCL_NI.

Time

i0 days

12.5 days

Remarks

_ximum time for Earth orbit/

Moon alignment ......

Relatively fast transfer

_hr

12 hr

13.5 days

1A days

Elliptical Plane Change

Maximum 90°

Nine hours for entrance

and rescue

4

3.2.1.5 Radiation Environment Effects

The presence of a radiation environment in the orbiting lunar station can

occur as a result of a failure in on-board nuclear reactor power systems or
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other types of nuclear systems. The possibility of radiation contamination

must be taken into account in the design and performance requirements for masks,

pressure suits, emergencypressure garments, pressurized stretchers and station

pressurized compartments. Radiation level measurementinstruments and sensors

with appropriate alarm and display systems must be designed into the tug, station,

and any potential Earth-vicinity-based rescue vehicle. In addition, portable
instruments must be available for use by a rescue crew to measureand monitor

local ambient radiation levels during a rescue operation. Operation and interpreta-

tion of these instruments must be included in the safety training of all crew

members.

Tugs used in the lunar area must have the on-board capability and trained crew-
men for the emergencytreatment of radiation sickness.

3.2.1.6 Tumbling Orbiting Lunar Station

There is a high probability that the orbiting lunar station will achieve a

tumbling modein the event of a critical failure, particularly if depressurization
results.

In general, escape from a tumbling spacecraft is more desirable than for a rescue

vehicle to either attempt to arrest the tumbling motion or to phase and dock
with it. Refer to Appendix C for a more complete discussion and analysis of

escape/rescue from a tumbling spacecraft. A backup, emergency,manually controlled

attitude control system would permit arresting station tumbling motion or at

least reducing the rate to a level that would permit a rescue vehicle to dock
with the station.

3.2.2 Routine Operations (Refer to Hazard Stud_-3)

Following activation and checkout the lunar orbital station will be placed

on a routine operational status. The escape/rescue situations analyses that were

presented in Section 3.2.1, Initial Manning and Activation, also apply to the

station routine operations phase and will not be repeated here.
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Lunar surface missions will begin soon after station activation. These sites

will be considered as a potential base for a rescue vehicle.

3.2.2.1 Orbiting Lunar Station as Primary Rescue Operations Base

The relatively large store of consumables, flexibility of life support facilities,

and advantageous orbital trajectory make the orbiting lunar station the leading

candidate as the primary lunar escape/rescue operations base and safe haven.

It follows that the station design must be capable of accommodating the assigned

station crew, any additional crewmen being rotated or transferred, plus any

additional crewmen who might be using the station as a safe haven following an

escape/rescue operation.

In order to provide surface escape/rescue capability, the station orbit trajectory

must conform to two general requirements:

a, The station altitude must be high enough to provide a suitably large

area of surface line-of-sight coverage for station/_rface communica-

tions and visual observation for tracking purposes.

b, The station inclination must be equal to or greater than the latitude

of any surface site or exploration party traverse track in order to

minimize the amount of plane change required by an escape/rescue

mission.

3.2.2.2 Escape to Lunar Surface Base

An emergency in lunar orbit calling for rapid transfer to a safe haven to obtain

medical aid might call for escape to a lunar surface base. If no base exists,

escape to the lunar surface would only compound the problems.

Deorbit and touchdown of the escape tug at any specific site on the lunar

surface will probably require phasing and an orbit plane change. In any
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case, the exact location of the desired site must be known as well as the

specific tug ephemeris. If a station hazard has caused the need to escape

it is possible that failures resulting in depressurization or in a run-away

attitude control or stationkeeping reaction control nozzle may have altered

the station velocity vector. A station ephemeris or tug navigation update

would then be required. The tug must have sufficient on-board capability to

make a 90° plane change and to descend to the lunar surface in order to

touchdown at surface base site. If the tug performance capability is marginal,

and if a 90° plane change change is necessary, the velocity requirement could

be reduced from approximately Ii,850 to 12,100 ft/sec by injecting into a 24

hour period ellipse and making the required plane change maneuver at apolune.

3.2.2.3 Orbiting Lunar Station Rescue from the Lunar Surface

The lunar surface base will include a standby lunar landing tug to be used as an

escape/rescue vehicle. In addition, lunar lander tugs used for solo surface

exploration sorties could, by aborting their mission, return to orbit to perform

a rescue operation.

Table 3-2 presents a rescue time sequence for an orbiting lunar station rescue

operation originating at either a lunar lander tug surface exploration sortie

site or the lunar surface base.

With no plane change required, the rescue tug needs approximately 6690 ft/sec

A V capability to launch from the lunar surface, inject into the station orbit,

phase, and rendezvous and dock with the station. If a 90° plane change is

required, there are two available choices: Refer to Appendix A for additional

information concerning ascent maneuvers and plane changes.

a. Make the plane change at station orbit altitude. This is a

minimum time maneuver, but will require approximately 7550 ft/sec

of additional impulse.

b. Make the plane change at apolune of a 24 hour period ellipse for an

additional impulse requirement of approximately 4800 ft/sec.
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Table 3-2

TIME SEQUENCE FOR ORBITAL RESCUE MISSION FROM LUNAR SURFACE

Sequence

Emergency Occurs

Communications to

Lunar Surface Base

LSB Originates

Rescue Operation

Rescue Crew Alerted

Rescue Crew Reports
to Base

Rescue Operation

Briefing Meeting

Crew Preparation

Tug Activation and
Checkout

Launch and Orbit

Maneuvers

Rendezvous and

Dock

Rescue Operation
in Station

Rescue Accomplished

Time

Span

( in)

75

15

15

120

15

3O

lO

3OO

1440

7O

6O

Cum.

Time

(Min)

75

105

225

24O

270

280

580

1720

650

1790

710

(12 hrs)

1850

(31 hrs)

Remarks

Must be Able to Communicate with

Earth for Assured Link to Lunar

Surface Base

Approval from Earth Vicinity May
be Needed

Crew May be on EVA Traverse

Operation in Near Vicinity of Base

EVA Traverse Range at Least 2
Hours from Base

Rescue Operations Plan Agreement

PLSS Recharge or Change, and

Equipment Selection

Tug Readiness Checks Previously

Accomplished in Parallel with

Other Sequence Checks

Direct Ascent with Any Required

Plane Change Made at Station
Orbit Altitude

Direct Ascent with Any Required

Plane Change Made at Apogee of

24 Hour Period Ellipse

May Require Rendezvous and Dock

with Uncooperative Station,

Requiring Specialized Equipment

If Station Entry is Difficult,

Could Require Considerably Longer
Time for this Sequence Step

Tug is Tempo:_ary Safe Haven and

Could Remain in Orbit Awaiting

PTV Flight from Earth Vicinity

4
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Thus the minimum _ V requirement for ascent, injection into the station orbital

altitude and 90° plane change, varies between a minimumof 11,490 ft/sec and

14,240 ft/sec depending on the selected orbit plane changemaneuver technique.

There are several alternatives available after the stranded station crew survivors

have been placed in the rescue tug (temporary safe haven) and the tug has reached

an orbital position at a safe range from the station:
Return to Lunar Surface Base

This option requires an additional A V of 7300 ft/sec if no

plane change is required and approximately 14,850 ft/sec if

a 90° plane change is required with the plane change maneuver

performed at station orbital altitude. If the plane change is

performed at the apolune of a 24 hour period ellipse the A V

requirement drops to approximately 12,100 ft/sec. In either of

the above outlined cases it is doubtful if the tub capability

would be sufficient. For example, even assuming that any

required plane changes were made with a minimum impulse maneuver, the

following tug total _ V capability would be required:

Maneuver

Original Tug Descent to

Lunar Surface Base

Station Re scue

Mi ssion-Ascent

Tug Descent to Lunar

Surface-with minimum

impulse plane change

AV

7,300 ft/sec

12,100 ft/sec

12,100 ft/sec

Total 31,500 ft/sec
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Take Crew to Earth Orbit

To return to Earth orbit from lunar orbit will require approx-

imately 15,000 ft/sec A V including a 90°, 24 hour, elliptical

plane change. This _ V requirement in addition to the original

descent and rescue mission ascent (see table above) exceed the

probable capability of the tug without refueling. If propellant is

available in lunar orbit, the return to Earth orbit is feasible.

Recommended Mode

The recommended mode is for the tug to remain in lunar orbit,

after completing a station rescue operation until a PTV can

arrive from the Earth vicinity. The stranded crew would then be

transferred to the PTV for Earth return. The tug could refuel from

the PTV and return to the lunar surface base to support crewmen

left on the surface.

The tug life support system and consumable stores must be sufficient

to support both the rescue crew and the stranded crew until the

PTV arrives from the Earth vicinity and completes rendezvous,

docking, and transfer of crewmen.

It follows that both the lunar surface base and the Earth vicinity must function

as bases in support of potential orbiting lunar station rescue needs. The LSB,

with a rescue response time of 12 to 31 hours, serves as the more immediate

response base, with the PTV based in the Earth vicinity supporting the rescue

tug and completing the transfer of the stranded crew to a permanent safe haven.

The PTV response time is 14 days. If response time is not critical the Earth

orbit based PTV could function as the rescue vehicle with the LSB based tug on

an alert status at the LSB until transfer of the stranded crew into the PTV has

been accomplished.
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3.2.3 EVA Activities (Refer to Hazard Study 7)

Hazard Study 7 - Orbital Extra Vehicular AGtivity (EVA) presents requirements

for escape/rescue for several different extra vehicular situations. For

escape/rescue analysis purposes these situations can be divided into two

general categories: (1) the crewman on EVA is attached to the orbital station

(or some other spacecraft) by means of a tether, umbilical, or both, and (2) the

crewman is in an astronaut maneuvering unit (AMU) or cherry picker.

Escape from an extra vehicular situation implies that the crewman has the capability

to return to the station or tug (safe haven) withomt outside assistance. Rescue

implies that the crewman on EVA cannot reach a safe haven unless outside assistance

is supplied.

3.2.3.1 Extra Vehicular Crewman Attached to an Orbiting Lunar Station

Possible extra vehicular missions for a crewman on a tether include:

a. Routine inspection of critical exterior equipment such as thermal

radiators, antennas, or solar arrays

b. Maintenance - both planned and unplanned

c. Replacement of exterior components such as RCS thrusters

d. Servicing science equipment

There are several rescue situations that could occur while carrying out functions

similar to the above. During these operations the crewman is continuously on

a tether. He can either be on a backpack or be attached by a "short" umbilical

to a locally placed connection for life support, communications, environmental

control, and power. These external connections should be strategically located

both in equipment areas needing planned periodic maintenance attention and also

close to equipment needing attention in the event of a malfunction or failure.

If station or tug equipment clearances preclude the wearing of a complete

backpack, the crewmen should at least have a minimum 90-minute duration emergency

life support system. This duration is a function of the probable rescue

response time, based on Table 3-3 plus a contingency factor. An emergency life
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Table 3-3

EVARESCUETIMELINESEQUENCE

Sequence

RescueCrewmanin
Station

Time Span CumTime
(rain)

Rescue Crewman Outside
Station

Time Span

( in)
Cure Time

(min)

Remarks

Emergency Occurs .....

259

Communication to

Rescue Crewman 1

180

24

3O

24

Denitrogeniza-
tion

1

181

205

235

259

Egress Through
Airlock

Traverse/Pickup

Crewman and

Return to Airlock 3O

24

Ingress Through

Airlock

31

55

55

Two Modes:

(a) Normal Communica-

tion Voice Band

(b) Emergency Com-

munication

Voice-0n Rescue

Carrier, RF

Beacon, Flashing

Light

Denitrogenization on

Pure 02 with Exercise

Recommendation:

Suited Rescue

Crewman Outside

Station During EVA

TOTAL
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support system is needed in case the umbilical connection is interrupted either

as part of the emergency situation failure mode or is made necessary in order to

effect timely rescue or extrication from a failed structural area.

In general there are two rescue modes as a function of whether the rescue crewmen

are located inside the station in a shirtsleeve environment or located outside

the station in full space environment.

Table 3-3 presents a comparison of the time span required to reach the immediate

location of a stranded extra vehicular crewman who is in need of outside assistance.

The crewman in the station is in his suit, with helmet off, and in the nominal

14.7 psi station atmosphere. The crewman outside the station is suited, has a back-

pack, and has an umbilical connection to the station. A quick disconnect is needed

so that the extra vehicular rescue crewman can disconnect the umbilical at his

suit to provide maximum maneuverability during the rescue operations. By remaining

on umbilical until an emergency occurs the full backpack metabolic capability is

available.

The EVA crewman can ordinarily "sound-the-alarm" by means of his standard voice

communications link. However, a power loss, illness, or injury could preclude

this capability. If so, the crewman should have a separate, self-contained

voice communications link operating on a carrier that is reserved for escape/

rescue emergency use. In addition, since the crewman may not be able to talk, a

self-contained RF beacon and flashing light located on the crewman's helmet should

be designed into pressure suits. This emergency equipment should be capable of

being activated manually by the crewman and should also be automatically activated

in the event of such conditions as:

a. Suit power loss

b. Umbilical failure

c. Activation of emergency oxygen system

d. Suit pressure decaying below some minimum level

e. Failure of normal communications system
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The pressure suit emergencyoxygen system must have an operational capability

at least as long as the rescue response time plus a contingency allowance.

Ninety minutes is a recommendedminimumbased on the 55 minutes rescue response

time of a crewmanstationed outside the station. A more productive alternative

to having a rescue crewmenstanding by outside the station during EVAis to
use the buddy system for EVAactivities, i.e., conduct all EVAactivities with

a pair of crewman. Precautions would have to be taken that they were not
simultaneously exposed to the samehazard.

3.2.3.2 CrewmanSeparated from Station

In this Extra Vehicular modethe crewmanis not attached to the station, but
instead uses an astronaut maneuvering unit (AMU)to translate around the station.

The AMUmay range in design complexity from a simple handheld propulsion device

or mayweigh as muchas 100 to 200 lbs. and include capability for propulsion,

attitude control, communications, power and life support. Use of an AMUwould

be necessary under the following typical types of conditions:

a. Transport of a quantity of bulky or heavy tools or supplies
b. A working platform is needed

c. Translation across short distances of open space between station
hardware elements was needed

The AMUwould require redundancy and fail/safe design philosophy similar to that

of the station or tug. The crewmanwould need the 90-minute capability emergency

02 system and emergencycommunications capability previously described. The
rescue crewmanwould require an AMUwith at least the propulsion, _V, and othar
capability of the AMUassigned for use by the Extra Vehicular crewman. The

rescue assigned crewmanwould also require line-of-sight direct observation of

the Extra Vehicular crewmanand therefore might have to maneuverhis AMUto
successive positions around the station.

Oneof the critical rescue situations occurs when the Extra Vehicular crewman

is drifting s:wayfrom the station. He may be in an AMUor free floating. This
situation could occur as a result of injury or sickness with the crewmanunable

to control the AMU,could result from a failure of a critical AMUcapability, or
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could result as a planned maneuverin the unlikely event of a catastrophic
station failure during the EVAmission.

Table 3-4 presents a summaryof the expected orbital motion of an EVAcrewman

drifting awayfrom the station as a result of an undesired_V increment. This

increment could result from a propulsion, attitude control, or power failure.

Table 3-4

EXTRAVEHICULARCREWMANFREEFLOATINGMOTION

Motion
Direction

In Track

Cross Track

Radial

Return to
Station

Onceper
Orbit

Twice per
Orbit

Onceper
Orbit

Return
TimeSpan

120 min

60 min

120 min

Remarks

Possible Collision with Station

Possible Collision with Station

Possible Collision with Station.
If AddedVelocity Vector is in
DownwardDirection Surface
Impact is Possible ]

P

If the drifting velocity is relatively low, the backup rescue crewman and AMU

should be able to reach the drifting crewman and return him to the station. If

the velocity is high and the drifting crewman reaches a range beyond the safe

operating range of the rescue AMU, several alternatives are available:

a. Wait until the drifting crewman's orbit trajectory returns him to

the vicinity of the station

b. Use docked tug to chase and pick up drifting crewman

c. Use station velocity capability to chase and pick up drifting

crewman

d. Provide the rescue AMUwith upgraded capability

The recommended approach is to provide the rescue AMUwith the capability to

achieve 150 ft/sec velocity with respect to the station to catch the drifting

crewman and then be able to return to the orbiting lunar station. In turn, the
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AMUused for normal EVAactivities should be limited to a total _ V capability

of approximately 100 ft/sec. Thus, the rescue AMU,with a total _V capability

of approximately 400 ft/sec, would be able to chase, catch, and return the

drifting crewmaneven if his total AMUvelocity capability were expendedin a

r_ propulsion failure. If the total _V capability of the AMUwere

limited to 70 ft/sec, at 60 nmaltitude the AMUwould not be able to get on

a trajectory that would impact the lunar surface.

1. Tumbling Crewman

A guidance system failure, attitude control, failure, or runaway reaction

control nozzle could result in a tumbling AMU and crewman. (Refer to Appendix C

for details on tumbling.) Rescue of the crewman requires that the tumbling mo-

tion be stopped. No satisfactory means is presently known for stopping the

tumbling motion of body in space by another spacecraft. It is therefore

recommended that the Extra Vehicular crewman in a tumbling AMU have available

some means for stopping any tumbling motion without outside assistance.

The crewman would have available the lunar surface, the station or other space-

craft vehicle, and the Stars and Earth for use as a visual reference in deter-

mining his relative orientation and tumbling direction. Once the tumbling

direction was determined an emergency corrective reaction nozzle could be used

to stop or at least to reduce the tumbling motion to a manageable level. This

emergency jet could consist of clusters of manually activated solid motors

oriented along the AMU_ 3 principle axes. By firing one corrective jet from

a cluster at a time the magnitude and duration of the corrective velocity vector

could be controlled. Also, deceleration forces on the crewman would be minimized

by using lower thrust-level motors with low thrust-to-weight ratios.

If the crewman were separated from the AMU, in a free drifting mode with a

tumbling motion, a hand-held jet nozzle (probably cold gas) could be used to

arrest the tumfoling motion.
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2. AMU Propulsion Failure

An AMU propulsion failure could result in a shorter than desired propulsion

burn or in no burn. As a result the crewman could be stranded and unable to

return to the desired station location, he could be on a collision course with

the station, or he could be on an escape trajectory. The escape or free float-

ing trajectory has been previously covered in this section. If the crewman was

unable to return to his point of origin, the rescue crewman and AMU would simply

move out to the stranded crewman and return both crewman and AMU to the desired

location.

If the EVA crewman was on a collision course with even a relatively low

velocity in feet per second, contact with the station would probably occur

prior to arrival of the rescue crewman and AMU. It follows that the EVA crew-

man must take some type of corrective action to avoid a collision. The EVA

crewman could use the backup emergency attitude control jets used to stop AMU

or crewman tumbling motion to null out a collision velocity vector or at least

to reduce it to a relatively harmless level. The same jets could be used to

roughly control the AMU until the rescue AMU arrived.

3.2.3.3 Pressure Suit Tear

A pressure suit tear poses two potential, difficult rescue situations: (i) a

critical drop in suit static pressure, and (2) exhaustion of either or both

backpack and emergency oxygen supplies. Even if the EVA crewman is attached to

the station oxygen supply by an umbilical, a suit tear could cause a critical

and even fatal suit static pressure drop. In this circumstance, the survival

time will be a matter of seconds or minutes at best, thus making rescue marginal

and escape out of the question.

If the suit tear could be repaired or sealed off, survival could probably be

extended. Another possibility is to provide a pressure garment or bag which

could be unfolded/deployed quickly around the crewman and sealed. The oxygen

escaping from the suit tear would fill the garment and thereby provide a

satisfactory static pressure level. An exhaust pressure relief valve then could

maintain the static pressure and composition within acceptable limits during the

rescue operation.
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3.2.4 Orbiting Lunar Station Deactivation

Deactivation of the orbiting lunar station can result in escape/rescue situa-

tions similar to those occurring during initial station activation. There

will be, however, certain differences as follows:

a. The lunar surface base may be operational during station deactivation

b. Deactivation involves turn-off and securing of equipment whose func-

tional status is well known

Following station deactivation the crew could enter a docked tug, transfer to

a prime transport vehicle (PTV) and return to Earth orbit.

Refer to Table 3-5 for a summary of the following paragraphs.

Table 3-5

ORBITING LUNAR STATION DEACTIVATION ESCAPE/RESCUE SITUATIONS

Situation

Major Station

Subsystem Failure

Critical Failure-

Tug Operational

Critical Failure-

Tug Not Operational

Functional

LSB

Available
b

Option of Escaping
to LSB or to Earth

Vicinity

Same as Above

Option of Rescue
From LSB or From

Earth Vicinity

No

LSB

Available

Escape to Earth

Vicinity or Wait
For Rescue Flight

From Earth Vicinity

Same as Above

Rescue From Earth

Only

Remarks

Can Wait

in Either

Docked or

Orbital Tug

Deactivation

of Pressure

Compartments
Should Occur

Last

Same as

Above

3.2.4.1 Subsystem Failure on Orbiting Lunar Station

Failure of a major subsystem, including life support and environmental control,

will result in the crew proceeding to the docked tug to either return to Earth

in the planned manner or to complete station deactivation in pressure suits, if

necessary.
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3.2.4.2 Critical Failure of Orbiting Lunar Station

The sameoption available during station activation are also available during

deactivation with the possible exception of the existence of a functional lunar

surface base (LSB). A functional LSBcould support either escape or rescue.

If the LSBhas previously been deactivated, the Earth vicinity serves as the

potential escape or rescue base in the mannerpreviously discussed in Section
3.2.1.

3.2.5 Escape/Rescue Guidelines for an Orbiting Lunar Station

The following escape/rescue guidelines are proposed for operations at the

orbiting lunar station:

i. A dedicated rescue vehicle should be maintained in the Earth vicinity

during lunar orbital station activation and deactivation. The vehicle and

crew must be on a ready-alert status with a total response time less than the

probable survival time of the stranded crew. A A V capability of 30,000 ft/sec

and a response time of 14 days from alert to rescue are required.

2. During routine station operation a critical emergency that makes it impossible

for the station crew to use docked tugs for escape will result in a need for

rescue either from the lunar surface or from the Earth vicinity. Due to the

shorter response time (9 to 35 hours from lunar surface versus l& days from

Earth orbit), the initial rescue should be made by a surface based tug. After

the rescue is completed, the rescue tug will have to remain in orbit in the

general vicinity of the station until a supporting rescue vehicle can arrive

from the Earth vicinity.

In addition to picking up the stranded station crew the rescue vehicle from

the Earth vicinity must refuel the tug for its return to the surface and the

continuation of its interrupted mission. Note that a surface based tug that is

used for a station rescue mission will probably not have sufficient remaining

A V capability to either return to a lunar surface site or to reach Earth

orbit.
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3. At least two crewmenshould remain in the docked tug during both station
activation and deactivation as a dedicated rescue team.

4. Alternate pressurized compartments must be available in the station to

provide crew membersa temporary safe haven. These compartmentsmust be self-

contained with respect to the station subsystems and must, as a minimum, include
the following capabilities:

a. Life support
b. Environmental control

c. Electrical power

d. Communicationswith Earth vicinity, tugs whether docked or orbital,
PTVwhether in lunar area or betweenEarth and Moon, lunar surface
sites, and to rescue crews inside the station

e. Lighting

f. Airlock into station interior

g. Emergencyequipment

h. Operable by one crewmanwhether injured or in good health

i. Atmospheric filters and atmospheric recirculating capability to

clear any contaminants that might enter with a crewman

j. Instrumentation displays both in the compartmentand outside to aid

the rescue crewmenin determining conditions in the compartment
k. The life support system must include capability to reduce the

compartmentambient pressure and to control the mixture ratio of

02 to any inert diluent gas

5. Emergencyportable oxygen masksand supply bottles and pressure garments

with a built-in portable oxygen supply should be strategically located throughout
the station.

6. The orbiting lunar station design must provide a meansfor the crewmento

find their way to emergencygear, alternate pressurized compartments, or docked

vehicles under extreme conditions of smoke, lighting, motion, or toxic gas.
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7. The alternate pressurized compartmentcommunication system must include

the capability for the rescue crew and stranded crew to converse regardless

of the ambient atmospheric conditions in the compartment and in the station.

8. The orbiting lunar station alternate pressurized compartmentequipment must

include first aid supplies, portable oxygen masksand pressure garments with

built-in portable oxygen supplies, and pressurized stretchers for moving injured

menwho cannot don protective garments or pressure suits.

9. The following types of emergencyequipment must be available for use by
station crewmenfor rescue purposes:

a. Oxygenmasksand portable 02 supplies

b. Pressure garments with built-in 02 supplies
c. Lighting equipment
d. Pressurized stretchers

e. Radiation monitoring equipment

f. Portable airlock (including equipment for attaching the airlock

and cutting through a wall or bulkhead)

g. First aid supplies

I0. The alternate pressurized compartmentsmust provide survival capability for

a span of time greater than the Earth vicinity based rescue vehicle response time.

It is estimated that this survival time should be 14 days.

ii. The possibility of radiation contamination must be taken into account in

the design and performance requirements for all emergencygear including pressure

suits and backpack units.

12. Crew safety training must include operation of all emergencyequipment and

compartmentsas well as the interpretation of radiation monitoring instrumentatinn.

13. Emergencyfirst aid kits must include the capability for the treatment of

radiation sickness and crewmenmust be trained to recognize and treat exposed

crewman.
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14. An emergency,backup, manually controlled attitude control system is
needed to arrest station tumbling motion or at least to reduce it to a level

that permits tug docking and undocking operations.

15. The orbiting lunar station is the leading candidate for use as the

primary lunar area escape/rescue base and safe haven. It follows that the
station must be able to accommodatethe assigned station crew, crews being

rotated including surface crews, plus any crewmenusing the station as a safe

haven following an escape/rescue operation.

16. The orbiting lunar station orbit altitude must be high enough to provide

a suitably large area of station-to-surface line-of-sight coverage for communica-

tions and tracking purposes. A minimumaltitude of 60 nmis recommended.

17. The orbiting lunar station orbit inclination must be equal to or greater

than the latitude of any surface site or exploration party traverse track in

order that escape/rescue operations could be carried out with no requirement for

a plane change.

18. In order for the tugs based at the orbiting lunar station to conduct escape/

rescue operations, the station ephemeris must be knownat all times. This
knowledge will provide a precisely knownpoint in space from which the tug

ephemeris, in turn, can be computed.

19. The rescue tug in lunar orbit must be provided with navigational updates

after making plane changesor other orbital maneuversthat introduce significant

errors into the tug guidance system. The orbiting lunar station may be required

to provide these updates.
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3.3 LUNARORBITALTUGOPERATIONS

In this section escape/rescue alternatives are considered for lunar tug

operations in the near vicinity of the orbiting lunar station and for lunar

tug operations on solo missions. Included in the latter are lunar surface

sorties and logistic flights. The concluding section lists the escape/rescue

guidelines for lunar tug operations.

3.3.1 Tug Ooerations Near Vicinity of Orbital Station (Refer to Hazard Study 5)

Tug operations in the near vicinity of the orbiting lunar station should consist

primarily of the following:

a. Short orbital transfer of 5 nm or less

b. Rendezvous and docking with the PTV, orbital station and propellant depot

c. Transfer of cargo to and from the station

d. Orbital station maintenance, repair, and assembly

e. Refueling from either the PTV or from a propellant depot

The tug will probably always be manned whenever it is performing a mission or

operation. The nominal crew should consist of not less than 2 men. At least

2 tugs shouldalways be in the near vicinity of the station. One tug should be

fully serviced, with a full load of propellants, life support and other expend-

ables, and will be identified as a dedicated escape/rescue vehicle. The tug

used for orbital operations may be off-loaded and, depending on its _V and

thrust-to-weight-ratio requirements, could be configured with only a crew com-

partment and intelligence module.

3.3.1.1 Orbital Tug Unable to Complete a Rendezvous and Docking Operation

The failure of tug equipment such as the docking mechanism, docking sensors,

attitude control system, etc. could result in the tug being unable to complete

a rendezvous and docking operation. Survival time would not be an immediate

problem since the tug life support/environmental control system would not be

affected. Communication with either the PTV (if still manned) or the orbiting lunar

station should be no problem unless the tug antenna location and type, and tug

aspect angle with respect to the station results in RF interference. The use of

several omni antennas for short range operation would preclude these types of

communications difficulties.
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If the stranded tug docking mechanism has failed, external attach points would

be needed to provide a positive and rigid attachment between the stranded and

rescue tug for maneuvering purposes.

3.3.1.2 Loss of Tug Electrical Power

The loss of all electrical power will result in the loss of all tug functions

including the critical ones of communication, life support, environmental con-

trol, attitude control and propulsion. The tug will drift as a function of any

velocity vector dispersions existing at the time of power failure. In addition,

the tug will slowly tumble as a function of any residual vehicle torques.

Refer to Fig. 3-2 for the sequence of events related to life support. If a

shirtsleeve environment exists in the crew compartment at the time of the emergency

the crew and any passengers could use okvgen masks and await rescue. If the

ambient pressure decays, the crew would be forced to don pressure garments or

suits. If the crew were already in pressure suits, they could simply await

rescue.

In a situation with all power lost, the tug environmental control system stops

functioning and the crew compartment immediately begins to cool down. The lack

of power to electronic equipment would deny this usual source of heat.

The limiting survival factor then is seen to be not life support but environmental

control. If the crew were in pressure suits, with backpack units, there would

be no immediate problem. If pressure suits and backpack units were not available,

the crewmen would have to depend on the thermal insulative capability of available

pressure garments.

Table 3-6 presents a rescue timeline sequence for rescue from a drifting tug in

the near vicinity of the orbital station and with all electrical power out. The

rescue vehicle is a tug docked to the orbital station. With a response time of

145 minutes, the interior ambient temperature of the crew compartment of the

stranded tug would probably reach subfreezing levels. It follows that the stranded

crew must have some form of environmental control capability such as pressure

suits and backpack units, must have insulated pressure garments, or the crew

compartment must be insulated to maintain a habitable ambient temperature in

the crew compartment for a minimum of 3 hours, including a contingency factor.
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Table 3-6

RESCUETIMELINESEQUENCEFORA TUGDRIFTINGIN LUNARORBIT
(time in minutes)

Time Accumulated
Event Span Time

RescueDecision Made

Activate Tug and
RescueCrew

Separate from Station
and Transfer to

Stranded Tug

Rendezvousand Dock 10

120 120

lo 130

140

Remove Crew 5 145

Remark s

Automatic decision based on non-

receipt of voice communication

from tug.

100 ft./sec. A velocity and 5 nm

range to stranded tug.

Rescue tug serves as temporary

safe haven.

3.3.1.3 Critical Failure of an Orbital Tug

Crew and passenger survival in the event of a critical tug failure will depend

on the location and nature of the damage. In this type of failure the tug

sustains severe physical damage causing possible loss of structural integrity

and deterioration or loss of a critical subsystem. Crew injury or jeopardy is

probable. A critical situation could be caused by a collision during docking,

or by a meteoroid strike, and could be accompanied by fire or explosion. Sudden

and rapid depressurization could also occur as a result of shrapnel, explosive

force or meteoroid damage.

Figure 3-3 presents an event sequence for an orbital tug critical failure. Con-

tamination of the crew compartment ambient atmosphere could be counteracted by don-

ning oxygen masks or emergency pressure garments. If the life support system

remained functional, the crew could remove the masks as soon as the atmosphere

was cleared. Proper design of the recirculation system, including the providing

of suitable filters or precipitators, could provide this capability.
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Crew compartment depressurization would require the immediate donning of

pressure suits or emergency pressure garments. An umbilical connection into

the tug life support system would provide extended life support and environmental

control capability.

Design of the tug crew compartment as two separate and independent pressure

cells would provide increased possibility for the survival of at least one com-

partment in a critical situation. Either cell must be capable of supporting

the crew and any passengers for a minimum of 3 hours.

Either pressure suits with backpack units, or insulated emergency pressure garments,

would be needed to counteract the probable loss of environmental control capability

and the loss or deterioration of crew compartment atmosphere.

3.3.1.4 Logistics Cargo Transfer to and from the Orbiting Lunar Station

A critical failure in the tug during cargo transfer operations could result in

the tug's functional capability being compromised by the on-board presence of

cargo as tug payload. Some examples of the effect on tug capability by this

type of situation are as follows:

a. A low thrust-to-weight ratio resulting in significant decreases in _V capability

for rescue or escape purposes

b. Maneuvering impaired due to loose cargo

c. Restrictions in maneuvering due to handling limits incident to the particular

type of cargo

d. Low _V capability due to off-loading the tug to preserve suitable thrust-to-

weight ratios for heavy cargo maneuvering purposes.

it follows that tug and cargo container design must be amendable to rapid and

selective jettisoning or separation from the tug. The separation systems must

be self-contained, and operable regardless of the tug failure mode. Separation

springs could be installed in the cargo attachment mechanisms to provide a

separation _v (with respect to the tug) of 5 to 10 ft./sec.
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Following the end of the emergencyperiod, it would be desirable to recover

any jettisoned cargo. Cargomodule design should therefore include corner
reflectors or repeaters for laser or RF radar detection.

3.3.1.5 Orbiting Lunar Station Maintenance and Repair

The tug will probably be used for the maintenance, repair, and assembly of the

orbiting lunar station. This task involves tug operations close to and in direct

contact with the orbital station. In a typical mission of this type, the tug
would carry a payload consisting of a bulky and/or heavy replacement part such

as a solar array or antenna. The tug would movea short distance awayfrom
the station, perhaps a hundred feet, and maneuveraround the station until it is

opposite the repair point. The tug then movesinto position for removal of the

hardware to be replaced and maintains this position until the hardware exchange
is completed.

Becauseof the possibility of collision with the station or structural damage

to the tug while handling large, bulky, heavy parts and possible loss of

integrity of the tug pressurized compartment, it is recommendedthat the tug

crew wear pressure suits at all times during maintenance and repair operations.
The helmets should be close at hand and ready to be donned by the crewmen.

3._.1.6 m i....lug/ouab±on Collision

A collision between the tug and the orbiting lunar station could disable the tug

and cause major damageto the station. Depressurization of both spacecraft is

probable. Even though the tug communicationsystem might be inoperative as a

result of the collision, the station damagecontrol and data managementsystem
would detect either the collision itself or its damageeffects on the station.

Inability to contact the tug would provide a positive indication of need for
rescue.

As a result of the collision, the tug could slowly drift awayfrom the station,
could be slow]y tumbling, and the crew compartmentcould depressurize due to

structural damage. The depressurization will undoubtedly accentuate the tumbling.

There is also a high probability that one or more on-board cre_nen maybe injured.
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The 145 minute response time for a docked tug to be activated, separated from

the station, and to complete rendezvous and docking is consistent with the

probable tug crew survival time provided:

a. The tug crew was in pressure suits at the time of the collision and

depressurization

b. Pressure suit helmets were readily accessible and could be donned in
a few minutes

c. The backpack design is such that activation and functional operation can
be achieved in a few seconds

d. The cabin atmospherewas of such a composition and pressure that

denitrogenization is not required

The alternative to the above outlined requirements is to provide the tug crew-

menwith a pressure garment that can be placed into position around the crewmen

and sealed in a matter of seconds. This garment must either provide a survival

time of at least 3 hours, including a contingency factor_ or there must be an

additional provision for the crewmento don a pressure suit and activate a back-

pack unit.

The rescue operation for the disabled tug would be performed by either one of

the docked tugs at the station, or by a tug from a surface sortie site or the

lunar surface base, or by a rescue vehicle from the Earth vicinity. In the

latter case the required minimum survival time of 14 days is probably incon-

sistent with pressure suit and backpack survival time or with the probability

of survival of injured tug crewmen. The recommended rescue procedure is to:

(i) use station crewmen and docked tug, or (2) use surface site or lunar surface

base tug and crew.

3.3.1.7 Tug Critical Subsystem Failure

The failure of a tug critical subsystem while the tug is operating near the

orbiting lunar station could result in a collision between the tug and the

station or appendage-type hardware such as solar arrays or antennas. The loss

of a subsystem such as communications, life-support, data management, and even
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power would not result in a critical situation as long as attitude control and

somemeansof velocity vector control were still available. It is therefore

strongly recommendedthat the tug design provide for manual control, through

mechanical linkages or cables, of an emergencyattitude control and propul-

sion subsystem. The propulsion subsystemcould be either liquid or solid
propellant and would be used to prevent collision or undesired contact with

the station or other spacecraft such as PTV, propellant depot, other tugs, or
scientific satellite. The attitude control subsystemshould be capable of

low-thrust velocity vector control and tumble arrest, as well as tug attitude
control.

Rescueof personnel aboard tug damagedas a result of a collision or meteoroid

strike poses several critical problems. If the crewmenare injured or ill,
these problems are further compounded.

It would be particularly difficult to effect entry into a damagedtug if there

were no meansfor positioning and mechanically linking the damagedtug and

rescue tug. The simplest method of attachment would be by meansof a standard
docking mechanism. If the available docking mechanismis not usable an emer-

gency linkage or attachment mechanismwill have to be used. Attachment points

could be designated and positioning marked on the exterior surface of tugs (as

well as other mannedspacecraft and the orbiLal s_a_''b±on'jto pe_t att_ch_aellt

of a grappling hook or other attachment device. Manipulator arms with hooks

or heavy duty pincer type claws could be used to tie into these emergency

attachment points or even to break through the tug skin to grasp a primary
structural member.

Oncethe two vehicles were firmly and positively linked, the rescue crew

would egress, attach an airlock if the crew compartmentretained sufficient
atmosphere, and enter the vehicle. If tug instrumentation was not available

to determine the presence and composition of a cabin atmosphere, portable

instruments could be used with the sensing end inserted through small holes

drilled into the cabin interior. If there were no cabin atmosphere the cabin
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wall could be cut open and direct entry made. If cabin atmospheric pressure

was high enough to sustain life (approximately 2 psi) a means of communicating

to the disabled tug crewmen would be needed through the crew compartment walls.

If the disabled crewmen were not in pressure suits or emergency pressure gar-

ments, a portable airlock would be required to effect entry.

The possible necessity to effect forced entry into the tug or other manned

vehicle crew compartment or quarters must be taken into account in the design

phase. In addition, rescue crewmen should be familiar with the general

structural characteristics of all manned spacecraft.

3.3.2 Lunar Tug Orbital Operation (Refer to Hazard Studies 12, 14)

The tug lunar orbital operations away from the near vicinity of the orbital

station will probably consist of three primary activity areas:

a. Placement, maintenance, repair, and return of scientific or communications

satellite

b. Logistics and crew rotation flights to and from the lunar surface base

c. Scientific sorties flights to the lunar surface of approximately 28-day

duration

Preliminary data on lunar operations sequencing indicate that the first surface

sortie flight will take place about 6 months after station activation, and the

lunar surface base will become operational about 3 years after activation of

the orbital station.

3.3.2.1 Scientific Satellite Placement

The tug vehicle may be used to transfer scientific satellites from the PTV

or the station to various orbital positions within the lunar sphere of influ-

ence, make return maintenance and repair flights, and in some cases return

the satellite to the station. The general operational sequence for a

satellite placement flight to a high lunar orbit is presented in Table 3-7.
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SEQUENCE OF EVENTS FOR PLACEMENT OF SCIENTIFIC

SATELLITE INTO HIGH ALTITUDE LUNAR ORBIT

LMSC-A984262D

Event

Pick Up Payload

Transfer to Desired Orbital

Position Relative to Station

Transfer to Elliptical Orbit

Coast to Apogee

Circularize at Apogee

Altitude

Coast to Desired Orbital

Position

Separate Satellite

Coast to Desired Orbital

Position

Inject into 30-Hour Period

Elliptical Orbit with 60 nm

Perigee

Coast to Perigee

Circularize in Parking Orbit

Phase with Station

Rendezvous & Dock with

Station

Total

Time Accum. AV

Span Time Required

(min.) (min.)(ft/sec)

6O

5

900

5

6O

900

5

6O

3O

Remarks

Payload is one or more

scientific satellites

60 100

65 1950 30-hour period orbit

965

970 580 1,380 ft./sec.

Circular velocity

required

1030

1035 -

1040 -

1045 580

1995

2000 1950

2060

2090 150

2090
min.

(35 hr.)

Time span required

depends on desired

orbital position

5310

Well within normal

•ug capability
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For this type of mission, approximately 5310 feet/second of impulse and 35 hours

is required. In general, these requirements leave ample margins for crew survival,

as far as life support is concerned, regardless of when an emergency occurs during

the mission and assuming the life support subsystem remains functional. The

trajectory is such that, if planned and executed properly, there would be no danger

of surface impact, collision with another spacecraft, or insertion into a lunar

escape trajectory.

Providing the crewmen with planned vehicle trajectory and attitude data along

with the capability to monitor vehicle maneuver and propulsion performance would

enable them to cut off their propulsion system prior to achieving an undesired

trajectory condition. An emergency backup cutoff control system should be pro-

vided that positively shuts off the primary propellant flow to the propulsion

system.

Table 3-8 consists of a tabulation of rescue situations that could occur during

performance of this type of mission, along with corresponding survival and response

times. Note that a successful rescue can be accomplished, with ample survival

time margins, in all cases except those involving direct or indirect failure of

the tug life support system or power.

A failure in the life support system (a power failure would have the same effect)

would not require an immediate switchover to pressure suits or garments and

backpack units. A breathable atmosphere would exist in the crew compartment at

the time of failure and for perhaps as long as an hour or more. The exact span

of time cannot be predicted, but an hour seems a reasonable estimate, assuming

that the failure produced no toxic gases or smoke. If electrical power was

available, and cabin heaters still functional, it is conceivable that several

hours could pass before activation of backpack units would be required. If

cabin pressure remained above about 2.5 psi the crew could switch to oxygen

masks and survive indefinitely as far as breathing is concerned. Under these

conditions, an insulating thermal garment could passively utilize body heat to

maintain a 15 _eable thermal balance. The crew then should be able to survive

at least 36 hours and perhaps 48 hours even without water and food.
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If cabin pressure decays below a safe minimum, pressure garments and backpacks

would be required. The available pressure garments and backpacks must permit a

minimum of 20 hours (Table 3-8) survival time to make rescue feasible. Two

6,000 Btu backpacks per man would provide 24 hours survival, if the crew were

resting while awaiting rescue (500 Btu/hour).

A critical failure, such as an internal explosion or meteoroid strike, would

probably structurally damage the crew compartment and result in rapid depres-

surization. In this type of situation, survival will depend on the availa-

bility of pressure suits or garments and backpack units, and the crew's ability

under emergency conditions to don and activate them within an acceptable time.

The maintenance of a safe crew compartment ambient pressure level is critical

to crew survival. An emergency method of plugging or sealing holes, rips, or

jagged tears in the crew compartment walls would permit the crew to use oxygen

masks and thermal garments with a potential survival time of at least 48 hours.

Without compartment ambient pressure, the crew must resort to some type of

closed cycle pressure suit or emergency garment with performance capability

comparable to that of pressure suits and backpack units.

3.3.2.2 Lunar Lander Tug Surface Sortie Flights

Scientific sortie flights by a lunar lander tug are assumed to start six months

after activation of the orbiting lunar station. The nominal tug crew will ty_i-

cally consist of 4 men with a 28-day nominal life support capability, plus a

14-day contingency. These sortie flights will be planned for descent and as-

cent in the orbit plane of the orbiting station. Landing sites on the Earth

side of the Moon will always have potential communication capability with the

Earth. Communication with the orbiting station will be possible during the

landing phase, depending on phasing conditions. Proper operational sequencing

would also permit the station to be within communications range and line of

sight during the ascent phase.

A critical subsystem failure prior to powered descent initiation (PDI) would

permit a mission abort and, at most, would leave the lander tug in a slightly

elliptical orbit with apolune at the orbital station altitude and perilune at

PDI altitude. (For Apollo missions, these altitudes were 60 nm and 8 llm, re-

spectively.) Rescue from the station would require only 330 minutes to accom-

plish versus a minimum survival time of 12 hours for the worst-case situation

of either a total power or life support failure. Rescue time of 330 minutes
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is based on the following sequence:
60 min.

120 min.

120 min.

30 min.

330 min.

CommunicationsDelay (AssumingRelay satellite)

Tug and CrewActivation

Flight Time
CrewRemoval

Total ResponseTime

The possibility of rescue after initiation of PDI depends on the nature of

the subsystemfailure and its side effects. A propulsion failure after ini-

tiation of PDI will result in impact unless a second stage or auxiliary pro-

pulsion system is available. To increase the chances and duration of survival

following a crash landing, the crew should be in pressurized suits with fresh-

ly charged backpacks during powered descent. This would provide life supporb

for 12 hours, which is sufficient time for a rescue tug to comefrom the orbit-

ing lunar station. If the rescue tug were mannedand activated during the

powered descent phase of the lunar landing, it could get downin 2 hours (one

orbital period), because the orbiting lunar station would be in line of sight

and coincident with the lunar lander. Becauseessentially no plane change

would be required, the rescue tug (with a total_V of 15,000 ft/sec) could

immediately return to the orbiting lunar station with the distressed crewmen
for _ +_+_+ T._o _ +_ _,,_ o_+_ _o_ _ _,m+_o_+_a _

resorting to full manual control of the vehicle propulsion and attitude con-

trol subsystem. With this capability, a surface landing is possible; however,

the recommended procedure is to switch to an ascent mode and return to arl

altitude above 8 nm and inject with an orbital velocity sufficient to provide

a perigee minimum of 8 nm. An orbital rescue operation can then be accom-

plished.

Lander tug ascent to orbit from surface sortie flights could provide situations

similar to those listed in Table 3-9 for descent flights.

3.3.2.3 Lunar Surface Base Logistics Flights

Lunar surface base (LSB) logistics flights will be faced with the same type

potential rescue situations as are encountered on the lander tug surface
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sortie flights previously discussed. One notable exception is in the area of

communication. The LSB site will probably be permanent and manned at all

times after activation. Logistics tugs will be within line of sight of the

LSB communication and tracking capabilities dmring the powered phases of

descent and ascent. In case abort was necessary and possible during either

ascent or descent, the LSB could support the aborting tug with tracking in-

formation and navigation data. In addition, the LSB could also support a

manual landing at the LSB tug landing site.

3-3.3 Escape/Rescue Guidelines for Lunar Tug Operations

The following escape/rescue guidelines are proposed for operations with a

space tug in lunar orbit, landing, and surface operations.

I. A minimum of two space tugs are needed to support the orbiting lunar

station. One tug should be fully serviced, with a full load of pro-

pellants, life support and other expendables, and emergency rescue

equipment_ and then function as a dedicated escape/rescue vehicle.

The second tug would be used for near vicinity orbital operations.

A third tug is required at the start of surface operations.

2. Properly positioned omni antennas should be used for short-range space

tug voice and data communications to insure no loss of signal due to

the aspect angle or attitude relative to the orbiting lunar station,

Prime Transport Vehicle, propellant depot, surface site, or Earth

vicinity. This capability is particularly important to maintain con-

tinuous communications with a tumbling vehicle.

3. Any spacecraft in the lunar vicinity should have external attach points

by which a rescue vehicle such as a tug could attach rigid couplings

and maneuver or provide thrust vector control as required. Rescue tug

crewmen will probably require visual, direct line-of-sight capability

or remote optical sensors and visual displays to maneuver relative to

the stranded vehicle and complete the hookup.

4. Passive thermal control garments are needed for use by the crew follow-

ing either an electrical power or environmental control subsystem (ECS)
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failure. There would be ample time to don such a garment_ because

cabin cool-down would be relatively slow. A less desirable alterna-

tive is to insulate the crew compartment walls to maintain a livable

temperature for a minimum of 3 hours after an ECS or power failure.

Sudden depressurization of a crew compartment requires rapid response

emergency techniques and/or equipment to prevent subjecting the crew

to dangerously low ambient pressure.

a. The crew should be in pressure suits during those operations

in which the tug or spacecraft is maneuvering close to other

spacecraft, the orbiting lunar station_ or propellant depot.

b. If helmets cannot be worn because of visibility requirements,

the helmets should be so designe_ and so located relative to the

crewmen, that they could be donned at least to the extent that

suit ambient pressure integrity is assured within 5 seconds after

occurrence of the emergency.

c. Visual and aural warning signals are needed to inform the crew

of a critical broaching of cabin ambient pressure _nte_rity.

d. Emergency pressure garments should be svailable that could be

donned even over a pressure suit, and that would attain pressure

integrity within about 5 seconds.

An emergency attitude control/translation subsystem, manually controlled,

is needed in the event a space tug subsystem failure occurred, leaving

the tug on a collision course with another spacecraft. The thruster

Subsystem might need a throttling capability, depending on thrust-to-

weight variations (and consequent acceleration variations) due to pay-

load and/or propellant weight variations.

A routine space tug crew report-in sequence is needed as a backup alarm

sy:<tem. A recommended report-in sequence is a minimum of one cont_Jct

every 30 minutes, with an automatic rescue alarm if communications con-

tact is not made within five minutes after the scheduled contact time.

This time spDn and automatic alarm _nterval could be adjusted as a

function of the particular tug_ spacecraft_ or crew operation mode.
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i0.

ii.

12.

13.

14.

The space tug ambient atmospheric recirculation and purification loop

should include the capability to remove noxious or toxic contaminants

that may be present due to failure, fire, or a critical situation.

The space tug and other manned spacecraft should be designed with two

or more separate and independent pressure compartments. Each compart-

ment should have a dedicated and separate emergency life support and

ECS subsystem that will provide a survivable atmosphere and ambient

condition for a minimum of 3 hours. This approach would increase the

possibility for the functional survival of at least one compartment.

Cargo modules to be carried by the space tug should be so designed that

they can be selectively jettisoned with a _ V, with respect to the tug,

of at least i0 ft/sec. Modules that could be jettisoned should be

equipped with passive and active acquisition, rendezvous, and tracking

devices to aid in their search and recovery following the end of the

emergency period.

Tug crew compartment ambient atmosphere should be maintained at 3-5 psi

and of a pure oxygen composition to prevent possible crew disablement

in the event of cabin depressurization and the need to switch rapidly

Space tug design should include provisions for manual control, through

mechanical linkages or cables, or an emergency attitude control and

propulsion subsystem.

Some means is needed to rigidly link a rescue vehicle to a distressed

vehicle to provide s stable platform from which a forced entry could be

made into a distressed vehicle. Attachment points should be clearly

marked, and potential rescue crews instructed in their location and

methods for attaching link-up devices.

A portable airlock is needed that can be handled by two _JA crewmen,

and that is large enough to accommodate an injured crewman and at

least one other crewman.
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15.

16.

17.

18.

19.

20.

Portable instrumentation is needed_ together with some technique for

determining the pressure and composition of the stranded vehicle's

crew compartment ambient atmosphere. If there were no compartment

pressure, access could be made by direct cutting through the space-

craft wall.

On all spacecraft_ areas acceptable for entry by either direct means or

by means of a portable airlock should be clearly identified and marked.

Structural design must provide for sufficient space between primary

load-carrying structural members so that entry could be made using

simple skin-cutting tools rather than torches or heavy-duty cutters.

It is assumed that insulation and micrometeoroid barriers can be re-

moved quickly by simple hand tools. One possibility is to provide

pyrotechnic installations that would cut the skin between structural

members by means of an applied electric current. The cut-through area

should be sized to be consistent with the effective area of a portable

airlock, and consistent with the requirements for handling injured crew-

men in emergency pressure garments.

The space tug crewmen should be able to monitor and evaluate their

ephemeris in order to detect a potential or actual undesirable trajec-

tory condition.

Pressure suits, backpacks, or emergency pressure garments must provide

a minimum of 20 hours of survival time. Under emergency conditions, a

crewman could be provided with a potential survival capability of up to

48 hours by a combination of a passive thermal garment, emergency pres-

sure garment, and oxygen sufficient to maintain at least 3-5 psi am-

bient pressure and a breatheable atmosphere within the pressure garment.

Techniques and materials are needed to quickly find and seal holes, rips,

or jagged tears in the crew compartment pressure cell walls.

Emergency manual control of the tug propulsion and attitude control

subsystem would permit a manually controlled emergency landing in the

event of a guidance system failure after powered descent initiation.
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21.

22.

The rescue tug in lunar orbit must be provided with navigational updates

after making plane changes or other orbital maneuvers that introduces

significant errors into the tug guidance system.

In order for the rescue tug to operate autonomously in the lunar area a

correct lunar gravitational model must be determined and the exact loca-

tion of all manned surface sites must be known in terms of a coordinate

grid system that is compatible with the tug navigational computer

algorithm.
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3.4 ORBITAL PROPELLANT DEPOT OPERATIONS (Refer to Hazard Study 13)

A lunar orbital propellant depot may be used to supply cryogenic propellants

and other expendable liquids and gases for the tug propulsion, intelligence,

and crew modules. Thus, the propellant depot would serve no other purpose

than to supply and store consumables.

Although a propellant depot configuration has not been defined, it is expec-

ted that it would include the following types of subsystems if it were loca-

ted remote from, and unattached to, the orbital station:

a. Tanks, pumps, plumbing, and transfer mechanisms for liquids and gases

b. Electrical power source

c. Data management system - probably computer-controlled (including

instrumentation and control)

d. Communication system for transmitting logistics and ststus informs-

tion to the orbital station, Earth vicinity, and tugs, and for

remotely controlling the fuel depot from the orbital station

e. Guidance system, including altitude and ramge control between the

depot and the station

f. Active and/or passive rendezvous and docking devices and sensors

g. Stationkeeping reaction system that probably would serve double

duty for attitude control as well ss stationkeeping

h. Life support (may include a shirtsleeve environment control com-

partment)

If the propellant depot were sttsched to the orbital station, or were an

integral part, most of the above configuration items would not be necessary,

and could be eliminated entirely, or the required capability could be supplied

by the station.
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The fuel depot could be located in three possible general areas relative to

the orbital station:

s. In close proximity

b. Approximately 5 nmdistant and in sameorbital plane and st same

altitude

c. On different orbit plane and at hisher altitude

By locating the propellant depot in a suitable different orbit from that of

the station, a possible collision between the orbital station and any debris

originating at the depot could be minimized. There is a tradeoff between this

minimization and the addedmaneuvering costs required for a tug to traverse

between the station and the depot. This tradeoff is beyond the scope of this

study.

Three types of operations will result in one or more crews being at the depot:

s. Routine and emergencyvehicle servicing

b. Routine and emergencypropellant depot maintenance and repair

c. Replenishment of depot supplies by transferring consumablesfrom

the PTVto the depot

3.4.1 Vehicle Servicing at the Propellant Depot

Vehicle propellsnt servicing requires that the manned vehicle rendezvous and

dock with the depot, that liquid and gas transfer lines be connected, the trans-

fer of consumables into the tug_ and disconnecting and separating the tug from

the depot. Depending on depot design and operations requirements, it may be

necessary for one or more tug crewmen to go on EVA in order to service the

vehicle, although this should be avoided if possible.
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A tug vehicle failure while in transit between the orbital station or PIV and

the depot should be handled in a mannersimilar to that discussed under Sec-

tion 3.3.1, Tug Operation Near Vicinity of Orbital Station, and will not be

discussed here. A disabling critical failure occurring while docked to the

propellant depot could be handled by a second tug - normally docked at the

station - making an orbital transfer to the depot.

Communicationsshould not be a problem, since both the depot and tug commu-

nications syste_swill be available. The rescue tug would simply dock with

the stranded tug, separate it from the depot, return to the orbiting lunar

station, and dock the stranded tug (and crew) to the station.

If the stranded tug could not undock from the depot, the rescue tug should be

able to actuate an emergencymechanical undocking, or unlatching, mechanism

that would uncouple the disabled tug from the depot docking port, remove the

crew if necessary, then return to the station.

Crew survival following a critical propellant depot failure while the tug is

docked to the depot and being serviced, will primarily depend on the tug's

capability to disconnect fueling and servicing lines and to undock under emer-

gency conditions. Control and powerfor this operation must be from the tug

side of the interface. The use of pyrotechnic devices to cut lines, pull

latching pins, or cut bolts might be appropriate and necessary, even if open-

and-still-flowing lines remained on the depot side of the interface.

If the docked tug could not undockas s result of a critical failure, crew

survival will depend on: (i) the tug life support subsystemfunctional status
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and crew compartmentambient pressure integrity, or (2) their backpack resi-

dual. Crew survival would be unpredictable, of course, in the event of a

depot fire or explosion.

The worst-case survival situation occurs if the crew is dependent on pressure

suits and backpack units or emergencypressure garments for survival. The

response time for rescue by a tug docked at the station is of primary concern.

Table 3-10 presents a tabulation of the rescue tug sequence of events and time

spans.

Table 3-10 PROPELLANTDEPOTCRITICALFAILURE- TUGCANNOTUNDOCK

Sequence Time Span AccumTime Remarks
of Events (Min.) (Min)

Receive notification 15 15 Notification may be
of Emergency failure to report st

designated times

Tug & CrewActivation 120 135

Separate and Transfer
to Depot

Assess Situation &
Dock with Stranded Tug

Transfer Crewmento
to RescueTug

Return to Station

I0 145

15o

i00 ft/sec orbital

transfer speed - Depot

5 miles range from

station

Dock with stranded tug

crev module

15 165 Rescue tug is temporary

safe haven

A critical _ituation with one or more crewmen on EVA on the depot could result

in a situation in which the docked tug would be forced to undock and separate

from the depot leaving the EVA crewmen behind. A dangerous emergency on the
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depot involving fire, smoke, or escaping high-pressure gases or cryogenics

would probably preclude a rescue tug from docking, or even moving into a

position in close proximity to the depot. In this type of circumstance, the

EVA crewmen sould be stranded and in extreme jeopardy unless some means of

escape were provided. An astronaut maneuvering unit (AMU) located on the

depot could provide a means of escape - not only to leave the depot, but also

to return tO the station, using nothing but the AMU. A cold gas, manually

operated vehicle, with perhaps some emergency oxygen on board, could easily

provide the I00 ft/sec of impulse velocity needed to return to the station or

to provide an additional i to 2 hours of survival time sway from the station.

An emergency flashing light, homing beacon, and corner reflectors, would be

needed on the AMU for locstor purposes. A short-range voice communications

system would also be essential.

Depending on the range between the propellant depot and the orbiting lunar

ststion, an AMU located at the station could be used as a one-man rescue de-

vice. Table 3-11 presents the sequence of events and response time for a

typical rescue mission using an AMU based at the station.

Table 3-11 SEQUENCE OF EVENTS FOR RESCLTE OF CREWMEN AT A PROPELLANT DEPOT

BY AMU FROM THE ORBITING STATION

Sequence of
Events

Prebreathe-Denitrogeni-

zation

Egress/Ingress thru Airlock!

Activation

Transfer, Station-to-Depot-

to-Station & Pick up

Stranded Crew

Time Spsn

(Hin)

6O

48

45

i,

i0

Accum Time

6o

lO8

Remarks

Pre-bresth oxygen, with

exercise

Include donning pressure suit

Activation accomplished in

parallel with denitro_inization

No contingency for search or

for handling injured men
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The denitrogenization process could be performed using exercise to reduce the

time span. Note that AMUactivation could be performed by another crewmanin

parallel with the denitrogenization process, and would therefore not add to

the accumulative time span.

If the depot were located as muchas 5 nmfrom the station, the AMUmight re-

quire a rendezvous sensor package including a range sensor.

The rescue of a crewmanby another crewmanusing an AMUhas been covered in

Section 3.2.3, EVAActivities, and will not be further discussed here.

3.4.2 Replenishment of Propellant Depot Supplies

Replenishment of propellant depot supplies would probably involve the trans-

fer of tanks or containers of cryogenics and other liquids or gases. The

method of attachment of these containers to the tug must provide for rapid

and positive uncoupling. This rapid uncoupling need could result from either

a critical tug failure, or because of a need for a rescue mission.

3.4.3 Escape/Rescue Guidelines for Propellant Depot Operations

The following escape/rescue guidelines are proposed for operations at a pro-

pellant depot in lunar orbit.

I. The propellant depot must include emergency locator devices such as

flashing lights, running lights, RF or optical beacons, corner reflec-

tors, and active transponder.

2. An escape device such as AMU is needed for emergency use by an EVA

crewman under critical emergency conditions at an orbiting propellsnt

depot. A cold gas propulsion and attitude control reaction system with

mechanical linkage control would permit virtually instantaneous actuation of

the AMU followed by separation from the depot and translation to a safe range.

After a safe position was reached, the escaping crewman could activate more

complex and slower reacting electronic guidance, navigation, power, and com-

munications hardware. The escape device would also need locator devices such

as flashing lights, RF, or optical beacons, and active transponder.

t
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An emergency despin system (3-axis) is needed to counteract tumbling

torques or rates and reduce angular rates of a propellant depot to safe

levels conducive to completion of docking and undocking maneuvers.

An emergency kit should be available on the propellant depot, with equip-

ment items available such as

a. First aid supplies

b. Emergency pressure garments

c. Oxygen masks (for use in the emergency compartment or with pressure

garments)

d. Portable lights

e. Flares - perhaps similar to photographic flashcubes, only larger

in size and power

f. Passive thermal garments

Propellant depot docking mechanisms should be designed so that s docked

vehicle could be uncoupled by actuating mechanical releases or pin pul-

lers. It would be acceptable if the emergency uncoupling system caused

disengagement with part of the depot docking mechanism remained locked

to the tug mechanism.

An emergency decoupling system is needed on the propellant depot to

sever servicing lines connected to the tug by pyrotechnic-actuated

mechanisms. This system should be powered and controlled from either

the tug or depot side of the interface.

P

3-53



LMSC-A984262D

Section 4

LUNAR SURFACE OPERATIONS

The lunar surface mission will involve the conduct of experiments and the

gathering of data relating to both lunar phenomena and to phenomena external

to the Moon (such as stellar and solar astronomical observation). These

experiments may be located at any latitude, range over most Earthside

longitudes and perhaps some farside locations. Their performance may require

traverses, temporary experiment bases, and permanent surface bases. Consider-

able EVA activity may be required. The surface operations divide into lander

tug operations to establish a temporary base and a permanent lunar surface

base. The latter will be characterized by a fixed location on the Earth

side of the Moon; immobile installation; crew compartments that may be

elevated, surface mounted, or buried; substantial resources; scheduled

resupply and crew rotation flights; and traverse operations that are backed

up with several types of mobility vehicles. The temporary surface bases

will have fixed locations including farside sites, elevated crew compartments,

moderate resources, a scheduled lift-off, return to lunar orbit, and traverse

operations with a limited number of mobility vehicl6s.

In this section the crew and equipment deployment and capability are

described for the three types of lunar surface operation;

Permanent Lunar Surface Base Operations

Lander Tug Local OPerations

Lunar Surface Traverse Operations

4.1 PERMAN_T LUNAR SURFACE BASE OPERATIONS

4.1.1 Base Configuration

The lunar sarface base will include living quarters for the base personnel,

laboratories, science equipment, mobility vehicles for lunar traverses,

electrical power generators, landing sites for lunar lander tugs, communica-
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tions and equipments needed to support the base operations and possibly a

propellant depot. The living quarters and laboratory may be elevated (on

top of the propulsion module), surface mounted, or buried to obtain shelter-

ing from the lunar environment including solar flare radiation. These

configurations have an effect not only on the types of hazards which may

arise, but also on the ingress and egress requirements of escape and rescue.

Typical base hardware elements are shown in Figure 4-1. In this figure the

base proper is elevated, sitting on top of a lunar lander propulsion

module. This configuration places severe technical requirements upon the

escape and rescue mission. The removal or escape of an incapacitated crew

could involve the use of an elevator. Placing the base facilities on the

surface relieves the dependency of escape or rescue on elevators and/or

ladders, and may offer the opportunity of docking cabin rovers directly

with the base. Buried bases may require elevators or ladders, but these

may be inside the base in a shirtsleeves environment.

An additional factor in escape and rescue is the type of ambient atmosphere

and pressure of the surface base. Denitrogenization is required of the

crew in a transfer from an oxygen-nitrogen atmosphere to the space suit

environment. The time needed to denitrogenize is three or more hours de-

pending upon the techniques used, and this amount of time could influence

the escape and/or rescue mission.

The separation between the lunar surface base and the normal tug landing

site could be about l-l/4 nm. This requirement limits the possibility of

damage to the surface base because of tug explosion and lunar soil ejecta

stirred up by the tug engines, but at the same time the separation influences

escape and rescue timelines.
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4.1.2 Operational Phases

The operational phases of the lunar surface base consist of initial manning

and activation, routine operations, and deactivation.

As presently conceived, the base proper is landed unmanned. Manning and ac-

tivating the base could require that the initial crew live temporarily in a

lunar lander tug, and perform a number of construction tasks. For example,

the base may need leveling, or a surface mounted base may need sandbagging.

These types of outside activity raises the possibility of personnel injury.

The routine operations phase consists of housekeeping activities, outside

exploration, and, periodically, logistics resupply and crew rotation.

The deactivation phase will probably consist mainly in preparing the base

for storage, deactivating nuclear power plants (if any), removing salvage-

able equipment and instruments from the base, and loading the tugs.

4.1.3 Situations

The general situations during the base operations are listed in Table 4-1.

There are significant differences between the initial and final phases and

the routine phase of the base operations. During activation the base may

not be habitable. Hence, a bad landing could leave the crew stranded on

the lunar surface without a safe haven available. During deactivation,

there may be no safe haven available should the tug fail during liftoff.

In either case, the crew compartment of the tug may provide a safe haven

for some time assuming that the integrity of the crew compartment has not

been violated. The "worst" case for these situations is where the crew

must resort to space suits and portable life support systems for survival.

This class of emergency situations can be summarized as one in which the

crew survival is limited by portable life support systems, and there is

no primary vehicle available for leaving the surface of the Moon.

4-4
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In the initial manning and activation phase or during routine operations,

the men may become trapped and/or injured inside the lunar surface base.

This might occur as a result of an inoperable airlock or a critical failure.

The loss of communications at the base when no tug is available with

alternate communications is a severe emergency. The escape/rescue plan

must provide emergency communications to circumvent this possibility.

The routine operation of the base includes Internal Vehicle Activity (IVA)

and External Vehicle Activity (EVA) situations after the base has been

established. In the EVA situations, there will be only a fraction of the

crew on EVA while the other members of the crew are inside the base (or in

tugs during the other phases of base operations). Hence, a rescue can be

mounted by the base crew, and the base offers a safe haven to which the EVA

crew may be removed. If a portion of the crew is on EVA, it may be possible

for the EVA crew to help those inside a disabled base. The base crew may

be evacuated to the parked tug.

A particular IVA situation is where the majority of the crew in the lunar

surface base are distressed to a point where they c_nnot help themselves.

They require aid to correct the problems on-board the base, and to prevent

further deterioration of their position. Subsequently, they may need

evacuation, and help to perform this evacuation. The lunar lander tugs

will nominally land or be parked up to approximately l-l/4 nm from the

lunar surface base. The distressed personnel probably cannot make this

journey unaided. In addition, they need a crew to fly the tug from the

surface to escape to orbit.

The typical situations in the vicinity of the base during routine operations

are shown in Table 4-2. Lunar rover vehicles are at the base or on traverse.

Extravehic__lar suits and mobility vehicles are available, including pressuriz-

ed stretchers. There is one tug near the base for each 6 men at that base.

In addition, there is a standby rescue tug in lunar orbit.

4-6
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4.2 LANDER TUG LOCAL OPERATIONS

The lunar lander tug will make individual landings at various lunar sites.

These sorties will permit the exploration of widely separated areas of the

Moon, initially prior to establishment of the lunar surface base (LSB), but

continuing on an on-going basis throughout the lunar program. A typical

sortie will be characterized by the landing of a single tug having a total

crew of four. The crew compartment may be elevated with the propulsion

module below. The nominal mission duration will be up to 28 days. The site

lurain may be somewhat rougher than that of the LSB, and landing aids will be

minimal. Unlike the LSB, some sortie bases may be set up on the far side

of the Moon.

Unless special landing sensors are used, the planned tug landings will be

made at optimum sun elevation angles using techniques similar to that of

Apollo. Ascent and descent will be within the orbital station orbit plane

with only small plane changes required.

4.2.1 Operational Phase

Hard landings, subsystem failure, communications failure and severe injury

to the crew members are situations that may arise during the landing and

activation phase.

The routine operations following activation include housekeeping, crew pers-

onal activities, data acquisition and transmission, and ingress and egress

operations. The tug will probably be pressurized with a two-gas atmosphere.

Hazardous situations include communications, electric power, and life support

failures, fire, meteoroid hits, and sickness and injury.

The deactivation and departure will be scheduled to reload the vehicle and

perhaps to abandon certain equipment. The hazardous situations include the

failure of the liftoff engine to fire, life support and environmental con-

trol system failure, lander subsystem failure, and severe injury during

4-8
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equipment packaging and unloading.

The characteristics of the operational phase of the lander tug local opera-

tions and the significant hazards are shown in Table 4-3.

4.3 LUNAR SURFACE TRAVERSE OPERATIONS

The traverse operations take place in the vicinity of, or between, the per-

manent and temporary lunar surface bases. The traverse may be made by the

crews on foot with and without a handcart, or in an EVA mobility vehicle,

or in a pressurized cabin mobility vehicle. The objectives of these traverses

include the following: To permit the crew to explore the lunar surface, per-

form experiments, set up instruments, transport cargo and/or crew, and con-

struct base facilities.

4.3.1 Traverse Situations

Table 4-4 lists a number of proposed mobility vehicles. Range in the table

is defined as the total distance that the vehicle can travel without refuel-

ing.

The EVA vehicles operate relatively close to a parked bug and/or a lunar base.

The separation distance of base and vehicle should never be more than the dis-

tance that the vehicle can travel in one half the operating time of the EVA

life support equipment.

The cabin rover vehicle may travel between two widely separated points on the

Moon. The sortie base tug from which it originates may return to orbit

after the rover vehicle reaches its point of no return, and the pick-up tug

may not land until the rover vehicle nears its destination.

EVA traverses may lead to situations which require rescue. A critical factor

is the condition of the pressure space suits and portable life support

systems. A torn suit would require immediate remedy. For tears on the limbs,

automatic, expanding, sealing diaphragms are a possibility. Effects of

small punctures may be temporarily modified by increased pumping by the PLSS

until a patch or pressure garment can be donned. In the event of damage to
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the space suit or PLSS unit, the capability of the individual to walk-back

or drive-back is entirely or severely impaired.

4.4 LUNAR SURFACE ESCAPE/RESCUE ANALYSIS

In the following major sections, the escape/rescue situations, concepts,

and guidelines are presented for each type of operation:

a. Permanent Lunar Surface Base (Section 5)

b. Lander Tug Local OPeration (Section 6)

c. Lunar Surface Traverse Operations (Section 7)

The general escape/rescue situations pertaining to the surface operations

are described by the following factors:

1. Communications availability,

2. Availability of primary vehicle for escape,

3. Survivability of crew and availability of a safe haven,

4. Crew condition as a result of an emergency,
5. State of base as a result of an emergency (pressurization,

atmosphere, airlock operability), and
6. Distribution of personnel at the time of an emergency (inside

base, outside in lander tug).

There are many possible situations, not only because many emergencies can

be postulated, but also because the equipment characteristics and deploy-

ment are parametric. Because of this proliferation of situations, an

attempt is made to find "worst" or limiting cases which may have different

escape/rescue requirements. The various classes of situations having

common requirements suggest appropriate classes of escape/rescue plans.

Hence, the setting up of situations is a prime motivation in the subsequent

analysis of the escape/rescue requirements, and the evaluation of candidate

plans.

Because the permanent surface base has the largest variety of escape/rescue

situations and alternatives available, it is presented first, including a

detailed analysis of the use of the lunar lander tug as an escape/rescue

vehicle. The results of the permanent lunar surface base analysis are then

4-12
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applied to the lunar lander tug temporary base operations in Section 6

taking note of the differences, such as crew size and stay time.

For the purposes of analysis, the traverse operations of both the permanent

and temporary bases are discussed together in Section 7. This is because

the traverse operations have manycommonescape and rescue requirements.

The traverse operations are characterized by variable locations, mobile

installations, limited resources, and variable scheduling.

4-13
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Section 5

LUNARSURFACEBASEESCAPE/RESCUEANALYSIS

This section analyzes operations at a lunar surface base and presents situa-

tions, concepts, operations, concept tradeoffs, and recommendedguidelines

for escape and rescue. Concepts examinedinclude escape to orbit in a stand-

by tug, rescue by a tug from lunar orbit, escape in EVAand IVA modes,use of

unpressurized and cabin-type rovers for escape and rescue transportation, and

use of an EVAsurface-to-orbit escape system.

5.1 LUNARSURFACEBASEESCAPE/RESCUESITUATIONS(Hazard Study 19, 20)

The lunar surface base will include living quarters for the base personnel,

laboratories, science equipment, mobility vehicles for lunar traverses,

electrical power generators, landing sites for lunar lander tugs, communica-

tions, and equipment needed to support the base operation, and possibly a

propellant depot. The living quarters and laboratory maybe elevated (on

top of the propulsion module), surface mounted, or buried to obtain sheltering

from the ]_in_ _n_ronment including solar flare radiation. These configura-

tions have an effect not only on the types of hazards which may arise, but

also on the ingress and egress requirements of escape and rescue. Typical

base hardware elements are shownin Figure 4-1. In this Figure the base

proper is elevated, sitting on top of a lunar lander propulsion module. This

configuration places severe technical requirements upon the escape and rescue

mission. The removal or escape of an incapacitated crew could involve the

use of an elevator. Placing the base facilities on the surface relieves the

dependencyof escape or rescue on elevators and/or ladders, and may offer the

opportunity of docking cabin rovers directly with the base. Buried bases may

require elevators or ladders, but these maybe inside the base in a shirtsleeves
environment.

An additional factor in escape and rescue is the type of ambient atmosphere

and pressure of the surface base. Denitrogenization is required of the crew
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in a transfer from an oxygen-nitrogen atmosphere to the space suit environ-
ment. The time needed to denitrogenize is 3 or more hours, depending upon

the techniques used, and this amount of time could influence the escape and/

or rescue mission.

The separation between the lunar surface base and the normal tug landing site
is assumedto be about l-l/4 nm. This requirement limits the possibility

of damageto the surface base because of tug explosion and lunar soil ejecta

stirred up by the tug engines, but at the sametime the separation influences

escape and rescue timeliness. The operational phases of the lunar surface
base consist of initial manning and activation, routine operations, and de-

activation.

As presently conceived, the base proper is landed unmanned. Manning and acti-

vating the base could require that the initial crew live temporarily in a

lunar lander tug, s_id perform a number of construction tasks. For example,

the base mayneed leveling, or a surface mountedbase mayneed sandbagging.

These types of outside activity raises the possibility of personnel injury.

The routine operations phase consists of housekeeping activities, outside

exploration and, periodically, logistics resupply and crew rotation.

The deactivation phase will probably consist mainly in preparing the base

for storage, deactivating nuclear power plants (if any), removing salvage-

able equipment and instruments from the base, and loading the tugs.

The general situations during the base operations are listed in Table 4-1.

There are significant differences between the initial and final phases and

the routine phase of the base operations. During activation the base maynot

be habitable. Hence, a bad landing could leave the crew stranded on the
lunar surface without a safe haven available. During deactivation, there

maybe no safe haven available should the tug fail during liftoff. In

either case, the crew compartmentof the tug mayprovide a safe haven for
sometime sssuming that the integrity of the crew compartmenthas not been

violated. The "worst" case for these situations is where the crew must

resort to space suits and portable life support systems for survival. This

class of emergencysituations can be summarizedas one in which the crew
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survival is limited by portable life support systems, and there is no primary

vehicle available for leaving the surface of the Moon.

In the initial manning and activation phase, or during routine operations,

the menmaybecometrapped and/or injured inside the lunar surface base.

This might occur as a result of an inoperable air lock or a critical failure.

The routine operation of the base includes IVA and EVAsituations after the

base has been established. In the EVAsituations, there will be only a
fraction of the crew on EVAwhile the other membersof the crew are inside

the base (or in tugs during the other phases of base operations). Hence, a

rescue can be mountedby the base crew, and the base offers a safe haven to

which the EVAcrew maybe removed. In the IVA situations, there mayor may

not be a portion of the crew on EVA. If a portion of the crew is on EVA, it may

be possible for the EVAcrew to help those inside a disabled base. The base

crew maybe avacuated to the parked tug.

A particular IVA situation is where the majority of the crew in the lunar

surface base are incapacitated to a point where they cannot help themselves.

They require aid to correct the problems on-board the base, and to prevent

further deterioration of their position. Subsequently, they mayneed evacua-

tion, and help to perform this evacuation. The lunar lander tugs will
nominally land or be parked up to approximately l-l/4 nm from the lunar suf-

face base. The incapacitated personnel probably cannot makethis journey

unaided. In addition, they need a crew to fly the tug from the surface to

escape to orbit.

If a minority of the crew is incapacitated, the situation probably requires

no rescue operation. The incapacitated crew memberscan be cared for by the

other base personnel until arrangements can be madefor their evacuation.

Typical situations in the vicinity of the base during routine operations are
shownin Table 4-2. Lunar rover vehicles are at the base or on traverse.

Extravehicular suits and mobility vehicles are available, including pres-
surized stretchers. There is one tug near the base for each six menat that

base. In addition, there is a standby rescue tug in lunar orbit.
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Cases l, 2, and 3 of Table 4-2 differ from those of 4 through 8 in that the

latter are connected with a transition situation. That is, the presence of

a second crew and lunar landing tug is due to a logistics resupply and crew

rotation operation. This modeof operation may last about two weeks. The

arrival and departure of the lunar lander tug is keyed to the position of

the lunar orbit space station orbit plane. For the lower latitudes, the

polar orbit plane passes within one degree of the lunar surface base about

every 14 days. Cases l, 2, and 3 prevail for the remainder of an approximate

2-month logistics cycle.

Case 1 requires rescue from orbit because there are no crew membersavail-

able in the vicinity of the base to render help. A rescue crew nmst be

landed near the base. They maywalk to the base or use a surface vehicle that

has been brought with them. Oncethey have reached the base, they mayuse

transportation equipment stationed at the base to transport the incapacitated
crew to the ascent vehicles. Onememberof the rescue crew will have to

operate the tug carrying the evacueeson its ascent. The tug crew capacity

will be limited. The rescue could therefore require the use of two or more

tugs. If eight mencan be carried to lunar orbit in one tug and the base
manning level was6 men, only one tug will be neededfor evaucation.

Cases2 and 3 are potentially surface rescue situations. This is because

the crew on traverse mayreturn to the base. They may render aid and trans-

port the incapacitated drew to the parked tug. They may also pilot the tug

to lunar orbit. Rescue could be required if the team on traverse requires

a longer span of time to reach the base than the response time of a rescue

tug, or if the traverse crew's residuals are near exhaustion.

Cases 4 through 8 are surface rescue situations requiring a parked tug(s)
to return to lunar orbit. The crew outside the lunar surface base can effect

the removal of the incapacitated drew and pilot the ascent vehicle(s). Case

8 is a special case in that the menin the tug are preparing to return,

which meansthat the plane changewill be small during this time period.

This crew, if they react quickly, may get the incapacitated crew to the tug
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in time for a normal return to orbit.

The following "worst case" situations determine the general requirements

of the rescue plan.

i. During initial manning and activation or base deactivation, the primary

liftoff vehicle is inoperable and the crew of six is surviving on portable

life support systems.

2. During routine base operations, (a) all six men are trapped or are in-

capacitated inside the base, or (b) the base emergency occurs when the

men on EVA have only a partial PLSS residual.

3. During a crew rotation mission, eight men are trapped, or are incapacitated

inside the base, four men are elsewhere. The logistics tug is available

on the surface.

An escape plan may be appropriate where the minority of the crew members are

incapacitated in the emergency. In some cases, where crew members are out-

side the base during an emergency, the outside crew may render help, followed

by an escape if a suitable vehicle is available.

An escape is feasible if the base personnel have the cap_0ility to help them-

selves. Conversely, if the base personnel are not capable of helping them-

selves, the need for rescue is apparent. The critical factor is whether a

majority of the crew in the base are incapacitated or not.

Figure 5-1 shows the possible rescue options, given an emergency on-board

the lunar surface base which leaves the majority of its crew members in-

capacitated. The evacuation of personnel proceeds via the orbiting lunar

station, the Earth-Moon shuttle (either nuclear or non-nuclear), the Earth

orbit space station, and the Earth orbit shuttle. This assumption rules out

the use of a direct shot back to Earth with an Earth reentry (Apollo style).

For the case where the majority of the crew is in normal condition, the

plan is to escape to a parked tug where the crew may proceed to orbit or

wait for a lunar lander tug to pick them up.
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5.2 LUNAR SURFACE BASE ESCAPE/RESCUE CONCEPT DEFINITION

The situations described above suggest the following escape/rescue approaches:

i. Escape (Figure 5-2)

a. Escape via IVA

b. Escape via EVA

2. Escape/rescue (Figure 5-3)

a. Integral temporary shelter and rescue

b. Detached temporary shelter and rescue

3. Rescue

a. Lunar orbit rescue (Figare 5-4)

b. Surface crews rescue (Figure 5-5)
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5.3 LUNAR SURFACE BASE ESCAPE/RESCUE OPERATIONS ANALYSIS

The operations involved in the basic escape/rescue concepts are shown in

Table 5-1. The commonality of operations are indicated by X's. However,

the details of the operations vary according to the concept. The following

analysis steps through the operations shown on the Table to: (i) establish

the nominal timeliness of the operations and their relationship to the para-

meters of the escape/rescue mission, and (2) determine equipment features

and performance requirements necessary for the conduct of the operations.

5.3.1 Operations from Rescue Alert to Ready for Rescue Tug Separation

The operations from rescue alert to separation encompasses (i) the signaling

of the control center, (2) the rescue decision making function, and (3) orbi-

tal operations in the preparation of the rescue vehicle for descent (in the

case of a rescue) or the space station tug for rendezvous with an escape vehicle.

These three are discussed below.

5.3.1.1 Rescue Alert Signal

Communications are needed for escape and rescue in order that the following

functions be fulfilled:

i. Sending an S.O.S. via base to Earth or orbiting lunar station, base to

EVA crew or parked tug, and EVA crew to base, parked tug, or Earth.

2. Verifying S.O.S. and explaining the nature and intensity of the emergency.

3. Coordinating activities of stranded crewmen and rescuers, and coordinating

rendezvous of escape vehicle with other space elements.

4. Providing location aids.

The latter is mainly confined to disabled EVA crews signaling the base as to

their location. The first three functions are common to all base situations.

The rescue alert signal is sent from the lunar surface base to the Earth vi-

cinity. It may also be sent directly to the orbiting station or orbiting
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Table 5-1 OPERATIONSOFBASICESCAPE/RESCUECONCEPTSFORLUNARSURFACE

Operations

A. Alert to Separation

l° Rescue alert signaling

2. Rescue decision making

3. Orbital operations

B. Separation to Touchdown

4. Time phasing of orbit

5. Descent & landing

C° Surface

6.

7.
8. Traverse to disabled

base

9. Ingress into disabled
base

lO° Egress from disabled
base

ll. Traverse to return ve-

hicle

12. Load rescue vehicle

D. Return to Orbit

13. Time phasing for ascent

14. Ascent to orbit
15. Rendezvous
16. Transfer of rescue crew

I_e ofb°t. _fr_m SurZacl

Rescue crew IRescue]in LLT. ,_rew on /ReSCpUjkCdeW

EVA tug.
traverse.

X

X

X

X

X

Egress from rescue ve- : X
41.M _J-M_

Unload mobility vehicles _ X
X

X

X

X

X

X

X

X

X

Escape

X

X

m

X

X

X

X

X

X

X

%

X

X X

X X

m

X

X

X

X

X X

X X

X X

X X

X X

X X
X X
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tugs provided that these elements are in line-of-sight of the base. In any

case, the Earth vicinity must be able to contact the lunar orbit elements
as soon as is possible. In the worst case, the emergencyoccurs whenthe

orbiting lunar station just passes into the communications shadowof the Earth-

to-Moon link. This delay may amount to as muchas one-half period of the

station, i.e., 1 hour for a 60 nmorbit altitude. If a backside relay is

provided, the delay time is negligible.

Alternate ways of contacting the orbiting station maybe envisioned, e.g.,
lunar orbit relay satellites (refer to Appendix B). However, it is most im-

portant to _ontact Earth vicinity as well so that the Mission Control Center
can institute any required verification procedures in the decision making

process.

The absence of signals from the lunar base may also be interpreted as an

emergencysituation. This mayoccur if a time check to Earth of the orbiting

station is missed. This type of warning must be avoided if at all possible

because (1) it adds delays to the alert signal, and (2) it provides uo in-

formation about the status of the base so that an intelligent rescue plan can

be instituted. Any automatic S.O.S. should, if possible, indicate the nature

of the disturbance causing the S.O.S.

The nominal time to alert Earth vicinity and the lunar orbiting elements is

approximately 15 minutes, provided that a backside relay is available. With-

out the latter, the alert time to the lunar orbiting elements may be as much

as 1 hour.

Because of the necessity for communications, the surface base must have a

redundant, independently powered emergency communications system. The system

should be capable of communicating directly with Earth vicinity. A two-way

system is required so that the base crew can confirm the reception of its

signals to Earth vicinity, and verify the contents of its original message

to the satisfaction of the Earth base. During the foreseeable future, the

lunar surface base will be located on the Earth side of the M_on so that it

will always be in line-of-sight with the Earth.
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The surface-to-surface communications in the vicinity of the base are re-

quired to alert any crew members on EVA traverse, or in the parked tug. How-

ever, an emergency link to Earth vicinity will also accomplish the same end

bec_ise (1) the Earth vicinity facility can relay messages to all lunar sur-

face units, and (2) the emergency line-of-sight communications can be picked

up by lunar surface crews with appropriate receivers out to a range of several

miles. The emergency system antenna should transmit to the lunar surface as

well as to Earth. The mobility vehicles, tugs, and space suits should be

equipped with a receiver capable of intercepting any emergency signals from

Earth vicinity.

Conversely, the EVA crew, or crew in mobility vehicles and parked tug should

have emergency communications with the base and Earth vicinity. Hence, two-

way emergency communications gear are required on the space suits and ve-

hicles.

An emergency commnnications system will solve the problem of equipment fail-

ure by providing redundancy. What it does not solve is the lack of communi-

cation because of the incapacity of the crew in the surface base.

The absence of signals from the lunar base may also be interpreted as an

emergency situation. This absence will be noted when the Earth vicinity,

orbiting station, and/or remote surface elements attempt to contact the surface

base and receive no answer, or when the surface base fails to meet a scheduled

check-in time. The failure of comm,lnications in this instance, where emergency

communications have been provided, would be attributed to the incapacitation

of all of the base crew or that part of the crew which is on duty. The nature

of the hazard could cause the men on duty: (1) to become mentally confused

or incapable of taking any kind of action, or (2) to evacuate the comm.lmica-

tions center. The latter may be averted by requiring that there be an alternate

communications center in the base with access to both the normal and emergency

communications equipments.

For an incapacitated crew, two approaches are evident. A bell or other signal
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must be installed in the communications center and crew sleeping quarters

which can be activated by a signal from Earth. Thus, Earth maytry to arouse

a sleeping crew if Earth fails to obtain a response to an inquiry. Secondly,
the surface base should have an automatic S.O.S. system. The latter maybe

a time operated device working through the normal and/or emergencycommunica-

tions systems. Periodically, the duty crew would have to reset the timer.
Failure to do so would alert Earth of a possible emergency. Alternately, the

automatic S.O.S. could operate from sensors designed to detect under-pres-

sure, oxygen partial pressure, toxicity, or abnormal temperature. This cir-

cuit could be a part of the on-board warning system.

The frequency of check-in times is keyed to the time effects of possible

hazards on the crew. Hazards likely to cause crew drowsiness or mental

confusion are heat prostration, carbon dioxide narcosis, and anoxia. The

check-in frequency must be determined together with the warning system limits

and the survival times of the crew associated with these limits.

With safeguards such as those pointed out above, the failure of communications

would be detected within a check-in time interval, and would indicate the

need for sending a rescue team to the base. The rescue situation would be

characterized by:

i. An urgency of rescue response,

2. The expectation that the surface base crew would be of little help in

effecting the rescue, and

3. The conditions in the base are unknown to the rescuers.

5.3.1.2 Rescue Decision Making

The bulk of the decision-making time interval will be used in verifying the

rescue alert message and in determining the exact status of the disabled

base. The reaction of the Escape/Rescue Control Center will be to recommend,

and follow the progress of, remedial measures or escape at the lunar surface.

If these are inadequate, or clearly inappropriate, the control center will

evaluate alternate rescue plans, select one, and notify the proper space

elements. In the event of a clear cut case of rescue, the Escape/Rescue
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Control Center will be able to relay orders to the appropriate rescue elements

in approximately 15 minutes.

5.3.1.3 Orbital Operations

The orbital operations of Table 5-1 pertain to a rescue mission from a
vehicle located in lunar orbit. In the baseline situation, a space station,

propellant depot, and a lunar lander tug are assumedto be in a polar orbit
about the Moon. The lunar lander tug is docked to the space station. There

may or maynot be a primary transport vehicle at the space station or near by.

The first step is to alert the rescue crew and brief them on the rescue mis-

sion. The trajectory computations and rescue plan maybe madeon Earth or

in the statiou concurrently with this activity. These operations may occupy

as long as one-half hour for briefing the rescue crew.

Subsequently, the rescue crew is transferred to the tug. This operation will

be IVA through the docking port. A lunar rover vehicle is required to be

carried by the tug to serve as a backup mobility vehicle. This equipment

should be standard equipment in the rescue tug and thus would already be

loaded on the tug. Tug activation, check-out, and separation may require 20

to 45 minutes. The total orbital operation up to maneuvering for descent

may occupy a minimumof from 50 to 75 minutes.

5.3.2 Operations from Rescue Tug Separation to Touchdown

The separation to touchdown operation applies to the concept of rescue from

lunar orbit.

5.3.2.1 Time Phasing of the Orbit

The descent to the lunar surface must be accomplished so that the rescue ve-

hicle can land near the lunar surface base. The time phasing of the orbit

refers to the positioning of the rescue vehicle in the orbit for the first

burn. It does not refer to the waiting for the orbit plane and the lunar

surface base to become coincident. Consequently, the maximum time for phasing
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is one orbit, or about two hours for a 60 nmorbit. This time phasing in-
terval is not always concurrent With the orbital operations preceding launch.

The rescue vehicle may remain docked to the orbiting station during most of

the time phasing interval. Thus, the actual separation of the rescue vehicle

from the station mayoccur any time during the time phasing, up to just be-

fore the first burn of the descent operation.

5.3.2.2 Descent and Landing

The rescue mission places the following requirements upon the descent and

landing of the rescue vehicle:

1. The time to descend and land must be minimized to Widen the survival

time margin of the crew in the disabled lunar surface base.

2. The rescue vehicle must be able to perform the worst plane change without

waiting. The plane change is i + L or 180° - _! i l L'+

degrees, _hichever is less than 90°, where i is the inclination ' of the

rescue vehicle's orbit, and L is the latitude of the lunar surface base.

If i = 90° , and L = O, a 90° plane change could be required.

3. The landing should be accurate to within a few hundred feet to allow the
rescue vehicle to land as near the disabled base as permitted by the

surface ejecta safety criterion.

4. The landing technique must be adaptable to all lighting and night con-
ditions.

5. The landing field should be relatively smooth.

6. The descent should be performed so as to allow abort opportunities at

each stage of the operation.

7. Options for saving /.V during the descent, where feasible, should be pro-

vided so that the % V capability remaining after landing is maximized.

Abort capability can be provided by the vehicle design, e.g., providing two

stages or redundant engines. Hoover, it is best to use trajectory tech-

niques to lessen the dependency of crew safety upon these expensive design
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alternatives. The descent trajectories should be such that no new burn is

required to prevent an impact on the lunar surface. This rules out the use

of a short arc descent. An elliptical descent to a 50,000 foot perilune is

recommended. A Hohmanntransfer orbit provides this feature and at minimum

energy expenditure.

It is desirable that the rescue vehicle be able to operate as autonomously

as practical, particularly in the areas of guidance and navigation. The
rescue vehicle landing error (using Apollo program error budgets) is esti-

mated at 12,000 feet if a 90° plane change is required. A navigation update

from somesource external to the rescue vehicle (such as the LSB, orbital
station, or Earth vicinity) would reduce this to a level of about 3500 feet.

A technique that would permit rescue vehicle autonomousoperation is to overfly

the landing site after any required major plane changeor other orbit maneuver

has been accomplished. The vehicle could then track a landing beacon located

at the landing site and compute a navigation update from these data. Large

corrections could then be madeprior to initiation of the powered descent

initiation maneuver. Small corrections, based on approach tracking data from

this samebeacon, could be madeduring the powereddescent phase. The latter

technique should permit the rescue vehicle to land within a few hundred feet
of the desired site.

The requirement for a 90° plane change is costly in terms of L V. A con-

siderable savings in impulse velocity can be obtained by making the required

rescue vehicle plane change at apogeeof an elliptical orbit with perigee

at the station circular orbit altitude. However, this velocity saving is
obtained at the cost of an increase in elapsed time (response time) due to

the elliptical orbit period increase. Figure 5-6 presents the tradeoff be-

tween this increase in elapsed time versus the corresponding decrease in the
90° plane change required/V.

_-Burn Descent - No Ellipse or Overflight

The trajectory for shortest time to descend from orbit altitude using a

Hohmann transfer to a 50,000 feet perilune is shown schematically in Figure
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5-7. This trajectory does not provide any opportunity for an elliptical

orbit nor an overflight of the landing site. The first burn is made 270 degrees

from the landing site and makes the calculated plane change at orbit altitude.

After orbiting 1/4 revolution, the second burn puts the vehicle into a

Hohmann transfer ellipse to a 50,000 foot perilune. The third burn occurs

at perilune, braking the vehicle and continuously powering the vehicle to

wLthin a few feet of the surface. Only one orbital maneuver is performed at

each burn.

At about 125 nm from the landing site, the rescue vehicle comes within line-

of-sight of the landing field. If a surface location beacon is tracked for

about 30 seconds, the rescue vehicle can make a corrective maneuver at a

maximum range of about 100 nm from the landing field. Assuming a maximum

cross range error of 24,000 feet, the required correction/V is 218 feet per

second. The total time for this descent is about 3/4 orbit or l-l/2 hours.

_-BurnDescent - Overflight, No Ellipse

In Figure 5-8 a method for more accurate descent by overflying the landing

site is presented. In this case the first barn makes the major plane change

90- away from the landing site at an orbit a_iuuue. The ±-_ .........

flies over the landing site and tracks a location beacon at the site. When

the vehicle is 270 ° away from the landing site, it makes a correction to the

orbit plane, if required. At 180° away from the landing site, the third

burn places the vehicle into a Hohmaun transfer to 50,000 foot perilune.

Subsequently, the landing is the same as that for the 3-burn case. In this

approach, only one maneuver is performed at each burn. The total descent time

is equivalent to l-l/4 orbits, or 2-1/2 hours.

t-Burn Descent - Ellipse, No Overflight

The next trajectory (Figure 5-9) provides option for an elliptical orbit but

no overflight of the landing site. The first burn occurs 900 away from the

lauding site, injecting the vehicle into an elliptical orbit to a higher

altitude. At apolune, the second burn makes the major plane change and corrects
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the perilune to 50,000 foot altitude. At 90° away from the landing site, a

third burn circularizes the trajectory at 50,000 feet altitude. The rescue

vehicle will come within line-of-sight of the landing site at about llO nm

from the site. It may track the location beacon at the site and make cross

range corrections. Burn 4 makes the powered descent. In this case, two

maneuvers are performed at the second burn. The constant altitude approach

to the landing site may have some advantages for tracking purposes. The

total descent time is equivalent to 1-1/4 orbits or 2-1/2 hours or more de-

pending upon the ellipticalorbit apogee altitude.

Z-Burn Descent - Ellipse and Overflight

The final case consists of an elliptical orbit option and an overflight of

the landing site. In Figure 5-10 the first burn is 270 ° from the lauding

site and injects the rescue vehicle into an elliptical orbit to a higher

alti rude.

The second burn at apolune make the plane change. The rescue vehicle over-

flies the landing site as it descends to the initial orbit altitude. At

perilune, the third burn makes a plane correction, if necessary, and circu-

larizes the vehicle at the original orbit altitude. The 4th burn occurs

180 ° away from the landing site, injecting the rescue vehicle into an ellip-

tical orbit with a 50,000 perilune. Subsequently, the vehicle tracks the

beacon at the landing site and makes cross range corrections, if any. Burn 5

is the powered descent to landing. The third burn may perform two functions

if a plane correction is required. The total time is equivalent to

orbits or _-1/2 hours or more depending upon the elliptical orbit apolune

altitude.

5.3.2.3 Crew Preparation (Denitrogenation)

During the time interval between separation and touchdown, the rescue crew

must acclimate themselves to a space suit environment. The orbital station

is assumed to have a normal Earth atmosphere. For those crewmen who emerge

from the space station two-gas, 14.7 psi atmosphere, the acclimation consists
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of pre-breathing pure oxygen at a total pressure of 6.8 psia or more. In

this case, the pre-oxygenation period is about 3 hours. This time interval

is sufficient to protect against most of the decompression sickness symptoms.

At separation the rescue crew will don space suits and begin to pre-oxygenate.

They must perform the necessary descent and landing maneuverswhile pre-

oxygenating. Before landing, the crew compartmentwill be depressurized to

3.5 psia and the atmosphere changedto pure oxygen. After landing, the crew

will don their space suit helmets and put on the portable life support units,

and proceed to egress. The interval from separation to landing is adequate

for denitrogenization for any of the descent schemessuggested.

5.3.2.4 RescueTug Descent Procedure

In order to be able to render assistance as soon as possible, the rescue plan
requires that provisions be madeto allow use of the 4-burn direct descent

with overflight for time-critical rescue. This procedure requires a basic
7,300 ft/sec for descent and landing, plus provisions for an additional

7,550 ft/sec for a 90° plane change. Maximumtime i_om separation to touch-

down is 4.6 hours including 2 hours for orbit phasing.

The reliance on an elliptical transfer orbit descent to conserve IV carries

too big a penalty in time for the saving in V. Referring to Figure 5-6,
z.educingthe 90° plane V to 6,000 ft/sec requires an additional 5 hours, more
than double the direct-descent time.

The allowance for an overflight in terms of time (one hour more than the

3-burn direct descent) is considered worthwhile in that the rescue tug can be

autonomously c_oable of achieving the essential accuracy to land within 1/2 nm

of the distressed crew. The necessity for landing accuracy is discussed in

the succeeding section.

The capability to land at night and all sun angles is necessary to meet the

above timeliness. Becausethe base is a fixed installation, the possibility

of preparing a landing site is realistic. Beaconsand landing site lights
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may be installed. The landing site should be relatively smooth. It maybe

semi-hardened by chemical treatment to reduce the dust problem although this

feature is not a requirement set by the rescue operation.

5.3.3 Rescue Operations on The Lunar Surface

Typical surface operations are shown in Figure 5-11. The timeliness and pro-

cedures of the surface operations depend on a number of system parameters

including the following:

1. Distance between the lunar surface base and the escape or rescue vehicle.

2. Crew compartment pressurization and atmosphere.

3. Space suit pressurization and atmosphere.

4. Elevation of the airlocks above the lunar surface.

5. Capacity of the airlocks.

6. Capacity of the rover vehicles.

7. Velocity of the rover vehicles.

5.3.3.1 Landing Distance for a Rescue Tug

The nominal distance between the lunar surface base and the lunar lander tugs

is one and one-fourth miles. This distance is required to give safety to the

base from the surface ejecta stirred up by the tug engines and/or debris

ejected by an exploding tug. A parked tug, either on standby or on a normal

logistics resupply mission, sh_Ald be located at this distance. However, this

distance may be reduced for the rescue vehicle. The logic here is that the

normal safety rule does not apply in the case of a rescue, the increased risk

to the base hardware being offset by the increased efficiency in rescue.

Landing the rescue vehicle within 1/2 nm of the base will reduce trip times

to the rescue vehicle by 60%. It also will enable the crew members, in a

normal condition, to walk between the base and rescue vehicle.

In moving the landing distance from l-l/4 to 1/2 nm, the particle diameter

that could reach the base increases from 0.06 to 0.16 inches in the ejecta

stirred up by a 10,O00# thrust engine 5 ft. above the lunar surface. The
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probability of a hit is increased by a factor of about 2.5.

The IVA transfer of personnel from the base to the rescue vehicle would be

possible if the rescue vehicle could land next to the base. This idea does

not appear realistic at this time. The accuracy of landing has not been

demonstrated sufficiently to permit the acceptance of this idea. No landing

data is available for night landings or landings at unfavorable sun angles.

Hence, the danger of a direct collision between rescue vehicle and base in

a side-by-side landing cannot be ruled out at this time.

This analysis assumesthat the rescue vehicle must land 1/2 to l-l/4 nm from
the base. It is also assumedthat the rescue vehicle cannot move to the

base (on tracks, for example) nor that an aerial tram is rigged between base

and the rescue vehicle. These possibilities are considered too futuristic in

this time period.

5.3.3.2 Denitrogenization of a Distressed Crew

The base crew compartmentis generally assumedto be pressurized at 14.7 psia

with a normal Earth atmosphere. This pressurization has the disadvantage of

requiring a lengthy denitrogenization of the crew before their emergencein

a standard space suit having a 3.5 psia, 100%oxygen atmosphere.

In an emergency, the crew maygo directly to the space suit without pre-

oxygenating. The onset of the symptomsof the decompression sickness is

delayed according to the amountof work the menperform. Table 5-2 shows

these delay times for about a 10%cumulative incidence of symptomsfor a

moderate exercise. This Table is derived from data for mengoing from a sea

level atmosphereto the space suit environment.
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Table 5-2

TIMEFOROCCURRENCEOF10%CUMULATIVEINCIDENCE
OFSYMPTI0_OFDECOMPRESSIONSICKNESS

Initial Pressuri-
zation & Atmos-
phere

14.7 psia (sea level)
20% 02 - 80% N2

equiv)7"5psia (15,090' i

50%02 - 50%N2
.I

Final Pressurization & Atmosphere

7.5 psia (15,000' Fquiv) 3.5 psia (35,000' Fquiv)

lO0%02

lOminutes*

3Ominutes#

3Ominutes*

50%%o2- 5o%N2

15 minutes_

45 minutes#

90 minutes#

* For standard exercise consisting of i0 step-ups onto a 9 inch stool

in 30 seconds every 5 minutes.

# For 1/3 standard exercise.

o

The delays in feeling the decompression sickness may allow the crew members

to perform some escape or resoue activity, or allow them to be moved pas-

sively in a rescue.

While the standard pressure suit has a 3.5 psia, 100% oxygen environment, it

is possible for a suit to be constructed for a 7.5 psia, 50% oxygen atmos-

phere. This would have the advantage of being perfectly adaptable to a

similar atmosphere in the cabin, or extending the delay time in the onset of

decompression sickness symptoms if the cabin has a normal sea level atmos-

phere. The disadvantages are the restrictions placed on the movements of the

men in the suit, its extra weight, its development costs, and the fact that

it would be a dedicated safety gear probably without a practical use during

normal operations.
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5.3.3.3 RescueEquipment Capacities

An elevated airlock requires the use of an elevator to raise and lower crew

memberswho are not able to use a ladder or steps. This would include the

pressurized stretcher. In addition, the docking of a cabin rover to the

airlock would require either a large elevator or a ramp. Hence, the IVA

transfer of crew membersbecomescomplicated and impractical for the elevated

base and tug. Even if the base is surface mounted, the lunar lander tug will

probably be elevated. Emergencyelevator power and control must be provided

where elevators are present.

The capacity of the airlocks should accommodatetwo menin pressure suits,
or one manin a pressure suit and one in a pressurized stretcher. Portable

airlocks should have the samecapacity. The airlock capacity affects the
time it takes to evacuate or load a vehicle or the base.

The capacity and speed of the rover vehicles affects the numberof trips and

the trip time betweenthe disabled base and the escape or rescue vehicle.

Each operation in the general escape/rescue procedures are examinedbelow.

5.3.3.4 Egress from Tug RescueVehicle

The rescue crewmay egress from the resc,_evehicle through the airlock in a

normal manner. This operation should occupy no more than 15 minutes ex-

pecially if the pressure of the crew compartmenthas been reduced to 7 psia

(50%02 - 50%N2) or 5 psia (100%02). The rescue team would be prepared
for EVAas waspointed out in the discussion of the preceeding separation
to touchdown sequence.

5.3.3.5 Unload Mobility Vehicle

The rescue vehicle will probably land at least 1/2 nmdistance from the

lunar surface base. The rescue crew has the option of _alking to the lunar
surface base. However, a rover vehicle will be needed to carry rescue

equipment such as pressurized stretcher or portable airlock, and can provide

both lighting, for night travel, and vital communications gear. In addition,

P
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O

because the condition of the rover vehicles at the base are unknown, it will

be a safer procedure to bring a fresh rover vehicle with the rescue crew.

This vehicle would provide transportation for the rescue crew to the base

and elsewhere. The time allowed to unload the rover vehicle from an un-

pressurized cargo compartment is 15 minutes, using a powered hoist.

5.3.3.6 Traverse to Disabled Base

For separation distances between 1/2 and 1-1/4 urn, a man walking at 2.7

knots (5 km per hour) will require from I0 to 30 minutes time to make the

trip. A 3.5 knot rover vehicle will require from 8 to 20 minutes.

Some rescues may originate at the parked tug, usually _he one which is on a

crew rotation trip (Cases 4 through 8 of Table 4-2). In this situation the

tug to base distance will be l-l/4 nm, and the longer times apply. In another

rescue case (numbers 2 & 3 of Table 4-2, the crew on EVA may return to the

base to perform the rescue. Assuming the rauge of the EVA rover is 16 nm,

the maximum distance from the base would be about 8 nm. Hence, a 3.5 knot

vehicle would require 2.3 hours to return to the base, and a five knot vehicle

would require 1.6 hours. The traverses for Cases 4 through 8 of Table 4-2

would probably be performed during daylight. This is because the logistics

vehicle will probably arrive at the base during the lunar day. In Cases 2

and 3 of the Table 4-2, the traverses will probably be in the daylight be-

cause of the inherent danger of night traverses far from the base.

For Case i of Table 4-2 the rescue rover vehicle brought by the rescue

vehicle must be capable of night traverses at speeds of five knots. It

should be capable of carrying a driver in a space suit, plus, at the least,

any one of the following:

1. passenger in a space suit,

2. passenger in a pressurized stretcher, and

3. portable airlock.

The rescue rover vehicle must have a power supply capable of providing (1)

all the traverse power requirements, (2) floodlighting for ingress and egress
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operations at the base and tug, (3) emergencypower for an elevator or hoist,

and (4) power for wrenches or cutting tools to open sealed access doors in
the base.

5.3.3.7 Ingress to Disabled Base

The status of the disabled base and its crew must be established by the rescue

crew. If communicationsare normal, this status maybe easily established by

talking to the distressed crew. In other cases, however, the distressed crew

may be too incapacitated to reply, or the crew maybe ignorant of someof the

problems on board the base. In particular, the crew maybe isolated in a life

support compartment, unable to check out conditions of the base elsewhere.

Therefore, the second step in the process of ingress depends upon the informa-

tion that the rescue crew can obtain from the base crew. The sequence of

events and de_ision points are shownschematically in Figure 5-12.

An investigation of conditions on board the base is required if the informa-

tion is inadequate. If the base crew is alert, but the communications are

defunct, someform of simple emergencycommunications are assumedto be

feasible. These communications could vary from a simple code poundedout on

the base shell with a hammer,to plug-in voice circaits poweredby batteries

brought by the rescae crew. If the base crew is in satisfactory condition,

they could proceed to egress whenthis signal announcesthe arrival of a
rescue crew.

In investigating the condition of the base, the rescue team tests for pressure
and atmospheric composition and contamination. The elevator (if present)

and the airlock(s) are checked out. The required instruments must be brought

in by the rescue team. It is desirable to be able to quickly locate the

position of the crew in the base. Special emergencylife support compart-

ments could have an automatic signal that indicates its occupancy.

If the crew compartmentis unpressurized, the rescue crew opens the airlocks

and enters directly. In case the airlocks are inoperable, and to avoid having

the rescue team cut a hole in the base shell, an additional emergencysealed
door is neededto provide ingress/egress to the crew compartment. The door

m
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should be operable from either side.

If the crew compartment is pressurized, an airlock is required for entry

by the rescue team to avoid depressurization in case some of the survivors

are still in shirtsleeves. If the regular airlock is inoperable, a portable

airlockmust be used. The portable airlock should be compatible with the

sealed emergency door and sized to handle a pressurized stretcher and suited

crewman.

Passage through the airlocks is conventional provided that the atmosphere

in the base is not contaminated. If it is contaminated, the rescue crew

will have to put on oxygen face masks after venting their suits in the air-

lock. Suit venting is required to prevent a pressure differential from de-

veloping in which the base pressure exceeds the suit pressure. The rescue

crew should always use an oxygen face mask if the base atmosphere contains

a second gas. This will keep the rescue crew denitrogenized allowing them

to egress at any time.

The estimated times for the ingress operations are also shown in Figure 5-12

with a maximum of 85 minutes (1.4 hours).

5.3.3.8 Egress from Disabled Base

The most general escape/rescue procedure requires that the base crew egress

in the EVA mode. Hence, a pressure suit should be provided for each person

on board the surface base. Additionally, a pressurized stretcher must be

provided for any individaul who is injured and cannot be placed in a pressure

suit. The pressurized stretcher may have an atmosphere similar to that of a

space suit, or it may be pressurized to 7.5 psiawith a 50% oxygen - 50%

nitrogen atmosphere. While the latter prevents the effects of decompression

sickness, it has the disadvantage of requiring a special portable life

support system. The man in the pressurized stretcher will be passive through-

out the opsration. His decompression symptoms will not be severe. There is

also the possibility that he can be pre-oxygenated before entry into the

pressurized stretcher. Hence, the pressurized stretcher could have the same
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atmosphere and pressure as a pressure suit.

In general, the base crew must accommodate themselves to a pressure suit

environment. The able bodied crew members must be prepared to take an

active role in the escape/rescue. They must definitely be denitrogenized

because they will have to perform work in pressure suits.

The egress for EVA evaucation is discussed next, and subsequently, the

alternative IVA transfer.

If the base has been depressurized, the base personnel will already be in

pressure suits, or inside special life support compartments. In the first

case, the time to evacuate is simply the time required to pass through doors

or opened airlocks. In the second case, where the crew is in special com-

partments, the requirements are the same as those -when the total base is

pressurized. These requirements are that the personnel must don pressure

suits (or enter pressurized stretchers) and must accommodate themselves to

the space suit atmosphere.

An EVA egress, from a 14.7 psia normal atmosphere crew compartment is shown

in Figure 5-13. The crew pre-breathes 100% oxygen for three hours at

pressures greater than 6.8 psia, after which they may don pressure suits

and go to a 3.5 psia 100% oxygen atmosphere. The crew aay egress through

the airlock, or if the latter is inoperable, they may depressurize the whole

cabin, open a sealed door, and egress through this opening. As an alterna-

tive, the crew could don pressure suits built especially for 7.5 psia and a

50% nitrogen - 50% oxygen atmosphere.

If the lunar surface base normally has a 7.5 psia 50% nitrogen - 50% oxygen

atmosphere, the crew may pre-breathe 100% 02 for two hours, and then don the

standard pressure suits, as is shown schematically in Figure 5-1_.

It seems best to employ standard pressure suits for the escape and rescue

purposes. The suits are not dedicated. The denitrogenization time may occur

concurrently with the response time of the rescue system in the case of rescue.

It is recommended that the pre-breathing of pure oxygen be carried out, because

5-37



LMSC-A984262D

0

0

I-I
,M

_0 _ _''_

J

,--I cO o,1

0

H
.<

• ©

o_O

_o

_._

o
(D

!

.r-t

5-38



LMSC-A984262D

H O

0 Ic:l _ 0

cO _n_

0

i_i mO

_ Nm

I

CdH
0 O_

_-q ,-t t---

t
H

r./_ Ctl Ctl

M
M

H r._
N m
o N

_ N
Ar_r_

n_
_n

H
r_

H

_.)

r._

H

A

•

O_
m

_._

m
o

I

.el

5-39



LMSC-A984262D

the men who are not incapacitated will have to perform some work in the

escape and rescue operation.

The internal, special life support compartment must be compatible with the

requirements for an egress in the EVA mode. Each compartment (if more than

one) must be a virtual airlock so that it can adjust pressures from the normal

base pressure to zero. This is because of the possibility that the base may

accidentally become depressurized, or is deliberately depressurized to

facilitate the egress or rescue crew ingress. The compartment must accommo-

date a pressurized stretcher so that injured personnel can be prepared for

egress. The compartment capacity must be commensurate _d_th the total base

population. Case 6 of Table 4-2 sets this limit at eight people, but that

is based on a nominal population of six.

Each compartment nnls_ have a sealed door to the exterior. Hence, in the

event oC an inoperable main airlock, the men may egress from the opened

sealed door, using the compartment as an airlock.

The pressure suits sho_l_ be stowed in the special compartmgnts so that the

men have only one operation to perform in case of a serious emergency - viz.,

enter the special compartment(s). The compartments _st provide a means for

pre-oxygenating at pressures above 6.8 psia.

The compartments are required to contain an autonomous life support and pres-

surization system. Thus, the lunar surface base would have a redundant life

support and airlock system.

In the event a critical failure occures in the special compartment, that

compartment is simply sealed off from the rest of the base.

The alternative plan of providing an external shelter is not a substitute for

the special internal compartment unless a pressurized tunnel is constructed

between th_ base and the external shelter. Otherwise, the base crew is faced

with the problem of egressing in the EVA mode to gain a temporary safe haven.

An external emergency shelter may be needed to provide a temporary safe haven

for the outside crew who may return to the disabled base with depleted portable
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life support residuals. However, this latter requirement is not coupled with

the egress of the base crew from the base.

The IVA transfer of the base crew from the base to the rescue vehicle depends

upon the capability to dock a pressurized cabin rover vehicle to the base

and also to the rescue tug. Practicality dictates that the base and tug

crew compartmentsbe relatively near to the lunar surface level. The pres-
surized cabin rover vehicle must be docked to the base whennot in use. It

need not dock to the base airlock because it has its own airlock. However,

its airlock must be capable of pressurizing to the base pressure, which Mill

generally be greater than the 5 psia cabin rover pressurization. The alterna-

tive is to dock to the base's airlock which can then reduce the pressure to

that of the cabin rover. This procedure is not general, hoover, because

the base's airlock maybe inoperable in the emergency. The cabin rover pres-

sure Mill be compatible with the rescue vehicle if the latter is reduced to

5 psia during rescue, as was previously recommended.

In summary,the general docking requirements are as follows:

I. The base airlock must be compatible with the cabin rover docking mechanism.
2. The base must have a sealed door to which the cabin rover can dock.

3. The cabin rover airlock must be capable of pressurizing to the normal

base pressure.

4. The rescue vehicle airlock must have the capability to dock with the

cabin rover, or an alternative docking port.

5.3.3.9 Traverse to Tug

The time to traverse between the base and the return vehicle Mill be about

15 minutes based on a maximumseparation distance of I-1/4 nmand a 5 knot

rover vehicle speed. A distance of 1/2 nmreduces the traverse time by 60%.

If both the rescue vehicle at 1/2 nmand the parked tug of l-l/4 nmare used

to evacuate the personnel, the trip time is reduced 30%. However, reducing

trip times does not reduce the total evacuation time correspondingly if egress

and loading times are greater than individual trip times. The driver of the

traverse vehicle must return to the base to pick up new personnel. Hence,

5-41



LMBC-A984262D

the driver will be one of the rescue crew. In the case of the cabin rover

used for the transfer of the rescued crew in the IVA mode, the driver should

be in a pressure suit at all times. (This requirement implies that the cabin
rover has redundant external controls.) This has the advantage of freeing

the cabin for more rescued men, and also allowing the driver to perform tasks

on EVAmore easily.

It is possible that the movementof the traverse vehicle could be remotely

controlled by a RF link so that no driver would have to go with the vehicle.

However, the loss in speedunder remote guidance would probably be a greater

penalty than carrying a driver. For a two-manvehicle, the loss of more
than one-half the speed would makethe remote guidance procedure less effec-

tive than carrying a driver. For larger vehicles, the payoff of remote

guidance would be even less attractive.

The main disadvantage of the escape approach technique of entering the cabin

rover in the IVA mode, thus ignoring docking and pressurization hardware

penalties, is the fact that the rescue vehicle would have to bring a cabin
rover with it in order to be certain that an operational cabin rover was

available. This disadvantage is reason enough to place the transfer method,

based on the IVA mode, as a secondary approach.

5.3.3.10 LoadEscape/RescueTug

The general requirements for the loading of personnel in the EVAmodeonto

the escape or rescue vehicle are as follows:

1. Access to the rescue vehicle must be compatible with the transfer of

passive crew membersin space suits.
2. A meansfor transferring personnel in pressurized stretchers is required.

3. The crew capacity of the rescue vehicle must be compatible with the com-
bination of number of rescue crewmenand evacuees.

The transfer of personnel in the IVA modeusing a cabin rover vehicle re-

quires the following:
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i. A meansto dock the cabin rover with the rescue vehicle.

2. A meansof equalizing pressures between the cabin rover and rescue
vehicle.

If the crew compartment of the rescue vehicle is at a higher level with re-

spect to the traverse vehicle, an elevator or hoist must be provided to meet

the requirements of docking above. The elevator or hoist could be carried

by the traverse vehicle. For the transfer in the IVA mode, a rampmust be

provided. The maximumslope of the ramp should be less than thirtydegrees.

This is based upon the mobility requirements of the cabin rover vehicle for

surface exploration.

Twomethods of transfer in the EVAmodeare evident. The rescue vehicle may

be pressurized, say at 5 psia and 1OO%oxygen, whenit lands. In this case
the rescue vehicle must have an airlock. The airlock must accommodate

two menin pressure suits, or one suited manand a pressurized stretcher.

In the secondmethod, the rescue vehicle is depressurized before the rescue

crew egresses. Life support umbilicals are required so that crew memberswho

are loaded into the depressurized rescue vehicle mayplug in their suits,

and the pressurized stretcher mayalso be connected to the life support

system°

The first method is superior as far as the rescue is concerned. In this method,

the rescued crew mayget to a shirtsleeves environment earlier. This will be

especially valuable to an injured person in the pressurized stretcher; it

will be difficult to medically treat a crewmanin the stretcher. In addition,

the stretcher could be used again for another man. The disadvantage of
this method is the size of the airlocks neededto accommodatea stretcher.

The secondmethod exposes the rescued crew to a pressure suit environment

for a longer period of time. It does not materially shorten the total evacua-

tion time interval because the loading can be concurrent with the trips be-
tween the rescue vehicle and base.

Another possibility is to fasten the pressurized stretcher on the outside of
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the rescue vehicle, and recover the stretcher after the rescue vehicle and

space station rendezvous. This procedure is probably not acceptable, however,

because the manwould have to remain in the stretcher for a long length of

time. The minimumis %hours for ascent. In addition, there is the waiting
time on the surface of the Moonbefore takeoff. This time interval can be

substantial as is described later.

A large volume airlock maybe provided in the rescue vehicle by designing

one of the regular compartmentsin the vehicle to have the capability of

changing pressure and atmosphere, and having an internal and external pres-
sure door.

The preferred rescue methodvia the EVAmodeis to place the rescued men in
a shirtsleeves environment at the earliest time in the rescue vehicle.

For transfer in the IVA mode, the rescue vehicle must have a port capable

of docking with the cabin rover vehicle. If the cabin rover has an airlock,

the docking port need not be placed on the airlock of the rescue vehicle. A

5 psia 100%02 crew compartmentatmosphere is compatible with the current
cabin rover designs. The docking adapter could be an inflatable or expand-
able structure.

5.3.3.11 CrewBase-to-Tug Transfer Time

In the case of the previous three items (egress from disabled base, traverse

to return vehicle, and load rescue vehicle), the following analysis gives

typical total times for evacuation of a distressed crew. In this analysis,

it is assumedthat the base crew have been properly pre-oxygenated, and

are in pressure suits or are ready to be placed in pressurized stretchers.
Four operations are considered: disembark base crew from disabled base,

traverse to tug, return to base, and load base crew into tug. Part of the

rescue crew is at the base, one rescue crew m3mberpilots the rover vehicle,

and the b'_lance of the rescue crew is at the tug to help load the base crew
aboard.

For purposes of this analysis, each of the four operations is assumedto
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require one-fourth hour, and assumesone manis capable of handling an in-

capacitated crewmanon and off the rover and in and out of the airlocks.

The total time for evacuation is madeup of intervals needed for debarking

base crew, rover vehicle travel time from base to tug and return, and load-

ing crew on board the tug. Someof these operations may be carried on con-

currently, depending upon the availability of rescue crew membersto help the

incapacitated crew members,or the capability of the latter. The time intervals

for rescue ends whenthe last incapcitated manis aboard the tug in a shirt-

sleeves environment. The time that is required for the rescue crew to enter

the tug(s) is not counted.

The time required to remove six crewmenfrom the base and place them in the

safe haven is determined in a parametric form for a base-rescue tug spacing of

1/2 and l-l/4 nm, 2 and 3 mancapacity surface vehicles, and 2 and 3 man
rescue crew. The results are shownin Table 5-3. Total traverse distance

of the surface vehicle is a function only of its capacity and the spacing.
The total distance is the samefor 2 or 3 rescue crewmen. Rescuetime is

most sensitive to spacing and surface vehicle capacity. Increasing the

rescue crew from 2 to 3 decreases the rescue time only fractionally for the

samecapacity and spacing. Basedon these results, a surface vehicle with

minimum3 mancapacity is recommendedfor rescue of six or morem_n. This

is reaffirmed whenconsidering the total time the rescue crewmenare re-

quired to be outside the rescue vehicle, as is shownon Table 5-3. Allowance
will have to be madefor a spacing of l-l/4 nmin the worst case as discussed

in the next section on return to the orbiting lunar station.

5.3.4 Escape/Rescue Tug 0perations to Return to Orbit

The return operation is common to both escape and rescue. Its purpose is to

take the crew from the lunar surface to the station in lunar orbit. This may

be acc omp_ished by

1. waiting on the surface of the Moon for a co-planar ascent with no plane

change required,
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2. making an ascent plane change with the escape or rescue vehicle to com-

plete rendezvous with the station, or

3. making a zero plane change ascent with the escape or rescue vehicle,

and relying on an orbital vehicle to rendezvous with the escape or

rescue vehicle.

In the absence of an orbiting lunar station, the escape or rescue vehicle

could

1. wait on the lunar surface for an opportunity to rendezvous with the

primary transport vehicle in lunar orbit,

2. go to a lunar orbit and wait to rendezvous with a primary transport

vehicle from Earth,

3. go into lunar orbit, and, if necessary, rendezvous with a propellant

depot, refuel and return to Earth orbit either in the plane of the Earth

orbit space station, or some other orbit, or

4. refuel on the lunar surface, if necessary, and go directly to an Earth

orbit if tug AV capability permits.

Direct flights to the Earth with Earth reentry are ruled out becanse the

penalties associated with the required reentry equipment are not compatible

with the planned lunar hardware elements.

The total time required to return a crew to Earth orbit is the time required

to attain a lunar orbit plus the time waiting for an opportunity to arrive

at the Earth space station orbit with zero plane change. The latter oppor-

tunities occur every ten ds_vs for a 55° inclination Earth o#oit. Waiting

for the primary transport vehicle, in lieu of returning to Earth orbit in

a space tug, could easily double this time. However, with an orbiting lunar

station available, there is usually no great urgency in returning a crew member

to Earth because the space station should have medical facilities capable of

coping with most injuries. An isolation capability should be available

on both space station and escape/rescue vehicle to prevent contagious

diseases from being transmitted via the environmental and life control sys-

tems. The main emphasis of this analysis is concerned with the return to a

lunar orbit.
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5.3.4.1 Operational Modesfor Lander Tug Escape/RescueMissions

The alternative operational modesfor lunar surface rescue missions using the

lander tug are to either time phase (waiting) the descent trajectory with
that of the orbital station or to decouple the descent and ascent AV. To

have the capability to perform an anytime, all point, direct rescue mission

is too expensive from aAV requirement viewpoint.

Time phasing consists of an orbit time phasing and a surface waiting time to
obtain a favorable angle between the lunar space station orbital plane and

the lunar surface base. The waiting for the station orbital plane to change

with respect to a point on the lunar surface must take place at the lunar

surface base. The angle between the space station polar orbital plane and a

lunar site is shownin Fig. 5-15 as a function of time. The largest plane
change rate is 13.2 deg/day at the equatorial latitude and decreases with

increases in latitude.

TheAV available to the escape/rescue vehicle determines the required on-

surface and on-orbit waiting time span. Fig. 5-15 shows that if the escape

or rescue vehicle can wait on the surface, or survive, for up to 14 days, the

space station orbit will be coplanar with the lunar surface base sometime

within this waiting period. This modeis applicable for non-time critical

rescue missions and represents the minimumAV requirements. The ascent AV

can be decoupled from the descent AV provided (a) a dedicated, fully loaded

escape vehicle which is located on the surface of the moonis used, or (b)

the rescue vehicle is refueled on the lunar surface. If an escape vehicle

is used, its performance requirements are similar to those for a lander tug

in orbit which performs a 90 degree plane change and descends. In this

case, the need for a rescue lander tug is obviated by the escape tug, and
the time for the distressed crew to reach a safe haven in orbit is minimized.

If no escape vehicle is provided or if it is unable to perform the escape

mission, the crewmust be rescued. Table 5-4 showsthe AV required to
perform the various descent and ascent maneuvers. The amount of AV required

for a 90 degree plane change is a function of the base orbital altitude and

the orbital altitude at which the plane changemaneuveris performed. A
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more thorough discussion of lunar surface plane changerequirements is pre-

sented in Appendix A along with alternative operational modesto a three

burn ascent and plane changemaneuver. The&V data for the five burn ascent/

descent mission for Table 5-4 is discussed in Appendix A. If the rescue

vehicle is required to makean immediate descent with a 90 degree plane

change (three burn sequence), it has already expended14,850 ft/sec.

Consequently a 15,O00 ft/sec rescue vehicle would serve as a temporary safe

haven for the distressed crew and could provide somelimited medical assist-

ance, but could not return to orbit. The rescue and distressed crews are in

effect stranded and would have to wait for outside help to refuel the rescue
vehicle or to transfer the distressed crew for return to the orbital lunar

station. A rescue vehicle with 15,OO0ft/secAV capability that did not have

to makea plane change on descent would be able to makean ascent with no

plane changebut could require a waiting period of 14 days if the rescue

operations becomeextensive.

Rather than using the rescue vehicle for return, a stand_j tug may be available

at the lunar surface base. If it has been completely refueled, it is capable of

Fig. 5-15 Angle BetweenLunar Station Polar Orbital Plane and a
Lunar Surface Site vs Time
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returning immediately with 90° plane change. If it is not refueled it would

still have the capability for ascent with no plane change with the attendant

w_it of up to 14 days. To use the standby tug for return of the distressed
crew meanstransporting them over a distance of at least l-l/4 umrather than

1/2 nm as discussed in the previous section on CrewEvacuation Time.

In general, a 14 day emergencysurvival capability is recommended.

Table 5-4

AV REQUIREMENTSFORRESCUEORBITALMANEUVERS60 NMPOLARORBIT

Event

90° Plane Change

Descent & Landing

Ascent & Insertion

90° Plane Change

3-Burn Ascent/
Descent Sequence

3 V Cum.AV

Ft/Sec Ft/Sec

7,550 7,550

7,300 14,850

6,690 21,540

7,550 29,090

5-Burn Ascent/Descent

Sequence With 24 Hr.

....Elliptical Orbit

V Cum.AV

Ft/Sec Ft/Sec

4,800 4,800

7,300 12,100

6,690 18,790

4,800 23,590

Total 29,090 23,590

5.3.4.2 Escape/Rescue Tug Ascent to Orbit

The main requirements for the ascent is that the procedure be simple and safe.

The simplicity is desirable in order to relieve the need for a trained pilot

and a high degree of coordination among the escape or rescue vehicle, lunar

orbit space station, and Earth control center. The safety requirements are

similar to the abort opportunities specified in the descent trajectories. To

aid in meeting the simplicity requirements, it is desirable to keep the plane

change small. This is, therefore, another reason for providing adequate

surface survival time. Figure 5-16 shows a three-burn ascent which provides
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for a plane change and circularization at 60 nm altitude. The advantage of

injecting into a 50,000 foot altitude orbit at the end of a powered ascent

is that a safe orbit is attained on one burn. The total ascent time, in-

cluding orbit phasing on the ground and rendezvous is 4.9 hours. The AV

required for a zero plane change ascent is about 6600 ft/sec.

A more elaborate method is available which places the vehicle in a high alti-

tude apolune ellipse from the 50,000 foot orbit. In principle, this maneuver

saves _V when a large plane change is involved. However, because the ascent

will most likely be made with a small plane change, this added complexity

is not justified.

5.3.4.3 Tug/0rbiting Lunar Station Rendezvous

The main requirements for rendezvous are the _V and a method for guiding the

vehicle to a docking position that does not require a trained pilot and may

be accomplished for all sun angles and lighting conditions. A_V of 150 ft/sec

(included in 6690 ft/sec ascent _V) is sufficient for a co-planar rendezvous.

The guidance capability must be independent of pilot training because, in an

escape, the trained pilots may be incapacitated. The above requirements also

apply to the case in which the escape vehicle requires a rescue operation by

a second rescue tug after injecting into orbit.

5.3.4.4 Transfer of Rescued Crew from Tug to Orbiting Station

The main requirement here is a capability of transferring incapacitated or

injured crew members. The docking of the escape/rescue vehicle to the space

station to provide transfer in the IVA mode is the best solution. The alter-

native method using the EVA mode may require the use of a pressurized stretcher.

The latter should be available in the escape/rescue vehicle in case the trans-

fer must be performed in the EVA mode. For the same reason, pressure suits

and portable life support units should be available.

4
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t

5.4 LUNAR SURFACE BASE ESCAPE/RESCUE CONCEPT TRADEOFFS

The purpose of the following analysis is to compare the advantages and dis-

advantages of the various concepts. Because rescue response times are in

the order of hours, escape and survival concepts are considered first.

However, the case of a completely incapacitated crew cannot be ignored and

can only be remedied by use of an outside rescue team.

5.4.1 Escape from Lunar Surface Base

A parked tug is the basic escape vehicle for the crew if they have to abandon

the surface base. The tug is parked a distance of 1 1/4 nm from the base to

prevent damage to the base during landing and takeoff. Two methods are con-

sidered for traversing from the base to the parked tug; EVA rover and pres-

surized cabin rover.

o

5.4.1.1 Escape in the EVA Mode to Standby Tug

This concept depends upon the availability of a standby tug and the capability

of at least two members of the crew to effect the transfer of personnel from

the base to the escape tug, and to pilot it to orbit. The transfer of per-

_ulni_± 1_y b_ _ccump_±_n_u u_ w_±_±ng ui" ±'±u±ng.............a muu±±±_ venlc±e, u± bhese

vehicles, the rover is the most satisfactory because it can get close to both

the base and the tug. Thus, walking distance is reduced to a minimum. More

importantly, it reduces the distance that a pressurized stretcher must be

carried. A handcart similar to the Apollo 14 type handcart could be provided

which is capable of supporting a pressurized stretcher and being converted to

a wheel chair for suited but incapacitated men.

Based on a 15 minute airlock cycle time, a 15 minute traverse time (i 1/4 nm)

and that two capable crewmen are available, the time for a six-man crew to

escape to the standby tug is 3.75 hours using a two man EVA rover and 3.0 hours

using a three man EVA rover. For the two man rover, the one capable crewman

with one incapacitated crewman cycles through the base airlock, traverses to

the standby tug, cycles through the tug airlock, and returns to the base

(one hour). In the meantime, the other capable crewman has cycled a second

5-53



LMSC-A984262D

incapacitated man through the base airlock to be loaded on the rover as soon

as it returns. The complete evacuation requires nine 1 1/4 nm traverses

including picking up the other capable crewman. Allowing three hours for de-

nitrogenization, the total escape time after deciding to evacuate is 6.75

hours which is well within a 12 hour backpack time for the incapacitated

crewmen. For the capable crewman the time margin of the backpack is dependent

upon the amount of work required in transferring personnel. In the worst case,

each man of a crew of two outputs about 1050 Btu per trip. This is based on

metabolic rates of 700 and 1,400 Btu per hour for riding, and for handling a

stretcher, respectively. If four incapacitated men are evacuated, the total

work done per man is 4,150 Btu. Hence, a backpack unit have a capacity of

6,000 Btu gives a reasonable margin of safety. For a three-man EVA rover, two

incapacitated crewmen are transferred at a time on the rover. This requires

double cycling at the tug airlock by the capable crewman for a two-man

capacity airlock, but the total traverses are reduced to five. Once all

personnel are transferred to the parked lander tug, a surface waiting time

of up to 14 days may be required before an ascent can be attempted. Hence,

the parked tug should have an emergency surface survival time capability of

14 days.

5.4.1.2 Escape Via Pressurized Cabin Rover to a Standby TUg

The transfer of personnel in the IVA mode from the base to the tug eases the

problem of handling incapacitated men in the EVA mode, and avoids dependency

of the escape upon portable life support systems. The design penalties are

associated with the docking of a cabin rover vehicle to the base and the

lander tug. These docking ports could be surface-mounted. If elevated, the

cabin rover could climb a ramp to mate with the docking ports, or may dock

with a pressurized elevator compartment. The ramps and pressurized elevators

are penalties to the lunar mission in that they are heavy and complex.

The cabin rover vehicle must have a docking port. If the docking ports on

the base and tug are not on airlocks, the rover vehicle airlock must be

capable of pressurizing itself to the base and tug 6.8 psia. This would

enable the driver of the vehicle to stay in the vehicle throughout the

4
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evacuation operation without decompressionsickness, provided he were using
an oxygen mask. This procedure would be equivalent to preoxygenating. The

passengers would not be in the cabin rover long enoughto experience decom-

pression sickness.

Assuminga docking airlock cycle time of 15 minutes and a traverse time of

15 minutes each way (i I/A nm), the escape of a 6-man crew involving the

transfer of four incapacitated menby two capable menwill require a total

time of 4.75 hours using a 2-manpressurized cabin rover. If a 3-man rover

is used, the total time is reduced to 2.75 hours. Becausethe operation is

in shirtsleeves, and all operations are sequential, one capable mancould
accomplish the transfer of the entire crew in the sametimes.

5.4.1.3 EVAEscape in LESS(Lunar Escape System)

LESSis a cabin_less two-manflyer vehicle using a two- or three-step, bent

ascent trajectory to a 60 nmorbit. It is manually controlled, and nominally

seats two menin pressure suits. The ascent takes about ten minutes, and

requires about 7,500 fps _iV. A £V of less than 750 fps should be adequate
for the orbital elements to rendezvous with the LESS. This is because the

ascent and rendezvous will be ...... coplar_r _ _

The LESS vehicles may be stationed within a few hundred feet of the lander

tug. The crew may walk from the tug to the LESS vehicles. Incapacitated

men may be carried. The LESS vehicles may be fueled and essentially ready

for takeoff. The feasibility of the concept depends upon the capability of

the crew to manually control the LESS vehicle. At least one crew member per

vehicle must be capable of piloting the LESS. The vehicle must be designed

to carry an incapacitated individual, including a pressurized stretcher.

The concept is expensive because the LESS vehicle must be carried to the

surface and several LESS vehicles would be required to return a base crew to

orbit. Upon deactivation, the unused LESS vehicles would probably be abandoned.

It is also considered hazardous and is not recommended.
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5.4.2 Rescue from Lunar Orbit

In the category of rescue, the most general approach is that of surface

rescue from lunar orbit. This concept requires that a lankier tug always be

on orbit at the station and on standby alert. A rescue crew must also be

readily available. A second tug, as a minimum, must also be at the LSB

during those periods of time that the base is manned. A third tug is then

needed to perform landing sorties at remote sites or to perform orbital

missions. Thus, a minimum of three tugs are required in the lunar area

during the operational use of the base and station, and for other manned

missions in orbit or on the surface.

5.4.2.1 Rescue Response Times

The nominal response times for a rescue from lunar orbit is given in Table

5-5.

The nominal response is defined as follows:

There are no communication problems

The decision to rescue is clear-cut

The rescue tug and crew are available for immediate assignment

The space station orbit plane is random with respect to the base

The orbital phasing is random with respect to the base

Two-man rescue crew

Two-man airlock capacities

Nominal times are given for two landing distances (1/2 nm and 1 1/4 nm) and

two rover vehicles (2-man and 3-man). The total times are for transferring

six incapacitated crewmen to the temporary safe haven of the rescue tug or

the standby tug. In all but one case, the rescue time is less than the

12 hours survival time provided by a 6,000 Btu backpack for crewmen resting

while awaiting rescue. It should be noted that the rescue crew will gain

access to the base to render aid to the distressed crew in 8.1 hours which

include bringing additional backpacks and/or suits depending on the status

of the distressed crew.
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Table 5--5

NOMINALRESPONSETIMESFORRESCUEBY CREWIN

TUGFROMLUNARORBIT

Rescue
Operati on

RescueAlert to Separation
From Station

i. RescueAlert Signaling
2. RescueDecision Msking
3. Tug Activation

Separation to Touchdown

4. Orbit Phasing
5. Descent & Landing*

Surface Operations
6. Egress from RescueTug
7. Deploy Rover
8. Traverse to Distressed

Vehicle
9- Ingre_ into D_s-

tressed Vehicle
(Ellapsed time until
temporsry aid avail-
able)

i0. Egress from dis-

tressed vehicle, tra-

verse to return tug,
load distressed crew-

men

Rescue Times (hours)

2-msn Rover

0.25

O.25

!.00

I
2.00

2.60

i/2 nm I 1 1/4 nm

0.25

o.25

i. 40

1/2 nm

0. i0

(8.1o)

2.50

0. i0 O.25

(8.1o)

2.85 4.5o

lO.95 12.85

3-man Rover

1 i/4 nm

0.25

(8.35)

3.25

Totals 10.60 11.60

Notes: i. Tug carries either 2-man or 3-man rescue rover.

2. Rescue rover one-way trip may be either 1/2 nm to rescue tug or 1 1/4

nm to standby tug.
3. Crew of 6 to be rescued.

4. Rescue Crew Size, 2.

* 4-burn with flyover of bsse site.

5-57



LMSC-A984262D

A fast-response rescue is possible in the case of the rescue of a tug which

fails at routine lift-off or landing. In this case, the space station orbit

plane is approximately coincident with the base; the orbiting tug is in a

dedicated, standby status; the space station orbital plane includes the

base site at the time of surface lift-off or touchdown from orbit; and an

investigation of conditions at the emergency site is not required. Under

these conditions the rescue crew can reach the distressed tug in 2.6 hours

including 2 hours for descent and 0.6 hours to unload _tnd traverse to the

distressed tug (1/2 nm).

5.4.2.2 Rescue Crew Pressure Suit Time Requirements

The total time span that the rescue crew must survive on portable life support

systems is given below:

1/2 nmdistance -

1/2 nmdistance -

1 1/4 nm distance -

1 1/4 nm distance -

3-man rover: 4.95 (hours)

2-man rover: 5.3 (hours)

3-man rover: 6.15 (hours)

2-man rover: 7.4 (hours)

These times are all within the *g-hour nominal physical activity limit for a man

in a space suit but will probably require changing backpacks.

5.4.2.3 Rescue _V Requirements

The penalty, in terms of _V, imposed by a rescue mission can be severe. The

primary contribution (it should be recognized that the normal ascent/descent

Z.V requirement is relatively fixed, and will be similar to the 13,990 ft/sec

experienced on the Apollo program) to this penalty is derived from plane

change requirements. In general, rescue vehicle plane change velocity can

be expressed as a function of two operating modes (refer to Appendix A for

a discussion of the velocity requirements for these two modes): (a) plane

change accomplished at orbital altitude, and (b) plane change accomplished

at apogee altitude of an elliptical orbit.

* See Bio Astronautics Data Book, NASA SP-3006, Paul Webb, M.D. Editor, 1964.

Note that no time limit is placed on an inactive crewman in a space suit,

except availability of life support and power.
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The rescue tug will, for a given configuration, have a specific velocity

potential. The descent and ascent-to-orbit velocity requirements are rela-

tively fixed. The remaining tug capability, if any, is available for accom-

plishing an orbit plane changeduring either descent or ascent, or both.

After an orbital rescue tug has accomplished a landing at an emergencysite,

it is probable that the tug will have a very little _V capability available

for a plane change.

The minimumremaining capability must be equal to, or greater than, that

required for an in-plane ascent and rendezvous with the station. If the

required ascent plane changeand ascent _V requirements exceed the tug capa-

bility, it must remain on the surface until the Moon's orbital rotation reduces

the required plane change to a level within the rescue tug's capability.

Table 5-4 presented typical ._V rescue vehicle requirements for the two plane

changemodes. The choice between the two dependson the tradeoff advantage
between /V needs and response time. For a 90° plane change at both descent

and ascent, the table shows a _I.Vsavings of approximately 4,900 feet per

second, if the plane change is made at apog._e of a 24-hour period elliptical

orbit. On the other hand, the elliptical orbit period represents the conse-

quent cost in terms of increased response time (refer to Appendix A). Another

approach to minimizing ascent rescue vehicle t V requirements calls for the

rescue vehicle, after recovering and loading the stranded crew, to ascend and

inject into a circular orbit on a trajectory that minimizes the orbit plane

angle with respect to the station orbit. A vehicle in orbit, such as the PTV,

another orbital tug, or even the station itself, would then make the required

phase change and recover the crew and perhaps the rescue tug.

5.4.3 Lunar Surface Base Escape/Rescue Concept Conclusions

It is concluded that rescue capability using an orbital based rescue vehicle

is required at all times. Therefore, one rescue tug should always be stationed

in orbit. During tug landing and takeoff from the surface, the tug in orbit

should be placed in a rescue alert, standby condition. A standby tug stationed

at the lunar surface base at all times is advisable. The penalties of providing
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for the IVA transfer of personnel between base and lander tug are sufficient

to reject this plan for escape purposes.

An EVA rover vehicle must be carried by the rescue tug for surface transporta-

tion. The EVA rover vehicle must carry at least two men in suits, plus one

man in a pressurized stretcher. The rover must operate at night and day.

The rescue tug must be capable of landing within 1/2 nm of the base under

all lighting and night conditions.

Rescue and escape equipment should include the following:

1. Portable airlock

2. Handcart which can carry a pressurized stretcher, or serve as a

wheel chair

3. Floodlights on the rover vehicle to light night operations during

travel and ingress to the base

4. Tools to gain ingress to the base

5. Emergency power supply on rover vehicle to operate tools and

elevators

6. Emergency communications equipment

7. Internal shelter in the base with 12 hour survival resources

8. A 6,000 Btu packpack with 12-hour battery life, for survival, escape,

and rescue operations.

9. An EVA Rover, as described above.

5.5 LUNAR SURFACE BASE ESCAPE/RESCUE GUIDELINES

The following Escape/Rescue Guidelines are proposed for application at a lunar

surface base.

1. Planned flights to and from the lunar surface base (LSB) should be

made when the LSB surface site is in-plane with the station orbital

plane.

2. An automatic (with manual override) rescue signal alert system is

needed to transmit alarm signals to the Earth vicinity, orbital

station, PTV, or other orbital elements. This system should be
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triggered by such items as: (a) unplanned depressurization,

(b) base atmospheric contamination by toxic gases, (c) fire,

(d) explosion, (e) bacteria, and (f) temperature extremes.

3. Provision must be made for a redundant, independently powered

emergency communication with the Earth from a lunar surface base.

4. The lunar surface base should be located on the Earth side of the

Moon to ensure continuous communications with the Earth vicinity.

5. Rescue operations in the near vicinity of a lunar surface base

would be materially aided by the capability of direct unit-to-unit

communications linked through the LSB as a repeater station.

6. One or more lander tugs with crew-carrying capacity equal to the

number of men in the lunar surface base area must be in a standby

condition at the LSB at all times.

7. The normal logistics vehicle landing site, and a backup site 1/2 nm

(approximately) from the lunar surface base, must be marked with

landing aids and equipped with location and tracking beacons to

enable a landing at either site during day and night conditions.

8. Any lander tug parked at the lunar surface base must have the life

support capability to remain on the surface with a capacity load of

escaped crewmen for a minimum of 14 days to ensure take-off condi-

tions with no plane-change required.

9. Emergency power and external control must be provided for any

elevator or other means at the lunar surface base for ingress/egress

into the LSB crew compartment.

lO. The lunar surface base airlocks should accommodate a minimum of

two men in pressure suits or one man in a pressure suit and one man

in a pressurized stretcher.

ii. An emergency internal communication system must be provided so that

a rescue crewman can talk to stranded crewmen inside the lunar

surface base regardless of the internal ambient atmospheric condition.

12. At least one emergency sealed door is needed in the external shell

of the lunar surface base. This door should be operable from either

side and should be compatible with the portable airlock and sized to

handle a pressurized stretcher and suited crewmen.
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13. All airlocks should be equipped with power, controls, instrumentation

and life support capability that is independent of the primary systems

and operable regardless of the primary systems functional status.

14. Alternate compartments are needed in the lunar surface base to

provide crew temporary safe havens. These compartments must be

self-contained with respect to base subsystems. The minimum compart-

ment life support capability span is forty-eight hours to enable

rescue tug from orbit to complete a 90° plane change utilizing a

24-hour period elliptical orbit to minimize descent .iV requirements.

15. The emergency gear carried by a rescue crew must include instrumenta-

tion for determining the base atmospheric composition including the

level and type of any radiation that might be present. An external

connector should be provided that ties into the base instrumentation

system. An emergency backup system should be available at the

vicinity of each airlock and emergency access hatch in case the

primary instrumentation system has failed. Portable instruments

should be carried by the rescue crew for use after access into the

base has been obtained.

16. Emergency gear of the following types is required for use by the

rescue crew for rescue operations at the lunar surface base:

(i) oxygen masks and portable oxygen supplies, (2) pressurized

stretcher, (3) emergency pressure garments, (4) emergency communica-

tion gear, (5) portable airlock, (6) portable instrumentation,

(7) cutting tools, (8) 3-man rover vehicle, and (9) first aid

supplies.

17. The rescue tugs must be capable of completing rendezvous and docking

with the orbiting lunar station regardless of orbital position and

lighting conditions.

18. A rescue capability from orbit is required at all times that a crew

is on the lunar surface.

19. An EVA rover vehicle with a 3-man capacity must be carried by the

rescue tug from lunar orbit. The rover vehicle must carry at least

two men in suits plus an incapacitated man in a pressurized stretcher.
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20. The rescue tug must be capable of landing within 1/2 nmof a surface

base under all lighting and night conditions.

21. Floodlights are needed on a rescue rover vehicle to provide light

during night operations and ingress to the base.

22. A 6,000 Btu backpack with 12-hour battery life is required.

W,
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Section 6

LANDER TUG LOCAL OPERATION

The lunar lander tug will make individual landings at various lunar sites.

These sorties will permit exploration of widely separated areas of the Moon,

initially prior to establishment of the lunar surface base (LSB), but continu-

ing throughout the lunar program. A typical sortie will be the landing of a

single tug, with crew of four. The crew compartment may be elevated with

the propulsion module below. The nominal mission duration will be up to 28

days. The site lurain may be somewhat rougher than that of the LSB, and

landing aids will be minimal. Unlike the LSB, some sortie bases may be set

up on the Moon's far side.

Unless special landing sensors are used, the planned tug landings will be

made at optimum sun elevation angles using techniques similar to that of

Apollo. Ascent and descent will be within the orbital station orbit plane

with only small plane changes required.

Fol .... w_/r ...... _lysis the sortie consists of tkree operational phases:

a. Landing and Activation

b. Routine Operations

c. Deactivation and Departure

A number of traverse operations may be performed. The escape/rescue require-

ments for these operations are discussed in Section 7.

6.1 ESCAPE/RESCUE SITUATIONS

The characteristics of the operational phase of the lander tug local opera-

tions and the significant hazards are shown in Table 4-3.

A hazard that is common to all phases of operations is that of injury to

personnel. Four possible plans of action are considered.
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i. The injured man is given medical care in the lander tug crew compartment.

He is evacuated whenthe tug normally returns to orbit. This possibility

is feasible depending on the nature of his injury. Injuries occurring

during the initiation or routine phases are particularly hazardous

because the surface crew will be short handed and maynot be able to

complete all assigned tasks.

2. The injured manmaybe returned to lunar orbit in _ escape vehicle such
as the Lunar Escape System (LESS). This approach is feasible if the

ascent does not require piloting by the injured man, and if the escape

vehicle environment is compatible with his injury, e.g., has a shirt-

sleeve environment. If more than two menare injured, this modeof

escape becomesimpractical.

3. The tug mission maybe terminated and the entire crew returned to the

lunar orbit space station in the tug. This may require a large plane

change.

4. A second lander tug maybe sent downto pick up the injured man. This

procedure requ_es that the rescue tug have a large plane change capa-

bility for both landing and return. If the capability limits the return

to a small plane change, then the injured manwi_l have to wait in the

rescue tug. This option has an advantage over (i) above in that the

injured manis replaced by a new crew memberto carry on the lunar
mission.

Of the four potential plans, 3 and 4 are the most general. Both pose large

penalties to the lunar mission if they occur, but do not penalize the lunar
mission if no emergencyoccurs. Plan 2 does penalize the lunar mission even

in the absenceof an emergencybecause of the weight of the escape vehicle

carried to the surface. Plane I is always an available option, but should

not be relied upon to solve the general case.
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The communications failure hazard can be obviated by the carrying of emergency

ommunications. In the event that the normal communications fail, the sortie

crew may ask the space station to land a special communications package.

This procedure would prevent the termination of the sortie because of inade-

quate communications. Such a device for deorbiting and landing an emergency

package is discussed in Section 7 under the topic of survival kits. An
automatic S.0.S. as discussed in Section 5.3 will be required to sound the

alarm if all the sortie crew is incapacitated.

With regard to the landing and departure emergencysituations, the menshould

be in pressure suits and on backpacks. Such is not the case during routine

operations where the menmaybe in shirtsleeves at the time of the accident,

which points out the need for an internal shelter for the incapacitated men
in shirtsleeves. An external shelter maybe (I) established as a routine

safety operation, or (2) erected after the emergencyas a temporary surface
shelter. However, the use of this external shelter requires that someof the

crew be able to don space suits, and to movethe incapacitated men in pres-

surized stretchers to the external shelter.

The internal shelter maybe a separate compartmentor could even be one or

more pressure garments. The pressurized stretchers and pressure garments may
be similar. The addition of two rods or poles to the garment could convert

it to a stretcher configuration.

6.2 ESCAPE/RESCUECONCEPTS

The escape concept is that of employing the lander tug to ascend to the

orbiting lunar station. The alternative escape concept of using a dedi-

cated escape vehicle, such as a LESS,is rejected because of its lack of

generality and its penalties to the lunar mission for routine operations.

The rescue concept is that of using a second tug from lunar orbit space
station as a rescue vehicle. Theescape requires that the return time must

be short enough so as to be less than the survival time of a crew in space
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suits and backpacks. This return response time requirements was not present

in the case of the permanent surface base of Section 5. The reason is that

the escape tug at the permanent base is not involved in the emergency at

the base; therefore, it is available as a safe haven.

6.2.1 Escape

To meet the escape response time, the lander tug must have a 90-degree plane

change capability so that the tug does not have to wait on the surface for

an orbit plane reorientation with respect to the space station. The three-

burn ascent of Figure 5-16 in Section 5.3 requires 4.9 hours. The transfer

of personnel to the space station after docking should require less than an

hour. The return response time is thus less than 6 hours, which is less

than the nominal 8-hr physical activity limit in space suits. Thus, the

safety margin is over 2 hours providing the 90 ° ascent capability exists.

For a nominal tug with a total _ V capability of 15,000 ft/sec, this will

not be possible because some 7,300 ft/sec will have been used in the original

descent. The ascent will require 6,690 ft/sec and a 90 ° plane change 7,500

ft/sec. Consequently, escape using the tug during routine sortie operations

is not feasible except for those times when the plane of the orbiting

lunar station is coincident with the lunar lander tug sortie site (once

every 14 days). Therefore, rescue is the only practical plan to handle

critical situations during a lunar lander tug sortie.

6.2.2 Rescue

The rescue from lunar orbit must be fast in those cases where: (1) the

integrity of the crew compartment is violated, and (2) all or most of the

crew is incapacitated so that they must survive on backpacks. The principal

different assumptions between arrival/departure and routine operations are

as follows:

1. For arrival/departure of the lunar lander tug, the emergency occurs during

the planned landing or liftoff. Therefore, the orbiting station is passing

over the landing site at about the same time. The landing site is essen-

tially in the plane of the orbiting station's orbit. The communications
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are satisfactory and a direct line-of-sight to the station is available.

The rescue signaling and decision making can be accomplished in one

quarter revolution of the station. At this point the rescue tug may

make a slight plane change correction. At the end of another quarter

revolution, the rescue tug makes a Hohmann transfer to 50,000 feet and

initiates a power descent maneuver. The rescue vehicle has previously

been readied for the possibility of rescue; it is manned, separated from

the space station; the rescue crew is denitrogenized. Hence, the total

t;me from rescue alert to landing is one orbit or 2.1 hours with the

rescue crew ready to disembark.

For routine operations the station is in random phase and plane orienta-

tion with respect to the landing site. In addition, the rescue tug is

not in a rescue mode, but is on normal standby. The descent trajectory

is a four burn type with a flyover of the landing site to increase land-

ing accuracy as was described in Section 5 for rescue of the lunar

surface base crew by a tug from the orbiting space station.

The time from rescue alert to landing is 6.1 hours based on the following

steps:

Rescue Alert Signaling

Rescue Decision Making

Rescue Vehicle Activation

Orbit Phasing

Descent and Landing (& burn descent

with flyover)

0.25 hours

0.25

1.00

2.00

2.60

6. i hours

The assumptiens common to both cases are as follows:

I.

.

The disabled tug crew compartment is pressureless. Hence, the men may

egress through an open airlock or an opened door.

The communications are adequate so that the nature of the emergency is

understood by the rescue team.
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3. A backside communications relay is available in support of any farside

operations.

4. A two-man EVA rover vehicle is carried by the rescue tug.

5. The rescue tug lands 1/2 nm from the disabled tug.

Rescue crew egress, unloading the rover, traversing, and ingress into the

disabled tug will take one hour if the tug is depressurized and an addi-

tional 1.15 hours if pressurized. Evacuation of 4 men to the rescue tug

using a two man EVA rover will take 0.7 hour for 1/2 nm separation if the

distressed crew are already in pressure suits and backpacks. If they are in

shirtsleeves, they must be suited and cycled through airlocks on the dis-

tressed tug (may be a portable airlock) and the rescue tug which will remain

pressurized to prevent decompression sickness of the distressed crewmen.

This will require an additional 0.5 hour for the first and last cycle assuming

the other distressed crewmen are cycled while the two man EVA rover is travers-

ing back and forth (requires a 3 man rescue crew, one in rescue tug, one in

distressed tug, and one driving).

The total rescue times are thus 3.8 hours for arrival/departure (distressed

crewmen in pressure suits) rescue situations and 9.45 hours for rescue during

routine opera_ons if the distressed crew are in shirtsleeves in a pressurized

lunar lander tug.

The crew survival time must be greater than 9.45 hours. This should be

feasible with portable life support systems. A 6,000 Btu capacity backpack

should last at least 12 hours when the men are resting (500 Btu hour). The

battery life of the backpack would have to be compatible with this time

duration.

A nominal rescue could be accomplished in a manner similar to that for the

permanent surface base. Since the tug crew compartment is not pressureless,

the ingress and egress procedures are similar to that for the base. The

same requirements for information and special tools apply. The latter include
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an emergency elevator power supply, rover vehicle equipped for night driving

and lighting rescue operations, and pressurized stretchers. The temporary

sortie base should install landing aids and a beacon during the deployment

and activation phase. The survival time in the crew compartment or temporary

surface shelter should be at least 12 hours. The rescue tug _V and survival

time are the same as for the permanent surface base rescue.

6.3 ESCAPE/RESCUE GUIDELINES FOR LANDER TUG LOCAL SURFACE OPERATIONS

The following guidelines summarize the equipment and operational requirements

for the escape and rescue of crews on the Moon's surface. The guidelines are

keyed to major operational phases of the surface mission. Implicit in this

summary is the selection of the most acceptable concepts as derived in the

preceding analyses.

!. A minimum of one dedicated and serviced lunar lander tug must be docked

at the orbiting lunar station at all times during a lander tug sortie

operation.

2. A lander tug assigned to rescue in support of a lander tug sortie mission

must have the capability to land at a planned site any time during the

lunar day or night.

3. The lander tug used on sortie missions should contain pressure suits,

backpacks, pressurized stretchers, and pressure bags or garments

adequate to support the crew.

4. The lander tug should have a handcart capable of carrying a pressurized

stretcher and crewman, or an incapacitated crewman in a pressure suit.

5. A rescue alert signal system is needed in the lander tugs that will

automatically inititate a rescue needed signal based on sensed critical

items such as hard landing, unplanned loss of crew compartment pressure,

fire, explosion, or other situations with a high probability of crew

incapacitation.

6. The lunar lander tug design should include at least one emergency access

door that is compatible with the portable airlock design or could be used

for egress/ingress when the tug is depressurized.
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7. If the lunar lander tug design is such that the crew compartment is signi-

ficantly above the lunar surface an elevator and emergency power supply

are needed to enable a rescue crew to easily and quickly enter a disabled

tug and remove incapacitated crewmen.

8. An uprated backpack is needed with a minimum metabolic capacity of 6,000

Btu's and a lifetime of at least 12 hours.

9. It is highly desirable that the lunar lander tug have a 15,000 ft/sec &V capa-

bility to ascend to orbital velocity, make up to a 90° plane change, and

complete rendezvous and docking with the orbital station.

lO. As an alternative or backup to guideline No. 9, the tug must have the

life support capability to remain on the lunar surface until the ascent

velocity (and plane change) requirements are within its performance

limitations.

ll. One of the first crew tasks, after a landing has been completed, is to

deploy the rescue location aids. As a minimum these should include:

a. A tracking beacon for use by a rescue tug

b. Marker lights to designate the emergency landing site and desired

touchdown point

c. A kit of rocket propelled rescue beacons

d. Emergency communication system

12. A lunar backside communications satellite is needed prior to initiation

of surface landings on the backside.

13. The lander tug should have a capability for maintaining ambient atmos-

pheric pressure about 3.5 psi. This capability could be in the form of

a separate compartment or even emergency pressure garments.

6-8



LMSC-A98&262D

Section 7

LUNAR SURFACE TRAVERSE OPERATIONS

The traverse operations take place in the vicinity of, or between, the

permanent and temporary lunar surface bases. The traverse may be made by

the crews on foot with and without a handcart, or in an EVA mobility

vehicle, or by using a flying vehicle, or in a pressurized cabin mobility

vehicle. The objectives of these traverses include the following: to

permit the crew to explore the lunar surface, perform experiments, set up

instruments, transport cargo and/or crew, and construct base facilities.

Table 4-4 lists a number of proposed mobility vehicles. .Range in the table

is defined as the total distance that the vehicle can travel without refuel-

ing.

The EVA vehicles operate relatively close to a parked tug and/or a lunar

base. The separation distance of base and vehicle should never be more than

the distance that the vehicle can travel in one-half the operating time of

the EVA life support equipment.

The cabin rover vehicle may travel between two widely separated points on

the Moon. The sortie base tug from which it originates may return to orbit

after the rover vehicle reaches its point of no return, and the pick-up tug

may not land until the rover vehicle nears its destination.

7.1 TRAVERSE ESCAPE/RESCUE SITUATIONS

In this section the EVA escape/rescue situations are defined for walking and

vehicular traverses. The pressurized cabin rover escape/rescue situations

are then described. The major difference between the two types of traverses

is the range requirement.
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7.1.1 EVA Traverse Escape/Rescue Situations

A critical factor during EVA traverses is the condition of the pressure space

suits and portable life support systems. A torn suit would require immediate

remedy. For tears on the suit limbs, automatic, expanding, sealing diaphragms

are a possibility. Effects of small punctures may be temporarily modified by

increased pumping by the backpack until a patch or pressure garment can be

donned. In the event of damage to the space suit or backpack, the capability

of the individual to walk back or drive back is entirely or severely impaired.

7.1.1.1 Walking Traverses

The maximum walking range is determined by the capacity of the portable life

support system. The average metabolic rate during walking is 1,400 BTU/hour,

and a man can walk about 2.16 knots (_ km/hour). A residual in the backpack

amounting to 20 minutes upon return is a nominal requirement. Hence, the

walking ranges are nominally 6.7 and 8.5 nm for the 1,800 and 6,000 BTU

backpack units, respectively. The maximum distance from a base will be one-

half these ranges. The time-distance envelope for a walking traverse is

shown in Figure 7-I for a man with a 6,000 BTU unit. The envelope is based

on walking to a given distance and performing science activity until the

backpack residuals require that the man turn back. The metabolic rate of

performing science activity is 1,100 BTU/hour.

7.1.1.2 EVA Rover Vehicle Traverses

Figure 7-2 shows a time-distance envelope for an EVA rover vehicle. The

crew rides out to a given distance at 4 knots. The maximum range of

the rover vehicle is 16 nm. The metabolic input to the suit is 700 BTU/hour

when the men are riding; when not riding, the men are engaged in science

activity. Two backpacks are furnished each man. The ground rules require

that 20 minutes of life support residuals be available upon return, and that

the total physically active time in suit should not exceed 8 hours. The men

switch their backpacks at the dashed turnback line in Figure 7-2. This line is

chosen such that the men can ride back to the base using the first backpack if they
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cannot switch to the second unit. If the switch is accomplished, the men

will turn back at the solid line in the figure. This turnback line is the

same as the ride back because the men are not limited by the backpacks, but

rather by the 8 hour physical activity time limit in space suits. In the above

analysis, it is assumed that a technique of switching a suit from one backpack to

another in a vacuum environment has been satisfactorily developed.

Walkback capability has not been used as a criterion for establishing the

rover traverse envelope. Such a criterion would severely limit the useful-

ness of the EVA rover vehicles.

In case rescue is necessary, the rescue party may be uncertain as to the

location of the rover vehicle and its crew, especially if communications are

disrupted. The men on Apollo traverses are required to report in at least

every 5 minutes. Under this circumstance, the m_ximum distance that the

rover vehicle could travel is 1/3 nm or 2,000 feet. There will be some

uncertainty in the location because of the navigation of the rover vehicle.

Assuming a gyro compass with a 1/2°/hour drift rate, the maximum error in
÷

8 nm is about - 840 feet, assuming a 2 hour travel time. Hence, the position

of the vehicle would be somewhere in an error footprint about 4,000 feet long

and 1,700 feet wide.

7.1.1.3 Lunar Flyer Traverses

The lunar flyer will probably be used to deploy scientific payloads at various

points of interest around the lunar surface base or an isolated lunar landing

tug. The advantage of the flyer is that it can quickly travel to distant

points, ascend to high altitude points, and cover rugged terrain as is shown

in Figure 7-3. A flight time of only two minutes is required for a 5 nm

journey. A small lunar flyer could have a range of lO nm and carry one man.

An uprated flyer may carry two men and have as much as a 30 nm range.

A typical mission takes about 3 hours. Of this time, about l_ hours are

spent away from the vicinity of the base. The other l_hours are divided

between the preparation for flight and the post flight activity at the base.
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The science time is sufficient to deploy an experiment, collect a soil sample,

or check an instrument that has been posted earlier. In any case, the flyer

mission will most likely be arranged to return the astronaut(s) well before

their nominal suit time has elapsed, or before their backpack resources have

been exhausted. If an extra backpack or an emergency life support system is

provided, the crew survival time is lengthened accordingly. The envelope of

the lunar flyer traverses are shown in Figure 7-4.

The position of uncertainty of the flyer is dependent upon the type of emer-

gency encountered. The following are believed to be possibilities.

I. After landing, the lunar flyer cannot be restarted. In this case, the

position uncertainty is small because the landing site has been pre-

selected.

2. The flyer is forced to land somewhere between the base and one of the

landing sites. Since the crew reports to the base at each landing site,

the last landing site and the next landing site will be known to the

base personnel. The flyer will be somewhere between the two sites.

If no communications are available, the base personnel will only know

segment. In the case where the flyer visits one landing site at the

maximum one-way range, the position uncertainty along the straight

line flight path is equal to the one-way range. If two sites are to

be visited, the maximumpositionuncertainty will be about one-third

the total range of the vehicle.

3. The flyer may overshoot a landing site. This may occur, for example,

because the attitude hold circuit will not decouple from the pitch

servo network. Hence, when the pilot attempts to pitch the vehicle

in order to decelerate the flyer horizontally, the control system

realigns the thrust vector vertically. After the pilot recognizes the

problem he may disconnect the control system, throttle back and attempt

to land under manual control. Assuming the pilot response is 15 seconds,

the vehicle, traveling at 180 knots, may overshoot as much as 4,500 feet.
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It is emphasized that the rescue of the flyer may be complicated by the fact

that the landing sites selected for the flyer may be in rugged uplands, or

inside craters.

7.1.1.4 Ground Effects Machine Traverses

The ground effects machine may be used in the scientific exploration of the

Moon to reduce the time to visit test locations. It can be used in a manner

similar to that of the lunar flyer, except that the flight path must pass over

less rugged terrain. One man may be carried as far as ii nm from the base.

The average velocity (with stops) is 14 knots. Return is planned to meet the

backpack and suit limitations. The distance-time envelopes are shown in

Figure 7-4. The location error in event of an emergency is probably

restricted to the distance between preselected stopping sites. Since the

vehicle will probably stop often, the position uncertainty should be no more

than about 1.5 nm.

7.1.1.5 EVA Traverse Rescue Requirements

The rescue plan must cope with the situations summarized in Table 7-1 in

terms of crew size, terrain features, and position uncertainties. The distance-

time envelopes established the possible events at which an emergency may occur.

The lighting conditions at the time of a traverse and rescue will probably be

daylight. However, some science work could be done during the night consider-

ing that both the permanent and temporary bases will be on the lunar surface

during the night. The night distance-time traverse envelopes may be restricted

to within line-of-sight of the lander tug or lunar surface base. The horizon

circle of a 75-foot high tug or base is about 5 nm.

7.1.2 Pressurized Cabin Rover Vehicle Traverses

Failure of the communications, mobility, or life support functions are situa-

tions to _hich a cabin rover vehicle may be exposed. In addition to the

communications and mobility functions, there is the cabin life support function

which may be impaired. The proposed cabin rover has 7 days of life support
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under emergency conditions. This means that the emergency power is suffi-

cient to maintain life support functions while the vehicle is stationary for

a minimum of 7 days.

The accidents which may befall a cabin rover are characterized by the

condition of its mobility and the integrity of the pressurized compartment.

If the latter is violated, the crew must survive on their portable life

support systems. When the pressurized compartment is intact, the crew can

survive a minimum of 7 days. The latter is based on an emergency system

where the rover vehicle is stopped and all non-essential gear is turned off.

If neither the pressurized compartment nor the mobility fails, the crew may

have problems if their communications systems fail. In this case, the crew

must decide whether to drive on to the appointed base, return to the starting

point, or wait for rescue. Hence, while a driveback capability exists, it

may be extremely risky to employ it, especially if the rover vehicle is near

the middle of a one-way traverse.

A position uncertainty of less than3 miles is predicated upon a reporting

period of 30 minutes. If driveback is attempted without communications,

this ...... _ ....... 1_ _ _.... _a. R_n_A m_y b_ reauired to take olace

at night for long traverses.

Two types of traverse are apparent. The first traverse consists of a closed

path that starts and ends at the lunar surface base or a parked lunar lander

tug. The second traverse is an open ended path which ends at a base or tug

other than the one at the starting point. In the latter case, the tug at

the starting point may re-orbit after the cabin rover has passed the point

of no return. In addition, the terminal tug could delay landing until the

cabin rover nears its destination.

The maxim_a range and the stay times are shown in Figure 7-5 for two versions

of the cabin rover. The small rover, plus payload but minus crew, weighs

about 6,000 lb. Typical recurring nonscientific operations requirements in

man hours per day for a two man crew are as follows:
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Range vs. Staytime

• Limited by maximum expendables capacity
• No experiment power included
• Manned vehicles provide additional 7 days emergency layover
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Housekeepingand Maintenance
CrewRest

CrewPersonal Activity

Airlock Operations (1.5 cycles
per manday)

Total ManHours/Day

Shirtsleeve Pressure Suited

5 0.5

16

8

2.4 1.2

31.4 1.7

This total amounts to about 69% of the crew's time. The crew may perform

scientific activity to the extent of the capacity of a pressure suit and

backpack, that is, one sortie per day.

At an average rate of I,i00 Btu/hour for scientific

activity, the 4,800 Btu unit would be good for 4-1/3 hours, and the 6,000 Btu

unit good for about 5-1/2 hours. Considering all things, we can therefore

anticipate that EVA scientific activity will be limited to 5 hours per man

at the maximum. This amounts to about 20% of the crew's time. The balance

could be used in driving a vehicle, or about 11% of a day.

Figure 7-6 shows the percentage time required for driving to cover the range

along the abscissa of the curve. These data are derived from Figure 7-5

using a speed of 5.4 knots (lO km per hour) and a crew of two men. If the

driving time is to be about ll%, the maximum range of the two vehicles are

about 250 and 410 nm, for the small and large cabin rovers, respectively.

Hence, the maximum distances from the base will be 125 and 200 nm for the

respective rover vehicles in a return route path. These distances are also

the points of no return for the two vehicles in an open ended, non-return,

path.

The maximum distance from base to a large cabin rover vehicle in a circular

traverse of 400 nm length is 400/Pi = 127 nm.
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In case the rover vehicles become immobile, the minimum survival time is 7

days. This assumes that the pressurized compartment is not damaged. If

the integrity of the pressurized compartment is violated, the theor_tical

survival time will depend upon the backpack units available. Assuming that

one unit is available per man, the survival time is 9.6 to 12 hours depending

on whether the 4,800 or 6,000 Btu units are available. These data assume

that battery life is not a limiting factor, and that the man output an average

of 500 Btu/hour at rest. The driveback range using one backpack is 38 and

46 nm for the 4,800 and 6,000 Btu units, respectively. These data are based

on a 700 Btu/hour metabolic rate for driving the rover vehicle and a vehicle

speed of i0 km/hour (5.4 knots).

The emergency may occur in the daylight on a 14 day or shorter duration

traverse. Where survival times are short because the integrity of the pres-

surized cabin has been violated, the rescue would therefore be made in the

daylight. Where the cabin is intact, the survival time is at least 7 days

so that the actual rescue could take place at nighttime if the emergency

took place after the first half of the trip. On longer duration traverses,

night rescue maybe required.

The position of the cabin rover on a traverse as known by the rescue crew

is a function of the communications check-in cycle, the speed of the vehicle,

and the navigation of the rover crew. The rover vehicle will probably be

equipped for voice communications directly with the Earth and the lunar orbit

space station when the latter is in line-of-sight. PCM telemetry television

and scientific data will probably also be transmitted. Assuming that the

rover vehicle checks in every 1/2 hour, the maximum position uncertainty

would be 1/2 hour x 5.4 knots = 2.7 nm plus the navigation errors. If the

vehicle checked in only before and after a traverse, the position uncertainty

might be 11% x 24 hours x 5.4 knots = 14 nm. This would occur if the communi-

cations failed at the end of the driving period. In general, the crew would

not deliberately move the vehicle if they knew that the communications were

out. Hence, a sensor that indicated whether the communications were viable

might be helpful in reducing position uncertainty.
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The position errors at check-in may be those associated with navigation using

heading and velocity techniques, updating techniques, or the sighting on a

known lunar landmark. A recent study showsthat a hand held space sextant

gives an error of 1,700 feet or 0.28 nm. If the position is computedfrom

a directional gyro and odometer, the maximumerror after 4 hours and 5.4 knots
travel will be about 0.i nm. This is based on a 700 feet odometer error, and

a maximum2° heading error.

Hence, if the communicationsare lost, the position uncertainty is 2.7 nm
based on a 1/2 hour check-in period. If communications are not lost, the

rover crew can identify their position within 0.28 nm.
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7.2 TRAVERSE ESCAPE/RESCUE CONCEPTS AND ANALYSIS

Table 7-2 presents some possible approaches to the escape/rescue of crews on

traverses. Each approach is analyzed as it applies to the traverse indicated

_Jy the X's.

7.2.1 Walkbsck Escape/Rescue Concept

Walkback from the scene of an emergency is practical if (i) the personnel are

not injured, (2) the bSrckpack capacity is adequate, and (3) if the physiological

limit of the suited man is not exceeded. Figure 7-7 shows the walkback limit

superimposed on the EVA vehicular traverses. The limits are based on an

eight-hour physical exertion limit. It is apparent that walkback does not

offer a general procedure even if all the above conditions are met.

In the case of foot traverse, the men could take a handcart (similar to the

one used on Apollo 14) with them. An extra b_ckpack may be carried along to

replace a damaged backpack so that walkback is possible. A survival b_g may

be carried to encase the man if he tears his suit. In this latter case, he

would have to wait for rescue.

portable so that it can be placed on the EVA rover vehicle or passed through

an airlock of the pressurized cabin rover vehicle. It might be converted to

a pressurized stretcher if designed for lifting poles or rods to be attached.

7.2.2 Escape/Rescue Rover Vehicle from Base

A rover vehicle can be used to make a surface rescue of men on foot, in EVA

rover vehicles, and on flyers whose locations are accessible. Pressurized

cabin rovers have the advantage of bringing a shirtsleeves environment to the

disabled crew. This means that the survival time of the disabled crew in

their space suits or emergency garments is minimized. The range of the EVA

rover vehicle will probably be less than that of an uprated flyer or ground

effects machine.
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+ t + d/v- where
The response time of a rover vehicle for rescue is T = tc P

t is the communications and rescue decision time, t is the time for the
c p

rescue personnel to be suited and in the rover vehicl% d is the distance to

the emergency site, and V is the average velocity of the rescue rover.

The value of tc ranges from virtually zero to the time period of the check-in

cycle. A nominal value of the latter is five minutes. Some values of t are
P

tabulated below:

Condition t (Minutes)
P

Remote guidance of rover to rescue

site (activate guidance system) 5

Manual guidance of EVA rover vehicle

Driver in base denitrogenized

Driver in base not denitrogenized

The denitrogenization is assumed to require three hours.

for egress from base, and a similar amount of time for ingress or mounting the

rover vehicle.

2O

2OO

Ten minutes is allowed

Remote guidance may extend beyond the horizon circle of the base because Earth

or the lunar orb:it space station may control the vehicle. Farside operation

will b_ possible if a farside communications relay is available.

The velocity of the vehicle depends upon the lurain to be traversed.

following engineering estimates of vehicle speeds are presented.

Speed in Knots

Four Wheel Six Wheel

Lurain Features Vehicle Vehicle

The

Maria 3 4

Uplands :'1.7 3

Uplsnds Assumed Average .9 1.5

Table 7-3 gives the response times of four and six wheel vehicles assuming the

above performance, a maximum distance from base and the percentage of uplands

travel shown in the table. The data can be interpreted as survival time
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requirements of the disabled crew in their EVA accoutrements. The response

times for the manual guidance, and driver not denitrogenized, are used because:

I. The remote guidance mode is not applicable to situations in which only

one man is on traverse. The remote guidance rescue does not provide a

man to help an injured person or one who is encapsulated in a survival

bag.

2. In the general case, the rescue crew will be in the b%se and not denitro-

genized. An exception which rules out the need for immediate denitrogeni-

zation is where a cabin rover vehicle is docked to the b_se.

The comparison of the survival time requirements for rescue with the survival

capabilities shows which rover vehicles are generally applicable to a rescue.

The survival time for men on traverse can be established at 12 hours by pro-

viding a spare 6000 BTU backpack for each crewman. A six-hour survival time

could be provided two men on a walking traverse where only one emergency unit

was used on a buddy system. These survival times (12 hours for vehicle tra-

verses and 6 hours for walking traverses) are adequate for all EVA rescue

situations given in Table 7-3 except for using a 4-wheel rover to rescue the

crew of an uprated flyer. The use of the EVA rover (either 4 or 6 wheel) for

the rescue of a crew of a Ground Effects Machine or an uprated flyer is not

applicable in the general case because of range limitations (refer to Table 7-I).

The general conclusion is that the rescue by rover vehicles is sensitive to the

lurain b._tween the b_se and the crew on traverse. The particular conclusions

are as follows:

I. The 6 wheel pressurized rover vehicle is a versatile rescue vehicle.

2. An emergency 6000 BTU backpack for each crewman is required to enable a

rescue by a rover vehicle.

3. In the case of a damaged suit, some type of pressure garment must be pro-

vided which can utilize the residual backpack capability.

P
_. The rover vehicles should be capable of carrying one-to-three men.

5. The rover rescue vehicle must be equipped with a means of picking up a man

in a pressure garment.

6. A remotely guided rover rescue vehicle is not a general rescue vehicle.
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7.2.3 Rescue Flyer from Base

In principle, the lunar flyer vehicle (LFV) or the lunar emergency escape

system (LESS) can be used to rescue men on traverses. The two vehicles are

similar except that the LESS is designed mainly to lift men from the surface

to orbit. It may, however, be used as a constant altitude flyer (LESS/Flyer).

The advantage of LFV and LESS/Flyer are their response time, and their capa-

bility to fly over rough terrain. The disadvantages are their altitude,

speed, and controllability as it affects the search capability, and the

required landing distance to the disabled vehicle because of the dust cloud.

7.2.3.1 Response Time for Rescue Flyer

The response time of the LFV or LESS/Flyer as a rescue vehicle is determined

mainly by the activation time of the rescue crew. This is because the flight

time constitutes only a small portion of the time to rescue. As was pointed

out in the discussion of the rover vehicles, the activation of the rescue

crew may be three hours for denitrogenation. The checkout and balancing of the

vehicle requires five to ten minutes; fueling, if required, may take 30 minutes.

Typical flight times are 2½, 3½, and 7 minutes for 5, 10, and 30 n.m. distances,

respectively. The greatest times required to get to the scene of an emergency

are 3.7 and 3.9 hours for ranges up to 30 n.m. The return trip requires, say,

30 to 45 minutes for loading and b,_lancing the flyer for a return trip. These

response times meet all EVA traverse requirements. They are adequate for cabin

rover traverse situations provided that the range of the flyer is satisfactory.

7.2.3.2 Range for Rescue Flyer

The range of the uprated LFV is 30 n.m. The radius of a round trip for the

LESS/Flyer is given in Figure 7-8. In this figure, the dry weight and payload

of the LESS/F_er is held constant and the propellant is varied. LESS/Flyer

designs of 60 n.m. round trip ranges have been proposed. Ranges in excess of

this amount will probably entail design penalties.
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The LESS/Flyer must have a minimumradius of 200 n.m. to accommodatethe cabin

rover open-ended traverses. This is the midpoint of a 400 n.m. traverse. A

radius of 127 n.m. is needed to accommodatea 400 n.m. circular traverse _7 the
cabin rover.

The conclusion is that current flyer and LESS/Flyer preliminary designs are

adequate for all EVAtraverses, _Jt that additional range is needed to rescue

a crew on a long distance cabin rover traverse.

Minimumranges of the flyers mayprevent them from rescuing crews on foot
traverses.

The LFV and LESS/Flyer meet the requirements of traversing rough terrain to

rescue the flyer, updated flyer, and ground effects machine.

7.2.3.3 Payload Capacity of RescueFlyer

The capacity of the one-manflyer is one manplus 400 pounds cargo. If the

cargo facilities can be modified to carry a passenger, the one man flyer may

b._used to rescue another one-manflyer. Similarly, the uprated two man

flyer has the payload capacity to carry three men. Hence, the uprated flyer

can rescue all EVAtraverses. The LESS/Flyer seats two menand has an addi-

tional payload capability equivalent to the weight of two more men. The

problem is to convert the cargo masscarrying capability to passenger carrying

capability. Balancing of crew and cargo is a requirement for flight. The
cargo platforms are generally fore and aft with the engine in the center. A

three or four seat design, where the two seats can fold downto accommodate

pressurized stretchers, appears to be the most desirable. The balancing of
the vehicle will be a problem with the current design approaches.

7.2.3.4 Search Capabilities from a RescueFlyer

Another requirement for the flyer is to search for the disabled vehicle while

in flight. The requirements were given in Table 7-2. The speed, altitude,
and attitude of the flyer vehicle during the approach to the search area are
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factors in a successful search, The time available to the rescue crew to

visually scan the lunar surface is also a factor in search.

In order for the flyer to slow down, it must rotate its thrust towards the
landing site.

Table 7-4 showsthe surface range to the landing site at which slowdownbegins,

and, hence, whenthe thrust vector must be rotated. Thesedata assumea thrust
to weight ratio of I .4 during slowdown, and a pitch angle of 45°. The distance

is computed from the formula
I V2

#

2 gm

where V is the cruise velocity, and gm is the lunar gravitational acceleration

(5.31 ft/sec2). The time to slowdown, without hovering, is V/g m. A greater

pitchover angle (from vertical) will reduce the slowdown distance and time but

will reduce the region of pilot vision even more.

Table 7-4

?L_R CHAI_CTERiST!CS

Flyer
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The data shows that either search must occur during slowdown, or the search

must be successfully completed before slowdown begins. Two search situations

are apparent.

I. For the EVA rover, cabin rover, and ground effects machine, the rescue search

area is localized. The rescue flyer may aim at the center of the uncertainty

area and make flight corrections during slowdown provided that the search

is successful. For the longer range flights, the data shows that it is

problematical that the disabled vehicle can be seen b_fore slowdown is

initiated. Hence, search again occurs during slowdown.

2. For the rescue of a crew of a one-man flyer or an uprated flyer, the search

area extends along the whole path of the traverse. Hence, the search must

determine the location of the disabled vehicle before slowdown if the dis-

abled vehicle is not down at its furtherest traverse point. The search

may have to be successful as much as four miles ahead of the rescue flyer.

In addition, the search may also have to occur during slowdown if the dis-

abled vehicle is at its maximum traverse distance. Thus, in the case of

the rescue of another flyer, two situations arise: Search b_fore slow-

down and search during slowdown.

The requirements for a search during slowdown are considered first. One

flyer design approach is to reorient with a fixed engine. This would prevent

the rescue crew from seeing the search area. The rescue flyer must, therefore,

have a movable engine or platform, and stability control, to facilitate the

search during slowdown.

Another factor in the search during slowdown is also common to the search

b_fore slowdown. That is the ability of the rescue crew to concentrate on the

searching operation. A completely manual stabilization system leaves the

pilot concentrating on the horizon, sun, or some lunar landmark. If the

rescue crew consists of one man only, there will be little time for him to

perform the search operation. Thus, stability control is highly desirable

for the rescue flyer, and a must where the flyer is passenger limited.
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In the case of search before slowdown, the cruise speed of the flyer should

be reduced to give the searcher the most time. The small flyer's speed of

300 fps (180 knots) seemsacceptable. Lowering the longer range flyer's

optimum speed of 500 fps to 300 fps will entail a penalty of about 500 fps

in the characteristic velocity. This penalty does not appear significant in

using the long range LESS/Flyer for a short range rescue.

Search before slowdownmaybe o_iated or helped by the proper employmentof

communications. Every reasonable effort should be madeto include an auto-
matic radio location beacon on the disabled vehicle. This beacon would reveal

the range and azimuth of the disabled vehicle. A lunar rocket rescue beacon,

sighted before the rescue flyer started on its mission, would give the location
of the disabled vehicle so that search b._fore slowdownwould be o_Jiated.

The ranging and azimuth accuracies for the radio beacon and the lunar rocket

beaconwould be about 1600 ft and 0.115°, respectively. The latter amountsto

an accuracy of 1200 and 2400 feet for ranges of iO and 20 nm, respectively.

7.2.3.5 Landing Distance for a RescueFlyer

The final factor in the use of a flyer for a rescue mission is the closeness

with which the flyer can land to the disabled vehicle. The distance will de-

pend upon the lurain features and the accuracy of the landing. The latter is
affected by the dust cloud created by the rocket engine. In addition, it will

not be good practice to subject the disabled vehicle and crew to a shower of

particles. If the last ten seconds of landing is blind, a distance of 70 feet

would be required. This is b._sedon the maximumof 7 fps horizontal landing

speed. Probably the miss distance will b_ on the order of one-to-two hundred
feet.

This distance will be greater than the requirements in manycases. If the

crew of the disabled vehicle are injured, or in pressure garments, the rescue

craft should b._ in close proximity of the disabled craft. Otherwise, the

loading of the injured crew on the rescue vehicle will require two rescue crew_
mento carry stretchers. An alternative may b,_to carry a wheeled stretcher,

or handcart, on the rescue vehicle. A one manrescue crew could possibly

transport an injured man in this manner.
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7.2.3.6 Conclusions Regarding a Rescue Flyer

The general conclusion regarding flyers as a rescue vehicle is as follows:

They avoid the sensitivity of the rescue mission to the emergency life support

requirements of the crew on traverse, but require several design features to

make them practical as a rescue vehicle. These required design features are

given b_low:

I. One way ranges up to 200 n.m. are needed to rescue a cabin rover crew.

2. The rescue flyer must have a gimb_lled engine or platform.

3. The flyer should have stability control.

4. The flyer should carry a minimum of three men.

5. Two seats must be adaptable to carry pressurized stretchers.

6. Beacon ranging and azimuth instrumentation should be installed on the flyer.

7. A wheeled stretcher cart should be carried on the rescue flyer as standard

equipment.

8. The cargo capacity of the flyer on the outbound leg of the mission should

be used to carry special gear as required by the situation, such as tools

to get inside a wrecked cabin rover.

The search for a downed flyer vehicle is facilitated if the crew of the d_-

abled vehicle can fire several rocket beacons before the rescue flyer starts

out to insure receipt of rescue alert and to facilitate location determination.

7.2.4 Lunar Lander Tug for Rescue from Surface

The lunar lander tug could fly to the disabled surface vehicle using a h_llistic

trajectory. Figure 7-9 shows the theoretical _V required to take off and land.

Subsequent to the pickup, the tug could go into lunar orbit with the rescued

crew. A 200 n.m. surface range, needed for a cabin rover rescue, appears to

b_ feasible.

The concept is rejected, however, primarily because it exposes the rescue crew

to a hazard upon landing. Failure of the engine to restart will cause a crash

landing.
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As an alternative, the lander tug could (I) fly to the site of the emergency

in a manner similar to that of the lunar flyer or LESS/Flyer, or (2) ascent on
a short arc and inject into a 10 n.m. orbit followed b_,a powered descent to

the landing site. Both methods offer more safety than the ballistic trajectory.

The V requirements for flying at constant altitude and at optimum velocity
is shownin Figure 7-9. These requirements are theoretical. The theoretical

requirements for the second case are equal to the potential energy in ascending

to 10 n.m. plus the orbital velocity of 5500 fps. These requirements are twice
6300 fps or 12,600 fps.

The flyer mode_\V requirements are less than the 12,600 ft/sec required for
orbiting, up to a range of about 600 n.m. Since the cabin rover traverse will

be less than this, there is no need to use the orbiting method.

The tug will be unable to land close to the disabled veh_le because of the

dust cloud and surface ejecta that it raises during descent. Hence, a second
step in the rescue is required to get the rescue crew to the disabled vehicle

after the tug lands.

factory, (2) the size of the rescue crew is not limited to one or two men, (3)
the crew compartmentprovides a shirts!eeves environment, safe haven for the

rescued personnel, and (4) a potentially large payload capability is available
for carrying emergencygear.

The response time is about 4½hours, allowing ½ hour for signaling and decision

making, three hours for the rescue crew to denitrogenize during which interval

the tug is activated and flown to the site of the emergency,¼ hour for egress

of rescue crew, ¼ hour for unloading an EVArover, and ½ hour to locate and
travel to the disabled vehicle.

The design penalties for adding a flyer capability to the tug may be subvtan-

tial because (I) a meansof increasing the field of vision for the pilot must

be provided, and (2) the stabilization system requirements may be severe.
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7.2.5 Lunar Lander Tu_ for Rescue from Orbit

The lunar lander tug in a lunar orbit offers an approach to the rescue of

personnel on traverse. The approach is not general, however, for the follow-

ing reasons:

1. The lander tug cannot land in rough terrain to rescue a lunar flyer.

2. The lander tug will have difficulty in searching for a disabled vehicle

if the latter is without an active beacon.

In both of these cases, the rescue would have to be performed in two steps.

The first step would be to land the tug from orbit. The second step would

involve the use of a mobility vehicle to search for the disabled vehicle

and/or rendezvous with it. For the rescue of personnel on EVA traverses,

there would be little advantage in landing a tug from orbit over mounting a

resc_le from the lunar base or a tug on sortie which is in the vicinity of

the disabled traverse vehicle.

The rescue of the personnel in a cabin rover traverse is a potential applica-

tion of the tug from orbit. The procedure would be essentially the same as

rescue of a lunar surface base crew (Section 5.4.2) or a lunar lander tug

crew (Section 6). In the previous cases 1.4 hours was allowed for ingress

by the rescue crew which is a long time for a pressurized cabin rover.

However, this time should be allowed for search and traverse to the cabin

rover. Consequently, the time required to reach the distressed crew of a

pressurized cabin rover by a lunar tug from the orbiting space station is

8.1 hours (Table 5-7). The response time of the tug from orbit is competi-

tive with a cabin rover vehicle in those situations where the distance

between base and disabled cabin rover is more than 32 nm. The _ V require-

ments are similar to those of Section 5.4.2 for the rescue of personnel in a

base. The design penalties are the same as those for other surface rescue

missions performed by a tug from orbit with the possible addition of a beacon

tracking system. The tug will be required to carry an EVA rover vehicle.

The tug will not be able to land immediately adjacent to the disabled vehicle

because of the dust cloud and surface ejecta problems.
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In the situation of an open ended cabin rover traverse, the following opera-

tional procedure should be of advantage. In the open ended traverse, the

cabin rover vehicle departs from the lunar surface base, travels two to four

hundred nautical miles, and meets a tug on sortie for pickup. The pickup tug
should remain on orbit until the cabin rover vehicle nears the rendezvous

point, say within an EVAtraverse range of eight miles. This procedure allows

the tug on orbit to rescue the cabin rover if the latter gets into trouble

before it completes its traverse.

7.2.6 Portable Emergency Escape Systems

In this concept, a cabin rover vehicle carries or tows an escape vehicle

during its journey. The escape vehicle may have a surface-to-surface or a

surface-to-orbit capability. Candidate escape concepts are as follows:

1. Surface-to-Surface

a. Two one-man or one two-man POGO type flying vehicles can be used

for surface-to-surface transportation. The current design weighs

147 pounds without fuel or men, and is 22½ inches wide, 45½ inches

long, and about 5 feet high. A hydrogen peroxide propulsion

- OU_o_o ....._ _ _-_ level of pounds for _± seconds flight

time. A lunar version could use nitrogen tetroxide and an equal

blend of hydrazine and unsymmetrical dimethyl hydrazine for

propulsion. Its flight time could be extended to 14 minutes or

more. The range will probably be less than that of the Lunar-

Flyer or LESS/Flyer.

b. An uprated Lunar Flyer Vehicle can also be used for surface-to-

surface transportation up to about 30 nm range with two men.

c. The LESS/Flyer is capable of flying up to 200 nm range with two

men.

2. Surface-.to-Orbit

a. The LESS may fly to orbit with two men.
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be Two one-man Lunar Escape Ambulance Packs (LEAP) can carry the men

to lunar orbit for pickup by an orbiting space tug. The vehicle

could carry an incapacitated man in a pressurized stretcher. The

operation and control of the vehicle is automatic during ascent,

and is controlled by the space tug during rendezvous.

7.2.6.1 Surface-to-Surface Concepts

The surface-to-surface concepts must have one-way ranges of 127 nm to accommo-

date a large circular traverse with a cabin rover and 200 nm for an open-

ended traverse. Using the data of Figure 7-8, we can construct the graph of

Figure 7-10. In this figure, the weight of a two-man flyer vehicle is

plotted against the total one-way range of the vehicle. The two-man Uprated

Lunar Flyer falls on this curve if part of the payload (other than passengers)

is converted to propellant. It is assumed that POGO also follows this trend.

For a 200 nm return range, the weight of the flyer vehicle and propellant is

about 2,540 lb. This weight penalty, if carried or towed by a large cabin

rover, will increase the power requirements by roughly a factor of 1.25 if

the velocity is to remain the same. The response time, in returning to base,

would be well within the life of a PLSS unit.

The POGO vehicle's range is too short to be used with a cabin rover. Assuming

that it has a 16 nmone-way range, it would be satisfactory for all EVA

traverses. A two-man POGO will weigh about 460 Ib per Figure 7-10. An

Uprated Lunar Flyer may carry this amount of payload. The one-man Lunar

Flyer and ground effects machine appear capable of carrying a one-man POGO.

Hence, it is feasible for these vehicles to carry an escape vehicle. The

disadvantage of this procedure is that it displaces the scientific payload

i,hat could be carried by the flyers or ground effects machine.

The EVA rover vehicle could carry or tow a two-man POGO with an increase of

vehicle power by a factor of about 1.35 for the small EVA rover, and 1.25 for

the large EVA rover vehicle.
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7.2.6.2 Surface-to-Orbit Concepts

The surface-to-orbit LESS weighs about 1,540 lb. The power requirements of

the traverse vehicle will increase by a factor of about 1.15 in carrying or

towing the LESS. The response time of the escape system depends upon the

degree of coordination between the escape vehicle and the space tug on orbit.

Figure 7-11 shows the operations involved. Initially, the orbit plane of

the space tug maybe offset from the position of the emergency site. At

point 'A' the space tug is notified of the decision to perform an escape

using the LESS vehicle.

After an orbit phasing time delay, point 'B', space tug performs a plane

change at orbit altitude. As the space tug approaches the site of the emer-

gency, the LESS makes an ascent at point 'C'. The latter is a bent, two-step

trajectory with a vertical rise time of I0 seconds. The total ascent time is

about i0 minutes into a circular orbit. This is followed by a rendezvous with

the space tug at point 'D'.

The ascent of the escape vehicle requires a high coordination of the vehicle

and space tug. The space tug in its new orbit, after plane change, should be

tracked electronically by the escape crew.

The total maximum response time is about 5.7 to 7.7 hours, depending upon

the vehicle's guidance capability. Table 7-5 summarizes the time require-

ments for the LESS type vehicle. These response times are marginally compati-

ble with the capacity of a PLSSunit.

A similar operation is performed in the case of an escape using a LEAP-type

vehicle. The LEAP-type vehicle requires a 180 degree elliptical ascent

transfer orbit because of its limited propulsion capability. The LEAP

definitely requires tracking by the orbiting space tug because its ascent

is automatically controlled to accommodate the escape of an incapacitated man

in a pressurized stretcher; the tug must ccntrol the rendezvous maneuvers by

the escape vehicle after the latter attains orbit. The response time of this
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concept is 8.5 hours as shown in Table 7-5, and imposes a requirement for

life support capacity.

Table 7-5

SURFACE-TO'0RBIT ESCAPE RESPONSE TIME (HOURS)

Escape Vehicle

0pe ration LESS Leap-Type

Alert Signal & Escape Decision

Space Tug Activation

Orbit Phasing (i orbit)

Plane Change of Space Tug

Track New Tug Orbit (i orbit)

Ascent to Orbit

Rendezvous & Transfer of Personnel

O.5 o.5

2.0 2.0

2.0 2.0

O.5 O.5

2.0 2.0

0.2 1.0

0.5 0.5

Total 7.7 8.5

The use of one two-man flyer vehicle instead of two one-man flyers is

preferable because the flyer needs to be manually guided. Therefore, one

incapacitated man can be brought back by a normal man on a two-man vehicle.

In addition, a two-man vehicle is preferable because it obviates the possi-

bility that one man will be left behind in case the second vehicle fails

to lift off. The conclusion is that one two-man vehicle is preferable to

two one-man vehicles for escape.

7.2.6.3 Comparison of Escape Techniques

A comparison of the surface-to-surface and surface-to-orbit techniques

reveals that the weight penalty is less for the surface-to-orbit technique

than for the surface-to-surface method when the return distance is greater
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than 120 nm. On the other hand, the space tug mayhave to makea large plane

change in order to rendezvous with the surface-to-orbit escape vehicle.

One solution for the cabin rover traverse escape is to combine the two

techniques by having a two-manLESScapable of both a flyer and orbiting mode.

Towing the escape vehicle on a trailer is preferable than attempting to mount

the escape vehicle on the cabin rover. It should be easier to prepare the

LESSfor flight if it is mounted on a trailer; the trailer may also serve as

a launch platform.

The carrying of a POGOtype vehicle on a lunar flyer has somemerit because of

the difficulty in rescuing a flyer in rough terrain. The penalty to the mission

is severe because the payload capability of the lunar flyer is used to carry

the escape vehicle.

The LESSand POG0rescue concepts do not appear to be attractive. In addition,

the use of these vehicles appears to be inherently hazardous. They are,

therefore, not recommended.

7.2.7 Survival Package Drop for Rescue Support

In case of an emergency on traverse, either the life support capability of

the crew is diminished or the vehicle mobility is lost, or both. Dropping a

survival package from orbit can, in principle, supply the traverse crew with

additional life support equipment. It is doubtful that a survival package

can restore mobility since a variety of causes are possible for the loss of

mobility. Hence, the purpose of the survival package drop is to provide

additional life support equipment.

It seems reasonable that the survival package should provide more life support

capability than that provided by an extra backpack per man. A 6,000 Btu back-

pack can provide a man, who is resting, an additional 12 hours of life support.

If the survival package doubles this capability, it will carry the equivalent
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of four backpacks for a two-man traverse situation. Hence, the survival

package would probably weigh at least 320 pounds. An erectable shelter would

also be helpful so that the men can take off their helmets and take on

nourishment and water.

The main technical requirements for dropping the survival package onto the

surface are as follows:

1. The package must soft land.

2. The landing site must be within a few hundred feet of the traverse

vehicle.

3. The package must be launchable through any plane change angle.

4. The response time should be less than the survival time of the men using

backpacks.

The first requirement is self-evident. The second requirement is predicated

on the reduced capability of an incapacitated man to walk to the survival

package, or for two men to walk when they are coupled together on one PLSS in

a buddy fashion. The one sigma accuracy of landing system should be 1/3 the

desired landing separation.

It does not seem advisable to use the technique for a walking traverse, or

one man traverses. The latter is so because an incapacitated man in a survival

bag cannot retrieve the survival package.

The nominal response time for a survival package drop is 3 hours including a

2 hour orbit phasing period, ½ hour for signaling and decision making, and

± hour for descent.
2

There are two general concepts for survival package guidance design:

a. The package acquires, tracks, and generates its error signals

based on on-board tracking sensors and a tracking beacon set up

by the stranded crew.
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be The package is acquired, tracked, and error signals are transmitted

to the package by the tracking beacon subsystem setup by the

stranded crew.

In the second concept the survival package requires only a minimum of on-

board guidance, navigation and landing sensors and computation capability.

Total weight is lower thus permitting lower thrust levels, and permits the

economical use of propellants.

The penalties in providing a survival package drop are as follows:

o The guidance system will be sophisticated.

o The propulsion system will probably need a throttlable or restartable

motor, and a gimballed or multi-nozzled engine.

o The package is a dedicated piece of safety equipment not required for

normal lunar operations.

In summary, we can say that the survival package does not add an appreciable

increment of success in those cases where it is most needed, viz., where the

crew of the disabled vehicle are confined to the vehicle or pressure garments,

or when a guidance beacon is inoperable. In addition, survival time may be

extended in other ways which impose less penalties on the mission, e.g.,

carrying extra backpacks or secondary life support systems.

7.2.8 Buddy Vehicles for Escape/Rescue

The buddy concept can be extended to that of providing redundancy in mobility.

The portable emergency escape system was one method of providing self-help to

the traverse crews. Another method is to send two vehicles on each traverse.

In case of the loss of mobility in one vehicle, the second vehi,_le can return

all the men to the base. This system does not reduce the requirements for

emergency _ersonal life support.
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The possible combinations of vehicles and their crews are as follows:

1. Twoone-manvehicles travel together or independently but within rescue

distance of each other. Each must carry and support two men in an emergency.
2. Twotwo-man vehicles travel together with one man in each vehicle.

3. Onetwo-man vehicle with two mentows an unoccupied two-manvehicle.

4. Twothree-man vehicles with two meneach travel together or independently

but within rescue distance of each other. Eachmust carry and support
four men in an emergency.

Case I can be applied to a ground effects machine or a lunar flyer, provided
that the vehicle can carry a passenger in lieu of payload. The two vehicles

would have to be in constant communicationwith each other. The advantages

of this approach over a rescue from base is that the search requirement is
obviated, and the traverse range is not reduced.

Cases 2 and 3 maybe applied to the rover vehicles. The advantages are
that search is unnecessary and that the range of the traverse is not reduced.

Case4 is recommendedfor the rovers.

The main advantage of the plans is the short time to respond to an emergency;
the disadvantage is the inefficiency of using two vehicles for one mission.

7.2.9 Comparison of Lunar Surface Traverse Escape/Rescue Concepts

A summary of the main characteristics of the various escape/rescue concepts

is given in Table 7-6. The several factors which have been evaluated are

defined as follows:

I. Applicable Traverse Situation. Those situations for which the concept

is most suitable.
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TABLE 7- 6
SUMMARY OF ESCAPE/RESCUE CONCEPTS

FOR LUNAR SURFACE TRAVERSES

Concept
Applicable

Traverse

Situation

Nominal

Escape/
Rescue

Response

Time (hrs)

Sensitivity to

Crew Incapacitation

Walkback Foot Traverses 2 One crewman

must be mobile

4-Wheel Foot Traverses 4. 9 Insensitive

EVA Rovers

6-Wheel EVA Foot Traverses 4. 5
Insensitive

Rover Vehicles EVA Rover 6. I

Pressurized

Cabin Rover

Foot Traverses

EVA Rove r

Lunar Flyer

Ground Effect

Machine

All EVA Traverses

Pressurized Cabin

Rover

Pressurized Cabin

Rover

LESS/Flyer

from Base

4.9

7.4

8.2

10.6

5.5

Lunar Lander Tug

from Surface

(Flyer Mode)

Insensitive

Insensitive

Insensitive

Lunar Lander Tug Pressurized

from Orbit Cabin Rover 8. I Insensitive

Portable Escape

System Combined

Surface -to -Surface

& Orbit-to-Orbit

Portable Escape

System, Surface-

to -Surface

Survival Package

Drop

Pressurized

Cabin Rover 8.5

1.0

3.0

Lunar Flyer

EVA Rove r

Ground Effect

Machine

All vehicle

trave r se s

All vehicular

trave rse s

Buddy Vehicles

Grew must be

able to fly vehicle

in EVA mode

Crew must be

capable of erect-

ing & flying vehicle

in EVA mode

Crew must traverse

to drop site and

operate guidance

and beacon

Re lative ly

insensitive
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Escape/Rescue

Vehicle

Re quire me nt s

Need means of moving

incapacitated crewmen
-- hand cart

Mission

Penalties

Extra equipment

Limits Range

Design

Penalties

Extra Weight

3-Man minimum Dedicated vehicle - not

crew capacity used for normal oper'ns

3-Man minimum Dedicated vehicle - not -

crew capacity used for normal oper'ns

Driver position for EVA

mode & emergency 3-man

cabin capacity

Capability to carry Z

pressurized stretchers

& I tracking beacon

Carry EVA rover vehicle

& tracking beacon

Carry EVA rover vehicle

g_ tracking beacon

Automatic ascent &

orbit insertion;

Z-man capacity

POGO-type vehicle

characteristics

Dedicated vehicle-

not used for normal

operations

Dedicated vehicle -

not used for normal

ope rations

High Avelocity rqmt;

Tug assigned missiOn

terminated

90 ° plane change; 14-day

survival on surface

Traverse velocity &

mobility decreased; Tug

makes Z plane changes

Mission payload

decreased

Dedicated hardware

2 vehicles used on

each mission

Minimum Z4-hrs survival

capability; Shelter loca-

tion aids

Vehicle -to -vehicle

characteristics

Gimballed engine

Attitude cont r ol

Handcart needed

Wide search field of

vision; Land under

any lighting conditions

Land under all

lighting conditions

Vehicle trailer g_ auto-

matic guidance/naviga-

tion system needed

Flyer must carry

escape vehicle

New orbital & landing

spacecraft needed
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2. Nominal Escape/Rescue Response Time. The time from the rescue alert

until the rescue team arrives at the site of the emergency, or until

the crew escapes to a safe haven. Rescue team preparation is included

but no time allowances are made for extended search.

3. Sensitivity to Crew Incapacitation. The dependency of the evacuation

of the distressed crew upon their capability to walk and/or perform

tasks, such as flying a vehicle.

4. Rescue, Escape Vehicle Requirements. The main features of the vehicle

needed for traveling, searching, and carrying of crew and passengers.

5. Mission Penalties. The cost to the lunar program in terms of

dedicated equipment, added _V, redundancy, and performance degrada-

tions that diminish scientific payload and exploration.

6. Design Penalties. The main features of design above and beyond that

needed for the normal lunar mission.

The data of Table 7-6 shows that no single concept is adequate nor preferred

for all situations. The practicality of the concepts is dependent upon

whether the traverses are associated with the permanent lunar surface base

or a temporary tug on sortie. The resources on the surface available to

the latter are considerably less than the former, especially if the sorties

are accomplished with one tug and if the scientific equipment and payload

are substantial.

A reasonable general approach for both the permanent base and the tug on

sortie is based on the backup principle rather than the buddy principle.

The backup approach reduces the useless expendit_ce of consumables, i.e.,

an expenditure when no emergency occurs. It depends on having a mix of

vehicles available which gives several rescue or escape alternatives.

The one exception to the general approach is that for the long range pres-

surized csbin rover traverses, buddy rovers are preferred. The lander tug

on orbit may perform a surface rescue in the event that both cabin rovers

fail.
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For EVA traverses in the near vicinity of a base or lander tug, one vehicle

should be kept near the base or tug while the other vehicle is on traverse.

Emergency survival capability should be carried on the traverse vehicle

sufficient to allow time for the second vehicle to perform a rescue. In

the special case where a lunar flyer traverses to location inaccessible by

rover vehicle, buddy flyers or standby rescue flyers at the base are recom-

mended.

The development and deployment of a survival package for unmanned landings

at the emergency site appears less desirable than providing extra personal

life support equipment on the traverse vehicle for purposes of extending

survival time.

A dedicated lander tug at the lunar orbiting lunar station is required to

back up escape and rescue operations. This requirement is consistent with

the needs of the safety of the permanent surface base and the tug on sortie.

7.3 ESCAPE/R_SCUE GUIDELINES FOR LUNAR SURFACE TRAVERSE OPERATIONS

1. Pressure suits must have the capability for automatically sealing suit

rips or tears.

2. Each crewman needs an emergency pressure garment available at all times

(including when in pressure suits and on EVA). These garments should be

capable of being converted to a stretcher by the addition of rods or poles.

3. Backpack units must be so designed that a second EVA crewman could plug into

a unit worn by a 'buddy' crewman. The time span required for plug-in

and switch-over should be on the order of a few seconds.

4. An emergency backup life support system or oxygen supply system is re-

quired to extend the survival time of a traverse crew. The choice and

design of each will be a function of the required survival time needed

to satisfy the requirements of a particular traverse mission.

5. Rover vehicles that are to be used as potential rescue vehicles must have

the payload capability to carry the rescue crew (including vehicle driver)

and the stranded crewmen. The vehicle payload area and volume must have

the capability for carrying the stranded crewmen whether they are in
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pressure suits, emergencygarments, or in a pressurized stretcher.

6. A pressurized cabin rover vehicle used for rescue should have dual

controls: one set inside the pressurized cabin, the other outside the

cabin and so arranged that a crewmanin a pressure suit could control
the vehicle.

7. All rover vehicles should be capable of carrying a nominal minimumof

three crewmenincluding the driver. Each rover should have a minimum

emergencycapability to support and transport four crewman, including
the driver. Capability should be provided to care for two men in

pressurized stretchers._

8. Lunar surface mobility vehicles operated beyond walk-back distance should

be used in pairs, with each vehicle capable of carrying and supporting all

crewmenof both vehicles in an emergency.

9. All surface rescue vehicles should have the capability for hoisting and

carrying an incapacitated man in a pressurized stretcher. Implied here

is the capability of interconnection between the vehicle life support system
and the stretcher.

10. Mobile vehicles used for traverse missions should carry the following

types of emergencycommunication equipment:

a. Rocket propelled radio beacons

b. Tracking beacon to aid a rescue tug in locating an emergencysite

c. Landing and touchdownlocation aids

11._ All rover and flyer vehicles must be capable of activation in no more
than 2 hours.

12. Any vehicle that is designed for automatic (hands-off) operation must

be capable of full manual operation and control by a crewmanin a pressure
suit.

13. A handcart, similar to that used on Apollo 14, should be carried by each

lander tug. The handcart should be capable of carrying an incapacitated
maneither in a pressure suit or a pressurized stretcher.

14. Lunar flyers used on missions into rough terrain areas that are inaccess-

ible for surface vehicles should be sent in pairs, with each capable of
returning the crews of both vehicles.
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15. A flyer that is used as a rescue vehicle must have a minimumrange radius

greater than the traverse radius of the surface vehicles that it is

supporting.

16. The flyer must be capable of acquiring and tracking the location beacons

to be carried by all traverse and flyer vehicles.

17. A lunar flyer used for rescue should have a payload capability of a

minimumof three men- one pilot plus two incapacitated men in either

pressurized stretchers or normal pressure suits.

18. The cargo capacity of a flyer on the outboard leg of a rescue mission

should be used to carry special gear such as tools, stretcher cart, etc.

This equipment can be abandonedfor the return trip, t hereby providing

additional cargo capability.

19. The time required for activation of the rescue mission (time span from

receipt of rescue alert communication to departure of the rescue vehicle
_d crew) must be no more than 2 hours.

20. A wheeled "stretcher" cart should be carried by a rescue flyer as standard

equipment.

2!. A lunar lander tug used as an orbital rescue vehicle for surface rescue

missions must carry an EVA-type rover vehicle with a min_numthree-man

capacity, including the driver.

@-

Q
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Section 8

EFFECT OF NO ORBITING LUNAR STATION ON ESCAPE/RESCUE PLAN

It is possible that the orbital lunar station could be deleted from the lunar

program or that its deployment into lunar orbit could be delayed. The purpose

of this section is to explore some of the possible consequent effects on es-

cape/rescue and to define at least one possible operating mode for supporting

lunar surface activities.

With no orbiting station one possible operating mode is similar to that used

during the Apollo program lunar landing operation. The PTV and lander tug

combination would probably insert into a lunar orbit that minimizes plane

change requirements with respect to the desired surface landing site. After

a suitable checkout and phasing interval the lander tug would separate from

the PTV and perform an Apollo-type landin_ sequence. The lander tug would

then remain on the surface long enough to await the orbiting Frv orbit

......... a_nal with the landingplane to become aligned (due to the i....... + +_ rate)

site. This minimum plane change requirement opportunity occurs once every

14 days.

Once manned and activated the LSB could function as the primary lunar rescue

base. The LSB would require a means for rescue using surface traverse, flyer,

or orbital type rescue vehicles. Remote surface sites would require the capa-

bility for survival (perhaps shelters) or escape into orbit. Such an orbital

escape vehicle would need up to a 14 day survival capability to ensure that

its orbital track would pass close enough to the LSB that a rescue vehicle

from the base could ascend into orbit and complete rendezvous with the escape

vehicle with only a minimum plane change.

If the LSB _as to serve as the primary rescue base consideration should be

given to landing and activating the LSB prior to start of the lunar lander

sortie program. In addition the LSB surface site should be optimized with
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respect to the time-phase deployment and site location of the lander tugs.

If no optimized location could be found, consideration should then be given
to more than one LSB.

With no orbiting station one of the primary escape/rescue problem areas would

be that of the required delta velocity needed for escape/rescue operations.

This problem could be handled by locating a fuel depot at the LSB so that

the standby/rescue tug vehicle would have full delta velocity capability
available for rescue or for escape to Earth vicinity directly from the base.

Another alternative would be to maintain a PTV, mannedor unmanned,in a 60

nmpolar lunar orbit to provide the required delta velocity for transfer to
Earth vicinity. This approach would permit a tug, located at the lunar base

to be able to makea 90° ascent plane change, and complete rendezvous and dock-

ing with the PTVfor a return to Earth vicinity. Locating a fuel depot at

the LSBwould provide the capability for rescue tug refueling at the LSB

and thus provide sufficient delta velocity capability for lunar orbital in-
jection with up to a 90° plane change.
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Section 9

EFFECT OF NO LUNAR SURFACE BASE ON ESCAPE/RESCUE PLAN

G

The effect on the escape/rescue plan of not locating a lunar surface base on

the lunar surface should be relatively minor. For orbital-based rescue the

lack of a LSB is of no serious consequence since, in effect, this lack simply

eliminates a potential rescue situation and site.

Without an LSB, surface based rescue would probably be impractical since there

would be no permanent base at which surface rescue vehicles could be stored

and maintained. All rescue operations would therefore normally originate from

orbit. The safe haven would either be the orbiting station or the Earth vicin-

ity. If no station were available all escape or rescue vehicles would have to

return to the Earth vicinity either via the orbiting PTV or using direct tug

delta velocity capability. The latter alternative is probably impractical

unless the capability existed in the lunar vicinity for tug refueling prior

to trans-Earth injection.

it follows that the station should be manned, functional, and operational

prior to the initiation of manned landings and surface operations.
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Section i0

EFFECT OF FOREIGN LUNAR ORBIT/SURFACE OPERATIONS ON ESCAPE/RESCUE PLAN

It seems probable that other nations (primarily USSR) will initiate lunar ex-

ploration programs that could function virtually independent of any NASA pro-

gram. For example, a Russian lunar program almost certainly will use hardware

and vehicles different from that of NASA in design, function, and purpose.

Deployment in terms of such items as orbital inclination, altitude, surface

landing sites, and operational sequencing will probably differ markedly from

that of NASA.

It follows that any foreign lunar exploration program could generate escape/

rescue situations similar in nature to those presented in other sections in

this report. However the effects of this potential increase in rate and fre-

quency of situations is at least partially offset by the additional resources

in terms of crewmen, communications capability, equipment deployment, types of

hardware, and functional capability.

In order to take advantage of these additional resources, a coordinated escape/

rescue plan should be prepared involving at least the following:

a. Compatibility of equipment in critical functional areas such as

communications, docking, rendezvous, forced entry, entry point size

and number, and emergency equipment.

b. Location aids.

c. Escape/rescue procedures and tec_miques.

d. Crew training including familiarization with each nation's emergency

equipment.

e. Operational coordination at the working level.

f. Language or some means of direct person to person comm,mnication. Per-

haps a common sign language that includes symbols for potentially

critical bits of information.
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h.

Compatible atmospheres.

Common emergency alarm equipment and techniques. The same signal

should mean the same thing to all participating countries.
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SFLTIONii

DESCRIPTIONOFPORTABLEAIRLOCK_JIDEMERGENCYPRESSUREGARMENT

Twoitems of emergencyequipment recommendedfor use in advanced lunar explor-

ation are identified below. These are a portable airlock and al_ emergency

pressu_e garment.

ii.i EHERGENCYPORTABLEAIRLOCK

The emergencyportable airlock is shownin Figure ii-i in both the packaged and

expanded configuration. The airlock depicted is currently planned as a Skylab

experiment (D-021). In its cm_rent version the D-021 portable airlock packaging

system consists of a series of flexible nylon straps, located a_ound the periph-

ery of the mounting structure (upper left view in Figure iI-i)_ to restrain the

e_oandable portio_ of the airlock structure in a packaged configuration. Deploy-

ment is manually controlled by an easily reached lauyard pull mechanism.

The airlock expandable structm_e consists of a composite wall material which is

bonded _nd joined to _!umin_m term_n_! rings at each end of the ai__!ock. These

rings provide a rigid termiuation for the flexible materL_l of the airlock &ud

also provide a smooth flat smrface for hatch muff pressure bulkhead seals. The

expandable portion uses elastic recovery materials to permit folding and packag-

ing into a compact configuration for storage and ease in carryffng. When actuated

the airlock deploys to its full expanded configuration by the recovery action of

the wall material_ augmented by low level pressurization for final shaping. After

final shaping_ the inherent stiffness of the wall structure will ensure the final

shape is maintained under both lunar orbital and surface conditions. Fall expan-

sion of the airlock requires 120 seconds.
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11.2 EMERGENCY PRESSURE GARMENt

The _srgency pressure garment is a system designed to provide backup protection

for a suited crewman or for a crewman in shirtsleeves. Figure 11-2 illustrates

a concept for use by s_u EVA astronaut in the event of damage to the normal pres-

sure suit° Figure 11-3 illustrates a concept for use by a crewms_ in shirt-

sleeves in a pressurized cabin enviro__ment where pressure is decaying or atmos-

phere has become contaminated.

The garment consists of two primary parts. (i) a loose fitting coverall made of

clear plastic_ which may require reinforcement, and (2) a pressure regulated

oxygen supply system.

The clear plastic coverall can completely enclose the crewm_a including a pres-

s1_e suited cre_u's backpack. There is a pressure tight clos_are on the front.

The garment is in one size only and can be donned and activated by an unsuited

crew_mu without assistance. However_ a crewman in a full pressure suit would

require assistauce by another crewman_ as illustrated in Figure 11-2.

The garment contains either a pressure relieving check valve or a calibrated

orifice that maintains the garment in+_rnal pressure at 3._ + 0.3 psi. The

oxygen supply system can be supported and retained by a pair of velcro backed

over-the-shoulder supports. The facing velcro pads would be mounted on the

crewman's coveralls or p_Tessure suit shoulder area.

The oxygen supply system is an open loop flush flow system that provides thirty

minutes of oxygen at a flow rate of 8 Ibs/hour to the garment helmet area. This

flo_ rate would provide sufficient oxygen for breathing, respiratory flushout_

visor defogging and maintenance of garment pressure.
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Fig. ll-2 Emergency Pressure Suit for EVA Crewmen
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Fig. II-3
Emergency Pressure Garment for Crewmen in Shirtsleeves
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The oxygen supply system consists of a single tank holding 4 ibso of useable

oxygen at 5,880 psi, a single-stage pressure regulator that maintains suit

inlet pressure at 3.7 + 0.3 psi, a heater to maintain suit inlet oxygen tem-

perature between 30 and 80OF, a temperature sensor connected to an automatic

heater controller, and a small battery to provide power. A hand control valve

is provided to initiate oxygen flow after the garment is donned and sealed.

The oxygen supply unit should weigh less than 40 ibs (Earth weight) and should

have a volume less than 1400 cubic inches.

The proposed emergency oxygen supply system would not be required by crewmen on

EVA since the emergency pressure garment would be donned over the normal backpack.
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APPENDIXA

LUNARESCAPE/RESCUEORBITALVELOCITYNEEDS

This section presents b_seline data from which the delta velocity re-

quirements can b_ estimated for performing various escape/rescue oper-

ations involving orbital flight. Thesedata are presented in four

parts as a function of the required orbital operation:

I. Lunar orbital rescue from each orbit.

2. Lunar surface rescue from lunar orbit.

3. Lunar rescue from libration point.
4. Missed lunar insertion rescue from lunar orbit.

S

I. Lunar Orbit from Earth 0rb_t

a. Translunar injection velocity requirements from Earth orbits

of 100 and 262 n.m. are given. These same curves are also

valid for Earth orbit injection.

b. Lunar orbit insertion and departure velocities are given

for beth co-planar and out-of-plane insertions and depar-

.......... _ v_ ............ _ ..... _ ...................

techniques.

2. Lunar Surface from Lunar Orbit

Rescue from the lunar surface by descent from lunar orbit involves two

considerations; the maximum plane change angle that will be required

and the velocity requirements to accomplish the plane change and descent.

The independent variable is time to rescue which, in general_ is in-

versely proportional to the velocity requirements for descent.

Maximum plane change angles for various latitudes and orbit inclinations

are given along with descent and ascent velocity requirements including

plane changes for various trajectories.

In addition, the velocity requirements for orbital plane and altitude

changes are included:
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3. Lunar Rescuefrom Libration Point L2

Velocity requirements for entering lunar orbit from the L2 libration
point are given as a function of flight time. The minimal require-
ment for any plane change is pointed out.

4. The concluding set of curves is for velocity requirements to rendez-

vous with a vehicle that failed to bJ_n at lunar orbit insertion, and
the velocity requirements required to return to lunar orb_t for various

delay times after the vehicle has passed the approach hyperbola peri-
selene.
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Earth/Moon Geometry

The b_sic relations of the Earth and Moon to the ecliptic plane and each

other are shown in Figure A-I. The Moon Orbital Plane (MOP) about the

Earth is inclined at 5.15 degrees to the ecliptic. The orbit itself is

not quite circular, thereby providing a variation in the Earth/Moon dis-

tance. The effect of the variation is slight, resulting in approximately

a difference of 100 ft/sec in translunar injection delta V requirements

b_tween maximum and minimum distance.

Translunar Injection

The delta V required for co-planar translunar injection from an Earth

orbit is shown on Figures A-2 and A-3 for Earth orbits of 262 n.m. and

100 n.m., respectively. The velocity requirements are a function of

translunar flight time primarily. The max and min curves match the

variation in the Earth/Moon distance.

Inclinations and Plane Change Angles

The basic reference for Earth and lunar orbit inclination is the Moon

orbital plane. The lunar equator (perpendicular to its spin axis) is

inclined at a constant 1.55 degrees to the ecliptic, and consequently

6.7 degrees to the Moon orbital plane. The Earth's equator is inclined

23.5 degrees to the ecliptic. Inclination of orbiting vehicles is

normally referenced to the equator of the central body. The Moon

orbital plane is the common reference bstween the Earth and Moon. The

inclination of the Earth to the Moon orbital plane as shown in Figure A-I

is 23.44 degrees plus 5.15 degrees or 28.6 degrees.

Due to the rotation of the line of nodes of the Moon's orbital plane with

a period of 18.6 years, the inclination of the Earth's equator to the
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Moon's orbital plane (i ) varies by ±5.15 ° , the inclination of the Moon's
em

orbital plane to the e_liptic. This effect is shown in Figure A-I which

depicts the relationship 9.3 years later. The variation of iem as a func-

tion of time is illustrated in Figure A-4. More precise values can b_

obtained from the "American Ephemeris and Nautical Almanac." A value of

iem = 20 ° for 1980 has bsen chosen for the determination of the inclina-

tion of the plane of the translunar trajectory to the Moon's orbital plane

(Jr) in the following graphs according to the equation:

where

ir : ieo ± iem

ieo

i
em

i i.

= inclination of Earth orbital plane

= inclination of Earth's equator to the

Moon's orbital plane

= inclination of trajectory plane to Moon's

orbital plane

Figure A-5 is a plot of delta V versus flig_ht time for ir'S of 8.5°/48.5 °,

corresponding to a 28.5 ° Earth orbit inclination and 75 degrees for an

Earth orbit inclination of 55 degrees.

The angular relations of the various inclinations for these trajectories

are shown on Figure A-6. For each Earth orbit there are two possible

translunar trajectories corresponding to injection after passing the ascending

node or the descending node.
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Velocity Requirements (_V) for Plane Changes (_)

The velocity requirements for out-of-plane angles at Lunar Orbit Insertion

(L01) for optimum single impulse b_rn are shown on Figure A-7 with flight

time as a parameter. The reference Earth orbit for these requirements is

262 n.m. and 28.5 degrees inclination.

The minimum/maximum values for each flight time represent the effect of

varying Earth/Moon distance as shown in Figure A-2 and the inclination of

the transfer plane to the Moon's orbital plane (it) for it= 8.5 (minimum)

and ir = 48.5 (maximum) as given previously in Figure A-5.

To use the optimum single impulse for lunar orbit insertions with out-of-

plane angles (_ ), the pericenter must be targeted at translunar injec-

tion. For the largero_'s the targeted pericenter is below the desired

circular orbit. This is shown in Figure A-8 which gives the difference

b_tween the targeted pericenter and the 60 n.m. lunar orbit that would

occur if the lunar orbit insertion barn failed to occur.

This hazard can b_ removed by raising the targeted pericenter by an amount

equal to the altitude above 60 n.m. circular orbit that would result if

the _V's for plane change from Figure A-7 were used for insertion with

no plane change. The resulting pericenter altitudes are shown on Fig-

ure A-9 as a function of out-of-plane angle (C_) for various flight

times.

If plane change angles are constrained to targets no lower than 60 n.m.,

the resulting maximum allowable out-of-plane angles are shown on Fig-

ure A-IO which is a cross-plot of Figure A-9 with this constraint. The

min/max curves correspond to the minimum/maximum ._V cases of the pre-

vious figures which are a function of Earth/Moon distances and trajectory

plane inclination ir = 8.5/48.5.
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Trans-Earth Injection vs Lunar Orbit Injection

The previous pericenter constraints do not apply for trans-earth injection

bscause the pericenter is behind on the trans-earth trajectory. Figure A-11

shows the velocity requirements vs out-of-plane angle for optimized single

barn lunar departure and three barn departure using an intermediate ellipse.

The departure curves are also good for lunar orbit injection if the pre-

viously mentioned constraints are removed. Another way of avoiding impact

in the event of LOI b.u_n is to perform the single barn at the pericenter of

the approach hyperbola. The velocity requirements are shown as solid lines

and are for an ir of 60 degrees. However, by barning at the approach hyper-

bola half angle of the incoming asymptote whose _V is equal to the optimum,

single barn, _ = 90 ° case.

Another method for lunar orbit insertion is the optimized two barn which

provides an impulse just inside the Moon's sphere of influence plus a

second b_n at lunar orbit insertion. This approach has not b_en included

in this write-up_ bat offers advantages over the single b_rn particularly

for large out-of-plane angles. For an O(of 90 °, the two birn offers

about a 40% reduction over the one barn, and the three barn provides

another 20% decrease over the two-barn.
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Lunar Surface Rescue Plane Change Requirements

The lunar surface rotates under the orbit track at a rate of 13.2 degrees

of longitude per day. Consequently immediate descent to the rescue site

may require up to a 90 degree plane change for a site on the lunar equator.

The relation between plane change angle (_) and site latitude is shown as

a function of time on Figure A-12 for a 90 degree polar orbit. Because of

the continuous movement of a site into or out of the orbit track the plane

change requirements for rescue descent and/or ascent must be b_,sed on the

worst case.

The plane change requirements of various rescue b_sed orbit inclinations

for rescue from any place on the lunar surface are given in the following

figures. The results are for one quadrant of the lunar surface bat because

of symmetry are applicable for the entire surface.

The definition and relation are shown on Figure A-13 for ascent from a

site to an orbit. The results are equally valid for the descent case.

Polar Orbit

The results for polar orbit are given on Figure A-14 which gives the plane

change angle (_) required as a function of longitude from the ascending

node for various site latitudes. The longitude changes by 13.2 degrees

per day due to the Moon rotation around _ts axis.

Equatorial Orbit

The lunar station equatorial orbit requirements are given on Figure A-15

which shows that for this orbit the plane change angle is equal to site

latitude and is unaffected b_,_ the rotation of the lunar surface. Note

that for a rescue site located any place except on the lunar equator a

plane change will always b_ required.
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4_ Degree Orbit

The results for an inclination of 45 degrees are given on Figure A-16 which

shows that as long as the site is to the right of the ascending node the

maximum plane change angle is 45 degrees for any latitude. However, when

the site is to the left, the angle goes to 90 degrees for the extreme case

of -_= -90 ° . As mentioned previously,__increases by 13.2 degrees, so

that by waiting a maximum of seven (7) days the plane change angle can be

held to 45 degrees or less for any latitude.

Maximum Plane Change Angles

The results of the previous charts have shown that worst case (maximum 0( )

occurs at __= 90 °. The maximum plane change angle is given as a func-

tion of site latitude and inclination on Figure A-17 for the._ = _90 ° case.

Examination show_ thst by r_tr_et_n_ _t_ 1_t_f11_ _n_ _ n_+_m_1_ _h_+.

the maximum plane change angle that must be provided for can be reduced.

Limited Plane Change Capability

If the available plane change capability is less than 90 degrees, the options

available are presented on Figure A-18. For_ = 90 °, ascent from any lati-

tude to any inclination is possible without delay. The permissible combi-

nations are also given for_ = 30 ° and 60 ° . Because the relations are all

straight lines, the allowable areas can be easily drawn in for any other

plane change capability.

Descent Case

The previous figures were b_sed on analysis of ascending from a surface site

to rendezvous with an orbiting station without any delay in launch except for

phasing and to insure the vehicles were coplanar and their velocity vectors

in the same direction. The results are equally valid for the descent case

_-_
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except that in Figure A-13 the directions are reversed and are referenced to

the descending node of the orbit. A 90 degree range angle is used from site

to plane change point for b:th ascent and descent to minimize the plane change

angle.

Time Considerations

Considerations of surface stay time or delay between descent and ascent have

not been included. For example, if___= -90 ° (worst case) at descent and

the ascent is delayed for two days due to surface rescue operations, the

ascent case would be 90° - 26.4 ° = 63.6°. In addition, phasing for descent

and ascent have not been included which could bs a maximum of two hours for

each.

A-27
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Velocity Requirements for Descent

The requirements for the following four types of descent trajectories have

bsen defined in terms of_V and time:

I. Two-Burn Co-Planar

2. Three-Burn Plane Change

3. Four-Burn Elliptical

4. Five-Burn Elliptical

Two Burn Co-Planar Descent

The two-burn co-planar trajectory is shown on Figure A-19 using a modified

Apollo landing technique. A descent ellipse from 60 n.m. to 50,000 feet of

approximately 180 ° is followed by a powered descent to the surface from

50,000 feet. The total time of 3.1 hours is broken down as follows:

Phasing 0rb_t 2 hours

Descent .9 hours

Powered Descent .2 hours

3.1 hours

The total _V _dget of 7400 ft/sec for the descent and landing based on

Apollo experience.

The results presented in this analysis are addressed to the question of

minimum times for rescue and it should bs noted that no specific time has

bsen allotted for navigation and guidance updating and the correction of

dispersions.

Three-Burn Plane Change

If the orbit plane must be changed in order to bs co-planar with the land-

ing site, two methods are available, three-barn and elliptical transfer.

A-28
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(For the three-burn case a straight plane change of angle (4) is made

at a range angle of 90 ° from the site as shown on Figure A-20. The 90 °

range angle provides the minimum ( _( ) to b_come co-planar. The addi-

tional_V to bs added directly to the basic 7400 ft/sec is determined

according to the equation:

=
where V is the velocity at plane change.

For a 60 n.m. lunar orbit the circular velocity is 53_0 feet.

Elliptical Transfers

The four and five burn elliptical descents take advantage of the velocity

factor by transferring to a highly elliptical orbit and performing the

plane change at the apolune where the velocity is reduced by:

__ - _/ _ Where: subscript _ is for 60 n.m.

"V_ _/_ VIJI - F_c circular and A is
_A apolune conditions

or almost directly to the inverse of the ratio RA/R C. The term under the

radical increases VA/V C slightly.

The period, however, increases with anincrease in the ratio of RA/R C as:

I F_A , 3/#_.

)
The decrease in velocity and increase in period as a function of RA/R C are

plotted on Figure A-21 for the range of values considered in this study.

Optimum vs. RA/R C

For each value of plane change angle (C_) there is an optimum tradeoff

between the g_V saved in the plane change and the extra _V required to

enter and exit the intermediate ellipse. The results of this tradeoff are

shown on Figure A-22 as a function of RA/R C.
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Four-Burn Elliptical Descent

The technique for taking advantage of the elliptical transfer orbit is shown

on Figure A-23. The major part of the plane change is made at apolune, bat

computer runs were made to optimize the first three b.lrns to provide minimum

_V. The results are shown on Figure A-24 as a function of (o<). The

solid line with its corresponding time is actually the limit of the four-

burn case with RA/R C = i.O.

The results of Figure A-24 are cross plotted on Figure A,2_ to show the trade-

off b_tween delta V and descent time. The curves for 30 °, 50°, and 60 ° are

terminated at the optimum value of RA/R C (Figure A-22). Beyond that point

_V starts to increase as time increases.

Five-Burn Elliotica_ DeGcent

A difficult part of the four-burn sequence is barn #2 for large ellipses

where the periselene of the transfer ellipse must he adjusted from 60 n.m.

to 50,000 feet. This combination is made to reduce total descent time.

A more conservative sequence is shown on Figure A-26 where an extra 180 °

is used to transfer from 60 n.m. to 50,000 foot orbit. The _V require-

ments are essentially the same as for the four-barn case (Figures A-24

and A-25), bat the times are increased by one hour.

Short-Arc Descent

A 180 degrees transfer is normally used from 60 n.m. to 50,000 feet to

minimize _V.

In addition, the 180 degrees transfer results in a trajectory whose peri-

selene is still at 50,000 feet which provides a safe orbit if the second

h_rn does not occur. By using a shorter arc, the transfer time can be

reduced from approximately one hour at an increase in AV. In addition,

A-R4
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the periselene of the transfer trajectory goes to negative altitude, thereby

placing the vehicle on an impact trajectory. Figure A-27 provides the A V

requirement for shortening the descent time. It approaches an asymptote of

2.2 hours which includes one period for phasing. The normal descent would b_

180 degrees (approximately one hour) plus descent from 50,000 feet (0.i hour)

and one period (2 hours) for phasing for a total of 3.1 hours. Figure A-27

does not include any plane change requirements which must be made a range

angle of 90 degrees from the site in order to minimize (_-_) and consequently

AV.
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Ascent and Rendezvous Requirements

The b_sic ascent sequence is shown on Figure A-28. The three-barn sequence

is used whether a plane change is required or not. The b_sic time require-

ment is 4.9 hours and a _V bidget of 6,600 ft/sec. These badgets include

phasing time on the ground bsfore launch of 2.0 hours and a final rendezvous

sequence of 1.2 hours.

As in the descent case _V for plane changes may b_ traded for time by using

the transfer ellipse method requiring five burns as shown on Figure A-29.

The computer optimization results are shown on Figures A-30 and A-31 for the

ascent case, the solid line is the limit of the five-burn case. The times

include:

znasing

Ascent & Coast

Intermediate ellipse

Final Rendezvous

2.0 hours

•7 hours

2.0 + hours

I .2 hours

5.9 hours +
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Fig. A-29 Five-Burn Ascent
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Orbit-to-Orbit Rendezvous

The plane change angle (_) required to make two orbits co-planar can be

determined from the law of cosines from spherical trig:

cos _ = cosi I cosi 2 + sini I sini 2 cos a

as defined on Figure A-32

The simplest approach is the single _rn at the line of nodes or intersection

of the two orbit planes with _ V required as:

/X V_ _Vsin ( _g/2 )

where V is velocity at plane change.

Delta V can be saved using the previously described intermediate ellipse and

optimizing the three burns to minimize _V. The results for the three b_rn

case are given on Figure A-33 and cross-plotted on Figure A-34 as for the

descent and ascent cases. The time shown for the solid line (one b!_rn case)

is the limit of the three _rn case for RA/Rc--_I.0.

The time _zdget inc_ides one-half period to arrive at plane change point

(I hour), labeled phasing on Figure A-33, 2 hours plus for ellipse, and

1.2 hours for final rendezvous as for the ascent case. Not included is

the time required for phasing between the resulting two co-planar vehicles

at the same altitude which may b_ as much as 180 degrees apart. The curves

on Figure A-34 are terminated at the optimum _V as in the previous descent

and ascent data.

Combined Plane and Altitude Chan_e

Figure A-35 presents the _V required to simultaneously change plane and

altitude. The two-_rn method optimizes the normal 180 degree transfer

for minimum _V while the "three burn optimal" utilizes the previously

described transfer ellipse optimized for minimum _V for the required

(_) and new circular orbit altitude.

A-I_6
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Rescue _ Vehicle Based at L2 Libration Point

The previous sections have shown that rescue b_sed in lunar orbit or even

Earth orbit may require maximum plane changes of 90 degrees with the attend-

ant large A V expenditures. One method of decreasing these _V requirements

is to use intermediate transfer ellipses at the expense of response time.

Another approach is to b_se the rescue vehicle at the libration point.

Figure A-36 gives the _V required as a function of transfer time to arrive

at a 60 n.m. lunar orbit. The libration point transfer offers the advantage

of being able to enter any lunar orbit with a minimum _V for plane change.

The total spread is approximately 400 ft/sec for orbits from 0 to 180 degrees.

Phasing requirements (maximum 2 hours) may be met by adjusting the transfer

time.
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Missed Lunar Orbit Insertion Rescue

The case of a trans-lunar vehicle failing to inject into lunar orbit at the

approach hyperbola periselene was investigated for two trans-lunar flight

times, 72 hours and 108 hours. The worst or maximum velocity case of zero

b_rn at lunar orbit injection was postulated to determine maximum _V re-

quirements for a rescue vehicle to overtake and rendezvous with the disabled

vehicle from a 60 n.m. lunar orbit. The results are shown on Figure A-37,

entitled "Rendezvous Velocity Requirements for Rescue," as a function of

time to rendezvous.

The parameter is the delay or reaction time to launch the rescue vehicle.

The case of zero delay is also included which represents the case of the

nuclear shuttle where insertion b°_rn is scheduled well bsfore periselene

is reached. Upon failure to barn, the lunar rescue vehicle could b_ noti-

fied and readied to rendezvous with zero delay from periselene. Rendezvous

times longer than 12 hours do not provide much saving in _V. In addition,

the longer the time taken to rendezvous, the longer the time required to

return to lunar orbit as shown in the next two figures.

Using the span of rendezvous time given in Figure A-37_ the velocity re-

quirements were determined to return to lunar orbit as a function of return

time for 108 hours and 72 hours trans-lunar flight times. The results are

given on Figures A-38 and A-39_ respectively.

The rescue from a missed lunar orbit insertion is feasible from a velocity

requirement point of view with a total h_dget of 12,000 to 14_000 ft/sec.
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Appendix B

LUNAR ESCAPE/RESCUE COMMUNICATIONS GUIDELINES

1.0 LUNAR EMERGENCY COMMUNICATION

L'_o_-a98a2O2D

This appendix presents the characteristics of various candidates for lunar

communications. Particular emphasis is placed on communications between

various surface elements. The advantages of various modes and frequencies

are considered followed by detailed discussion of alternate systems to those

already in use in the Apollo program.

i.i Communication Modes

Five modes of lunar surface-to-surface communications beyond the line of

sight can be considered:

i. Low-frequency surface wave

2. Transmission line

3. Line-of-sight relays

4. Satellite relays

5. Earth relay

_T..... 7,_o_ _ _ _.,n _.,h_nh aT_sr]y favors one mode over all the others

because the utility of a particular mode depends on the mission, particularly

the range. In the event of an extensive lunar program all of these modes can

be used. Comparisons among various modes were made on the basis of power re-

quired to supply transmission losses and antenna losses and/or weight. Some

comparisons are shown in Tables B-I end B-2.

A low-frequency surface-wave system could be optimum for a mission which re-

quires a lunar rover to always operate within 25 n.m. of a lunar base.

Transmission lines might be optimum between the main base and a remote, fixed

shelter f_ve miles away.

Line-of-sight relays could be optimum between fixed sites separated by a maxi-

mum of 50 n.m.
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Real time communication from the Earth to the far side of the Moon seems to

have only one solution, i.e., satellite relays, either lunar orbit or libra-

tion point.

The Earth relay mode could be optimum for missions which require movements of

hundreds of miles over the Moon's surface.

Table B-I

PERFORMANCE CHARACTERISTICS OF VARIOUS COMMUNICATION MODES

Communication Bandwidth

Mode Capability

Surface Wave Narro______w,voice

bandwidth

Distance

Capability

Depends on sur-

face electrical

characteristics

50 to 125 n.m.

Power

Requirements

Sever___e,hund-

reds of watts

Transmission

Lines

Narro_______w,voice

bandwidth (light

weight line)

2O b_

2 to 7 ibs/km

Low, fraction

of a watt

Line-of-sight

relays

Wideband

(video)

About 15 km

between sta-

tions

Modest, few

watts

Satellites - Lunar

Orbit and Libra-

tion Point

Wideband

(video)

Not limited Modest, sev-

eral watts

Earth Relay Wideband

(video)

Complete cover-

age of visible

side of moon

Modes______tt,sev-

eral watts

_-2
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Table B-2

RELATIVEMERITSOFVARIOUSCOMMUNICATIONSMODES

Communication Advantages Disadvantages Utility
Mode

Surface Wave Omni-directional be- Large, inefficient Short range,

yond the horizon bandwidth-limited beyond hori-

Transmission

Lines

Not line-of-sight
limited

antennas, requires zon voice and

high power for homing beacon

long ranges
Large weight for

long ranges, de-

ployment difficult

Line-of-sight

Relays

Wide bandwidth,

modest power

requirements

Lunar Orbit

Satellite (VHF)

Omniantenna can be

used. No surface

tracking or point-

ing for communica-
tions

Libration Point

Satellite

(S-band)

Wide b_ndwidth.

ModestPower.

Surface Antenna

tracking not reqd.

Short range

Large numberof

active relay sta-

tions for long

ranges

Short range
links of one

or two sta-

tions

Slight power in-
crease for omni

antenna. Tracking

required for navi-

gation
Surface Antenna

pointing required.

Stationkeeping

required.

between sur-

face elements

& OLS. Navi-

gation Beacon
Long range
communica-

tions for

far side and

relay to Earth
and near side

Earth Relay Wide bandwidth,

modest power, com-

plete coverage of
near side of Moon.

Not applicable
to far side of

Moon. Antenna

pointing reqd.

Communications

to near side

of Moonand

relay be-
tween elements

3-3
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!.2 Frequency Considerations

Three frequencies or bands may be considered for emergency communications:

Low Frequency (LF) (50 KHz)

Very High Frequency (VHF) (300 MHz)

S-Band (2 GHz)

Propagation loss is proportional to the square of the frequency and the dis-

tance. Consequently, VHF requires less power than S-Band using isotropic

antennas which require no pointing or tracking.

S-Band can operate on low power by taking advantage or large directional

antennas. These large antennas concentrate the radiated energy into a

narlow beam rather than radiating in a spherical manner. The larger the

antenna, the smaller the beam, consequently higher gain or lower transmitter

power.

The penalty in using narrow beams is the pointing accuracy required. At

large distances such as Earth/Moon this is no problem. The following table

gives the beam widths and diameters to cover the target object.

2-GHz Antenna

Location Target Beam Width (@) Diameter (ft)

Earth Moon .52 ° 67.2

Moon Earth 1.91 ° 18.3

Libration Point (L2) Earth 1.6 ° 21.8

Libration Point (L2) Moon 3.1 ° 11.3

Libration Point (L2) Moon/Earth 4.7 ° 7.5

As long as the beamwidth covers the target object in its field, pointing is

not required except for movement of the antenna such as Earth rotation where

the antenna must be steered to keep the target within its beam. For all

other combinations above, the motion of the locations is so slow that point-

3-I+
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ing presents no problem. For lunar satellites the beamwidth can be made

large enough to cover the area in view from the satellite. Thus the re-

quirement for steering the satellite antenna is avoided. However, at low
altitudes (4000 Kmor less) the beam_idth to cover the surface in view is

too wide for S-band antennas. Consequently, S-band for Lunar Satellite to

surface is less attractive than VHF. For moving antennas such as on a rover

vehicle directional antennas are not practical unless the vehicle is stopped.

For S-Band the CSMor LM use 3 to 5 degree beamsand an antenna tracking and

steering system to maintain contact with the Earth and in practice this has

worked very well. However, for a moving lunar surface vehicle the absence

of an active attitude control system to maintain a stable platform would

require muchhigher response times and attendant energy requirements.

The Apollo program has demonstrated the capability of S-band for lunar distances

and _F for line-of-sight between lunar orbit and surface _v_1.1;. In

addition, future lunar programs will incorporate as muchor more capability

than already exists for Apollo for a communications between Earth and the

_-_'*'_ _ ..... _ Transport v__program elements, i.e., _mol_ Lunar _+_+_ (OLS), Pr.......

hicle (PTV), Lunar Surface Base (LSB), and Space Tugs. For lunar nearside

operations contact can be madedirectly with the Earth and the use of the

Earth as a relay point will allow communication betweenany of these ele-

ments. For lunar farside operations, additional meanswill be provided for

continuous contact with Earth and each other. Twooptions are available as

relay point, the libration point, and a satellite relay. For a libration

point relay, the characteristics are similar to Earth/Moon, and S-band is

the likely candidate.

Assuming that normal communications will consist of S-band and VHFas outlined

above, this appendix is devoted to the characteristics of other candidate

systems for emergencycommunicationsbetween lunar surface elements. The

systems are low frequency, surface relay, and lunar satellite.

8-5
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1.3 Bandwidth Considerations

Emergency communications in contrast to normal scientific requirements re-

quire only narrow bandwidths. Voice or even code (telegraphy) is entirely

adequate. The use of narrow band has an attendant decrease in power require-

ments. Required transmitter power in decibels (dbw) referenced to one watt

is directly proportional to the bandwidth in cycles per second (Hertz).

Voice requires approximately 3000 (Hertz) while code is nominally i0 (Hertz).

The use of narrow bandwidths allows consideration of possibilities other

than S-Band relays. These are low frequency, line-of-sight relays including

satellites, and hardline or wire transmissions.

VHF walkie-talkie type of equipment with power of less than a watt is ade-

quate, but only for line of sight. Estimates based on lunar topography

place the range at 20 Kilometers at best. A variation of VHF line of sight

is the use of relay stations placed every 15 to 20 Kilometers along the

exploration path. This has the obvious rigidity of a hardline system coup-

led with the difficulty of emplacement.

_-6
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2.0 LUNAR SURFACE EMERGENCY COMMUNICATIONS

The characteristics of various systems considered for emergency communica-

tions have been summarized on on Figure B-1 in terms of power versus range.

These are power requirements for a 3 (KHz) voice channel. In addition, the

power requirements for LF telegraphy are given.

2.1 S-Band Relays

The use of Earth-relay and libration point relay for near and far-side ex-

ploration, respectively, is most attractive from a transmitter power re-

quired viewpoint. A four to six foot dish antenna is not excessive. How-

ever, communications while the rover vehicle is moving is not possible be-

cause of the pointing accuracies required unless a sophisticated antenna

system similar to the CSM is used. Consequently, the base cannot contact

the rover or vice versa unless it has stopped and the antenna has been

aligned.

2.2 Surface Relays

VHF provides the simplest and lightest installation for continuous communica-

tions with astronauts out on a sortie. However, for long traverses, the

burden is shifted to the installation of relay stations. The curve on Fig-

ure 2-1 is taken from the results of reference (2). A concept for micro-

wave relays (1 GHz) is given in a later section. This concept includes wide-

band c_pacity for scientific data transmission in addition to emergency com-

munications power requirements, for either VHF or microwave are comparable.

VHF or microwave relays have comparable power and weight requirements being

in the order of l0 watts input and l0 pounds of weight. A description of a

15 watt Radioisotope Thermoelectric Generator (RTG) for powering the relay

stations J s also given. This unit provides 15 watts and weighs 25 pounds.

_j--'_
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2.3 Hardline System

Not shown is the use of wire phone line from the rover to the base. Con-

tinucus contact could be provided by slip-rings on the rover. Reference (2)

gives estimates from 1.8 to 3.5 pounds per Kilometer including insulation

and loading coils for aluminum and 3.2 to 7 pounds/Km for copper wire.

2.A Low Frequency

The use of low frequency for lunar surface communications has been the sub-

ject of much theoretical study. The missing information has been the con-

ductivity of the lunar surface. It is estimated that the value lies between

10-3 and 10-4 mhos/meter. Early Apollo information confirms this range.

References (i) and (2) both postulate Low Frequency Systems. Low Frequency

systems have two distinct characteristics, large transmitter power and long

antennas. In their favor is simplicity of operation, equipment, and antenna.

2.4.1 Transmitter Power

The transmitter power has been limited to I Kilowatt for our considerations.

Reference (2) postulates a 1 Kw transmitter d_sigo weighing 34 polma_ and

having an efficiency of 85 to 90%. Figure B-2 presents transmitter power

versus weight from references (i) and (2). References (i) postulates the

use of two transmitters at the lunar base and the use of a ferrite loop

antenna on the rover to provide direction finding (DF) capability using code

signals from two horizontal dipoles at right angles similar to the old air-

craft beam of "a" and "n."

2.4.2 Antennas

The major problem of low frequency is the transmitting antenna on the rover

vehicle. 1Wo concepts are presented on Figure B-l; the use of a .21\ (.2 of

the wavelength) horizontal dipole (at 50 KHz .2 _ = 1200 meters)laid on the

lunar surface, and a 30 meter vertical monopole. The horizontal dipole gives

3-9
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better range because it is longer than the vertical monopole. The two an-

tennas are compared on Figures B-3. The horizontal dipole system (Reference

(i)) has two horizontal dipoles at the base weighing 67 pounds with a single

dipole at the rover which must be deployed for transmitting. For receiving

and direction finding at the rover, a ferrite loop (74 pounds) is used. The

vertical monopole system offers the capability of continuous transmitting

and receiving but requires more power. On Figure B-I the solid lines are the

30 meter vertical monopole (i0 pounds) and the dashed lines for the 1200

meter horizontal dipole at a frequency of 50 KHz.

_-iI



cr

,-4
o
o..,

o

o

t-i
"/ o
,j o_

2 '-4t3
-rl

'Q4

!

B-12

O



f.MSC-A98h262D

3.0 LUNAR SATELLITE RELAY

g

The various factors involved in lunar satellite to surface communications are

presented. In the following discussion, the use of satellites at varying

altitudes from 100 to 7000 kilometers are considered including the Orbiting

Lunar Station (0LS) in a 60 n.m. (lll Km) polar orbit. Bandwidth considera-

tions are limited to voice and telegraph for emergency situations. Exten-

sive treatment is given on satellite coverage for both single and multiple

satellites in an orbit and for multiple orbits.

3.1 Lunar Satellite Geometry

The geometric relations for a lunar satellite to lunar surface link are

shown on Figure B-4. The forcing variable is satellite antenna beamwidth

(@). The beamwidth should be as narrow as possible to conserve transmitter

power. On the other hand, the beam width must be wide enough to cover the

lunar surface in view, in order to eliminate the need for tracking of sur-

face points by the satellite antenna. Beamwidth is a function of altitude

(h) and lunar radius (r) according to the equation:

where r = 1738 (km)

Contact Angle (CA) is the swath width of the satellite antenna in surface

degrees according to the expression:

-I

CA = 180°- @ or CA = cos { r9 + h

The slant range (SR) is the maximum distance from the satellite to the edge

of swath width and is expressed as

8-i'3
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Fig. B-4 Lunar Satellite Geometry
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SR = _/h (2 r + h)

h = altitude (km)

r = lunar radius = 1738 (km)

Beamwidth (@), Contact Angle (CA), and Slant Range (SR) are shown on Figure

B-5 as a function of satellite altitude (h).

Lunar Satellite Coverage Time (CT), the time that a point directly under the

satellite orbit is in view can be determined from the Contact Angle (CA) and

the orbit period ( T ):

CT = CA T

36O

where T is the period and CA is the Contact Angle in surface degrees

is given by the expression:

(sec) = 2_ (r t h) 3/2

/_m 1/2

where r = radius of Moon = 1738 Km

h = altitude in km

;_ = gravitational parameter for Moon

_m = 4.903 x i03 Km3/sec21

The coverage geometry for a point directly under a single satellite is shown

on Figure B-6. For a point in the center of the swath width the contact

length is equal to the Contact Angle (CA).

The orbital period ( T ), Contact Time (CT), and No Contact Time (NCT) are

shown on Figure B-7 in hours and percent as a function of altitude. Because

of the rotation of the lunar surface under the satellite track, these times

are only exact for an equatorial surface point and orbit or a polar surface

3-15
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point and orbit. The maximum time for an equatorial surface point to pass

across a polar satellite's swath is shown on Figure B-8.

As given by the expression:

CT = CA
T

36O

where • = 28 days, the period of the Moon's rotation.

Because the satellite is viewed on both its ascending and descending path the

maximum time a point is not directly under the satellite track is iA days.

The preceding curves are theoretical limits for points directly under the

local vertical. Allowance for a finite contact time at edges of the swath

width must be considered.

The effect of this consideration is to change the shape and reduce the area

of effective coverage as shown in Figure B-9 by the solid lines. The con-

tact length and swath width are defined as the central angles _ and @ ,

respectively, in terms of surface degress. The swath width (@ ) and contact

length (4) are related to each other as a function of altitude according

to the expression:

r 2
cos _ + cos_ = 2 ( r-; h)

where r = radius of moon

h = altitude.

In that beam width (9) to cover the visible surface and the resulting con-

tact angle (CA) are also functions of altitude and radius, the following

relations obtain:

B-19
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or:

cos _ + cos @ = I + cos (CA)

cos _ + cos @ = _ - cos @

with the obvious limitation

& @__ CA

Contact Time (CT) can be easily obtained using the expression:

CT =(o(L )T
36O

where _ is the period (Figure 3-4)

The relations betwe,_n contact length (ca), contact time (CT), and swath

width ( @ ) for a i00 Km (60 nm) satellite are shown in Figure B-IO.

3.2 Single Satellite Coverage

Figure B-lO can be used to investigate the communications between the Orbit-

ing Lunar Station (0LS) and a surface base. For Earth orbit operations a

five minute contact is considered adequate including acquisition time. How-

ever, most large Earth based stations are equipped with automatic acquisition

and tracking antennas. For lunar operaticns the need for tracking can be

eliminated by the use of omni directional antennas on the surface. The effect

of this is considered later in discussion on antenna sizes and gain. For

emergency communications, 5 minutes contact time seems adequate. From Figure

B-lO a 5 minute contact time provides a swath width ( @ ) of approximately

35 degrees compared to a maximum of 38.2 degrees, a reduction of approxi-

mately 8%. For an equatorial OLS, a minimum contact of 5 minutes with

surface bases within the band of _ 17.5 ° latitude from the equator is possible

with a period of ll8 minutes. Similiarly a polar OLS can communicate with a

surface base within 17.5 ° latitude of either pole.
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Fig. B-lO Contact Length _) & Contact Time (CT) vs Swath Width (@)

lO0 KM (60 nm) Lunar Satellite

B-23



I.,t,.:SC-A984262D

For the more general case of contact between a polar OLS and the lunar sur-

face, an equatorial site has the longest periods of no contact caused by the

surface base moving out of the OLS track due to the moon's rotation. The

contact times or periods within the swath width were given previously on

Figure B-8. As shown above, these swath width or cross-track times should

be reduced by about 8% to allow for a minimum 5 minute contact time each

revolution. At higher altitudes the correction is less because of the in-

crease in contact angle and periods with altitude.

3.3 Multiple Satellite Coverage

The curves of Contact Leng_h (_) vs swath width (9° ) for constant altitudes

from i00 to 7000 kilometers are plotted on Figure B-f1. The previous dis-

cussion on a single satellite applies except that the contact times increase

with altitude as given previously by the expression:

CT = (OC) 7_
36O

where_is the period (Figure B-7).

Similarly for time across swath width

CT = (_____)(iA) (days)
36O

For any altitude, the curves in Figure B-II provide the tradeoff between con-

tact length (o() and swath width (_). From Figure B-8 it is obvious that

for a single satellite the longest blank in contact or No. Contact Time

(NCT) is due to the rotation of the Moon. This period ranges from 2 days

at high altitude down to ll days at lO0 kilometers. On the other hand, the

No Contact Time due to a satellite's rotation in its orbit is 2 to 12 hours

(Figure B-8). A delay of hours may be acceptable for emergency communications,

but a period of days is not. To eliminate the cross track delay, single
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satellites in multip±e orbits could b_ employed. The integral number of

orbits (N@) required to provide 360 ° coverage around the equator for polar

orbits is shown beneath the swath width (_D) scale on Figure B-11. Note

+_+ "'_+_ 2 _^11_-- 0O.........w_,, ±_±_ in orbits 9 apart at an altitude of i000 (Km) or more

would provide one contact of 35 degrees or more each period. For I000 Km the

maximum gap in communication time would be a little over 3 hours.

To provide continuous coverage of an equatorial base, the integral number

of satellites (N,_) required in each orbit can be determined as a function

of contact length (od). For a fixed altitude, the minimum number to provide

continuous coverage of the lunar surface lies as close to the dashed diag-

onal as possible. On the other hand, for a fixed number of orbits (N@) and

satellites in each orbit (N_), the minimum altitude to provide continuous

coverage at the equator can be interpolated from the constant altitude

curves.

In discussing continuous coverage for polar orbits, the criteria of equa-

tor_l locations has been used, because at the equator the degrees of longi-

tude covered is equal to the swath width (@). The swath width (_) is

defined as a central angle and expressed in surface degrees. Consequently,

its value is constant, but the degrees of longitude spanned is a function

of the latitude of the local vertical being equal to@ at the equator and

approaching 180 degrees as a limit at the pole.

For a polar orbit tae actual degrees of longitude spanned by a swath width

(_) can be dete_l_ned by the expression:

tan LS = tan _)

2 2

cos (Lat)

where LS = Longitudinal Swath

(_ = Swath width

Lat = Latitude of local vertical
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The Longitudinal Swath vs latitude as a function of Swath width (_) is

given on Figures B-12. Tolprovide continuous coverage for polar satellites

the longitudinal swath width of N equally spaced orbits must equal or exceed

180 degrees. As shown in Figure B-12 the increase in Longitudinal Swath

is minimal below 40 degrees latitude particularly for low altitude satel-

lites with their attendant narrow swath widths (Figure B-f1).

3.d Horizon Limitations

The geometric relations for contact at the horizon are shown on Figure B-13.

The dashed lines present the theoretical arrangement on the left of the dia-

gram. For earth orbiting satellites a minimum elevation angle (g) above

the horizon must be allowed for before contact can be established. A general

rule of thumb is to allow a minimum elevation angle of 5 degrees in deter-

mining acquisition and fade times. No similar figure is available for lunar

surface to orbit communications, but it will be considerably less for three

reasons:

1. Lack of atmosphere.

2. Lunar radius is only 27% of the earth radius.

3. Omni-directional antennas will be used on the lunar surface to eliminate

the acquisition and tracking of the satellite (See Antenna discussion).

The major effect of using a finite elevation angle on the previous calcula-

tions is to reduce the contact angle (CA) by the factor of twice the eleva-

tion angle (2C). In Figures B-11 and 12 this lowers the_vs _curves by

the same amount equivalent to flying the satellite at a lower altitude. For

reasons considered above, this angle will be much less than 5 degrees and

is mentioned for the sake of completeness.

3.5 Satellite Antenna Size and Gain

The required beam width of the satellite's directional antenna is a function

of the altitude according to the expression:
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Fig. B-12 Longitude Swathvs Latitude
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@--2 sin -I (_)r

where h : altitude (Km)

r = lunar radius = 1738 (Km)

The beam width is sufficient to cover the area of the lunar surface in view

at any time from the satellite.

The gain (G) of a parabolic antenna is a function of beam width and is re-

lated by the expression:

@2 = 27000

G

Consequently, the satellite's antenna gain (G) is a function of altitude and

independent of frequency if the beam width criteria applies.

However, the gain (G) of a parabolic antenna is a function of frequency (f)

and diameter (D) according to the expression:

G = 5.5 x 10-6 f2 D2

where f = frequency (MHz)

D = diameter (ft)

The diameter can be expressed as a function of beam width and frequency:

e2 = 27000 = 49 x 108

G f2 D 2

@

or

D

and @

z
= 7 x i0 _

fD

= 7 x 104

f

-i
= 2 sin

3 .30
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Consequently, the required diameter is a function of frequency (f) and alti-

tude (h).

The gain for the satellite antenna (GsA) in (db) (I0 log G_A ) and the diam-

eters for S-band (defined as 2 GHz) and VHF (defined as 300 MHz) are plotted

on Figure B-14 as a function of altitude. For S-Band below 4000 (Km) the

diameter is less than a foot which is not practical. Use of larger antennas

results in a narrower beam width than required and necessitates tracking of

the surface station by the satellite at the lower altitudes. The other

alternative is to use omni directional antennas with the resultant loss of

gain. Because of this physical beamwidth limitation for S-Band antennas,

the S-Band is not desirable for lunar satellite communication at lower alti-

tudes. Also, the path losses _re greater for S-Band than VHF as sho_n in

the next section.

It is this same antenna characteristic that favors S-Band over VHF for long

distances, e.g., Earth/Moon, Moon/libration point, where narrow beam/high

gain requirements result in excessive diameters for %_F antennas.

Propagation Loss

The free space propogation loss is a function of frequency and distance as

given by:

where C =

4TFR 12 -- II__ 2
!

speed of light = 3 x 105 (Km/sec)

R = Range (Km)

f = frequency (MHz)

R2 f2 = 1760 R2 f2

The path ]oss L is plotted on Figure B-15 versus altitude using the maxi-
P

mum slant range _;orresponding to altitude. There is a constant 17 db diff-

erence betwen S-Band and VHF due to the frequency term in the above expres-

sion. The transmission loss consisting of path loss minus satellite antenna

gain is also plotted. As mentioned previously, the antenna gains below

_mjl
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AOO0 (Km) for S-Band are rather academic for parabolic antennas. Figure

B-15 demonstrates a 17 db advantage of VHF over S-Band when considering

antenna gain and propagation loss of lunar satellites.

The most significant factor is that above i000 (Km) the choice of altitude

does not affect power requirements for VHF. This is theoretically true for

S-Band also, but practical limitations interfere. Consequently, the criteria

for altitude selection can be limited to operational considerations such as

coverage, deployment, and maintenance. Coverage as a function of altitude

has been explored in detail in a previous section.

3.6 Satellite Transmitter Power

A detailed analysis of individual communication link factors such as equip-

men_ losses, cabling losses, noise factors, and modulation techniques which

all have an effect on required transmitter power is not appropriate nor

would it be very valid when i0 years of development must be considered. How-

ever, transmitter power is a dominant factor in comparing alternate ap-

proaches. In the following analysis a range of power is developed based on

present equipment and techniques for VHF (300 MHz). S-Band requirements are

not included because of the considerations of additional path loss and an-

tenna size.

Transmitter power may be expressed as the algebraic sum of the following

factors in decibels (db):

= + BW = S/NPT (Lp -GsA) + LE + No

PT is required transmitter power in dbw = i0 log PT (watts)

(Lp -GsA) is the previously defined transmission loss consisting of pathloss

minus satellite antenna gain. (IA3 db)
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0 ¸'

L E is the combined losses due to cabling, modulation, omni directional

antenna at the surface. (5 to i0 db)

N is the receiver noise spectral density in dbw per hertz referred to
o

receiver terminals conservatively estimated at -190 dbw/hertz

based on LM and CSM.

BW is the predetection bandwidth at the receiver which ranges from 2 KHz to

8 KHz for voice (33 to 39 db). For telegraphy BW is in the order

of i0 hertz or i0 db.

S/N is the signal to noise ratio of the received signal and is a measure

of clarity or error rate. (i0 to 15 db).

Minimum/Maximum Pow,_r can be based on taking the optimum value for each of

the above factors for voice communications.

@

q

MAn PT Max PT

(Lp - GSA) : 143 143

LE : 5 i0

N = -190 -190
O

BW : 33 39

s/N : IO 15

PT = 1 dbw 17 dbw

I watt 50 watts

For telegraphy, PT is much lower because the bandwidth (BW), is only i0

hertz or i0 db resulting in transmitter powers of -22 and -12 dbw or 8 and

18 dbm (decibels i_ milliwatts) corresponding to 6.3 and 63 milliwatts.

Based on the foregoing a transmitter output power of I0 watts is a conserva-

tive allowance for providing a lunar satellite/surface link for emergency

communications.

J35
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4.0 Microwave Surface Relays

4.1 Application

Line-of-sight microwave communications can b-used for the following surface-

to surface links:

l) Base to roving astronaut,

2) Roving astronaut to roving astronaut,

3) Base to remote experiment instrumentation,

4) Roving vehicle to roving astronaut,

5) Base to remote b_se.

The maximumdistance for line-of-sight communications bstween two astronauts

for five-foot-high transmit and receive elements is about 2.4 n.mi. over a
smoothsurface. Increased coverage for surface communications can bs obtained

by erection of remote repeater towers or surface units strategically located

on top of local elevated topographical features. The use of this type of

system allows communicationswhich are independent of local terrain

irregularities.

4.2 The use of VHF, UHF, or microwave relay repeaters for surface-to-surface
remote communications should be considered. Oneconcept for a microwave

repeater system has the nominal repeater parameter values of ten cubic feet,
ten earth poundsand requires about fifteen watts of prime power. This

system can be used to maintain continuous or time-shared channels for voice,

status telemetry, and location telemetry. A digital modulation system is

assumedfor efficiently combining multiple data sources, i.e., voice,

telemetry and PRNranging.

A voice channel can be digitized with acceptable quality at 20 kbps. There-

fore, with 4 kbps for a nominal lO00 foot ranging accuracy and 1 kbps for
telemetry and multiplexer address data, a total of 25 kbps is assumed

adequate for a typical communication channel.

_-36
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4.3 Link Calculations

The transmitter-receiver power requirements for a nominal free-space path

of ten miles are shown in the following table. These requirements are conserva-

tive and merely demonstrate a concept.

Assume:

i GHz carrier frequency

Regenerating relay

Differentially coherent PSK data demodulator

Bit error rate = 10 -4

Microwave Relay Power Example

Manpack transmitter power at antenna (30 milliwatts) +14 dBm

Manpack antenna gain 0 dBm

Free Space Loss -117 dB

Polarization and Misc. Losses -3 dB

Relay antenna Gain +_ dB

Receiver Signal Strength

Receiver Noise Power Density (5 dB Noise Figure)

Receiver Signal-to-Noise Density Ratio (S/No)

Required S/N for DPSK (25 kbps, 10-4 Error Rate)

System Margin

-103 dBm

-169 dBm/H z

+66

56 dBm

+I0 dB

Trades can be made in the selection of system parameters, e.g., transmitter

power or receiver sensitivity can be traded for antenna gain if constraints

on package size are imposed.

I. "1 "



LMSC-A98h202D

4.4 Power Supply Requirements

Requirements for a repeater power supply are discussed in the fo_lowing

paragraphs. It is possible to locate the power supply remote from the

repeater for easier access by connecting the units with a cable.

The requirements for the electrical power supply may be summarized as

follows:

Power for receiving and transmitting -- 15 watts

Maximum duration of continuous and transmitting -- 50 hours

Time of day -- any time during lunar day or night

Location -- any place on lunar surface

Life -- iO years

4.5 Radioisotope Thermoelectric Generator (RTG)

The electrical power source judged most applicable to the requirements is a

radioisotope thermoelectric generator, RTG, fueled with Plutonium 238 which

could be used on the lunar surface as is the present Apollo Lunar Surface

Experiment Package (ALSEP), which uses the SNAP-27 RTG.

It is estimated that a 15 watt RTG would weigh in _,he neighbcrhood of 25

pounds. The fuel elements could be contained within the RTG during transport

or all 15 Pu-238 fuel capsules could be transported within the same radiation

shield and placed in each RTG on the moon's surface. In that way the weight

of each RTG might be reduced to 20 pounds.

Pu-238 is selected because of its 87 year half-life_ where less than 8

percent of the original fuel capability will have decayed in ten years. If

a thermoelectric conversion efficiency of 5% is used, with allowance for

degradation from an initially higher value, we then would need 325 thermal

watts of filel. The AEC has projected the cost of Plutonium 238 at from

$500 to 4700 per thermal watt. At that price, the fuel per communications

link would cost in the order of $200_000 but the fuel is recoverable.

_3-38
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The RTGshould present no thermal problem since the very low cold sink

temperature during the lunar night should improve operating efficiency; also

the maximumcold sink temperature during the lunar day can be effectively con-
trolled by a reflective sun shield. The ALSEPRTGwas expected to see a cold

sink temperature range of 170 to -280 deg. F.

Life expectancy of the RTGis limited by the thermoelectric couples, which

may bs susceptible to vaporization if the inert gas seals fail and expose the

couples to the combination of high temperature and hard vacuum. In any case

the failure mechanismshould be gradual, allowing for manual replacement of

the thermoelectric generator. Life of ten years may bs an attainable goal,
but it may be well to plan on one to three generator replacements in that time
period, for each communications link.

4.6 Solar Array - Battery Supply

A solar array-secondary b_ttery system was considered, with the nickel-cadmium
batteries storing energy for a potential 50 hour operational period during the

lunar night. Since b_ttery operation is temperature dependent a minimumtemp-

erature of 0 deg.F. was considered, which would b_ maintained by }_attery powered

resisLance healers, ouper _nsu±a_±onof braeu_'±es is necessary_ since an
allowable heat leak of only 0.15 watts/sq, ft. was calculated from the follow-
ing assumptions:

Powerto communications link 15w (50 hrs.) = 750 wh

Heat loss madeup by heaters,
6 sq. ft. (.15 w/sq. ft.) (320 hr) : 288 wh

Total power

Battery depth of discharge

Battery power density
Battery surface area

1038 wh

75%

14 wh/#

6 sq. ft.
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The above b._ttery would be estimated to weigh iOO pounds. However_ the

lunar day operation would require removal of the super insulation from the

b_.ttery to allow radiation of heat generated during b_ttery charging. It is

felt that any active means of thermal control is undesirabie from a reliability

standpoint; therefore the b,_ttery-solar array system is not considered as an

attractive alternate. Battery operational temperature during the lunar day

could be easily controlled by a sun shield. The solar array portion of the

system should offer few problems; however, the b_ttery charge controller is an

electronics device which would have to bs carefully designed to incorporate

adequate reliability.

4.7 Solar Array - Puel Cell Supply

Also considered was a solar array-regenerative hydrogen-oxygen fuel cell

system, but the technology is not being advanced at a very rapid rate which

makes it difficult to project long life capability or availability. The thermal

environment is all important as in the b_ttery case; however, a higher temp-

erature limit should be practical which might permit passive thermal control.

The endothermic charging (electrolysis of water) occurs in the daylight and the

exothermic discharge (fuel cell combination of hydrogen and oxygen) occurs at

night; this is consistent with the environment and makes passive thermal control

a feasible possibility.

On electrolysis hydrogen and oxygen gas are generated and must be stored.

This means pressure vessels, operating up to 500 psi, would b_ required. The

long-term storage of gases is a problem since the smallest leak would degrade

the system. A minimum system weight would bs estimated at 50 pounds based on

an ideal thermal design where heat is conserved to an extent eliminating heaters.

Since an ideal system is unlikely, heater power requirement could easily double

the system weight to IO0 pounds.
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Relative system costs aside from radioisotope costs, are not deemed sig-

nificant because the cost of delivery to the lunar surface overshadows basic

hardware cost for any of the systems.

In summary, the RTG is the lightest weight system and is the least affected

bV the thermal environment; therefore it is selected for the tentative b_seline

design.

t
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APPENDIXC

mT_4BLINGVEHICLEESCAPE/RESCUEANALYSIS

Onecomplication that may occur whenevera spacecraft (tug, propellant depot,

PTV, orbital station, AMU,EVAcrewman)sustains a critical failure involving

guidance, attitude control, reaction control nozzles, or depressurization is

that tumbling may occur. For analys_ purposes it is assumedthat any

tumbling will occur about one of the three major axes and that the desired

docking or spacecraft attachment mechanismcan be located on any one of the

three axes. An added complication is that radiation levels from a nuclear

propulsion poweredvehicle (such as a nuclear shuttle) may fix a minimum

range at which the rescue vehicle must be able to match the nuclear shuttle

vehicle tumbling motion sufficiently to remain within the nuclear shuttle

safe radiation cone. Figure C-i presents someof the pertinent details

of a typical design for a nuclear shuttle that could be used as a prime
transport vehicle (PTV). The normal docking port of this vehicle is

located at the forward end of the vehicle and within the safe radiation
shielded cone.

Approach

The critical factors that detemnine the capability for escape/rescue from a

tumbling spacecraft are:

a. tumble rate of the disabled vehicle

b. acceleration forces on crewmen (both stranded and rescue crewmen)

must be less than approximately 2.5 gs for time spans longer than

about 10 seconds

c. minimum safe range due to physiological radiation limits

A typical non-nuclear tumbling vehicle rescue situation is presented in

FigureC-2,_ C-3 The stranded vehicle is tumbling at a fixed _. As the

rescue vehicle moves into a position in Khe plane of rotation of the crew

compartment and docking port of the stranded vehicle it must maneuver so

that the rotational rate of the rescue vehicle phases with that of the
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stranded vehicle. The rescue vehicle must then reach a final position

relative to the stranded vehicle on its docking axis, and phased with its

rotational rate by the time the rescue vehicle reaches the minimum range

of i00 feeL.

An additional restriction is that the normal acceleration to which the

rescue vehicle is subjected cannot exceed approximately 2.5 gs for time-

spans beyond about 10 seconds.* The stranded crew is also subject to this

restriction, but since the normal acceleration force is a function of both

tumbling (rotational) rate and range it follows that the rescue vehicle

will always be subject to a higher normal acceleration since it will always

be at a longer range from the center of rotation. The center of rotation

is at the center of gravity of the tumbling stranded vehicle. Therefore,

the acceleration force on the rescue vehicle can be used as the limiting

cas6.

Two general cases will now be presented. The first case that will be con-

sidered will be that of a disabled non-nuclear spacecraft that is tumbling

at some constant rate. The second case will be similar except that it will

be assumed that the tumbling spacecraft is a nuclear shuttle.

Case I - Non-Nuclear Tumbling Manned Spacecraft

For the purposes of this study it is assumed that the dimensions and center-

of-gravity location of the tumbling non-nuclear powered spacecraft are as

indicated in Figure C-IJ Previous studies* have determined preliminary

maximum rotational rates and axes for various conditions. The rates quoted

in the reference** ranged from 18 ° to 24°/sec., depending on the particular

conditions causing the vehicle to tumble.

*refer to Figure C-3

**General Elect_ic Co., SS-TK-060-4,

Preliminary Analysis of Escape from a

Tumbling Space Station, June 1970

C-_
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For the non-nuclear tumbling vehicle there is no range restriction on the

rescue vehicle relative to the stranded vehicle other than an operational

minimum range based on docking maneuver requirements. A reasonable minimum

is 100 feet. This minimum range is measured between the stranded vehicle

docking port and the docking port on the rescue vehicle.

The rescue vehicle must match the angular motion of the stranded vehicle

and be aligned with its docking axis by the time the rescue vehicle reaches

a range of 100 feet from the stranded vehicle's docking port.

Figure C-4 presents the range of stranded vehicle tumbling rates for whiah

rescue can be attempted without exceeding the 2.5 g crew acceleration limit.

Note that for the PTV example sized in Fig. G-i (giving a 178 foot

rotational radius) the tumbling rate limit is approximately 40 ° second. At

this limiting tumble rate the rescue vehicle can phase with the stranded

vehicle tumble rate, align itself along the docking axis then move along

this axis at a slow closing velocity of I foot per second or less, and not

exceed the 2.5 g limit.

Once docking has been accomplished the rescue vehicle must use its attitude

control and reaction control subsystems to stop the tumbling motion or at

least to reduce it to a low level. The rescue crew could then proceed with

the rescue operation.

Case 2 - Nuclear Tumbling Manned Spacecraft

A typical nuclear tumbling vehicle rescue situation is presented in

Figure C-5. The stranded nuclear vehicle is tumbling at some fixed

rate, _ . The intensity of the radiation level associated with the

nuclear vehicle, NERVA type engine is a function of the time-span since

shutdown aud the range to the NERVA engine. The nuclear engine internal

shield configuration results in a radiation-free cone that includes the

crew compartment and extends indefinitely in range. Since the radiation

0-6
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energy after NERVA shutdown consists primarily of gamma radiation, the

radiation level at any given range will decay with time.

It follows that a rescue vehicle attempting to rescue crewmen from a

stranded, tumbling nuclear vehicle must contend with not only the problems

presented in Case I, but must also face the necessity to accomplish

rotational phasing with the tumbling vehicle at a far greater range. The

net effect will be, since normal acceleration is a function of both rota-

tional rate and range, that the stranded vehicle tumbling rate at which

rescue can be attempted will be lower than that for a non-nuclear vehicle.

Referring to Figure C-6 it can be seen that a rescue vehicle attempting

to phase with and dock with a tumbling nuclear vehicle one hour after

shutdown of the nuclear engine would be limited to a tumble rate of about

16.5°/sec. This limit is due to a combination of two limits: (I) 2.5 g's

of normal acceleration, and (2) safe radiation level. The acceleration

limit is the same as that for the non-nuclear tumbling vehicle. The

radiation limit is a function of the elapsed time after nuclear engine

shutdown* and the range. In the example presented in this figure a radi-

_+_ 7_+ _ O_ D'£_/_._ _,_ _7_+_ tTt'_ __ 7 .... 7............... ; *_v,,_ occurs at

a range of 985 feet 1 hour after shutdown and 190 feet 1 day after shutdown.

The rescue vehicle, for this example, in order to complete a rendezvous

and docking sequence one hour after shutdown would be forced to complete

the nuclear vehicle rotational rates phasing operating at a minimum range

of 985 feet. From this range point the rescue vehicle must move along the

docking axis and remain within the nuclear vehicle safe radiation internal

shield cone until docking is completed. The additional normal acceleration

limit of 2.5 g's results in a rotational rate limit of 16.5°/sec. Any

higher rate and the rescue operation could not be completed.

*refer to Supplemental Data Report #i

App=ndi× E, MSC 03977
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Similarly a rescue attempt one day (24 hours) after nuclear shutdownwould

be restricted to a rotational phasing range of 190 feet and a rotational
rate of about 39°/sec.

It should be noted that a realistic estimate of a rescue vehicle's capability

to phase with a tumbling, stranded vehicle's rotational rate is also depen-
dent on the required thrust-to-weight ratio of the rescue vehicle. For

example, in order for a 2800 slug (90,000 lb. gross weight) rescue vehicle

to maintain the 2.5 g acceleration required for the phasing maneuvera

thrust-to-weight ratio of 2.5 is required.

A more realistic thrust-to-weight ratio would be 1.0 or less. The corres-

ponding maximumrotational phasing capability at the minimumrange of 100

feet would be 24°/sec at a normal acceleration level of I g.

Escape

There are two general stranded vehicle tumbling conditions that make rescue

impossible:

a. the combination of rs£_tio_ !eve!_ t11_m_b!ingrate and vehicle

thrust-to-weight ratio makes it impossible to phase with the

tumbling vehicle at the required range.

b. the stranded vehicle tumbling rate exceeds the phasing capability

of the rescue vehicle at any range.

Under the above conditions the stranded crew should separate the crew-

compartment from the tumbling vehicle, null out residual rotational rates

and await rescue. If the crew compartment has the capability for communi-

cations, life support, environmental control, power, attitude control, and

velocity the rescue vehicle should then be able to locate, rendezvous

with, and dock to the stranded crew compartment and recover the crew.

C-II
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Fig. C-7 presents some separation data for a crew compartment that

separates from a tumbling vehicle at various tumble rates. Notice that

even at a tumble rate as high as 55°/sec. the crew is subjected to an accelera-

tion force less than I g.

There are two potential critical problems associated with escape from a

tumbling vehicle. The first is that the crew compartment could be struck

by a protruding structural member. The second is that separation from a

tumbling nuclear vehicle could subject the crew to unsafe radiation levels.

For the first case, a combination of careful location of protruding structural

members and providing some & velocity capability should make separation safe.

There are two approaches to handling the radiation level exposure problem.

The simplest approach is simply to delay the escape-separation maneuver

until normal radiation decay results in a decrease to a safe radiation

level. The second is to add & velocity capability to the crew compartment

to decrease the length of time that the crew is exposed to an unsafe radiation

level.

C-12
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