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ABSTRACT

A time~domain technique is developed to design finite-duration
impulse-response digital filters using linear programming. Two
reiated applications of this technique in data transmission systems
are considered. The first is the design of pulse-shaping digital
filters to generate or detect signaling waveforms transmitted over
bandlimited channels that are assumed to have ideal low-pass or band-
-paés chafacteristics. The second is the design of digital filters to
be used as preset equalizers in cascade with channels that have known
impulse-response characteristics.

A straightforward design procedure which can be used for both
applications is established. Specifications for the design are
expressed in terms of the desired impulse response output from either
a puise-shaping filter or an equalized transmission channel., Equa-
tions which are linear functions of the unknown filter multiplier coef-
ficients are then derived corresponding to the appropriate impulse
response. Finally, these equations are constrained to have the speci-
fied values at appropriate critical time points so that a linear pro-
gramming routine can bé applied to solve for the multiplier coeffi-
cients. '

Example designs are presented which illustrate that excellent
waveforms can be generated with frequency-sampling filters and the

ease with which digital transversal filters can be designed for preset

ii



equalization. Other results afe included to depict the relation-
ships -and tradeoffs betwéen such digital filter parameters as sampling
interval and number of multipliers requiredAtq meet such eqﬁalization
specifications as amount of residual intersymbol interference which

can be tolerated and input energy which must be transmitted.
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CHAPTER 1

INTRODUCTION

Recent developments in digiﬁal—circuit te;hnology.have indiéaﬁéd'
that the processing of signals with digital hardware, i.e,, digital
filtering, has some very significant adVaﬁtagés over the conventionél
analog signal processor; particularly, greater flexibility and éccu—»
raﬁy"Smaller size, ;nd potenﬁially lowervimplementation cost tij.
Thesé advantages have'resultéd in a great upsurge in'thé research ;;
and devélopmentlof digi;ai systems -to pérfofm functions previohsly
implemented only with'analog'hardwafe, and even more impoftanf;
functionsvthat were consideréd impossible due to tﬁe limitations off
anélog compbhents. EmphaSis'hés been plaéed on fhé design of soft-.
‘warelés well as digital hardware. ”Algbrithms are being deveiopéd"
'and‘programmed on digital computers to perform operationsfthatfpre-
viously required complete systems of conventional analog design.

.This study will concentrate on one of these areas of reséarcﬁ
that is becoming increasingly iﬁportant,'namély the»application of
digital filters to solve pfoblems of baseband data coﬁmunications.
Transmission of pulse—amplitudé4modula£ed (PAM) signals over any
realistic channei is impeded both by additive néise and time dié—
persion resuiting from the channel'é'noﬁlinear phase'charactéristic.
Consequently, emphasis will bé given to'the desigp’and implémentation

of pulse-shaping digital filters for the purpose of reducing these



two effects. Although filters have been designed to compensate for
these two effects,'most.designs have required a complicated anélog
implementation. Hence, the intent of this study is to develop a
éimple—to—use algorithm‘for fhe time-domain design.of digital fiitefs
so that the resulfing filter can be implemented easily and will have
the desired compensating effect on a data transmission channel.

A background for the study is pro&ided in Section.l.l by the
discussion of problems inherent in baseband data transmission and
the review in Section 1.2 of previous efforts to .solve these prob-

lems. The content of this study is outlined in Section 1.3.
1.1 BASEBAND TRANSMISSION PROBLEMS

The transmitted signal for PAM waveforms is given by the ekpreé¥

sion

s(t) = Z .'a'jkig(t -kt ), (1.1)

where the coefficient a,, assumes one of M possible ‘values, denoted

ik
by the subscript j = 1,2,...,M, for the kth interyal. The time inter-
val between transmitted pulses is tys aﬁd the set of coefficients
'{ajk}, which are called "input symbols'", are generated by a trans-’
mitter data sdurce at the rate of i/tb symbols per seéoﬁd, For
example, transmission of binary data would require a coefficient set
1k - A, a,, = -A.

This investigation will emphasize the use of digital filters

of at least two values, e.g., a

for the generation and detection of the individual pulses g(t) that
make up the transmitted signal. For example, if there is some sort

of encoder-decoder device in the communication system, so as to



increase ﬁransmission efficiency’:th? symbolsv{ajk} will ‘be defined

to be the encoder output, 'Tﬁe-pulses will be aséumed to have a base-. =
band frequency séectrum, i.e., frequency components are preséﬁt near;
bﬁt not.nece;sariiy inclqding, zero frequency. Any freduency tfans—
iétion opera;ion such -as amplitude or frequenqy modulatioq_of a car-

‘rier will be assumed to be part of the transmission channel.

1.1.1 Intersymbol Interference

A fundamental  impairment to the transmission of PAM waveforms
is_the frequency distortion and bandwidth limitations of realistie¢ o
 channe1s, e.g., consider ﬁhe transmitted and'received pulses-skeﬁéhed.
in Fig. 1-1(a). For this .system, g(t) is a réctangular pulse of
unit magnitude and widtﬁ‘t :

b

thus consist of a sum of thése pulses, each muitiplied'by ajk'

ever, as indicated, a channel with impulse-responsevc(t) produces a

seconds. The‘transmitted.signal would .

How=

time.spread for each pulse .due to phase shifting of the spectral
combonents.’ Each received pulse y(t) results from the convolution .
of g(t) and c(t), denoted hereafter as g(t) * c(t). Therefore, the

received waveform r(t) consists of overlapping pulses, i.e.,

r(t) = 2: ajkvy(t - ktb)v' ‘ "(lﬁ2)
k ' '
This time ove;lap resﬁlts'in a distortion called intersymbol inter-
ference (iSI) which cah cause erro%s tp befmade in the detection éf.A
pulses, even in the absence of noise ih‘the channel.‘ |
If the input symbols are to be determined by sémpling the

received signal at intervals of t

b seconds and comparing the resultingf

samples to threshold values, as-is often done in simple PAM receivéfs;
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(c)

BASEBAND
CHANNEL
c(t)

—>

ajy(t)

SAMPLER &
THRESHOLD
DETECTOR

Block Diagram of Noise-Free Baseband System

Fig. 1-1. Baseband Data Transmission.



the nonzero mégnitudes at * tb and 2tb in Fig. 1-1(a) represent ISI
distortion introduced in the sample values of adjacent puises. In

this manner, the total peak ISI distortion caused by the kth pulse,

which appears distributed in all other sample values, is defined as

o

o, - Z ag |y, - kel @
=~ - - ’
24k

The same pulse waveshape is used to transmit all symbols over the

same channel, so the distortion value
D= — o L (Lb)

is_indepeﬁdent Qf the symbol being transmitted. Hence, reducfion of
intersymbol interference is eéuivalent_to réducing the value of D. .
Complete eliminatian ofAISI_distprtion,'i.e;,‘D =0, would
require a waveform y(t) at the channel outéut with zero magnitﬁde at -
the sampling times of all other pulses, i.e., at integef ﬁuitiples of

t, seconds measured with reference to the pulse peak. Such.a situa-

b
tion is illustrated by the overlapping pulses of Fig. 1-1(b). Thesg

~ pulses, whichvcorrespond to the sequence of transmitted symﬁdls -A,

A, and A, must Ee summed to give the.acﬁual signal r(t) at the channel
output. However, it_is obvious from Fig. 1-1(b) that the magnitude of
r(t) would be idgntically -A, A, andvA at the respective receiver
sampling instants ~t., 0, and t,- Thus, the receiver decisions of the’
t;ansmitted symbols, where the detector dﬁtput isldenoted by-&k, are

error free in the absence of channel noise. The received pulse shape"

of Fig. 1-1(b) is called a raised-cosine pulse and is of a class thét



NyquistA[ZJ'showed would'ﬂave zZero intersyﬁboi interfefence apd ?equife__
a bandwidth of approximately l/(th)_Hz; Pulses of this class”are_used'
as optimum design goals and can only be -approximated in ﬁractige. Fur-
thermore, it is difficult to approach very closely this type of pulséA  
with analog filters; however, excellen; teéuits can be oBtaiﬁed with
digital filters. | |

A technique will be developed tofdesign‘pu1se—shaping.digital¥v'
filters that can be used to reduce the diStorfidn D. 1As_$howﬁ'in‘Fig.-.
1-1(c), the pulse g(t) is generated with a digital.transmitter filter
and applied to a known chaﬁnelfsb that thé.channel output y(t) will
closely approximate thé raised-cosine pﬁlée. Note that ;hé-k sﬁbscript.

ik énd ak as used in Fig. 1-1(b) is dropped When the tiahsmissioh

of a single pulse is being considered. . 'The analog equivalent of the .

for a,

‘transmitter filter has been called an.ﬁequalizer" rathér'than a;ﬁulse— :
shaping filter, since it is usually ;héught of as a device which‘alﬁefs
the composite frequency characteristicbinvofder to reduéellsildiéfof;
fion. For some applicatioﬁs the channel characteristic é(t)Aﬁ111 be
unknown, in which éase it will be assﬁmed that the channel'ié'distor— 
fion free. VConéeqﬁently; the.pulse épplied to the channel, rather than
the channel output, is specified tpoe'of the Nyquist class. ‘A teéh_
nique for the'design of pulse-shaping;digital'filters fof.this éppliéa4
tion will be developed in Chapter 3'and the design technidue using

known channel specifications in Chapter 4.

1.1.2 Channel Noise
The received signal as defined in (1.2) was assumed to be noise
free. For many channels which employ coaxial cable or shielded,

twisted pairs of wires, the signal-to-noise ratio is high and the



noise-free assumption is valid. Undér-thesé circumstances reduction .
of intersymbol intérférence is;of prime importance. Howeyef,_for~low
signal—fé—noise ratios the emphasis must be'placéd on optimum detéction
6f the transmitted pﬁise in thé presence of noise. The channel noise

is usually modeled by adding a term n(t) to the received signal, i.e..,

_,r(t) =.‘§E: ajk‘y(t - ktb) +-n(t) , (155)
- . ‘
whére n(t) is assumed to be a white Gaussian noise signal.
It has been shown [3] that a.matched—filter‘detector will give

" the optimum (mlnimum probabillty of detector error) receptlon of sig—

nals in an addltlve white Gaussman noise background "The block dlagram .

~ of such a detector is given in Fig. 1-2 for the detection of two
equally likely eqﬁal—energy.signals, yl(t) and y2(t). This detector
includes two filters, eacﬁ of which‘is'fmatched"fto one of the possible

- signals, i.e., the filter unit—impulsé responses are
hy () =y, (¢, - ;) i=1,2. o (1.6)

A sampler and decision circuit form the remaining portions of the detec- - .

'tor. Durlng each time interval of t séconds r(t)rwiil consist of the

b

additive noise plus e1ther yl(t) or y2(t) At the end of each'interval;
the fllteerutputs are sampled to- obtain the deciéiqn sgatistiés S1 and .

SZ' The best estimate of which signal is present, i.e.,]which.symbol ‘
has been transmitted, is then obtained by comparing the two'statiéticé
as indicated in the block diagram.

The matched-filter detector can be simplified further for signal

sets where all possiﬁle signals are multiples of the same unique



function. For example, if it is assumed that the two signals imbedded.
in the noise are yl(t) = A y(t) and'yz(t) = -A y(t), where the function
y(t) is assumed to be identiéally zero outside the interval 0 < t j_tb,_

then S, = -S, at time t = t Hence, the decision rule can.be modi—

1 2 b*

- fied so that all that is required is to determine whether S, is posi-.

1
tive or negative, which eliminates the need'for one of the matched -

" filters. The PAM baseband received signal (1.5) aiso consisfs éf

. muifiples of a single function y(t) plus the noise interferencef
Hence, if y(t) safisfieé the time-limited constrainf; the optimum
receiver for detection of the PAM pulses.is a filtgf, sampler, and’
thfeshold detector as iliustréted in Fig. 1-3. Of course, itlisﬁ
_impéséible-for'the function-y(t)'to be trulf time limited-ét-tﬁe out-
" put of a bandlimited channel. Nevértheless, optimum detectioﬁ 6f PAM,
.Baseband‘signals cah'be aﬁprokimated with éhis type of matchedAfilter
technique. The same technique uéed to design digital fiiters for -
transmiséion of pulseéAéver ﬁnspecified channels will alsb be used to
design digital filters to implement‘the‘matcﬁed—filter portion of

this receiver.
1.2 HISTORICAL REVIEW

- Efforts to improve the quality of PAM data transmission over
‘the baseband channel range from Nyquist's work [4] on'teleéraph»tfané—'
: miésion'théory in the'1920's to the presént'day.efforts to design all
digital PAM transmitters and receivers. Summaries of theée studies:
. have been published [5,6] and some,of'tﬁé more pertinent results,

namely theoretical developments in PAM data transmissibn; digitally
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10

synthesized PAM systems, coding-decoding techniques, and adaptive

equalization will be reviewed in this section.

1.2.1 Theoretical Developments

In 1928.Nyquist published a-classic-péper [2] which has formed
the basis for the study of PAM data transmission. He developed crité;
ria for the required overail frequéncy éharacteristic df a finite-
bandwidth transmission channelvsb that:disfortionlessAtransmission'
could be achieved. He also illustrated that ;he minimum bandwidth
required for distortionless baseband data transmission is approxi-
mately equél to the reciprocal of twice the symbol iﬁterval, i.é,;}
l/2tb; ‘The time intervgl,-tb;.is called the.ﬁNyQuist intervaih énd
the corresponding bandwidth, 1/2tb, the 'Nyquist bandwidth".' Ho&e&er,
Nyquist's technique required the solution of cdmpliéated Fourier inte-
- grals; conséquently, an approximation'technique called the "méfhod of .
. paired echoes" was developed by Wheeler [7]. He showed fhat small -
sinusoidal perturbations in either the channel amplitude or phasé
characteristic would resuit in echoes in the channel impulée—résﬁonse;
consequently, the location and amplitude of the echoes could be pre-
dicted by inspection of either frequency characte;istic. In 1954 L
Sﬁnde published a comprehensive summary [8,9] éf the theoretical work .
of these early researchers..

More recently, émphasis has been placed on techniques to reduce
intérsymbol interference by placihg an equalizing deviéé‘at the tfaﬁs-.
mitter and/or receivef, or even in the center of thevfransmission chan-
nel. Bogert [10] developed what he called a "time reversal techniqﬁe"
which in theory would eliminate the phase diétortion effecfs of any -

‘bisectional channel. He illustrated that the channel output could bell
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made independent of channel phase cHaracteristics by placing an
equalizer at the channel midpoint to reverse the time base of signal
segments, However, the impractical technique he used for time rever-
sal was to record signal segments at the channel midpoint on magnetic
tape, and then run the recorded signal backwards past-the.reproduqe |
heads during playback into the second half of the channel.

Gerst & Diamond [11] developed a technique to specify the
required impulse response of a transmitter filter so that the out=
put of a known channel would be time-limited to the Nyquist inter§31
of tb seconds. Consequently, iSI distortion would be completely
eliminated. Unfortunately, their technique is only applicable'tq
channels that are not bandlimited, and requires maximum energy,trénéf
fer at frequencies where the channel attenuation is greatest.

Aein & Hancock [12] consideréd the pfoblems of both background_
channel noise and ISI distortion. They assumed that the rgceived
pulse would only Qverlap in the following Nyquist interval, and theﬁ
derived the impulse response for the matched—filtef receiver which
would be optimum under this assumption. Their calculated probabiiity-
of-error curves illustrated the performance improvement of their
receiver over the standard matched-filter detector of Fig. 1-3.
George [13] removed the restriction on the location of ISI distof%

. tion and performed a similar analysis to define an optimum matched;
filter receiver. He assumed the noise to be a sum of ISI‘distortion
and channel noise.

Gibby & Smith [14] extended the distortionless transmissibn
criteria of Nyquist by removing the bandwidth restrictionms. Theif

" results are generalized to include channels with either no low
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frequency response or bandwidths that exceed the Nyquist bandwidth.
Constraints were derived on the real and imaginary parts of the chan-
nel transfer characteristic to ensure distortionless traﬁsmission.
The results of a number of efforts to jointly optimize both the
transmitter and receiver filters have been published. Tufts [15]
studied the problem of joint transmitter and receiver filter optimiza-
tion to minimize the mean-square-difference between ﬁhe channel input
symbols and the receiver output estimates for a finite sequence of
data. The difference was assumed to result from the combined effects
of intersymbol interference and channel noise. He showed that the
optimum receiver was the cascade of a matched‘fiiter and a tapped
delay line with time-varying coefficients. The corresponding opti-
mum transmitted pulse waveform was required to be time limited to
one Nyquist interval and to be a time~-varying function. Aaron &
Tufts [16] proved that this structure for minimizing the mean;square—'
difference also minimizes the average probability of defectdr error
over a finite sequence of symbols. Coefficients of the tapped.delay
line calculated by both minimization techniques agree closely. How-
ever, calculation of these tap coefficients requiresbthe difficﬁit
solution of simultaneous nonlinear equations, and thus severely
limits the technique for practical system design. Smith [17] removed
the restriction that the transmitted pulse be time limited and alsb
obtained a transmitter-receiver filter combination which was time
invariant. Furthermore, his approach did not require the solution
of nonlinear equations, but he could only minimize the mean-square-
difference to an approximation. Berger & Tufts [18] exten&ed the

optimization study to include the effects of timing jitter and also
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compared performance characteristics of the jointly optimized PAM
systems to the theoretically attainable channel capacity as derived

by Shannon.

1.2.2 Digital Synthesis Developments

The results of theoreticél attempts to optimize FAM system
performance as described»in the previous subsection usually require
the accurate generation of éomplicated-signaling waveforms and the
equally accurate synthesis of matched.filters with specified impulse
responses. Technical and economical problems aséogiated with con-
ventional analog techniques for.waveform generation and matched filter
realization have resulted in the receﬁt attempts to design digitai fAM,
transmitters and receiversf | - |

Voelcker [19] was one of the first to illustrate the use of
digital hardware to generate PAM signals witﬁ his‘binary transversal
filter (BTF). His technique, which was actually a hybrid realizatian;‘
was to replace the tapped delay 1line of the conventional tranéversal
filter with a shift register and to use resistive summing networks to
form the tap coefficients. Hevdidn't consider the design problem of
specifying filter coefficients but did analyze in detail the sources
of distortion inherent in the BTF and how to reduce their effecté;
Since the summing portion of the filter is analog, the problems of
resistor precision, loading effects, and voltage variations in the
shift-register stagesAare‘still disadvantages to this type of signal
generation.

Van Gerwen & Van Der Wurf [20] incorporated the BTF and a digital

modulator into an experimental vestigial-sideband data transmitter.
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By using digital circuitry, they were able to implement the trans-—
mitter entirely with resistors and transistors. Consequently,>thé
complete transmitter, consisting of 203 transistors and 172 rgsistérs,
was integrated into one 2.1 x 2.7 mm2 chip. Satiéfactory transmission
was obtained up to a signaling rate of 1 Mbps. They also discussed_
the digital implementation of other modulation techniques such as_b
frequency-shift keying and 6rthogonal modulation aé well as the use
of digital filters in receivers.

" Nowak & Schmid [21] studied the problem of designing nonrecprsive
digital filters* to have the raised-cosine frequency_éharacteriétic-'
specified by Nyquist. They used a Fourier series e%panSioh of the
raised-cosine magnitude characteristic to determine the nonrecufSive‘-
filter coefficients. A major portion of their study waé devoted #o
measuring ﬁhe filter's minimum stop-band attenuation and impuiseNJ
response shape as the filter clock freqﬁency, number of térms in the
. Fourier series, and type of raised—cosine characteristic wére>varied. .

Croisier & Pierret [22] have shown theoreticaily that a digital
modulator can be used to generate vestigial-sideband and phase-
modulated signals which are identical to those obtained from analog
techniques. They reported four types of digital modulators which :.
have been produced, plus one experimental model. The production unité
generate either two~ or four-level pulses with carrier frequencieé'of
2.8 kHz to 64 kHz, while the experimental unit has eight—leQel ?ulses

with a carrier frequency of 2.8 kHz.

*The nonrecursive digital filter and the corresponding Fourier
series expansion technique for its design will be described in Section -
2.1, ' :
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Even though emphasis is being placed on the use of digital hard-
ware in PAM systems, it can be seen from recent literature [23-26]
that researchers are still investigating analog pulse-shaping network

techniques.

1.2.3 Related Developments

Developments discussed previously wére concerned pfimarily wifhs
the analysis and design of the PAM transmittsr.and feceiver filters,
since these are the areas of emphasis in this investigation. Two
other areas which have become quite important in PAM system design
are the use of encoding~decoding devices and adaptive equalization.

Several authors.[27—33] have dissussed the application of coding
techniques to increase the data transmission rate of binary data Qith—,
out a corresponding increase in the required bandwidth. Signaiing ati
a rate higher than the theoretical Nyquist limit is accomplisﬁed by .
allowing controlled amounts of intersymbol interferesce.. Ths enssdingV
device for this method converts the original binary source sequence
into a sequence of symbols {ajk} which are applied to the trapsmitter
filter. Encoding eliminates the interdependence of detected symbols
at the receiver, so that a single detector error will not be propa-
gated and result in an error burst. The method requires that the
equivalent impulse response of the cascade network consisting'of trans-—
mitter filter, channel, and_receiver filter be of a special shape in
order to control the allowable intersymbol interference. Kretzmer. [31]
has tabulated a number of these impulse responses which he calls |
partial-response pulses. By allowing intersymbol interference in the

system impulse response, more than two possible sample levels exist at
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the receiver. Consequently, a decoding device is used to geﬁerate
binary estimates from the multilevel samples. Since more than two . '
levels must be detected at the receiver, this téchnique is more
sensitive to noise. . Nevertheless, the possibility of an inéreasedA
data rate without increased bandwidth is a'definite_advantagg'fof
certain low-noise environménts. |
Lucky, et al. [34-47] have déveloped the techniqué of édaptiﬁeA

equalization for use with time-varying channels such as ére foun&'in:.
the switched-line felephone network. High-speed data tranémiésioﬁ
over channels with'only preset equalizers ét.the_transmitter"aﬁd/of.
receiver cannot be sustained for widely timefvarying'chanﬁéi;cbar&‘
“acteristics. Consequently, an automatic equéliéer; consiétingvéf_ép.
Vadjustable transversal filtef‘and associated control ci;cuitryg haé'
been developéd to modify automatically the filteritép coéfficienté.l
Various algorithms exist_fdr determiﬁing the ﬁroper.tap settings;

One technique is to transmit a test signal through the caScadéd
channel and aufomatic equalize} during a so-called "tréiniﬁg period".
Typical test signals include a sum of sinusoidé equally spaced
throughout the channel bandwidth, é'sequence of isolated pulses, and
a wide~band pseudo-noise signal. The equalizer output fespoﬁse ié"
compared to a locally generated feference response and”fhg corre-
sponding error signal used to increment the tap settings so as to
reduce error. A more recent techﬁique [37],_called the "decision-
directed method", is to continuallynadjust thé tap settings duringvA':.
the transmission of actual data. In this scheme the detected symbolé
at the receiver are assumed to correétly represent the input‘symbdls-

(which should be a valid assumption if the equalizer is in‘
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near-optimum adjustment) thus eliminating the;ﬁeed for a locally-
generated reference. The cross correlation between the,regenefatéd
input symbols and the actual received waveform is used fo determine’
the error signal for tap-setting purposes. Prbbiems exist in thé
initialization of either of tﬁese tap—setting algorithms. The test-
signal technique operates on the principle of peak-~distortion mini-
mization and the algorithm will not converge if the initial peak
distortion is greater than some critical value. Tﬁe decision;
direéted technique, which minimizes mean-square distortion, takes

an abnormally long time to converge if the initiél ?ap.settings ao

not place the equalizer in near-optimum adjustment.
1.3 OUTLINE OF STUDY

Problems associated with PAM baseband data transmissionbweré ;
reviewed in Chapter 1. The remaining chapters are'de§oted to the
design of pulse-shaping digital filtgrs to solve some of these |
problems.

Chapter 2 concentrates on the class of digital filters to be
employed as pulse—shaping devices, i.e;, the finite-duration impulse-
response filter. This class, which cénsists of the digital trans-
versal filter and the frequency-sampling digital filter, can bé
implemented in hardware or by a general-purpose computer algorithm.
Block diagrams, that would be used for a hard-wired digital-logic
implementation, and difference equations, that would be programmea
for a general—purposé computér implementation, are included for each

filter. The design techniques reported in the .literature, which are
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mainly frequency-domain procedures,'are reviewed and design examples
are included.

An optimization algorithm is developed in Chapter 3 to design
the frequency-sampling digital filter from impulse-response specifi-
cations. This technique is applicable‘to design digital'filters to
shape pulses for data transmission o?ef unknown channels or for
matched-filter detection of pulses in noise. Equations are‘derived
for the filter impulse response as a linear function of unknown
multiplier coefficients, whicﬁ muét be determined to complete thé
filter design. It is then-sﬁown howlthese_equations can be.employed
to constrain the filter impulse résponse to meet cértain timeédpmain .
specifications. A linear-programming optimization algorithm is uséa
to solve the constraint equations fof the unknown filter coefficients;
Details regarding linear‘programming and its compufer implementation
for diéital filter design are found in the appendiceé. The procedures -
for designing digital PAM transmitter filters and digital matched
‘filters are outlined by the use of examples.

Application of the.optimization algorithm to the design of
digital filters for equalization of data channels that have known
characteristics is deveioped in Chapter 4. Equations which are
linear functions of the equalizer multiplier-coefficients are derived
for the equivalent impulse response of the cascaded digital-filter
equalizer, D/A converter, cHannel,’and receiver filter combination.
These equations are then used in the manner‘of'Chapter 3 to constrain
the received pulse shape so that the linear-programming algorithm canv

be used to specify the digital equalizer coefficients. Examples are
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included for the design:of both transversal filter and frequency-
sampling filter equalizers.
Finally, in Chapter 5 conclusions are drawn from the results

of this investigation and problems for future study are recommended.



CHAPTER 2

FINITE-DURATION IMPULSE-RESPONSE FILTERS

A class of digital filters characterized by a'fipite number of
nonzero values in the impulse—résponse-wi;l be congidered iﬁ'this
éhapter. This class of filters ﬁas particular advantages for time-
domain design techniqueé*since the impulse response need be specifigd
for only a finite time iﬁterval. Spé;ifically, the.impqlse—reSPOnse,
whichvis:denoted aé.h(mT), is defined as a. set of N values
{ho,hl,..;,hN_l} with hm = 0 for éll othé%'values of m. ?wo methods
exist for the realization of”this'filterutype,_viz., the digifal

transversal filter andAtheifrequency—sémpling digital filter, which

are nonrecursive and recursive implementations respectively.

2.1 DIGITAL TRANSVERSAL FILTERS

The digital transversal filter is a stfaightforward digital
implementation of the analog transversal filter that was originally
intfoduced by Kaliman([48]. AThe use of digitalliogic affords more
precise filtering at a lower cost and smalier size [19,49] than is

.possible with the tapped delay line and rgsiétive,summing network

of the conventional analog transvefsal filter.

2.1.1 Transversal Filter Characteristics
A block diagram of the digital transversal filter is illustrated

in Fig. 2-1. Each square signifies a delay element of T seconds, so

20
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a collective delay of NT secpnds can be realized sy an N-stage shift
register. The multiplication and summation elements are constructed
from digital logic circuits. It should be noted that each of theA
signal samples, x(nT) and y(nT), is actually an M-bit digital word,
where 2M is the number of quantization levels used in the digital
.rep:esentatibn. Conseéuently, eabh set of time delays is realized
by'a parallei bank of M shift registers and.the arithmetic elements
multiply or add M—bit digital Words;' It can be observed ffom |
inspection of Fig. 2-1 that the difference equation for the trans—

versal filter is written as
 y(@T) = Z h_x(aT - mT) .. (@)

Taking the z-transform of (2.1) gives the corresponding transfer

function

o N-1 . o
Y(z) A - -m . ;
X(z) H(z) = E: hm z . - (2.2)
m=0 ‘
The sequence

1 n=20 .
x(nT) =< : o O (2.3)

0 n#0, ' '

applied to a digital filter corresponds to the unit impulse whichlis
applied to a continuous filter, because the response'to this particu-
lar sequence 1s the inverse z-transform of the filter transfer-funcf
tion. Hence, the reason fof setting the transversal-filter multiplier

coefficients equal to the desired unit-impulse response hO""’hN—lv
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can be seen by appl&ing the sequence {1,0,0,...} to the network of
Fig. 2-1. It will be assumed tﬁat_there are no delay elements prior
to the first multiplier tap. Hen;e,.the first of-the N impulse-
response valueé will occuf at time zero, i.e., hm = h(mT). It will
also be assumed that x(nT) = 0 for n < O.

Since (2;1) is the discrete equivalent of the convolution inte-
gral as applied to contin@ous linear systems, the nohrecursi&é reali-
zation is sometimes called a "direct-convolution filter'". Stockham
[50] has shown that by using thé fast-Fourier-transform (FFT) algo-
rithm to calculate y(nT), the required computation time can be'
reduced significantly fdr sufficiently large N. When.the FFT is
.used in this manner, the realization is-called'a "fast¥cony01Ution
filter". "

In addition to having a finite impulse response, other dis-
tinctive characteristics of the transversal filter include the
absence of stability problems in the realization? a piecewise—
linear phase characteristic which generates a uniform time delay
and the need for a large number of coefficient multipliers to obtain
sharp amplitude characteristic cutoffs. Since the transfer function
(2.2) has only zeros there is no possibility of poles falling outside
the z-plane unit circle; hence, the filter is inherently stable. The

amplitude and phase characteristics will be illustrated shortly.

2.1.2 Fourier-Series Design Technique

Several conventional methods for the design of nonrecursive
filters have been reviewed by Kaiser [51]. These techniques, which
are all frequency-domain procedures, have in the past formed the

basis for transversal filter design. Perhaps the most useful has
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been the Fourier series expansion technique. Since the desired
digital filter frequency characteristic, H(f), must always be
periodic, it can be expanded in a Fourier series over the range

|£] < 1/2T, i.e.,

a .
H(f) = Eg'+ [an cos (2mnTf) + bn sin(2wnTf)] , (2.4&)
n=1

whgre 1/2T
a = 2T H(f) cos(2mnTf) df - (2.4b)

-1/2T

and 1/2T

-/ ‘

The Fourier-series coefficients can be shown ;o represent the desired
impulse-response values. Consequently, the desired filter coeffi-
cients are obtained by: (1) replacing the sinusoidal functions with
their Euler expansion equivalents, (2) making the standard substitu-
tion

- eJZﬂfT ’ (2.5)

and (3) comparing the resulting transfer function with (2.2). Of
course, the series must be truncated to.obtain a finite number of
coefficients, and in general the filter will have complex-valued
coefficients and will require future values of the input sequence,
i.e., tﬁe summation in (2.2) will include negative values of m.

As an example, Kaiser has considered the problem of desighing

an ideal digital transversal differentiator. The Fourier-series

coefficients which correspond to the desired frequency characteristic’
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H(E) = j2nf | £] 5%;5 , (2.6)

can be found Ey.suﬁétituting (2.6) into (2-.4b) and (2.4c). giving

a =0 “n=0,1,...,N
n : A : .
and R o o - (@27
| C_ 32 gyt ' o -
bn =7 (-1) n -,1,2,..ffN .

The transfer function is obtained by SUE;Eituting (2.7) inéq ‘the
ex@onéntial form of (Z.Ka) with the serieées trﬁngated to N = 9,
.Then the transfer function is mﬁltiplied by z"? to eliminate the
‘need for future input'Qalués'which;éiygé a transfer fuﬁctioﬁ ﬁith
18bnon~zero coefficiengs, i.e.g |

| 9 h+i - . o .

H() = Z B e @

n=1 . T ‘ ‘

Characﬁefiétics‘of the trans?éfsal fiiter_cérresponding to (2.8)
.with T = 1s are given in Fig. 2-2.%* The Gibbs phénomenon evident
in the amplitude characteristic is due to the series tfuncation,
which illustrates the transversal—filter propérty that a large,
number of taps are fequired fof sharp_amplitude cutbffs, i.e., more
terms are needed in the series expansiqn. As expected,;the phase
chéracteristic is exactly linéar o&er the entire bandwidth. The
linear phase shift which has been subtracted froh tﬁe ideal 90°

phase shift results from the zﬁg'tefmlin (2.8). It can be seen

*All illustrations of digital'filtér ffequency~.and time-domain
characteristics were generated with the ZFRAPP and ZTRAMP subroutines
which are described in the technical report’ by Houts & Bgrlage'[SZ].
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Fig. 2-2,

Frequency- and Time-Domain Characteristics of Digital

Differentiator Designed by Fourier Series Technique.
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from inspection of Fig. 2-2(c) that the impulse response contains
the same 18 values predicted by (2.8) plus the zero value at 9T

corresponding to a, = 0.

2.1.3 Window-Function Design Technique

Reduction of the Gibbs phehomenom has been studied by Kaiser
and others [53-56] reéulting in ‘the development of the so-called
"window function'" design technique for transversél filters. First,
a Fourier series expansion of the desired frequency characteristié'
is obtained. This series is then multiplied by the window function,
which is time limited and is used to modify the seriesAcoefficienté
sd as to reduce the normél truncation error. Siﬁcé multiplicationAA
in the time domain is equivalent'to convolutiqn in the frequency
domain, multiplication»of';hé time-domain coefficients by a préper
window function results in a-smoothing of the sharp transitions
found in the desired frequency characteristic, which thén can be
more closely approximated. The modified-Beséel-window fﬁnction

discovered by Kaiser, i.e.,

w(t) =< | @9

is shown in Fig. 2-3(a) and has been used to redesign the ideal
differentiator. Multiplying each coefficient of 2.7 by a cor- -
responding window-function value w(nT), with 1 = 9T, results in

a transversal filter which has the characteristics shown in Fig.
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2-3. It is obvious that the ripplé effect, so evident in Fig.

2-2(a), has been reduced significantly. Discussion of the advan- .

tages, disadvantages, and tradeoff possibilities of various window

functions are found in the previously cited references..
Frequency—domain.design techniques developed subsequent to

Kaiser [51] have been primarily applications of optimization algo-

‘ rithms to minimize errors between the desired and aétual filter

frequency characteristic. Since these techniques are applicable

to both the transversal and frequency—sémpling filﬁer realizations, .

discussion will be deferred until the frequency-sampling filter hés.

been described.

2.1.4 Time-Domain Design Techniques

Techniques for designing digital transversal filters inithe
time domain have not received much emphasis in recent years nor ﬁave
they been developed to the degree of the frequency-domain metﬁods.
The majority of the work that has been done is mainly appliéations
of classical numerical énalyéis procedures for prediction, smoothing,
and differentiation. Monroe [57], in summarizing these procedures,
has derived equations to define the N coefficients, hm’ of (2.1) so
that the designed filter has a maximum noise reduction capability
while simultaneously having desired differentiating and/or pre-
dicting characteristics. The input to the filter is assumed to be
a polynomial of finite degree with additive white noise. He has
also developed a method té specify the coefficientsh{hm} so that
the filter step response will meet desired criteria, such as over-

shoot, and still have noise rejection capabilities.
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Cavin, Ray, and Rhyne [58]) have considered the time—domain-
design of an optimal transversal filter which would .give an impulse
output when an expected seismic waveform, called a Ricker Wavelét,
is applied to its input. They studied three error criteria for
indicating the difference between the actual filter response and
the ideal impulse, namely, a weighted;mean—square—error, a weigﬁtéd';
absolute-error, and a minimax error. ‘Filter coefficients thét‘
would minimize each of thesé error functions wefe determined witﬁ
a linear programming algorithm., One problem with this technique
was that all of the resulting designs were of the high-pass fre¥
quency chéracteristic,vand could thus amplify noise componenté&

that might be present in the seismic waveform.
2.2 FREQUENCY-SAMPLING DIGITAL FILTERS

-The'frequency—Sampling filter, a recursive realization of:
the finite-duration impulse resbonse_filter, was first.introducéa
by Rader & Gold [59]. The name of the filter results from théif,v
freduency—domain design technique rather than an implied descrip-

tion of the filter realization or operation.

2.2.1 Frequency-Sampling Filter Characteristics
A block diagram of a frequency-sampling filter is illustrated
.in Fig. 2-4. The network consists of a comb filter in series with

a parallel combination of 1 + [N/2]* digital resonators each

* The notation I[N/2] will be used to indicate the integer
portion of N/2. o
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"tuned" to a different frequency. The reasons for this terminology
will become evident when the filter frequency cﬁaracteristics are
considered. First, however, the filter difference equations and
transfer functions must Be derived.

The frequency-sampling digital filter shown in Fig. 2-4 is

described by the following difference equations:

mn(nT) = x(nT) - x(nT - NT) , (2.10a) -
H0 .
yo(nT) = ﬁ—-m(nT) + yo(nT -T) , (2.10@)‘
-1~ o R
yk(nT) =5 ' 2Hk[m(nT) - cos(2m1k/N) m(nT - T)]

- 2 cos(27k/N) yk(nT - T) + yk(nT - 2T)

k= 1,2,..., I[N/2] , (2;10c)

and
I[N/2]

yaD) = )y D) . (2.10d)
k=0
An overall transfer function could be derived by taking the.
z—transform of each of these equations, as was done for the trans-.
versal filter in (2.2), and then combining the resulting expres-
sions. Alternatively, the.approach of Gold & Jordan [60j will
be followed in order té better illustrate certain properties of
the filter. The discrete Fourier transform (DFT) éf the finite

impulse response sequence {ho,...,hN_l} yields



33

N-1
H(KO) = Z h e ITTHE k=0,1,...,8-1 , (2.11)

m=0
where Q = 27/NT is the increment between samples in the frequency
domain. Those samples, H(kR), correspond to evaluation of H(z). at
N equally-spaced points around the unit circle in the z—plane,lapd
consequently are values of the continuous frequency response for
the filter. Taking the inverse DFT of these frequency samples
yields an expression for the impulse response as a fuﬁction of the

samples, namely

0
|

h =-§— H(ko) elKmT (2.12)

o
i
(=]

Hence, by substituting (2.12) into (2.2), interchanging summations,
and using the closed-form expression for the geometric series, the
following transfer function is obtained which is also a function of

the frequency samples.

H(z) = Z ?1(,11:2) T (2.13)

This function could be realized with a network very similar to
that of Fig. 2-4. The term 1 - z_N represents the transfer func-
tion for the comb filter and the terms H(kQ)/N, which may be
complex valued, represent the output multiplier coefficients for
the resonators. The primary difference is that each resonator-:
would be of first-order with a single complex4coefficient multi—

plier. By assuming that
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H(kQ) = H*(NQ - kQ) ,. 4 (2.14)

complex conjugate terms in (2.13) can be combined in the manner

H(kQ) + H(NQ - k@) _
3TKS -1 JT(N-K)Q -1 L
l1--e z l1-e z (2.15) 
2 Re{H(k®)} - 2[Re{H(kQ)} cos(TkQ) ; Im{H(kQ)}-sin(IkQ)] é;l
- 1 -2 cos (Tk) z_1 + z._'2 ’

For real H(kQ), (2.15) becomes the transfer function corresponding

to Fig. 2-4, i.e.,

| N T2 CnyFam 11 - cos(ame/mz ]
H(z) = = g ) N
1- 2z 'k=lv 1-2 cos(2wk/N)z + 2z 7

(z.isy

- where real H(kQ) are deﬁoted by Hk; The real ffequency samples
have been multiplied by (—l)k since Rader & Gold [59] h;ve‘sﬁown
that this multiplication is necessary to ﬁa&e'a'smooth intefpola—
tion through the fréquéncy saﬁples by the continuous frequenpy,
response of the filter. Although the transfer functiéh (2.16)
holds for all odd N, it is only valid for even N if HN/é = 0. If
this is not the cése, the function can be corrected by replacing

1

the HN/Z term of the summation with (_l)N/Z HN/Z/(l + 27 Y . a

2.2.2 Conventional Frequency-Domain Design Techniqpes

All techniques that have been used to design frequency-
sampling filters have been frequency-domain methods. The original
technique of Rader & Gold [59] was £o speCify the filter mulfiplier'

coefficients (—l)k Hk/N directly from the samples Hk of the desired
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continuous amplitude frequency characteristic taken at N equally-
spaced frequencies. An insigﬁt into this design technique can bgA‘
obtained by inspection of Figs;.2—5-and 2—6f Significant poles
and zeros of (2.16) are illustrated in the z-plane of Fig..Z—S
for a éhree¥resonétor filter witﬁ N =-20. The combnfilter rgsults_A
in 20 equally spaced zeros around thevunit Ciréle;, Therefqre;.ésl
frequency is ipcreaséd from zero to the half-sampling freqﬁéncy,
1/2T, corresponding to movement midway around the'unif'CirCIé,,the}""
comb—filtervmagﬁitﬁde will.appear as é'sefies of.lovéqhal;magnifﬁdé"
 lobes or '"teeth" with the zero valué between adjacént.lobeé resultiﬁg.:
from a z-plane zero. On'this semicircle, each résbnaﬁof is repre— 
sented by é.complex pole which cancelsAfﬂe effeét,of-the cQﬁb—fiiter_u*.
zerd'at that fesonant frequency._:anseQuénfly, thése freqﬁenéy_ |
components contéined within a‘bandwidth.cehtered.on tﬁe résbnanf,'
fféquency are paséed by that feSonatof stage?_and theloverall filter.
frequency characteristic ié détermihed by"theAsum’of these iﬂdiVidQ
ual passbands.

A typical set of frequency samples which would corresﬁﬁﬁd to
the pole-zero plot of Fig. 2-5 are given in Fig. 2-6. .This désigﬁ.“
of a filter with phree resonator stages and é comb.filter with 20
stages is an atfempt to obtaiﬁ an ideal low-pass ffequénéy éharag— 
teristic. Frequency- and time-domain chéracteristics'for the fil;:
ter are plotted in Fié; 2-7. 1t is evident fromlthe amplitudé.
‘chéractefistic that the continuoué response passes tﬁrough each-qf
the specified frequency éamplgs, even though the ideal character-
istic could not be obtaine&. Thé piecewise linear phase shift

over the entire frequency range and the finite impulse response
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are distinctive characteristics of this type of filter as they wére
for the transversal filter.

The reason for the impulse response being finite-caﬁ be seen by
applying the input sequence {1,0,0...} to the network of Fig. 2.4.
The comb filter causes two sequences to be applied to eaéh'resonétor;
i.e., the original sequence and a delayed negative version NT égcdnds
later. Then by taking the invefse z-transform of a resonator trané*
fer function to obtain

k 20 : : .
Hk(mT) = (-1) B cos (2rkm/N) , (2.17)

it is obvious that the resonator impulse respénse repeatS‘athTl
seconds. Heﬁce, the delayed hegafive im§u1§e cancels the effectuéf-;
the original impulse giving a zero output for all timés after NT
seconds. |

" Any implemented digital fiiter fequires multiplier coefficienté
to be»represented by digital words having. a finite number'oftbité..
This coefficient quantization error can have a serious effect for the
frequency-sampling filter which requires poles to be placed &irectly
on the unit-circle stability boundary. Weinstein [61] and otherslwho‘
have studied this problem have shown that acceptable‘performances'caﬁ
be obtained by moving all tﬁe critical poles‘and zeros slightly insiae-
the unit circle, i.e., at a radius of r =1- §. The value for 6.can
usually be in the range of 2_10 to 2—12 with little»noticeablé'change

in the filter characteristics.

2.2.3 Optimization Technique for Frequency-Domain Design
Recently developed procedures to design frequency—sampling fil-

ters [62-64] employ optimization algorithms to minimize the maximum. -
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frequency response deviation of the designed filter from the ideal
response over a specified frequency range. The basic function used

in the optimization procedures can be derived by making the substitu-

tion z = erT in (2.13) and manipulating the resulting expression to
yield

= on e ™ Noin e /2)
H(w) = %_8-3[(wNT/2)(1 - 1/M] SIn (T2 = T/ (2.18)

k=0

This is an equation for the continuous frequency response of the fii—
ter as a linear function of its real frequency samples Hk' Hence, it
is possiblevto apply linear optimization techniques to select a set
of Hk values to minimize or maximize some cﬂaracteristic of the con-
tinuous frequency response. Gold & Jordan [62] have used this tech-
nique to minimize the maximum sidelobe amplitude in the out-of-band
response for a low-pass filter. A frequency characteristic resulting
from their design procedure is compared in Fig. 2-8 with a character-
istic resulting from the original procedure. Both filters have
N=256, T=1s, H =1 for 0 < k < 31 and Hk = 0 for 35 < k < 128.
The frequency samples H32, H33, and H34 in (2.18), which were set to
zero for the original design, define a transition band whose values
are optimally selected in the second design as 0.7, 0.225, and 0.02,
respectively. By using the optimization technique, the maximum out-
of-band response is reduced from -28 dB to -85 dB.

Both the original and op;imum frequency-sampling design proce-
dures can be used to design transversal filters. After obtaining
- the set of H 's by either method, the inyerse DFT, (2.12), is used

k

to calculate the corresponding transversal filter multiplier



40

anbjuydsay =0wu¢Nﬁluuuo 03 Ing 183ITYd
88e4-m07] jo Isuodedy Ipnijrday v:unuaoum Uy JusmaAoidmy °g-7 ‘B3

anbjuysa], wnwyido (q) anbyuydayl [ruydjag ()
| | 1 oz1- | .
| _
| | Jos-
_ | |
| | _ .
_ _ ] |
| _ _ | .
| _ 1 09~ | _
| | _ _ ~o¢-
020°0 | | - 0o w | |
VoL"o " “ | 0z | “
k | | " ! Le “ €€ _
i A -4 9 (8p) — ——V———10
3952 _ puvg | | (3)8| 395t | pueg |
uwoy3ysueay uojIFsUBRI] (gpr)
| (3|



41

coefficients-{hm}. .Unfortunately, this approach results in a trans-
versal filter with N multipliers, 256 for the above example, and
consequently a more inefficient design is obtained than with the
recursive realization. This illustrates one of the main advantages
of the frequency-sampling filter over the transversal filter, i.e.,
fewer multipliers are needed to obtain sharp cutoff—frequency_chaféc—
teristics.

No technique to go directiy from time-domain specifications to
filter coefficients has been reported for the time—domain design of
the frequency-sampling filter.  This type of time-domain designvis

the subject of the next chapter.



CHAPTER 3

DIGITAL FILTER DESIGN FROM IMPULSE-RESPONSE SPECIFICATIONS

Many of the results which have been derived for optimum PAM
data tfansmission, as outlined in Section 1.2.1, were e#pressed as’
equations for the required impulée response of the transﬁitter and
receiver filters. However; no straightforward technique has been
developed to desigﬁ'and synthesize filters directly with digital
hardware from these time-domain specifications. An algoritﬁm is
introduced in this chapter for that purpose. The procedure consists
of three steps. First, equations are derived for the impulse response.
of 'a digital filter as a linear function of its unkhown mulfiplier
coefficients. WNext, the impulse response is constrained with thése
equations to have appropriate values at certain critical time‘points.
Finally, a linear programming routine is 'applied to solve the con-

straint equations and thus define the unknown filter coefficients.
3.1 TIME-DOMAIN DESIGN PROCEDURE

Expressions are derived in this section for the frequency—sampling
filter impulse response, hm, as a function of its unknown coefficients,
Hk’ k=1,2,...,I[N/2]. This derivation is not needed for the trans-
versal filter since-its multiplier coefficients are equal to tﬁe speci-
fied impulse-response values. The inverse DFT of a sampled frequency
characteristic, which was obtainea in Sectioh 2;2, is an equation for

the frequency-sampling filter impulse response, namely

42
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Z |

h =
m

N-1 ,
Z H ST 0,1,.. .81 . (3.1)
k=0 .

A z transfer function (2.16) was derived by assuming that the fre-
quency samples were real and possesséd the symmetry'Hk»=.HN_k.

These restrictions were aésumed to éimplify the design problem. If
the Hk were not real an optimization aigbrithm with'compieX'éfith—.
meﬁic would be required. Furthermore, if the symmetry Hk = HN_kfdid
not hold, filters with complex impulse responses woﬁld bé possible.
With these twd.assumptions (3.1) can be simplified. Howevef, thé_

cases for odd and even values of N will be considered separately.

3.1.1 0dd Number of Impulse-Response Values
Typical frequency samples for the N-odd case are illustrated
in Fig. 3-1(a). If the HO sample is ignored? the samples are sym-

" metrical about the line k = N/2. Therefore (3.1) can be written as

__0 _k _j27km/N j2m(N-k)m/N '
hm Nt E: N [e + e’ 1, - (3.2)
‘ k=1
and then simplified to give
n VR g !
hm = ﬁ— + Z '—N— COS(Z'ﬂkm/N) ’ (3.3)
k=1 '

which is a real, linear function of the multiplier coefficients.
It can be.séen from (3.3) that the impulse response for this
case has the symmetry property hm = hN-m for m = 1,2,...,(N—1)/2,

If the multiplier coefficients are multiplied by-(—l)k, as was done
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in (2.16) to obtain a smooth interpolated'frequency'response, the

resulting impulse response

‘hm.= ﬁ—-+ E: NGB —ﬁf cos (27km/N) . » _ (3.4)
k=1 :
still has the symmetry hm = hN-ﬁ’ However, the impulse—response_peak

for (3.3) occurs at m = 0, whereas fer (3.4) the peak would occur at
m = (Nx1)/2. This is evident by comparing Figs. 3—2(a) and 3—2(b),_
where the individual resonator impulse—responSe_envelopes for two

- filters are shown. For the first filfer, which eorrespondsvto Fig,t
3—1(3) and does not contain the_(—l)k faetor, fhe individualieﬁvev
lopes are all in phase at t =0. Conversely,_the envelopes fbf'the

secoﬁd filter which has the (41)k H coefficieﬁts are in phase‘at,:, N

k
£ = NT/2.

3:1.2 Even Number of Impulse—ReSponse Vaiues.

Frequency samples.for_the N-even case; as illustrate&‘iﬁ Fig. :
3—1(b), have an axis of symmetry at N/2 which is also the iocatioe v
of a frequency sample. Consequently,.Both the k=0 and k=N/2 samples
must be considered separately in writing the impulse.response equa-

. tion. With these observations, (3.1) becomes

(N/2)-1 ' -

H 2H |
h = ﬁ9-+. E: (-1)" & cos (2nkn/N) + -1Y2 cos (nm) Hg/zﬂ.(3.5)

k=1 '

The inclusion of the (—l)k term again results in‘e shift of the

impulse-response peak; this time fromm = 0 tom = N/2. The impulse ..
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response symmetry hm = h

Nem also holds, as can be seen by inspecting

Fig. 2-7(c) where the peak occurs at N/2 = 10.

The signal component illustration of Fig. 3-2 also provides
insight into the problem of designing frequency-sampling filﬁeré to
have specified impulse responses. In a time-domain analysis, mﬁlti- '
plier coefficients {Hk} correspond to the components present in a
Fourier series expansion of the impulse response. They are the weights.
of the sinusoidal Fourier components plotted in Fig. 3-2. Hence, the
linear-programming routine can be thought of as a way to detérminé
which Fourier components are required and what their corresponding
weights should be so that the sum of the resulting sinusoidsrwill i
give the desired impulse reéponse. of course; these component values

are evaluated and added only every T seconds resulting in the discrete

filter output.

3.1.3 Formulation of Constraint Equations

Equations (3.4) and (3.5) are disérete-valued expressiohs.which
can be used for the linear-programming time-domain design.of the
frequency-sampling filter. An expression for the unit-impulse
response envelope, which is given by the sum of the individual reso-
nator impulse-response envelopes, can be obtained from (3.4) or (3.5)
by making the substitution t = mT in (3.4) and (3.5), i.é.

L (D2 o |
h(t) = ﬁ9-+ 2: (—l)k.—ﬁE cos (2nkt /NT) o (9;6)

k=1

and



2Hk
(a) hk(:) -5 cos (2xkt /NT)

b, (£)
24

k=1

2
(b) hk(t) = (--1)k _EE cos (2nkt /NT)
N

Fig. 3-2. Comparison of Impulse-Response Components for Two
Sets of Multiplier Coefficients.
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h(t) = ﬁ9-+ ZE: (—l)k —ﬁh-cos(Zwkt/NT) + (-1)
k=1

el

N/2 E%ig cos(mt/T)

(3.7)

These expressions are continuous over the required range 0 < t < NT
and are valid for N odd and even respectively. The envelope is a
good>approximation to the continuous signal that would be generated
by a D/A converter and smoothing filter at the digital filter output.
Since continuous linear functions of the multiplier coefficients‘are>-
now available, the impulse-response slope and other higher deriva-
tives of h(t) can be constrained. For example, the required slope

equation for N odd is

(N-1)/2 .
h'(t) = 4; E: k(—l)k+l H  sin (2mkt/NT) . (3.8)
N°T =

Equations (3.4) through (3.8) have been written in a form such
that the theory of linear programming can be apﬁlied to solve for
the unknown H_, k = 0,1,...,I[N/2]. A typical set of equations which
might be used to specify a desired impulse response can be stated as

follows. The slope of the impulse response at time tl, i.e.,

h'(ti) = a H + a H, +

11 Ho 10 By ¥ eeo +a g Ho o (3.9a)
is to be minimized subject to the constraint equations
h(t)) = ay, Hy +a), By + ..o +a,  Ho o> 1 (3.9b)
and
h(tz) = ay Hytag Hi+ ... +a,, Hy | = 0. © (3.90)
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The coefficients ai_.I are known, e.g.,-a 5y = (f2/N)cos(2wtl/NT). The

2
Hk for k = R to I[N/2] are set to zero. Emphasis in ‘this study-willA
be on the design of low-pass and band-pass filters for Which,
frequency s;mples-in certain regions aré‘zero. Hence,'the.pa;ametef
R is defined where the freqUency samples from k = R to k = I[N/Z]

are set to zero during the constraint equation formulation. Th¢ ﬁse
of linear programming to solve for the set of R unknown mgltiplier;' 

values'{Hk} will be discussed in the two remaining sections of this

chapter.
3.2 LINEAR-PROGRAMMING OPTIMIZATION ALGORITHM

Linear programming is an iterative procedure to solve for the
set of R non-negative variables {xj} which maximizes or minimizes

the linear function

S Z = ¢ ¥y + X%, + ... + Cp¥p : - (3.10)

subject to the M linear constraint equations

a,.x, +a..x.+ ...+ a.,.x i=1,2,...,M. .,(3.11)

il"1 i2"2 iR"R

v nna
=2

Without loss of generality, it will be éssumed that all bi >0 an&‘.
that Z.is only to be maximized. Equafion (3.10)_is called the
"objective function'". A solution to (3.11) for which all kifﬁ;o is
called a "feasible solutionf. A feasible solution withjno more than -
M positive X, is called a "basic feasible solution', and a:basic |

feasible solution which maximizes (3.,10) is galled'an "optimal basic
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feasible solution'. A solution for which Z can be made arbitrarily
large is called an "unbounded solution". |

The systematic procedure to solve (3.10) and (3.11) for the
optimal basic feasible solution, called the "simplex method", was
first developed by Dantzig [65] and has been discussed in detail
by Gass [66] and Hadley [67]. The simplex method is a procedure
which consists of starting with a basic feasible solution-to((3,ll)
and then moving from the first basic feasible solution to a second,
etc. each time moving to a new sqlution.which increases the value
of Z. After a finite number of steps, an optimai basic,fegsible
solution will be reached, i.e., no other solution yields an increase
in Z. The basic méthematical technique of the simplex procedure and:
-a computer implementation. of the procedure, called LINPO, are pre--
sented in Apbendices A and B, respéctively. Two solutions to tﬁé’
following example.problem are also included in the appendices to
illustrate the simplex method. A hand—compuﬁation solution is
developed in Section A.2, while a LINPO subroutine solution is pre-
sented in Section B.2,

Consider the problem of finding a basic feasible solution which

will maximize the objective function

Z = Xy + %, : (3.12)
subject to the constraints
Xy + X,y >2,
3xl + %, <15, : ‘ . (3.13):
and
X +v2x2 <9,
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Two or three variable linear-programming problems can be repre-
sented and solved graphically. Since. a feasible solution requires
positive variables, all possible solutions to the problem must be

in the first quadrant of the x coordinate system as shown in

17%2
Fig. 3-3. The three constraint equations further restrict the
solution to the interior of the crosshatched region. Consequently,
all points inside the region represent feasible solutions. In order
to determine the optimal solution, a family of straight lines has
been superimposed on the figure with each line represenﬁing points -
that satisfy (3.12) for one value of Z. Hence, the optimal solution
is that point or set of points located in the feasible:region which
also lie on the objective function line with the largest value éf Z.

For this example, the optimal solution is denoted by the point (4.2,

2.4) where Z = 6,6,
max

3.3 DESIGN EXAMPLES

Two examples are presented to illustrate the applicability of
the LINPO algorithm to the time-domain design of frequency—sampliﬁg )
filters. One example involves the design of a pulse-shaping digital
filter to generate a raised-cosine pulse and the second involves the
design of a partial-response pulse4shaping filter. Although the two
design examples involve pulse-shaping filters, both can be construed °
to be designs of digital matched filters for the détection of the
corresponding pulse in a background of additive white Gaussian noise.

The general procedure to be used for LINPO designs from impulse

response specifications is outlined in the following table.
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xz‘

Fig. 3-3. Graphical Representation of Linear~Programming Problem.
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TABLE 3.1

LINPO ALGORITHM DESIGN STEPS

Determine the critical time points of the desired impulse
response, write constraint equations for each point, and deter-
mine an objective function. Since finite impulse-response filters
are being designed, only a finite number of points of an infinite
response specification can be constrained. Consequently, the

most significant portion of the response must be ascertained and
only points in that time interval constrained. For PAM waveforms,
this interval is centered on the pulse peak and extends in both
directions for a few Nyquist intervals.

Determine N, the number of impulse-response values, and T, the
filter sampling interval. Time-domain restrictions on these
values are that NT must equal the time interval corresponding
to the significant portion of the impulse response and NT/2
must equal the time of the pulse peak. Physical restrictions
are that the digital-logic speed limits the minimum value of T -
and the feasible number of shift-register stages for the comb

filter limits the maximum value of N.

Determine R, the maximum number of resonator stages in the filter.
If the bandwidth of the desired impulse response is known, R is -
defined since R/NT equals that bandwidth for frequency~sampling
filters. Otherwise, the bandwidth is estimated from the impulse
response shape and that estimate is used to calculate an initial
R. Restrictions are that R < I[N/2] and that the amount of dig--
ital logic required for the resonator stages is feasible.

Calculate coefficients of the unknown multiplier values in the
constraint equations and objective function for input to the
LINPO subroutine. Solve for the set {Hk} with the LINPO sub-
routine.

Calculate the impulse response of the filter defined by the

{H, } from the LINPO design. If the response is unsatisfactory,
change the constraint equations and/or the parameters N, T, and
R so that the response is improved when the previous step is
repeated.

- 3.3.1 Raised-Cosine Pulse Filter

A pulse shape frequently used for baseband data transmission

is the raised-cosine pulse [6] which is described by
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sin(ﬁt/tb) cos(ant/tb)

g(t) = T e, (3.14)

- 5
1- (Zat/tb)
where t, is the bit time and g(t) has the non-zero frequency spectrum -

b

4

1 0 < |£] < (1-0)E, -
£ - - 1
G(E) = ¢ (3.15)
1 . nf m
L 7, 1 - 51n(2afl - 53] (1-a) £, < |£] < (+od£, .

The nominal cutoff frequency f., is equal to 1/(2tb)'-'A delayed ver-

1
sion of (3.14), g(t - 3tb) is plotted in Fig. 3-4 for a

'17 Only
the portion of (3.14) in the interval of i3tb on either side of the
pulse peak has been considered significant since beyond this time
interval the maximum amplitude is less than 0.002; The primary
édvantagevof this pulse shape, as was discussed in Section 1.1, is

the presence of the zero crossings at multiples of t, . Zero ampli-

b
tude at these points eliminates the intersympol—interference tfans—
mission impairment. The design problem therefore is to specify a
filter which has its impulse response given by (3.14)

The frequency-sampling filter impulse—résponse envelépe, (3.6)
or (3.7), is symmetrical about the point NT/2; so the response need

only be constrained on one side of the peak. Consequently, a set

of constraint equations which might be sufficient for the design are

|
=

1
(=)

h(3tb) = h(Stb) h'(Atb) <0

(3.16)

|
o

h(6t

|
(]

- . )
h(4t,) h'(5t) <0

b) -
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where it is desired to maximize
7 = -h"(4tb) + h' (Stb) . - (3.17)

This objective function along with the two slope constraint equations
will attempt to force the slope to be zero at the indicated zero-

_ crossing points. This modification of the raisedfcosine pulse would
be desired to reduce the effects of timing jitter whiéh might exist
in transmission systems.

Parameters, other than the multiplier coefficients, which must
also be gpecified are the number of impulse-response values, the
sampling interval, and the number of resonator stages. The relation-
ship of these parameters to the knéwn and unknown multiplier coeffi-
cients in the frequency domain is illustrated in Fig. 3-5 for N e?enin
Since the spectrum of the raised-cosine pulse has a low-pass charac-
teristic, the frequency samples from k = R to k = N/2 must be set to
zero. Furthermore, the spacing between the samples, 1/NT, has been
fixed by the requirement that NT/2 = 3tb, which is the pulse peak..

It will be assumed for this example that the logic speed is suffi-
cient for T = tb/lO. lHence N =_(3tb)(2/T) = 60, which is a realistic
value for the number of shift—registér stages in the comb filter.

With o = 1 in (3.15), it can be seen tha; the raised=cosine spectrum
extends to 2f. = l/tb. Consequently, it will be assumed that R/NT =

1

2f, which then yields R = NT/tb = 6.

The filter design has now been reduced to a linear-programming

problem with six constraint equations specified by (3.16), an objec-

tive function given by (3.17), and six unknowns, {Hk}'f However, i

when these constraint equations are expressed in the form of (3.9),
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the aij coefficients, i = 1,2,...,7 and j = 1,2,...,6 must be calcu-
lated before linear programming can be used. An auxiliary subroutine,
called COCALl, has been developed for this purpése and is described
in Appendix C. In addition to calculating the aij coefficients, this
subroutine calculates and establishes all other arrays and pérametefs
required for a linear-programming solution and then calls thelLINPO;
subroutine which attempts to find an optimal basic feasible'solution;
The use of COCALl 'and LINPO to solve (3.16) and (3.17) for the
.unknown Hk is presented as an example in Section C.l. The results
of that linear-programming solution and the corresponding impulse_
response of the digital filter are shown in Fig. 3-6(a). Although

the pulse has the desired magnitudes at (3 * n)t = 0,1,2,3, and

b "
the slope at the zero crossings has been forced to .zero, it does not
have the a = 1 raised-cosine shape. Since zero crossings are missing:

at 4.5t, and S.Stb, two more constraints, i.e.,

b

h(4.5tb) =

|
(]

and

|
o

h(5.5tb) =

were added to the set of (3.16) and the problem solved again. »The_
second LINPO design, as shown in Fig. 3-6(b), yields a digital filter
with an accurate raised-cosine impulée response, The difference
between the impulse response and the ideal pulse is less than 0,0012
for each of the 60 response values, which is less than 0.12% of the
peak pulse value. The sum of the slopes at the two zero-crossing
points, 4tb and Stb, could not be driven to zero for the second

design, as indicated by thé optimum value of the objective function
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Z = -0.036. Consequently, for applications where jitter is a defi-
nite problem the first design would be desired. Conversely, if
jitter is negligible the second design will generate an excellent
raised-cosine pulse and could be used. It may seem obvious that the
zero crossings at A.Stb and 5.5tb should have been constrained in
the -first-place. Howevér, it is desirable to keep the number -of con--
straint equations to a minimum which in effect reduces the hardware
required.

A situation which did not arise during this example is tﬁe case
of no feasible solution existing for a specified set of consistent
constraiht equations. The number of equations was increased from
six to eight during this design, but the number of unknowns was held
to six. If the number of equations is continually increased in this
manner without a correéponding increase in the number of unknowns, a
point will be reached where the problem is overconstrained in that
it does not have a feasible solution. Consequently, the number of
uﬁknowns would have to be increased to obtain a feasible solution.
However, this increase requires more hardware in the filter since
each unknown corresponds to a resonator stage. Hence, it may become
necessary to make tradeoffs between hardware complexity and the
number of constraint equations employed in the design. A set of

constraint equations with no feasible solution is illustrated in

the next example.

3.3.2 Partial-Response Pulse Filter
The raised cosine pulse shapes have zero magnitude at multiples

of the time parameter tb; hence, zero intersymbol intefference[
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Another class of pulse shapes which permit intersymbol interference,
but in a controlled amount, are the partial-response pulses [31]

defined by ;

2
sin[n(t - nt )/t ]
g(t) = Z b b

2 kn e ntb)/tb . (3.18)

The significant portion of a typical pulse is plotted in Fig. 3-7(a)

for the set of integer weights k_2 =k, =-1, k ., =k, =0, and

2 1 1

kO = 2. These weights result in a pulse which has intersymbol inter-

ference at times *2t; from the peak but not at other multiples of t

b b’

The céfresponding pulse spectrum is
G(f) = #— sin’ (nf/£) 0 < |f] <£ . (3.19)
1
It is evident from a comparison of (3.15) and (3.19) that by allowing.
this specified amount of interference, the total channel bandwidtﬁ
required_for the pulse is halved and the need for the channel to
posseés de-frequency response is eliminated.

A frequency-sampling filter which generates the partial—résponse
pulse is designed in the same manner as the raised-cosine pulse fil-
ter. With the peak of the impulse response specified by NT/2 = 5tb
and assuming that T = tb/5, the resulting number of impulse responsé
values for the pulse is N = (Stb)(Z/T) - 50. The number of resonators
stages, R, required to generate the pulse is obtained by setting
R/NT = fl, which is specified in (3.19) to be the required bandwidth.

It then follows that R = NT/2tb = 5,

Critical values of the partial-response pulse are the peak value

of 2.0 at Stb, the intersymbol interference magnitude of -1.0 at 7tb,



61

*?asTng 1e9p]l 03 udysaq 193774 dsuodsay-yeyixeqd jo uwosjaedwo) °*/-¢ °*874

(0°0 = 2) :
193774 paudysag jo 9suodsay snduy (q) as[nd asuodsay-Teyiaeg [eapr (e)

-]
(=)
L]
[}
—
MO NN TN
1
-

sjurod awy)y
T®OTITI0 « 0]

(1m)y | ()3



62

and the zero magnitudes at 6tb, 8tb and 9tb. Although not a critical
value, another distinctive characteristic of the pulse is the zero

slope at 6.756tb. A corresponding set of constraint equations are

h(Stb) =2 h(7tb) = -1 h(91;b) =0
(3.20)
= = ' V
h(6tb) =0 h(8tb) 0 h (6.756tb) <0
By maximizing the objective function
YA =.h'(6.756tb) s (3.21)

"subject to the last constraint equation, it should be possible to
force the slope to_zero.at the desired time point. However, the
linear-programming problem defined by (3.20) and (3.21) has six

_ éonstraint equafions but only five unknowns. As a consequence,

application of the COCALl and LINPO subroutines to solve the prb-»

lem_resglted in the statement "infeasible“, i.e., no feasiﬁle soluj.
tion exists for five variables. Consequently, it was necessary to
either increase the number of unknowns or decrease the number of
equations. All of the constraints were desirable, so the.number‘of
unknowns had to be increased to seven before the satisfactory solu-
tion shown in Fig. 3-7(b) was obtained.

The difference between the designed filﬁer impulse response and
the partial-response pulse is less than 0.84% of the peak for each of
the 50 response values. The price paid to obtain a feasible solu-
tion, however, was an increase in pulse bandwidth from 5/NT to 7/NT
and the possible addition of two resonators. qutunately, the addi;

tional multiplier coefficients corresponding to this increased
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bandwidth were insignificant i.e., H5 = 0.000 and'H6 = 0,043, In

fact, if H, is ignored and the resulting impulse response is compafed

6
with the ideal pulse, it has been observed that the maximum error

remains at 0.84%

3.3.3 Additional Comments

Although the linéar-programming technique for the desighzof
digital filters has been stated as a time-domain procedurgi the two
examples made use of pulse bandwidth information for specification
of R,‘the number of unknowns. The bandwidth,'and consequently R,
can glways be obtained from a rigorous Fourier analysis of the:
specified waveform or to a lesser degree ofvaccuracy>from an ihSpec—
-tion of the waveform shape. Alternatively, digital filters can be
designed entirely in the time domain. For example, a matched filter
for the Ricker seismic waveletv[68] has been designed without_sﬁeé—_
tral information. The desirea impulse response and thé'three
attempts that were required to determine the final filter coeffi-
cients are illustrated in Figs., 3«8 through 3-10. ConStraint.équa-

tions and values used for the parameters N and T were defined from’

the Ricker wavelet plot to be

h(.022)

~0.443 h(.032) = 0.198
| (3.22) .

h(.028) 0 h'(.032) <0

where it was desired to maximize

Z = h'(.032) ‘ (3.23)
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with NT=O;443 and T = 0.000883.l The number of unknowns was not
specified from the wavelet bandwidth but was determined by iteration.
If R was chosen too small, the linear-programming problem would not
have a feasible solution, but if it was too large the resulting
impulse response would have an unnecessarily.high frequency content.
After an initial estimate of ten for R, the impulse response of Fig.
3-9 was obtained. Although the response satisfies the constraint
‘equations, it is very evident from the high frequency envelope that
'R is too large. Consequently, R was reduéed.to seven in Fig.
3-10(a), and finally to six, before the satisfactory impulse
response of Fig.  3-10(b) was qb;ained. The corresponding changes:_*
in the set of-multiblier coefficients‘{Hk} can be observed from the
results given with each figure. Objective function values were
Z = 0 for each case." The application of linear programming to
frequency-sampling digital filter design for baseband-channel
equalization, which will be considered in the next chapter, employs
only time-domain specifications. ' Therefore, an iterative procedure
such as just discussed is used to determine a satisfactory solution.
All examples and equations derived in this chapter have been
for the design of frequency-sampling filters. No application of
linear programming to pulse-shaping transversal filters has been
considered, since the unknown multiplier coefficients for this fil-
ter are specified simply by samples of the desifed pulse sﬁape'taken
at T-second intervals. Also, it is a very inefficient &ay to gen-
erate .pulses since a large number of multipliers are required; e.g.,
the raised cosine pulse of Fig. 3-4 would require 60 multipliers. for

a transversal filter as opposed to 16 for a frequency-sampling
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filter. However, the design of transversal filters for channel
equalization is neither a trivial problem nor an inefficient solu-

tion, as will be illustrated in the next chapter.



CHAPTER 4

DIGITAL FILTER DESIGN FROM KNOWN CHANNEL SPECIFICATIONS

" The application of linear programming to the time—domain-désign

of frequency-sampling digital filters has been discussed in Chapter 3.

An extension of that technique will be developed in this chapter for4v

the purpose of equalizing nonideal bééeband data transmission channels

to rédUce intersymbol interference. Timg—domain-eduations are

derived for the feceivéd pulse at the channelvoﬁtput so‘that the'pﬁlse

can be constrained to have a desired shape befofe sampiing and thresh—.
old detection. Linear programming is used to dééignbeithera frequency;
sampling or transversal digital filter which in cascade with the qhan—

nel will.result in the desired pulse at the Sampler when an impulse is

applied to the equalizer.
4,1 DIGITAL FILTER EQUALIZERS

The technique of digital-filter equalization ié illustrated iﬁ
Fig. 4-1. The digital equalizer which teplaces the normél trans-
mitter filter will be designed fo have a "predisﬁorte& impuise
response'. This predistortion is used to compensate for distortion -
that occurs during paséage through the channel, thus resulting in an
ideal pulse y(t) at the output. Each symbol aj is considered to be
the weight of an impulse that is applied to the digital‘filtér to

generate a predistorted pulse. The_fequired D/A converter and any

68
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receiver filter which would be used to reduce channel noise are

both considered as part of the channel and must be included in'
c(t), the total channel impulse response. Equations for y(t) and
y'(t) as functions of both filter multiplier coefficients and values
of c(t) will be derived in this section for two finite impulse-. |
response filters, The relationshibs between c(t) and'cc(t)vwill

also be defined.

4.1.1 Frequency-Sampling Fiiter
Equations (3.4) and (3.5) were derived in Chapter 3 for the
impulse response of the fréquency—sampling_filter; By assuming that
HN/Z-; 0 if N is even and redefining thé upper summation 1imitv£o'be
R—l; the single equation
R-1 2

+ Z (_]_)k -%k- cos (Zka/N) (4.1) ,
k=1 ' '

.hm = h(uT) =

Zlo'.I!

'is obtained for the predistorted pulse that is to be . applied to the
channel input. Since the sampling process is modeled with an impulse
modulator in z-transform theory, the digital filter unit-impulse
response can be rewritten as

N-1

hx(t) 2 Z h@mT) §(t — mT) . | 4.2)

m=0

Consequently, the channel output for aj =1 is given by

y(t) = h*(t) % c(t)

(a3

(4.3)

N-1 ,
E: h (mT) J[ §(t - mT) c(t - 1)dr .
m=0 0
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The limits of integration on the convolution integral can be verified
with the graphical-convolution sketch of Fig. 4-2(a). Applying the

impulse-function sifting property to (4.3) yields

L |
y(t) = Z h(nT) c(t - mT) A (4.4)
m=0 _
where
I[t/T] t < NT |
L=¢ . | (4.5)
N-1 t > NT .

The channel output is obtained by éubstituting (4.1) into- (4.4) i.e.,

‘ L L R-1 o
HO " 2Hk :
y(t) = N Z c(t - mT) + Z Z -1) - cos (2mkm/N) c(t - mT)
m=0 ' m=0 k=1 : ’ S
- (4.6)
Hence, the output pulse slope is
B, L L R-1 2 - |
y'(t) = N c'(t - mT) + Z Z (-1) T cos (21km/N) . c¢'(t - mT)
m=0 m=0 k=1 |
4.7

These last two equations are used to calculate constraint equation
coefficients during linear-programming design of frequency-sampling

equalizers.

4.1.2 Transversal Filter
It was shown previously by substituting (2.3) into (2.1) that

the transversal-filter impulse response values are equal to the filter



h* (1)

c(t-1)
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J}JTL_,,T

7
NT

(b) Functions for (4,12)

Fig. 4-2, Establishing Integration Limits
for Convolution Integrals.
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multiplier coefficients. Consequently, the filter unit-impulse
response can be written as
N-1
h*(t) = E:‘ Hm §(t - mT) , : (4.8)
- m=0
where the multiplier coefficients for the transversal filter are now

denoted by Hm. Hence, the channel output is

L
y(t) = h*(t) % c(t) = Z D" H_c(t - 1), (4.9)
m=0 '

where the parameter L Qas defined previoﬁsly in (4.5). The féétor
(—1)m has been included because the set-{Hm} will be the solution-of
a linear-programming problem, and thus must be nonnegative. Without
this factor, only nonnegative impulse response tranéversal filters
would be designed, and for lowpass channels the output can not be
constrained to have'the desired zero crossings. Restricting every.
other multiplier coefficient to be negative simplifies the linear-
programming problem of finding a feasible solution. The derivative

of the output pulse is given by

L
y' (L) = Z D™ H_c'(t - mD) . (4.10)
m=0 '
Equations (4.9) and (4.10) are the desired expressions to be used’

during linear-programming designs of transversal equalizers.
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4.1.3 Channel Impulse Response

Since the derivative of the total channel impulse response
appears in both (4.7) and (4.10), continuity requirements on c(t)
must be investigated. The D/A converter will be modeled mathe-

matically with a zero-order hold impulse response, i.e.,
gh(t) = u(t) - u(t - T) ' (4.11)

where u(t) represents the unit-step function. Hence, if the receiver
filter is considered to be included in the channel impulse response

cc(t), the total channel response is given by
c(t) f cc(t) * gh(t) . (4.12):.

With the graphical convolution of Fig. 4—2(b), it can then be seen

that

,

t
f c (t)dr _ 0<t<T
0

c(t) =< : (4.13)

t
f CC(T)dT t>7T.
=T

Therefore, it follows from Leibnitz's rule that the derivative exists

't

N

and can be written as
¢

Cc(t), 0 <t< T
c'(t) =¢ (4.14)

cc(t) - cc(t - T) t>T,

if cc(t) is continuous over the interval 0 < t < », The t = 0 point
has been excluded in (4.13) and (4.14) because some channels of inter-

est will have a step discontinﬁity at the origin. However, all channel
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responses to be considered will be continuous for t > 0 and therefore

(4.14) is wvalid.
4.2 COMPARISON OF EQUALIZER DESIGNS

Results of various design examples are presented in the remainder.
of this chapter to illustrate some of the distinctive characteristics
of digital-filter channel equalization and guidelines for the use of
linear programming to design these equalizers. The ease of design and
relative performance of the frequency-sampling and transversal equal-

izers are compared by using both techniques to equalize the channel .

27t 1

5 (4.15)
(L + jf) - o

c (t) = it & 2T L(t) < c () =

Typically, the channel unit-impulse response will not be symmetric
about the‘response peak. Consequently, unlike the frequency-sampling
filter design examples of Section 3.3, both sides of the pulse must

be constrained for equalizer designs.

4.2.1 Frequency-Sampling Equalizer Design
Since the channel described in (4.15) has a normalized break-

point frequency f, = 1 Hz, which is assumed to equal the Nyquist

b

bandwidth, 1/2t, , it follows that the minimum bit interval, i.e.,

b

the Nyquist interval, is tb = 0.5 s. Consequently, the waveform

specified for the equalized channel output was the raised-cosine

pulse of Fig. 3.4 with t_ = 0.5 s, which resulted in the following

b

set of constraints:
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0

y(0.5) = 0  y(l.5) =1 y(2.5) = 0 y'(1.0)

v

y(0.75) = 0 y(2.0)

0 v(3.0)

0 y'(2.0) <0  (4.16)

y(1.0) = 0 v(2.25) = 0 y'(0.5) >0 y'(2.5) <0 .
The objective function to be maximized is

Z = -y'(0.5) - y'(1.0) + y'(2.0) +y'(2.5) , - (4.17)

which attempts to flatten the response on both sides of the pulse peak.

The frequency-sampling equalizer design is also not as sfraight—
forward as the pulse-shaping filter design in the determination of the
parameters N, T, and R. The point NT/2 corresponding to the equalizer
impulse response peak no longer coincides with the peak of the résp&nse
being constrained, namely the channel output, since there is a deléy'
in passage through the chénnel. Conseqpently, the‘time deléy must.be
either estimated and subtracted from the time of the constrained peak -
to give the proper NT/2 value or it can be obtained by iteration.
The delay was estimated from a sketch of the phase characteristic for
this channel to be approximately 0.25 s resulting in the vélue NT =

2.5 s. Thus, for an assumed sampling interval of T = 0.2t, the cor-

b
responding number of impulse response samples is N = 25, The para-
meter R is left as a variable to be determined by iteration.

The impulse-response output of a known transmission channel,
(4.15), which is in cascade with a frequency;sampling eqﬁalizer has
now been constrained by (4.16) and (4.17) to have a desired impulse
response. The equalizer consists of a comb filter with 25 delay
elements and a set of R resonators with unknown multiplier coeffi-

cients'{Hk}. The LINPO subroutine can now be used to solve this

linear-programming design problem to give theA{Hk}; However, the
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coefficients of the unknown {Hk} as defined by (4.6) and (4.7) must be
first calculated. Consequently, an auxiliary subroutine called COCAL2,
which is described in Appendix C, is used to prepare equalizer design
problems for a LINPO solution, similar to the way COCALl was used for
pulse-shaping filter designs.

The use of COCAL2 and LINPO to solve (4.16) and (4.17) for thg
unknown Hk is presented as an example in Section C.2. Results Qf that
solution are illustrated in Fig. 4-3 where the 25 discrete values of
~ the impulse response corresponding to the designed equalizer are
. plotted. Also shown is the output of the data channel when this
impulse response is applied to a D/A converter at the channel input.
By comparing the channel output with the constraint set of (4.16)'it>
can be seen that all constraints are satisfied. Nevertheless, the |
pulse shape does not approach the desired characteristic since there
is a large negative overshoot. Also, the channel output peak doesn't
occur exactly at t = 1.5 s since the maximum channel delay is aéfuaily
0.159‘s rather than the 0.25 s used to calculate the product NT. Con4_
sequently, the equalizer parameters N, T, and R were varied in an
attempt to improve the design but no significant improvément could be
obtained over fhe illustrated design of N = 25, T = 0.1 s, and R = 12,

The negative overshoot, which is a characteristic of frequency-
sampling eqﬁalization, can be ratiénalized by sketching the graphical
CO#VOlution of the equalizer output given in Fig. 4-3(a) with tﬁé
channel impulse response as in Fig. 4.2(a). Considering justlthe six
most significant values of h*(t), it can be seen that the negative
overshoot is formed as c(t) translates past the two negative h*(t)

values to the left of the h*(t) peak. If these two values were not
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present, the y(t) pulse peak would be monotonically formed without an
overshoot as c(t) translates past the two positive h*(t) values. Next,
as desired the y(t) pulse would be immediately forced toward zero by
the two negative values on the right of the h*(t) peak. Unfortu-
nately, this desired nonsymmetrical impulse response cannot be
obtained from a frequency-sampling filter with real multiplier cogf—

ficients, and thus the negative overshoot will always be present.

4.2.2 Transversal Equalizer Design.

Most of the design problems encountered during the frequency—
sampling equalizer design are eliminated when transversal equalizérs
are considered. Since the transversal filter has the éame‘nuﬁber Qf-
impulse response values as multiﬁlier coefficients, the parameters N
and R are equal; thus, the design problem is simplified by reducing
the number of unknowns that must be defined. ‘Additionally, unlike
the frequency-sampling equalizér, the LINPO requirement of real |
multiplier coefficients does not imply that the impulse response fof
this filter need be symmetrical. Since this filter also does not
have a cha;acteristic impulse-response peak at NT/2, there is no-
need to accurately estimate the delay through the channel to define
the NT product. The discrete input to the channel is the set of
multiplier coefficient values which are applied to the channel in
sequence, one every T seconds. Consequently, the primary require-
ment on the NT product is that the channel's fesponse to the impulse
response values in this time interval be of sufficient length to

span the constrained output interval.
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As an example, a transversal filter was designed to equalize the
channel described by (4.15) so that the constraint set of (4.16) and
(4.17) would be satisfied. All that remains to be specified for a
LINPO solution are the values for N and T. The same parameters are’
used as in the previous example, namely a sampling interval T'é,
O.th, and N = 25 impulse response values. Hence, the regultiﬁg NT
product of 2.5 s is approximately equal to the constrained time
interval and should be more than sufficient for the channel output
to satisfy the constraints. It will be shown in Section 4.3 that
the sampling interval has a direct effect on the transmitted energy
reqqirementvand can be optimized to reduce this energy.

The COCAL2 subréutine was used to calculate coefficients defined '
by (4.9) and (4.10), and then LINPO was employed to obtain a solution
to the design problem. The soluﬁion, which is described in more
detail in Section C.2, is illustrated in Fig. 4-4. The transversal
equalizer requires only three multiplier coefficients as indicated
by the three nonsymmetrical impulse response values in Fig. 4-4(a).
Since the last response value is at t = 1.8 s, the parameter N could
have been reduced to 19 with no effect on the results. However, N
will normally be set to a large value to eliminate the problem of
choosing exactly its minimum possible wvalue. By using this approach,
the LINPO solution will indicate the true number of impulse response
values required and specify the excess values to be zero. .Thus, the
multipliers and shift-register delays corresponding to these zero
values need not be implemented, however, the channel response will
occur earlier. The channel output produced by applying the thréé—

valued impulse response to the channel is plotted in Fig. 4-4(b).
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‘All constraint equations are satisfied and there are no overshoots to

cause jitter problems.

4.2,3 Timing Jitter Sensitivity

The sensitivities to timing jitter of the two types of digitali
equalizers were compared by considering the equalization of channels
with more severe characteristics. Both frequency-sampling and trans-
versal filters were deéigned to equalize the channels

n
co(®) = = E M P ) n=3, 4, (4.18)

in the manner of the previous two_design examples with thé-same ‘con=-
straint set, T, N, and R wvalues. Channel outputs, y(f), were then
plotted so that the intersymbol interference (ISI) distortién could
be calculated for each design as a function of.timing jitter. .This

distortion is defined by

[+

D = Z |y(ztb + tp)l " -({;.19)

2=0
2#3

where the time tp is the percentage of the Nyquist interval that the
sampling times at the receiver are displaced by jitter. The distor-
tion was next expressed as a percentage of the pulse peak, y(3tb)
vfor each design and plotted in Fig. 4-5 as a function of tp. It is
obvious that there is an appreciable advantage in using transversal-
filter equalization for channels where jitter may be present.
Furthermore, even if there was perfect timing, a frequency sampling

equalizer could not be designed with LINPO for the n = 5 channel in
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: Jitter as Percent of Nyquist Interval

Fig. 4-5. Comparison of Timing-Jitter Degradation.
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(4.18). Since the transversal equalizer has the inherent’advantéges
of being less sensitive to jitter and easier to design, the remainder

of this chapter will be devoted to its design.
4.3 OTHER TRANSVERSAL-EQUALIZER CONSIDERATIONS

It has been shown that the only unknowns to be defined before
using LINPO for a transversal-equalizer design are a set of constraintA
equations; N, the total number of impulse response Qalugs; and T, the
sampling interval. The selection of these parametefs will now Be cén-

sidered.

4.3.1 Effect of Constraint Set

Only one_constraint-equation‘set,v(4.16), was used.in the pre- = -
vious section to design the transversal equalizer. Consequentiy,
‘the effects of other constraint sets on the eqUalizer design were
determined‘for the chaﬁnel of (4.18) with n =.6, for which the
distortion effects were more pronounced. Summatized in Table 4.1
are nine of the sets of equations that were uéed. Starting with -

the set of seven constraints (NC = 7)

y(1.0) = 0 y(1.5) =1 v(2.0) =0
y(1.25) > 0.5 y(1.75) > 0.5 y'(1.0) > 0 o (4.20)

y'(2.0) <0,

additional constraints were added for each set, usually another time:
point at which y(t) was to be forced to zero. The parameters T =
0.1 s and N = 40 were used for all designs. For complete eliminé—

tion of ISI distortion, y(t) must be forced to zero at every time



TABLE 4.1

CONSTRAINT SETS

NUMBER OF CONSTRAINTS (NC)

EQUATIONS| t | 7 11 12 13 14 15 16 17 21

' .50 X X X X X X X X
.75 X X ,X.
.00/ X X X X X X X X X
.00 X X X X X X X X X
.25 X X
.50 X X X X X X X X
.75 o X

y(t).= 0 .00 X X X X X X X
.25 X
3. 50 X X X ‘X X X
.75 X
.00 X X X X X
.25 X
.50 X X X X
.25 | x X X X X X X X X

y(t) > .5
75 | x X X X X X X X X

y(t) =1 50 | X X X X X X X X X
.50 X X X X X X X X

y'(t) >0
.00 | X X X X X X X X X
.60 X X. X X X X X X X

y'(t) <0 :
.50 X X X X X X X @ X
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point which is an integer multiple of t. from the pulse peak. If

b
only a finite number of such points are so conétrained, some rééidual
distortion will exist. This is illustrated by the transversal filter
curve (n = 5) in Fig. 4-5, where for zero jitter a 0.2% residual dis-
tortion still exists. Hence, the number of time points at whicﬁ y(t)
was constrained to be zero was increased until the residual distor='
tion became insignificant. Typical output pulses resulting from the
designs are plotted in Fig. 4-6, with other'résults»summarized'in

Table 4.2, The tabulated results for NC = 11 through 15 indicate

that an additional multiplier is required in the equalizer for each

TABLE 4.2
COMPARISON OF EQUALIZER CHARACTERISTICS

Number of - Multipliers . Residual ISI Energy

Constraints Required Distortion Transmitted

7 7 ©1.240 75.6
11 i1 1.739 120.8
12 12 : 0.222 149.7.
13 .13 1 0.083 150.0

14 14 0.035 - - - 150.1

15 15 0.015 150.1

16 15 0.015 . 344.8
17 17 0.002 ‘ 554,3
21 20 0.000 . . 556.0

additional time point constrained to zero at an integer multiple of

t, from the peak. However, the energy transmitted to the baseband

b

channel, i.e.,

o N-1

Ep = fgz(t)dt =T Z h-m,2 , (4.21)
=0 ,

o
=]
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‘where g(t) 4 h*(t) =* gh(t) approaches é constant value. The resid--
ual distortion decreases with each added constraint and is approaching
zero; consequently, the multiplier value hm required to satisfy each
added constraint also is approaching zero. Therefore, the summation.
of (4.21) approaches a constant value. It can be seen from Table 4.1
that the last three constraint sets, NC = 16 through 21, force zeros
at time points between those resulting from the first six sets. >These
constraints result in the ISI distortion being reduced to an insig- .
nificant value at the cost of additional multipliers and a greatly
increased transmitted energy. Attempting to force y(t) to be zero
. at time points this close together requires éomponénts of é(t) to be

" transmitted at higher frequencies where the channel attenuation is

.much greater.

The binary data sequence 101011110010 was transmitted thrOugH

the unéqualized channel and then through thé same channgl using thev
NC = 15 constraint equalizer to illustrate the improvement obtained
by using this design technique. Since the time between bits of the
data sequénce is 0.5 s and the sampling interval of fhe eqdalizer
is 0.1 s, four equally-spaced zeros must be. applied to the equélizer'
bet&een each bit of the sequence so thaf the proper waveform will bé
generated. Comparison of the received waveforms in Fig. 4-7 éhqws
that the equalized channel output has no intersymbol interference.
Conversely? for the unequalized channel; detection errors aré péé—

sible even.in the absence of noise.

4.3.2 Effect of Sampling Interval
It has been indicated previously that N, the number of impulse

response values, should be made quite large so as to insure that
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y(t)

(a) No Equalization

-+
-
"

(b) Transversal-Filter Equalization

Fig. 4-~7. Effect of Equalization on Data
Sequence 101011110010.
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the product NT spans the constrained output time interval. Only the
pertinent number of shift register stages will be retained in the
final design. This leaves only the effect of the parameter T to be
determined.

The value of T is bounded on the lower end by the availablé
logic speed and on the upper end by the Nyquist interval, i.e.,
tc <T f-tb’ where tc is the total time required for any one of-thg
N multiplications plus one multi-input addition needed to calculate
each transversal filter output sample. Hence, the effect of varying »
the parameter T between these limits was observed for equalizers
designed with the NC = 15 consfraint set and N = 40. The most sig-
nificant reéult from these designs was the chaﬁge in transmitted

energy ET defined by (4.21). These changes are displayed in Fig.

in value there is

4.8 for a number of channels. As T approaches tb

a great increase in required energy. A small percentage of thé'
increase is a consequence of multiplying by T in (4.21), but the
primary increase is caused by the reduction in bandwidth of the
g(t) pulse applied to the channel. As T increases, the high
frequency components of g(t) a£e severely attenuated as a result
of the sin(wff)/nfT frequency characteristic of the D/A converter.
However, higher frequency components of g(t) must still be trans-
mitted to satisfy the constraints on y(t). Hence, a very large
increase in the transmitted energy. Conversely, as T approaches
zero the bandwidth of the transmitted pulse becomes excessively
large and since there is no energy minimization in the design
constraints, these higher frequency components are not forced to

zero, resulting in a slight increase in the transmitted energy.
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Comparison of Transmitted Energy Requirements.
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It can be observed from the curves of Fig. 4-8 that a ratio of

T/t, ® 0.4 minimizes the transmitted energy. For example, if the

b
equalizer with NC = 15 and T = 0.1 s were redesigned using T = 0.2 s
the transmitted energy would be reduced from 150.1 st as indicated
in Table 4.2 to approximately 100 st. It was also observed from
the series of equalizer designs that the tails of the received
pulses increased in magnitude as T varied from the minimum energy

value of 0.4tb. The number of multiplier coefficients required did

not change appreciably as T varied.

4.3.3 Location of Equalizer

It hés been assumed throughout this chapter that the equalizér
was positioned at the channel input, because there is a speed advan-
tage in using this location for high data-rate applications. If it
is assumed that 0.4tb =T-= tc then the maximum data rate th?ough
the equalized channel is l/tb = O.4/tc. For the normal transversal
filter with N multipliers, tC consists of the time required to
perform one multiplication and one multi-input addition. However,
with the equaliéer at the channel input, multiplication is not
required. Only one of two possible bits, a ONE or ZERO, will be
applied to the equalizer input, and eventually to the equalizer
multipliers, during each sampling interval. Therefore, each multi—
blier can be replaced with a storage register which contains the
multiplier coefficient; hence, tc is the time required to read and
add the appropriate coefficients. By reducing tc’ the maximum data
rate has been incfeased. Multipliers would normally be required

for equalizers at the channel output, since there is a wide range
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of possible inputs from the analog channel. However, there are
advantages to equalization at the channel output, For example, in
the case of the adaptive equalizer there would be no need to trans;
mit the impulse responce c(t) back to the channel iﬁput in order tq
update the equalizer coefficients. If equalization is desired at.
the channel output, the linear progrémming design procédure of this
chapter is still valid. This is illustrated by combaring the chan--
nel output of Fig. 4-6(c) with the equalizer outpuf plotted in Fig.
4-9(b). The former re5ponsé was obtained with a transversal equal-
izer designed and used at the channel input, while the 1attef»is 

the output with the equalizer at the receiver.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

It has been shown that linear programming oﬁtimization tech-
niques can be employed effectively in the time domain to design
finite-duration impulse-response digi;al filters. It has been
further demonstréted that this technique hés direct application to
the design of frequency-sampling filters to be used for pﬁlse gen-
eration or matched-filter detection, and both frequency—sampling |
and transversal filters to be used for equalization bf transmission

channels with known impulse responses.
5.1 CONCLUSIONS

Frequency-sampling filters, which have not been designed pre—
viously in the time domain by any techniQue, can be defined readiiy
by using linear programming to specify filter multiplier coefficignt.
values. It was illustrated with examples that a simple design pro-
cedure which can be employed is to: (1) constrain the impulse
response equation of the filter to have desired values at critical
time points, (2) define the number of imﬁulse—response values,'maxi—;
mum number of resonators and sampling-interval parameters for the
filter, and (3) solve the resulting set of constraint equations with‘_-
a linear programming algorithm. It was also shown that the number
of response values and sampling-interval parameters are defined by

the significant duration and point of symmetry of the filtef:impuisev

95
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response, whereas the number of resonators are defined by the impulse
response bandwidth, if available, or by iteration. Comparisons gf
filter designs with desired pulses indicate that this technique yields
very accurate pulse shapes with minimum hardware requirements.

This design procedure can be extended readily to the design‘of
digital equalizers for known transmission channels by consfraining
the output of an equalizer-channel cascade rather than a filter
impulse response. It has been concluded by studying the equalizatioﬁ '
of typical transmission channels that the transversal equalizer is
easier to design, requires considerable less hardware, and is less
sensitive to timing jitter than the' frequency-sampling equalizer.

It was further observed from a study of transversal equalizer con-
straint sets that an additional multiplier is required for each
zero specified in the output response when épaced at Nyquist time
intervals, but that the required transmission éenergy approaches a
constant value. However, if zeros are forced in the response at
closer time intervals, the transmitted energy requi?ements greatly
increase. Results of varying the sampling interval in a series of
.equalizer designs indicate that this energy can be.minimiéed by
proper choice of the ratio of sampling to Nyquist intervals.

The ability developed in this study to work directly from chén—.
nel time-domain characteristics allows the effect of both amplitude
and phase distortions to be considered simﬁltanebusly. Unlike
frequency-domain designs, which usually require separate-filters to
compensate for each source of distortion, one‘equalizer éan be

designed easily to compensate for both impairments. Furthermore,
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the design technique is valid for equalizers positioned at either the

transmitter or receiver.
5.2 RECOMMENDATIONS FOR FURTHER STUDY

Several possibilities exist for improvement in the equalizer
design technique of this study. The feasibility of modifying or
replacing the linear programming optimization algorithm should be

investigated. For example, if an objective function in the form of
Z =c.X, +c.X. + ...+ c.x (5.1)

was used, the transmitted energy (4.21) could be minimized directly. "
This would require a nonlinear programming routine because of the
nonlinear objective function. Another possibility ié to use integer
linear programming, i.e., the variables X, of the problem are inte-
gers. The integer variables would more accurately represent the
possible multiplier coefficients, because the coefficients must be
implemented with a finite number of bits. Thus, only a discrete,
equally-spaced set of values would be possible solutions to the
linear programming problem.

The linear programming technique could be applied to the design_
of other classes of recursive digitél filters. Since these filters
typically have an infinite impulse response, it may be possible to
minimize the residual intersymbol interference with fewer multiblier
coefficients using less transmitted energy than the transversal
equalizer requires.

Finally, the use of the time-domain linear-programming technidue

to design filters should be investigated for other applications. For
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example, the design of resonatoré for digital formant synthesizers
would probably be a good application. Since the speech process can
be described as the excitation of resonators by a series of impulses,
specifications for synthesizer designs are often in the form of |

desited impulse responses.



APPENDIX A

LINEAR PROGRAMMING FUNDAMENTALS

The general linear-programming problem is to solve for the R.

non-negative variables xj which maximize the objective function

YA 1% + c, X, + ... f-c X K ‘ . (AD)

subject. to the M linear constraint equations

351%) F 849%y T e FageXg

jv ila
o

i=1,2,...,M. (A.2)

One solution to this problem, namely the'simplek procedure outlined
in Section 3.2, is the subject of this appendix. Theoretical aépects
of the simplex method areldiécussed first, followed by an example tq
illustrate the method.

The simplex procedure involves a series of iterations, each @f
which generates a new basic feasible solution to (A.2) that yields a
greater value of the objective function than the previous solution.
The procedure continues until a finite maximum value of the objéctive
function is obtained or an unbounded solution is indicated. The
aforementioned terms, e.g., basic feasible solution, were defined in
Section 3.2.

Any inequalities in (A.2) are converted to equalities by the

inclusion of non-negative slack and surplus variables. For example,
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assuming in (A.2) that "<" holds for U equations, ">" for V-U

equations, and "=" for M-V equations then
R .
Z ahjxj + ¥R+h bh . h=1,2,...,U0, (A.3a) -
j=1
R _ .
E: aijj " Xpue T bk k = U+l1,...,V , (A.3b).
=1 | .
and
R .
Z a,5%; = b p = VHl,...,M .. (A.3c)
j=1 ‘ '

Hence, there are U slack va;lables Xeth and V=U surp}us varlablesva+k.

The addition of these variables will have no effect on the final solu-
tion since tﬁéy will beladded to the objective function with a zero
cost, i.e., a coefficient cj.= 0, j= Rfl, R+2,...,N. |

The M equations (A.3) in N unkno&ns,»N = R+V, can be written inl

vector notation* as

=b, , (A.G)

Ax= X2, + ...+ X8y
with the objective function written as
Z=C1Xl+...‘+ chN=£_}£ . | ‘ ('A.S)"

It will be assumed that the rank of A is M and that a solution to" (A.4)

*A general matrix, e.g., A will be denoted by a capital letter,
whereas a single-row or single-column matrix, called a vector, will be’
denoted by a lower-case letter, e.g., X. A column vector will be
denoted by parentheses, e.g., x = (X,,%,,...,X ) and a row vector by

Bes DT Mgy
brackets, e.g., ¢ = [cl,cz,...,cN].
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exists, i.e., N> M. If N =M, there is a unique.solution fo the prob-
lem and there is no need for linear progfamming. On the other hand if.
N > M there are a number of solutions and linear prograﬁming is usedltg_
determine the optimal solution. If either of the two éssumbtions dqes
not hold, the simplex method will indicate that eitherwtﬁere is no
solution (due to inconsistent constfaints)'or there is redunda;cy in

the constraint equations.¥*
A.1 ALGEBRAIC FORMULATION OF SIMPLEX PROCEDURE

The simplex solution of the genéral linear—ﬁrogramming‘problem is
an algebraic technique, which is best described in 1inear algebré'
terminology. Any set of M linearly .independent columns of_é‘f;fms é‘_
so-called "basisﬁ for the vector space (EM) and thevmatfix §defﬁed_
from these M columns is called the 'basis matrix".- Eécﬁ coldmn of E_v
is identical to a column of A, but the order of the'columné inlé may
be different from_ér Corresponding to each basis matrix there éxists

a '""basic feasible solution", to (A.4), i.e.,

Xp»

X = Eﬁl b= (x

Xy b= (xpyseeesXpy) - (a.6)

The elements of the column vector Xp are called "basic variables' and
represent values for M of the N unknown variables Xy of (A.4). The

variable Xy which corresponds to the basic variable is determined from

~the column order of A in the basis matrix B, e.g., if the third column

*For a further discussion of inconsistency and redundancy see
Section 4.6 of Hadley [67].
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of A is the first column of B then x,. = Xqs etc. The remaining

Bl
N-M variables will be assigned zero values.

For each basic solution, (A.5) can be written as
+ (A.7)

Z = ‘¢, X

cgi*pr t occ T Cpv¥pM T Sp Xp

The component of ¢ that corresponds to ¢ is again determined by the

Bi
column order of A in B, e.g., Cp] = ©3 if the third column of A is

the first column of B. The other N-M coefficients of ¢ have no effect
on (A.7) since they are multiplied by zero-valued variables. The.prob—b
lem of selecting the columns of A which constitute the initial basis
matrix will be discussed in Section A, 3,

Each iteration of the simplex procedure consists of replacing one
column of the basis matrix B with one of the N-M columns of A not in
the basis at that time. This substitution must result in a feasible
basic solution (not just a basic solution which could contain negative
variables) and increase the value of Z in (A.7). Consequently, a pro-
cedure will be discussed in the remainder of this section for deter-
mining the column to remove from B so that a feasible solﬁtion is
obtained and the column from A to substitute into B so that Z is-
increased. However, certain variables must be defined first.

Any column of A can be written as a linear combination of.the
columns of B since B is a basis matrix. For example, the jth column

of A is

= ylj 91 + .00+ yMj EM =By.. (A.8)
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The subscript order of the vector Xj components is important. The .
first subscript refers to a column of B that the component.is multi-
plied by and the second refers to the column of A that is being
expressed as a 1inear combination. Another function of the vector

zj is to define a parameter, zj, where

25 = Y5 Cpp + ... +-yMj Cpy = Sp ¥ (A.9)

which is used to indicate possible increases in Z.
It has been shown [67] that the column from A to be inserted
into the basis should be 3 where k is defined by*

2 T % T m?“ lz, = ey 2y - eg <0} | (A.10)

and that the column of B to be removed is hr where.

X X, . .
--——Br = min ———Bl 5 >0 . ) (A° 11)

y.
Yek 1 | Yik ik
These substitutions will insure a basic feasible solution after each
iteration and will on the average give the largest possible increase
in Z per iteration. The cost parameters, cj in. (A.10), are constants
fixed by the objective function, but the parameters zj must be recal-

culated after each iteration. Likewise, the parameters x and Yik

Bi
of (A.11) must be recalculated after each iteration. The repetitive

calculations that are required for each iteration can be summarized.

as follows:

*The set notation {as; f(aj)} is used to define the set of
elements a; which satisfy some restriction f(ai). Consequently,
the element or elements in that set which have the smallest value
are represented by m}n {aj, f(aj)l.



104 -

(1) Calculate the basic solution Xg witﬁ (A.6) and the new basis
| matrix B. |
(2) Calculate the vector Xj w#th (A.8) for every éj not in the
basis.

(3) Calculatezj with (A.9) for every zj from step (2).

(4) Calculaté zj - cj for every result of steps (2) and (3).

(5) Select the column 2, to enter the basis with (A.10).

(6) Calculate the ratio xBi/yik for every yik'>.0 of zk{

(7) Select the column-_'t_>T to leave the basis with (A.11).

(8) Calculate the new basis matrix by substituting 2 forlkrn'
This procedure can end in one of two ways. If zj - cj > 0 for all .
g% not in the basis, then the last basic feasible solution is an
optimal solution. If there exists some column éj not in the basis

such that zj - cj < 0 and yij.:-o for all i = 1,2,...,M then an

unbounded solution exists.
A.2 EXAMPLE USING SIMPLEX PROCEDURE

‘'The example that was solved by graphical techniques in Section
3.2 will now be worked by the simplex procedure to illustrate the

steps of each iteration. The problem was to maximize

subject to the constraints

»
+
o]
| v
N

2 ’
3xl + X, <15,

and .
Xy + 2x2‘i 9 .
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After adding one surplus and two slack variables, the appro@riaté

matrices are .given by

1 1 -1 o0 o©
A= | 3 1 0o 1 o0 ,
1 2 0 o0 1

b=(2, 15 9,

and

c=1I1, 1,0, 0, 0]

As will be illustrated in Section A.3 a basis matrix which will give

an initial feasible basic solution is

1 0 0
B=(a, 3, a) = 3.1 0],
1. 0 1

where the corresponding solution is

x, =B Llb= (2,9 7

—B
The vectors not in the basis are a, and 24 Hence, from (A.8)'
-1
Yy = B a, = a, -2, 1)
and
-1
13 = .B_ 9_’3 = (—13 39 l)

Y

The solution is not unbounded since at least one yij > 0 for both

vectors. From (A.9),

22 = EB .Y_Z = [13 0: 0] (1, -'2,-1) = 1

and ' .

z, = C -1 .

Lp I3
Since
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1-1=0,

-1-0=-1

it follows from (A.10) that the vector to be entered is y3, i.e.,

k = 3. Since two Y3 components are positive, it follows from (A.ll)

that two ratios must be calculated, i.e.,

B2

Y23

which implies r

Thus the second

B = (g, a4, ag) = 30 0

*33

and —== %-= 7 ,'

2; hence EQ_(or equivalently

Y33,

a must be re ed.
_4) . remov d

iteration starts with

~Execution of the second repetition yields

EB = (5, 3, 4)

for the basic solution with

and

b2

0
]

(¢]
n

(1/3, - 2/3, 5/3) ,
(1/39 1/35 - 1/3) 5
-2/3 , .

1/3 ,

for the remaining variables. Consequehtly,'the vector to be entered

is given by k = 2, while the ratios
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X X
Bl_o1s  ad B2
12 Y327 75

a_ is replaced with a,. The new basis matrix is

imply that 23 = ag 2

and the corresponding basis solution is

xp = (6.2, 4.6, 2.4) .

It then follows that

0.4, 0.2, -0.2) ",

Iug

(~0.2, 0.4, 0.6) ,

&
]

z, - ¢ = 0.2 ,
and
Z5 - C5',= 0.4..-

Since.zj - Cj.i 0 for the two vectors not in the basis, the basic’

feasible solution is optimal. Hence, the complete solution is
x = (4.2, 2.4, 4.6, 0, 0) ,

and the corresponding maximum value of the objective fuﬁction'is;
Z=cx=6.6.

A.3 PROCEDURE FOR FINDING INITIAL BASIC SOLUTION ..

The  initial basic feasible solution is obtained by always'starting
- the procedure with ‘an identity basis matrix, I. If an M-by-M identity

matrix can be obtained by manipulation of the columns in'4, as would be
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the case if all M constraint equations require slack variables, these

M columns are used for the first basis matrix. Then
-1
x,=B b=Ib=}b.

Since b is required to be non-negative, the initial basic.901ution:
is feasible.

If a complete I matrix does not appear in A, a ﬁew~set of coﬁA,
straint equations are used so that an I matrix will be aVailablé;

namely,

Ax+1Ix =b.
Ax+Ix =b

The  vector X, represents artificial variables that are added,tovfhe
original constraint equations with unity coefficients so that anll
matrix éan be formed. The components of £he artificial vecfor'thaf“‘
correspond to constraint equations with slack vériables'wili be zero,
To illustrate the use of artificial variables consider stafting
the example in Section A.2 without being given the initial basis
:

matrix. The constraint equations with one artificial variable added

are

$1 + Xy = X4 + X, < 2,

3xl + X, + X, =15 ,
and

3 + 2x2 + X =9,

and the expanded coefficient matrix is
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The initial basis matrix is
B=1 215 25 3¢ 1,

where e

1 represents the artificial vector. Then the initial basic

feasible solution is Xp = b. However, this is a solution to the new .
constraint set, nét the original set. Any solution to both sets must
have__:_c_a = 0. Hence, the iterations must drive the nonzerb componen;s:
of X to zero. This can be done with -a two-phase objective eqﬁatibn,
During the first phase, the artificial variables are'gssigned a

cost of -1 and the other variables a cost of zero. Thus, the first -

phase objective function

M

7% = - E: X _.
- Tai

i=1

will be maximized by the simplex procedure. Since the simplex -
procedure prevents variables from becoming negative, the maximum
value of Z* is zero and all artificial variables will be zero when
this maximum is reached. At this point, which is the end of Phase 1,.
a basic feasible solution to the original problem is availabie. If
the maximum value of Z* is negative, the artificial variables cannot
be driven to zero and no feasible solution to the problem exists.

The basic feasible solution which exists.at the end of Phase 1,

‘where max {Z*} = 0, is not optimal. Therefore, Phase 2 consists of .
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assigning the original costs to the legitimate .variables and costs of
zero to the artificial variables. The simplex procedure then obtains
the optimal solutions in the normal manner.

Continuing Phase 1 for the example, the columns of A not in the

= (-1, 0, 0), it follows

first basis are a,, 2, and 33. Since-_c:._B
that

'Y'l =(, 3,1,

_ZZ = (19 1, 2) ’
and

¥3 = (-1, 0, 0) .

Then, since all non-artificial variables have zero cost values,

zy - ¢ = -1,

zy = €y = -1,
and

z2y = €y = 1.

Hence, k = 1 and the ratios are

X X ’
BB, B2 g B3l

Y11. Y21 Y31

Since these ratios imply that r = 1, column 21 =& is removed from

the basis and replaced with_gl. This gives
1 0 0
B = 3 1 0 and Xp = (xl, X, XS) .
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The artificial variable has been removed from the basis. Since any

variable not in.the basis is assigned a zero value it follows that

3
Z* = - E: x ., = 0.
ai
i=1

Phase 1 has ended with a basic feasible solution. . The resulting B
matrix is the one that was initially assumed in Section A.2 to work

the original example, i.e., Phase 2 of the simplex procedure.



APPENDIX B

SUBROUTINE LINPO

LINPO is a double;precision computer subroutine written in Fortran

IV which uses the simplex method of Appendix A to solve the general
linear-programming problem. LINPO is a mnemonic for LINear Program-
ming Optimization. This subroutine was developed by modifying an
existing routine [69] so that the internal calculations of the iter-.
ative procedure could be followed and the routine could be used to
design digital filters. Inétructions for using the subroutine, an
example solution, a flow—éhart, and a program listing are contained.

in this appendix.
B.1 USER INSTRUCTIONS

The call statement for the subroutine is CALL LINPO(A,B,IE,NEQ,

NVA,NSP,NT) with the required inpuf parameters described in Table B.1.

TABLE B.1
LINPO INPUT PARAMETERS

A: A two-dimensional double-precision array of real numbers repre-
senting the objective-function and constraint-equation coeffi-
cients. Coefficients of the objective function multiplied by
-1 must be placed in the first row with each of the remaining
rows containing the coefficients for one constraint equation.

B: A double-precision array of non-negative numbers representing
-the right-hand sides of the constraint equations and entered
in the same order as the A array. The first value, which cor-
responds to the objective function, must be zero.
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IE: An array of integer constants representing the type of inequality
for each equation. The constant is one of the integers zero
through three depending on the type, namely, objective function
(IE = 0), less than or equal (IE =1), equal to (IE = 2), or
greater than or equal (IE = 3). The integers are entered in the
same order as the B array.

NEQ: Integer constant M + 1 equal to the number of constraint equa-
tions including the objective function.

NVA: Integer constant R equal to number of unknowns in the original
constraint equations.

NSP: Integer constant specifying tableau output, i.e., tableau out-
put (NSP = 1), or no tableau output (NSP = 0).

NT: Integer constant specifying type of digital filter to be.
designed, namely, frequency-sampling filter (NT = 0,1,2,3) or
transversal filter (NT = 4,5,6,7). Furthermore, the LINPO sub-

routine can be used for general linear-programming applications
other than the design of digital filters by setting NT > 8. '

B.2 EXAMPLE PROBLEM

The problem chosen to illustrate the use of LINPO is the one
which has been worked by a graphical technique in Section 3.2 and
by hand computation in Section A.2, i.e., to find the maximum value

of Z where

subject to the constraints

and +2x, <9,

will now be solved using subroutine LINPO. The main program required
is illustrated in Fig. B-1 with the corresponding subroutine output

given in Fig. B-2.
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DOUBLE PRECISION A(27,50), B(4)

DIMENSION IE(4)

DATA A/-1.D0,1.D0,3.D0,1.D0,23%0,.D0,-1.D0,1.D0,1.D0,2.D0,1319%0. /
DATA B/0.D0,2.D0,15.D0,9.D0/

DATA IE/0,3,1,1/

DATA NEQ,NVA,NSP,NT/4,2,1,8/

CALL LINPO(A,B,IE,NEQ,NVA,NSP,NT)

STOP

END

Fig. B-1l. Main Program for LINPO Solution.

Information is 6utput in a tableau form, wheré the tableau
entries are defined in Table B.2. Two rows of the tableau contain
values for zj - cj. For Phase 1 of the simplex method, zj - cj
values in the last row are used to determine the vector 2y to enter
the basis, during which time the first row values are not significant.
Conversely, for Phase 2 the first row values are used and the last rpw'
has no significance. The current objective function value is the last
entry in the last row for Phase 1 and the last entry in the first row

for Phase 2. The components of each Xj and the basic solution compo-

nents XBi’ i=1,2,...,M, are contained in the other M rows of the

TABLE B.2

TABLEAU FORMAT

Al AS XB
zl—c1 . . z5—c5 Z
11 Y15 *B1
Yo1. Y25 *B2
Y31 Y35 *B3
zy-¢q o« . zg~Cg VAS
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tableau. Also printed after each iteration are the vectors.currently
in the basis and the vectors whiCh.were enﬁered and removed to form
thét basis. However, the initial vector entered and removed statements
have no significance. All artificial vectors are represented by QO.
Infermediate computer solutions contained in the tableau of.Fig.'
'B-2 agree with the results obtained by hand computation in Appendix A.

for example the last.iteration values in Section A.2 were

(4.2, 4.6, 2.4)

o
[}

(0.4, 0.2, -0.2)

IS

= (0.2, 0.4, 0.6) ,

&
1

Z, " = 0.2 ,

1

25 = Cg 0.4 ,

and 7 = 6.6

Each of these values can be found in the appropriate columms of.

.Tableéu 2 of Phase 2.
B.3 FLOWCHART AND PROGRAM LISTING

A flowchart and program listing for ;he LINPO subroutine are
given in Figs., B-3 and B-4, respectively. The'calculatiénsv(A.é)
fhrough (A.11), as discussed in Appendix A, make up the right-hand
loop in the flow chart ‘and each passage througﬁ the loop répresents
one iteration. The results of these calculations can be printed out
at the end of each iteration in the tableau form. The left-hand
loop determines if the solution at the end of Phase 1 is-feasiblé

and if so, sets up the problem for Phase 2. At the end of Phase 2
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~a branch of this loop calculates (from the optimal solution) the

digital filter coefficient values H

and (—1)k21-Lk, k=1,2,...,NVA-1,

0
for a frequency-sampling filter design or (—1)mHm, m

0,1,...,NVA-1,
for a transversal filter design. These coefficient values along with
the optimal solution are then printed. Filter coefficients for a
frequency-sampling and a transversal filter design example are printed

in Figs. C-6 and C-7 respectively.
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SUBRDUTINE LINPG(A,R,IE;K“D,NVA,NSP,NT)

C THIS SUBRNUTIME SNLVYES THE CENERAL LIMEAR-PROGRAMMING
C PRNRBI EM RBRY THF SIMPLEX METHND, THE SURRNUTIMF ACCEPTS
C UP TO 25 COMNMSTRATINT EQUATIONS AND 40 VARIABLES.
C . ’ )
DIMENSTION L 27)s1E(NEDQ)
DOUBLE PRECISION A(274 50) W ( 27),X XMIN, B(NFD),H(40)
COMMON /HMAME/ 'H
INTEGER AOA(ZOO),AOAI(ZOO) AD ANJBN, XN BL,ON
¥J11=0
NATA BL/? '/
DATA XN/VX
DATA AN/ YAY/
DATA BN/'R
DATA DN/YQY/
: GO TO 422 ' : C ' '
C WRITE TABLEAU HFADINGS AND VALUES (THRU STATEMEMT.421)
400 IF {(NSP.ED.D) GD TO 421 )
' JJd1=JJJ
KPH=1

TF(K.ENL]) KPH=2
TF(K.GTal) KPH=1
WRITE( 6,401 JKKK 4KPH
401 FDRMAT('0',51X,‘TABLEAU',I?,1X,'PHASE',IZ)
TF(KJLLLEN,0) 6N TO 402 '
MRITE(A,403)L(JK)KJ11
GO TO 405
4072 WRITE(6,404) L(JK),KJll -
403 FORMAT('0',20X, 'VECTOR FNTFRFD A',12.41X,'VFCTOR'
1* REMOVED A',12) :
4G4 FORMAT('0%,20X, '"VECTOR ENTERED A',12,41X,'VFCTDR'
1* REMOVED 0Q',12) -
405 WRITE(6,406) ' _
404 FORMAT('Q", tBASIS. VECTORS )
PO 407 1=1,JJJ .
ADAL(T1)=BL
AOA(T)=AN
_ TF(T1.EQ.JIJd)  ADAYL(T)=XN
407 TF(1.EQeJdJJ) AQA(T)=BN
ITF(JJJ.LEL.O6) GO TO 408 : .
WRITE(6+409) (AOAL(I) ACA(I),I,41=1,J04J1)
0 TO 410 ‘ :
408 JJJJd=JId1-1 _ - .
WRITE(64409) (ADAL(T)ZADA(I) 41,1=1,0J0JJ )y
1ADAYL (JJJ1)»ADA(IIIL) ,
4009 FORMAT( 41 ,24X,6(2A1,12,13X))

Fig. B-4. Progfam Listing for Subroutine LINPO:



410

411
412

413
414

415

416
417
418
419
420

421

422
423
424
425
426
427
428
429
430

Fig.

CONTINUE
Jdr=JdJJ
IF(JJJeGT6)
DO 411 I=1,11
LiL=BL

AO=BL
TF{I.GT.1) LL

JJl=6
I

L=L(1)

IF(1.GT.,1) AO=AN

TF(L(T).EQ.O.
TF(I.EN,ITI)
IF(T.EQ.IITD)
WRITE(64412)

AND.I.GT.I) AO=0N
LLL=BL

AO=BL
ADZLLLy(A(I4J)4d=1,JJ1)

FORMAT(!' ', 4X,A1l,12,11X46(D15.8y 2X))

K1K=2
JJll=6
JJl=JJ1+1
JJJdl=JdJJd-6

TF(JJJ1)421,421 4414
JJ11=JJJ1+J4J11

CTF(JJJ1.GT.6)
1F(JJJ1.LE.6)
WRITE(6,417)
GO TO 418

JJ11l=gJ11-1

JJ11=6%K1K
GO TO 415 :
(ADAL(1)9ADA(T),I41=JJ1,JJ11)

TF(JJ1.6T«JJ111) GO TO 416

WRITE(6,417)

(ADAL(1)yADA(TI)yI,41I= JJl JJlll)v

1A0A1(JJ11),A0A(JJ1L)

GO TO 418
WRITE(64417)

ACA1 (JJ11),A0A(JJLL)

FORMAT('0',23X,6(2A1,12,13X))

DO 419 I=1,11
WRITE(64420)(

I
AlTI,J),J=Jd1,JJ11)

FORMAT(' ',18Xy6(D15.892X))

JJJd1=d4J1-6
JJ1=JJdl1+1
K1K=K1K+1
GO TO 413
CONTINUE

TF(K) 457,45649457

CONTINUE

FORMAT(47X,144D20.8)
FORMAT(*0',56Xs "FEASIBLE")
FORMAT('0',56Xs ' INFEASIBLE")

" FORMAT (46X, 'VARTABLE'y7X,y '"VALUF')

FORMAT(1Xy//,

45X, QHOPTIMUM 7,D20.8/7/)

FORMAT (53X, 'BASIC SOLUTION'/) .

FORMAT(1X,55X

FORMAT (1H , 'ROWS EXCFED ALLOWABLE MAXIMUM OF 251,

B-4 (Continued).

s "UNBOUNDED?'// /)

Program Listing for Subroutine LINPO.
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1' EQUATIONS'//'PROCFSSING TERMINATED?) ,
431  FORMAT(1H ,'COLUMNS EXCEED ALLOWARLE MAXIMUM OF',
1' 40 VARIABLES'//'PROCESSING TFRMINATED') ~
c READ INPUT DATA (THRU STATEMENT 447)
11=NEQ
JJ=NVA+1
432 IF(11-25)434,4434,433
433 WRITE(6,430)
GO TO 507
434 TF(JJ~ 41)436,436,435
435  WRITE(6,431)
GO TO 507
436  111=11+1
JII=JJ+ 11 .
DO 437 I=1,111
W(1)=0.0
L(1)=0
DO 437 J=JJ,yJJJ
437  Al1,J)=0.0
DO 438 J=1,NVA
438  A(I111,J)=0.0
JJJ=JJ
DO 445 1=1,11I
JK=TE(T)
439 TF(JIK) 5079445440
440  TF(JK=3)441,441,507
441  JK=JK-2
TF(JK 442,444,443
442 A(1,Jd0)=1,
L(T)=JJJ
JIJ=JdJJ+1
GO TO 445
443 A(1,4Jd)=-1.
JJI=JIJ+1
444 LL1)=0
445  CONTINUE
DO 446 1=1,11
446 A(1,JJJ)=B(1)
JI=JJJ
c WRITE DATA LOADFED
WRITE(6,447)
447  FORMAT('1',54X,'DATA LOADED')

c START OF SOLUTION PHASE
448 KKK=0 :
JK=1
K=0 : _ :
C ADD ARTIFICIAL VARTIABLES TO PROBLEM (THRU STATEMENT 455)
449 I=1 '

Fig. B-4 (Continued). Program Listing for Subroutine LINPO.
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451
452

453
454

455
456

457

45R
459
460
461

462
463

464

465
466
467
468
469
470
471
472

473

Fig.

I[=1+1

IF(1-T11)451,455,455
TF(L(1))450,452,450

DO 454 J=1,J4J
TF(A(TI,J))453,4544453
ALTTIT40)=A(T114J)-A11,4J)

CONTINUE

GO TO 450

GO TO 400

K=T111

DETERMINE VECTOR TO ENTER BASIS (THRU STATEMENMT 463)
J=0

W{K)=0,0

L(K}=0

J=J+1

TF(J-JJ)4594,462 4,462
IFIDABS(A(KyJ))eLEL.O0.1D-08) A(K,J)=0.
IF(A(K,J))460,4584458
TFIW(K)-A(KyJ))4584458,461
WIK)=A{KyJ)

L(K)=J

GO TO 458

TF(L{K)) 463,492,463

KJ=L(K)

DETERMINE IF SOLUTION IS UNBOUNDED
DO 464 1=2,11
TFIA(T KJ) 46444644465

CONTINUE

WRITE UNBOUNDED

WRITE(64429)

GO TO 507

DETERMINE VECTOR TO LEAVE BASIS (THRU STATEMENT 473)
I=1

JK=0

I=1+1

TF(A(T1,KJ))G66,466,468

TF(DABS(A(I KJ))I=0.1D-08)4694469,470
A (I,K\))-_.O.

GO TO 466

X=A(I,JJ)/A(1,KJ)

IF(JK)4T) 44724471
TF(X=XMIN}4T72,466,466

XMIN=X

JK=1

GO TO 466

X=A(JKyKJ)

KJ1ll=L (JK)

B-4 (Continued). Program Listing for Subroutine LINPO.



474

475
476

477

478
479

480

481
482

483
484

485
486
487
488

489
490

491

492
493

494

495

Fig. B-4 (Continued).

L{JK)=KJ

CALCULATE NEW TABLEAU VALUES (THRU STATEMENT 491)

DO 474 I=1,111

W(T)=A(1,KJ)

TJ=JK-1

DO 482 I=1,1J

N0 482 J=1,JJ
TFIA(JK 3J) V47594824475
IF(DABS(A{JK,J))=0,1D-08)4T64,4763477
A(JK,J) =0, '

GO TO 482

TF(W(T) 478,482,478 :
IF(DABS(W(I))=0.1D-08)479,479,480
W(i)=0.

GO TO 482

AT oJ)=A(T 3 J)=WIT)X(A(JIK,J)/X)
IF(DABS(A(T4J))=0.1N=-08)481,481,4R2
All,J)=0.

CONTINUE

TJ=JK+1

DO 490 I=T1J,111

NO 490 J=1,JJ

IF(A(JK,J))483, 490,483

TF(DABS(A(JK J))=0e1N=08)484 44844485
A(JK ,J)=0,

GO TO 490

TF(W(T))486,490,486
TF(DABS(W(I))-0.1D-08)487,487,488
W({I)=0.

GO TO 490
AlTed)=A(T4J)=WIT)X(A{JIK,J)/X)
IF(DABS(A(I,J))=0.1N=08)489,489,490
A(1,J)=0, :

CONTINUE

PO 491 J=1,JJ

A(JKyJ)=A(JIK,J)/X

KKK=KKK+1

GO TO 400

TF(K=1)497,497,493

DETERMINE IF SOLUTION IS FEASIBLE
IJ=JJ-1

IF (DABS(A(KyJJ))=0,1D-08)494, 494 496
CONTINUE

WRITE FEASIBLF

WRITE (6,424)

DO 495 J=1,JJ

A(TI11,4)=0.0

K=1

Program Listing for Subroutine LINPO.
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497

498

499

500

501
502

504
505

506
507
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KKK=0

GO TD 457

MRITE INFEASIBLE

WRITE ( 6,425)

GO TO 507 - ‘
WRITE OPTIMUM VALUE OF OBJECTIVE FUNCTION
WRITE (6,427) AllsJJ)

WRITE (6,428)

WRITE (6,426) _

WRITE LIST OF REAL VARIABLES

DO 498 1=2,11

WRITE (65423) L(1)yA(I,Jd)

IF (NT.GE.8) GO TO 507

VRITE(6,499) | | o
FORMAT(///447%X,'DIGITAL FILTER COEFFICIENTS') -
WRITE(64500) S

FORMAT( 10 ,47X,'STAGE? 48X,y *VALUE!)

CALCULATE DIGITAL FILTER COEFFICIENTS (THRU STATEMENT 504)
DO 502 I=1,NVA | =
DO 501 J=2,11 .

TFIL(J)WEDLT) HIT)I=A(J,JdJ)

IF(L(J).EN.T) GO TO 502

"IF(J.EONLIT) H(I)=0.,0D0

CONTINUE

CONTINUE

DO 503 1=2,NVA,2
HII)={=1.D0)*(H(T))

TF (NT.GE.4) GO TO 505
DO 504 1=2,NVA
H{1)=(2,0D0)%(H(T1))
WRITE LIST OF FILTER COEFFICIENTS
N0 506 I=1,NVA
WRITE(64423)1,H(T)
RETURM

END

Fig. B-4 (Continued). Program Listing for Subroutine LINPO.



APPENDIX C

AUXILIARY SUBPROGRAMS

The linear-programming subroutine LINPO used for the design of .
digital filters requires that coefficient arrays be calculated before
the subroutine can be used. Since this procedure can become rather
tedious due to the number and . .type of calculations required, especially
for the channel equalization application, auxiliary Fortran IV sub-
programs COCALl and COCAL2 were developed, where COCAL is a mneomonic
for COefficient CALculator. COCALl is a subroutine for the design of
frequency-sampling filters which are to be used either for generating
pulses to transmit data over ideal channels or for matched filter
detection. COCAL2 is a subroutine for the design of either tréns—
versal or frequency-sampling filters which are to be used to equalize
nonideal channels. The nonideal channel must be defined by its unit-
impulse response in a function subprogram. Consequently, a number of -
impulse-response. equations corresponding to common data transmission
channels have been programmed and are incorporated in a function sub--
program called CC. Also included is a subroutine CHECK to be used
in conjunction with COCAL2 and CC. It calculates the unit-impulse
response of the equalized channel after the design of the digital-

filter equalizer.
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C.1 SUBROUTINE COCAL1

The frequency-sampling filter impulse-response envelope was
derived in Section 3.1 and expressed in (3.6) or (3.7) as
Ho R-1 . 2 '
h(t) = 5+ z (-1)" —— cos(2nkt/NT) , (C.1)
k=1
where the upper limit on the sum has been replaced by R-1 and the fre-
quency sample HN/Z has been assumed to be zero if N is even. The

derivative of (C.1l) is

R-1
4 k+1 '
h'(t) = — k(-1) sin(2wkt/NT) . (C.2)

Coefficients of the Hk terms must be calculated for the objective
function and every constraint equation of any LINPO frequenty—sampliﬁg
filter design. Also, for any LINPO design the constraint equations
must be expréssed in a form such that all bi as defined in (3.11) are
nonnegative. Furthermore, the objectiye function must be expressed
as a maximization problem. COCAL]l is a double-precision computer sub-
routine that takes a more general linear-programming design problem
and sets up the proper LINPO input arrays to satisfy these restric-
tions. It also calls the LINPO subroutine to solve the problem.

There are a variety of problems that COCALl1 will accept. The

objective function can be in any of the following forms:

maximize Z = Z aj h(tj) R (C.3a).
y , ;
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maximize Z = }: uj h'(tj) y (C.3b)

k|
minimize Z = E: aj h(tj) R (C.3¢c)

or i
minimize Z = E: aj h'(tj) . (C.34d)

j

where each aj is either *1. As many equations of one type as desired
can be.combined to form Z. Each individual constraint equation can
be of the h(t) or h'(t) type with either positive, negative, or zero

b..
i

C.1.1 Usér Instructions
The call statement for the subroutine is CALL COCAL1(CT,NTYPE,B,

IE;NOBJ,N,T,NEQ,NVA,NSP,NT) where the input parameters IE, NEQ, NVA,:
and NSP were defined previouély in Table B.1. The-othér‘input para-
meters are defined in Table C.1. The parameter NVA was defiped~as
the number of unknowns in the cohstraint equations and equaled R in
the.constraint equation formulation ovappendixAA. For the low-pass
.and band-pass filter design problems of Chapters 3 and 4, R énd con-
sequently NVA, is equal to the number of unknown multiplier coeffi-
cients to be determined optimally.. The value for NT is generated

internally in COCALl and is an output parameter.
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TABLE C.1-

COCAL1 INPUT PARAMETERS

CT: A double-precision array of real numbers representing critical
time points. All time points at which the impulse response is
to be constrained must be included. Furthermore, if more than
one constraint equation is written at the same critical time,
that time point should be repeated for each of these constraint
equations. However, time points that appear in the objective
function equation should not be repeated if constraint equa-
tions have also been written at those points, as will normally
be the case. If constraint equations have not been written at
some of the objective function time points, those times should
be included as the last members of the CT array.

NTYPE: An array of integer constants representing the objective func-
tion and constraint equation types. The first value in the
array represents the type of objective function, i.e., "0"
for an objective function in the form of (C.3a), "1" for
(C.3b), "2" for (C.3c) .and "3" for (C.3d). The remaining
values in the array are in one-to-one correspondence with the
constraint equation time points of CT and represent the type
of each constraint equation, i.e., "0" for an h(t) equation
and "1" for an h'(t) equation.

B: A double-precision array of positive or negative real numbers
representing the right-hand sides of the constraint equations
and entered in the same order as the NTYPE array. The first
value, which corresponds to the objective function, must be
zero.

NOBJ: An array of positive and negative integer constants defining
the objective function. The first value is a positive inte-
ger equal to the number of equations to be combined to form
the objective function. The signs of the remaining integers
define the o, of (C.3) while the associated absolute values
define the ldcations in the CT array of the corresponding tj.

N: A double-precision constant equal to the number of impulse
response values.

T: A double-precision constant edual to the sampling interval.
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C.1.2 Example Problem
The set of constraint equations that were defined in (3.16) for

the raised-cosine design problem were

I
=
|
o
A
o

h(3t) = h(5t) = h'(4t) <

|
o
|
o

h(4t,) = ' h(6r,) = h'(5t) <0

. with the objective function
= \l T
=.h (Atb) + h (Stb)

to be maximized. A main program is given.in Fig. C-1 as an example of
the input require& for a COCAL]1 solution of this problem. The corre-
sponding output of the LINPO subroutine is illustrated in Fig. C-2.
Since NSP = 0 for this example, none of the tableaus were printed.
during the linear-programming solution. The results printed first

are the optimum value of Z and the optimal basic solution. The six
values of the basic solution represent the unknown Hk’ k=0,...45.
These values were used to calculate the digital filter coefficients

HO and 2(—1)ka, k = 1,...,5 which are printed out last.
DIMENSION NTYPE(7),IE(7), NOBJ(3)
REAL*8 CT(6),B(7),N,T
DATA CT/3.0D0,4.0D0,5.0D0,6.0D0,4.0D0,5.0D0/
DATA NTYPE/1, 0 0,0,0,1,1/
DATA B/0.0DO,l.ODO,S*0.0DO/
DATA 1E/0,2,2,2,2,1,1,/
DATA NOBJ/2,2,3/
DATA N,T,NEQ,NVA,NSP/60.0D0,0.1D0,7,6,0/
CALL COCALl(CT NTYPE,B,IE,NOBJ,N,T ,NEQ, NVA NSP,NT)
STOP
END

Fig. C-1. Main Program for COCAL1l Solution.
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"DATA LOADED

FEASIBLFE
OPTIMUM 7 0.0

BASIC SOLUTION

VARTABLE VALUE

04333333360 01
0.100000000 02

© 0.50000000D 01
0.66666664D 01
0.16666673D 01
0.83333327D 01

NNV P

DIGITAL FILTER COEFFICIENTS

STAGE . VALUE
0.10000000D 02
-0.16666665D 02
0.13333333D 02
-0,10000000D 02
0.666666710 01
-0.33333345D0 01

PN =

Fig. C-2. LINPO Output - for Raised—Cosine'Filter Design.
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C.1l.3 Flowchart and Program Listing

A flowchart and program listing for the COCALl subroutine are
given . in Figs. C-3 and C-4. The left-hand half of the flowchart
consists of two loops whiéh calculate coefficients required for the
LINPO A array. The outer loop (thru statement 210) runs from 1l.to
NEQ with the ‘first execution corresponding to the objective function
and the remaining NEQ-1 exécutions.correspOnding't0'the constraint
equations. For each execution of the outer loop, there are NVA
executions of the inner loop (thru statement 208) to calculate_the
NVA coefficients of each'equation. That set of NVA coefficienfs
forms one row of the A array. Since the objective function will
normally be a combination of equations, the appropriate coefficients
of the equations that make up the objective function must be combined
‘during the first passage through the outer loop. This combining of
coefficients is controlled by the NOBJ array.

The right-hand half of the flowchart represents three operations.
First, the coefficients in the first row of the A array are mulfiplied
by -1 if the objective function is of the type (C.3c) or (C.3d). As
stated in Table B.1l, the objective-function coefficients must be multi-
plied by -1 before a linear-programming solution is obtained, assuming
that the objective-function value Z is to be maximized, which always
occurs internally in the linear;prog;amming subroutine. However, if
the coefficient signs are not.change& the value -Z is maximized and is
actually a minimization of Z. Consequently, if Z is to be minimized
the signs are not changed and by default a minimizatibn problem is
changed to a maximization problem. - Next, the constraint equations

must be checked to see if the right-hand sides are negative. If they
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are, both sides of the equation are multiplied by -1 and the ine-
quality changed. This results in all non-negative numbers in its
B array. Finally, LINPO is called to solve the problem which has -

now been properly formulated.
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Combine A(1,J)

as Indicated
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NOBJ Array

Fig. C-3.
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Multiple 1t

Equation by-1

Call

LINPO

DO 210 es
I=1,NEQ no J
DO 208 Minimize Maximize
J=1,NVA Z Z )
A(1,]) =
no yes "A(l:J)
J=1,NVA
= DO 218
A(I,J)=1% A(1,J)=Jth !
Coefficient Coefficient I=2,NEQ
in h'(tI) in h(typ)
yes no
yes
Objective Constraint
Equation
Yy h |

Flowchart for Subroutine COCALL.
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SUBROUTINE COCAL1(TyNTYPE,B2,I1F4NOBJyMy T1,NEOyNVA4NSP,NT)

THIS SUBROUTINE CALCULATES AND SETS UP ARRAYS REQUIREN
FOR THE LINPO DESIGN OF FREQUENCY-SAMPLING FILTERS,

DIMENS ION NTYPE(NEO),IE(NEQ),NOBJ(I)
REAL%*8 SUMyBlyBZ2(NEQ)sDCOS4PI4T(1)yA(27,50)4MyT1,
1Ky TT,DSIN

PI=3.1415926D0

CALCULATE COEFFICIENTS FOR ARRAY A (THRI} STATEMENT 210)
DO 210 I=1,NEO

NTYP=NTYPE{T1)+1

GO TO (200,20142004201)4NTYP

NT=0

GO TO 202

NT=1

K=0,000

ISGN=1

1I11=1

IF (1.EQ.1) III=NOBJ(1)

CALCULATE COEFFICIENTS FOR ROW I OF ARRAY A
(THRU STATEMENT 208)

N0 208 J=14NVA

SUM=0,0D0

DO 206 11=1,111

Jd=1-1

IF (I1.GT.1) GO TO 203

Jd=11+1

NBS=TABS(NOBJ(JJ))
ISGN=ISIGN(1,NOBJ(JJ))

JJ=NBS

TT=T(JJ)/T1

Bl=(2.0D0%PI*K)}/M

IF(NT -0)204,204,205
SUM=SUM+DCOS(B1I*TT)*ISGN

GO TO 206
SUM=SUM=B1*DSIN(B1%=TT)*ISGN

CONTINUE

A(l4J)=SUM*(2.,0D0/M)

IF(K.EQ.,0,0D0) A(I1,J)=A(1,4)/2.0D0

- K=K+1,0D0

CONTINUE

DO 209 J=24NVA,2
AlT4J)==A(1,J)
CONTINUE

~ CONVERT MINIMIZATION PROBLEM TO A MAXIMIZATION PROBLEM

{ THRU STATEMENT 212)
NTYP=NTYPE(1)+1

Fig. C-4. Program Listing for Subroutine COCAL1.
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GO TO (211,211,213,213),4NTYP
211 DO 212 J=1,NVA
All,J)==-A(1,J)
212 CONTINUE
C CONVERT CONSTRAINT EQUATIONS IF RIGHT-HANDED SIDES ARE
C NEGATIVE (THRU STATEMENT 218)
213 DO 218 I=2,NEO
IF(B2(1))214,218,218
214 B2(1)=-B2(1)
DO 215 J=1,4NVA
215 A(Tsd)==A(1,4J)
TF(IE(TI)-2)2164218,4217
216 IE(T)=3
GO 70 218
217 TIE(T)=1
218 CONTINUE
CALL LINPO(A,B2,IEyNEQyNVA,NSP,NT)
RETURN
END

Fig. C-4 (Continued). Program Listing for Subrodtine COCAL1.
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C.2 SUBROUTINE COCAL2

COCAL2 is a double-precision computer subroutine tﬁat formulates
an equalizer design problem for a linear-programming-solution in the
same manner that COCALl structures a frequency-sampling filter design
‘problem, The expression which was derived in Section 4.1 for the out-

put of a data channel equalized with a frequency-sampling filter was

q L
y(t) = ﬁ—g . Zﬂ“_c'(t.— mT) +-
=0
L ,R-1 2H
Z -1)* £ cos (2nkm/N) c(t - mT) (c.4)
w0 k=1 |

and similarly for a transversal equalizer

L : :
y(t) = z D™ H_ e(t - mT) BNCR
L ,

It was also shown that the c(t) values must be obtained from the actual

channel impulse response by

[t

fcc(r)dr 0<t=<T:
o(t) =< (C.6)

cc(r)vdr T < t <o |

L

t

\

and that the derivatives of (C.4) and (C.5) are formed by replacing

the appropriate c'(t - mT) terms with
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4

0<t<T
cc(t)

e (t) =¢ (C.7)

fc(t) - cc(t - T) "t>T.

During a LINPO design of either type of equalizer, the coefficients of

the Hk or H terms must be calculated from (C.4) or (C.5) along with
m

(C.6) and (C.7). 1In addition, other LINPO input arrays must be gener-

ated.

C.2.1 User Instructions

The call statement for the subroutine is CALL COCAL2(CT,NTYPE,B,
IE,NOBJ,N,T,NEQ,NVA,NSP,NT,CC) where, with the following exceptioﬁs,
the input parameters have been defined previously in Tables B.l and
C.1. Acceptable forms of the objective function are still defined
by (C.3), with h(tj) replaced by y(tj). The possible values in the
array NTYPE must be expanded to include bbth frequency-sampling and .
transversal filters. Values of NTIYPE from O to 3, which previously'
identified the type of objective function and constraint equations
for frequency-sampling pulse-shaping filters, now apply to frequency-
sampling digital filter equalizers with the h(t) in Table C.i replaced
by y(t). NIYPE values from 4 through 7 identify transversal-equalizer
designs and are correspondingly defined if each integer in the NTYPE
description is increased by 4, e.g., 0 by 4, 1 by 5, etc. As an
example, if the objective function for a transversal equalizer design
is in the form of (C.3c), i.e., the minimization of a combination df
y(tj) equations, the first value in the array would be NTYPE = 6,

Unlike frequency-sampling filter designs, the number of unknown

multiplier coefficients for a transversal design is equal to the number
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of impulse-response values. Hence, NVA must be set equal to N for
LINPO designs of transversal filters.

The parameter CC is not.-an input value but represents an external
" function that is called by COCAL2. Consequently, a function subprogram

CC, which will be described in Section C.4, must be used with COCALZ2.

C.2.2 Example Problem
An equalizer design problem introduced in Section 4.2.1 was to
determine both frequency-sampling and transversal filters to equalize

the channel cc(t) = 4n2t e—21rt

u(t) to meet the set of constraints
specified by (4.16) and the objective function of (4.17). Filters
with a sampling interval of 0.1 seconds and 25 impulse response

values were specified. For the frequency-sampling filter, 12 multi-
plier coefficients were specified and from the impulse-response speci-
figation, 25 coefficients were allowable for the transversal filter.
The input program required for a COCAL2 solution of this problem is
illustrated in Fig. C-5.

Only one main .program was required for this example since the set
of specifications on the desired pulse shape wére the same for both
equalizers. COCAL2 is called twice, first for a frequency-sampling
design and next for a transversal design. The only input-data dif-
ference between the two runs are the set of values for NTYPE and the
value of NVA, Subroutine CHECK which is also called for each run and
its associated input parameters will be described in Section C. 3.

The statement NN=2 specifies which channel model in subprogram CC is

being equalized. LINPO outputs for the two runs are illustrated in

Figs. C-6 and C-7. As indicated, the frequency-sampling filter
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requires 11 multipliers while the transversal filter only requires

three.

DIMENSION NTYPE(13),IE(13),NOBJ(5)

REAL*8 CT(12),B(13),N,T,TIN,TM,DT

COMMON NN

EXTERNAL CC

DATA CT/0.5D0,0.75D0,1.D0,1.5D0,2.D0,2.25D0,2.5D0,3.D0
1,0.5D0,1.D0,2.D0,2.5D0/

DATA NTYPE/1,8%0,4%1/

DATA B/4*0.D0,1.DO,8%0.D0/

DATA IE/0,8%2,2%3,2%1/

DATA NOBJ/4,-1,-3,5,7/ .

DATA N,T,NEQ,NVA,NSP/25.D0,0.1D0,13,12,0/

NN=2

DATA TIN,TM,DT/0.DO,3.D0,0.05D0/

CALL COCAL2(CT,NTYPE,B,IE,NOBJ,N,T,NEQ,NVA,NSP,NT,CC)

CALL CHECK(TIN,TM,DT,N,T,NVA,NT,CC)

DO 1 I=1,13
1 NTYPE(I)=NTYPE (I1)+4

NVA=25

CALL COCAL2(CT,NTYPE,B,I1E,NOBJ,N,T,NEQ,NVA,NSP,NT,CC)

CALL CHECK(TIN,TM,DT,N,T,NVA,NT,CC)

STOP

END

Fig. C-5. Main Program for COCAL2 Solution.

C.2.3 Flowchart and Program Listiﬁg

Since COCAL2 performs the same functions using y(t) specifica-
tions as COCALl does with h(t) specifications, the flowchart of Fig.
C-3 is still valid for COCAL2, with the exception that the flowchart
statement numbers 208, 210, and 218 are now 316, 322, and 330, re-
spectively. Also, coefficients in y(tI) and y'(tI) are calculated
instead of h'(tI) and h(tI). The COCAL2 program listing is furnished

in Fig. C-8.



OPT THLE 7

LDATA LOADED

FEASTIBLE

0.0

KASTC SOLUTIOM:

VARTARLE
1
2
3
5
4L

DIGITAL FILTER COFFFICIENTS

STAGES

Fig.,C—6.. LINPO Output for Frequency-Sampling Equalizer Design.

VALNE
0.,17557522N

0,219808290
0.387010080
0,R9141784N

062382057

(,93451122D

0.887938413N
0, 820470710
0e72433066MN
0,98221871D
0366461890
0.0 :

VALUE
0,17557522N
~0.43961657D

0.774020160.
-0.12476591D

N,17828377N
=D ,1964423T74D
0,18690224D
L0,1775R769D
Ny 164094140
—0 1448661 3D
(0,73292379N
0.0 :

(—'l
01

Nl

01

01
Nl
Nl

0L

01
N}
Nl

01
01
01

ne
02

N2

02
)
02
01

ne -

1490
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DATA LOADED

FEASIBLF
COPTIMUM Z . 0.0

BASIC SOLUTIDN

VARIABLE = VALUE
.5
4 -
9
23
8
13 -
19
0
18-
7
22
25

8966586D 01
64 44058D 00

26962290 01

D000 ODOO0O0OO

® & & &6 & 0. ¢ o O & o o

<OOOHOU'I~L‘OOOQO

" DIGITAL FILTFR COEFFICIENTS

STAGE VALUE
-1 0.0 .
2 0.0
3 0.0
4 0.0
5 0.0
6 0.0
7 0.0
.8 0.0
9 0.0
10 0.0
11 0.0
12 0.0 :
13 0.48966586D 01
14 0.0 : .
15 0.0
16 0.0
17 0.0
18 ~0.12696229N 01
19 0.564440580 00
20 0.0
21 0.0
122 0.0
23 . 0.0
24 0.0
25 0.0

Fig. C-7. LINPOvOutput for Transversal.Equalizér Deéign.
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SUBROUTINE COCAL2(TyNTYPE,B2,IENOBJyMy T1,NEQyNVA,NSP, NTA
1,CC)

THIS SUBROUTINE CALCULATES AND SETS UP ARRAYS REQUIRED
FOR THE LINPO DESIGN OF FREQUENCY-SAMPLING OR
TRANSVERSAL EOUALIZERS, '

DIMENSION NTYPE(NEQ),IE(NEQ),NOBJ(1)
REAL#*8 SUM,B2{NE0O),CC,DCOS+P1,D, T(l),A(Z?,SO),YyM,
1T 4K yNyX,2Z

REAL*8 A1(25,40)

EXTERNAL CC

PI=3,1415926D0 :
CALCULATE COEFFICIENTS FOR ARRAY A (THRU STATEMENT 322)
DO 322 1=1,NEQ

NTYP=NTYPE(1)+1

GO TO (3004301,4300,301,3024303,4302,303) 4NTYP
NT =0

60 TO 304

NT=1

GO TO 304

NT =4

GO TO 304

NT=5

K =0.,0D0

ISGN=1

111=1

IF (I.EQ.1) III=NOBJ(1).

NVA1=NVA

IF(NT«GE.4) NVAl=1

CALCULATE COEFFICIENTS OF ROW I OF ARRAY A
(THRU STATEMENT 316)

DO 316 J=1,NVAl

SUM=0.0D0

DO 313 11=1,111

JJ=1-1

IF (1.6T.1) GO TO 305

JU=11+1

NBS=TABS(NORJ(JJ))

ISGN=ISIGN(1,NOBJ(JJ))

JJ=NBS

L=T(JJ)/T1+1

TTL=FLDAT(L)

IF (DBLE(TTL)«GT.M) L=M

N=0.,0D0 ‘

N0 311 1J=1,L

X=T(JJ)=N=xT1

2=X-T1

Fig. C-8. Program Listing for Subroutine COCAL2.



IF (Z) 306,306,43207 )
306 TFINT.FO.0.OR NT.EQ.4) CALL NOGL6(0.0D0 ¢ X4CCHyY)
IF(NT.EQ.1.0R.NT.EQ.5) Y=CC(X)
-0 TO 308
307 IFINT.EQN.O.OR.NT.EQe4) CALL DQGLOE(Z4X4CCoY)
IF(NT.EQs1 .OR.NT.EQ.5) Y=CC(X)=CC(2Z)
308 IFINT.GE.4) GO TO 309
D=(2.0N0*PIxKx=N)/M
SUM=TISGNxY*DCOS (D) +SUM
G0 70 310
309 AL(T1T,1J)=Y*ISGN
310 N=N+1.0D0
311 CONTINUE
TFINT.LT+e4.0R.L.EQ.NVA) GO TO 313
LL=L+1
DD 312 JI=LL,NVA
312 A1(11,41I)=0.0D0
313 CONTINUE
IF(NT.GE.4) GO TO 316
A{T,4J)=SUM=:(2,0D0/M)
314 IF(K.EQ.,0.0N0) A(I,J)=A(1,J)/2.0D0
315 K=K+1.0D0
316 CONTINUE
IF (NT.LTs4) GO TO 320
317 DO 319 TJ=1,NVA
SUM=0.0D0
DO 318 I11=1,I1I
318 SUM=SUM+AL(11,1J)
319 AlT,1J)=SUM
320 CONTINUE
NO 321 J=24NVA,2
321 A(l,J)==A(1,J)
322 CONTINUE
c CONVERT MINIMIZATION PROBLEM TO A MAXIMIZATION PROBLEM
C (THRU STATEMENT 324) '
NTYP=NTYPE(1)+1
GO T0(323,323,3259325,323,323,325,325) 4yNTYP
323 DO 324 J=1,4NVA
A(l,J)==A(14J)
324 CONTINUE . '
c CONVERT CONSTRAINT EQUATIONS IF RIGHT-HANDED SIDES ARFE
C MEGATIVE (THRU STATEMENT 330)
325 DO 330 I=2,NEQ
IF(B2(1))326,4330,330
326 B2(1)=-B2(1)
PO 327 J=1,NVA
327 A(T,d)==A(T,4J)
TF(IE(TI)-2)328,4330,329

Fig. C-8 (Continued). Program Listing for Subroutine COCAL2.
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328 TE(I)=3
GO TO 330
329 TE(1)=1
330 CONTINUE
CALL LINPO(A4sB2,1EsNEQyNVA,NSP,NT)
RETURN
END

Fig. C-8 (Continued). Program Listing for Subroutine COCAL2.
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C.3 SUBROUTINE CHECK

Equations (C.4) and (C.5) represent the received pulse at the
output of a channel equalized with a frequency-sampling filter and
transversal filter respectively.: In order to verify the results of
the LINPO equalizer designs, these equations along with (C.6) were
programmed to form the double-precision computer subroutine called
CHECK which calculates and generates plots of y(t).

The call statement for the subroutine is CALL CHECK(TIN,TM,DT,
N,T,NVA,NT,CC) where the input parameters TIN, TM, and DT are defined

in Table C.2 and the other parameters have been defined previously.

TABLE C.2
CHECK INPUT PARAMETERS
TIN: A double-precision constant equal to the initial time .
point at which y(t) is desired to be evaluated.

T™: A double-precision constant equal to the maximum time
point at which y(t) is desired to be evaluated.

DT: A double-precision constant equal to the time interval
desired between consecutive evaluations of y(t).
Filter coefficients Hk'or Hm need not be externally entered ipto the
subroutine since these values are placed in a labeled COMMON'block by
LINPO at the completion of the design and are therefore available to
CHECK. The integer constant NT is required by CHECK to determine which
vequalizer has been designed, but -is generated by COCAL2 and does not
have to be stated in the main program. An example of the use of the

CHECK subroutine in a main program is illustrated in Fig. C-5 with
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the output plots generated by the subroutine given in Figs. 4-3(b)
and 4-4(b).

A flowchart and program listing for the subroutine are presented
in Figs. C-9 and C-10 respectively. Thg primary loop of the program
is executed for each of the NDATA time points at which the function
y(t) is to be evaluated. During each execution, channel impulse-
response values obtained by integrating cc(r) from the function sub-
program CC are combined.with either the Hk or Hm values from LINPO,
depending on thé values of NT, to form y(tI). After all NDATA values
of y(tI) have been calculated, GRAPH1 [52] is called to plot y(tI)

versus tI .
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y

DO 110

I = 1,NDATA

'

Evaluate
c(tI—mT)
from cc(T1)

no : . yes '
NT > 4 ;
Frequency- ” Transversal
Sampling Filter Filter
Calculate Calculate
y(tq) y(ty)
Increment :
— Time g
t1
Call
GRAPH1

Fig. C-9.

v
«D

Flowchart for Subroutine CHECK.
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SUBROUT INE CHECK(TIN,TMyDT4M,T14NVA,NT,CC)

THIS SUBROUTINE CALCULATES THE IMPULSE RESPONSE OF
AN EQUALIZED DATA TRANSMISSION CHANNEL. EITHER
TRANSVERSAL OR FREQUENCY-SAMPLING DIGITAL FILTERS
MAY BE USED AS EQUALIZERS.

OOOOO0O

DOUBLE PRECISION H(40)
DIMENSION A(500),YY(500)
REAL*8 SUMyCC4DCOSyPI4DsVeY(200) ¢yMyTLlyKgNyX,ZySUM1
REAL*8 TINgTMyDTySUM2, TMP
COMMON/HNAME/H
EXTERNAL CC
PI1=3,1415926D0
TMP=TIN
NDATA=(TM-TIN)/DT+1
c CALCULATE VALUE OF Y(T) FOR EACH TIME T (THRU
c STATEMENT 110)
DO 110 I=1,NDATA
SUM2=0,.0D0
A{I)=SNGL(TIN)
L=TIN/T1l+1
TTL=FLOAT(L)
IF (DBLE(TTL)+GT.M) L=M
N=0.000 ’
c CALCULATE IMPULSE RESPONSE VALUES OF UNEQUALIZED
c CHANNEL (THRU STATEMENT 104)
DO 104 1J=1,L
X=TIN=-N*T1
1=X-T1
IF (Z) 100,100,101
100 CALL DQG16(0.0D04XyCCyV)
GO TO 102
101 CALL DOGL6(Z4X,CCyV)
102 N=N+1,0D0
IFINT.LT<4) GO TO 103
IF(H(IJ)«EQ.0.0DO) GO TO 104
SUM2=SUM2+V*H(1J)
GO TO 104
103 Y(I1J)=V
104 CONTINUE
c - DETERMINE Y(T) FOR TRANSVERSAL FILTER
TF(NT.GE.4)YY(I)=SUM2
IFI(INT.GE.4) GO TO 109

SUM1=0,0D0
105 K=0.0D0 ‘
C CALCULATE Y(T) FOR FREQUENCY~SAMPLING FILTER
C (THRU STATEMENT 109)

Fig. C-10. Program Listing for Subroutine CHECK.
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NO 108 J=1,NVA
IF (H({J).EQ.0.,0D0) GO TO 107
SUM=0,0D0
N=0,0D0
NO 106 IJd=1,L
D= (2 ,0N0xPIxK*N) /M
SUM=Y (1J)%DCOS (D) +SUM
N=N+1,0D0

106 CONTINUE
SUM1=SUM1+SUM*H(J)

107 K=K+1 .0D0

108 CONT INUE
YY(TI)=SNGL(SUM1/M)

109 TIN=TIN+DT

110 CONTINUE

‘ TIN=TMP

CALL GRAPH1(A,YY,NDATA,1)
+RETURN
END

Fig. C-10 (Continued). Program Listing for Subroutine CHECK.
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C.4 FUNCTION SUBPROGRAM CC

Function subprogram CC is called by the subroutines COCAL2 and
CHECK to calculate channel impulse-response values. The eight models
of typical channels which are -available frqm the subprogram are listed
in Table C.3. It should be noted tﬁat the channels have been normal-

ized in the subprogram to have a unity breakpoint frequency.

TABLE C.3

IMPULSE-RESPONSE CHANNEL MODELS

NN cc(t) N cc(t)

1 2r e 2™ Lu(t) 5 2—i(2w)5 £ o7 Lce)

2 r2te 2"t u(b) 6 L_omb 2 72" Lo
. _ 120 2™ _

3 %(2103 £2 72" () 7 e 2" gin (2rt)  u(t)

b gent e ue 8 e 2" Los (21t) u(b)

In order to specify which channel model is desired, the parameter
NN must be declared with a blank COMMON statement and its value given
in the main program that calls either COCAL2 or CHECK. The main program
must also deqlare the function CC fo be external. For example, see
Fig. C-5 where the statement NN = 2 specifies the second channel re-
sponse listed in Table C.3. The CC function program listing is given

in Fig. C-11,
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DOUBLE PRECISION FUNCTION CC(T)

THIS FUNCTION SUBPROGRAM EVALUATES ONE OF EIGHT
POSSIBLE IMPULSE RESPONSE FUNCTIONS FOR THE
TIME POINT T.

OO0

DOUBLE PRECISION T,DEXP,ALPHA,ALPN,AT,TN,PROD,DSIN,DCOS
COMMON NN ‘
N=NN
ALPHA=6,.,2831852D0
AT=ALPHA%XT
IF (AT.GE.165.D0) GO TO 601
IF(N.LE.6) GO TO 603
M=N-6
GO TO(6044605)4M
603 IF(N.EQ.1)GO TO 607
IF(T.LTeleD=9) GO TO 601
TN=T*%*(N-1)
ALPN=ALPHA**N
GO TO 608
607 TN=1.0D0
ALPN=1.0D0
608 PROD=1.0D0
DO 600 I=2,4N
600 PROD=(I-1)*PROD

c CALCULATE CC(T) FOR CHANNEL WITH SIMPLE POLES
CC=(DEXP(~-AT)*ALPN*TN)/PROD
GO TO 602
c CALCULATE CC(T) FOR CHANNEL WITH COMPLEX POLES
604 CC=DEXP(-AT)*DSIN(AT)
GO TO 602
C CALCULATE CC(T) FOR CHANNEL WITH COMPLEX POLES
C AND A SIMPLE ZEROD
605 CC=DEXP(~AT)*DCOS(AT)
GO TO 602
601 CC=0.0D0
GO 70 602

606 CC=1,00D0
602 . RETURN
END

Fig. C-11. Program Listing for Function CC.
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