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ABSTRACT

Measurements of the 'total electron content' of the plasmasphere up

to geostationary heights have been made using the beacon transmitters

aboard the satellite ATS-3. The technique employed is a combination of

the phase-path length difference and the Faraday rotation angle methods.

Such a combination permits very accurate determination of the integration

constant necessary to convert phase-path length difference data into in-

formation about the absolute value of the columnar content. In previous

efforts, to combine both data to determine the columnar electron content

of the upper plasmasphere (protonosphere), it was assumed that the Faraday

rotation angle was a measure of electron content below a well-defined al-

titude so that the difference I between the 'total content* and the
w

'Faraday content' is the content above that altitude. In this work a

more realistic interpretation of I is offered. It is demonstrated that

I is a useful information of the protonospheric content under certain

geometries of observation, such as Stanford and the geostationary satellite

parked at -73° E. For such geometry, if diffusive equilibrium models of

the ionization field-line distribution are valid approximations, I is a
W

good measure of the protonospheric electron content above approximately

2300 km. The data taken at Stanford using ATS-3 satellite are presented

and interpreted in terms of changes in electron content of the upper

plasmasphere. The data during the storm of 14 May 1969 show a sudden in-

crease in I immediately following the SSC at 1929 UT (1430 LT at ATS-3).
W

The increase lasts for some three hours, and then I decreases below the

average level, followed by a slow recovery for several days. This behavior

is consistent with a storm model in which the outer plasmasphere is 'peeled'
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away by sunward convection and is subsequently replenished by slow filling

from the underlying ionosphere. The estimated intensity of the east-west

component of the electric field associated with this peeling process is

of the order of 1 mV.m

SEL-72-019



ACKNOWLEDGEMENTS

I am very grateful to Dr. A.V. da Rosa for his invaluable guidance

and encouragement throughout the course of this work, and to Professor

O.K. Garriott for suggesting the experiment. I wish to thank Dr. C.G. Park

for the enlightening discussions on interpretation of the results. I

have benefitted from discussions with Dr. M.J. Davis and Dr. H. Waldman.

The constant support and attention of the ATS-Project Office (NASA

Goddard Space Flight Center) is appreciated.

This research was supported by NASA Research Grant No. NGR 05-020-001.

SEL-72-019



TABLE of CONTENTS

Page
I. INTRODUCTION 1

A. Faraday Polarization Changes and Phase-path Length
Effects 5

II. DETERMINATION OF THE COLUMNAR ELECTRON CONTENT AND THE
PARAMETER G OF THE PLASMASPHERE UP TO GEOSTATIONARY
HEIGHTS 13

A. The Experiment 14

B. Data Reduction . . . . • 15

C. Determination of the Absolute Value of Total
Columnar.Electron Content 20

III. TECHNIQUE OF PROTONOSPHERIC ELECTRON CONTENT
DETERMINATION USING GEOSTATIONARY SATELLITE 35

A. Analysis 36

B. Geostationary Satellite Observations Combined with
Backscatter lonization Profiles 53

IV. RESULTS 57

A. Arecibo Observations . 58

B. Stanford Observations During the Magnetic Disturbed
Period of 12 to 18 May 1969 62

C. Protonospheric Content Observations During Magnetic
Storms 68

V. CONCLUSIONS 79

REFERENCES 85

vii SEL-72-019



TABLES

Number Page

1 Comparison Between the Form Factors, GQ
Calculated Independently and the Factor,
G, Obtained from the Least Error Analysis .... 32

SEL-72-019 viii



ILLUSTRATIONS

Figure Page

1 Actual Spectrum of the UHF Signal Radiated by ATS-3 . . 16

2 Retouched Photograph of the Differential Doppler
Fringes 17

3a,b Example of Plots of the Ratio Between the Quantities
AH = (Q - 0 ) and I = (I - I ) Used to Estimate
Values of the Parameter G 23

C> Example of Plots of Af̂ /Al for Arecibo, 06 December 1968
6> at 1420 AST 24

4 Diurnal Variation of the Total Slant Electron Content
I, and of the Parameter G, for Several Days in
December 1968 27

5 Diurnal Variation of the Total Electron Content of the
Plasmasphere 31

6 Plots of the Weight Function W Versus Height for an
Observer at Stanford 40

7 Plots of the Weight Function W Versus Height for an
Observer at Arecibo 41

8 Contribution of the Ionospheric Region to I for
Stanford and a Geostationary Satellite at -7*3° E . . . . 44

9 Contribution of the Ionospheric Region to I for
Arecibo and a Geostationary Satellite at -73*̂  E . . . . 45

10 Comparison Between Computed Ionospheric Contributions
to I for Arecibo and a Geostationary satellite at -73°E 47

11 Plot of the Maximum Computed Fluctuation of Ionospheric
Contribution to I , for Stanford. Versus Satellitew
Longitude 48

12 Variation with Height of the Ratio Between the Quantity
I and the Electron Content Above that Height for Stanford
and a Geostationary Satellite at -73° E 51

13 Plots of Total Slant Electron Content, I, and of the
Quantities I Determined from Observations of ATS-3

W
at Arecibo 60

14 Diurnal Variation of Protonospheric Electron Content
at Arecibo 61

ix SEL-72-019



ILLUSTRATIONS (cont.)

Figure Page

15 Protonospheric Electron Content Observation, During an
Uninterrupted Period of 7 Days in May 1969, from
Stanford 64

16 Protonospheric Electron Content on 14 May 1969, from
Stanford 71

17 Qualitative Picture of the Shape of the Plasmapause
Trace on the Earth1 s Equatorial Plane 73

SEL-72-019



LIST OF SYMBOLS

AST = Antilles Standard Time, defined as: UT - 4 hours

B = magnitude of the geomagnetic flux density (page 6)

B = value of B on the Earth's surface (page 76)

B * B cos 9 = component along the path of propagation of the geomagnetic
flux density (page 8)

B = value of B computed at heights around 300 km (page 37)

<JB > = mean longitudinal geomagrietic flux density (page 9)

c = speed of light in free space (page 7 )

D = geometric distance (page 7)

e = electron charge (page 6)

E = East

E = electric field (page 7

E = east-west component of the electric field (page 75)

f = wave frequency (page 6)

f = beat frequency (pages !i4 anfc 13)

f = ionospheric Doppler frequency shift (page 10)

f = spin frequency of the satellite (page 15')s

fUHF(R) = received UH*1 frequency (page 15)

f = vaccum Doppler frequency shift (page 15)

f , . = received VHP frequency (page 15)
Vnr \R)

f' , . = transmitted VHF frequency (page 15)
Vnr QT )

G = ratio between Faraday rotation angle and columnar electron content
(page 9)

G, = value of G computed at heights around 300 km (page 35 )

h = altitude

h = altitude of the electron concentration peak of F layer (page 46)
T113-X , 2

xi SEL-72-019



I = slant columnar electron content (page 8)
0 • . . • -

1 = time derivative of I

1̂ , = n/GI (page 35)

I. = electron content associated with the ionospheric ionization profile
(page 43.)

I = electron content of a tube of force from 1000 km to the equatorial
plane

I = columnar electron content of the region extending from altitude h
to 4 Earth radii (page 50)

Iw = I - fi/Gj (pages 36 and 37 )

800.
I 9 = I nW sec X dh, h in km (page 42)

«/0
10,000

I nW sec X dn» h in km (page 49)
./80

35 6

wu ~ /
JlO,

800
35,600

nW sec X dh» h in km (page 49)
000

K = three hour universal geomagnetic index
P

L = value of the L-shell parameter

L = value of L at the plasmapause
P

LT = Local Time

m = electron mass (page 6)

n = electron concentration (page 6)

P = phase-path length (page 7)

PST = Pacific Standard Time, defined as: UT - 8 hours

R = radius of the Earth (6,371.2 km)

t = time

UT = Universal Time

v = plasma drift velocity (page 74)

w =(1 - BiAi>
X = H^ (page 6)f2

SEL-72-019 xii



Y = 2S?

Z = ̂  (page 6)

Of = angle between the ray and the wave normal (page 7)

AI = columnar electron content increment

Al = protonospheric electron content increment

Al = increment in I
w w

AP = phase-path length reduction (page 7)

At = time increment

Afi = Faraday rotation angle increment

£ = permittivity of free space (page 6)
o

9 = angle between wave normal and magnetic field (page 6)

X = free space wavelength (page 10)

|ji = refractive index (page 6)

v = electron-neutral collision frequency (page 6)

X= satellite zenithal angle

ft = Faraday rotation angle (page 7)

xiii SEL-72-019



CHAPTER I

INTRODUCTION

The purpose of this report is to describe a new technique of pro-

tonospheric measurements and discuss the results obtained from observa-

tions made during geomagnetic storms. The quantity measured is the

columnar electron content of the protonosphere.

The protonosphere is the region of the Earth's atmosphere where the

Hydrogen ions, H+, are the dominant ion species. This region extends

from heights of 1500 km to several Earth radii (~20,000km) and it often

terminates at a sharp geomagnetic field-aligned boundary, the plasma-

pause, where the charged particle concentration is reduced by 1 order of

magnitude or more (Carpenter[l962][1966]). The region inside the plasma-

pause, the plasmasphere, has approximately the shape of a 'donut' and is

essentially populated by low energy particles. In the region outside

the plasmapause, the plasma trough, equatorial concentrations are typi-

_3
cally 10 el.cm or less.

The detection of the plasmapause in the equatorial height distribu-

tion of electron density, obtained by the whistler technique, has been

extensively used to study the behavior of that region. The position of

the plasmapause depends on local time and geomagnetic activity. Under

moderate geomagnetic activity the shape of the plasmapause trace on the

Earth1s equatorial plane is roughly circular with an average geocentric

distance of 4 Earth radii, and exhibits a pronounced asymmetry in the

dusk-midnight sector. At around 1800 LT (Local Time) there is a sharp

increase in the geocentric distance of the plasmapause which moves from
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approximately 3.5 to 5 Earth radii. This bulge region extends from about

the 1800 LT to the 2100 LT meridians. After 2100 LT the height of the

plasmapause decreases very slowly to 3.5 Earth radii at dawn. With

increasing geomagnetic activity the plasmasphere envelope compresses

and the asymmetry increases. During geomagnetically quiet periods the

envelope expands and the asymmetry decreases. Such compression and ex-

pansion of the plasmasphere is reflected in the Earth equatorial plane

by a corresponding inward or outward motion of the plasmapause trace,

which resembles more a circle under very quiet magnetic conditions.

The study of the shape and general behavior of the plasmapause

prompted Carpenter[1962], to suggest that the plasmapause might be iden-

tified with the inner boundary of the magnetospheric convection flow

pattern proposed by Axford and Hines[196l].

It is now generally accepted that a convection electric field, prob-

ably of solar wind origin, causes the circulation of the geomagnetic field

tubes in which the plasma is 'frozen in1 (Axford[1969]). The high lati-

tude tubes become open when convected through the polar cap and return

through lower latitudes where they are closed again. The plasmapause

is believed to be the boundary between flux tubes that cqrrotate with the

Earth, remaining always closed and therefore holding their plasma, and

flux tubes which are convected to the magnetopause where they lose their

piasma.

Actually, in the dynamics of the plasmapause behavior the situation

is a little more complicated because the convection field varies with

magnetic activity and the ionization tubes are filled by the ionosphere

on the dayside.
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The study of the dynamics of the plasmapause has been mostly based

on data provided by the whistler technique. More recently, direct mea-

surements of ion concentration in the magnetosphere by light-ion mass

spectrometer flown in high altitude satellites (c.f. Taylor et al.[1968],

Chappell et al.[1970],[1971]) have been very useful in those investiga-

tions.

Determinations of the protonospheric electron content may bring more

information on the remote magnetosphere. The possibility of using geo-

stationary beacons for continuous observations of the protonospheric con-

tent, with excellent time resolution, makes such determinations more

attractive.

Faraday rotation angle and phase-path difference data observed using

VHP and UHF transmissions from geostationary satellites, under certain

geometries of observation: , can provide the necessary information for pro-

tonospheric electron content determination, as will be demonstrated in

Chapter 3.

The Faraday polarization changes and phase-path length reduction

effects, briefly discussed in the next Section, reflect the electron con-

tent of both the ionosphere and protonosphere regions traversed by the

radio signals. The phase-path difference data is equally sensitive to

ionization changes at any height along the path of propagation. The

Faraday effect, on the other hand, is more sensitive to ionization changes

at lower heights, because it is related to the product of the electron

concentration by the component along the path of propagation (longitudinal

component), B , of the geomagnetic field. Consequently, the protonosphericL

information can be separated, in principle, from the ionospheric content
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by combining both data.

One of the difficulties encountered lies in the fact that the pro-

tonosphere accounts for a relatively small fraction of the total informa-

tion in the data, of the order of 10%. Therefore, very accurate determi-

nations of the total electron content must be made in order to achieve

reasonably good determinations of protonospheric content.

Almeida et al.[l970], have proposed a very accurate method of total

electron content determination by combining the Faraday and phase-path

difference data. Such method, in spite of being rigorously correct, is

of very difficult application because it is based on the determination of

a parameter G, the layer shape factor, using the time derivatives of the

Faraday rotation angle and the phase-path length when the shape and height

of the ionization profile is not changing with time. Although such moments

do exist, they occur in general at moments when the data are slowly chang-

ing with time. This behavior combined with the noise level enhancement

effect of the differentiation operation may cause a severe deterioration

in the accuracy of determination of the mentioned parameter.

A new method of determination of the parameter G, and of the total

electron content in which the above difficulties are avoided, is proposed

in Chapter 2. The accuracy achieved by this new method is consistent with

good protonospheric content determinations.

A critical analysis of the quantity I , resulting from the combina-w

tion of the Faraday rotation angle and the phase-path difference data, is

presented in Chapter 3. It will be demonstrated that for some geometries

of observation the contribution of the ionospheric content to I can be
w

minimized to a degree low enough not to mask the protonospheric informa-
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tion. For such geometries, the interpretation of the meaning of I in

terms of the columnar electron content of the protonosphere will be dis-

cussed based on diffusive equilibrium models of the field-line ionization

distribution (Angerami[1966]).

Protonospheric observations made at Arecibo and at Stanford, using

the new technique developed in the present work, will be presented in

Chapter 4.

A. Faraday polarization changes and phase-path length reduction effects.

It is well known that the polarization and phase path length of a

radio wave may be affected by its propagation through the ionosphere.

Many authors have discussed the theoretical development of the equations

relating the polarization plane rotation angle (Faraday rotation angle)

and the phase-path length reduction to the columnar electron content of

the ionosphere, (c.f. Browne et al.[1956], Ross[1965], Garriott et al.

[1970]). A recapitulation is presented here for the sake of completeness.

In a medium such as the ionosphere characterized by the existence of

free electrons and containing a static magnetic field, circularly polar-

ized electromagnetic waves propagating along the magnetic field direction

will not suffer change in polarization. Such waves, as shown by Lorentz

[1906], are characteristic waves of that medium. For propagation paths

not aligned with the magnetic field the characteristic waves are very

approximately circularly polarized, provided the direction of propagation

does not come too close to the normal to the magnetic field, a condition

called "quasi-longitudinal (QL)". Under the QL approximation two waves

with nearly circular polarization and sense of rotation opposite to one

another propagate without changes in polarization. The refractive indexes,
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for these two waves under the QL assumption, are given by

1± Ycos6 - iZ

where

= 80-6
ft mf f
o

—22_
2-m f

z =
2jtf

6 = angle between wave normal and magnetic field

v = electron-neutral collision frequency in sec

f = wave frequency in sec

e = electron charge in coulombs

m = electron mass in kilograms

-3
n = electron concentration in m

£• = permittivity of free space in farads m
o

_2
B = magnetic flux density in Wb m

The QL approximation is valid and therefore the given form of the

refractive index holds true (see Ra.tcliffe[1959]) , if

(Y sin9)4

(2Ycos6)2
(1-X-iZ)

The plus and minus signs in Equation (1) refer to each of the two

possible modes of propagation. The phase path length, P, for any one of

the modes is given (see Budden[l96l]) by
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P = IP cos a ds (2)

where Of is the angle between the ray and the wave normal, and the integral

is taken along the ray path.

The phase path length reduction, AP, is, by definition, the differ-

ence between the geometric distance, D, and the phase path length, P, both

quantities taken for the same end points on the ray path.

AP = D - P (3)

Any wave other than the characteristic waves, when propagating in

the ionosphere, will be split into the two modes, each propagating with

its own characteristic phase velocity determined by the corresponding value

of p, given by Equation (1) . At any point along the path of propagation

the resultant polarization will be the combination of the two modes and

it changes as the wave progresses along the path. The above described

phenomenum is the well known Faraday rotation effect.

In the case of linear polarized waves propagating in the ionosphere

under QL condition, the angular rotation, Q, of the polarization plane

can be related to the differential phase shift between the two circularly

polarized characteristic modes.

0 = (AP_ - AP+) (4)

The phase path length reductions AP and AP_ correspond respectively to

the plus and minus signs of Equation (1).

The expression for ft in Equation (4) becomes quite simple in the case

of waves of sufficiently high frequency for the refraction effects to be-

come negligible; the ray path can then be approximated by a straight line

path and ^ can be represented by the first order terms of its binomial

expansion.
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p, = 1 - ± (X ±XYcos0) (5)

For the high frequency approximation Z = 0 and cos Of = 1, the expression

for 0 is then given by

o 4 S**
n = £ J L / X Y c o s e ds = 2'36*10 / nBcos9 ds (6)

"0 f "0

Equation (6) shows clearly that the Faraday rotation angle is not

related directly to the columnar electron content along the ray path,

I = /nds, but to a content weighted by the longitudinal component of the

local magnetic field, B = Bcos0.

To obtain columnar electron content values from Faraday rotation

angle measurements one must know the magnetic field and the shape of the

profile of electron concentration all the way along the ray path. In the

case of the ionosphere very good estimates of the geomagnetic field can

be obtained from a spherical harmonic expansion, using the coefficients

calculated by Jensen and Cain[1962], or the more recent ones of Cain and

Sweeney[1970]. An electron concentration profile must be assumed based

on theoretical models. The accuracy of columnar electron content values

derived from Faraday rotation angle is thus very dependent upon one's

ability of best guessing the proper electron concentration profile model

to be used under the measurement circumstances.

It is usual to write Equation (6) in a form such that the Faraday

rotation angle Q appears to be directly proportional to the columnar elec-

tron content I by defining the weighted mean value /B )> over the integra-
L

tion along the path between source and receiver. The 'mean longitudinal

geomagnetic flux density1 is, by definition, given by

SEL-72-019 8



< V = s-f- (7)
nds

It is convenient to define a parameter G as

.4
G=2,36xlp_ (g)

The parameter G defined by Equation (8) above, is a function of the fre-

quency used and, of course, of the shape of electron concentration pro-

file and the distribution of the longitudinal component of the geomagnetic

flux density, B , along the path between source and receiver. It does not

depend on the magnitude of the electron concentration.

Equation (6) can be rewritten as

0 = G I (9)

Although it is convenient, and very often done, to relate the Fara-

day angle to the columnar electron content as in Equation (9), this does

not necessarily mean that G is a constant factor which converts Faraday

rotation angle data into electron content information. Even in the case

of geostationary beacons where the B distribution is stationary, fluctua-
L

tions in the height and shape of the electron concentration profile through-

out the day cause G not to be constant with time. The parameter G cannot

be measured by using the Faraday data by itself, and is, therefore, usually

only roughly estimated and often assumed to be time independent. Improve-

ments on the estimated values of G can be realized by resorting to ancillary

data such as electron concentration profiles from Thomson scatter observations,
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(D.H. Smith[1970]), but such data are costly and can be obtained only in

a few locations. However, even the best Thomson scatter data are limited

in height; otherwise the total content could be determined from it alone.

The maximum height of the scatter profiles can be made larger by increas-

ing the integration time, but this sacrifices accuracy, because the elec-

tron distribution may change significantly during the observation interval

So, to calculate the total electron content from Faraday data combined

with Thomson scatter information, there is always the necessity to extra-

polate the profile shape beyond the maximum height of the Thomson data.

As pointed out in the beginning of this chapter, one of our contribu-

tions is the experimental determination of the parameter G and its diurnal

variation.

A brief remark on the phase path length reduction will follow.

Under (J, conditions of propagation and in the case of high-frequency

waves, the phase path length reduction suffered by either mode of propa-

gation is directly dependent on the columnar electron content along the

ray path. The expression relating the phase path length reduction, AP,

to columnar electron content, I, is readily obtained by using Equations

(2), (3), and (5).

AP = Z^i I n ds (10)
f JQ

The frequency shift seen at the receiver, the so-called ionospheric

Doppler frequency shift, due only to changes in the amount of electrons

along the transmitter-to-observer path is given by

f I dAp _ 40.3 d£
I = X dt ~ c f dt

where X is the free space wavelength.
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The cycle count of f yields values of columnar electron content

increments Al = (I - I ) where I is the value of the electron content at
o o

the beginning of the count.

To obtain columnar electron content values from ionospheric Doppler

frequency shifts one must know the absolute value of the columnar elec-

tron content at one given instant of time during the period of observation.

At any other time t the columnar electron content will be given by

c f r
1 = 4073 Jt

 fl dt + Io
o

Methods for determination of the constant of integration I in the
o

case of low orbit satellites have been discussed by several workers. In

such cases, the determination of the unknown constant can be made by tak-

ing advantage of the fast angular motion of the spacecraft relative to

the observer (de Mendon9a[l962]). This clearly is not the case with geo-

stationary beacons.

For such beacons a method of combining the Doppler frequency and the

Faraday rotation angle measurements to determine the absolute value of

the total columnar electron content was developed and is described in

the present report.

Since geostationary radio beacons, orbiting at 6.6 Earth radii, are

outside the plasmapause, except perhaps in geomagnetically very quiet

days, (Carpenter[1966]), total columnar electron content values derived

from ionospheric Doppler frequency shift data is a good measurement of

the total electron content of the plasmasphere up to the plasmapause.
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CHAPTER II

DETERMINATION OF THE COLUMNAR ELECTRON CONTENT AND THE PARAMETER G OF THE

PLASMASPHERE UP TO GEOSTATIONARY HEIGHTS.

The columnar electron content of the lower ionosphere, up to about

1000 km, has been measured by numerous authors using satellites in low al-

titude orbits. Good accuracies have been obtained from differential Doppler

frequency observations (de Mendon9a[1962]) or from a combination of differ-

ential Doppler frequency and Faraday rotation angle measurements (Garriott

and de Mendon9a[1963]). The columnar contents derived from the Faraday

rotation angle only (Garriott[I960]) involve some uncertainty related to

the unknown shape of the electron concentration profile. This drawback

is of little importance in most applications; however, it becomes a major

concern when the fine details of the plasmaspheric content changes are to

be investigated.

The differential Doppler frequency, on the other hand, is equally

sensitive to ionization changes at any altitude and provides a very

accurate method of measuring the rate of change of columnar electron con-

tent. To obtain the absolute value of electron content at any time, it

is necessary to integrate the observed rate of change and to .determine

the unknown integration constant from some additional information. This

problem has been solved for the case of low orbiting satellites (c.f.

Garriott, da Rosa, and Ross[l970]) . It is the purpose of this section to

describe a method for solving the same problem in the more difficult case

of geostationary satellites by combining the differential Doppler frequency

and the Faraday rotation angle measurements to determine the absolute

value of the total plasmaspheric content.
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A. The Experiment

The experiment described in this report was carried out using VHP

and UHF transmissions from the ATS-3 satellite. The 137.35 MHz VHP sig-

nal is the carrier of one of the regular telemetry transmitters while the

412.05 MHz UHF signal is the third harmonic of the VHP frequency, gener-

ated by a special multiplier installed aboard the satellite.

The effective radiated power (ERP) at VHP is about 2 W, which pro-

vides ample signal-to-noise ratios even when only a 12 dB antenna gain is

used on the ground. The ERP at UHF is 12 mW but, due to the complicated

spectrum of the signal resulting from the large spin modulation imparted

by the rotation of the satellite, the ERP, in the dominant spectral com-

ponent, is only 4.5 mW. In order to obtain good signal-to-noise ratios

with the relatively modest antenna gain of 23 dB, great selectivity is

necessary, so that only this dominant component is received. The band-

width used is 1.5 Hz and the resulting signal-to-noise ratio is 19.4 dB.

The use of a larger band-width in order to include more of the incoming

UHF signal would actually decrease the signal-to-noise ratio.

The ground equipment performs the dual role of polarimeter for the

VHP wave and of differential Doppler receiver using both the VHP and UHF

signals. The outputs of this equipment consist of a) a voltage analog of

the polarization angle (fl) and b) the beat frequency (f ) between the

selected component of the UHF spectrum and three times the VHP frequency.

The polarimeter measures only angles between 0 and 180° so that a given

number of half rotations have to be added to its reading. The resolution

of this '180° ambiguity' has been discussed elsewhere (Smith IIl[1968]) .

The observed values of fi and f provide the data used in the analysis

SEL-72-019 14



described below.

B. Data Reduction

If f „_,_,» is the transmitted VHF frequency, then the received fre-
VHF(T)

quency will be

fVHF(R) = fVHF(T) + fl + fV

where f is the frequency shift caused by changes in the intervening ioni-

zation and f is the vacuum Doppler shift due to the relative velocity be-

tween observer and satellite.

The carrier frequency of the transmitted UHF signal is exactly

3f,.._,_,.. The four antennas, which constitue the satellite transmitting
VHF (. T )

array, are mounted on the rim of the spacecraft and are diametrically sep-

arated by a distance of 2 wavelengths. This arrangement results in a ra-

diation pattern containing deep minima; consequently the spinning of the

satellite causes a strong phase and amplitude modulation to be imposed on

the carrier. This in turn creates numerous sidebands so that the complex

spectrum shown in Figure 1 is actually emitted from the spacecraft. As

can be seen from the figure, the dominant spectral line is the one with

a frequency (3f . . - 2f ), where f is the spin frequency of the
VHF\i) S S

satellite. The received UHF signal has a frequency

fUHF(R) = 3fVHF(T) ~ 2fS + 3*1 + 3fV (

Here the effect of the ionization changes is only one third of that at

VHF (neglecting very small higher order effects (Ross[1965]>, while the

vacuum Doppler shift is three times larger than at VHF .

The receiver performs the comparison between fTTTro/DN and three timesUHF\R/

15 SEL-72-019
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Q

f — ?f - f — 9-f 4. —f

b ~ VHF(R) UHF(R) ~ S + 31

The desired frequency, f is then

fi = l(fb - 2V
The subtraction of 2f from the beat note f is done automatically

S D

in the receiver. To accomplish this, the UHF signal is demodulated and

from the resulting low frequency audio tone, the component of frequency

2f (which happens to be about 3 Hz) is extracted by means of filters.
o

The beat note f. and the component of frequency 2f , are then multiplied
b S

by 4 and the difference is taken in a phase comparator. The output of

the phase comparator is fed into a counter which counts the number of

cycles of the signal. The accumulated count is, at regular intervals,

read into a digital magnetic tape.

The relationship between the ionospheric Doppler shift f and the

rate of change of slant columnar electron content is given by Equation (11)

fj = QI (11)

where

40.30 1.344xlO"7
Q = —jj = T (MKS)

VHP VHP

o
and I is the time rate of change of the slant columnar electron content,

I.

Between times t and t, the cycle count of f will be incremented by
o I

count increment * = ** y ft 3 Jt * dt = Q (I - I )
o

"t
o

where I is the (unknown) value of the slant content at t .
o o

SEL-72-019 18



The slant columnar electron content increment is thus:

3 '
32 Q

count increment (15)

The resolution is one count, resulting in a resolution of (3/32 Q) w

13 —2
9.6 x 10 el.m in the content measurement. This resolution could be

increased by using a multiplying factor larger than four preceding the

phase comparator.

To obtain a real time analog representation of the differential

Doppler frequency, f , a technique is used involving the recording of the

differential Doppler phase meter output which consists of a sawtooth wave

with a frequency f, . Due to irregularities in the radiation pattern of
b

the satellite, two small bumps appear on the ramp of the sawtooth wave.

These bumps are, of course, synchronized with f and thus will slip up or
O

down the ramp by virtue of the fact that the sawtooth frequency, f ,

differs slightly from 2f . If the recorder is run at a very low speed
S

so that, as consecutive cycles of the sawtooth signal merge into each

other, the bumps coalesce into figures that seem to move up or down along

the graph, as in Figure 2. In this figure, one can see the ionization in-

crease, go through a maximum, and then start to decline. Every other

fringe in the figure is caused by the same one of the two bumps mentioned

above. Thus the time interval between the start (or end) of two alternate

fringes is the time that it took for the slant electron content to change

by 3.83 x 1014 el.m~2.
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C. Determination of the absolute value of total columnar electron content

In this section it will be shown how the Faraday rotation angle, Q,

can be combined with the columnar electron content increment, Al = (I-I ),

to yield a value of the parameter G provided uninterrupted measurements

are available over a reasonably long period. Once a value of the param-

eter G, which relates Faraday rotation angle to total columnar electron

content, is known at a time t , the value of the total electron content

at that same instant of.time is completely determined. The value of the

total electron content at a time t is the constant of integration needed
o

to convert differential Doppler frequency data into absolute values of

total electron content.

In Chapter I, Section A it was shown that the Faraday rotation angle

is related to the ionization along the ray path by

nB ds (6)
0 L

where fi is measured in radians, Q_ is a constant with a numerical value
r

4
of 2.36 x 10 in MKS units, f is the wave frequency in Ha, n is the con-

-3
centration of electrons in m , B is the longitudinal component of the

L
-2

geomagnetic flux density in Wb m , and ds is an element of length along

the ray path, in m.

A 'mean longitudinal geomagnetic flux density' , <B > ,was defined

such that Equation (6) can be written as

0 = -4 <BT> I = G I (9)
f2 L

from which G = — or, equivalently, at time t

SEL-72-019 20



- n
} _ t
o

where I is the total electron content of a reference electron concentra-

tion profile and 0 is the Faraday rotation angle associated with the

reference profile. In order that Equation (16) be meaningful it is

necessary that I and Q go to zero simultaneously. The above condition

is always satisfied for the QL propagation approximation. Under QL

conditions the angle between the wave normal and the local geomagnetic

field, 6, is always in the same trigonometric quadrant so that cos 8 does

not change sign along the path of propagation. The longitudinal compon-

ent of the geomagnetic field, B , does not change sign over the path of
L

integration in Equation (6) and because electron concentration is always

positive, 1=0 implies 0=0 and vice-versa.

The technique used to determine the parameter G is based on Equation

(16), although the limit situation I = 0 is not observed in practice.

Even during the night when the main generating source of the ionosphere,

the solar EUV radiation, is absent, a residual ionization is always pre-

sent. Except for very disturbed days, however, the residual nighttime

ionization is small compared with day time electron concentration at the

same levels in the ionosphere. Such large diurnal variation in the degree

of ionization found in the ionosphere in most of the days, provided, there-

fore, a great deal of information which can help to determine the param-

eter G.

The quantities AQ = (Q(t ) -fl) and Al = (I(t )-I) are experimentally
o o

determined from the Faraday rotation angle and the phase-path differ-

ence measurements, respectively. Values of the ratio AQ/Al can be computed
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for decreasing values of I and Q. This is accomplished by selecting

a time of the day, t , which is coincident or close to the time of maxi-

mum Faraday rotation angle, so that values of I(t ) and fi(t )are very
• o . o

large compared to the corresponding nighttime values. Then by taking as

reference values the smaller values of electron content and Faraday rota-

tion angle at other times of the day the quantities Al and Afl can be deter-

mined and a collection of values of the ratio ACi/Al can be obtained.

Plots of the ratio AQ/AI versus the variable Q are illustrated in Figure

3. It can be seen that for small values of Q the ratio AO/Al, in general,

converges in a rather well behaved way as fi decreases to its minimum

observed value. The value of the ratio AQ/AI for 0=0, therefore, can

be extrapolated from plots like the ones shown in Figure 3. Such value

is by definition the value of the parameter G relative to time t .

The quantities AQ and Al are known very accurately and because the

mean values of the ratio AQ/AI vary slowly for small Q, the estimated

± 7 degrees error in our determination of the Faraday angle has a negli-

gible effect on the accuracy of the estimated value of G . It is clear
o

from Figure 3 that the closer the minimum values of the Faraday rotation

angle come to zero, the more accurate the extrapolated value of G . A

criterion for the choice of the reference values is then established where

the set of Q and I to be used will be the one which contains data points

corresponding to a period of time in which the Faraday angle is decreas-

ing to its minimum observed value during the entire period of continuous

measurements of both variables. In general, the minimum value of Fara-

day rotation angle is observed right before sunrise at ionospheric

heights and, provided such minimum value is low enough compared to the

SEL-72-019 22



0.42

0.41

•o

<o
"b

ARECIBO
6 DEC 68 1420 AST (0)

0.40- ^V

0.39

0.38

0.31

0.30

0.29

0.28

STANFORD
02 MAY 69 1045 PST (b)

360 720
SI (deg)

1080 1440

Fig. 3a,b. EXAMPLE OF PLOTS OF THE RATIO BETWEEN THE QUANTITIES AQ = (Q(t ) - fl) AND
AI = (Kt ) - I) USED TO ESTIMATE VALUES OF THE PARAMETER G. It can be seen that the
ratio for small values of fl, converges in a rather well behaved way as ft decreases to
its minimum observed value. The dash line is the best estimate of AO/Al convergence to
its final value (the parameter G) for fl = 0.
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following daytime peak, very good determination of the parameter G can be

made. Since the elapsed time between sunrise and daytime peak of the

ionosphere is about 8 hours, this time turns out to be the minimum inter-

val of continuous measurements of Faraday rotation angle and phase path

difference data which can normally be useful for accurate estimates of

the parameter G.

A value for I can be found from Equation (9):

net )
'o = I(V = cut2)

o

Clearly the uncertainty in I depends on the accuracy in which both
o

fi(t ) and G(t ) can be determined. The uncertainty which the parameter
o o

G was determined in all available data never exceeded ± 0.5%. The error

in Q originates from two sources; the accuracy of the polarimeter equip-

ment and the uncertainty in the determination of the initial polarization

in which the wave is launched from the spacecraft. Because the error in

Q(t ) can be made negligible by improving the polarimeter and accurately
o

measuring the initial polarization prior to the spacecraft launching, the

accuracy in the value of I is solely limited by the uncertainty which

G(t ) can be determined, i.e., less than ± 0.5% of the daytime value of I.

15 -2
Such uncertainty corresponds to about ± 3 x 10 el.m which is at least

one order magnitude lower than that of any other existing method of measur-

ing columnar electron content.

The uncertainty in the values of I reported here, however, are of

the order of ± 1% of the daytime value of I because the values of Q are

affected by errors of about ± 7 degrees. Most of the error in Q comes

from the determination of the initial polarization.
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Once the absolute value of I at any particular moment has been deter-

mined, the value of I at any other time can be found from Equation (15).

Provided there is no interruption in the data, the error in I is essen-

tially the error in the determination of I because the resolution in

the measurement of Al is 10 el.m

The knowledge of the columnar electron content, I, permits now the

computation of G at any time during the period of continuous observations,

through the use of Equation (9).

The analysis discussed above yields a description of the diurnal be-

havior of the total columnar electron content and of the parameter G.

To illustrate the method of determination of I , let us consider the
o

plot shown in Figure 4. It represents the total electron content, I, vs.

time as obtained at Arecibo. At this stage of the analysis the exact

shape of the I vs. t curve is known from the phase-path difference experi-

ment; what is missing is the integration constant, I , at any arbitrary

time, t , i.e. the exact position of the curve on the ordinate scale,
o

(The ordinate on Figure 4 was labeled 'a posteriori'.) The best value of

I is being sought. It can be seen that during the interval of time be-

tween the daytime peak on 6 December and the sunrise in the next morning,

the content decayed to its minimum value observed during the period of

measurements. Although not shown in this figure, the Faraday rotation

angle also decayed to its minimum observed value, so that we select the

above mentioned interval of time for taking the reference values of Q and

I . Time t corresponding to fi and I is the time of the content peak
o o o

on the 6th, i.e. 1420 AST. The quantities Al = (I(t ) - I) and
o

AQ = (Q(t )- Q ) were formed and the corresponding values of the ratio
o
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— 1 fi
Afi/Al were plotted versus Q in Figure 3a. The value of 0.3970 x 10

2
radians.m for G at 1420 AST (Antilles Standard Time) on 6 December 1968,

was obtained by extrapolation. The plots of AQ/Al labeled c,d,e, and f

in Figure 3 were obtained from the Arecibo data of 6 December 1968 at

1420 AST. by selecting other intervals of time as reference values of

fi and I. The behavior of AQ/Al for small values of Q in the first three

plots is such that good extrapolations for the value of G can be made.

The scatter in the extrapolated values of G; corresponding to plots

a,c,d, and e, is less than ± 0.5%. Plot f corresponds to a case in

which the convergence of Afi/Al is not well defined and no attempt to

extrapolate a value for G was made in such cases. The value of the

Ffiraday rotation angle at 1420 AST was (1082 ± 7) degrees thus the total

columnar electron content at that instant of time obtained by using

16 _o
Equation (9) is (47.55 ± 0.48) x 10 el.m . Now that a value of I

has been found, the total columnar electron content, I, is determined via

Equation (15) . The parameter G is then determined for any time during

the period of observations via Equation (9), and it is shown in Figure 4

together with I.

Figure 4 shows the diurnal behavior of G a quantity which tends to be

large and constant during the day, falling off in the afternoon to the

lower nighttime values and finally rising very fast at dawn to its daytime

level. Fluctuations of as much as 7.5% in the daytime values of the

parameter G were observed during that period. The minimum values of Gr

during the night, were 22% lower than its mean daytime level.

An alternative method for the determination of a value of G using the

time derivatives of the quantities fi and I has been developed (Almeida
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et al.[1970]).

Taking the time derivative of Equation (9):

0 0 O

n = GI + IG
and, since from Equation (9), I = Q/G

Equation (16) is a differential equation in G in which the coefficients,

o o

fl, Q and I are all quantities derived from experimental observations.

It can be seen that, if, throughout the day, a time, t , can be found

O 0 0

when G is zero and Q and I are non zero, then, at that moment,

G = G(t ) = 3 - — (17)

° ° "V
hence a value for I can be found from Equation (9) which becomes:

7
o

o o

The values of Q, Q, and I do not contain enough information to permit

o

a mathematical determination of the time periods when G = 0. This is

equivalent to saying that it is impossible to extract initial conditions

from a differential equation; initial conditions must come from independent

considerations. In the present work it is necessary to examine the phy-

sical processes involved and select all time periods when it is most

plausible to assume that there are no changes in G, and then support this

selection by means of self consistency checks.

Constant G is implied by an ionization profile with unchanging shape

and unvarying height. It is reasonable to expect that the shape and
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height are best preserved near the middle of the day (or of some nights)

when layer height and plasma temperature and composition are themselves

unchanging.

A careful scrutiny of all available data is made in order to identify

o

the time periods during which G is judged to be zero and the time rates

of change of Q and I are not negligible. As many such periods as possible

are selected. Each selected period yields an independent initial condi-

tion for the differential equation; if the assumptions made were perfectly

correct and if the data contained no uncertainties, then these initial

conditions would be redundant. In practice each initial condition leads

to a slightly different solution and all reasonable solutions are consid-

ered together to determine the most probable one by means of a simple

error minimizing technique described further on.
o

To illustrate the method of selecting a period when G = 0, let us

consider the plot of the total electron content, I vs. time obtained at

Stanford, and shown in Figure 5. It can be seen that near noon on April

6 and 7 there are intervals of time when the content changes reasonably

fast. Although not shown in this figure, the Faraday rotation angle also

o o

changes during this period, so that I and fl are non negligible. Assuming

that G was unchanging during those periods in question, four independent

values of G , indicated in Table 1, were obtained by using Equation (17).

Using these four independent values, the integration constant I was

found by minimizing the quadratic error in the following manner:

ri °Let Al. = I I dt. At time t. the true columnar content will be I + Al. .
1 Jt V °

Let I . be the columnar content estimated for the time t. by assuming
o

G = 0 at that time. The mean square error between the estimated and the
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true values is

.
N / -^ 01

where N is the number of independent estimates of I made.

TABLE ,1

DATE

6 Apr 68

6 Apr 68

6 Apr 68

7 Apr 68

TIME

(PST)

12:15

12:50

13:12

11:52

GQ x 10
16

rad.m

0.3503

0.3523

0.3523

0.3509

G x 1016

rad.m

0.3522

0.3520

0.3503

0.3508

Deviation of G
o

(percent)

-0.53

+0.08

+0.57

+0.02

Table 1^ Comparison between the form factors, G calculated independently
o

and the factor, G obtained from the least error analysis.

The value of I which minimizes the quadratic error can be found by
o

setting

*!
dl
o

This yields

N

I = | >^ (I . - Al.) (18)o N /t 01 i

The knowledge of I from Equation (18) permits the determination of
o

I and G at any time. The values of G thus calculated are indicated in

Table 1, together with the deviations from the individual determination

of G .
o
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The apparent simplicity of the method is somewhat deceptive; it is
O 0 0

based on the premise that a moment of the day when G = 0 and 0 and I are

non-negligible can be found. Since G does not increase or decrease in-
o

definitely, moments when G = 0 do exist. Such moments, in general,

coincide with the middle of the night when Q and I are near constant and

with the middle of the day when Q and I are slowly evolving through the

maximum of the diurnal variation. This behavior turns out to be unfavor-

able when time derivatives of the quantities fi and I are to be taken.

Furthermore, the differentiation operation on the variables in question
o

enhances the noise level causing a deterioration on the accuracy which 0
o

and I can be estimated. Nevertheless this alternative method could be

useful in cases in which the technique of extrapolation of the ratio

becomes difficult. Such cases may exist when the minimum observed

value of Faraday rotation angle is not low enough to assure a reliable

extrapolation of the ratio Afi/Al for 0=0.

A comparison between the values of G derived by the two methods de-

scribed here, for the 6-7 April 1968 data, was made. The technique of

extrapolation of the ratio ACi/Al yields daytime values of G 2% higher

than the corresponding values of G determined by the second method. Be-

cause this is one case where very reliable extrapolation of the ratio

Afi/Al could be done, the above mentioned difficulties with the alterna-

tive method can explain the discrepancy between the values of G.
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CHAPTER III

TECHNIQUE OF PROTONOSPHERIC ELECTRON CONTENT DETERMINATION USING

GEOSTATIONARY SATELLITES .

Owing to the fact that the Faraday rotation angle is related to the

product of electron concentration and the longitudinal component of the

geomagnetic field, signals traversing the plasmasphere are relatively

unaffected by the ionization at high altitudes where the geomagnetic field

is quite weak. The phase-path difference, on the other hand, is a quan-

tity equally sensitive to ionization at any altitude. The observed

changes in phase-path length are, thus, a measurement of changes in the

total ionization encountered along the path of propagation. This suggests

the possibility of inferring information on electron content of the upper

regions of the plasmasphere by combining Faraday rotation angle and phase-

path difference data.

Howard et al.[l964a], Howard et al.[l964b], Howard[1967] and Yoh

[1968], using lunar radar echoes and da Rosa[1965], da Rosa and Almeida

[1968], using satellite transmissions, tried to determine the so called

'relative protonospheric electron content1, AI . The scheme used was to
P

subtract from the columnar electron content increment, Al, derived from

the phase-path difference data, the 'Faraday electron content1, I a
F

quantity proportional to the Faraday rotation angle data.

Alp = AI - IF = AI - £- (19)

where G is the value of the parameter G corresponding to the value of

B computed at a height of approximately 400 km.
L
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It was assumed that the parameter G calculated in this way would

convert Faraday rotation angle data into electron content of the 'iono-

sphere1 , the region below 1000 km.

The parameter G depends on the geometry of the distribution of B
I L

and on the shape and height of the electron concentration profile along

the ray path (Yeh and Gonzales[1960], Almeida et al.[l970], and Smith

[1970]). Based on the knowledge that the shape and height of the electron

concentration profile, in the ionosphere, changes during the day, some

of the authors mentioned in the beginning of the section, tried to improve

their determination of Al , correcting the values of G_ for changes in
P I

the height of the peak of electron concentration.

The above procedure involves a fallacy in that it implies that Fara-

day rotation abruptly ceases above a determined level. Consequently, the

mentioned procedure leads to an improper interpretation of Al .

The analysis which follows below will show that the quantity Al
P

defined by Equation (19) is not a measure of the relative electron content

above a determined level but may nevertheless yield useful information

on the electron content of the upper region under certain geometries of

observation.

A. Analysis

It was shown in Chapter 2, Section C, that by combining Faraday ro-

tation angle and phase-path difference data measured using VHF and UHF

transmissions from geostationary satellites, it is possible to determine

very accurately the columnar electron content. It is convenient then

to rewrite Equation (19)

Iw = I - g- (19.)
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where I is the columnar electron content derived from phase-path differ-

ence data.

With the aid of Equations (6) and (8), Equation (19a) can be further

rewritten as

s
1=1 n (1 —) ds = I n W ds (19b)

r T T *fo LI o
[ = / n (i _ J^)
W / BLI

where B is the value of B corresponding to G and n is the local
LI L I

electron concentration.

The quantity 1 defined by Equation (19b) is the electron content
W

weighted by the function W = (1 - B_/B ) along the observer-to-spacecraft
L Ijl

path.

The conditions which must be satisfied for I to be the electronw

content of the region extending upwards from a determined level, corre-

sponding to the length S. along the path of integration, to the space-

craft are given by

Si

/ n (1 - BL/BLI) ds = 0 (20)

0

S S

I n (1 - BL/B ) ds = I n ds,and I n (1 - B /B ) ds = I n ds, or
/ L LI J
Si Si

B_/BT_ = 0, for s > S. (21)
LI i-ii i

Because the ionospheric physicist is interested in having information

on the protonosphere - the region in which the Hydrogen ions, IT1", are the

dominant species - the level being considered here is near the H+ transi-
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tion height, i.e., the level where the concentration of IT1" ions is 50%

of the total ion concentration, and which lies approximately in the alti-

tude range from 800 to 2000 km and is well above the F region electron

concentration peak.

For a given geometry of observation, the longitudinal component of

the geomagnetic field, B , is determined and a value of B must be found
L Jj A

such that Equations (20) and (21) are reasonably approximated for any

profile n(s) which might exist. In the case of midlatitude stations it

is in general possible to find a value B which satisfies Equation (20)
Lil

for a given electron concentration profile. This value of B is of thei-il

order of the values of B in the region of consideration in Equation (20)
Lt

and because B does not decay very fast with height, the condition imposed
Li

by Equation (21) is far from being satisfied. The problem of finding a

value for B which satisfies this latter equation becomes even more
LI

complicated because n(s) profiles vary with time and are not known in

general.

For I to be a measure of the electron content of the protonosphere,
w

the ideal geometry would be one in which B is constant in the ionosphere
L

and then falls off very fast above the transition level. Under such cir-

cumstances it would be possible to find a value B such that W is zero

in the ionospheric region and becomes approximately equal to unity in the

protonosphere; the conditions expressed by Equations (20) and (21) would

then be satisfied for any profile n(s).

Unfortunately the ideal geometry mentioned above cannot be found

because of the smooth way the geomagnetic field varies with height. In

practice, however, geometries which approximate the ideal one quite
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satisfactorily can be found, at least, for an observer at geomagnetic mid-

latitudes. An analysis of the geometries which can occur for observers

at Stanford and Arecibo will follow.

The variation of B with height along the observer-to-satellite path

can be such that: a) B is a decreasing function of height all the way
L

along the path; b) in the region extending from observer to, say 600 km,

B is nearly constant and then starts decreasing very slowly with height.
L

In this second case it is possible to find a value B such that EquationLI

(20) is reasonably well satisfied for any n(s) profile for levels below

some 800 km. Clearly, it is not possible to find such value B for
LI

case (a).

Values of the function W were computed along the observer-to-satellite

path for Stanford (-122.16°E, 37.4° N.) and for Arecibo (-66.85°E, 18.4° N).

Several possible geometries of observation covering the range of longitudes

where a geostationary satellite would be visible from each station, were

considered. Very accurate values of geomagnetic field, estimated from

the recent POGO(8/69) coefficients (see Cain and Sweeney[1970]), were

used in the calculations of W. Given the positions of both the station

and the satellite, a family of curves W vs. height can be generated

corresponding each one to a different value of B . The values of B

chosen to generate one family of curves correspond to values of B com-
L

puted at points on the observer-to-satellite path with height ranging

from 250 km to 350 km approximately. The plots of W, shown in Figures

6 and 7, illustrate the behavior of such families of curves, for Stanford

and Arecibo stations respectively.

When the observer is at Stanford and the satellite parked at -105° E,
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the variation of B conforms to case (a), above. It can be seen in
L

Figure 6 that in this case the various curves of W are increasing func-

tions of height. The curves of W merge into one another at very high

altitudes such that W has the value of approximately 0.5 around 1800 km

and is greater than 0.9 above 8000 km.

For the same observer at Stanford, and the satellite now parked at

-73° E1 the resultant geometry is of the type (b) . The family of curves

W stays very close to zero in the range from 100 to 600 km (see Figure 6)

and then starts to increase, merging into each other at heights lower

than in the previous case. The weight function W has the value 0.5

around 2800 km and is greater than 0.9 above 8000 km.

Very similar situations can be found for an observer at Arecibo. As

can be seen from Figure 7, geometries corresponding to types (a) and (b)

are found for satellite positions -73° E and-l22°E , respectively.

The plots of W in Figures 6 and 7 indicate that there are some geo-

metries in which the ionospheric electron content contribution to I can
w

be pretty much eliminated by a convenient choice of the parameter B
LI

which causes the resultant W to be reasonably constant and close to zero

at ionospheric heights. Those are the cases for Stanford with the sat-

ellite at -73° E, and Arecibo with the satellite at -122° E, cases which

are going to be denoted from now on as Stanford/73 and Arecibo/122, re-

spectively. The other examples shown in the figures, (Stanford/105 and

Arecibo/73) are not favorable in the sense of eliminating the contribu-

tion of the ionospheric content to I for the reasons already discussed

in the beginning of this section.
800

Values of I . = n W sec x dh were computed for several differentI n
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geometries using backscatter electron concentration profiles representa-

tive of different hours of the day (courtesy of D.H. Smith). For each

station-satellite position, several different values of B were used
LI

in the computations of I .. Plots of I . versus time, for a period of
w* w*

24 hours, in Figure 8, show that for the geometry Stanford/73 a value

B can be found such that the corresponding values of I . are very
LI o w*

16 -2
small, never exceeding the limits ±0.1 x 10 el.m , and do not correlate

800
with the values of I . = / n sec \ dh, also shown in the same figure.

The values of I. under consideration in the figure are comparable to ob-
/t>

'• 1 6 - 2
served values of electron content; 60 x 10 el.m during the day, and

16 -2
10 x 10 el.m for nighttime. Even in the extreme case of I. reaching

Ki

values double of those given above, the corresponding values of I
W X»

for the same electron concentration profiles used for test, will not

•I f* _O

exceed ±0.2 x 10 el.m

For a value of the parameter B 1% higher than the optimum value
LI

B , the corresponding values of I . for the daytime profiles increase

substantially so that they strongly correlate with the corresponding

values of I., as it is clear from Figure 8. An inverse correlation be-

tween I , and I„ is obtained when the value of the parameter B, _ used
WJ6 * LI

to compute I ^ is lower than B , a case which is also shown in Figure

8. This shows the great sensitivity of the values of I . to relatively

small variations in B .
L J.

For geometries of the type (a), such as Arecibo/73, plots of I .

obtained using the same backscatter electron concentration profiles of

the previous case, shown in Figure 9, indicate that variation Df I ,

1 fi —?
greater than 0.7 x 10 el.m occurs even for the optimum value of B

LI
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which correspond to a height of 350 km. In the extreme case of I reach-
*

ing values double of the ones used in the computations the corresponding

Tfi _p
variation of I . can be 1.5 x 10 el.m a value which is about the

w£

sauie order of the protonospheric content.

It was already discussed in the beginning of this Section that it is

possible to find a value B which satisfies Equation (20), I . = 0, for

a given electron concentration profile. It is clear, therefore, that a

reasonable knowledge of the shape and of h , the height of the electron
max

concentration peak, of the actual profiles, is necessary in order to

estimate values of B which reasonably minimize the variations of I ...
LI w*

Information on the height h can be obtained from ionograms but
max

they yield electron concentration information of only the bottom side of

the ionosphere. The situation is improved by the use of Thomson Scatter

records which can cover the altitude range of the ionosphere, although

such records are costly and can be obtained only in a few locations.

A procedure often used in the past for minimizing the variation in

I . is to adopt values of B computed at heights 50 km above the observed

h
max

Figure 10 compares plots of I , calculated by the above procedure

with values of I . obtained by using a constant value of B computed

at a fixed height of 350 km. The 'corrective1 procedure does not greatly

reduce the values of I which are shown in the figure to have variation

of the same order as those resulting from the use of a fixed height.

From the comparison between the two geometries, Stanford/73 and

Arecibo/73, discussed above, it is evident that the elimination of the

ionospheric electron content from the total observed I is better accom-
w
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plished for geometries of the type (b). For geometries of the type (a),

such as Arecibo/73, the knowledge of the ionization profile covering the

heights of the ionosphere would be desirable.

One question arises of how critical the satellite position is, for the

favorable geometries of type (b), when the elimination of the ionospheric

electron content is being sought. Again, taking the backscatter profiles

for test, and assuming the observer to be at Stanford, values of I . for

several satellite positions around-73°E were computed, using in each case,

the optimum value of B. The maximum computed variation of I . is plotted

vs. satellite longitude in Figure 11. Interpolation between the computed

values indicate that the most favorable satellite longitude is near-75°E.

Displacements of ±4° in longitude around-75°E correspond to maximum varia-

16 -2
tions in I , of 0.3 x 10 el.m a value about one order of magnitude

lower than the protonospheric content in normal days.

A very fortunate coincidence is the fact that most of the long runs

of uninterrupted data collected at Stanford (a total of 320 hours) were

obtained when the geostationary satellite ATS-3 was at -73°±0.5°E. It is,

therefore, of interest to interpret the meaning of the measured I in terms

of columnar electron content of the upper regions of the plasmasphere for

that geometry of observation.

The measured I can be considered as the sum of three partial contri-w

butions, the ionospheric part, I ., the part corresponding to the region

ranging from 800 km to 10,000 km, I ., and the contribution of the region
VI JL

extending from 10,000 km to the satellite height, I .

For the Stanford/73 geometry, adopting the optimum value of the param-

eter B , I . is practically zero. The value of W (see Figure 6) is very
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close to unity (W > 0.95) at heights above 10,000 km, therefore, I approx-

imates the electron content of the region extending from 10,000 km to the

satellite height (35,600 km) with a resolution better than 5%. It is not

clear, however, how much of the ionization which lies in the range from

800 km to 10,000 km contributes to I because it depends on how the product

n.W, (electron concentration times the weight function W) varies with height

along the observer-to-satellite path.

Estimates of the dependence of I on the electron content of the upper

region were made based on the extrapolation of the backscatter profiles,

above 800 km, by using a diffusive-equilibrium model of the field-line

distribution of ionization (Angerami[1966]). The parameters of the model

are ion and electron temperatures, which are assumed to be equal to one

another and independent of height, and the relative concentrations of 0+

and H+ at the 800 km reference level. For each of the backscatter profiles,

several extrapolations were made varying the plasma temperature from 1000 K

to 2500 K and the relative concentration of 0+ from 20% to 80%. The ex-

trapolated profiles extend to a height of 4 Earth radii, 4R, the assumed

height of the plasmapause. Above that height, the electron concentration

was assumed to be zero. Ratios between the computed I and the electron
4R, w

content above a height h, I = In sec X dh, were calculated, the height

-'h
h ranging from 500 km to 4000 km.

Given a backscatter profile and the plasma temperature, a family of

curves I /I vs. height is generated by varying the 0+ relative concentra-

tion at the 800 km level. Examples of such families of curves are plotted

in Figure 12 for temperatures of 1000 K, 1500 K, and 2500 K. For any

height above 800 km and below 4000 km and for a fixed temperature, the 20%
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to 80% variation in the 0+ concentration causes a change in the ratio

I /I which never exceeds 0.02. Changes in temperature are more effective

in causing variations in the ratio I /I , even though the maximum variation

is 0.17 when the temperature is more than doubled.

The more interesting and useful result is that all the families of

curves in Figure 12 cross each other at the same height near 2300 km, where

the value of the ratio I /I is 0.91. The plots of Figure 12 were obtained

using a backscatter profile representative of daytime conditions, but almost

identical results were' obtained for backscatter profiles representative of

other hours of the day. The scatter in the values of I /I is less than
w' u

0.02 and in the height where the curves cross each other is less than 200 km.

The assumption of a plausible plasmapause height is not critical. Varia-

tions in the height of the plasmapause of ±1.5 Earth radii cause fluctua-

tions of ±0.02 in the ratio I /I and the effect on the height of crossing
w' u

is negligible.

From the discussion above it follows that as long as the diffusive-

equilibrium models are valid approximations, I can be interpreted as a

measurement of the electron content above 2300 km, for an observer at

Stanford and the satellite at -75° ±4° E .

The above conclusion is of great significance because it opens the

possibility of continuous measurement, with excellent time resolution, of

the protonospheric columnar content by using a relatively inexpensive

technique. Based on the computations made for Stanford and Arecibo, it

is expected that given a geostationary satellite position, a midlatitude

site can be found such that the resultant geometry is similar to Stanford/73

or Arecibo/122. This makes the use of the Faraday-phase-path difference
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technique more attractive for measurement of the electron content of the

upper plasmasphere.

B. Geostationary satellite observations combined with backscatter

ionization profiles.

For geometries of the type (a) it has been concluded that the Faraday

and phase-path difference data does not contain information enough to per-

mit a reasonable determination of the protonospherlc content. Additional

information on the bottom side of the ionosphere from ionograms is not

enough to solve the problem. The use of backscatter electron concentration

profiles can, however, greatly improve the situation.

The shape and height, h , of the ionospheric electron concentration
max

profiles from radar backscatter measurements, made simultaneously with

Faraday and phase-path difference observations, are the necessary informa-

tion to determine the values of B which minimize I .. The time resolu-

tion of this combined technique is limited by the integration time, typic-

ally of 30 minutes, used to process the radar ionospheric profile data.

Such resolution is, however, quite satisfactory for some long term obser-

vations. The real great difficulties in the implementation of such com-

bined technique are the high cost of the backscatter profiles and the low

availability of radar installations capable of covering the ionospheric

heights.

Because the Arecibo radar operations schedule is such that electron

concentration profiles are obtained in a regular routine basis, and because

the ATS-3 is usually parked around -73°E, it is of interest to interpret the

meaning of I derived from the combined technique for the geometry Arecibo/73.

Again, using the same procedure adopted for the Stanford/73 case,

calculations of the ratio I /I were made with the aid of diffusive-
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equilibrium profile models for the Arecibo/73 geometry with the differ-

ence that now B is not held constant but instead is made to vary in
LI

such a way that it assumes the values which minimize I . for each back-

scatter profile used in the test.

The results are almost identical to the ones obtained for the

Stanford/73 case with the exception that the height where the I /I

curves cross each other is near 1700 km and the value of the ratio at

that height is 0.95. This conclusion is also of great significance de-

spite the fact that it implies the use of a more expensive operation and

the additional complication of dealing with acquisition and processing

of the more sophisticated radar data in order to determine the protono-

spheric content.

There is considerable interest in the simultaneous observation of

protonospheric content from sites with local time differences of several

hours. For a given satellite position there are only two regions, lo-

cated at approximately 50 degrees East and West of the satellite posi-

tion, where the favorable geometry of protonospheric observations occurs.

Of the spacecrafts presently carrying aboard the VHF/UHF pair of

beacon frequencies, the ATS-3, because of technical difficulties with

ATS-5, is the more suited for the Faraday-phase-path difference experi-

ment. Important scientific and technical considerations require the

positioning of ATS-3 around-73°E for long periods of time. This makes

Stanford one of the ideal sites for carrying the protonospheric observa-

tions. The other lies somewhere in the middle of the Atlantic ocean. The

possibility of successful protonospheric observations from a site where

the resultant geometry of observation does not conform to (b), but iono-

SEL-72-019 54



spheric electron concentration profiles are available, makes Arecibo

another possible site for the observations.
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CHAPTER IV

RESULTS

Faraday rotation angle and phase-path difference data (ionospheric

Doppler frequency shift) using VHP and UHF signals transmitted from the

geostationary satellite ATS-3, were recorded at Stanford and Arecibo.

Very few instances of phase-path difference data covering periods

longer than 24 hours with no interruption, were obtained due to the rel-

atively modest antenna gain of 23 dB used to track the dominant spectral

component (4.5 mW ERP) of the UHF signal (see Chapter 2). Only the un-

interrupted data covering periods of time (over 24 hours) long enough to

permit a good determination of the absolute value of columnar electron

content were analyzed by the methods described in Chapters 2 and 3. A

total of 450 hours of observations were considered in this work.

The Arecibo data, covering a period of 5 days in December 1968 with

no interruption, were acquired when the ATS-3 was drifting from -47.4°E

to -50°E and correspond to the most unfavorable geometry for determination

of protonospheric content by using the Faraday and phase-path difference

technique. Ionospheric electron concentration profiles, the additional

information necessary for determination of protonospheric content in

such case, were not available for that same period of time. Such data

are presented here to illustrate the discussions of Chapter 3.

Most of the Stanford data, some 320 hours, were collected when the

satellite was parked at -73°±0.5° E , a situation which corresponds to

the most favorable geometry for protonospheric observations by the

Faraday-phase-path difference technique.
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The Stanford observations cover several days in April and May 1969,

a period of time not long enough for a statistical study of the behavior

of the protonospheric electron content. Luckily, however, the observa-

tions cover geomagnetic activity ranging from very quiet to highly dis-

turbed days when changes in the height of the plasmapause are expected

to occur (Carpenter[1966]). Depletion of the plasmasphere following the

increase of geomagnetic activity was detected by the corresponding de-

crease in protonospheric electron content in general agreement with the

behavior of tube electron content measured by the whistler technique

during a geomagnetic storm (Park[l970j). Of particular interest are the

data taken during the storm of May 14, 1969, from Stanford. The behavior

of the protonospheric content is consistent with a storm model in which

the outer plasmasphere is 'peeled' away by sunward convection and is sub-

sequently replenished by slow filling from the underlying ionosphere

(Chappell et al.[l97l]).

A. Arecibo Observations

Approximately 140 hours of uninterrupted phase-path difference and

Faraday rotation angle data were obtained at Arecibo from 6 to 11 December

1968. The geostationary satellite ATS-3 was drifting from -47.4°E to

-50° E during the period of observation. The resultant geometry of ob-

servation is very similar and even less favorable for protonospheric con-

tent determination than the one, which corresponds to the satellite posi-

tioned at -73° E, studied in Chapter 3. Unfortunately, ionospheric elec-

tron concentration profiles which can provide a means of estimating the

right values of B which minimize the contribution of the ionospheric
LI

electron content to I , were not available for that period of time. For
w
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this reason, several derivations of I from the observed data were made
' w

each one corresponding to a constant value of B . The values of B
LI LI

used correspond to heights between 300 km and 350 km and should approxi-

mately correspond to the bounds of the optimum value of B for such
LI

case, as seen in Chapter 3. Figure 13 shows plots of electron content,

I, compared to plots of I obtained at Arecibo. The curves of I , in
W W

Figure 13, labeled (a) and (b) correspond to values of B computed at
LI

heights of 300 km and 350 km, respectively. It can be seen from the

figures that I , case (a), strongly correlates with I and that such

correlation is much less accentuated for case (b). In both cases I
w

reaches negative values in the early morning of the days 8 and 11. Such

behavior of I is entirely consistent with the analysis presented in

Chapter 3. Because ionospheric electron concentration profiles were

not available, no attempt was made to interpret I in terms of protono-

spheric content.

A good example of how ionospheric electron concentration profiles

can be used to improve the determination of I is the observation made
w

between 29 and 30 January, 1969, during a period of 24 hours when back-

scatter ionospheric profiles were available approximately at one hour

intervals. Figure 14 shows plots of I obtained by assuming a constant

value of B (solid line) computed at the height of 350 km which is close
LI

to the optimum value for the satellite parked at -73°E, and a plot of

the corrected values of I (open circles) derived by using values of
vf

B estimated from the shape of the backscatter ionization profile mea-
LI

sured at the same time. It can be seen from the figure that the use of

a constant value of B yields negative values of I in the middle of
LI W
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the day on 29th, values lower than the corrected ones (open circles)

•I C O

by as much as 0.8 x 10 el.m . The nighttime values of both corrected

and not corrected I are in relatively good agreement.
w

During the geomagnetically quiet period of 29 to 30 January, the

protonospheric electron content, the corrected I , increased during the

day probably due to ionospheric flux into the protonospheric region,

leveled off around sunset time and stayed nearly constant during the

night. A decrease in the protonospheric content was not detected during

the night of 29th to 30th being probably masked by the irregularity

(bump) observed in the total electron content, I, also shown in Figure

14, which is coincident with a small 'bump' seen in the protonospheric

content, indicating that such irregularity extended to higher altitudes.

The other 'bump' observed around local sunset with a peak occurring at

about 19 LT could possibly be interpreted in terms of an increase in the

content corresponding to the passage of the observer-to-satellite path

through the plasmasphere bulge. It should be emphasized here that no

attempt has been made to definitely establish the origin of the observed

irregularities because this was the only case in which protonospheric

content measurements were made at Arecibo. The observed features should

be extensively studied when more data become available.

B. Stanford observations during the magnetic disturbed period of 12 to 18

May 1969.

Uninterrupted measurements of Faraday rotation angle and differential

phase-path data were made at Stanford when the geostationary satellite

ATS-3 was parked at -r73.4°E, covering the period starting at 0500 UT on

12 May and ending at 0130 UT on 19 May 1969. Very high quality data
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were obtained during that period and, because the geometry of observa-

tion was very favorable, the quantity I , resulting from the combination
w

of the Faraday and phase path data, could be interpreted in terms of

protonospheric electron content. It was the first time continuous ex-

perimental determination of the columnar electron content of the upper

plasmasphere covering a period of more than 6 days has been made.

The relative variations of the observed I are very accurate and

16 —2
the error in the absolute level of I is estimated to be ± 0.5 x 10 el.m

w

which is less than 13% of the maximum observed value of I during the

period in question. The uncertainty that has to be assigned when I is
W

interpreted in terms of protonospheric content above a certain level, is

not precisely known because it depends on the shape of the ionization

profile above the ionosphere, say above 1000 km. If diffusive equilibrium

ionization distribution models are adopted, I is a measure of 90% of

the electron content above the level of 2300 km and, based on the analysis

of the previous chapter, the uncertainties involved in such interpretation

are much smaller than the error in the absolute value of I . It is our
w

belief that a total uncertainty of ± 20% could conservatively be assigned

to the interpretation of I as the columnar electron content above the
w

level of 2300 km.

The period preceding the beginning of observations was generally quiet

and the day before 12 May was very quiet, with K never exceeding 2. On

the 12th, at about 0900 PST, a period of moderately to highly disturbed

geomagnetic activity starts, and extends to 1130 PST on 14 May when an

SSC occurs which is followed by a storm during which K had returned to

a level lower than the one which preceded the SSC. On the 17th, at
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around 1200 PST, a period of moderate activity starts to develop extending

through 1500 PST on the 18th when the protonospheric observations were

interrupted. The above feature of the geomagnetic events ranging from

very quiet to highly disturbed affords a somewhat rare opportunity of

observing the behavior of the columnar electron content of the upper

plasmasphere during a period in which almost extreme magnetic conditions

were present.

Plots of total electron content, I, protonospheric electron content,

I , the parameter G, and the universal geomagnetic index K , versus

time during the period in consideration are shown in Figure 15.

Because the ionosphere contributes some 90% or more to the total

electron content, the values of I reflect predominantly the behavior of

the ionospheric content near Stanford. It should be pointed out that I

is the total electron content along the observer-to-satellite path, also

denoted as 'total slant electron content', measured by the differential

phase-path technique.

16 —2
On 12 May the electron content reached a maximum of 96 x 10 el.m

during the day comparable to the maximum observed on the next day, 13 May,

when the increase in geomagnetic activity had already persisted for more

than 24 hours. Only on 14 May are the effects of the increase in the

disturbances detectable in the depressed content of the ionosphere.

After the occurrence of the Sudden Storm Commencement (SSC) at 1129 PST

on 14 May, the content exhibited an increase with a maximum at 1500 PST.

The next day, 15 May, the ionospheric content is strongly depressed.

One can see the effect of increased magnetic disturbances on the

protonospheric content, I , in the night of 12 to 13 May following thew
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beginning of the disturbed period. It should be remembered here that

the local time at the satellite is about 3 hours later than the local

time at the observer site. A gradual reduction in the protonospheric

content is observed after 1800 PST on the 12th, and the content levels

off at satellite dawn on the 13th and stays nearly constant throughout

the day. The observed reduction in protonospheric content is interpreted

as a shrinking of the plasmasphere as the plasmapause boundary moves

inward during the night sector where convection effects are important,

and a corresponding plasma loss. Determination of the plasmapause

positions by the Lockheed light-ion mass spectrometer on OGO-5 at L = 6.5

around 1130 LT (2230 UT) on 12 May during the inbound pass and at L = 5

around 2000 LT (2350 UT) on the same day during the outbound pass,

(Chappell, C.R., private communication), are in agreement with our pro-

tonospheric observations covering the same period.

On 12 May, the daytime protonospheric content stays at the same

level observed prior to the onset of the disturbed period, and is an in-

dication of the inability of the dayside plasmasphere to quickly respond

to changes in magnetic activity. Such observed behavior supports sugges-

tions made by Carpenter et al.[1969] and Chappell et al.[1970], that the

position of the plasmapause on the dayside sector is dependent on the

magnetic activity present at the time the sector in question corrotated

previously through the nightside.

On 14 May, a sharp increase in the protonospheric content is observed

following the 1929 UT SSC. The increase lasts for some 2.5 hours and

then I decreases below the level existing prior to the storm commence-

ment. The protonospheric content levels off around satellite dawn, on
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the 15th, and stays nearly constant throughout the rest of the day.

Again the OGO-5 measurements indicate that the L shell value of the

plasmapause position is slightly below 3 around 1900 LT (1400 UT) a

fact that is in agreement with the additional reduction of the protono-

spheric content observed at the nightside sector following the onset of

the storm. The sudden increase in protonospheric content observed dur-

ing the day, 30 minutes after the SSC, is probably linked to the sunward

motion of the plasma set up by an increase in the convective electric

field and will be studied in more detail in the next section.

The reduction of the protonospheric content following the increase

in the magnetic disturbances is observed to start after the satellite has

passed the dusk meridian and ends when the satellite has passed the dawn

meridian during the period 14 to 15 May. Such behavior, again, is in

agreement with the hypothesis that the plasmapause position is determined

by magnetic conditions present during the time the plasmasphere sector

corrotates through the nightside.

The protonospheric content stayed about the same depressed level

throughout the 15th, and the geomagnetic activity persisted in the same

level during that period. From 16 to 18 May, when the level of the mag-

netic activity decreases, the plasmasphere is subsequently replenished

by slow filling from the underlying ionosphere. The relative rate of

protonospheric content recovery during that period is (Al /I ) = 1.0.
w' w

Based on observations of electron content recovery of a tube of flux at

L = 4 made by the whistler technique following the storm of 15 June 1965

(Park[l970]), the relative rate of recovery during the first 3 days is

(AI /I ) = 1.2. The agreement between the protonospheric content and the
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tube flux content recovery fates is excellent despite the fact that the

observations were made almost at opposite extremes of the solar activity

cycle.

Plots of the parameter G are also shown in Figure 15 for the sake of

completeness. It can be seen that the daytime values of G, during the

period of observation, vary from day to day by as much as 5%.

C. Protonospheric content observations during magnetic storms.

The dynamic behavior of the plasmapause has been the subject of many

investigations. Although the basic convection model proposed by Axford

and Hines[l96l] is generally accepted, there is no definitive explanation

for the way the plasma escapes from the plasmasphere following an enhance-

ment of the geomagnetic activity.

Sunward surges of plasma in the magnetosphere, detected by the

whistler technique, in the evening sector of the plasmasphere, that appear

to be associated with substorm activity have been reported by Carpenter

[1970], Measurements of mass of plasma detached from the main body of

the plasmasphere following periods of moderate to high magnetic activity,

indicate that such detachments tend to occur more often in the afternoon-

dusk sector of the plasma trough (Chappell et al.[l971]). Such observa-

tions seem to suggest that the plasmasphere is peeled away by sunward

convections of the plasma.

Using an extension of the magnetospheric convection model suggested

by Axford and Hines[l961], Carpenter[1962], Nishida[1966], and Brice[1967],

Chappell et al.[l971] have demonstrated qualitatively that as the convec-

tion electric field increases, following the increase in magnetic activity,

the dayside flux tubes are cc-nvected toward the magnetopause. The corre-

SEL-72-019 68



spending convection flow diagram is such that the flow lines are almost

perpendicular to the plasmasphere surface in the afternoon-dusk sector.

This flow pattern implies that the tubes of plasma are carried away from

the plasmasphere, peeling off the outer plasmasphere in a sunward direc-

tion and that the process is more effective in the afternoon-dusk sector

where the flow lines tend to converge.

Observations of protonospheric electron content using geostationary

satellites provide a way of continuously monitoring the same region of

the plasmasphere. Because the plasmasphere, except during very quiet

magnetic periods, normally extends up to around 3 Earth radii (L = 4),

the protonospheric content measurements using geostationary beacons or-

biting at 5.6 Earth radii (L = 6.6), reflect the total content of the

upper plasmasphere. Such protonospheric observations may also detect

large radial movements of plasma, especially sudden outward motions as

the kind expected following large enhancements of magnetic activity.

These movements reveal themselves as increases in the protonospheric

content, provided such surges of plasma originate at heights lower than

the geostationary orbit, say 3 to 4 Earth radii.

Measurements of protonospheric electron content were made at Stanford

during the storms of 27-28 April 1969 and 14-15 May 1969. The period of

24 hours that preceded both storms was moderate in one case, and highly

disturbed in the other. Thus, based on the experience accumulated of

plasmapause position measured by the whistler technique, the plasmapause

can be estimated to be positioned at L values of 3 to 4 right before the

onset of the storms.

The storm of 27-28 April was preceded by an SSC that occurred on
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the 28th at 0252 UT, 2200 LT on the previous day at the ATS-3 satellite.

The protonospheric content following the onset of the magnetic distur-

bances gradually decreased during the night leveling off around satellite

dawn. This behavior is consistent with the storm-time model (Chappell

et al.[1971]) discussed above, which predicts always inward motion of

the tubes of plasma on the nightside.

The storm of 14-16 May followed an SSC which occurred on the 14th at

1929 UT, 1430 LT at ATS-3, exactly when the satellite was entering the

afternoon-dusk sector. The universal three hour geomagnetic index, K ,

jumps from 4- to 7- following the onset of the storm.

The protonospheric content, I , starts increasing right after the

SSC, as can be seen from Figure 16, reaching a maximum 1.5 hours after

the event. This maximum level is maintained for 2 hours, and then I
' w

.starts to decrease very fast around 1500 PST when the satellite is enter-

ing the nightside sector. During this time the protonospheric content

reached a maximum level nearly equal to the one observed on 12 May when

the plasmapause was at L = 6.5.

The observed sudden increase in I cannot be explained by errors in-

troduced by the elimination of the ionospheric content neither by changes

in the longitudinal component, B , of the geomagnetic field, associated
L

with the storm.

Very drastic changes in the shape and height of the ionospheric con-

centration profile may occur during a storm. Such fluctuations could be

in the direction to increase the contribution of the ionospheric content

to the measured I . An estimate of the error in I , associated with the
w w

possible changes, was made based on profiles, extending up to 1000 km, in
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which the shape and height 'were varied but the content was kept constant

16 -2
and equal to 45 x 10 el.m . The computations indicate that for that

particular geometry of observation, increases in height are more effec-

tive than changes in the shape of the ionospheric layer in increasing the

error, even though an increase of 200 km in h can account for a change
f TT13.X

15 -2
of only 10 el.m in I .

Fluctuations of the horizontal component of the geomagnetic field

associated with the storm cause changes in B . The resulting variations
Li

of the values of the weight function W = (1 - B_/B,_), see Chapter 3,
L LI

introduce fluctuations in I .w

The increase of I was observed during the initial phase of the

storm, when percentually small enhancements of the horizontal component

were observed at the earth's surface. At low L values the increase in

the horizontal component causes an increase in B which corresponds to

a decrease in I . At higher L values the above mentioned component may

decrease by a factor of two but B is primarily determined by the vertical
L \

component. Even if an absurd decrease of B by a factor of two is adopted,
L

the corresponding change in W is of the order of 4% (even less for L

values higher than 4) and cannot explain the detected 27% increase in I .

A plausible explanation for the observed increase in I , consistent

with the storm-time model mentioned previously, is that storm induced

enhancement of magnetospheric electric fields cause large masses of plasma

to be convected outwards around both sides of the planet converging in

the afternoon-dusk sector in an 'outflow lane1 as depicted qualitatively

by the solid lines in Figure 17. This figure represents the equatorial

plane of Earth. When the observer-td-satellite line sweeps through the
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sector containing the outflow lane, a much larger protonospheric electron

content is measured. The SSC occurred when the satellite was either in-

side or about to enter the 'then empty1 outflow lane so that a time in-

terval of about 1.5 hours elapsed during which the plasma front moved

outward to the satellite height. During this period, the observed pro-

tonospheric content increased. Once the front was beyond the satellite

height, the content remained fairly constant for about 2 hours until the

observer-to-satellite line started leaving the lane. As ATS-3 moves into

the nightside sector, the expected fast decrease in the protonospheric

content is observed.

The interpretation of the I behavior offered above implies the
w

existence of an electric field associated with the storm given by the

hydromagnetic relation.

-> —> —>
E = -v x B

or -> E x B

*- —
where v is the plasma drift velocity and B the geomagnetic field.

Unusually large westward plasma drifts detected by the incoherent

scatter radar technique at ionospheric heights (about 250 km) on May 14

are consistent .with the hypothesis of existence of electric fields in

the magnetosphere (Evans[1972]). Observations at Millstone Hill showed

that the horizontal drift velocity, right after the SSC, became much

larger than normal and was directed toward the west. The northward

directed electric field associated with the 200 m.s drift velocity ob-

served, is of the order of 10 mV.m . Such field maps at the top of the

flux tube (L = 3.3) on the equatorial plane, with intensity of the order
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of 1 mV.m and directed radially outward. This component alone could

explain surges of plasma, coming from the bulge region (evening region),

convecting in a westward direction (zero radial velocity) with the tip

of the bulge advancing faster because the drift velocity varies with the

cube of the geocentric distance. Although the above picture could qual-

itatively explain an increase in protonospheric content it is not very

attractive because during the previous sweep of the observation path

(observer-to-satellite line) through the bulge region, on May 13, the

observed protonospheric content was depressed (see Figure 15) to a level

much lower than the one observed when the plasmapause was at L = 6.5.

on the 12th. Therefore, the bulge region was not likely to extend to

high L values. Moreover, there should not be a reason for a preferential

direction of the electric field associated with the magnetic disturbances.

It is plausible to admit also an east-west component of the convective

electric field, E , which can set up radial drift velocity thus moving

the flux tubes of plasma in an outward direction. Such east-west com-

ponent mapped in the ionosphere would cause vertical drifts of plasma

and a rapid increase in h . The ionization layer is therefore moved
max

to higher levels where the losses are less and enhancements of n
max

the electron concentration maximum, would follow. Evans[l970] , reported

that during the June 1965 magnetic storm, the height of the layer, h ,
max

began to increase in the early afternoon of 16 June and that the large

observed increase in n was associated and probably caused by the large

increase in h . Furthermore, the east-west electric field intensitymax *

that would establish drift velocities capable of producing a rapid change

in the layer height, was roughly estimated to be 5 mV.m
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An estimate of the east-west component of the convective electric

field, E , consistent with the storm-time behavior model was made based

on the following assumptions; 1) the E field is uniform, 2) the geo-

_3
magnetic field is given by the dipolemodel B = B^L , where B is the

intensity on the Earth's surface, 3) the time, At, it takes for a rep-

resentative particle to move radially from the neighborhood of the plasma-

pause to the satellite height is equal the time elapsed between the SSC

and the moment when the protonospheric electron content first reached

its maximum (1.5 hours), and 4) the observer-to-satellite path at heights

above L = 3 is on the geomagnetic equator. Under the above conditions,

E is given by

_2 _2

(LP ' 2'296 x 10 >

where R is the Earth radius and L the average plasmapause position prior

to the SSC event .

Now, if one assumes L to be 3.5 (a very plausible value based on
P

the level of the magnetic activity present at the time) then the estimated

value of E. is 1 mV.m . Estimates of convection electric field strength

in the dusk ma^netosphere during substorms, made by Carpenter [ 1970 ], in-

dicate values of the order of 1 mV.m

Our estimated east-west electric field maps in the ionosphere near

Millstone Hill (L = 3.3) with an intensity of 6 mV.m which is the same

order of the east-west electric field, estimated by Evans[1970] , asso-

ciated with the enhancements of h and n observed during the June 1965
max max

storm.

The observed increase of I, see Figure 16, when the ionosphere near

SEL-72-019 76



Stanford is in the afternoon-dusk sector is consistent with an east-west

electric field impressed in the F region by the magnetosphere.
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CHAPTER V

CONCLUSIONS

The main purpose of this work was to develop a technique of measur-

ing the columnar electron content of the protonosphere making use of the

Faraday polarization changes and phase-path length reduction effects ob-

served on the VHP and UHF signals transmitted from the geostationary

satellite ATS-3.

The signals received at ground had previously traversed the protono-

sphere and ionosphere regions. Because the Faraday rotation angle and

phase-path length reduction are integral effects, the data used contain

information of both, ionosphere and protonosphere, electron contents.

The Faraday rotation effect which is related to the product of electron

concentration by the geomagnetic field is more sensitive to ionization

changes at lower heights and therefore is more determined by the iono-

spheric content. The phase-path length data, on the other hand, is

equally sensitive to ionization changes occurring at any height along the

path, therefore, contains integral information on the total content

(ionospheric plus protonospheric contents) up to the satellite height.

Earlier attempts to derive the protonospheric content by a suitable

subtraction of the electron content, derived from the Faraday data, from

the total content derived from the phase-path difference data, have been

made by either using lunar radar echoes or satellite transmissions (see

Chapter 3 for references). The quantity I , resulting from the above

difference between two large quantities, may be strongly contaminated by

the ionospheric content. The difficulty arises from the fact that the
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ionosphere contributes some 90% of the information in the data. In order

to properly interpret I as a measure of electron content of the protono-

sphere, very accurate determinations of the absolute value of the total

electron content must be used in the derivation of such quantity, and

the ionospheric content contamination in I must be minimized to a degree

reasonably lower than the values of the protonospheric content.

Although, in the mentioned previous efforts, the authors tried to

determine only the variations of the protonospheric content, the so called

'relative protonospheric content', thus avoiding the problem of accurate

determination of the total content, they failed in properly accounting

for the ionospheric content contamination in I .

One of the contributions of the present research was the development

of a technique of combining the Faraday rotation angle and phase-path

difference data to determine the absolute value of the total columnar

electron content with uncertainty at least one order of magnitude lower

than that of any other existing method (see Chapter 2). The accuracy

achieved in such determination is high enough for good determination of

absolute values of protonospheric content.

A better understanding of the meaning of the quantity I was gained

from the critical analysis presented in Chapter 3. The contamination of

ionospheric content in I is dependent on the type of B (longitudinal
W l_j

component of the geomagnetic field) distribution along the path of obser-

vation. It was demonstrated that good determination of protonospheric

content is only possible for certain geometries of observation such as,

for instance, observer at Stanford and the satellite parked at -73° E.

For such geometries, the interpretation of I in terms of the columnar
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electron content of the protonosphere was discussed based on diffusive

equilibrium models of the field-line ionization distribution (Angerami

[1966]). Even allowing reasonably large variations of the parameters

which determine the ionization profiles, the striking conclusion is that

I reflects 90% of the electron content above 2300 km. However, given a
w

satellite position there are two regions, at midlatitudes, displaced by

about ± 50° in longitude from the satellite, from where good protonospheric

observations can be made by the Faraday-phase-path difference technique.

For the other geometries, such as Arecibo and the satellite at -73° E,

information on the shape and height of the ionospheric layer is necessary

to improve the minimization of the ionospheric contamination in I .

Such additional information can be obtained at sites where VHF radar in-

stallations are available.

The technique of measuring the columnar electron content of the

protonosphere up to the geostationary satellite height developed in this

work provides a way of continuously monitoring the same region of the

plasmasphere, and is the only one available at present. Because the

plasmapause is normally positioned around L = 4, except during geomagnet-

ically very quiet periods, protonospheric electron content observations,

using geostationary beacons (L = 6.6) reflect the total content of the

upper plasmasphere.

The protonospheric content observations made during the geomagnetic

storms of 27-28 April 1969 and 14-16 May 1969 from Stanford (see Chapter

4) are an example of the new important information that the technique

developed in this research brings to magnetospheric investigations. The

behavior of the protonospheric content is consistent with a convective
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storm model, suggested by Chappell et al.[1971], in which the outer

plasmasphere is 'peeled1 away by sunward convection and is subsequently

replenished by slow filling from the underlying ionosphere.

Of particular interest are the data taken during the storm of 14 May.

A sharp increase of the protonospheric content, on the 14th, was observed

right after the 1929 TJT SSC, and lasted for some 3 hours. During this

period the satellite was corrotating from the 1500 LT to the 1800 LT

meridians. As the satellite enters the nightside sector of the plasma-

sphere the protonospheric content starts to decrease very fast. The

maximum level reached during the increase of the protonospheric content

is nearly equal to the one observed on 12 May when the plasmapause was

positioned around the geostationary height.

A plausible explanation for the observed increase in I , consistent

with the storm model mentioned above, is that storm induced enhancements

of magnetospheric electric fields modify the plasma flow pattern such

that large masses of plasma are carried away from the plasmasphere in a

sunward direction. Evidence of significative electric fields in the

magnetosphere are the unusually large horizontal drifts directed west-

ward observed at Millstone Hill, at that same time, (Evans[1972]) . The

north-south component of the electric field associated with the observed

200 m.s drift velocity, corresponds to radially outwards directed com-

ponent of magnetospheric electric fields of the order of 1 mV.m . Such

a component maps in the ionosphere with intensity of the order of 6 mV.m

and is consistent with the observed increase of electron content in the

ionosphere in the afternoon-dusk sector.

Our technique of protonospheric continuous observations can give
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detailed accounts of the upper plasmasphere content behavior during geo-

magnetic storms. Studies of the local time dependence of such stormtitne

behavior may provide important clues on the magnetospheric convection.
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