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by
Robert M., Haralick

Center for Research, Remote Sensing Laboratory
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Lawrence, Kansas

The University of Kansas has taken a two-fold approach to the data processing
of remotely sensed imagery. Our approach has been based upon the need to have a
special purpose hardware facility for the near-real time processing of multi-image
data and the need to have a general purpose digital computer facility for the more
sophisticated non-real time processing. Our near-real time facility is called IDECS
(Image Discrimination Enhancement Combination System) and our non-real time
facility is called KANDIDATS (Kansas Digital Image Data System). These facilities
have been funded from both NASA and DOD sources.

THE NEED FOR A DUAL APPROACH

During the next decade there is a large amount of research yet to be done on
data processing methods in order to bring the maturity of data processing up to the
maturity of sensor technology. Yet, while this research is being done, many remotely
sensed data sets from both aireraft and satellite platforms will have to be processed.
Important constraints are, therefore, imposed on the remote sensing data processing
center. It must have a flexible enough computational facility to implement and
evaluate new ideas so that basic long range research on effective processing algo-
rithms can be done; and for those data sets which now have to be processed quickly,
it must have near real-time equipment to process and display those image sets
economically.

For the near real-time equipment, it is extremely important that the man-
machine interface be as convenient as possible for the interpreter since all image
data is ultimately utilized by a human interpreter in some form. A color display is
very useful for presenting image data to an interpreter since the human eye can
distinguish differences in colors more readily than differences in grey levels. 1DECS
is one of the first systems to utilize a color display for presenting remote sensing data

and it is described in the next section.

MULTI-IMAGE PROCESSING:

A HARDWARE SYSTEM FOR
IDECS.

The IDECS (Image Dlscrlmmohon Enhancement, cnd Combination System)
'is an analog-digital near real-time image processing sysfem and has been in continual
development at the University of Kansas Center for Research, Inc., since 1964.
The IDECS is a unique facility for performing o wide variety of enhancements,
measurements, and category discriminations on single and multiple images. Currently,
the input images must be in photographic form, but their source may be cerial and
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space photography, airborne radar, infrared, multi-spectral scanners, medical and
industrial X-rays, or maps. The primary IDECS output is on a color display unit;
however, other outputs include a black-and-white monitor, area measurements on o
counter, and a pseudo three-dimensional display.

A photograph of the IDECS is shown in Figure 1, and a block diagram of the
total system is shown in Figure 2. The input to the IDECS consists of three flying-
spot scanners suitable for inputting image transparencies from 3 x 4 inches to 35 mm
format, a vidicon camera utilized for map or photographic inputs, and a congruencing
unit which con rotate, translate, and scale images. The image scanners have the
following three modes of operation:

(1) a continuous scan where the horizontal and vertical deflections
for the CRT are driven by ramps which are synchronized with the
display units,

(2) a staircase or dot scan where deflections are determined by the
output of two digital-to-analog converters driven by two binary
counters which are synchronized with the display unit, or

(3) a PDP-15/20 computer controlled slow-scan, where the scanning
dot is moved horizontally and vertically to specific location.

Modes (1) and (2) are used when real time processing is desired, and the program
controlled scan is used to gather information from specific areas of the film for
training purposes and also fo obtain a more accurate analog-to-digital conversion
when necessary. Images to be scanned are positioned above the raster with an
enlarging lens placed between. A condenser lens focuses the light transmitted through
the image onto the cathode of a video photomultiplier tube. A reference photo-
multiplier tube and an automatic gain control (AGC) loop to modulate the cathode
of the CRT are used to assure uniformity of light level over the entire area of the
image being scanned. The reference photomultiplier tube is placed beside the
enlarging lens and senses the light output from the raster at full value. The desired
signal is used as an input into the AGC amplifier which is an error amplifier with a
voltage reference. The resultant error signal is level shifted and is used as the
signal to modulate the cathode of the CRT.

The operator can congruence multiple images by adjusting the position and
size for horizontal and vertical position and rotating one image with respect to  ~
another image as the two images are electronically flickered. When the images are
aligned, the displeasing interference pattern which occurs for misaligned images
disappears.

Once the images are congruenced, they may be processed and enhanced by
IDECS. There are a variety of processing and enhancing functions available. One
function is a linear combiner unit which performs a linear transformation on a
multi-image set in 1/30 of a second. This unit may be used for coordinate rotation
if the coefficients of the linear transformation are selected appropriately. Another
function is level selection. A level selector produces a binary output for an image
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if and only if the input video signal is between two adjustable thresholds, The level-
selectors can be operator controlled or computer controlled. In addition, two more
level selectors can be logically combined producing an output if and only if each one
has an output, thus implementing a MIN-MAX decision rule.

The automatic classifier is a unit (not computer controlled) which is used to
select and display all points on a video image whose levels fall within the same range
of level as those detected in a small rectangular training area of the image. The
position and size of this fraining area is selected using a small joy stick to determine
position, and control pots are used to adjust vertical and horizontal size. To accom-
plish this operation, a rectanguler training area is first defined on the image. Then
peck detectors sample and hold the positive ard negative signal peaks within the
range of the training arec. The remaining portion of the video signal is then compared
with the peak levels of the training creo; whenever the video signal falls within tEe
training voltage range, a digital output is produced for processing or display.

Other functions include a unit to measure the area of any displayed category
or grey level, a varioble time constant differentiation unit to enhance edges and a
pseudo three-dimensional display unit which permits one to view the three-dimensional
surface generated by the grey tone density of an image. Soon to be implemented is
a near real-time (1/30 of a second) table lookup pattern classifier which assigns cate-
gories on the basis of the digitized levels of two video signals and stored parameters
for a Bayes decision rule. '

A recently acquired PDP-15/20 computer is being interfaced to the system so
that the IDECS can be program controlled and have a wider capability in performing
image enhancements and category identifications. In effect, the PDP-15/20 will
perform the task of generating a decision rule from data gathered by the IDECS, and
the IDECS implements the resulting rule (in near real~time) on data derived by scanning
the images. In general, five steps will be required in performing category identifi-
cations for images:

(1) the images must be congruenced,

(2) training data must be obtained by the computer from the images
by directing the IDECS to scan appropriate areas,

(3) from the training data, the PDP-15/20 is programmed to determine
the parameters for the chosen decision rule,

(4) the calculated parameters are used to set control voltages in the
analog processing subsystems in the IDECS, and

(5) the specified category identifications are made and displayed
by IDECS. ‘

The PDP-15/20 will control the image processing steps of the IDECS by issuing
commands to the IDECS central processing unit (CPU). The CPU in turn directs data
flow and processing in the IDECS. The system configuration can be digitally selected
utilizing a twenty by twenty video configuration matrix.,
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A digital disc memory having twenty-four channels and containing 24,000, 000
bits of storage is also utilized in the system. There is an interface between the disc
and computer capable of transferring at the rate of 18,000,000 bits per second.

Also, there is an interface between the disc and the color display unit of the IDECS
with the capability of up to three six-bit digital-to-analog converters or any number
of binary outputs between one and twenty-four. The color selector is a unit such
that any of the twenty-four channels of the disc can be assigned any of ten fixed
colors and any of ten textures. The textures are merely series of horizontal and
vertical lines superimposed on the displayed information. Figure 3 illustrates one
image from a raedar image pair and the IDECS processed image.

A SOFTWARE SYSTEM FOR DIGITAL IMAGE PROCESSING: KANDIDATS

KANDIDATS (Kansas Digital Image Data System), currently being developed,
is a software package consisting of a monitor and a set of multi~-image processing
programs designed to run on a GE-635 computer. The multi-image processing programs
are all written in FORTRAN 1V and allow for image editing, registering, congruencing,
quentizing, clustering, feature extraction, image size and/or dimensionality reduction,
image texture analysis, image pattern recognition. It has a variety of decision rules,
data display capability with scatterograms and histograms, grey-tone image display

" with overprinting or digital image color map display. The KANDIDATS monitor is a
GMAP assembly languege program designed to integrate the multi-image processing
programs by handling all bookkeeping type and 1/O operations and to minimize the

* cost of processing image data by speeding up 1/O time and overlopping I/O time
with execute time. Figure 4 illustrates a block diagram of the basic KANDIDATS
organization,

The KANDIDATS monitor inputs in free-format all instructions required by
the image processing program, supervises the execution of the programs, provides
error processing, and dynamic storage allocation and tape input and output for the
programs. The monitor has been written so that during a single activity of KANDI-
DATS many processing programs may be sequentially executed using many different
data sets. The monitor does this by treating each program as @ separate task and
by allocating and releasing data tapes as necessary.

Once remotely sensed data is converted to digital type format, it is
necessary to check the digitized tape to see of the conversion was made successfully.
Preliminary checking can be done by dumping the first few records on the tape;
however, this is by no means a compleie check. The KANDIDATS image display
program cen make a complete check by outputting the tape in picture format on the
digital printer creating the grey-tones by overprinting. 1f the image has so many
resolution cells os to make the digital picture printing awkward, a progrom may be
utilized which reduceﬁ‘rhe image size byﬂoveraging blocks of N x N resolutions or
by selecting every N'" row and every N'" column.

Examination of this picture output will indicate what kind of editing will have
to be done on the sides and top and bottom of the image as well as indicate skewing
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and AAD conversion distortion. (Skewing can occur because it may be impossible to
start digitizing each line of the image in exactly the same place. A/D conversion
distortion can occur when jitter or noise internal or external to the A/D conversion
mokes the conversion go awry.) If necessaiy, a KANDIDATS deskewing program may
have to be used to remove skew and a special smoothing-replacement program may
have to be used for those resolution cells which were improperly converted.

When multi-image data is being processed, it is often necessary to align the
individual images to the same place. To do this KANDIDATS employs a registering
program. When different sensors or the same sensors with different look directions are
involved it may be necessary to bring the images to the same geometry. In this case
a congruencing progroem must be used,

When the geometries on the imcges to be congruenced are quite different, the
congruencing job moy be quite hard. However, where only minor geometric distort-
ions are invelved, congruencing may be done by a KANDIDATS program which
treats the image as a rubber surface and expands or contracts it to best match up «
set of given corresponding points.

There are two formats by which multi-image data may be stored on taps by
KANDIDATS, In the photo format all the grey-tones from the first image are stored
on a mafrix followed by the grey-tones from the second image ond so on. In the
corresponding point format the grey-tone from image on: resolution cell (1,1) is
followed by the grey-tone from image two resolution cell (1,1) and so on. Editing
and congruencing imagery from different sensors is usually done with data in photo
form as is image display and texture analysis, Most of the other programs work most
easily with the data in corresponding point format., KANDIDATS has programs
which convert multi-imcge dota from one format to the other.

After initial editing ond congruencing it is convericnt to obtain an intuitive
idea of what is happening in the data. To help with this, programs are aveilable
which pick out specified regions on the image and display the data points in scattero-
gram or histogram fashion. The scatterograms or histograms may be indexed by ground
truth categories when the ground truth is available. The axes of the scotterograms
may be combinations of pairs of the different sensor signals or the axes of a rotated
coordin. ‘e system. Rotafion can be accomplished from principal component analysis
or from linear discriminant functions and there are programs available for these:
operations. Either of these operations will allow a significant reduction of dimens-
ionality and, therefore, allow a reduction in storage and display of data, especially
in-12 or 24 channel multi-spectral scanner data.,

Before pattern discrimination or clustering is done, a feature extraction is
performed which selects the relevant variables or which combines the original
variables in some optimuim way. Sometimes as part of the feature extraction process
quantizing is done to noimalize the data as well as to reduce the memory required
for storage of the data. KANDIDAT' has available programs which do equal interval,
equal probability, minimum veriance, and spatial quantizing.
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When texture is an important feature for a category of interest, the
dimensionality of the images may be augmented by a texture analysis program
which adds dimensions providing texture type information.

Probably, the major workhorse of image data analysis consists of pattern
discrimination and clustering techniques. With pattern discrimination techniques,
a training set of data is gathered for which the correct category identification of
each distinct entity in the data is known. Then estimates are made of the required
category conditional probability distributions and a decision rule is determined from
them. The decision rule can then be employed to identify any other data set
gathered under similar conditions. With clustering techniques there is no training
data set or decision rule. Rather, the natural data structures are determined.
Distinct struc *ures are then interpreted as corresponding to distinct objects or
environmental processes,

The advantage of the discrimination techniques is that the scientist is able to
decide the types of environmental categories among which he wishes to distinguish.
The decision rule then determines as best as possible, to which environmental cate-
gory an arbitrary data entity belongs. The disadvantage of the discrimination
techniques is that they are sensitive to mis-calibrations. Any slight difference between
the sensor calibrations or state of environment for the training data and the new data
will cause error.

The advantage of the clustering techniques is that they are not sensitive to
calibration problems. Two small-area patches of corn growing in the same field are
going to be detected as being similar because they have similar grey tone associ ‘ed
with them. The disadvantage of the clustering techniques is that they are not able
to identify the distinct environmental structures they determine.

KANDIDATS has available iterative and chaining clustering programs and
paottern discrimination programs. The pattern discrimination programs use a variety
of decision rule types including a distribution-free Bayes rule which can only be used
on coarsely quantized data, a Bayes decision rule assuming the category conditional
probabilitics are of some given type of multivariate distribution, a linear decision
rule, or a nearest neighbor decision rule.

Appendices I, 11, and Ill summarize a few of the things we are doing with
KANDIDATS.

CONCLUDING REMARKS

Two systems for processing remotely sensed image data have been discussed.
The first system, IDECS, is a near real~time hardware system oriented towards pro-
cessing multi-image data sets quickly and economically. The IDECS has convenient
film input and color display output capabilities and implements simple kinds of
decision rules. The second system, KANDIDATS, is a software system capable of
performing many of the more sophisticated processing methods. Because of its monitor
which handles all bookkeeping and its modular design, KANDIDATS easily allows
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the testing of new automatic processing techniques. After a new technique has been
proven on KANDIDATS, it may be simplified and hard-*Wwired in IDECS, thereby
keeping the volume processing of remotely sensed data always up to the current
state-of-the-art.
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FIGURE 3a. RADAR IMAGE, HH POLARIZATION TAKEN
OVER GARDEN CITY, KANSAS, JULY, 1966
BY WESTINGHOUSE AN/APQ 97.



Green Bare Ground Purple Sorghum and
Alfalfa

Black No Decision

Blue Sugar Beets

FIGURE 3b. THEMATIC LAND USE MAP PRODUCED BY
IDECS FOR AN HH HV RADAR IMAGE PAIR
TAKEN OVER GARDEN CITY, KANSAS, JULY,
1966, BY A WESTINGHOUSE AN/APQ 97.
THE RESULTS SHOW 100% CORRECT
| DENTIFICATION ON SUGAR BEETS AND BARE
GROUND AND 85% CORRECT IDENTIFICATION
ON SORGHUM AND ALFALFA.
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APPENDIX 1
by

Percy Batlivala
Center for Research, Remote Sensing Laboratory
University of Kansas
Lawrence, Kansas

ENHANCEMENT AND NORMALTZATION OF
RADAR IMAGE TEXTURE

Texture hos been of interest to engineers and geoscientists alike because of
its potential as a useful discriminant in image category identification. Hence, one
important preprocessing operation must be concerned with the enhancement and
normalization of image texture. Such an operation must bring out in normal form grey
tone variation due to texture and exclude grey tone vecriations due to look angles or
flight parameter fluctions.

Antenna patterns and flight parameter fluctuations have been two factors most
responsible for degradation of radar imagery. 1f we regard the degradation as
additive noise, enhancement of the image would, in a sense, be cppropriote if there
were means of removing the cdded noise. The 'streaks' parallel to the line of flight
in an imoge could be due to flight parameter fluctuations, seretches caused by
handling of the imoge before digitization, or due to antenna pettern and perpendi-
culer 'strecks' could be due to scen lines.

Given below is a mathematical formulation, which in essence is the enhance-
ment technique.

Let Lx and Ly be the x and y spctial domains, G be the set of grey tones and
P:Lx x Ly — G be some digital picture function of some more or less "homogeneous'
object 0,0 : Lx x Ly—G.

The relationship between P and O is assumed to be of the following form:
P(i,j) = OG,j) + (i) + g() (1)
where «(i) and B(j) can be thought of as additive row and column distortion

respectively. If we are interested in the te:.iure of O, the average grey fone is not
important and a function P(i,]) can be determined such that

P(,D) = PG, - &) - BG) (2)
where

1 42

x = [P, @)

i=1 =l -

is minimized.
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The problem now is to estimate ¢ (i) and B (j) by o (i) and a(j) so that (3) is

sintmized,

} r J
- S A . A
" - ine— [ P(o,_)) - o (L) - B(j,)JL
Tt : (4)
1o minimize F with respect to &(i) and a(j)we take the partial derivatives, thus
- “T-_ : A A
\I = Z LPC"JJ) - (%) —SCJ)](—i) ;5 t=1,2, = L (5)
Cad 0
)F 2/_ 1: F( n A
_ - “ _ ) '
N E D b, s
i~tting the partial derivatives to zero.
- 0 A _ _
<L, "JD((L)—Ié.:O _ )-L:-(,l,""_,_l_ (7)
- A A
GaXe = LB =0 5 =12, T (8)

“

" ztracting equation (1Q) from ( 9 ) we have

TP T[TBUI-E ] =0 SUEha T
- = lurly by multiplying (7 ) by 1 and summing ( 8) over all j, we have

. — A A —

o 1&\+J[IxUJ,x];o , =2, o, L (12

- wlutions to equations (11) and (12) are found to be

riny 2 P Y P > éépﬁ): zil" (-r) L

T  IJ 7z I7 (13)

Tty 'ul:itrory X .
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Hence

a(ﬁ‘)f’*ﬁ)(__)) = Poor p-)_ ~ 1

_____ . -.

S AV (14)

and th h di B(i +): . v . ]
eguoﬂzner('n 2o)ng<ra]d image P(i,j) is then obtained by substituting equation (14) into

Plas) = Ptess = be = Loy 2o (19
J z TT 15

A
The enhanced image P(i,]) is found to have a zero mean, and also each row
and column mean is zero.

Figure T shows a simulated 5 x 5 'lomogeneous' image to which the enhancing
technique has been applied. The 5 x 5 image shown in (c) of Figure 1 is the model
with additive noise. The 5 x 5 enhanced image shown in (d) of Figure 1 clearly shows
a 'diffusion’ of the additive noise. For simplicity of representation, image (d) has
been quantized, and therefore does not have a zero mean.

Figure 2 shows the enhancement technique applied to a radar image. Part (a)
shows a digitized radar image of a sorghum field. This field was isolated from the
radar image of a test site selected ot Garden City, Kansas, The mission was conducted
on September 15, 1965, by Westinghouse. Part (a) of Figure 1shows a computer output
of the original. Streaks running vertically and horizontally show up very clearly on
the image. Paort (b) shows the pictorial view of the 'noise' which was subfracted out
of (a). Part (c) shows the enhanced image. All three images are represented by 13 grey
tones and are qucntized using an equal probability routine.

Figure 3 shows a larger area of the same test site and is made up of 14 fields.
The images shown in the figure are positioned the same, relative to one another, as
they were on the ground. Each image in the figuic is a representation of the noise
subtracted out from it, The streaks occurring in one field carry on into the neighbor-
ing fields. The vertical streaks (perpendicular to the line of flight) cre almost
periodic and, as stated earlier in this section, could be due to sccin lines. The
horizontal streaks may have been caused due to scratches on the negative or due fo
antenr.a pottern, but to pinpoint their cause at this stage, without further research,

would be difficult,
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APPENDIX 11

ON A TEXTURE-CONTEXT FEATURE EXTRACTION
ALGORITHM FOR REMOTELY SENSED IMAGERY

R. M. Haralick
Center for Research, Inc.
Remote Sensing Loboratory
University of Kansas
Lawrence, Kansas 66044

ABSTRACT

An image data set of 54 scenes was obtained from 1/8"
by 1/8" areas on a set of 1:20,000 scale photography. The
scenes which consisted of 6 samples from each of the nine
categories scrub, orchard, heavily wooded, urban, sub=
urban, lake, swamp, marsh, ond railroad yard was ana-
lyzed manually and automatically.

For the automatic analysis, a set of features ».=osur
ing the spatial dependence of the grey tones of ncighbor-
ing resolution cells was defined. On the basis of these
features and a simple decision rule which assumed that the
features were independent and uniformly distributed an
identification aceuracy of 70% was achieved by training
of 53 samples and ossigning an identification to the S4th
sample and repeating the experiment 54 times. This
identification accuracy must be compered with the aver=
age 81% correct identification whicﬁ five photointer-
preters achieved with the same scenes, although the 81%
correct identification is the accuracy achieved when they
used the 9" x 9" photograph to interpret from, Note that
the photograph is data of considercbly higher resolution
having much more context information on if than the
small digitized 1/8" x 1/8" arec the automatic onalysis
had available.

INTRODUCTION

The main problem facing us is that of feature selec-
tion of textural~contextual information. The features
thet we may use ore limited not only by the catholic
constraint of practicality*, but also by our heuristic idea
of texture-context information.

In the next section we briefly go over the feature
selection problem in general and in subsequent sections
Fresenf the intuitive ideas behind what we have termed

texture~context' features, The mathematical details of
these features are then explained and some simple exam=
ples are shown. The decision making algorithms that
were used are discussed; results, including comparison
with interpretations by expert photointerpreters, and
conclusions are in separate sections,

For this study the dato sets were comprised of 54
digitized 1/8" x 1/8" sections of standard 1:20,000,
9" x 9" aerial photography supplied by the United States
Army Engineer Topographic Laboratories, Each image
was digitized into a 64 x 64 resolution cell matrix (and
later into a 58 x 58 one because of some dork border
effects encountered from the mask used in the digitization

FWith regard to this point, it seems appropriate to note
here that all feature selection and decision making
algorithms were written in FORTRAN 1V and implement=
ed on a PDP 15/20 digital computer with 12K core and
two DEC tape drives.
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process), and the levels of digitization ranged from 63 to
zero. There were six data sets per category and 9 general
categories: scrub, orchard, heavily wooded, urban, sub-
urban, lake, marsh, swamp, and railroad yard.

PREPROCESSING AND FEATURE SELECTING

The 'classical' black-box description of an automated
pattem recognitfion system is based on four main, not
necessarily distinct, subsystems:

(1) the sensors or measuring instruments
(2) the preprocessors

(3) the feature selectors

(4) the categorizor or decision maker.

The data which the sensors or instruments produce are
not always in the kind of nermalized form with which it
makes sense to work. For example, meny sensors or
measuring instruments produce relaiive measurements, i.e.
the measurements are correct up to an additive or multi=
plicative constant, Despite calibration efforts, this is

"particularly true for the camera-film=digitizer system

which produce the digital magnetic tase containing the
digitized imag2, Variations in lighting, lens, film,
developer, ard digitizer all combine to produce a grey
tone value which is on unknown but usually menotenic
transformation of the “"true" grey tone value. Under these
conditions we would certainly want two images of the
some scene, one imoge being a grey tone monotonic
transformation of the other, to produce the same results
from the pattern recognition mrocess. It has been

tshown that normalization by equal probability quantizing
guarontees that images which are monotonic transformations
of one another produce the some results, Hence, all the
images we used were quantized to 16 levels.

The sensors usually produce many mecsurements, Simple
sensors such as an EXG machine produce 103 - 10%sampled
values while image sersors produce 104 - 107 sensed grey
tones. Compared to the huge amount of data produced by
the sensors, the category distinctions we need to make are
relatively few, say a choice of one out of ten to a hundred
categories. This suggests that the pattern recognition
system should be able to reduce the data to a more suc=
cinct form, eliminating much extraneous information (that
information which is, in general, not relative to the
discrimination of the given categories). This sort of data
reduction which produces the initial features is called
preprocessing or feature selecting and unfortunately there
exists little or no theory to aid in establishing what this
preprocessing or feature selecting should consist of , Rather,
this operation is determined intuitively, rationalized
heuristically and justified later progmatically and empir=
ically. In the case of our texture-contéxt problem the use
of various moments of the spatial grey tone dependence
matrices corresponds to this sort of preprocessing or initial
feature selecting.,

Research was supported by U.S. Army Engineer Topo-
graphic Laboratorics, Fort Belvoir, Virginia, CON-
TRACT DAAKO02-70-C-0388.
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It is important to note that a primery characteristic
of preprocessing or feature selecting is 1ﬁe number of
operations needed to be performed in order to obtain the
features. Quick procedures are characterized by a
number of operations propertional to the number of data
points needing to be processed. All procedures which we
develop here ore quick in that sense.

The next stage in feature selecting consists of remov-
ing redundancies from the initial features, If the initial
features are N-dimensional vectors in Euclidean N=space,
as they cre in our study, then it might be that all the
vectors lie in some K-dimensional flat where K is much
smaller than N, In this case there are N-K linear con-
straints to which the initial feoture vectors are subject
and it is possible to essenticlly maintain all the informa-
tion in the features vectors by representing them by their
coordinates in the smaller dimensional subspace or flat.
Such redundancy removal can be done by principal com-
ponent analysis or by not using those features which do
not contribute additional information for the identification
of the given categories. It is this latter approach which
we take here,

The various features which we suggest are oll a func-
tion of distance and angle. The angular dependence
presents a special probler%. Sgppose image A has features
a,b,¢,d for angles 0°,45°,90 ,135° respectively and
image B is identical with imoge A except that image B is
rotated by say 90° with respect to A, Then B will have
features c,d,a,b for angles 0°,45°,90°,135° respectively.
Since the texture-context of A is the some as B, any de-
cision rule using the angular depence fectures o b,c,d
must produce the same results for ¢,d,o,b (a 90" rotation)
or for that matter b, c,d, a (a 45° rotation) and d,a,b,c
(0 135° rotation). To guarantee this we do not use the
angular dependent fealure directly. Instead, we use
some symmetric function of a,b,c,d: their averoge,
range, and mean deviation.

SPATIAL GREY TONE DEPENDENCE

Let L = {1,2,...N tand L = {1,2,...,N ]be

x Y Y

the x and y spatial domains and L x L, be the set of
resolution cells. Let G = {0,1,..,,N_}be the set of

possible grey tones. Then o digital image | is a function
which assigns some grey tone to each and every resolu-
tion cell; I:Ly x Lx-*G.*

An essential component of our conceptual framework
of texture is a measure, or more precisely, four closely
reloted measures from which oll of our texture~context
features are derived. These measures are arrays termed
angular nearest neighbor grey tone spatial dependence
matrices, and to describe these arrays we must re-empha-
size our notion of odjacent or nearest neighbor resolution
cells themselves, We consider a resolution cell ==
excluding those on the periphery of cn image, etc.—to
have eight nearest neigﬁbor resolution cells as in Figure 1,

*The spatia! domain Lnyx consists of ordered pairs whose

components are row and column respectively. This con-
vention conforms with the usual two subscript rovw~column
designation used in FORTRAN,

We ossume that the texture-context information in an
image | is contained in the over-all or "average" spatial
relationship which the grey tones in imoge | have to one
another, More specifically, we shall assume that this
texture=context information is adequately specified by
the matrix of relative frequencies P with which two

neighboring resolution cells separated by distonce d
occur on the image, one with grey tone i and the other
with grey tone j. Such matrices of spatial grey tone
dependence frequencies are a function of the angular
relationship between the neighboring resolution cells as
well as a function of the distance between them. Figure
2 illustrates the set of all horizontal neighboring resolu=
tion cells separated by distence 1. This set along with
the image grey tones would be used to calculate a dis-
tance 1 horizontal spatial grey tone dependence matrix.
Formally, for angles quantized to 459 intervals the
unnormalized frequencies are defined by:

PG, 1.d,0%) = 1 )(fk, 1), (m,n)) € (Lnyx)x(Ly-L.)’ k-m=0, [I-n]=d, Wk, )i, (m, n)i]

P, i,9,45%% 7{((, 1), (m,n))e (Lyllnﬂ(l.yxl-l)[(k'md, I=n= =d) ér (k=m= ~d, l-n=d),
Ik, i, Hm,n)ei)

PG, 14,90 T{(6,0), (m,n))c (et bl el ] e =d, 1020, 1k, 1i, K,

PG, 1,d,135%% 1[(%,1), (e, n)e (Ut WUt ) (k-med, 1=nsd) or (o =4, In= =),
1,0} =1, lm,n) = i}

Note thot these matrices are symmetric; P(i,{;d,a) =
P(j,i;d,a). The distancc metric p implicit in the above
equations con be explicitly defined by p{(k,!),(m,n)) =
max {lk-m} , =nf L

Consider Figure 3-a, which represents a 4 x 4 imoge
with four grey tones, ranging from 0 to 3. Figure 3-b
shows the general form of any grey tone spatial depen=
dence matrix. For example, the element in the (2, 1)-st
position of the distance 1 horizontal Py motrix is the

total number of times two grey tones of value 2 ond 1
occurred horizontally adjacent to each other, To deter-
mine this number, we count the number of pairs of
resolution cells in RH such that the first resolution cell

of the pair has grey tone 2 and the second resolution cell
of the pair has grey tone 1. In Figures 3-c through 3-f
we calculate all four distance 1 grey tone spatial depen-
dence matrices, ‘

If needed, the appropriate frequency normalization for
the matrices are easily computed, When the relationship
is nearest horizontal neighbor (d=1 and ¢=0°), there will
be 2(N_-1) neighboring resolution cell pair on each row
ond there are N_ rows providing a total of 2N (Nx-l)

nearest horizontal neighbor pairs (see Figure 3). When
the relationship is nearest right diagonal neighbor (d=1,
=459) there will be 2(Nx-l) 459 neighboring resolution

cell pairs for each row except the first, for which there
are none, and there are N rows. This provides a total

of 2(N —l)(Nx-l) nearest right diagonal neighbor pairs
(see Figure 4). By symmetry there will be 2Nx(N -1)
nearest vertical neighbor pairs and Z(Nx-l)(Ny-] near=

est left diagonal neighber pairs.

Let us now consider how to use such spatial dependence
informotion. We have suggested generating
a homogeneity and unhomogeneity image from the origi-
nal image on the basis of the grey tone depcridence motrix.,
(The homogeneity imcge is an cnﬁonccd disjsay of all



the homogeneous areas while the unhomogeneity image
is an cnhanced display of all the unhemogencous arcos, )
At ony resolution (m,n), the homogeneity image |h has

an integer valued grey tone 0 to 8 depending on how
many of resolution cell (m,n)'s 8 nearest neighbors on
the original image | have respective grey tones which are
"sufficiently similar” to the grey tone at (m,n) on imoge
l. Simifarity of two grey tones i and | is determined on
the basis of v/hether the grey tones occur next to each
other sufficiently often; that is, if the element P(i, ) of
the spatial dependence matrix is large enough. At any
resolution cell (m,n), the unhomogeneity image Iu has

agrey tone 0,1,2,3,4,5,6,7 or 8 depending on how
many of resolution cell (m,n)'s 8 nearest neighbors on
the original image | have respective grey tones which are
"sufficiently dissimilar" to the grey tone at {m,n) on
image I, Dissimilarity of two grey tones i and | is deter-
mined on the basis of whether the grey tones occur next
to each other sufficiently rarely, thet is, if the element
P(i,i) of the spatial grey tone dependence matrix is

small enough.

The idea of large enough or small enough implies o
thresholding of the grey tone dependence matrix and
depending on what [evel the threshold is set the resulting
homogeneity and unhomogeneity images appear differ-
ently. Thus undesirable arbitrary thresholds must be
introduced. Fortunately, it is pessible to do away with
thresholding. Instecd of defining similarity as an all or
nothing affair, we can define the similarity between
grey tones i and j to be P(i,|), the frequency with which
i and | co-occur next to each other, some function of
P{i,|) such as logP{i,|) or perhaps even some function of
i and | such as . Dissimilerity between i and |

'I+(|'-|')2

can be measured by (i-j)°.

Texture=context fectures are easily derived from the
homogeneity or unhomogeneity image. For example, the
greater the total homogeneous region area, then the
darker the homogeneity image. Hence, the mean grey
tone of the homogeneity image provides a meosure of the
"smoothness" of the origina! image. The grey tone
variance of the homogeneity imege provides a measure
of how the homogencous areas are spread out on the
imege. Low variance would indicate farge area uniferm
homogeneity while high varicnce might indicate many
small areo homogeneous regions.

It can be shown that the computation of the average
grey tone on the homogeneity or unhomogencity image J
can be done without having to have the image J gener-
ated, The average grey tone can be computed directly
as a functien of the spatial grey tone dependence matrices.
In this paper we explore only those features which con be
computed directly from the spatial dependence grey tone
matrix and do not require the homogeneity or unhomo-
geneity image to be determined.

In the discussion which follows on the use of the
spatial grey tone dependence matrices as texture context
features for image data, we shall be concerned with
forms such as
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» the correlation between neighboring
grey tones (COR);

Note: #R is the number of neighboring resolution cells.

The ASM feature is the sum of the squared terms of
the grey tone spatial dependence matrix normalized
by the total number of possible adjccencies, ¥R, for the
given angle. For each spatial dependence matrix, there
is a corresponding ASM but there has been a great
reduction of data because cach ASM (as each ASMD
and ASMID) is only a number not an array. The ASMD
feature is the sum of the members of a grey tone spatial
dependence matrix, each member multiplied by the
squared difference of the grey tone values and normal-
ized as before, The ASMID feature is the sum of the
members of o grey tone spatial dependence matrix, each
member divided by one plus squared grey tone difference.
The correlation feature COR is actually the value of
the two-dimensional autocorrelation function of the
picture where the aufocorrelation function is evaluated
for o particular distance and angle lag.

Each of these features is a function of the angle and
distance between what we consider to be neighboring
resolution cells, We consider 4 angles, 0°, 452, 90°,
and 1359 at distances of 1, 3, and ? resolution cells.
This provides an initial set of 48 features. The number
of features is thus reduced by calculating the mean,
range, and mean deviation of each type of fecture at
a given distance over the four angles. The features
which are actually first considered by the decision
rule are ASM, ASMID, ASMD, COR evaluated at
distances of 1, 3, and ? resolution cells with the
averoge, range, and mean deviation for each feature
and distance calculated over the four angles. This is a
total of 36 fectures. Figure 5 illustrates the caleulction
of three representative features of the image of Figure

3a.
AUTOMATIC SCENE IDENTIFICATION

Automatic scene identification using the 36 texture
context features presents a difficult problem because of
the relative sparcity of the dota: for each of 9 cate~
gories there arc only 6 scmples with each sample having
a 36 dimensional feature vector. The difficulty is
really twofold: (1) There ore so few samples that it is
difficult to lcarn anything about the patterns which are
characteristic of the category, (2) The decision rule
must contain a minimum of parameters so that the deci-
sion rule does not "memorize” the data. Hence the
approach we take relics on the simplest type of dota
statistics: the minimum and maximum value cach feature
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can take on for measurements in a given category .

Figure 6 illustrates for each pair of categories which
variable will separate them. Figure & shows that variable
4, ASMID at distance 1, has its averoge, range and mean
deviation cppearing a total of 56 times in separating
categories. Of those categories which are not separated
by the distance 1 ASMID features, COR at a distance 1
has its average, range and mean deviation appearing a
total of 8 times in separating categories, Of those cote-
gories which are not separated by the distance 1 ASMID
_ or COR features, ASM at distance 1 hes its average,

‘range and mean deviction appearing a total of 4 times
in separating categories. Of those categories which are
not separated by distance 1 ASMID, COR or ASM fea-
tures, ASM ot distance 3 has its average, range and mean
deviation appearing o total of 1 time in separating ccte-
gories. Hence, of the initial 34 features, we use only
the following 12 fedtures:

ASM AVG

ASM RANGE

ASM DEV

COCR AVG

COR RANGE DISTANCE 1
COR DEV

ASMID  AVG

ASMID  RANGE

ASMID DtV

ASM AVG

ASM RANGE DISTANCE 3
ASM DEV

For automatic identification, we use a decision rule
which is @ maximum likelihood decision rule under the
assumptions that the 12 feature varichbles are independent
having uniform distributions. Under this assumption, the
density function for the k' cotegory is

12 !
f(xy,X0s 00 esx15 k) = 1 — for all
bryrmgeee e nel ok Pk

(x],xz, . "’x12) such thot

bnks X\ SO, n=1,2,...,12,

where bnk and 9k define the minimum and maximum

values of the uniform distribution on the n'h com=

ponent.,

Hence, a measurement (x] RIYEE "XIZ) is assigned to
category k if and only if

Mm bnks X SO n=1,2,...12 and

@ ¥ o7 > ¥ o
1 %k nk n=1 nj nj

n:
for oll i such that bni an < oni, n=1,2,...12,

If there exists no k such that bnké X 404 n=1,2,...12,
then (x],xz, . 'XIZ) is assigned to category k if and only
if

E min { ‘xn_ank‘ ’ lxn-bnd} (cnk-bnk) 2

12
Zmin { lxn-cnil ; ,xn—bnih (ani-bni),
n=1 “i=1,2,...,K.

The minimum and maximum statistics a , and b
nk nk

are estimated in the following way:

Let o= the maximum n'h component for all measure-
ments designated in krh category;
_ . . th
= the minimum n' " component for all measure=~
nk P

ments designated in kfh category.

Assume that category k has M, measurements, then

bnk = Bk - (ank- Bnk)
Mk-l
Ok = apk + (“nk —ﬁnk)

Mk-l

Notice that a  is larger than the maximum by some
fraction of the range and bnk is smaller than the minimum

by some fraction of the range. Hence. the range

ank-bnk is larger than oni= fak. Under the assumption

that the variable has @ uniform distribution, the expected

value of @B s My - * (true range) while the ex-
™

pected value of ank ~bnk is the true renge.

The identification experiment was done in two ways
using the above decision rule. In the first case the
entire set of 54 samples was used to train on, i.e. gather
the statistics O ket Prkr n=1,2,...12, k=1,2,...9, and

then on the basis of the v  's end 8_,'s calculated, each
nk nk

sample was assigned to a category. Figure 7 illustrates
the contingency table of the resulting assignments. A
total of 53 out of 54 samples were correctly identified,
We shall have more to say about the interpretation of
53/54 in @ moment.

In the second cese, the identification experiment was
repeated 54 times, each time using a different set of
53 samples to train on. The 54th sample was assigned
to a category on the basis of the minimum maximum sta-
tistics gathered from the other 53 somples. Figure 8
illustrates the contingency table resulting from these
assignments, A total of 38 out of 54 samples were cor=
reclly identified for a percentage of approximately 70%.

To help interpret these results a sequential decision
algorithm in the form of a dichotomous key was tried.
A dichotomous key successively splits o group of mea-
surements in two based on whether a given component
is greater thon or less than some volue. The dichotomous
key itself is illustrated in Figure 9. [t takes 13 decision
points to perfectly separcte the 54 measurements into
their designated categorics. If the 5 decision points,
whose sole function is to correctly separate mecsurements



which were incorrectly assigned, ore removed, then it
tokes 8 decisions fo correctly assign 49/54 measurements,
Under the assumption thaot the twelve variables are inde-
pendent at each decision stage, end that the two cate-
gory groups being split have the same uniform distribu=
tion, Figure 10 illustrates the contingency table resulting
from these assignments. Under the assumption that the
twelve varicbles are independent at each decision stage,
and that the two category groups being split hove the
same uniform distribution, the probability of being able
to achieve perfect separction of two categories in two
decisions is less thon 10712,

The automatic texture-context scene onalysis exper-
iment was compared with the identification which five
photointerpreters were oble to make with the same data
set, The photointerpreters were given the original
9"x9" photogrophs and were aliowed to use as much
context information cs they could in making the identi-
fication. These experiments yielded an overage of
81% correct identification for the five photointerpreters.

DISCUSSION AND CONCLUSION

An image data set of 54 scenes consisting of 6 sam-
Eles from each of the nine categories scrub, orchard,
eavily wooded, urban, suburban, lake, swomp, mersh,
and railroad yard was enalyzed manuclly and auto-
matically.

For the outomatic analysis, a set of fectures for
texture context was defined and on the basis of these
features and a simple decision rule, an identification
accuracy of 70% was achieved. This identification
accuracy must be compered with the averoge 81% cor-
rect identification which five photointerpreters achieved
with the some scenes, although the 81% correct identi-
fication is the accuracy ochieved when they used the
9'x?" photogreph to interpret from. The photogroph is
dato of considerobly higher resolution having much more
context information on it than the small digitized
1/8"x1/8" area the automatic analysis had available.

Furthermore, the 70% correct identification arose in
the case when the outomaotic technique trained on 53
samples and ussigned on identification to the 54th
somple and repeated the experiment 54 times, This means
that for each experiment, there wos one category which
had 5 samples instecd of & samples. For this cotegory,
there is a probaobility of 1/3 that for each feature the
missing somple had minimum or maximum value over all
samples for the category. Hence there is a high prob-
ability that the missing sample provided significant
information which is not available in the sample without
it

Looking at the situation onother way, 100% correct
identification was ochieved by the optima! dichctomous
key which required 13 decision points, The probebility
that such good identification could happen by chance is
very small, In fact, the number of 2 celled partitions
which the simple hyperplanes used could generate for
N samples in a d~dimensional space s 311\)/ d(N=1) and
this number should be compared to 2N"1-1, the total
number of non-trivial distinct 2 celled partitions pos-
sible. In our case d=12, N=54 and the ratio
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Hence our ability to perform the eategory separation
with such a small chance of available partitions is
significant, ’
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Figure 1. Resolution cells nos. 1 and 5 are the O-degree
(horizonlal) nearest neighbors to resolution cell '*',
resolution cells nos. 2 and & are the 135-degree near-
est neighbors, resolution cells 3 and 7 are the $0-
degree ncaresi nearest neighbors, and resolution cells
4 and 8 cre the 45-degree nearest neighbors to ' *'
(Notc thet this information is purely spatial, and hs
nothing to do with grey tone values.)
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Figure 2 illustrates the set of all distance 1 horizontal
neighboring resolution cells on a 4 by 4 image.
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Figure 4 illusirates how the members of horizontal and
right diagonal ncighboring resolution cells are

counted.



38-25

H W00 RAILY  SUDUR LAk LAK SVAM  pape  guap
AVG ! AVG | AVC ! RANGE 2
\ 2 F) P 2 2 3 2 9 ) 2 RANGE 2 AVG 2 RANGE 2 DEV 2
ASM (%)= (4% 224002, 07, 22, 4%, 0% 020 12 084 6 DEV 2 AVG 3 DEV 2 RANGE 8
(24)¢ - RANGE 3 WSGE : RANGE g pEv 3
2 a2 .2 2 .2 845 EV 3 RA DEV . AVG N
S¥eofeofirtiad) s Bl - e PENGE & DEYV 4 RANGE 4 avg 6
DEV 4 AvG 5 DEv A au g
AVG 4 RANGE 6  AVG A MARS RAILY
\ AVG H DEYV [ AVG s RANGE a
ASMD(90%) = —— (604 01+ 244094 014 404 2-14 0-44 2+4 RANGE 8 RANGE 7 RANGE 5 DEV 4
2 pEV 8 DEV 7 DEV : SWAM RAILY
4214204224 0:94 044 2:14 0-0) = 1.083 :\‘;’g g 'Q:Ecz 4 Qnucz p :VWG §
URBA SUDUR  DEV 8 EV 6§  AVG 1
aVG 18 aVG s RAKGE 1 RavcE 4
o 1,2 1 3 0 1.2 1 0 3 1 URBA  Lax  DEV 3 DEV ? DEV 4
ASMID(]JS)=—(T0—+—-+-«——~—+—~—¢——¢—— AVG 1 AVG 12 ave 7 RANGE 5
18 2 510 2 1 2 5 5 2 AVG 2 SUBUR MARS AVE ] DEV 5
AVG 3 Ave 1 avg s Ve A
24z, 1“9‘_@_1:_, = .5m AVG 4 RANGE 4 AvG 12 A 7
1 2 10 5 2 RANGE ) DEV [ LAK RalLY AVG 8
, DEV 4 AvVG S AVG ! RANGE 8
o AVG 5 SUDLR SWAM RANGE 2  pry 8
cores® . SOYIEST) 2 NL- 14983 RANGE 6  AVG 2 avs 3
- VAR(450) 2.333-1.4983 DEV 6§  RANG 2 RANGE 3
AVG 7 DEV 2 RANGE 4
1 DEV 7 RANGE i DEV A
%) = L (0,044 0114 02:040:3:05 1-0-14 1+1- AVS g DEV AVG a4
where COVI4S®) = - (0:0-4+ 0-1:14 0:2:04 0-3:0+ 1-0- 14 1412 AvS ¢ DY 3 ave :
AVD 9 avs 4  RANGE &
+1°2:24 1:3:04 2:0°04 2:1:24 2.2:4 4 2-3:1 RANGE 5 AVG 6 DEV §
. 73 DEV 9 ALG 7 RANGE g
54154 274 3 .
+ 3:0:0+3-1-04+3:2:1% 3.3:0) - o (@54 1:5+2:743:1) e e, §é3,E : gus 8
AVG | AVG 9 AVG 9
M’GBA Swin SUBUR RAILY  AVG 12
uR LAK  FARS
vARES®) = 0?5« 1254 28 ol s Loos L vs 2oy 3 AVG 2 ave 4
o8y RANGE 2 AVG S
DEV E RANGE s
. . . M
Figure 5 illustrates the calculation of texture context fea- LEALIE S S
tures at distance 1 for the image of Figure 3a. AVQ 3 pEv 7 DISTANCE
SCRU ONCHR SCRU SWAm  ORCHR  LAX 7 woo supun AV ¢ A 8 139
AVG ! Ave ! AvE 1 avw i AVG T avG 12 TR T57
e RANGE 2 bry § aw 2 avg ] FEATURE  ASMD 2610
AVG 9 A DEV 3 AVG 3 DEY 8 COR 371
AISRU H D ae A 5 Rance 4 AV 9 ASMID 4812
SCRU H W00 RANGE 3 AVG 5 pry 2 W "
AVG 3 DEV 3 DEV T AvS 4 N
AV 7 AVG 3 AVGE 8 AVG 5 Rk’igé R“‘SY KEY TO VARIABLE NUMBERS
SCRU  URDA RANGE 4  RANGE B praysr &
AVS 1 DEV 3 DEV g £V .
AVG 2 AVG 4 AVG ] RANGE 8 . . . . .
RANGE 4 e 3 é;“é“ 2, DEV g Figure 6b is o continuation of Figure 6a and tabulates
4 ] ? “AF 5 . . .
25-; 4 DEV S RALGE 2 :3; g for echh category pair v;hlch of the 36 fecture
AVS 5 ava § DEV 2 avw 12 variables can separate the cotegary poir.
DEV 7 RANGE &  pEV 3 Hvon  Lak P gory poi
AVG B DEV [ CORCHR  SWAM  ayg 5
AVG s RANGE 1 aus 2 Avg 9
RANGE 5 DEV T RANSE 2 M W00 paps
DEV 4 A Ve 7 DEV 2 AVG 4 ASSIGNED IDUNTIFICATION
AVG H avs 8  RANGE 3 gyg 8
SCRU SUBLR AVG s pev 3 Hwoo suam [ heaci | saileas
AVG 1 avS 18 AVG 3 AVG 1 Servb| Orcliard) \. ooded jUibun! SububeniLel o] Mot | Swormp | Yerd
RANGE 2 AVS 12 RANSE 4 gug H _— RO S ek il ! v it __1
DEV 2 SCRU RAILY AvS 4 RANGE 2 Scaub )
RANGE 3 AVG I RARSE 5  pry 2
DEV 3 RANGE 2 DEV 5 RANGE 3 Ouchard 6
RANGE 4 DEV 2 AVG 6 BEV 3 é outes .
DEV 4 RANGE 3 RANGE [ AVG 3 e Meassty Weode.
AvS [ DEV 3 AVS 7 RANGE g S umen ¢
AVG 5 RANGE 4 AVG e  pEv 4 £
DEV 6 DEV 4 RANGE g8 AvG 4 5 Sobwrban ¢
RANGE 7 AVG 4 DEV R AVG L B Loke : 4
pEV 7 AVS S  ORCHR RAIl" pmapge s <
DEV g AVG B RANGE 2 ppy H 2 e 6
AVG 8 AVG 9 DEV 2 ave 6 Sucmp .
AVG 9 ORCHR H W00  RANGE 3 RANGE '3
AVG 12 AVS 1 DEV 3 DEV £ Raileozd Yard ‘ g 1 H
SCRU  LAK AVS 2 RANGE 4 avG 7
RANGE 8 VG 5  DEV 4 avg g
DEV 3 RAKGE B AVS A ayg 5
AVG 3 DEV 8 H VOO URDA  AVG 12
AVG 5 avs 2 AVG 1 ave 12
hve : avg o URpe ma 2 Figure 7 shows contingency table of true jdentificotion
SCRU FARS OPCHR SUBUR  RANGE 4 when stalistics are gothered from the full 54 samples
DLV 2 RANGE 2 pEV 4 ‘ i q s
aer o ey : o : ond the assignments ore made on al| the 54 samples.
DEV 3 DEV 3 AvG 5
AVG 4 RANGE 4 DEV [
DEV 1 pEV 4 DEV 8
avs 4 AVG 8
AVG 8 avg s
AVG 12

Figure 6a tabulotes for each category poir which of the 36
feature variables can separate the category pair.
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ASSIGHED IDINNTICATION

Heovily l , | Poileasy
Serub | Orchord|Vfoodrd (Usbor? * 1yrbony Lel el Merit! Seama| Yerd

Senvb 4 1 |
Orcherd 4 1 |

-

Heaxily V.ooded
Ubon 3 2 1
Suburbon 1 3 1 1
Leke 1 H

TRUE 1IDENTIFICATION

Manh 1 1] o«
[ )
Roilrocd Yaid 5

Figure 8 shows contingency table of true identification
versus assigned identification when the following
experiment is repeated 54 times: statistics ore gothered
from 53 saomples and an assignment is made on the
54th sample.,

—
I
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\Dlﬂl\:l 1
Ja,‘m'u:[ ]
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[E1 39 Bt S
0 sesuey

Figure 9 diagrams the Optimal Dichotomous Key (Sequen-
tial decision rule).

ASSIGNED IDENTIFICATION

Heavily Roilrood
Scrub {Orchoard [Vooded ibon| Suburban [Loke [Marsh|Swomp) Yord

Scrub 3
Orchord &
Heavily Wooded ]
Urkan 4 2z
S, burban

Lcke 6

TRUE IDENTIFICATION

Marsh 1 4 1
Sviomp
Roilrocd Yord [}

Figure 10 shows contingency table of true identificotion
versus ossigned identification for the dichotomous key
of 8 decision points, The total probability of correct

identification is g or 91%.
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A COMPARATIVE STUDY OF DATA COAPRESSION
TECHNIQUES FOR DIGITAL IMAGE TRANSMISSION

ABSTRACT
We investigate three methods of data compression for aerial image data:

(1) Differential Pulse Code Modulation, (2) Principal Components, and (3)
Hadamard Transform. We compare these methods in terms of data compression factor
versus rms error. Qur comparison indicates that the Principal Components method is
uniformly better than the Hadamard Transform method. Furthermore, for compression
ratios greater than 5, the Hadamard Transform and Principal Component technques
are better than the Differenticl Pulse Code Modulation. It is only for scenes which
are relatively unstructured and compressed at compression ratios of less than 5 that
Differential Pulse Code Modulation performs hetter.

INTRODUCTION

Since there is o hig!: positive correlation between the grey levels of spatially
adjacent resolution cells on aerial imagery, the imogery contains a large amount of
redundant information. Hence, image data is a good candidate for data compression
which would, for example, permit more images to be stored per roll of tape or permit
more images to be transmitied per unit time over a given communication channel.
And, in fact, severc! image data compression techniques have been suggested and are
in use to eliminate many of the digital bits representing redundant information (see
the special issue on redundancy reduction, Proceedings of the IEEE, Vol. 55, 1967;
Arguello, 1971; Wilkins and Wintzs' bibliogrephy on data compression, 1971;

Claire, et al., 1971). In this paper, we investigate three methods of date

compression:

(1) Differential Pulse Code Modulation
(2) Principal Components
(3) Hadamard Transforms
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In reviewing some of the picture coding techniques, W. F. Schreiber (1967)
had indicated that it is very difficult to compare the different dala compression
techniques because of the great disparity in the subject matter, methods of evaluation
and reproduction of output pictures. The approach used in this sfudy provides an
unified method of comparing different data compression fechnlques since we have
used the same images, approximately the same data compression factors, and the
same method for evaluation and reproduction of reconstructed images.

DIFFERENTIAL PULSE CODE MODULATION

The statistical relationship beiween nearby picture etements and the greater
sensitivity of the eye to spatial and temporal grey tone differences to absolute grey
tone values has led to suggestions for data compression using grey tone differences
(Seyler, 1965). The most straight-forward technique is called Differential Pulse
Code Modulation (DPCM). Here the data is compressed by transmitting the
quantized difference between the correct grey tone af the transmitter and the last
reconstructed spohally adjacent grey fone at the receiver (O'Neal, 1966), The
data compression is accomplished in the quantizing step since the number of possible
quantizer levels used to transmit the grey level differences between spatially
adjacent resolution cells is smaller than the number of possible levels used to transmit
the actual grey tones at each resolution cell. Because differential quantizing tends
to preserve edge information, for any given number of bits per image element, it
tends to produce better qualliy lmcges than ordinary Pulse Code Modulation.

PRINCIPAL COMPONENTS

In the Principal Component merhod the image is first split into a number

~ of small mutually exclusive spatial regions and we shall consider the grey tones of
these regions to be N-dimensional vectors sampled from source probability distribution.
The image is then a collection of these vectors., In the principal component method,

these N-dimensional vectors are projected onto some smaller K-dimensional subspace

having maximal variance. In this way, the N components of the original vectors may
be expressed in ferms of K components, thereby achieving some data compression.

An optimal set of coordinates for the K-dimensional subspace is the set of K
eigen vectors having largest eigenvalues of the covariance matrix of the sample of
N-dimensional vectors. The principle on which this method is based, namely, the
Karhunen-Loeve expansion, is well known (Wofonobe, 1965). However, this
technique has been used on a rather limited basis for image compression applications,
even though it has been known to lead to very good comparison performances for
analog data such as EKG (Andrews, ef c:l , 1967) and multispectral scanner data
(Ready, et al. ]971) ‘

‘HADAMARD TRANSFORM

In the Hadamard Transform data compression technique, the image is split
up-into small spatial regions as in principal components. The lower sequencies of
the Hodamard Transform of these regions are then transmitted. The image is reconstr-
cted at the receiver using the same lower sequency functions. The method works



38-29

because the image data there is usually a high positive correlation between adjacent
resolution cells and, therefore, the image tends to have a characteristic frequency
spectrum with the low frequencies dominating the high frequencies. And although a
Hadamard sequency is not the same as the frequency, their general behavior is often
similar. Hence, in image daota, the low sequencies tend to dominate the high
sequencies. Data compression is achieved by use of only the few dominant sequency
components. Pratt, et al., 1969, has used the Hadamard Transform for image data
compression by transmitting the entire quantized Hodamard Transform of the image.

RESULTS

For comparison purposes a set of sixty-six digital images were processed using
the three methods of data compression. These images were obtained by digitizing
sections of cerial photographs containing a wide variety of scenes. Eleven scene

‘categories, with six images for each type of scene, were processed. The scenes
included both natural scenes such as wooded creas, lakes, and man-made scenes

such as urban areas, suburban areas and railroad yards. The digitized images were
of 64 x 64 size and the grey levels of individual cells had been quantized into 64
levels., ‘

Using computer programs, the imcages were transmitted and the RMS errors
between the original integer images and the corresponding reconstructed integer images
were computed. For each type of scene, the average RMS error was calculated by
averaging the rms errors of the six images of the scene. The original and reconstructed
images were digitally printed out using 13 grey levels. These digital printouts provide
the basis for visual comparison of the original and reconstructed images.

A comparison in terms of data compression factor versus rms error between the
original image and the reconstructed compressed image indicate that Principal
Components is uniformly better than Hademard Transforms. Furthermore, for com-
pression ratios greater than 5, Principal Components and Hadamard Transforms are
better than Differential Pulse Code Modulation. It is only for relotively unstructured
scenes compressed at compression ratios less than 5 that the Differential Pulse Code
Modulation performs better. Plots of rms error vs data compression factor for four
scene categories are shown in Figure l.a-d.

Visual comparison of the images compressed by the three methods tend to
support the following conclusions:

(1) Of the images compressed by the three procedures, the images compresséd
by the principal components procedure most resemble the original images.

(2) The images compressed by the Hadamard tronsform procedure are comparable
to. the images produced by the principal component procedure. However,
these images have a "checkerboard" look.

(3) DPCM procedure tends to "blurr" the boundary lines in the images. At
high data compression. factors, the images compressed by the DPCM
procedure bore very poor resemblance to the original.
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