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The Universi ty of Kansas has taken a two-fold approach to  the data processing 
of remotely sensed imagery. Our  approach has been based upon the need to  have a 
special purpose hardware f ac i l i t y  for the near-real time processing o f  mult i- image 
data and the need to  have a general purpose d ig i ta l  computer f ac i l i t y  for the more 
sophisticated non-real time processing. Our  near-real time f ac i l i t y  i s  ca l led IDECS 
(Image Discrimination Enhancement Combination System) and our non-real time 
f;lcility-is ca l led  KANDIDATS (Kansas D ig i ta l  Image - Data - System). These fac i l i t ies  
have been funded from both NASA and-DOD sources. 

THE NEED FOR A DUAL APPROACH 

During the next decade there i s  a large amount o f  research yet  t o  be done on 
data processing methods i n  order to br ing the maturity o f  data processing up t o  the 
maturity of  sensor technology. Yet, whi le  this research i s  being done, many remotely 
sensed data sets from both aircraf t  and satel l i te platforms w i l l  have to  be processed. 
Important constraints are, therefore, imposed on the remote sensing data processing 
center. I t  must have a f lex ib le  enough computational f ac i l i t y  t o  implement and 
evaluate new ideas so that basic long range research on ef fect ive processing algo- 
rithms can be done; and for those data sets which now have to  be processed quickly, 
i t  must have near real-t ime equipment to  process and display those image sets 
economically. 

For the near real-t ime equipment, i t  i s  extremely important that  the man- 
machine interface be as convenient as possible for ihe interpreter since a l l  image 
data i s  u l t imate ly  u t i l i zed  by a human interpreter i n  some form. A color display i s  
very useful for presenting image data to  an interpreter since the human eye can 
distinguish differences i n  colors more readi ly  than differences i n  grey levels. IDECS 
i s  one o f  the first systems to  u t i l i ze  a color display for presenting remote sensing data 
and i t  i s  described i n  the next section. 

A HARDWARE.SYSTEM FOR 
M U L T ~ M - A G E  PROCESSING: IDECS 

The IDECS (Image Discrimination, Enhancement, and Combination System) 
i s  an analog-digitalHnear real-t ime image processing system a n d  has been i; continual 
development at  the University of  Kansas Center for Research, Inc., since 1964. 
The IDECS i s  a unique fac i l i t y  for performing a wide var iety o f  enhancements, 
measurements, and category discriminations on single and mult ip le images. Currently, 
the input images must be i n  photographic form, bu t  their  source may be aerial and 
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space photography, airborne radar, infrared, multi-spectral scanners, medical and 
industrial X-rays, or maps. The primary IDECS output i s  on a color display unit; 
however, other outputs include a black-and-white monitor, area measurements on a 
counter, and a pseudo three-dimensional display. 

A photograph of the IDECS i s  shown in  Figure 1, and a block diagram of the 
total system i s  shown i n  Figure 2. The input to the IDECS consists of three flying- 
spot scanners suitable for inputting image transparencies from 3 x 4 inches to 35 mrn 
format, a vidicon camera ut i l ized for map or photographic inputs, and a congruencing 
uni t  which can rotate, translate, and scale images. The image scanners have the 
fol lowing three modes of operation: 

(1) a continuous scan where the horizontal and vertical deflections 
for the CRT are driven by  ramps which are synchronized wi th the 
display units, 

(2) a staircase or dot scan where deflections are determined by the 
output of two digital-to-analog converters driven by two binary 
counters which are synchronized w i th  the display unit, or 

(3) a PDP-15/20 computer controlled slow-scan, where the scanning 
dot i s  moved horizontally and vert ical ly to specific location. 

Modes (1) and (2) are used when real time processing i s  desired, and the program 
control led scan i s  used to gather information from specific areas of the f i lm for 
training purposes and also to obtain a more accurate analog-to-digital conversion 
when necessary. Images to be scanned are positioned above the raster w i th  a? 
enlarging lens placed between. A condenser lens focuses the l ight transmitted through 
the image onto the cathode of a video photomultiplier tube. A reference photo- 
multipl ier tube and an automatic gain control (AGC) loop to modulate the cathode 
of the CRT are used to assure uniformity o f  l ight level over the entire area of the 
image being scanned. The reference photomultiplier tube i s  placed beside the 
enlarging lens and senses the l ight output from'the raster at fu l l  valve. The desired 
signal i s  used as an input into the A G C  amplifier which i s  an error amplifier with a 
voltage reference. The resultant error signal i s  level shifted and i s  used as the 
signal to modulate the cathode of the CRT. 

The operator can congruence multiple images by adjusting the position and 
size for horizontal and vertical position and rotating one image with respect to 
another image as the two images are electronical ly flickered. When the images are 
aligned, the displeasing interference pattern which occurs for misaligned images 
disappears. 

Once the images are congruenced, they may be processed and enhanced by 
IDECS. There are a variety of processing and enhancing functions available. One 
function i s  a linear combiner uni t  which performs CI linear transformation on a 
multi-image set i n  1/30 of a second. This unit  may be used for coordinate rotation 
i f  the coefficients of the linear transformation are selected appropriately. Another 
function i s  level selection. A level selector produces a binary output for an image 



i f  and only i f  the input video signal i s  between two adjustable thresholds. The level 
selectors can be operator controlled or computer controlled. I n  addition, two more 
level selectors can be logical ly  combined producing an output i f  and only i f  each one 
has an output, thus implementing a M I N - M A X  decision rule. 

The automatic classifier i s  a uni t  (not computer controlled) which i s  used to 
select and display a l l  points on a video image whose levels fa l l  wi th in the same range 
of level as those detected i n  a small rectangular training area of the image. The 
position and size of this training arec i s  selected using a small joy stick to determine 
position, and control pots are used to adjust vertical and horizontal size. To accom- 
plish this operation, a rectangulcr training area i s  first defined on the image. Then 
peak detectors sample and hold the positive ar.0 negative signal peaks wi th in the 
range of the training arec. The remaining portion of the video signal i s  then com ared 
wi th the peak levels of  the training area; whenever the video signal falls within t e 
training voltage range, a digi tal  output i s  produced for prccessing or display. 
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Other functions include a uni t  to  measure the area of any displayed category 
or grey level, a variable time constant differentiation unit to  enhance edges and a 
pseudo three-dimensional display unit which permits one to view the three-dimensional 
surface generated by the grey tone density of an image. Soon to be implemented i s  
a near real-time (1/30 of a second) table lookup pattern classifier which assigns cate- 
gories on the basis of the digi t ized levels o f  two video signals and stored parameters 
for a Bayes decision rule. 

A recently acquired PDP-15/20 computer i s  being interfaced to the system so 
that the IDECS can be program controlled and have a wider capabil i ty i n  performing 
image enhancements and category identifications. I n  effect, the PDP-15/20 w i l l  
perform the task of generating a decision rule from data gathered by the IDECS, and 
the IDECS implements the resulting rule (in near real-time) on data derived by scanning 
the images. I n  general, f ive steps w i l l  be required i n  performing category ident i f i -  
cations for images: 

(1 ) the images must be congruenced, 

(2) training data must be obtained by the computer from the images 
by directing the IDECS to scan appropriate areas, 

(3) from the training data, the PDP-15/20 i s  programmed to. determine 
the parameters for the chosen decision rule, 

(4) the calculated parameters are used to set control voltages i n  the 
analog processing subsystems i n  the lDECS, and 

(5) the specified category identifications are made and displayed 
by IDECS. 

The PDP-15/20 w i l l  control the image processing ste s of the IDECS by issuing 
commands to the IDECS central processing unit (CPU 7 . The CPU i n  turn directs data 
f low and processing i n  the IDECS. The system configuration can be d ig i ta l ly  selected 
ut i l iz ing a twenty by twenty video configuration matrix. 



A d ig i ta l  disc memory having twenty-four channels and containing 24,000,000 
bits o f  storage i s  also u t i l i zed  i n  the system. There i s  an interface between the disc 
and computer capable of  transferring a t  the rate of  18,000,000 bits per second. 
Also, there i s  an interface between the disc and the color display un i t  o f  the IDECS 
w i th  the capabi l i ty  o f  up to  three six-bi t  d ig i ta l - to-analog converters or any number 
o f  binary outputs between one and twenty-four. The color selector i s  a un i t  such 
that any o f  the twenty-four channels o f  the disc can be assigned any o f  ten f ixed 
colors and any of  ten textures. The textures are merely series of  horizontal and 
vert ical  lines superimposed on the displayed information. Figure 3 illustrates one 
image from a radar image pair and the IDECS processed image. 

A SOFTWARE SYSTEM FOR DIGITAL IMAGE PROCESSING: KANDIDATS 

KANDIDATS (Kansas D ig i ta l  Imcge Data System), currently being developed, 
i s  a software packcge consisting o f  a honito;and-a set of  multi-image processing 
programs designed to run on a GE-635 computer. The multi-image processing programs 
are a l l  wr i t ten in  FORTRAN I V  and a l low for image edit ing, registering, congrvencing, 
qucntizing, clustering, feature extraction, image size and/or dimensionality reduction, 
image texture analysis, image pattern recognit ion. I t  has a variety of  decision rules, 
data display capabi l i ty  w i th  scatterograms and histograms, grey-tone image display 
w i t h  overpr int ing or d ig i ta l  image color map display. The KAI IDIDATS monitor i s  a 
GMAP assembly language program designed to  integrate the multi-image processing 
programs by  handl ing a l l  bookkeeping type and 1/0 operations and to minimize the 
cost of  processing image data b y  speeding up 1 1 0  time and overlapping 1 / 0  time 
w i th  execute time. Figure 4 il lustrates a block diagram o f  the basic KANDIDATS 
organization. 

The KANDIDATS monitor inputs i n  free-format a l l  instl-uctions required by  
the image processing program, supervises the execution o f  the programs, provides 
error processing, and dynamic storage a l locat ion and tape input and output for the 
programs. The monitor has been wri t ten so that during a single ac t i v i t y  o f  K A N D I -  
DATS many processing programs may be sequential ly executed using many different 
data sets. The monitor does this b y  treating each program as a separate task and 
b y  a l locat ing and releasing data tapes as necessary. 

Once remotely sensed data i s  converted to  d ig i ta l  type format, i t  i s  
necessary to  check the d ig i t ized tape to  see o f  the conversion was made successfully. 
Preliminary checking can be done by dumping the first few records on the tape; 
however, this i s  by  no means a complete check. The KANDIDATS image display 
program can make a complete check by outputt ing the tape i n  picture format on the 
d ig i ta l  pr inter creating the grey-tones by overprint ing. I f  the image has so many 
resolution ce l  I s  as to make the d ig i ta l  p icture pr in t ing awkward, a program may be 
u t i l i zed  which reduce the image size by  averaging blocks o f  N x N resolutions or TR 
by selecting every N row and every N'" column. 

Examination o f  this picture output w i l l  indicate what k ind  o f  ed i t ing w i l l  have 
to be done on the sides and top and bottom o f  the image as we l l  rrs indicate skewing 



and A I D  conversion distal-tion. (Skewing can occur because i t  may be impossible to  
start d ig i t i z ing  each l ine o f  the image i n  exact ly the s u m   lace. A/D conversion 
distal-tion can occur when j i t t e r  or noise internal or external to  the A/D conversion 
makes the conversion go awry.) I f  necesscr~ ;, a KANDIDATS deskewing program muy 
have to  be used to remove skew and a specigl smootl3ing-~,eplocement program may 
have to  be used for those resolution cel ls which were improperly converted. 

When mult i- image data i s  being processed, i t  i s  often necessary to  a l ign the 
indiv idual  images to  the same place. To do this KANDIDATS employs a registering 
program. When di f ferent sensors or the same sensors w i th  di f ferent look directions are 
involved it may be necessary to  br ing the images to  the same geometry. I n  this case 
a congruencing program must be used. 

When the geometries on the images to  be congruenced are qui te diffel-ent, the 
congruencing job may be quite hard. However, where only minor geometric distal-t- 
ions are involved, congruencing may be done by  a KANDIDATS program which 
treats the image as a rubber surface and expands or contrccts i t  to best matcli up a 
set o f  g iven coi.responding points. 

There are two formats b y  which multi-image data may be stored on taps by 
KANDIDATS. I n  the photo format a l l  the grey-tones from the first image are stored 
on a matrix fo l lowed by the grey-tones from the second image and so on. I n  the 
corresponding point  format the grey-tone from image on,: resolution ce l l  (1 , l )  i s  
fo l lowed by the grey-tone from image two resolution ce l l  (1, l) and so on. Edi t ing 
and cong ru~nc ing  imagery from di f ferent sensors i s  usually done w i th  data i n  photo 
form as i s  image display and texture analysis. Most of the other programs work most 
easily w i t h  the data i n  corresponding point  format. KANDIDATS has programs 
which convert multi-image data from one format to the other. 

Af ter  i n i t i a l  ed i t ing and congruencing i t  i s  convefi icnt to  obta in  an in tu i t ive  
idea of  what i s  happening i n  the data. To help w i t h  this, programs are avai lable 
which p i ck  out. specified regions on the image and display the data points i n  scattero- 
gram or histogram fashion. The scatterograms or'histograms lnuy be indexed by ground 
truth categories when the ground truth i s  avai lable.  The axes o f  the scatterograms 
may be combinations o f  pairs of  the di f ferent sensor signals or the axes of a rotated 
coordin.. !-e system. Rotation can be accomplished from pr incipal  component analysis 
or from l inear disc~,iminant functions and there al-e programs avai lable for these. 
operations. Either of  these operations w i l l  a l low a signif icant reduction of  dimens- 
iona l i t y  and, therefore, a l low a reduction i n  storage and display of  data, especial ly 
i n  12 or 24 channel rni.,lti--spectl.al scanner data., 

Before pattern discrimination or clustering i s  done, a feature extract ion i s  
performed which selects 'Iie relevant variables or which combines the or ig inal  
variables i n  some optir-nuin way. Sometimes as part o f  the feature extract ion process 
quantizing i s  done to  noimal ize the data as we l l  as to  reduce the memory required 
for storage of  the data. KANDIDATC has avai lable programs which do equal interval, 
equal probabi l i ty, mi nimurn variance, and spatial quantizing. 



When texture i s  an important feature for a category of interest, the 
dimensionality of the images may be augmented by a texture analysis program 
which adds dimensions providing texture type information. 

Probably, the major workhorse o f  image data analysis consists of pattern 
discrimination and clustering techniques. With pattern discrimination tec l~n i~ues,  
a training set of data i s  gathered f c ~  which the correct category identif ication of 
each distinct entity i n  the data i s  knowil. Then estimates are made of the required 
category condif-ional probabil i ty distributions and a decision rule i s  determined from 
them. The decision rule can then be employed to identify any other data set 
gathered under similar conditions. With clustering techniques there i s  no training 
data set or decision rule. Rather, the natural data structures are determined. 
Distinct struc '-ures are then interpreted as corresponding to distinct objects or 
environmen ta l processes. 

The advantage o f  the discrimination techniques i s  that the scientist i s  able to 
decide the types of environmental categories among which he wishes to distinguish. 
The decision rule then determines as best as possible, to which environmental cate- 
gory an arbitrary data entity belongs. The disadvantage of the discrimination 
techniques i s  that they are sensitive to mis-calibrations. Any slight difference between 
the sensor calibrations or state of environment for the training data and the new data 
w i  l l cause error. 

The advantage of the clustering techniques i s  that they are not sensitive to 
calibration problems. Two smal l-area patches of corn growing i n  the same f ie ld are 
going to be detected as being similar because they have similar grey tone assoc; .:ed 
wi th them. The disadvantage of the clustering techniques i s  that they are not able 
to identify the distinct environmental structures they determine. 

KANDIDATS has available iterative and chaining clustering programs and 
pattern discrimination programs. The pattern discrimination programs use a variety 
of decision rule types including a distribution-free Bayes rule which can only be used 
on coarsely quantized data, a Bayes decision rule assuming the category conditional 
probabilities are of some given type o f  multivariate distribution, a linear decision 
rule, or a nearest neighbor decision rule. 

Appendices I, 11, and 111 summarize a few of the things we are doing with 
K A N  DI DATS. 

CONCLUDING REMARKS - - 
Two systems for processing remotely sensed image dafa have been discussed. 

The first system, IDECS, i s  a neor real-time hardware systern oriented towards pro- 
cessing multi-image data sets quickly and economically. The IDECS has convenient 
f i lm input and color display output capabilities and implements simple kinds of 
decision rules. The second system, KANDIDATS, i s  a software system capable of 
performing many of the more sophisticated processing methods. Because of its monitor 
which handles a l l  bookkeeping and its modular design, KANDIDATS easily allows 



the testing o f  new automatic processing techniques. After a new technique has been 
proven on KANDIDATS, i t  may be simplif ied and hard-%ired i n  IDECS, thereby 
keeping the volume processing o f  remotely sensed data always up to the current 
state-of-the-art. 
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FIGURE 1. IDEes 
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FIGURE 3a. RADAR I MAGE, HH POLAR I ZATI ON TAKEN 
OVER GARDEN CITY, KANSAS, JULY, 1966 
BY WESTI NGHOUSE AN/APQ 97. 
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I DECS FOR AN HH HV RADAR I MAGE PA I R 
TAKEN OVER GARDEN CITY, KANSAS, JULY, 
1966, BY A WESTI NGHOUSE AN/A PQ 97. 
THE RESULTS SHOW 100'/0 CORRECT 
I DENTI FI CATION ON SUGAR BEETS AND BARE 
GROUND AND 85% CORRECT I DENTI FI CATION 
ON SORGHUM AND ALFALFA. 





APPENDIX I 
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EI'JHANCEMENT A N D  N O R M A L I Z A T I O N  OF 
RADAR INIAGE 'TEX1 LIRE 

Texture has been o f  interest to  engineers and geoscientists a l i ke  because o f  
its potent ia l  as a useful discriminatit i t i  image category ident i f ica t ion.  Hence, one 
important preprocessing operation must be concerned w i t h  the cnliancement and 
normalization o f  imuge texture. Such an operation must br ing out in  normal form grey 
tone var iat ion due to texture and exclude grey tone vci-iations due to  look angles or 
f l ight  pal-ameter f luctions. 

Antenna patterns and f l i gh t  parameter fluctuations have been two factors most 
responsible for degradation o f  radar imagery. I f  we regard the degradation as 
addi t ive noise, enhancement o f  the irnage would, i n  a sense, be appropriate i f  there 
were means of  removing i-lie added noise. The 'streaks' paral le l  to  the l ine of f l i gh t  
i n  an imoye could be due to  f l iGh t  pal-anle;e~- fluctuations, sc r~ tches  ccused by 
hclndling o f  the inioge before digi t izet ion,  or due to clntenna pct tern and perpendi- 
cular 'streaks' could be due to  sccn lines. 

G iven  below i s  a mathematical forniulation, which i n  essence i s  the enhance- 
ment technique. 

Let Lx and Ly be the x and y spatial domains, G b e  the set of  grey tones and 
P:Lx x Ly - G be some d ig i ta l  p icture function o f  some more 01- less "homogeneous' 
object  0 , O :  L x x  Ly+G.  

The relationship between P and 0 i s  assumed to be of  the fo l lowing form: 

where cr ( i )  and r! ( j )  can be thought of as addi t ive row and column distort ion 
respectively. I f  we are in_terested i n  the te;.'ure o f  0, the average grey tone i s  not  
important and a funct ion P(i,j) can be determined such that 

,. f i  

P i , )  = P i )  - ( i )  - P ( j )  

where 

i s  minimized. 



n I-IIc. problem now i s  to  estimate a ( i )  and p ( j )  by (i) and p( j)  so that (3) i s  
~ ~ i ~ ~ i : ~ ~ i : < ~ d .  

A n 
1,. n ~ i l ~ i r n i z e  F with respect to (Y ( i )  and p (j)we take the partial derivatives, thus 

J A ' ; 2 LP(L,,J _ y ( ( i )  - ~ ( J ~ ] C - L )  j i : / , 1 ,  - - - -  I ( 5 )  
I ' . . ( ~ j  J=T 

' .:!*,d - 
,-I F - - - -2 [ ?(id) .- kc LJ - 5 (,)] (-2) j ; I ,  2, -.. , L = ,  J [  6 )  

s,.ttinq the p r t i a l  derivatives to  zero. 

,T:-.-ming ( 7) over a l l  i and multiplying ( 8 > by J, we have 
4 4 

. >  - J N ,  -IF, = O  
' . .  ( 9 )  

.I!rclcting equation ( lO) from ( 9 ) we have 

-'l.;rly by multiplying ( 7  ) by I and summing ( 8)  over a l l  j, we have 

- ;r,ll~tionr to equations (1 1) and (12) art. found to be 



Hence 

#. 

and the enhanced image P(i, j)  i s  then obtained by substitut ing equation (14) in to  
equation ( 2 )  and 

A 

The enhanced image P(i,j) i s  found to  have a zero mean, and also each row 
and column mean i s  zero. 

Figure 1 shows a simulated 5 x 5 'I-,omogeneousl image to which the enhancing 
technique has been applied. The 5 x 5 image shown i n  (c) o f  Figure 1 i s  the model 
w i t h  addi t ive noise. The 5 x 5 enhanced image shown in (d) o f  Figure 1 c lear ly  shows 
a 'dif fusion' of  the addi t ive noise. For s impl ic i ty o f  representation, image (d) has 
been quantized, and therefore does not have a zero mean. 

Figure 2 shows the enhancement technique appl ied to  a radar image. Part (a) 
shows a d ig i t ized radar image of  a sorghum f ie ld .  This f i e l d  was isolated from the 
radar image o f  a test site selected at Garden City, Kansas. The mission was conducted 
on September 15, 1965, by Westinghouse. Part (a) of  Figure 1 shows a computer output 
of the or ig inal .  Streaks running ver t ica l ly  and hor izontal ly show up very c lear ly  on 
the image. Part (b) shows the p ic tor ia l  v iew o f  the 'noise' which was subtracted out 
o f  (a). Part (c) shows the enhanced irnage. A l l  three images are represented by  13 grey 
tones and are qucnt ized using an equal probabi l i ty  routine. 

Figure 3 shows a larger area o f  the same test site and i s  made up o f  14 f ields. 
The imcges shown i n  the figure are positioned the same, re la t ive to one another, as 
they were on ihe ground. Each image i n  the figuic: i s  a representotior, o f  the noise 
subtracted out from ii. The streaks occurring i n  one f i e l d  carry on in to  the neighbor- 
ing fields. The ver i ica l  streaks (perpendicular to the l ine o f  f l i gh t )  are almost 
~ e r i o d i c  and, as stuted earl ier i n  this section, cou ld  be due to  s c c i ~  lines. The 
horizon:al streal<s may have been caused due to  scratches on the negative or due to  
antenl-,a pattern, bu t  to  pinpoint  their  cause a t  this stage, wi thoi l t  further research, 
would be d i f f i cu l t .  
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APPENDIX I1 
ON A TEXTURE-CONTEXT FEATURE EXTRACTION 
ALGORITHM FOR REMOTELY SENSED IMAGCRY 

R .  M. Hordl ick 
Center for Rescorch, Inc. 

Remote Sensing Loboratory 
University o f  Kansus 

Lawrence, Konsas 66044 

ABSTRACT 

An ir:ioge dota set o f  54 scenes was obtained from 1 8" 
b y  1/811 oreas on a set of 1:20,000 scale photography. t h e  
scenes which consisted o f  6 somples from each o f  the nine 
cotegories scrub, orchord, heavi ly w d e d ,  urban, sub- 
urban, loke, swamp, morsh, and rai l road yard wos ana- 
lyzed manually and automatically. 

For the automatic ona l r i s ,  a set o f  features tQ,..asur 
i ng  the spatial dependence of the grey tones of nci3hbor- 
ing  resolution cells was defined. O n  the basis of these 
features and a simple decision rule which assumed that the 
features were independent and uniformly distributed on 
ident i f icot ion accurocy of 70316 was ochieved by troining 
o f  53 samples ond assigning an ident i f icot ion t o  the 54th 
sample and repeating the experiment 54 times. This 
ident i f icat ion accurocy must be corn ored with the aver- 
age 81% correct ident i f icat ion whic ! five photointer- 
preters achieved w i t h  the same scenes, oltliough the 81% 
correct ident i f icat ion i s  the accuracy ochieved when they 
used the 9" x 9" photograph to  interpret from. Note  that 
the pho tq raph  is data o f  considera5ly higher resolution 
having much more ccntext ir.fo:r;,otion on i t  thon the 
small d ig i t i zed 1/8" x 1/8" area the automctic onolysis 
hod avai lable.  

The moin problem facing us i s  thot o f  feoture selec- 
t i on  of textural-contextuol information. The features 
thct  we may use are l im i ted  not only by the catholic 
constraint of pract ical i ty*,  but also by  our heuristic idea 
o f  texture-context information. 

In the next section we br ie f ly  go over the feoture 
selection problem i n  generol and i n  subsequent sections 

resent the in tu i t i ve  i dem behind what we hove termed 
'texture-context' features. The mothemoticol detoi Is of 
these features are then explained and some simple exam- 
ples are shown. The decision nok ing algorithms that 
were used ore discussed; results, including comporison 
w i th  interpretations by expert photointerpreters, and 
conclusions are i n  separate sections. 

For this study the doto sets were comprised o f  54 
d ig i t i zed 1/8" x 1/8" sections of standord 1:20,000, 
9" x 9" aer ia l  p l io tqrophy supplied by  the United Stotes 
Army Engineer Topographic Loborotories. Each imoge 
wus d ig i t i zed in to  a 64 x 64 resolution ce l l  matrix (and 
later into o 58 x 58 one because of some dark border 
effects encountered from the m a k  used i n  the d ig i t i za t ion  

process), and the levcls o f  d ig i t i za t ion  ranged from63 t o  
zero. There werc six data sets per cotegory ond 9 general 
categories: scrub, orchard, heav i ly  wooded, urban, sub- 
urban, loke, manli, swamp, and rai l road yard. 

PREPROCESSING A N D  FEATURE SELECTING 

The 'classical' block-box description of an automated 
pattern recogn i f im  system is bosed on four moin, not 
necessaril distinct, subsystem: 

( l r  the sensors or measuring instruments 
(2) the preprocessors 
(3) the feature selectors 
(4) the catcgorizor or  decision maker. 

The data which the senson or instruments ~ r o d u c e  are 
not always i n  the k ind  o f  normalized form wi th  which i t  
makes sense t o  work. For example, mony sensors or 
measuring instruments produce re lo l ive  measurements, i .e. 
the measurements ore correct up  t o  on addit ive or mult i -  
p l i ca t ive  constant. Despite cal ibrat ion efforts, this is 
part icular ly true for the camera-fi lm-digit izer system 
which produce th? dygital magnetic tope containing the 
digi t ized i m q ? .  Variations i n  l ighting, lens, film, 
developer, arid d ig i t i zer  a l l  combine t o  produce a grey 
tone value which is on unknown but usually monotonic 
tra,nsformotion o f  the "true" grey tone value. Under these 
conditions we would certainly wont two images of the 
same scene, one irnoge being a grey tone monotonic 
transformation o f  the other, t o  produce the same results 
from the pattern r e c q n i t i o n  process. I t  116 been 
!shown that normol izo t im by  equal ~ robob i ! i t y  quant iz ing 
guamntees that imoges which are monotonic transformotions 
o f  one another produce the same results. Hence, a l l  the 
images we used were quantized t o  16 levels. 

The sensors usuolly produce many rneauremenh Simple 
sensors such os an EKG machine prcduce 103 - l d s a m p l e d  
values whi le i m q e  semors prcduce 104 - 107 sensed grey 
tones. Compored to  the huge amount o f  data produced by 
the sensors, the cotegory distinctions we need to  make are 
relat ively few, say a choice o f  one out o f  ten t o  a hundred 
categories. This suggests that the pattern recognit ion 
system should be able t o  reduce the dota to  a more suc- 
c inct  form, el iminat ing much extraneous information (that 
information which i s ,  i n  general, not  re lat ive t o  the 
discrimination of the given categories). This sort of data 
reduction which produces the i n i t i a l  features i s  ca l led  
preprocessing or feoture selecting and unfortunately there 
exists l i t t l e  or no theory to  a id  i n  establishing what this 
preprocessing or feulure selecting should consist of .  Rother, 
this operation i s  determined intui t ively,  rat icnol ized 
heuristically and justif ied later pragmatically and empir- 
i ca l l y .  In the case o f  our texture-context p r o b l e ~ t h e  w e  
o f  various moments of the spatial grq. tone dependence 
motrices corresponds t o  this sort of preprocessing or in i t ia l  
feoture selecting. 

Research was supported by U.S. Army Engineer Topo- 
araohic Laborotorics. Fort k l v o i r .  Virainia. C O N -  

'With regard to  this point, i t  seems oppropriote to  note 
here thot a l l  featurc selection and decision mokiny 
algorithms wre wri t ten i n  FORTRAN I V  and implcment- 
ed on a PDP 15/20 digi ta l  cornputer w i th  12K core and 
two DEC tape drives. 



I t  is importont to  note that a primor chorocteristic K We assume thot the texturc-context informotion i n  an 
of  preprocessing or feature selecting i s  t e nunibcr o f  imoge I i s  contained in  the over-all or "overage" spatial 
operotions needed to  be performed i n  order t o  obtain the relationship which the grey tones i n  imoge I hove t o  one 
features. Quick procedures ore churacterized by  a another. More specifically, we shall assumc that this 
number of  operations propor t imal  to thc number o f  data texture-context information is adequately specif ied by 
points needing to  be processed. A l l  procedures which we the matrix of relat ive frequencies Pi; wi th  which two 
develop here ore quick i n  that sense. 

The next stage i n  feature selecting consists o f  remov- 
ing redundancies from the i n i t i o l  feotures. I f  the i n i t i a l  
features ore N-dimensional vec ton i n  Euclidean N-space, 
5 they are i n  our study, then i t  might be that a l l  the 
vectors l i e  i n  some K-dimensional f l o t  where K i s  much 
smaller than N. I n  this cose there are N - K  l inear con- 
straints to  which the i n i t i a l  feoture vectors are subject 
and i t  is possible t o  essentially rnointain a l l  the informa- 
t i on  i n  the features vectors by representing them by their 
coordinates i n  the smaller di~nensionol subspace or f lat .  
Such redundancy removal can be done by pr incipal  com- 
ponent analysis or by not using those feotures which do 
not contribute addit ional inforniation for the ident i f icat ion 
o f  the given categories. I t  is this lat ter  approach which 
we take here. 

The vo r iws  feotures which we suggest are a l l  a func- 
t ion o f  distance and ongle. The angular dependence 
presents o speciol problea. Sgppose imoge A h a  feotures 
a,b,c,d for angles 0°,45 ,90 ,135' respectively and 
imoge 0 is ident icol  w i th  imoge A except that imoge B is 
rotated by say 90' w i th  respect to A. Then B w i l l  hove 
features c,d,a,b for angles 0 ~ , 4 5 ~ , 9 0 ~ ,  135°respectively. 
Since the texture-context o f  A i s  the some as 8, any de- 
cision rule using the ;rngu!c: dzpence fectures ad b, c,d 
must produce the same results for c,d,o,b (a 90 rototion) 
or for thot matter b,c,d,a (a 45' rototion) and d,a,b,c 
(o 135' rototion). To guarantee this we do not use the 
angulor dependent fea!ure direct ly.  Insteod, we use 
some symmetric function o f  a,b,c,j: their averoge, 
range, ond mean deviation. 

SPATIAL GREY TONE DEPENDENCE 

Let Lx = 1 2  N X n d  L = { 1 , 2 , . . . ~ N ~ b e  
Y 

the x and yspot ia l  domains and L x Lx be the set o f  
Y 

resolution cells. Let  G = {0, 1,. ..,No} be the set o f  ., 
possible grey tones. Then a d ig i ta l  imoge I i s  a function 
which assigns some grey tone to  each ond every resolu- 
t ion cell; I:L x L *G . *  

Y X 

An essential component o f  our conceptual fromework 
o f  texture is a measure, or more precisely, four closely 
related measures from which o l l  o f  our texture-context 
feotures ore derived. These measures ore arroys termed 
angular nearest neighbor grey tone spotiol dependence 
motrices, and t o  describe these arrays we must re-empha- 
size our notion o f  adjacent M nearest neighbor resolution 
cells themclves. We consider a resolution ce l l  -- 
excluding those on the eriphery of an image, etc.-to 
h w c  eight ncarest neigtbor rcsolution cells as i n  Figure 1 .  

*The spatiol domoin L xL consists of ordercd pairs whose 
v X 

components orc row ond column respcctivcly. This con- 
vention conforms with the usuol two subscript rovrco lumn 
designation used i n  FORT'RAId. 

I 
neighboring resolution cells seporated by  distonce d 
o c c i r  on t6e imoge, one with grey t0ne.i and the other 
w i th  grey tone i. Such motrices o f  spatial grey tone 
dependencc frequencies ore a function o f  the ongulor 
relationship between the neighboring resolution cells a 
wel l  as a function of the distance between them. Figure 
2 illustrates the set o f  a l l  hori7ontal neighboring resolu- 

' 

t ion  cells seporoted by  distcnce 1. This set along wi th  
the image grey tones would be used t o  calculate a dis- 
tance 1 horizontal spatial grey tone dependence matrix. 
Formally, for angles quantized t o  45O intervals the 
unnormalized frequencies are defined by: 

No te  that these matrices ore symmetric; P(i ,i;d,a) = 
P(i,i;d,a). The distoncc metric P impl ic i t  i n  the above 
equations can be exp l i c i t l y  defined by p((k,l),(m,n)) = 
max {jk-rn] , 11-nl 1. 

Consider Figure 3-a, which represents a 4 x 4 i m w e  
wi th  four grey toner, ranging from 0 to  3. Figure 3-b 
shows the general form o f  ony grey tone spatial depen- 
dence matrix. For example, the element i n  the (2,l)-st 
posit ion o f  the distonce 1 horizontal PH motrix is the 

. . 

total  number o f  t i r e s  two grey toncs o f  value 2 and 1 
occurred hor izontal ly adjacent to  eoch other. To deter- 
mine this number, we count the number o f  p a i n  o f  
resolution cells i n  R,, such that the first resolution ce l l  

o f  the poir h a  grey tone 2 and the second resolution ce l l  
o f  the poir ho i  grey tone 1. In Figures 3-c through 3-f  
we calculate a l l  four distonce 1 grey tone spatial depen- 
dence motrices. 

I F  needed, the appropriate frequency normolizotion for 
the matrices ore eosily computed. When the relationship 
is neorest horizontal neighbor (d=l ond CFOO), there w i l l  
be 2(Nx-1) neighboring resolution ce l l  poir  on eoch row 
md there are Nv rows providing a totol  o f  2Nv(Nx-1)  

neorest hor izontb~ neighbor pairs (see Figure 3). when 
the relatianship i s  neorest r ight  diogonol neighbor (d=l, 
-450) there w i l l  be 2(Nx-1) 45Oneighboring resolution 

ce l l  poirs for eoch row except the first, for which there 
ore none, and there ore N rows. This provides a total  

o f  2 (Ny- l ) (Nx-1)  neorest ;ight diogonol neighbor p a i n  

(see ~ i s u r e  4). By symmetry there w i l l  be  2Nx(NV-1)  

nearest ver t ica l  neighbor pairs and 2(Nx- l ) (Nv-  l j  neor- 

est l c f t  diogonol neighbor poirs. 
Let us now consider how to  use such spatial dependence 

informotion. We hove suggested generating 
a hornogcneity and unhomogeneity imoge from the or ig i -  
no1 imoge on the bosis o f  the grc tone depc,r~dence motrix. 1: (The homogeneity irncge i s  an en onccd disl.~:ay of  a l l  



the homogeneous areas whi lc  the unhoniogcncity imoge 
is an cnhanccd dis lay o f  a l l  t l ie unhomogcncws arcas.) 
A t  any resolution L ,n) ,  the hotncgeneity image I,, h a  

an intcger valucd grey tone 0 to  8 depending on how 
many o f  resolution ce l l  (m,n)'s G neorest neighbors on 
the or ig inol  imcge I have respective grey tones which are 
"suf f ic ient ly similar" to  the grey tone at  (m,n) on imoge 
I. Simi lar i ty of two grey tones i and i i s  determined on 
the basis of whether the grey tones occur next t o  each 
other suf f ic ient ly often; that i s ,  i f  the clement P(i, i) o f  
the spatial dependence motrix is lorgc enough. A t  any 
resolution ce l l  (m,n), the unhomogeneity image Ill has - 
a grey tone 0,1,2,3,4,5,6,7 or 8 depending on how 
many o f  resolution ce l l  (m,n)'s 8 neorest neighbors on  
the or ig inol  image I have respective grey tones which ore 
"suf f ic ient ly dissimilar" t o  the grey tone at (m,n) on 
image I. Dissimilarity of two grey tones i and i is deter- 
mined on the basis o f  whether the grey tones occur next 
t o  eoch other suf f ic ient ly rarely, thot is, i f  the element 
P(i,i) of the spatial grey tone dependence matrix is 
small enough. 

The idea of large enough or small enough implies a 
thresholding o f  the grey tonc dependence matrix ond 
depending on what level  the threshold is set the result ing 
homogeneity and unhornogeneity images appear di f fer-  
ent ly.  Thus undesirable arbitrary thresholds must be 
introduced. Fortunately, i t  i s  p ~ s i b l e  to  do away w i t h  
threshalding. Instead o f  defining s imi lar i ty 6 an a l l  or 
nothing affair, we can define the s imi lar i ty between 
grey tones i and j to  be P(i,i), the frequency wi th  which 
i and j co-occur next t o  eoch other, some function o f  
P(i,i) such ns logP(i,i) or perhaps even some function o f  
i and i such as . Dissimilarity between i and j 

T q = p  
2 

can be measured by  ( i - i )  . 
Texture-context features ore easily derived from the 

homogeneity or unhomoaeneity image. For example, the 
greater tlie total homogeneous region areo, then the 
darker the homogeneity irnose. Hence, the mean grey 
tonc o f  the homogeneity imoje  provides a measure OF the 
"smoothness" of the originol image. The grey tone 
varionce of the homogeneity imcge providcs a measure 
o f  how the homogeneous areas ore spread out on the 
imoge. Low variance would indicote lorgc area uniform 
homogeneity whi le high varionce might indicate many 
small areo homogeneous regions. 

It can be shown thot the computation o f  the average 
grey tone on the homogeneity or unhomogencity image J 
can be done without h w i n g  to  hove tl ie image J gener- 
ated. The avcragc grey tone can be computed d i rec t ly  
as a function of the spatial grey tone dependence motrices 
I n  this papcr wc explore only those reutures which can bc 
computed d i rcc t ly  from tlie spatial dcpendencc grey tone 
motrix and do not require the homogeneity or unhomo- 
geneity imuge t o  be dcterrnined. 

In thc discussion which follows on the use o f  thc 
spatial grcy tone dcpendcnce matriccs as texturc context 
features for image dota, we shol l be concerned w i th  
forrns such as 

, the ongulor lecmd smmcnl inrerre 
A:, ," . -"- -  ,*<..,n,. 

c I Y Y 1  , the ongutor second monenl (ASM); [I gg 

Note: #R i s  the number of neighboring resolution cells. 

The ASM feature i s  the sum o f  the squared t e r m  o f  
the grey tone spatial dependence matrix normalized 
by  the total  number of possible adjacencies, #R, for the 
given angle. For each spatial dependence matrix, there 
is a corresponding ASM but there has been a great 
reduction of data because each ASM (as each ASMD 
and ASMID) is only a number not an array. The ASMD 
feature i s  the sum of the members of a grey tone spatial 
dependence matrix, each member mult ip l ied by  the 
squared difference o f  the grey tone values and normal- 
i zed as before. The ASMlD feature i s  the sum of the 
members o f  a grey tone spatial dependence matrix, each 
member d iv idcd by one plus squaredgrey tone difference. 
The correlation feature COR is actual ly the value o f  
the two-dimensional autocorrelation function o f  the 
picture where the autocorrelation function is evaluated 
for a porticular distonce and angle lag. 

Each o f  these features is a function o f  the angle and 
distance bctwcen what we consider to  be neighboring 
resolution cel ls.  We consider 4 angles, 00, 450, 900, 
and 135O at distances o f  1, 3, and 9 resolution cells. 
This provldes an i n i t i a l  set OF 48 features. The number 
o f  features is thus reduced b y  calculat ing the mean, 
range, and mean deviot ion of each type o f  feature at 
a given distance over the four angles. The features 
which are actual ly first considered b y  the decision 
rule are ASIA, ASMID, ASMD, COR evaluoted a t  
distances of 1, 3, and 9 resolution cells w i th  the 
average, range, and mean deviat ion for eoch feature 
and distance calculated over the four angles. This is a 
total o f  36 features. Figure 5 i l lustrates the calculation 
of three representative feotures of the image o f  Figure 
3a. 

AUTOMATIC SCENE IDENTIFICATION 

Automatic sccne ident i f i ca t ion  using thc 36 texture 
contcxt  fcaturcs presents a d i f f i cu l t  problem because of  
the re la t ivc  sparcity o f  the dota: for each o f  9 catc- 
gories there arc only 6 samples w i th  eoch sample having 
a 35 dimensional fcaturc vector. The d i f f i cu l t  is t: rea l ly  twofold: (1) Thcrc are so few samples t at i t  is 
d i f f i cu l t  to  lcorn anytl i ing about the patterns which ore 
characteristic o f  ~ l l c  category, ( 2 )  The decision rule 
must contain a minimurn o f  paromcters so that the deci- 
sion rule does not "mcmorizc" the data. Hence thc 
opproach wc taltc rc l ics on the sirnplcst type o f  data 
statistics: thc mil,imum and maximum value cocl l  fcclturc 



can take on for meosuremcnts i n  a given category. 

Figure 6 illustrates for eoch pair  of categories which 
variable w i l l  separate them. Figurc 6 shows that variable 
4, ASMlD at distance 1, has its average, range and mean 
deviat ion appearing a total  o f  56  times i n  separating 
categories. O f  those categories which are not separated 
by  the distance 1 ASMlD features, COR at a distonce 1 
h a  its average, range and mean deviot ion appearing a 
total  o f  8 times i n  separating categories. O f  t h a e  cote- 
gories which are not seporated by the distance 1 ASMlD 

, or COR features, ASM at distance 1 h m  its average, 
:range m d  mean de\,iation appearing a total  of 4 times 

i n  separating categories. O f  those categories which are 
not separated by  distance 1 ASMID, COR or ASM fea- 
tures, ASM at distance 3 h m  its overage, range and mean 
deviat ion appearing a total  of 1 time i n  separating cote- 
gories. Hence, o f  the i n i t i a l  36 features, we use only 
the fo l lowing 12 features: 

ASM A V G  
ASM RANGE 
AS M DEV 
COR A V G  
COR RANGE DISTANCE 1 
COR DEV 
ASMlD A V G  
ASMlD RANGE 
ASMlD DEV 

For automatic ident i f icat ion,  we use a decision rule 
which i s  a maximum l ikel ihood decision rule under the 
assumptions that the 12 feature varicbles are independent 
having uniform distributions. Under this assumption, the 
density function for the k th  category is 

ASM A V G  
ASM RANGE 
AS M D EV 

12 1 
f(x1.x2, . . . X l Z 1 k )  = r, Ki=5P 

for a l l  
n= 1 

DISTANCE 3 

(x1,x2,. ..,x12) such that 

where bnk and ank define the minimum and maximum 

values o f  the uniform distribution on the nth com- 
ponent. 

Hence, a .measurement (xl ,x2, . . . ,x12) i s  ossigned t o  

ca tego~ y k i f  and only i f  

(1) bnk< xn< ankt n=1,2,. . .12 and 

for a l l  j such that bni L x n  h anit n=1,2,. . .12. 

I f  there exists no k such that bnk< x L ank, n=1,2,. . .12, 
n - 

then (xl , x 2 , . .  .x12) i s  assigned to  category k i f  and only 

i f  

The minimum and maximum statistics an, and bnk 
are estimated i n  the fo l lowing w q :  

Let onk = the maximum nth component for a l l  memure- 

ments designated i n  kth category; 

p = the minimum nth component for a l l  measure- nk 
ments designated i n  kth category. 

Assume that category k has Mk measurements, then 

No t i ce  that ank is larger than the maximum b y  same 

fract ion o f  the range and bnk is smaller than the minimum 

by some fract ion o f  the range. Hence. the range 
mk-bnk i s  lor er than pn If Bnk. Under the assumption 
that the variabye h a  a un i  orm distribution, the expected 
value o f  unk- Pnk is M k - 1  . (true range) wh i le  the ex- 

m k T T  
petted value of onk -bnk i s  the true rcngc. 

The ident i f icat ion experiment was done i n  two ways 
using the above decision rule. I n  the first case the 
ent i re set o f  54  samples was used to  t ra in on, i .e. gather 
the statistics n nk, Pnkl n=1,2,. ..12, k=1,2, .. .9, and 

then an the basis o f  the wnk's and PnL1s calculated, each 
.. . .... 

sample was assigned t o  a category. Figure 7 i l lustrates 
the contingency table of the result ing cssignments. A 
total o f  53 out o f  54 samples wcre corrcct ly ident i f ied.  
We shall have more t o  soy about the interpretation o f  
53/54 i n  a moment. 

In the second case, the ident i f icat ion experiment was 
repeated 54  times, each time using a different set of 
53 samples t o  t ra in on. The 54th sample was assigned 
t o  a category on the basis o f  the minimum maximum sta- 
tistics gathered from the other 53 samples. Figure 8 
i l lustrates the contingency table result ing from thesc 
assignmcnts. A total  o f  38 out o f  54  samples wcre cor- 
rec l ly  ident i f ied for a percentage o f  app~~oximatcly 7%. 

To help interpret these results a sequential decision 
algorithm i n  the form o f  a dichotomous key was tried. 
A dichotomous key successively splits a group o f  mea- 
surements i n  two b a e d  on whetlicr a given component 
i s  greotcr than or less than some value. The dichotomous 
key i tsel f  i s  i l lustrated i n  Figure 9. I t  takes 13 dccision 
points t o  perfectly separate the 54 measurements i n to  
their designated cotegorics. I f  the 5 dccision points, 
whose solc function i s  t o  correctly separate measurements 



which were incorrect ly assigned, ore removed, then i t  
takes 8 dccisions t o  corrcct ly assign 49/54 measurements. d ( ~ - 1 )  = i ? r ~ ~  2" = 
Under the ossumption that the twelve variables are inde- -- 
pendent ot eoch decision stage, and that the two cate- 

pN-1-1  253,, 

gory groups being split have the some uniform distribu- 
t ion, Figure 10 illustrates the contingency toble resulting 
from these assignments. Under the assumption that the Hence our ab i l i t y  to perform the category seporotion 
twelve variables are independent at each decision stage, w i t h  such a small chance of  avai lable partit ions i s  
cmd thot the two category groups being split have the signif icant. 
same uniform distribution, the probabi l i ty  of being able 
t o  achieve perfect separation of two categories i n  two  
decisions i s  less than 10-12. 

The outomotic texture-context scene onalysis exper- 
iment was compared wi th  the ident i f icot ion which f ive 
photointerpreters were oble to make wi th  the some dato 
set.  The photointerpreters were given the original 
9"x9" photographs and were al lowed to  use as much 
context information as they could i n  making the ident i -  
f icat ion.  These experiments y ie lded an average of 
81% correct ident i f icat ion for the f ive photointerpreters. 

DISCUSSION A N D  C O N C L U S I O N  

A n  image data set of 54 scenes consisting of 6 sam- 
les from each of the nine categories scrub, orchard, 

Reavily wooded, urban, ruburban, lake, swamp, marih, 
and rai l road yard was cnalyzed manually and outo- 
matical l y .  

For the automatic analysis, a set of features for 
texture context was defined and an the basis of these 
features and a simple decision rule, an ident i f icot ion 
accuracy of 7Wo was ochieved. This ident i f icat ion 
accuracy must te compcred wi th  the overage 81% cor- 
rect  ident i f icat ion which f ive photointerpreters achieved 
wi th  the some scenes, although the 8196 correct ident i -  
f i ca t ion  i s  the occurocy ochieved when they used the 
9"x9"  photograph to  interpret from. The photograph i s  
data of considerably higher resolution hoving much more 
context information on i t  thon the smoll d ig i t i zed 
1/8"x1/8" area the automatic onolysis had avoi loble.  

Furthermore, the 70% correct ident i f icot ion arose i n  
the case whcn the outomotic technique trained on 53 
samples and ~ss igned on ident i f i co t ion  to the 54th 
sample and repeoted the experiment 54 times. This means 
thot for eoch experiment, there was one category which 
hod 5 samples instecd of 6 samples. For this category, 
there i s  o probabi l i ty  of 113 that for eoch feature the 
missing somple hod minimum or mcx invm value over a l l  
samples for the category. Hence there i s  a high prob- 
ob i l i t y  that the missing somple provided signif icont 
information which is not ovai loble i n  the sample without 
i t .  

Looking at the situation another way, 100% correct 
ident i f icot ion was achieved by  the optimol dichotomous 
key which requircd 13 decision points. The probcbi l i ty  
that such good ident i f icat ion could licppen by chance 1s 
very s~no l l .  In fact, the number o f  2 cel led partit ions 
which the simple hyperplanes used could generate for 
N samples i n  o d-dimension01 space i s  n l y  d ( N - I )  and 
this number should be compared to 2 ~ - 9 - 1 ,  the total 
number of non-tr iv ia l  distinct 2 ce l led  partit ions pos- 
sible. I n  our cc~se d= 12, N=54 and the ra t io  
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Figure 1. Resolution cells nos. 1 and 5 are 11ie 0-degree 
(horizon~ol) nearcst neighbors to resolution ce l l  I * ' ,  

resolut;on cel Is nos. 2 and 6 are the 135-degree near- 
est neigllbors, resolution cclls 3 and 7 arc the 90- 
degree nearesi nearest neigl~bors, and resolution cells 
4 ond 8 are !lie 45-degree nearest neighbors to ' * I .  

(Notu that this info:mation i s  purely spatial, and has 
nothing to do with grey tone values.) 

Figurc 2 illustra:es the set of a l l  distance 1 horizontal 
neighboring resolutiora cells on a 4 by 4 image. 
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Figure 3 -c .  Figure 3-d. 
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Figure 5-t. Figure 3-1. 

Figurc 4 illuslratcs how t f ~ c  mcmSers of horizontal and 
right diagonal ncigliboring rc:olution cclls are 
cwntcd .  
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Figure 6b i s  a continuation o f  Figure 6a and tabulates 
for each category pa i r  which of the 36 feoture 
variables can separate the category pair. 
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Figure 7 shows con:ingency table of true ident i f icat ion 
when statistics are from the fu l l  54  samples 
and th: assignments are made on a l l  the 54 samples. 
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Figure 60 tabulates for each category pair which o f  the 36 
feature variables can separate the category pair. 



Figure 9 diogroms the Optimal Dichotomous Key (Sequen- 
t i a l  decision rule).  
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A COMPARATIVE STUDY OF DATA COhl?RESSION 
TECHNIQUES FOR DIGITAL IMAGE TRANSMISSION 

ABSTRACT ----. 

We investigate three methods o f  data compression for aerial image data: 
(1) Di f ferent ia l  Pulse Code Modulat ion,  (2) Principal Components, and (3) 
Hadamard Transform. We compare these methods i n  terms of data compression factor 
versus rms error. Our  comparison indicates that the Principal Components method i s  
uniformly better than the Hadamard Transform methcd. Furthermore, for compression 
ratios greater than 5, the Hadarnard Transform and Principal Component technques 
are better than the Dif ferent ia l  Pulse Code Modulat ion.  I t  i s  only for scenes which 
are re la t ive ly  unstructu~-ed and compressed at  compression ratios of  less than 5 that 
Di f ferent ia l  Pulse Code Modulat ion performs better. 

Since there i s  a hi9:. posit ive correlct ior! between the grey levels of  spat ia l ly  
adjacent resolution ce l  I s  on ael-ial imcgery, the imagery contains a large amount o f  
redundant infol-mation. Hence, image data i s  a good candidate for data compression 
which would, for example, permit more images to  be stored per r o l l  of  tape or permit 
more images to be transmitted per un i t  tirne over a g iven communication channel. 
And, i n  fact, several image data compression techniques'have been suggested and are 
in  use to el iminate many o f  the d ig i ta l  bits representing redundant information (see 
the special issue on redundancy reduction, P_ro~esd~n_gy_qf~th_g_IE-~, Vol . 55, 1967; 
Arguel lo, 1971; W i  lkins and Wintzs' bibl iogrcphy on data compression, 1971; 
Claire, e t  al., 1971). I n  this paper, we investigate three methods of datc 
compression: 

(1) Di f ferent ia l  Pulse Code Modulat ion 
(2) Principal Components 
(3) Hadamard Transforms 



I n  reviewing some o f  the picture coding techniques, W . F .  Schreiber (1967) 
had indicated that i t  i s  very d i f f i cu l t  to  compare the di f ferent dala compression 
techniques because of  the great disparity i n  the subject matter, methods of  evaluation 
and reproduction of  output pictures. The approach used i n  this study provides an 
un i f i ed  method o f  comparing di f ferent data compression techniques since we have 
used the same images, approximately the same data compression factors, and the 
same method for evaluation and reproduction o f  reconstructed images. 

DIFFERENTIAL PULSE CODE M O D U L A T I O N  

The statistical relat ionship belween nearby picture elements and the greater 
sensit ivi ty o f  the eye to spatial and temporal grey tone differences to  absolute grey 
tone values has led to  suggestions for data compression using grey tone differences 
(Seyler, 1965). The most straight-fol-wcl-d tecl7nique i s  ca l led Di f ferent ia l  Pulse 
Code Modulat ion (DPCM). Here the duta i s  compressed b y  transmitting the 
quantized difference between the correct grey tone a t  tl ie transmitter and the last 
reconstl-ucted spat ia l ly  adjacent grey tone u t  the receiver (O 'Neal ,  1966). The 
data compression i s  accomplished i n  the quantizing step since the number o f  possible 
quantizer levels used to  transmit the grey level differences between spat ia l ly  
adjacent resolution cells i s  smaller than the numbdr of  possible levels used to  transmit 
the actual grey tones at each resolution ce l l .  Because differential quantizing tends 
to  preserve edge information, for any given number of  bits per image element, i t  
tends to produce better qua1 i t y  images than ordinary Pulse Code Modulat ion.  

PRINCIPAL COMPONENTS 

I n  the Princi-pal Component meihod, the image i s  f irst spl i t  i n to  a number 
of  small mutually exclusive spatial regions and we shall consider the grey tones of 
these regions to be N-dimensional vectors sampled from source probabi l i ty  distr ibution. 
The image i s  then a co l lec t ion of these vectors. I n  the pr incipal  component method, 
these N-dimensional vectors are projected onto some smaller K-dimensional subspace 
having maximal vcriance. I n  this way, tlie N components of  the or ig inal  vectors may 
be expressed i n  terms o f  K components, thereby achieving some data compression. 

An  optimal set of  cool-dinates for the K-dimensional subspace i s  the set of K 
eigen vectors having largest eigenvalues o f  the covariance matrix o f  the sample o f  
N-dimensional vectors. The pr incip!e on which this method i s  based, namely, the 
Karhunen-Loeve expansion, i s  we l l  known (Watanabe, 1965). However, this 
technique has been used on a rather l imi ted basis for image compression applications, 
even though i t  has been known to  lead to very good comparison performances for 
analog data such as EKG (Andrews, e t  al., 1967) and multispectral -scanner data 
(Ready, e t  al., 1971). 

HADAMARD TRANSFORM 

I n  the Hadamard Transform data compression technique, the image i s  spl i t  
up in to  small spatial regions as i n  pr incipal  components. The lower sequencies o f  
the Hadamard Transform o f  these regions are then transmitted. The image i s  reconstr- 
cted a t  the receiver using the same lower sequency functions. The method works 



because the image data there i s  usually a high posit ive correlation between adjacent 
resolution cel ls and, therefore, the image tends to have a charac t~ r i s t i c  frequency 
spectrum w i t h  the low frequencies dominating the h igh frequencies. And although a 
Hadamard sequency i s  not  the same as the frequency, their  general behavior i s  of ten 
similar-. Hence, i n  image data, the low sequencies tend to  dominate the h igh 
sequencies. Data compression i s  achieved by  use o f  only the few dominant sequency 
components. Pratt, et  a!. , 1969, has used the Hadamal-d Transform for image data 
compression by trcnsmitting the ent i re quantized Hadamard Transform o f  the image. 

RESULTS 

For comparison purposes a set o f  sixty-six d ig i ta l  images were processed using 
the three methods o f  data compression. These images were obtained by d ig i t i z ing  
sections of  aerial photographs containing a wide var iety of  scenes. Eleven scene 
categaries, w i t h  six images for ecch type of scene, were processed. The scenes 
included both natu~.al scenes such as wooded areas, lakes, and man-made scenes 
such as urban areas, suburban areas and rai l road yards. The d ig i t i zed  images were 
o f  64 x 64 size and the grey levels o f  indiv idual  cel  Is had been quantized into 64 
levels. 

Using computer progrcms, the images were transmitted and the RMS errors 
betweeti the or ig inal  integer images and the corresponding reconstructed integer images 
were computed. For each type of  scene, the average RMS error was calculated by 
averaging the rms errors of the six images of  the scene. The or ig inal  and reconstructed 
images were d ig i ta l l y  pr inted out using 13 grey levels. These d ig i ta l  printouts provide 
the basis for visaal compqrison of the or ig inal  and reconstructed images. 

A comparison i n  terms of data compression factor versus rms error between the 
or ig inal  image and the reconstructed compressed image indicate that Principal 
Components i s  uniformly better than Hadamard Transforms. Furthermore, for com- 
pression ratios greater than 5, Principal Components and Hadamord Transforms are 
better than Dif ferent ia l  Pulse Code Modula i ion.  I t  i s  only for re la t ive ly  unstructured 
scenes compressed at  compression ratios less than 5 i l la t  the Di f ferent ia l  Pulse Code 
Modulat ion perforrns beiter . Plots of  rms error vs data compression factor for four 
scene categories are shown i n  Figure 1.a-d. 

Visual comparison of the images cornpl-essed by the- three methods tend to  
support the fo l lowing conclusions: 

(1 )  Of the images compressed by  the three procedures, the images compressed 
by  the pr incipal  components procedure most resemble tl ie or ig inal  images. 

(2) The imcges compressed by the Hadamard tronsfol-m procedure are comparable 
to  the images produced by  the pr incipal  component procedure. However, 
these imcges have a "checl<e~.board" look. 

(3) DPCM procedul-e tends to  "blurr" the boundary lines i n  the images. At 
high data compression. factors, the images compressed b y  the DPCM 
procedure bore very poor resemblance to  the or ig inal .  
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