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The practical utility of multispectral scanner data is often restric-
ted by the limited spatial resolution of the sensor gathering the data.
Restrictions of this sort will exist in the data to be gathered by the
multispectral scanners in the ERTS-A and SKYLAB satellites. These
scanners will view the ground with an instantaneous field of view (IFOV)
covering a ground patch about 300 feet on a side. The radiation detected
when scanning portions of a scene containing objects smaller than this size
will be composed of a mixture of radiation from all objects within the IFOV.
Similarly, when the field of view overlaps the boundary between two larger
objects, the radiation detected will be a mixture from the two objects.

The signals generated by the sensor in both of these cases will not be
representative of any one object.

The effect of viewing more than a single object class is illustrated
in Figures 1 and 2. In Figure 1 the reflectance spectra are depicted for
corn and bare soil as they would appear individually. If the sensor was
to simultaneously view both corn and bare soil the effective reflectance
spectrum would be quite different. This is shown in Figure 2 for the
combinations 20% corn - 80% bare soil and 50% corn -~ 507 bare soil. These
spectra are simply weighted combinations of the pure spectra of Figure 1.

The use of standard multispectral recognition processing techniques
on data points which result from viewing two or more objects will likely
result in the improper classifica+tion of those data points. Given a
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sufficient number of improper classifications of this sort the results of
such efforts as might be applied in crop acreage determination, for example,
would be greatly in error.

It might be useful, at this point, to provide some idea of the serious-
ness of this effect. Figure 3 illustrates the effect of sampling and
reconstructing a scene using a sensor whose resolution is approximately
the size of the structure in the scene. For illustrative purposes the
scene is composed of black and white squares arranged as on a checkerboard.
Obviously if the resolution of the sensor was significantly smaller than
-the dimensions of the square, the scene could be reconstructed with very
good fidelity. However, this will generally not be the case for either
the ERTS or SKYLAB multispectral sensors.

In Figure 3 we consider two situations. One in which the resolution
is one half that of the squares and another in which the resolution
exactly equals the square size. Now, it is possible for both these
situations to perfectly reconstruct the scene. The probability of this
occurring, however, is very slim since the samples must be taken only at
those times during which the sensor is viewing portions of all of either
the black or the white square. It is much more likely that in an attempt
to sample the entire scene, that is leave no voids between samples in
either direction, many samples would be extracted when the sensor was
viewing some portion of each of two or more adjacent squares. In this
case the scene could not accurately be reconstructed.

In the lower portion of Figure 3, we depict the reconstruction of the
scene for the resolution being one half the square size (lower left) and
equal to the square size (lower right). Here we consider the worst
situation that may exist since we can have no assurance beforehand that
this will not in fact be the case for an arbitrary scene for which the
sampling scheme  has not been specifically designed. For the resolution
of one half the square size, the samples which fall totally within each
" square fall precisely in the center of the squares. All other samples,
therefore, are extracted when half the sensor field of view covers white
squares and the other half covers black squares. The sensor signals
generated in this situation are not characteristic of either of the objects
in the scene. In this case the use of standard automatic processing
techniques for classification and determination of the ground area covered
by each of the two objects in the scene, would result in significant errors.
'In this particular case 50% of the scene area would be improperly clas-
sified. For the situation where the resolution equaled the square size
the error would be 1007 since not a single sample would be classified
correctly. ' : ’
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We have carried out some calculations to get a feeling for how
serious this problem may be for spaceborne sensors viewing an instantaneous
ground patch 300 feet on a side. The results of the calculations are plot-
ted in Figure 4 which illustrates the effect of field area and shape on
the multispectral training and classification operations. Just as before
we consider fields which are square in shape, however in addition, we also
consider rectangular fields. The dimensions of both square and rectangular
fields are integral multiples of 300 feet and all sampled areas which occur
at field boundaries are assumed to fall one half (at the corners this is
three quarters) outside the field. For the rectangular fields the small
dimension is limited to 600 feet. Square fields and rectangular fields of
this sort define the limiting conditions (best and worst) for regularly
shaped areas.

Two pairs of curves are plotted in Figure 4. The curves depicted as
dashed lines relate the number of acres in a field to the number of 300
by 300 foot elements totally within the field. This relationship is
significant when considering the requirements for training a recognition
computer. The number of samples generally considered necessary for an
adequate determination of the statistics defining a multispectral signa-
ture is ten times the number of spectral channels being utilized. If
the four ERTS channels were considered, a minimum of 40 representative
samples would be required. To assure this number of samples in a single
field would require a square field of at least 110 acres and a 2 x n
element rectangular field of 170 acres or so.

If, however, training of the computer had already been accomplished;
it would be desirable to know what errors might be expected in automati-
cally determining the area covered by a selected set of object classes.
This information is also plotted in Figure 4. The curves depicted as
solid lines relate the number of 300 by 300 foot elements in the field
to the percentage of the field area which is seen in combination with
portions of adjoining fields. It is this area which would probably be
classified dincorrectly and produce the errors in area computed. For the
110 acre square field described before, 40 elements were totally within
the field and a 257 error in the determination of the area of that field
could be expected. A 51% error in the area of the 170 acre rectangular
field could be expected.

Not only are these errors of significant size, but if one is consi-
dering carrying out agricultural surveys, the field sizes considered
above are somewhat larger than is typical in many agricultural areas.

As shown in Figure 4 larger errors would result for smaller fields.
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In order to reduce the restrictions on the utility of remotely sensed
multispectral data, personnel of the Willow Run Laboratories have been
conducting theoretical studies to develop special processing and informa-
tion extraction techniques which will enable the accurate and timely
estimation of the proportions of objects and materials appearing within
the IFOV of a remote multispectral sensing device.

It is the fact that the radiation emanating from each scene element
is detected simultaneously in several spectral bands which offers the
possibility for classifying and estimating the proportions of spatially
unresolved objects. The model that we have used to describe the signature
generated in viewing a mixture of objects is as follows:

AX = z XiAl
i

My = Z XMy
1

where the signature of Type 1 material is a Gaussian distribution with
mean Ai and covariance matrix Mi and the proportion of Type i material is
Xi.

As long as the radiation spectra generated by objects within the IFOV
are linearly independent; i.e., a unique radiation spectrum results for
each combination of cbjects, a satisfactory solution will usually be
possible. This requirement is somewhat more limiting than that imposed
for standard recognition processing. In Figure 5 we illustrate two
separate plots of the means and distribution contours (signatures) of
three objects as seen in two spectral bands. In each case the signatures
of the three objects are sufficiently separate so that if any one of them
was viewed in its pure state it could easily and properly be classified.
For the case depicted in the upper portion of the figure, combinations of
the three objects would produce points generally falling within the
triangle and using the specially developed techniques the proportions of
these objects could be determined. The lower portion of the figure, how-
ever, depicts a situation where the pure signature for object A, exhibits
characteristics very similar to a combination of the other two objects.
In this case the proportions of a mixture of these objects could not be
accurately determined. Although all possible sets of objects and materials
of interest may not meet the requirements for linear independence, it is
believed that the requiremerts are met often enough to make the solutions
now being investigated potentially very useful.

During the last year our primary efforts have been directed towards
searching for computational algorithms which could both efficiently and
accurately estimate the proportions of mixtures of objects. Three
potentially useful algorithms were located, implemented via digital
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computer programs, and tested. In order to provide the control necessary
for the proper testing of these algorithms all tests were carried out
using artificially generated mixtures. 1In some cases the pure signatures
used to generate the artificial mixtures were extracted from data gathered
by The University of Michigan multispectral scanner while in other situa-
tions totally artificial signature sets were constructed.

The latter was the case when tests were run to compare the processing
time of the three computational methods as a function of the number of
signatures employed. Here the pure signatures were arranged to form a
symmetric set exhibiting identity covariance matrices and separated from
each other by a unit distance. Two sets of 100 data points were generated.
One set was distributed normally about the centroid of the signatures (the
equal proportion situation) while the other set was similarly distributed
about one of the signature means.

In Figure 6 we see that the computation time is a function of the
location of the data points with respect to the pure signatures for all
three methods considered. For two of the three methods (the F and the C
methods) the computation time required for data points at or near the
centroid exceeds that for points at or near the vertex. The opposite is
true for the T method. These differences are a result of differences in
the manner in which proportions are estimated in each method.

It is clear that as the number of signatures increases the computa-
tion time also increases. The best overall method seems to be the C
method. However, for small numbers of signatures and data points near
the centroid the T method would do just as well. As illustrated in
Figure 6, the computation of proportions for each data point is a
relatively time consuming task. The time required is approximately an
order of magnitude greater than standard processing and four orders of
magnitude greater than data collection. Some reductions in processing
time could be achieved by utilizing larger and more up to date computer
facilities but still the time required would be significant.

In many applications, proportions for each data point may not be
required. For these cases a reduction in computation time can be achieved
by averaging many data points and then carrying out a single computation
of the proportions of the objects appearing in the entire region which
was averaged. This approach is not only much faster but it also provides
the possibility for improved accuracy. Improved accuracy might result
since averaging would reduce the effect of the variability of sensor
signals due to the natural variation of the radiation received from any
object class in the scene. 1In addition, the effects of random noise
would be reduced.
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In order to test the averaging approach, signatures for bare soil,
weeds, alfalfa, and barley were extracted from multispectral scanner data
gathered by The University of Michigan. A total of 400 data points were
generated with each set of 100 being normally distributed about the mean
of artificial mixtures indicated in columns 2-5 of Table I. These 400
data points were averaged and an estimate of the proportions for the
single average data point was computed. The results of the computation
are given in column 7. Upon comparison with the average of the specified
proportions shown in column 6 it is obvious that the estimated proportions
are quite accurate, exhibiting a maximum error of 1.5%.

We are now preparing to apply these proportion estimation techniques
to real data to identify any unforeseen problems which may arise in
operating on real data sets, to refine or modify the approach to overcome
these problems, and to provide a more realistic demonstration of the
potential of these techniques.
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TABLE 1. TEST OF AVERAGING APPROACH TO ESTIMATE ‘

(Artificial Mixtures).
SPECIFIED SPECIFIED SPECIFIED SPECIFIED AVE. SPECIFIED
. | PROPORTIONS | PROPORTIONS | PROPORTIONS | PROPORTIONS | . PROPORTIONS ESTIMATED [ .

MATERIAL 100 PTS. 100.PTS. ) 100 PTS 100 PTS. 400 PTS. PROPORTIONS ERRCR
BARE SOIL |. 025 0,35 010 0.20 0.225 | 70.234 0.009 |
WEF DS u.25 0.20 .50 0.35 0.325 0.320 0.005
Il Bt .
LALFALFA | 525 0.15 0..0 0.30 0,225 0.210 S 0.015
BARLEY 1 - 0.25 0.30 0.20 0.15 0.225 0.236 0.011
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Checkerboard Scene
N\

Reconstructed Scene - Reconstructed Scene
Optical Resolution Equals Optical Resolution Equals
One Half Checkerboard Checkerboard Cell Size

Cell Size (Worst Case) , (Worst Case)

FIGURE 3. EFFECT OF SAMPLING AND RECONSTRUCT-
ING A SCENE WITH OPTICAL RESOLUTION APPROACH-
ING THE SCENE STRUCTURE SIZE
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(a) Signature Simplex with Unit Contour
Ellipsoids

(b) Nearly Degenerate Signature Configuration

FIGURE 5. GEOMETRIC CONFIGURATION FOR THREE SIGNATURES
AND TWO CHANNELS
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