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ABSTRACT

A semi-infinite strip held rigidly on its short end is
considered. Loads in the strip at infinity (far away from the
fixed end) are prescribed. Integral transform technique is
used to provide an exact formulation of the problem in terms
of a singular integral equation. Stress singularity at the
strip corner is obtained from the singular integral equation
which is then solved numerically. Stresses along the rigid
end are determined and the effect of the material properties
on the stress intensity factor is presented.

The method can also be applied to the problem of a lami-
nate composite with a flat inclusion normal to the interfaces.
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INTRODUCTION

In the past there has been considerable interest in the

strip problems from both mechanics and mathematical points of

view. A few good solutions exist [1-6]; however, none of these

methods appears to provide a solution which can directly give

the correct behavior of the stresses at the corners and does

not present any convergence difficulties in the evaluation of

the contact stresses. In [1-4], the stress singularities at

the corners were ignored. Benthem [5] used the Laplace trans-

form technique to formulate the problem but required a knowl-

edge of stress singularity by alternate means [7], In [6],

Vorovich and Kopasenko considered a problem of a semi-infinite

strip loaded symmetrically on its longitudinal sides and re-

duced the problem to a singular integral equation. Again

stress singularities were obtained by separate analysis and

the integral equation was solved using a very cumbersome method.

With the recent advances in the analysis and solution of such

singular integral equations [8], it seems possible to extract

the corner singularities and solve the derived integral equa-

tion in [6], The method presented here reduces the problem to

a singular integral equation which contains the stress singu-

larity and can be solved numerically g i v i n g very satisfactory

results.

To solve the problem of a strip with fixed end we will

first consider the plane elastostatic problem for a flat inclu-

sion situated centrally in an infinite strip with sides free
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of tractions (Figure 1). A similar problem with the inclusion

lying parallel to the interface was considered in [9] where

stress field around the inclusion tip was developed. Since

the problem considered here is symmetric with respect to the

axis containing the inclusion, a rigid inclusion has the same

effect as an inextensible inclusion with zero bending rigidity.

The case of an elastic inclusion can also be treated without

any added difficulty [9]. In this paper, we will concentrate

on the case when the inclusion extends to the surfaces, thus

reducing the problem to that of a semi-infinite strip with

fixed end. Numerical results w i l l be presented only for the

strip problem.

The method can easily be applied to the case where the

strip containing the inclusion is bonded to two similar half

planes with different elastic properties than the strip. This

problem makes the equations and the algebra much more involved,

but presents no conceptual difficulty.

FORMULATION OF PROBLEM

Consider a strip of width 2h in plane strain condition

with a rigid or inextensible inclusion of length 2a (a z h)

located centrally along the x-axis (Figure la). The shear

modulus and Poisson's ratio of the strip are y and v respec-

tively. Let the strip be uniformly loaded at both ends far

away from the inclusion. Figure Ib shows the main problem of

interest which is obtained from Figure la by extending the
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inclusion to the surfaces x = ±h, or letting a = h. Note that

the chosen problem has symmetry with respect to both x and y

axes.

The problem described above can be recovered by the super-

position of two subproblems I and II as shown in Figure 2. In

I, we simply have a uniformly loaded strip without any inclu-

sion. Solution of I is given as

ayyI(x'y) = ayyI(Xj0o) = po

(1)

- -e0x ;

Vj(x,0) = 0

where K = 3-4v for plane strain and K = (3-v)/(l+v) for plane

stress.

Problem II is the disturbance problem where the input

function must be the displacement in x-direction at y = 0 plane,

equal to the negative of that in I. Hence the boundary condi-

tions for II become

axx(h,y) = axy(h,y) = 0 .

(2)
v(x,0) = 0 , |x| < h,

u(x ,0) = ex , |x| < a,
(3)

°v»(x»°) = 0 , a < |x| < h.
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Due to the symmetry of the problem, it is sufficient to

consider only one quarter of the problem. Note that y=0, |x|<a

is a singular surface across which the displacements are con-

tinuous and the stress vector suffers a discontinuity. The

displacement and stress fields for the strip can be written as

a superposition of two transform solutions. One is the solu-

tion for an infinite strip (|x|<h, |y|<°°) in plane strain with

symmetry about x=0 and y=0 planes, and the other is the half

plane solution with x=0 as the plane of symmetry. Expressing

the solution as

u(x.y) = - / -{l[f(Ti) - g(n)]sinh(nx)

+ xg(n)cosh(nx)}cosny dn - ̂  / ̂ LiLl (<-£;y)e~^ysin£;xd£;

v(x,y) = / ([f(n) + ̂ j g(n)]cosh(nx)

2 °°
+ xg(n)sinh(nx)}sinny dn + 7 /

a ( x , y ) ? oo
- = - / [ f ( n ) cosh (nx ) + nxg (n )s i nh (nx ) ] cosny

(4)

>y ) + 2 g ( n ) ] c o s h ( n x )

nxg (n )s inh (nx ) } cosnydn + /
o
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>y = !• 7'{[f(n) +. g(n)]sinh(nx)

+ nxg (n )cosh (nx ) }s innydn + /
o

it may be seen that this solution identically satisfies the

third condition v(x,0) = 0 of (2). The three unknowns f, g and

<j> must then be determined by using the first two conditions of

(2) and the mixed boundary conditions (3). The first two con-

ditions of (2) may be written as

f(n)cosh(nh) + nhg(n)sinh(nh)

71 o r/+r n
(5)

f (n )s inh (nh) + g(n) [s inh(nh) + nh cosh (nh )

71 o

Mixed boundary conditions (3) can be expressed as follows

lim

/ {[f(n) - g(n)]cosh(nx) + nxg(n)sinh(nx)}dn
o

£Q , |x| < a (6)

u o
= 0 , a < |x| < h (7)
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Note that displacement derivative is used in (6) instead of

displacement in order to have a dimensional consistency in (6)

and (7).

A new unknown function G(x) is now defined as the shear

stress along the line y = +0 which is to be distinguished from

the shear stress at y = -0 as the stress vector suffers a dis-

continuity across this boundary. Due to symmetry, the two

values should be numerically equal and negative of each other.

The function G(x) is written as

axy(x,0
+) = 6(x) , |x| < h (8)

From (7), G(x) =0, a < jx| < h. Inverting the integral ob-

tained from (7) and (8) we have

i a
' fr>/j.\_j_>-j.jj. f Q\

Solving (5) simultaneously we obtain

i D, (ri)[sinh(nh) + rih cosh(nh)] - D9(n)nh sinh(nh)1 f(n) = J 2
c sinh(2nh) + 2nh

(10)
-j -D1 (n)sinh(nh) + D2(n)cosh(nh)
2 sinh(2nh) +

where

1 * o n2+52 2 n +£2
(ID

oo / \ *

DO(TI) = - — J —? o L—o— ~ —5 y
0 n +? 1 +£
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In order to reduce (6) to a singular integral equation

f and g must be substituted in it from (10) and then (9) should

be used to obtain the equation in terms of G(x). In this sym-

metric problem shear stress is an odd function in x; therefore,

G(x) = -G(-x). Using this property, the first integral in (6)

when combined with (9) yields a Cauchy kernel:

lim / G(t)dt / e~Cysin£(t-x)d£ = / Mil dt (12)
y+0"1" -a o -a t-x

Now substituting (j> from (9) into (11) and changing the order

of integration gives

2y(K+l)D1(n)

= G(t)dt / --y
* -a o r/+r n +£

(13)
2y(K+l)D2(n)

/ G(t)dt
-a o n +? n +5

From the tables of Fourier Transform in [10] we have

7 cosgz Hr _ ITI ~ « at, -

/ & sin^zd? =
o / 2.r2 \ ̂

By differentiating (14)with respect to z we obtain
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00 ,.

' ^ *»-iinC-»HC = " p

(15)

J-
f T|

Using (14) and (15) and replacing z by h-t, (13) can now be

written as

/2u(K+l)D1(n) = / G(t)[̂ - + n(h-t)]e-
ri(h-t)dt

(16)
a , /. . \

2y(K+l)D2(n) = - / G(t)[̂ -!- + n(h-t)]e"n^n"t;dt

The singular integral equation obtained from (6) using relations

(12), (10) and (16) can' now be expressed as

a p/ t\ a
K / |^- dt + / G(t)K(t,x)dt = - u(K+l)fre ,

-a -a

|x| < a (17)

where

oo / u \

l\\tjXy ~ J K\tjXjT"|ye Qn
0

k( t ,x ,n) = r^Th ^4W l^o^^xHl
1 + 4rihe - e •-

+ [K + 2n(h- t ) ] [< - 2 + 2nh] + 2e"2nh( l - K + nt)}

- 2nxs inh (nx ) {K + 2n (h- t ) - e"2nh}l (18)

The kernel K ( t , x ) is bounded for all va lues of t and x in

( -a ,a ) if a < h. The integral equation (17) should be so lved
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subject to the following equilibrium condition:

/ G(t)dt = 0
-a

(19)

For a < h, the solution of (17) is rather straightforward [8],

and will not be considered in this paper. The actual problem

of interest (Figure Ib) is the case when a = h. For this case

the kernel K(t,x) is no longer bounded for all values of t and

x, and contains point singularities at t = h and x = ±h. These

singularities can be extracted by using the asymptotic value

of the integrand k(t,x,n) as n -»• °° in (18). Let

KU,x) = / (20)

where K (t,x) is the singular part of the kernel. From (18)

it follows that
o

kjt.x.n) = 2e"rih[cosh(nx){
(K"1) + n[Kh + U-2) (h-t)]

2n 2h(h-t)} - nx sinh(nx){K + 2n(h-t)}~| (21)

Using the following result [10]

J nm e -n(2h- t ) fs inh(nxn

o lcosh(nx)J

,m

,m °°

dtm o
,-n(2h-t) fsinh(nx)

Lcosh(rix).

dtm (2h- t ) 2 - x2 L2h-t,
( 2 2 )

the singular kernel K (t,x) now becomes
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(t,x) - U-1

[(2h-t)2 - x2]'
(K-2)(h-t)}{(2h-t)

2 + x2}

- 2«(2h-t)x2 + - 4(h:t) ? (h(2h-t)[(2h-t)
2 + 3x2]

(2h-tr - x^

- x2[3(2h-t)2 + x2]] (23)

Also, we observe that k(t,x,n) •»• °° near n = 0. This can be

easily handled by isolating the value of the integral near

n = 0. We have

K0(t,x) = / k0(t,x}n)e-
n^'tjdn (24)

o
where

Therefore,

K0(t,x) = -
 (3"C^1"K) In(h-t) (25)

Note that K (t,x) is independent of x and has a weak singular-

ity in the sense that it is square integrable, hence does not

need any special attention.

To analyze the behavior of the unknown function G(t) near

the end points, dominant part of the equation consisting of

the Cauchy kernel and the singular kernel Kg(t,x) must be con-

sidered. We can express these dominant terms as
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- 3
l-t-X

I <K2 - 3 - 12(h+x)|]r - 4(h+x)

eQ + A(x) , |x| < h (26)

where A(x) is a bounded function containing the terms coming

from the Fredholm kernel in (17), i.e.,

h
A(x) = - / [K(t,x) - Ks(t,x)]G(t)dt

G(t) is assumed to have integrable singularities at t = ±h and,

following [11], may be expressed as

G(t) = = n . |t| < h (27)
(h2.t2}

a (t-h)a(t+h)
a

where 0 < Re(a) < 1 and H(t) satisfies a Holder condition in

the closed interval -h < t < h. Procedure for determining a

requires studying (26) as in [11, Chapter 4] and has been pre-

sented in detail in [8].

Considering the following sectionally holomorphic function

4,(Z) = 1 / GUI dt = 1 / - H ( t )e - dt (28)
* -h *-z * -h ( t -h) a ( t+h) a ( t -z)

accord ing to [8, Chapter 4]

( 2 h )a sinira ( z+h )a ( 2 h )a s i n7Ta(z.h)a o

( 2 9 )
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where <l>0(z) is bounded everywhere except possibly at the end

points ±h where it may have the following behavior:

Re(a). < Re(o) (30)1 To ' a v o
(z±h) °

Now taking the limit of (29 ) as z -> x, 2h+x and 2h-x , we find

*<j)(x) = n^" f l JUULZa _ n\ n;cotTTa + . /x\ |x| < ^

(2h) a (h+x) a (2h) a (h -x ) a

4>(2h+x) = ^-^ ?—- + < J » , * ( x ) , h < 2h+x < 3h
(2h)asinTra (h+x)a '

4> (2h -x ) = y^ ? + 4 > o * ( x ) , h < 2h-x < 3h
( 2 h ) a s i m r a ( h - x ) a *•

(31)

where around the end points 0 , <j>, , and <j>p have behavior

similar to that of <j> ( z ) .

Subst i tut ing (31) into (26) we obtain

1 [KH( -h )coS7ra + HlILL{(K<-3) + 12a -
(2h)asimra(h+x)a 2

( 2 h ) a s i n T r a ( h - x ) a *

nf „ ̂
r v A/

where P(x) contains all the bounded functions.

Since G(t) is an odd function of t, hence H(t) = - H(-t),

and since H(±h) ? 0, equation (32) can only be satisfied if

a = <2 + 1 - 4 ( a - l ) 2 (33)
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which is the characteristic equation to determine a. The equa-

tion is identical to the one derived in [7] for a wedge with

stress-displacement boundary conditions. It depends only on

the Poisson's ratio of the strip and gives a real value of a

for any material, i.e., for 0 < v < 0.5. If a < h as in Figure

la, only singular kernel is a Cauchy kernel and the character-

istic equation becomes

cotira = 0 , a = 1/2 (34)

which is the well known singularity at the tip of a flat inclu-

sion [9]. For the strip problem, the singular integral equa-

tion can be written as

dt + G(t)[Ks(t,x) + K0(t,x)]dt

+ f G(t)KF(t,x)dt = - y(K+l)-rre0 , |x| < h (35)

KF(t,x) = / [k(t,x,n) - kjt.x.n) - k (t.x.nne'̂ '̂ dt
o

K$(t,x), KQ(t,x), k^t.x.n) and kQ(t,x,n) are given by equa-

tions (23), (25), (21) and (24) respectively. Kp(t,x) is a

Fredholm kernel for a < h.

SOLUTION OF THE INTEGRAL EQUATION

To solve (35) we first normalize the dimensions with

respect to h by the following transformations:
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T - If • y = F ' G(t) = G(hT) =

Hence (35) can be expressed as

K0(hT,hy) + Kf( hx ,hy) }]d

(37)

and (27) becomes

*<T) = t(T2 a <38>

where a is given by (33). Equation (37) can now be solved by

using Gauss-Jacobi Integration formula. The method has been

previously used and described in [8]. Equation (37) must be

solved subject to the additional condition (19). We obtain a

set of NxN simultaneous algebraic equations given as

N , .
I A.U,(T.)[ 7-V + £ {K (hT.,hy.) + K (hT-.hy.)

j=l J J Tj yi K s J n o j i

y(K+! )iren
+ K F ( h T j J h y i ) } ] = - -

K

(39)

where, noting that (l-x^) is the weight function of Jacobi

polynomials PN' "
a'"a' (T) , the constants T. and y.. were shown

to be the roots of the following equations [9]:
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PN.l
(l"a*l"a)(y1) - o . (i = i N-i)

and A.'s are the corresponding weighting constants [9]. <HT.)
J J

are numerically computed

can then be expressed as

are numerically computed from (39). The shear stress a (x,0)xy

axv(x,0) = G(x) = - 5— , |x| < h (40)
i) n

(h2-x2)
(J.

NORMAL STRESS ^yy(x,0) AND STRESS INTENSITY FACTOR

After solving for the shear stress for the disturbance

problem, the only remaining important quantity of interest is

the normal stress a (x,0). To evaluate a , we start with
*/ J -J »/

the fourth equation in (4) and use (9), (10), (12) and (16).

For y =0 we find

'yy<x'°> - ̂T 1 f^f dt + A 7 G^)[K10(t,x)

+ Kls(t,x) + K1F(t,x)]dt , |x| < h (41)

where

K1F(t,x) =

/ [k^t.x.n) - klo8(t,x,n) - k10(t,x,n)]e'
n(h"t)dn

o

and
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K1Q(t,x) = - 1^- log(h-t)

K (tiX, • 0-3<)(2h-t)
ls (2h-t)2 - x2

[(2h-t)2 - x2]2
- 3(h-t)}{(2h-t)2 + x2}

- 2ic(2h-t)x2 + lUL±tJ— (h(2h-t)[(2h-t)2 + 3x2]
(2h-t)Z - x^

- x2[3(2h-t)2 + x2]}] (42)

Mt.x.n) = ^L zrfTR- [cosh(nx){l
I T - jt U « . ^ - M " —. " I I ' II + 4rine - e u

- [K + 2n(h- t ) ] [3 - 2nh] + e'2nh(3 - K + 2n t ) }

- 2 n xs inh (nx ) {< + 2n(h- t ) - e"2Tlh}1

k l o o ( t s x , n ) = e 'n h [cosh(nx){ l - [K + 2n (h - t ) ] ( 3 - 2nh)

- 2nxs inh( r ix ) {K + 2n(h- t )>

To determine the behavior of cr (x,0) near the corner points,
*/ »y

we must consider the dominant part of the equation (41) which

can be written as

o

{-(3K+5) + 2(<+7)(h-x) r̂ - 4(h-x)
2 L- > 2h-t-x

{-(3K+5) - 2(K+7)(h+x) - 4(h+x)2 - > ! + x ]dt

(43)
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Substituting (27) in (43) and using the relations (31), the

dominant part of the normal stress becomes

(K+1Kv(x,0) = - 1 - [(K-l)(cos™ + 1) - 2(K+l)(a-l)yy (2h)asin7ra

. x * ± h (44)
(h+x)a (h-x)a

Stress intensity factors K-, , Kp can be defined as

K] = lim /2 (h-x)
aa (x,0)

x->h yy

(45)

K2 = lim /? (h-x)
aayv(x,0)

* x+h xy

Using (27) and (44), these can be rewritten as

2 H^ [(K-!)(COSTTO + 1) - 2
(K+l)(2h)asin-rra

4(a-l)2]

(46)

(2h)a

NUMERICAL RESULTS AND DISCUSSION

The total solution of the problem shown in Figure 1 b is

now the sum of the two problems I and II. Hence,

ayy
T(x,0) = o^U.O) + °yy(x,0) = P0

 + ayy(x'°)

and (47)

cxy
T(x,0) = ̂ xy^x.O) + axy(x,0) = crxy(x,0)
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Since the problem of main interest here is the semi-infinite

strip constrained at y = 0, the results only for the case of

(a = h) are presented. Figures 3 and 4 show the variations

of normal and shear stresses, respectively, along the fixed

end for various values of the Poisson's ratio. When the Pois-

son's ratio is zero, we do not have a disturbance problem and

the solution of the total problem is identical to that of

problem I (Figure 2). Thus, for v = 0

axy
T(x,0) = 0

°yyT(x'0) =

(48)

As the Poisson's ratio of the strip increases (to a maximum

value 0.5), effect of the disturbance problem (II in Figure 2)

increases as shown in these figures. Also, for higher value

of the Poisson's ratio, a larger value of the power a of the

stress singularity is obtained. This effect is depicted clear-

ly from graphs 3 and 4 by the behavior of stresses near x = h.

Figure 5 shows the variation of the stress intensity

factor K« (as defined in (46)) with respect to the Poisson's

ratio of the strip. As seen from (46), the stress intensity

factor K, depends on K? and their ratio K2/K, is a function

of the power of the stress singularity a and the Poisson's

ratio. From (46)

2 _ (K+! )sin7ra
Kl [(K-l)(cosiro + 1) - 2(ic+l)(a-l) + 4(a-l)2]
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Figure 5 also shows a variation of this ratio K2/K, with re-

spect to v- Negative sign in (49) conies from the fact that

we have defined the stress intensity factors near x = h (45)

where we have negative shear stress and positive normal stress.

The physical significance of the ratio K2/K, is clear in the

case of an elastic strip pressing against a much stiffer body

(i.e., p is negative). In this problem if the coefficient

of friction, f, is greater than K2/K, , it may be assumed that

no sliding would occur between the strip and the adjoining

body, i.e., the contact condition is that of perfect adhesion,

and the solution given in this paper would be valid. If

f < Kp/K,, the problem becomes that of an elastic punch on a

rigid half space with friction. From Figure 5 it is seen that,

in testing whether the end condition is that of perfect adhe-

sion or sliding for a given strip under compression, as a first

approximation one may assume that K2/K-| = v.
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Figure 3. Shear Stress vs. Poisson's Ratio for
the Semi-Infinite Strip.
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Figure 4. Normal Stress vs. Poisson's Ratio for
the Semi-Infinite Strip.
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