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NUMERICAL CALCULATION OF BOUNDARY -INDUCED
INTERFERENCE IN SLOTTED OR PERFORATED WIND TUNNELS
INCLUDING VISCOUS EFFECTS IN SLOTS

By James D. Keller
Langley Research Center

SUMMARY
A numerical method is presented for calculating the incompressible boundary -

induced interference in wind tunnels of rectangular cross section with slotted or perfo-
rated walls. The method includes a wall representation which is capable of satisfying a
generalized homogeneous boundary condition including the effects of viscosity within the
slots. The effects of viscosity in the slots are found to be very significant. The method
allows for a variation in the boundary conditions along the tunnel walls. The model can
be any configuration and can be located anywhere in the test section. The interference
can be computed at any point in the test section.

INTRODUCTION

In order to obtain accurate wind-tunnel data, the measured quantities must often be
corrected to account for the interference caused by the wind-tunnel boundaries. Theo-
retical methods are presently available for predicting the interference due to the tunnel
walls in certain cases. The analytical methods are limited to infinite-length test sections
with constant wall properties in the tunnel stream direction. Some methods are limited
as to model size, position, and load distribution. A numerical method for calculating
the boundary-induced interference in ventilated wind tunnels is presented in reference 1.
The method consists of dividing the tunnel walls into rectangular elements which are each
represented by a source distribution. A matrix equation is then solved to find the source
strengths which allow the boundary conditions to be satisfied at the centroid of each ele-
ment. In reference 1 each element was represented by a source distribution of constant
strength over the element. This representation is particularly well suited to satisfying
an ideal slotted-wall boundary condition. The ideal slotted-wall boundary condition, how-
ever, is only a special case of a more general boundary condition which can include the
effects of viscosity within the slots. '

The present investigation deals specifically with a modified representation for the
tunnel walls which is suitable for the satisfaction of the more general boundary condition



including the effects of viscosity in the slots. The method presented is limited to incom-
pressible flow and cannot handle the usual assumption of a test section which extends to
infinity upstream and downstream of the model. The method also requires the experi-
mental determination of one of the parameters in the boundary condition. The method has
broad applicability, however, because the boundary conditions on the tunnel walls may
vary almost without limit. The model representation is also quite general. The model
may be located anywhere in the test section and at any orientation. A sample computer
program used in making the calculations is given in an appendix.

SYMBOLS
a effect of one element on another
b  effect of model on an element
€1,C9,C3,Cy4 coefficients in equation (4)
d distance between slot centers
l slot parameter
N total number of elements
n _ direction normal to wall
R .. restriction parameter
s wing span
t slot width
Ww upwash velocity caused by tunnel walls
X,y,2 Cartesian coordinates
T'm circulation of model
] lift interference factor
£n,C Cartesian coordinates



o] source distribution strength

Q@ perturbation velocity potential function
@* velocity potential function for an element divided by o' for the element
Subscripts:
i at ith element
i at jth element
L downstream end of each source distribution
m due to model
w due to tunnel walls

ANALYSIS

General Statement of Problem
The governing equation used in the analysis of incompressible wind-tunnel inter-

ference is

22_‘(2+£‘(2+8—252=0 - 1)
ox? oy  oaz?

where ¢ is the perturbation velocity potential function for the entire flow field. Let

@ = @y + ¢y where ¢, is the potential function of the disturbances due to the model
in free air and ¢, is the potential function of the additional flow due to the tunnel walls.
If ¢, is taken as a known solution of equation (1) which approximates the flow field at

a distance from the model in free air, then ¢, can be determined by the fact that ¢
must satisfy certain boundary conditions at the tunnel walls. The objective in determining
¢w 1s to be able to calculate the change in the free-stream conditions caused by the tun-
nel walls. Since ¢, needs to be known only on the tunnel walls, any inaccuracies in

¢, near the model will have no effect on the determination of ¢y,.



Boundary Conditions

The boundary condition to be satisfied at a solid boundary is that there can be no
flow through the boundary; that is
% _9
an

where n is the direction normal to the wall (positive outwards). The boundary condi-
tion to be satisfied at an open jet boundary is that there be no pressure difference across
the boundary. This boundary condition can be approximated by (ref. 2)

99 _

e 0
Reference 3 gives the homogeneous boundary condition to be satisfied at a perforated wall
as

S0 199 _,

5x 'R on

where R is a restriction parameter which relates the pressure difference across the
wall to the flow through the wall. In practice, R must be determined experimentally
for a given wall. A detailed discussion of the restriction parameter for both porous and
perforated walls can be found in reference 4.

The homogeneous boundary condition to be satisfied at a wall with several longitu-
dinal slots is given in reference 5 as

0
(p+l§l-(1£=0 (2)

where [ is a slot parameter given by

_d 7t
l—ﬁln csc(§a>

where t is the slot width and d is the distance between slot centers. This slot param-
eter was derived on the basis of two-dimensional flow, and it is assumed that it can be
applied at each location in the tunnel even if the slot width varies. Equation (2) can be
differentiated with respect to x to give

o9 i( 22) -
o l o 0 (3)
For constant slot width, equation (3) becomes

2
8¢ ., %9 _
ax+laxan 0

which is the form given by many authors.

The ideal slotted-wall boundary condition was derived on the basis of inviscid flow
at the slots. In reference 6 the addition of another term to account for the effects of vis-
cosity in the slots is suggested. The boundary condition is then

4



22 + l_ _3_2 +1 ——(ﬁ--a =0
ax R én x on
If the coefficient 1/R is replaced by %- + -gl;, this boundary condition will also apply to

walls which do not have constant slot width. As R approaches infinity, this boundary
condition approaches that for an ideal slotted wall. However, as pointed out in refer-
ence 7, the ideal condition is not always valid. Experiments have shown that for typical
test-section configurations, R can be of the order of unity (ref. 8). This value of R
will have a very pronounced effect on the interference in the test section. Thus, it is
important to consider the effects of viscosity in the slots and retain the additional term

in the boundary condition. Note that no theoretical method exists for determining the
value of R for a particular test section. It must be determined experimentally. This
experimental determination of the restriction parameter might be quite difficult because
for a tunnel with varying slot width the restriction parameter may vary with position also.

In this paper, a general boundary condition of the form

2
kL% 29 2o .
c1¢+c28x+c3an+c48x8n 0 (4)

is considered. This boundary condition contains all previous conditions as special cases
as shown in the following table:

Type of boundary c
condition 1 €2 3 €4

Closed wall 0 0 1 0
Open jet 0 1 0 0
Perforated wall 0 1 %{ 0
Ideal slotted wall 1 0 l 0

(integrated form)
Ideal slotted wall 0 |1 % l

(differentiated form)
Slotted wall including o |1 -:l; + %{- l

viscosity in slots

Additional discussions of these boundary conditions may be found in references 4, 6, and 7.

Representation of Tunnel Walls

In order to satisfy the homogeneous boundary condition, the tunnel walls are divided
into longitudinal strips and each strip is divided into a number of rectangular elements,
The boundary condition will be satisfied at the centroid of each element. The coordinate




system to be used has the X-axis extending along the tunnel center line, with the positive
direction being the tunnel stream direction. The Z-axis is positive upwards, and the
Y-axis is chosen so that the coordinate system is a right-handed system. In reference 1
each tunnel-wall element was represented by a source distribution of constant strength
over the element, This representation is particularly suited to the satisfaction of the
ideal slotted-wall boundary condition in integrated form (eq. (2)) because for this case

the matrix of influence coefficients is diagonally dominant. This diagonal dominance also-

holds for the perforated-wall boundary condition for small values of R. However, for
the ideal slotted-wall boundary condition in differentiated form or for large values of R
in the general slotted-wall and perforated-wall boundary conditions, this representation
would lead to elements on the diagonal of the matrix of influence coefficients which are
either zero or very small. This nearly singular matrix leads to numerical difficulties
and inaccuracies in trying to solve the resulting system of equations. In order to avoid
these difficulties, let each tunnel-wall element be represented by a source distribution
over the element and downstream of the element at least to the end of the strip. The
strength of the source distribution ¢ varies linearly, with a slope o' = %, on the ele-
ment itself and then remains constant downstream of the element. This representation
is used so as to have the source strength continuous along a strip and still have only one
unknown (the source strength slope) for each element. Thus, the source strength is zero
at the upstream end of the strip and varies in linear segments along the length of the
strip. If ¢* is the potential function for a particular element divided by the source

strength slope o' for that element, then
N
— *
o=, 4 ®
j=1

where N is the total number of elements,

Consider an element in the top or bottom wall with corners as shown in figure 1.

(El "Uz:;l) (62:172 |§ | ) (EL-”IZ |§| )
:
: o-:cr'(E—fl) 0'=0"(EZ—EI)
|
€ m8) (6, .L) (¢, L)

Figure 1.- Schematic of an element in top or bottom wall.




The potential function at a point (x,y,z) due to this source distribution is

. (E20m (£ - £1)dn dg £, (7 (gg - £)dn at

e 3 5 5 It ) 3 5
8 Y- 82+ - +(z - &1) 2 "M \x - 92 + (v - ) +(z - &)

This potential function and its derivatives must be evaluated to satisfy the boundary con- .

ditions. "For convenience in writing the equations, let x; =x - £, X9 =X - &,
X[, =X - gL, y{=Y -7 Y9=VY -9 and zy=2 - Cl The required equations are then
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In order to find the effect of an element in a side wall, y and z must be inter-
changed in equations (6) to (11). By examining equations (10) and (11) for zy — 0, the
effect of an element at its own centroid is found to be

i(gt = =27 Ez_-ﬁ.
on 2
and
52 H*
_..(L = —21T
oxX on
At points of the same strip but downstream of the element

LA -2m (&g - &)

an
and

_ﬁ?_*=o
ox on

At all other elements of the wall in which an element is located, its contributions to
3¢*/on and azgo*/ax 8n are zero.

Computation of Source Strength Slopes

In order to compute the source strength slopes required to satisfy the boundary con-
ditions at the centroid of each element, a matrix equation is needed to express these

boundary conditions. Let aij be the effect at the centroid of the ith element due to the

% *
source distribution corresponding to the jth element <a = clgp* +Cy ?—g{— +Cq b9~

on
82 p*
+Cyq '8?(% . Let b; be the effect of the model at the centroid of the ith element

. 2
9¢m 8¢m 9 €0m> . - .
(b =C1Pm +Cy 5+ C3 5 * 4/ Then the matrix equation which expresses

the boundary condition is

AZ' = -B (12)

A= I:aij]
I [or;]
B = [bi:]

Equation (12) can be solved for the values of o. which can then be used to compute the
interference potential due to the tunnel walls through the use of equation (5).

where

and



RESULTS AND DISCUSSION

As a relatively simple example, consider the lift interference due to a small lifting .
wing mounted in the center of a square test section with solid side walls and four equally
spaced slots in the top and bottom walls. Each tunnel wall is divided into four strips of
equal width and each strip is divided into 10 elements by cutting planes at x = -1.00,
-0.70, -0.45, -0.25, -0.10, 0.00, 0.10, 0.25, 0.45, 0.70, and 1.00. (For convenience, the
tunnel width is taken to be unity.)

The wing is represented by a horseshoe vortex of circulation I',,. The span s
of the horseshoe vortex is assumed to be so small that it becomes a vortex doublet start-
ing at (0,0,0). The perturbation velocity potential function ¢, at a point (x,y,z) due to
this representation of the model is given by

so that

and

o otmS_z . x
mo4m g2, 52 x2+y2+zz)

1 b4
rms ox 47 (X2 - yz + Z2)37§

1 5¢m -1 9 . 2x3yz + 3xy3z + 3xyz3
T s oy 3|4y + 3/2
m 47r(y2 + zz) (xz +y2 +22)
2
1 Oy B yZ
ox ay 47 5/2
I“ms ay (xz + yz " ZZ) /
1 %9m 1 2 - 22 4 x'?’y:2 + xy4 - x572 - xyzz2 _ 2xz”
I s oz 2 3/2
m 417(y2 + zz) (x2 +y2 4 zz) /

2
1 ¢m 1 x2 4 y2 - 222

FmS 0xX 9z 47 (XZ + y2 + Z2)5/2

These quantities are used on the right-hand side of equation (12) which is then solved for
05 /I‘ms. The values of 03 / T',,,S are suitable for the computation of the upwash velocity

10
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= at any point in the test section by summing the velocity due to each
r'mns yns 9z

element. The lift interference factor (ref. 5) is then

Figure 2 shows the lift interference factor at the center of the tunnel as a function
of the ratio of the slot width to the distance between slot centers. The results were com-~
puted by using the ideal slotted-wall boundary condition in both integrated and differenti-
ated forms. The results computed by using the integrated form of the boundary condition

-02[—

l

O

N
|

—.O4T

Lift interference factor,d

-.06

-.08

_.lo ! ! u c L : 1 [
0 .02 .04 .06 .08 10 A2 .4 16 18 .20

Ratio of slot width to distance between slot centers ,t/d

Figure 2.- Lift interference factor at vanishingly small-span wing
in square tunnel with four slots in top and bottom walls.

(solid-line curve) are the same as those computed by using the wall representation of
reference 1. The difference in the lift interference factor when the boundary condition is
used in the two different forms is due to the fact that the differentiated form of the bound-
ary condition does not satisfy the additional requirement that there be no disturbance due
to the tunnel walls at an infinite distance upstream of the model. However, the addition
of elements to the upstream end of the test section rapidly eliminates the difference.
When the test section starts three tunnel widths upstream of the model, the difference is
very nearly zero. The reason for this can be seen more clearly in figure 3 which shows

11
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an
2
' 9p .0 P _
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Strength of source distribution ,o

l _ |
-1 0 |
Longitudinal distance along strip

Figure 3.- Variation of source strength along wall.

a typical variation of the source distribution strength along one of the strips of the top
wall. It can be seen that the distribution which corresponds to the differentiated form of
the boundary condition would have the same value at the centroid of each element as the
other distributions if the source strength was increased by a constant amount. This con-~
stant shift corresponds to the source strength which would have been built up by the

point x = -1 on an infinitely long test section. The error caused by using the differ-
entiated form of the boundary condition comes about not so much because the source dis-
tribution on the far upstream portion of the test section is not included, but rather because
the source strength which would have been built up on the far upstream portion of an
infinitely long test section is not included all along the rest of the test section. Putting
additional elements farther upstream of the model almost completely eliminates this
error, but requires a larger matrix which takes up more computer storage and time. On
the downstream end, the source distribution which extends downstream from each element
can be extended beyond the end of the last element if desired.

Figure 4 shows the lift interference factor at the center of the tunnel with the gen-
eral slotted-wall boundary condition used for several values of the restriction param-
eter R. This figure shows that the effects of viscosity in the slots can be very

significant.

12
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Figure 4.- Lift interference factor at vanishingly small-span wing
in square tunnel with four slots in top and bottom walls for
several values of R.

The results presented here are for the simple case of a small-span wing mounted in
the center of a tunnel with constant slot width and constant restriction parameter. The
method, however, is applicable to more general problems. The model representation can
be quite general, including the case of a large-span swept wing with nonuniform loading
located anyWhere in the test section. The slot width and restriction parameter may vary
with position on the boundary. The results presented here are also for the case of a test
section which extends one tunnel width upstream and downstream of the model. This
arrangement of tunnel-wall elements was used for several reasons. First, the computer
time required to invert a matrix of this size (N = 160) is not too large (about 1 minute on
a Control Data 6600 computer system). Second, the results can be compared directly
with those of reference 1 which used the same arrangement of elements but a different
source distribution to represent each element. Third, use of this tunnel length clearly
shows the error caused by using the differentiated form of the ideal slotted-wall boundary

13



condition and not including the portion of the boundary far upstream of the model.

Greater accuracy could be obtained by adding elements to the test section, particularly
farther upstream of the model, and by letting the constant strength source distribution
which trails downstream of each element to extend beyond the end of the last element to

a large distance downstream of the model. In equations (7) to (11), x;, can be allowed
to approach minus infinity and simplify the equations somewhat. This is not possible

in equation (6), so when the ideal slotted-wall boundary condition is used in integrated
form, the test section must be terminated at a finite distance downstream of the model.
Although the present development is oriented toward tunnels of rectangular cross section,
it could be extended to other cross-sectional shapes.

The sample computer program given in the appendix is not the one used to compute
the results shown here. It has additional elements farther upstream and downstream of
the model for greater accuracy. In the sample program the elements extend from
x=-2.6 to x=1.8, and the constant strength portion downstream of each element
extends to &y =10. This program requires about 240 000g storage locations and about
5 minutes on a Control Data 6600 computer system.

CONCLUDING REMARKS

A numerical method for calculating the boundary-induced interference in slotted or
perforated wind tunnels has been presented. The method includes a wall representation
which is capable of satisfying a generalized boundary condition including the effects of
viscosity within the slots of a slotted-wall tunnel. The method is limited to incompress-
ible flow and requires the experimental determination of one of the coefficients in the
boundary condition. It is also limited to finite-length test sections.

The method presented has broad applicability and allows for the boundary condition
to vary over the test-section walls. This feature should aid in the design of test sections
which have nearly constant interference over the space occupied by the model. The
mode!l representation is also quite general, including the case of a large-span swept wing
with nonuniform loading located anywhere in the test section. The interference can also
be computed anywhere in the test section. The effects of viscosity in the slots are found
to be very significant.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., June 30, 1972.
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APPENDIX

SAMPLE FORTRAN PROGRAM

THIS APPENMD X CAMTAINS A SAMPILL FORPTRAN PEOGRAY FOR LUAPYTIMG THE | 1FT
TMTESFERENCE FACTICK IN A WIND TI° NFL OF PECTANAIILA2 £RNSS SETTIOM wWITH
SLOTTED OR PERFOVYATED WALLS. T . PROGPAM WAS WETTTEN FN2 JSE O 0D 6009
SEXTES COMPUTERS. IT IS TINTEMDED OMLY AS A SAMPFLY . “ODTFICATTNNS MUST fF
MADE T THE PROGRAM TN QRDER TN COYMPYTE DIFFERKFAT CASES. 'F IT JS DESTOED
TR PEDUCE THE MATRTYX STZ2%, THE PEQOGRAM OTVIN TM DEFEPFMLE | 7OUIG RE '
MODTFTED USING THE ARITHMETTC STATLMENT FUNMOTICNS GIVEM HEI®, RFISMAL TMOUITS
CAN RE FQUND NOM LINES 238 AND 269,

PRAGEASA ABTTL(INOUT ,CUTPUT TAPFS=TMPUT , TAPEE=PUTPUT)
DIMENSTUM XTI(256),CETA(256)ZETA{256)sXTL{256),X12(256)«2TAL(256)

# G FTA2(256) 4 7ETLLI256),ZFTA2(256)42(256425A0)4R8(256),5101:(256)

* 9 01(256)402(255),03(256),4(256)

DIMENSTION XA(10) e YA{1D),,WT{ 1Y)

SONIX)=STGM (10,4 X)

PUXLaX29Y1s Y242 )=Y2/2.5%SORTIX2UX24Y2%Y2 425/ )=Y1/2.4SORT{X2X2+Y1*
Y14Z%Z)=-Y2 /2% SORTIXLXXI+Y2XY2+ 77 )+4Y 1 /2.5SOUETIXL X _4Y %Y _+2%7)
(252 -X2%X2)/ 2 HEL S (ARS((YP+SORT(X2%XP2+Y2HY2+42 %7 )V /(YL+SORT(X2™
X2eYLRY L4252} ) ) V= 2Z%L=X1%EXTV/2.%ALNG (23S ((Y2+SDITIXLHX1¢Y2¥Y2+2%]
PIZAYL+SORTIXTEXIAYLIRYL4Z2Z2) ) ))=X1AY25AL (PSS (X2+ST(X2#X2+Y D
Y24Z%ZYV/UX +SQFETEXURXL+Y2XY247%7) ) ) I+ X_* Y 0L AG(2BS((X2+SATT (X2 %
X2+YLEYL#2%Z) )/ UX1T4SORT XL XL 4YIRYLHZ4EZ) ) ) )=XDARXL#AL NG (23S ((Y2+

# OSTORTAXLEXL+AY2RY24Z%Z) )1/ (YL +SAPTAXEXXL+Y 5y #7%7) )} )=XD®Y24 41 06

SRSECXU+SORTIXEHXL4Y2KY24Z%Z ) )/ {X24SOT(X2*X2¢Y2¥YP+77 )} ) )+XN%Y ]

AL CABRSOAXL #30FT (XLAEXI +YLRY  #2%2) )/ IX2+SOET(X2uX24Y _#Y(+7%72)))) 16

—XL¥ARS(Z) = {(-BTAN(X2%Y2/ABS(Z)/SORT(X2KX24Y2%Y24Z*7) ) ¢ATAN{ X1%Y2/ 17

* ARS(Z)/SORTAXLHXL+Y2%Y24Z%7 ) V4ATAEN( Y2 YL /ABS(2) /SO TIX24X2+Y1%Y 1+ 19

OIXL))=ATAN(XI*YL/ABRSUZ)/SQRTIXLIHXT #YLEY L4242 7)) )=XNHLRS(Z2 ) -ATar( 19

o LN NN

5% Mo g g
R R e e
G e N

3¢

o XUEY2/ARSOZ)/SQRTUXLAEXL#Y2* Y2427 ) V4 ATAN(X22Y2/ARS{L)/SORT(X27X2+ 2
HOY2EY24LF L) JHATANMIXLEY L/ ARS{Z)/SOPT (XL EXL4YLIHY1+2%Z})-ATAN(X2%Y1/ 21
* OARS(Z)/SORTIX2%X2+Y1xY 472%7))) 2?2

SIXLoaX2eY19Y2,Z)3Y2 /2% SORT{X22X24Y25YP 4257 )=Y1/24#SAT (X2 X2+Y 1% 23
¥ OYIHLRL)=Y2/ 2.k SORTUAXLIFX L 4Y2RY24ZHT VY L/P %SO TAXLSRX +Y _2Y: #/%7) 2%
FOoA{ZHL-X2%X2V/2 A O {ARS((Y24SORT{X2%X24Y25Y242%2) ) /(YL+SNPT(x2* 25
*OX2HYLIEYL47HZ) ) ) V- ZHFT=X1%X 1) /2 (AL WG A3SLIY24SORTIX XL +Y25Y2+47%] 2

PIZUOYL+SORTUXLIHKL+Y LAY LHZHZ ) )} )=X1AY2HAL - (A RS{ ( X2+ SN T(X2=X2+Y 2 27

%

# OY2HIRZI)V/UXLHSOETOXLIRXL+Y2%Y2+42%7) ) ) )4 X1%Y 1221 OG5 (A3S((X24SNET (X2% 23
*OX?HYLRYLAZHZ) )/ AXKLASORTIXLHXL4YLRY L1472 )} ) )-XD*XL=A1 D3 (A3S({Y2+ 29
TOOSNITUXL AXL +Y25Y24Z2 57 ) ) /(Y1 +SOTTXLAEXLEYLRY +7%7)) ) ) =X0%RyY 22 44 35 39

* ABSULAL+SORTIXLEXL+Y2RY24Z% 7))/ IX?4SQFTIX2*X24+Y2EY242472))) ) +XD*Y1 31
OEALIGUABSO (XL +SORTIXLEXL#Y1*Y L4757 ) )/ (X24SQFT{X2XX2+Y =Y L+72%7)))) 32

DODX(XL19X29 Y1y Y2, Z)=Y2%ALNG(ABSEIXI4SORTIXIEX14Y25Y24747) )/ (X2+ 33
*OSORTUX2¥X24Y2%Y2+4Z2%7))) VY 1¥ALNG(ABSUX2+SNET (X2%X2+Y ¥Y L 42%72))/ 34
FOAXLASORTAXISX1AYLRYL4Z%Z)) ) I+ XLRAL A (P BS{(Y1+SART (X2 X2+ Y1 RYL +7%7 35
B ODI/AY24SQRT (X2 X2+ Y2XY2 477 ) )X Y2+ SORT(XLEXL+Y2HY 24257 )Y /(Y2 +SNET 35
FOAXKLIEXL Y LEYI4Z%Z)) ) )+ XDEAL A (ABSE(YLI4+SOQRTIXL & XL Y1 =YL +27))/(Y2+ 37
B OSORTUXLEXL #Y2*Y24Z%Z ) }H(Y2+SDRT (X24X2+Y2%Y2 4272 )/ (Y L+SIKT(X2%X2+ 33
* YLI¥Y1+4Z2%2)))) 39

* OFABS{ZIE{ATANIX2%Y2/8BS(Z) /SVT(X2*X2vY2RY2+25%72))~ATAN(X1TY2/ RS 4 )
¥ L)/ SQRTUXL*X1L4Y2EY2+4Z*Z ) )=ATAM(X2%YL/ABSIZY/SQRT(X25X2+¢Y 12 Y1+2%7) 41
BO)HATANLIXLI*YLI/ARS{Z)/SARTIXLIHX14Y1I*Y142%7))) 42
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APPENDIX — Continued

DSOXUXL X2y YLoY¥2yZ ) =Y2¥ALOG(ARS({XL+SORTIXLEXXL4Y2%Y242%2))/{X2+
SQRT(X2%X2+Y2%¥Y242%Z2)) ) )+ YL*ALOGLABS ((X2+SQRTAX2XX2+Y1L*YLI+Z%2))/
(XL+SQRTOXLEXL+Y LY 1 +#Z%Z)) I I+ X1 ¥ALOGUABS ((YL+#SQRT{X2%xX2+YLx=Y1+2%7
Y)Y/ (Y2+SQP T X2%X2+Y2%Y2+47XZ ) )= (Y2+SQRT{X1xXL+Y2%Y2+2%2))/{Y]1+SQRT
(XLaXL+Y1=Y1+Z2%Z ) )Y I+ XD2ALCGC{ABS (YL +SQrTIXLEXL+YLxYL+Z%7))/(Y2+
SQRT{XL*XL ¢Y2uY2+72%2) ) E{Y2+SQF TUXZ2EX2+Y2%xY2+Z¥2 ) )/ {YI+SQET(X2%X2+
Y14Y1+2%Z))))

DPOY (X1 9 X290 YL yY24Z)=SQuT(X2%:X24Y25Y24 L%} =Suin T (X1EX14+Y2xY2+7%7)
“SIRTIX2%X2+Y1aY1+Z*%Z )+ SQARTIXL*X1+Y LY L +Z%Z )+ X1%ALDG{ABS{{X1+SQRT
(XLEXL+Y2%Y24Z23% 2 )} /U X2+SOFETIX2EX2Y2%Y2 4242 ) )H(X2+SQRT (X2%X2+¢Y1%
YL4Z2%Z ) )/ (XL+SQRTIXLEXL+YLEYL14Z%7)) ) )+ ADRALUG(ABS{(X24SQORT (X2xX2+
Y2rY2+4252Z )Y/ {XL+SQRTIXLEXL+Y2uY24 252 ) )3 { XL+SQrT{XL=XL+YL*Y1+Z%Z]})
JUX2+SQRT(X2xX2+Y1%Y1+Z%2))))

D2POXDY (I X1y X29YL Y24 Z)=6LOG(ABS{IXL+SQRT{XLI*XL+Y2XY2+.%2) )/ (X2¢

¥ SQET{X2AXZHY2RY2 425 Y )F{X2+SQF T X2 X2+Y1L*YL+72%L )} )/ {X1+SQRT(X1%X1+

% YLIaY14Z%2))) ) +XD/7SQRTAXLHEXL+YLNY L4232 L)=XD/SGRTIXLEXL+Y2%2Y242%7)

DPUZ(XL g X2 YL 9y Y2, Z)=2%ALUS{ABSC(Y2+SORT(X2%X2+Y2%Y2+I%Z))/(YL+5QRT
(X2%X24Y L2 Y1+Z2%Z ) % (YL +SQrT(XL2X1+YLRYLI+Z%Z))I/CY2+SOQRT(XLHX1+Y 2%
Y2422 ))) I +X15#SON(LZ)=(ATAN( X2:2Y2/ABS{Z)/SQUFT(X2xX2+Y2%Y2+Z#]2) )~
ATANIXL*Y2/2BS{Z)/SARTIXLAEXL+Y2xY2+42%Z))+ATAN(XLIXYL/ABS(Z)/7SQxTH
X12X14Y 1YL #2%2) )~ATAN( X2%5YL/A3S{Z)/SARTIXZ2%X2+Y1I Y1 +2Z%Z)}) )+ XD*
SGM{ZI* (AT ANIXLRY2/ABSUZ)/SQRTIXLAEXL+FY2RY2+7%7) )-ATAN(X2%Y2/ABS {2
Y/SQRT{X2%X2+4Y24Y2+4Z %) ) +ATAN(X2XY 1/ ABS{Z)/3QART(X2*X24Y1*Y1+Z%Z))
—AT 2N (XLXYL/ABS(Z)/SQRATIXLAXL+Y L*Y L+2%/2))) .

D2PNXDZLIXAL s X29Y1 9 Y2, Z)=SON{Z)YR(ATAN(X2XY2/ABS{ L) /SQURT{X2%:X2+Y22Y2+

* IXZ))~ATAN(XLRY2/ASS{Z)/SQAFTIXL*X1+Y2EY2+Z%Z ) I+ ATAN(XL*YL/ABS(2)Y/

 SQRTIXIHXI+YL1IEYL 4222 ) )—ATANIX2*Y1/ABS(2) /SQRTIX2EX2+Y1*YLI+#2Z%Z)))

* XL/ UIXLEXL 42532 )= (Y2/SQRTAXLXAL+Y2RY24+2%2 )~-Y L/ SQRT{XL*®XL+Y1*Y1l+

* 1%2))

RO(X)="00+DRO%X{(X-XIL(11})
ELIX)=A2L7G11.0/5TNIRQIX)I/2.%P[))/4a/P1
BL(X)=~DRO*CIAS(RIIX)I*PI/2. ) /SIN(RO(X)*PI/2.)/8.
Pl=3.,1415325

it 3t

* 3 ¥

*

A 3 % % #

L 3

* 3 3 %

70
71
72
73
14
75

THIS PAST TJF THE PROSRAM DEFINES THE TUMNNEL GELMETKY, HERE IT IS SET UP FOK

A SQUARZ TUNNEL OF UNIT WIOTH AND HEIGHT. EACH wall IS DIVIDED INTJ FOUR
STRIBRS AND EACH STRIP IS DIVIDED INTO SIXTEEM ELEMENTS WHICH EXTEND FROM

X==2s6 T3 X=1laeFa

L1 I=1,25€,16
XIM(1)==-2.6
XI1(I+1)=~-2.2
Xil(I+2)=~1.3
XT1{I+3)=-1.4
XTI I+4)=-1.0
XI1{I+9)=~.7
X11{[+6)=-,45
XI1{1+7)=-.25
XEI(I+3)=~,1
XI1{I+9)=0.0
XTI(I+L0)=.1
XI1(I1+11)=.25
XIL(I+12)=.45
XT1I{I+13)=.7
XIl{I+14})=1.0
XIL(I+15)=1.4
1 CONVINUE

16

76
77
78
79
80
81l
82
83
84
85
86
87
88
8%
90
5l
92
93




APPENDIX - Continued

{I1+1)

CO 3 [=164,256,16
XI2(1)=1.8

CONT INUE

CO 4 I=1,64

ETAL(1)=.5

ETA2(I)=.5
ETAL(I+64)=—.5
ETA2(14+64)=-.5
ZETAL(I+128)=.5
ZETA2(1+128)=,
ZETAL(1+192)=-.5
ZETA2(1+192)=-.5
CONTINUE

£0 5 1=1,16

ZETAL(1)=.25
ZETAL(T+16)=0.0
ZETAL{TI+32)=-.25
ZETAL(1+48)==,5

CCMNTINUE

CO 6 I=1,64
ZETAL( 1464 )=LETAL(])}
ETAL{T+128)=2ETAL(])
ETAL(I+192)=2ETAL(])
CONTINMNYE

O 7 1=1,128
ZETA2(1)=ZETAL(I)+.25
FTA2(1+128)=ETAL(I+123)+.25
CONT INYE

DO 8 1=1,256
XICIY=(XTL(D)+XI2(1)) /2,
ETACI)I=(ETALLT)+ETA2(I)) /2.
ZETA(I)=(2ETal(1)+ZETAZ2(1))/2.
CONT INUE

XTL=10.0

PRINT 991

94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

ilo0

141

112

113

114

115

116

117

118

119

120

121

122

123

124

125

lzo

127

124

129

130

131

THIS PART 0OF THE PRIGKAM DEFINES THE WALL CwakACTERISTICS. IN THIS CASE THE

SIDE WALLS> AFE SOLID AND

THE TOP AND BOTTHM WALLS EACH FAVE FOUR  JONSTANT

WIDTH SLOTS. THE CPEN RATIC MNF THE SLOTTED WALLS IS 6 PEKCEMT.

11

12

RO0=.06

DP0=0.0

DO 11 I=1,12¢8
Cl(1)=0.0
C2(1)=0.0
C3(I)=1.0
Ca(I)=0.0
CAONTINUE

C3 12 [=129,256
Cl(1)=0.0
C2(1)=1.0
C3(1)=0.0
Caf{l)=EL(XT(1))
CCNTINUE

132
133
134
135
136
137
138
139
140
141
142
143
144
145
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APPENDIX - Continued

THIS PART OF T#E PrOGKAM COMPUTES THE INFLUENCE CUEF?ICIENTS, A(L,4)

DO 190 1=1,256 140
hwl=1 147
TF(T] e GT oG4 )NW =2 148
TF{I«GT o128 )MWI=13 149
IF(l.GTe192)MKW] =4 150
po 180 J=1,256 151
AWwd=1 152
IF(JeGT o664 INWI=2 153
IF(JaGT o124 )MHWI=3 154
IF(3 0Tl )NWI=4 155
XL=XI(")=-X11(J) 156
x2=XI{1)=-XI2(J) 157
YL=ETAa{1)-ETAL(J) 158
Y2=€TA(L)—-ETA2( 4]} 159
2=ZETA(L)=LLTA(]) 160
X0=XI2(J4)-x111}) 161
XL=XI(I)=-XTIL 162
IF{IWI LT L3)YLI=7ETA{I)-LETALLY) 163
IFINWS LT w3)Y2=2ETA(T)-Z2ETA2(J) 164
[F(MWS LT a3)Z=RETA(L)-ETL () 165
IF(MNANTSNEMAL)SD) TC 119 166
PHI=S{X1,X2,Y1,Y2,72) 167
L=0DSDX{X14X2+Y1lyY2,2) 168
v=0.0 169
CVEX=0.0 170
I=1-MOD(I,16)+1 171
1J=J-M2D(J,16)+] 172
IF(MPO(T W 16).EQeD)IT=I-16+]1 173
IF(MND(Jy1€)eEQe0)13=J-16+1 174
TR{T e EQe JIV==-240%PI%XD/2.0 175
IFCIToEQalJeAND el «GTaJ)}V==2.0%P1=XD 176
IFIT o FQeJIDVDX==2,%xP] 177
IF(NWJOEQ.?)V="V 173
IF(NWIED a3 )=V 179
IF(MW).EQeb)n=—V 180
TF(NWILEQ.2)DVDX=-LVDX 181
IF(NWIEQea3)NDWDX=DVDX 182
IFI(NWJEQ.4)DWDX=-DVDX 183
GCe T 130 184
110 CONTINUE 185
PHI=P{X1+X2y,Y1l0Y2,2) 186
U=DPDX(X1yX2:YYsY2,2) 187
V=DPDY(X14X2,YLsY2,42) 188
W=lPDZIXT 4 X29Y1sY2,42) 189
CVDX=02PUXDY(X14X2sYL,Y2,2) 190
DwDX=D2POXRZIXLyX29Y1LyY2s 1) 191
IF(MWI.CGT,.,2)3C T3 120 192
T=vy 193
V=i 194
w=T 195
BT=0DVDX 196
CVOX=DnDX 197
DwCX=DT 198
129 CONTINUE 199
130 CONTINUE 200
TFMWNIED el )ALy J)=C LTI ) *PHI+C2(T)xU+L3(T)%AV+C4(1)*DVDX 201

18



APPENDIX - Continued

IFINWILEQa2)A( T, ))=CLII)%PHI+C2(1)*U-C3(T1)*V-C4(1)}%DVDX 202
IF(NWTEN3)ALT 3 )=CLI)RPHIHC2( I} *U+CI(L)*W+C4{ [)*OWDX 203
IFINWICEQe4)ALI,))=CLIT)*PHI+C2(T)*Y—C3(I)*W-Ca4(1)*DWDX 204
180 CONTINUE 205
150 CONTINUE 206

THE FCLLOWING STATEMENT INVERTS THE MATXIX A AND PUTS THE INVERSE IN THE
PLACE OF THE OF IGINAL MATRIX i

CALL MATRIX(10925€9256904+44256,0E7} 207

THIS PART OF THE PROGEAM COMPUTES THE DISTURRBANCE SUE TO THE MODEL. HERE IT
TS SET UP FOR 4 NUMBER OF VURTEX DOUBLETS LICATED IN THE HOKIZUNTAL CENTER-
PLANE CF THE TUMNEL. THE PROGRAM FIKST LEADS THE NUMBER OF LIFT ELEMENTS Tu
BE USED AND THEN READS THE X AND Y VAILUES AND THF WEIGRTING FACTOR FOR EACH
ELEMENT.

FEAD 9625 Ly (XALI ), YA(TI)yAT{1 )y =1,4L) 208
00 200 1I=1,2%6 209
B{1)=0.0 210

200 CONTINUE 211
DO 299 K=1,! 212
XEP=XA{K) 213
YPP=YA(K) 214
CO 210 I=1,64 215
X=XI(1)=-XPp 216
Y=ETA(!)~-YPP 217
Z=1ETA(]) ' 218
PHI=Z/AYEY 4721501 O+X/ SIS TLXEXEY =Y 4I%H2)) /4 a0/ P 219
U=2/4e/PT/{XXEYRYHIRL)RE] 4 220
Ve (2 %YKL+ (20 Am kYR 03 e XY 38 2 05 o Xwr Yk Zun3) /(X X+YRY 4252 ) %), 221

¥ S5)/bo/PTI{YRYH] 0] )uiED 222
DVDX=~ o T5/PIsYHZ /7 ( XkX4YuY+ %] )i 5 223
ECI)=BUI)H(CLCI)*PHI4C2{T ) UL 3 {1 )% VT4 )=DVDX) %aT (K ) 224

210 CONTIMUE 225
DR 220 1=65,12%3 226
X=XT(1)-XPP 227
Y=ETA(])-YPP 228
I=2ETA{1) 229
PHIZZALYRY 425215 { 1 o0+ X/SQRTIXEX+YEY+%5Z)) /4. 0/P] 230
UsZ/4./PT/( Xt X+YRY+ZXZ)HEL 5 231
Va— (2% YR+ {2 o RXEHBEYRT 43, w X0 YH R RT 42 kXneYhe 2tk 3) f{ XA XHYRY 4+ %2 ) %%k, 232

X 5}/ 4. /PL/(YEY#2%T ) %% 233
CVDX== o 75/P 1 =YXZ2 /[ XEX+YRY #2522 ) %225 234
RBAI)=BLI)4(CLOT)*PHI+C2LI)%U-C3( 1) %V-C4(T1)I*DVDX)XWT (K) 235

220 CONTINUE 236
CO 230 1=129,192 237
X=XI(1)=xpo 238
Y=ETA{I)-YFP 239
Z=2ETA(1) 240
PHI=Z/(Y%Y+Z572)% (1 «O+X/SQRTUIXEX+YHY42%Z ) ) /4 .0/ Pl 241
UsZ/4e/PL/(XRXAYRY 42 4RZ)%E%]1 .5 242
W= (YRY = Z% 2+ [ XRk AR YR Y e XY R4 XN 3 H 2T m XYY R NZ =2 (X ELeRG ) J{ XEXEYEY 243

O 4LEL)ERL G5V /40P T /(Y AY IR, ) k) 244
CWDX = (XX Y RY =2 g% 2% )/ {XEXEYEY+IRZ)%%2.5/4./P 1 245
19
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APPENDIX -~ Continued

C B(I)=B(T)#(CL{T)XPHI+C2(I)*U+C3( 1) *W+C4 11 )EDWDX) *¥WT(K) 246
230 CONTTHUE 247
D0 240 1=193,256 : 248
X=XI{1)=XPP ‘ : 249
Y=ETA(1)-YPP - 250
Z=ZETA(T) ) 251
FHI=Z/ (YXY4Z5Z)*( L o0+ X/SART(XEX+YEY+2%Z)) /4 40/ P] 252
UsZ/4o/PL/(XEXFYEY4ZRZ V%L L5 253

WS (Y RY— 257+ ( XRARBEYHY ¢ XA Y ke XHRIRIA L= XEYRY R L L =2 SEXRLERG) [ (XEXEYRY 254

% $ZEL)VEX1a5)/ 40 /PL/(YRY4TR] ) 452 255
DWDX={ XEX#YHY =2 SR Z¥L )/ (XEXHYHRY4ZELVH%2.5/ 40 /F ] 256

B EBII(CLAT)=PHI+C2( 1) ¥U=C3 (T EW-C4 (1) %DWDX) *WT (K) 257
240 CONTINUE 258
259 CONTINUE 259

THIS PART D'F THYE PRIGRKAM COMPUTES THE STOURCE STRENGTH SLOPES WHICH SATISFY
THE BOUNDAXY CUNDITIGNS.

0O 300 I=1,256 260

- STuoMa(l)=0.0 261
300 CONTIMUE 262
: DO 302 I=1,256 263
CO 301 J=1,25¢ 264
SIGMA(I)Y=SIGMA(T)-A{I,J)*B(J) . 265

301 CONTIMYE 266
302 CONTINUE 267

THIS PART (OF THE PPIOSRAM CCMPUTES THE LIFT INTERFERENCE FACTOR. IT READS
THE Xo Yo AND Z VALUES AT WHICH THE INTERFERENCE I5 Ty BE COMPUTED.

4CO COATINUE 268,
READ 993, XC,YCy ZC 269.
TE{EQF,5)590, 401 270

401 CONTINUE : 271
CELTA1=0.0 272
DELTA2=0.0 273
CELTA3=0.0 274
DELTA4=0.C 275
DO 410 J=1,064 276
X1=XC=XI1(J) 277
X2=XC=X12( J} 278
Y=YC~ETA( )} 279
Z1=2C-ZETAL(J) 280
22=1C~LETA2( ) 281
XG=XI2(J3)=-XI11J) 282
XL=XC—-XIL 283
WEBPDY (X1 9X2¢Z14224Y) 284
DELTAL=CELTAL+W4SIGMALJ) /2. 285

410 CONTINUE 286
DO 420 J=65,128 287
X1=XC—-XTL1(J) 288
X2=XC-X12(J) 289
Y=YC-ETA(J) ' 290
I1=2C~ZETA1(J) 291
22=71C-ZETA2(J} 292

20
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420

430

440

“30
991
9¢2
9g3

L]

APPENDIX — Concluded

X0=XI12(1)=-XT1141})

XL?XC—XIL
W=DPDY(X17X2921112’Y)
CELTA2=DELTAZ #W*=SIGMA(I)/ 2.
CONTINUE

BN 430 J3=129,192
X1=XC—XII(J)

X2=XC—-X12(4J)

Y1i=YC-ETAL( J)

Y2=YC-ETA2(J)

Z=2C-2ZETA{))
XD=XI2(J)-XI1(J)

XL=XC-XTL
W=DPDZ(X19X2:Y1yY242)
DELTA3=DELTA3+WXSIGMA(I) /2.
CONTINMUE

DO 440 1=193,256
XE=XC-XI1( )

X2=XC—=X12(3)

Y1=YC-ETAL(J)

Y2=Y(C-ETA2( 1)

I=1C—-2ETA())
XPD=X12(J3)-XI1(J)

XL=XC—-XIL
W=LPDZ{X1yX29Y1eY¥2,21)
DELTA4=DELTAL+W=SIGMA(JY)/ 2.
CONTINUE
CELTA=0ELT2L1+DELTAZ2+VELTAI+DELT a4
PRINT IG3,.XLsYL,Z2CDELTLA

GLU T 409

STOP

FCRMAT (39H1 X Y
FORMAT(I12,/3F10.6)

FCRAAT (4F10D.6)

END

DELTA)

293

294

265
296
297
298,
299
300
301
302
303
304

305
306

307
308
309
310
311
312
313
314
315
310
317
318
319
320
321
322
323
324
325
326
327
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