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INTRODUCTION

During the past decade, many actual and potential applications for
remote sensing technology have been determined. This past year has seen
a tremendous amount of Iinterest generated in the application of remote
sensing to problems related to land-use. A key element in applying re-
mote sensing to land-use studies involves accurate identification of
basic and vegetative cover types. In work with automatic data processing
(AOP) techniques it is found that as information requirements become
more specific, the analysis task becomes more complex. 1In dealing with
many problems involving automatic mapping of vegetative cover types
conditions, one finds that an analysis sequence similar to that shown in
Figure 1 must be pursued. As is indicated, there are many possible
categories of basic cover types, and within the 'vegetation" category
there are many potential subgroups. Once a particular species has
been identified, there are many interrelated factors affecting the po-
tential yield of that crop. Of course, the crop yield is of considerable
importance to a large number of "users', but since yield cannot be
measured directly from remote distances, the factors related to yield
and condition of the crop must be determined.

Much of the LARS research effort this past year was devoted to
the Corn Blight Watch Experiment, discussed in the January 17th session
of this review. As is indicated in Figure 1-C, Southern Corn Leaf
Blight is only one of many different kinds of diseases or other stress
factors which can affect vegetative conditions. This first figure

*In this paper, results from a number of studies are summarized;
researchers are identified in the Acknowledgement section.



48-2

indicates the degree of difficulty of some of the problems encountered
in the corn blight analysis sequence, thereby giving some insight into
the real significance of being able to reliably identify the corn at
various stages of development as well as identifying blight levels
within the corn.

In addition to the work on the corn blight this year, several
other analysis tests were completed which resulted in significant
findings. These aspects of our work will be discussed as follows:

1. Field spectral measurements of soil conditions.

2. Analysis of extended test site data. This discussion

involves three different sets of data analysis sequences.

3. Urban land-use analysis, for studying water runoff

potentials.

4. Thermal data quality study, as an expansion of our water

resources studies involving temperature calibration
techniques.

FIELD SPECTRAL MEASUREMENTS OF SOIL CONDITIONS

In order to accurately interpret remote sensor data, an adequate
understanding of energy-matter interactions is mandatory. Use of a
field spectroradiometer for detailled studies of selected situations in
a natural environment offers one of the best ways for developing a
better understanding of many of these complex energy-matter interactions.
One study completed this past year involved work with several soil
conditions using an Exotech Field Spectroradiometer. (The paper by
Dr. LeRoy Silva describes this instrument.) Since the instrument is
capable of measuring incoming irradiance as well as the radiance from
the soil of interest, the resultant data could be reduced to percent
reflectance measurements. Although the instrument is capable of ob-
taining data throughout the optical portion of the spectrum and data
were actually collected throughout the 0.4-16 micrometer wavelengths,
limitations in our software for handling the recorded data forced
the restriction of reduction and analysis of the visible wavelengths.

Figure 2-A shows the spectral reflectance in the visible portion
of the spectrum for three different soil types. One sees that there
is a much wider variation in the reflectance characteristics for these
different soil types tinan normally is found for different species of
green vegetation. In this illustration, only spectra for dry soil
conditions are shown. Figure 2-B indicates the dry versus wet re-
flectance for two soil types, and one sees some very marked differences,
with the dry soil conditions having much higher reflectances than the
wet soil conditions. However, it is not always easy to separate dry
from wet soil moisture conditions when different soil types are involved.
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Figure 2-C shows a very high reflectance for dry Fincastle soil but a
reflectance for the wet Fincastle that is very similar to the reflectance
for dry Dana soils. Nevertheless, much work has indicated that it

ought to be possible to use the thermal and microwave portions of the
spectrum to considerable advantage in separating wet and dry soil
conditions, even among the many different soil types of concern.

Not only do variations in soil moisture cause distinctive
differences in percent reflectance for the same soll type, but varia-
tions in the surface condition, such as crusting, will cause very
distinct differences in percent reflectance. Figure 2-D shows the
reflectance for a soil sample in which the action of the rain had
crusted, or smoothed out the soil surface, causing a relatively high
reflectance. After the crust was broken, the surface soil condition
was still dry, but a much lower reflectance was measured at all
wavelengths in the visible region.

From these few examples, one sees that several natural causes
of large variations in spectral response can be encountered. A
field instrument such as the Exotech spectroradiometer has many
advantages such as a fast scan rate; use under natural illumination
conditions; and the collection of data from approximately the same
instantaneous field of view, as well as look angle, as the scanner
in the aircraft. Future studies with this instrument should enable
significant progress to be achieved in determining the optimum times
during the growing season for flight missions to be scheduled, studying
spectral characteristics of various vegetative and soil conditions
throughout the optical wavelength region, species differentiation
as a function of temporal changes, and other energy-matter interactions.

ANALYSIS OF EXTENDED TEST SITE DATA

In studying results from several of our computerized analyses of
multispectral scanner data collected over fairly large geographical
areas, it became apparent that several possible causes of spectral
variability must always be considered. Some of the major causes of
such variability which are particularly noticeable in analysis of
vegetative ground cover and which are of primary concern to tie user
of this data are:

.Percentage of Vegetative Cover

.Spectral Response of Vegetation

.Spectral Response of Soil Background

.Illumination, Crop and/or Sensor Geometry,

and Instrumentation Variables
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Some of these variables are a function of the vegetation and soils
while others are not. In our work in the Biogeophysical Research Pro-
gram, we are particularly interested in the spectral characteristics of
the vegetation and soils, but we find that illumination, geometry,
and instrumentation factors affect the scanner data in ways that fre-
quently make it difficult to separate and identify which factors are
affecting the spectral characteristics of vegetative ground cover.
Therefore, one must consider all possible factors which could affect
spectral characteristics of scanner data, in order to properly and
accurately interpret this type of data.

One of the major questions that frequently arises is: How well
can one extrapolate from small sets of training sample data obtained
in one geographic location to an automated classification of large
geographic areas? Certainly, if we are ever going to utilize these
techniques on an operational basis, we must know the limitations and
capabilities for extrapolating small data sets to large areas. In
looking to the future and preparing for ERTS and SKYLAB, considerable
effort this year was devoted to further examination of natural and
other causes of spectral variability, and how this influences our
capability to extrapolate to large geographic areas.

CLASSIFICATION OF A 42,000-ACRE AREA

The first study over extended test sites to be reported upon
involved data collection in a north-south flightline in Central
Indiana. These data were collected in late April (spring-time) from
an altitude of 3200 feet by the University of Michigan multispectral
scanner system. We have previously reported on our capability to
reliably identify basic cover types (Hoffer, 1968). 1In further
analysis of this data, we utilized less than 1% of the total area as
a training set. All of the training data came from one small area
near the northern part of the flightline. After classification,

256 test areas were selected at random, accounting for several
thousand data points in each cover type category, and the computer
classifications were tabulated for all data points in these test
areas. The results indicated accuracy of over 977 for the automated
classification of the basic cover types. However, we did notice a
slight decrease in accuracy as the area being classified became more
distant from the area where the training samples had been obtained.
Samples from the northern and from the southern portions of the
flightline were then selected and compared. Figure 3 shows the
results of this comparison for three different wavelength bands.

The cross hatched areas indicate data from northern portions of the
flightline and solid blocks indicate data from the southern portion
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of the flightline. The length of the bar indicates the mean spectral
response, plus or minus one standard deviation. Therefore, a longer bar
will indicate more variability, whereas the bars of shorter length
indicate relatively small amounts of spectral variability within that
particular wavelength band and cover type. As can be observed, there

is little difference in spectral response between the northern and the
southern portions of the flightline for the bare soil areas. Water
showed a distinctly higher response in the southern portion of the
flightline than in the water in the northern portion of the flightline

in the visible wavelengths but, as expected, there is little difference
in radiance in the reflective infrared portion of the spectrum. The

low response in the reflective IR for water is attributed to the high
absorption characteristics of water in these wavelengths, while the
differences in response between the northern and southern portions of

the flightline in the visible wavelengths is ascribed to different
sediment loads between the North and South Fork of the White River, where
the data was obtained. %Ye had anticipated that vegetation in the southern
portion of the flightline would have a higher response than the vegetation
in the northern portion of the flightline. This was the case in the

blue portion of the visible wavelengths, but in the reflective infrared,
just the opposite situation occurred. It is believed that this was
because the data collected in the northern portion of the flightline
largely coansisted of dense winter wheat stands and forested areas

that were mostly in the low-lying bottom-lands along the streams. These
forested bottom-lands consisted of cottonwood and sycamore trees which
nad leafed out earlier than the upland forest cover that predominated

in the southern portion of the flightline. Thus, just because data

came from a more northerly area, it is not safe to assume that the
vegetation as a whole will be leafed out more in more southerly areas

on any particular date during the spring.

In summary, we believe that the variability observed in this set
of data was caused primarily by the natural spectral differences in the
materials involved.

EAST-WEST FLIGHTLINE EXTRENDING OVER A 133-MMILE AREA

Since the basic cover type mapping in tihe first analysis had
indicated some slight changes in spectral response but since these
changes did not seriously affect the classification results, the next
logical step seemed to be to conduct a more complicated analysis
involving identification of a particular crop species over a large
geographic area. To limit some of the north-south geographic variation
which had been observed in the first analysis, and which can be severe
in large geographic areas, flightlines were laid out in an east-west
direction to sample a 40-county area in Indiana and Illinois, as shown
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in Figure 4-A. To limit the total amount of data collected, only segments
from a 133-mile flightline were recorded. The length of each of these
segments and the distance between the segments is indicated in Figure 4-B.

The multispectral scanner data for this experiment were obtained
by the University of Michigan aircraft on July 1, 1970. lowever, the
analysis of these data had not been completed in time for the 3rd
Annual Earth Resources Program Review, so are reported this year.
As an indication of the difficulties sometimes encountered in conducting
this type of experiment, the following comments are included. TInitially,
it was planned that the following conditions were to have been met as
nearly as possible:

(1) Wheat would be at a mature stage of development. It was
assumed that approximately uniform conditions of maturity
would exist along an east-west flightline and that there-
fore the wheat would have a similar spectral response
throughout the data.

(2) All data would be obtained from a 5000-foot altitude during
a single flight sequence to minimize differences in atmospheric
attenuation and electronic drift in the data.

(3) Ground observations of cover types (species and crop condition)
would be obtained for Flightline 25 in Indiana. Aerial
photography taken at the same time as the scanner data
would then be used to extrapolate cover type identification
from FL 25 to the other flightlines to the west.

(4) The classifier would be trained with data from FL 25 and
this training set would be used to classify data from the
entire sequence of flightlines covering a geographic area
of more than 130 miles from the eastern-most end of FL 25
to the western-most end of FL 43.

The actual conditions at the time of the flight failed to meet the
desired ones in several ways. This caused a number of changes in the
data analysis plans and affected some of the results and conclusions.

Since flight missions through NASA must be set up several months
in advance because of aircraft scheduling requirements, we had re-
quested the flignt for the last week in June because past experience
had indicated that in Indiana this would be the optimum time for mature
wheat. Normally, harvesting does not start until the early part of
July. However, in 1970 the crop conditions were on the early side of
"mormal,' and the flight was conducted during the latter portion of the
scheduled time period (July 1). This combination resulted in data in
which some of the wheat in Indiana was being harvested or had been
harvested at the time of flight. In Illinois, the growing conditions
appeared to be about one week ahead of those in Indiana, and much of
the wheat had been harvested. Some fields, believed to be wheat
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stubble, already had an undergrowth of weeds, giving these fields a
spectral response somewhat like that of hay fields. Since both stand-
ing wheat and wheat stubble were present, we were required to train
the classifier portion of the computer programs on both mature wheat
and wheat stubble of varying age and condition.

At the time data was being collected, scattered cumulus cloud
cover developed over the eastern portions of the flightline area,
thereby forcing the FL 25 data to be collected from 3,500 feet al-
titude and with variable cloud shadow effects on the ground, whereas
the other four flightlines of data had been collected from 5000 feet
altitude under mostly clear, sunny conditions. This change in data
collection caused the use of FL 40 (on the Indiana-Illinois border)
for a training area, witi FL 25 being used only as a test area to check
effects of altitude change and cloud shadows.

The use of aerial photos in lieu of ground observations on some of
the flightlines did not prove to be as reliable for accurate identifi-
cation of cover types as had been anticipated. This was due to variable
illumination conditions in parts of the flightline at the time the
photography was obtained, poor quality and resolution in the black and
white photography, and completely unusable results for the color
. infrared photos. The variability of ground cover conditions added to
the difficulty.

The procedures used in the experiment were therefore modified to
optimize utilization of the actual data collected. This resulted in
the following set of objectives being defined:

(1) Reaffirm previous work at LARS showing the capability

for identifying wheat vs. everything else. Test and
training samples to be obtained from FL 40.

(2) Determine capability for identifying wheat (or wheat
stubble) over an extended test site area, using training
samples from one geographic area to classify a completely
different area. In this case, the training samples from
FL 40 would be used to classify data from FL 41, 42, and
43. Test samples from all four flightlines would be
obtained to quantitatively check classification results.

(3) Determine the capability for classifying FL 25 data using
training samples from FL 40, recognizing tne fact that FL
25 data were collected from 3500 feet altitude under
somewhat cloudy conditions, as opposed to 5000 feet alti-
tude and mostly clear conditions for the FL 40 data.

(4) Determine variability of -incoming solar radiation at the
aircraft location over the entire 130-mile flightline
area, and utilize data handling techniques developed by
LARS to calibrate the spectral reflectance data as a
function of the sun sensor signal.
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(5) vetermine utility of sun sensor calibration techniques
for increasing accuracy of automatic classification of
cover type, if significant variapility is found in sun
sensor signal in Step 4 above.

(6) Determine major sources of variation in spectral response
of cover types, the severity of such variations as it
affects automatic classification techniques, aud whether
such variations can or cannot be corrected with various
calibration and data analysis procedures.

Results

Initial analysis efforts showed that calibration of the data only
for electronic drift was not adequate to allow accurate classification
over the entire area. The ability to classify automatically wheat vs.
everything else was demonstrated again (LARS, 1970) using training and
test samples from FL 40. lowever, the classification of the other
flightlines was only partially successful. There were many misclassi-
fications present (primarily as wheat in areas that were not wheat),
and a light threshold applied to the training data tended to cause most
of the test area data to be tiaresholded.

The sun sensor signal for the entire flightline was examined and
found to show significant changes in solar illumination (Figure 5).
Generally, a moderate upward shift was found as the aircraft moved along
the fligntline. In some cases, distinct changes could be seen between
the end of one flightline and the beginaning of the next, and in FL 49
there were rapid, marked changes in illumination, even though the area
was only six miles long and was flown in approximately three minutes.

The LARSYSAA multispectral scauner analysis program system contains
a data calibration function in which the user may select the type of
calibration to be applied, dependent upon his knowledge of any problems
cxisting in the data (Phillips, 1969). The usual calibration is one
whicin corrects for low frequency drift in the data collection or data
processing system. If illumination changes are known to exist in the
data run, an additional calibration may be made to change the data to a
constant level in each data line. This will force data amplification
to a fixed level in an attempt to correct for illumination changes as
they are detected by the sun seasor.

Illumination usually will change as the aircraft moves through
differing atmospheric conditions, and the sun sensor provides a measure
of these changes as they are detected at the aircraft. Illumination
at the aircraft may not change at the same time or at the same rate as
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illumination at the ground target. An example is the siltuation in which

the aircraft enters a cloud shadow and the sun sensor shows an abrupt

change while the target may continue to be in full sunlight. The reverse
will occur when the target is in shadow and the aircraft remains in full
sunlight. These types of situations do not allow use of the sun sensor
calibration, because such calibration under those circumstances would

cause even larger differences in amplitude of the data. However, in the
40-county test site, the sun sensor pulse indicated a gradual increase in
illumination. Thus, a two-point calibration for both drift and amplification
could be effectively used, and was applied to this data.

In Figure 5, the abrupt change in Flightline 40 was due to an
electronic gain change, or manual change in amplification of the signals.
This gain change occurred in all the middle infrared channels (1.0-1.4,
1.5-1.8 and 2.0-2.6 um), and caused distinctive changes in the gray
scale printouts of the data at that point. The sun sensor calibration
procedure adjusted effects of this gain change.

The results of the classifications with data calibrated for both
drift and the sun sensor signal showed encouraging improvements in
accuracy. On FL 40, the training data had an overall classification
accuracy of 997 (98.57% correct classification for wheat, using 662 data
points, and 99.97% correct classification for all other crops or cover
types, using 3,104 data points). The test sample accuracy showed somewhat
variable results from flightline to flightline, as shown in Table I.

This is thought to be due to the natural variation in condition or

degree of maturity of the cover types. Classification accuracy was very
high in FL 43, approximately 80 miles distant from the area where training
samples had been selected.

As a check on the effects of calibration on classification accuracy,
two additional classifications were made. The first used the same
channels that had been selected from the two-point calibration data but
used data that had been calibrated only for electronic drift. The
last classification used the best five channels, again using the data
calibrated only for drift. In the latter case, the feature selection
algorithm indicated a different set of 5 channels than had been used
in the previous classification. The spectral bands were 0.55-0.58,
0.66-0.72, 0.82-1.00, 1.00-1.40, and 1.50-1.80 micrometers.

The test field percentages are given in Tables I, II, and III for
the three classifications. For ease in comparison, Figure 6 shows
the classification accuracy of the wheat test fields. The two-point
calibration is consistently the best classification, with the two
classifications having only drift calibration being about equal. The
last classification, using the best five combinations of wavelength
bands, was slightly more sensitive to accurate wheat classification
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than the other classification using data calibrated only for drifc,
but was still much less accurate than the classification using data
having two-point calibration. All three classifications had similar
high test field accuracies in FL 40 where the training statistics had
been obtained. -

One additional test was made, using data from FL 25, the east-west
line across Tippecanoe County, Indiana. These data were collected
on the same flight as the data for FL 40-43, but FL 25 was flown at a
lower altitude (3500 feet above terrain), and about 20 minutes later.
Scattered cumulus clouds were present over this area. The line begins
about 21 miles east of the FL 40 end point. The FL 25 data were classi-
fied using the training statistics obtained from FL 40 and the two-point
calibration. A set of 17 wheat fields and 4 large areas of other cover
were selected as test fields. Wheat fields were classified with 90.5%
accuracy, but the other fields were only 30.67% correctly classified,
indicating that many points were misclassified into the wheat category
or thresholded. Vegetative conditions along this flightline were quite
different than in the training area, as indicated by the fact that the
wheat harvest was less than half finished on this flightline, in contrast
to having been nearly completed in many areas in the Illinois flightlines.
However, it is believed that the variable cloud conditions at the time
these data were collected caused more error in these classification
results than either the difference in altitude or the differences in
vegetative cover conditions.

The conclusions from this experiment included the following:

(1) The capability for accurately identifying wheat using
ADP techniques was shown to be high over relatively
small areas (about 9 square miles).

(2) When training samples from one area were utilized to
classify data from other geographic areas, classification
accuracies tended to be rather poor unless a two-point
calibration (which corrected for both electronic drift and
variations in solar illumination) was utilized. The
test field results indicated that without the two-point
calibration, there was a general decrease in accuracy
as classification was attempted for areas further and
further from the training site.

(3) Proper calibration allowed recognition accuracies of
917 to be obtained for test areas 80 miles away from
the training sample location.

(4) 1In general, the two-point calibration (drift and
illumination) should be utilized in all data analysis
involving large geographic areas.

C. 1
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(5) The calibration procedures utilized appeared to satisfactorily
adjust for manual changes in the gain setting, although
further analysis along this line 1is recommended.

(6) Use of the sun sensor to calibrate the scanner data
proved unsatisfactory under conditions of scattered
cumulus clouds, since the shadow conditions on the ground
were quite variable and differences in illumination at the
airplane and on the ground below the airplane did not
coincide.

(7) Even though conditions of the ground cover were striking
and more pronounced along the east-west flightline area
than had been anticipated, adequate training of the
classifier (involving selection of representative samples
of data from the various conditions and stages of maturity),
allowed reasonably accurate automatic classification
results to be obtained from an area extending more than
90 miles from east to west.

It is strongly recommended that additional studies of natural
variability over large geographic test sites be conducted for many
cover types and species. It is anticipated that ERTS and SKYLAB data
will offer many excellent opportunities for this type of endeavor.

ACREAGE ESTIMATES FOR A 504-SQUARE-MILE AREA

The third study to be reported involving automatic classification
results over extended test sites concerned an attempt to convert auto-
matic classification results to acreage estimates of various cover
types, and to compare these acreage estimates to existing figures
published by the Crops and Livestock Reports of the Statistical Reporting
Service, U.S. Department of Agriculture, and the Census of Agriculture,
U.S. Jepartment of Commerce (Johnson, 1971).

In this study, five flightlines in Tippecanoe County, Indiana were
analyzed. Tippecanoe County is an area of 504 square miles, or
322,560 acres, and the scanner data were collected by aircraft from
an altitude of 5000 feet; a scanner swath width of 1.11 miles was
utilized, resulting in an area of 82,072 acres being overflown.
Therefore, 25.75% of the total area in Tippecanoe County was included
in the sample. Each resolution element digitized and analyzed re-
presented an area equivalent to approximately 1600 square feet (the
resolution element immediately below the airplane represents a much
smaller area than one off to the side of the flightline because of the
geometry of multispectral scanners.) The data for each of the five
flightlines was classified into cover types designated as:
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.corn

.soybeans

.forages

.trees

.bare soil

.water
The "forages'' category represents hay, pasture, wheat stubble and oat
stubble. Table IV indicates the number of RSU's in each of the cover
types in the test areas, the number of RSU's correctly classified in each
cover type (by flightline), and the percentage correct classification
for each cover type in the test areas. The accuracy of the training
categories was even better than the test classification, as anticipated.
Training field accuracies are not given here as they do not really
represent the overall accuracy of automatic classification for the
flightline. Figure 7 shows the classification results for each of the
flightlines involved. This bar graph represents the material in Table
IV, but in more understandable form, and with the water, soil, and tree
classes combined as '"other," since they represent relatively small
numbers of data points. In this case, the height of the bar indicates
the total number of points considered in testing the classification
results. The number of points correctly classified are then indicated
by the lower portion of the bar, the number incorrectly classified by
the upper portion of the bar, and the percentage correct classification
is also shown at the top of the individual bars. In comparing the
height of the bar with the number of data points involved, (shown on the
ordinate), one sees that there may be as much acreage planted in soy-
beans as in corn for an individual flightline. In other flightlines,
there will be twice as much corn as soybeans present. This indicates
that our techniques for sampling need to be carefully developed, and
that an accurate sample of cover types is mandatory in order to obtain
accurate acreage estimates for large geographic areas. Figure 8 shows
the combination for all five flightlines. Again the height of the bar
shows the number of data points involved in testing the accuracy of
the classification. An actual percentage correct classification for
the test areas for each of the four major cover type groups considered
is shown at the top of the bar. Figure 9 shows the overall results for
the sample area in terms of the percent correct classification. In
this figure, the number of data points involved in determining the
percent classification for each of the cover types is indicated on the
bar. The classification accuracy for the 'water,'" "soil,” and "trees"
categories (previously grouped together as ''other'') is also shown.

Since it appeared that the accuracy of the classification was
reasonably high, the next step was to convert each resolution element
in the scanner data to an acreage figure. Table V shows the number of
data points in each cover type class for the entire area overflown.
For this data, an average of 27.2 resolution elements in the scanner
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data was used to represent one acre of cover type. This figure was

then expanded to the entire 322,560 acres for the county, and an acreage
estimate for each of the cover types of interest for the entire county
was obtained. Figure 10 shows the results obtained. The percentage

of the total area in the county estimated to be in the different cover
types is also indicated. As can be seen, the computer acreage cal-
culations resulted in an estimate of 323,850 acres for the total area

in the county, whereas the actual area is 322,560 acres. Considering
the fact that geometric correction had not been made on the data and that
an average figure was used to represent the resolution elements for

all look angles of scanner data, it is felt that this difference is well
within the accuracy of the techniques utilized, and is therefore
negligible.

The estimated acreage for the different cover types obtained by
computer classification were then compared with the Census of Agriculture
reports and the Crops and Livestock reports. In some cases, the different
cover types could not be directly compared because the officially
published figures did not contain any data for certain cover types which
were used in our computer classification. As shown in Figure 11, there
is a fairly wide variation in even the published estimates of acreage
for some of the cover types. For example, the published reports
indicate a variation for corn of from 82,510 to 76,900 acres, Therefore,
we feel that our remote sensing estimate of 84,210 acres of corn in the
county is well within reason, and compares favorably with the accuracy
of current techniques for estimating acreage.

These results are particularly significant, in that this may be the
first time that acreage estimates have been obtained from multispectral
scanner data and that these estimates have then been compared to published
figures for different cover types over a reasonably large geographic
area. At least two factors appear to be required in order to obtain
acreage estimates with scanner data which are reasonably close to actual
acreage estimates for the area. First, the sample covered by the scanner
data must be large enough to be representative of the area. inimal
sample size and number of samples required for any particular area would,
of course, be a function of the variability of the materials within the
area. A great deal of additional work needs to be done in sampling
techniques for remote sensing purposes. The second requirement for
accurate acreage estimates of an area would be tnat sufficiently accurate
classification results must be obtained. Again, additional work remains
to be done in order to define what a ‘'sufficiently’ accurate classification
really involves.
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URBAN LAND-USE ANALYSIS

Land-use is changing every year in many parts of the world and
our nation. Such land-use changes often involve large geographic areas.
The greatest portion of these changes in the United States during recent
years has occurred when agricultural and forest lands are converted to
housing, industry, highways, public buildings and parks. The effects
associated with these changes are numerous and far-reaching. We feel
that remote multispectral sensing has a potential for obtaining valuable
data to use in land-use analysis and planning future developments. The
capability for satellites to obtain remote sensing data over large geo-
graphic areas and at regular time intervals should offer a great deal of
potential information to adequately plan for the early development of
the landscape of our nation.

In a pilot project this past year, a typical small subdivision
located near Lafayette, Indiana over which scanner data has been ob-
tained, was analyzed, Automatic data processing techniques were utilized
to determine the amount of the area in this urban development which was
under hard surface cover and that which was under permeable cover types.
Figure 12-A shows a black and white version of a color infrared photo of
the area analyzed. Tigure 12-B depicts the automatic computer classi-
fication of the areas identified as either trees, shrubs, or grass.
Comparison between Figures 12-A and 12-B indicates a high degree of accuracy
for the computer classification results. Figure 12-C shows the areas
identified by the computer as man-made and hard surface areas. These have
been subdivided into either 'roof' or "streets and driveways.' 1In some
cases, the classification for roof surfaces is somewhat inaccurate due
to shadow effects. However, the total hard surface area classification
appears to be fairly accurate.

The classification accuracy of this analysis was tested using two
different photointerpretation techniques. The first involved the use of
a very fine dot grid count of the area. The second procedure was to
planimeter the hard surface areas. Figure 12-D shows the comparison between
the percentage of the area shown in Figure 12-A as determined by dot
grid techniques, and the computer classification results. Thus, the
computer indicated that 8% of the area was covered by roof surfaces, the
photointerpretation dot grid estimate indicated 8.27 coverage by roof
surfaces, etc. In total, the computer estimate indicated that 24.47% of this
area was covered by hard surface whereas tne dot grid analysis indicated
21.5% of the area had a hard surface cover.

We believe that the results of these types of analyses could be
a value in plaaning for culverts and other runoff design specifications
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in urbanized watershed areas. For example, a one-inch rain in a one~hour
time period for an area such as this, where about 20-257% of the area is
under impermeable cover, would call for a different runoff design than an
area where 50% of the watershed is under hard surface cover.

This was the laboratory's first attempt to quantify an urban land-use
scene. The results show promise for the role of remote sensing in the
rapid identification and mapping of present and changing patterns in
land-use. The rapid changes taking place in this country and the increasing
pressure on our land resources indicate that these techniques will prove
most valuable for the management and development of our land resources
in the years ahead.

WATER QUALITY STUDIES

The water quality studies to be reported upon are an extension of
water resource studies involving temperature calibration techniques of
multispectral scanner data. The University of Michigan multispectral
scanner has hot and cold plates mounted within the field of view of the
thermal infrared channels. These calibration plates can be used to
obtain calibrated data, in order to remotely measure true radiometric
temperatures, providing the emissivity of the objects being scanned is
approximately € = 1.0. The previous work at LARS has shown that these
calibration techniques can be used with a high degree of accuracy for
obtaining temperature maps of water hodies. Measurements made of the
water temperature from boats on the river at the time the scanner was
flown over confirm that the accuracy of temperature measurements obtained
from scanner calibration is usually with .2-.4°C of the temperature
obtained for the same area from the scanner data.

In studying the correlation between temperature measurements made on
the river and the temperature obtained from calibrated scanner data,
we noticed that the scanner data seemed to be quite variable as one
viewed the entire water body. Further investigation appeared to indicate
that the variation observed was not due to normal variations in temperature
of the water surface, but rather was due to noise in the scanner data.
In an attempt to reduce the amount of noise in the scanner data, a
sequence of line averaging and weighted line averaging studies were
carried out. One must remember that in utilizing data from line scanner
systems from altitudes of 2000 feet, only every 8th scan line is required
for contiguous scanner coverage. Thus in our digitization process,
seven of the eight scan lines normally were not being utilized. By digi-
tizing all eigit scan lines and averaging all eight scan lines, or four
out of the eight, or three out of the eight, etc., we found that the amount
of noise in the data could be substantially reduced. Figure 13 shows a
single column line of data taken along the line of flight; the top of
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this graph shows results of a single scan line, the bottom graph shows
the results where eight scan lines were averaged together and displayed
as single scan lines of data. The reduction in the amount of wvariability
in the scanner data, due to use of the line averaging technique is quite
apparent in this figure. Figure 14 shows the results of such line
averaging applied to an entire segment of the flightline, and displayed
in a map format. On the left is the scanner printout of calibrated
thermal data in the 3 to 13.5 um portion of the spectrum. The Wabash
River is flowing from north to south, and the Tippecanoce River enters

the Wabash from the west (left). From the calibration levels indicated
for the data, it can be easily observed that the Tippecanoe River is
cooler than the Wabash River into which it flows. Just above the junction
of these two rivers there appears to be quite a great deal of variability
in the temperature of the river as indicated by the scattering of points
representing different temperature levels. The results of averaging
eignt scan lines and displaying them as a single scan line are shown on
the right. In this case one sees that there is a much smaller amount of
temperature variation in the data displayed. The results of averaging
four scan lines and then not using the intervening four scan lines of
data obtained at this altitude showed very similar results to those
displayed in this figure. Thus, it appears that a considerable increase
in data quality can be obtained through some of these preprocessing
techniques. 1In addition, corrections for scaanner look angle, sun angle,
etc. must frequently still be applied. Additional work remains to be
done to determine the effect of such line averaging techniques on the
quality of the data for agricultural vegetation and soil analysis
problems.

SUMMARY AND GEJERAL CONCLUSIONS

The work this past year has indicated more clearly than ever before
that when dealing with natural vegetative soil and hydrologic features,
the natural variability of these materials is significant. However, as
indicated in Figure 15, there are several other factors besides the
natural geograpnic variation of the materials which can cause distinct
and significant variation in the signals being recorded. We are looking
forward with great anticipation to working with data from ERTS and
SKYLAB, since data collected in these experiments will be obtained over
a large geographic area and in an extremely short time period (as com-
pared to the time required to collect the flightline data using an
aircraft system), and also the satellite data will involve a much smaller
scan angle. The ERTS and SKYLAB data should therefore allow some of
the causes of spectral variability such as illumination conditions,
instrumentation drift and adjustments, and atmospheric conditions (which
change over time), to be minimized. This will allow us to better
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understand the regional variation and spectral response of the vegetation,
water, and soils, with which the Biogeophysical Group at LARS is
particularly concerned.

Conclusions of the projects this past year involve several additional
aspects, which can be summarized as follows:

1.)

2.)

3.)

4.)

5.)

Basic cover types can be automatically mapped with

‘a high degree of accuracy in spite of the natural

variability of the material.

Calibration of scanner data allows significant
improvement in the accuracy of classification of

crop species when extrapolating from one geographic

area to another many miles away.

Calibration and preprocessing techniques significantly
improve many aspects of data quality. However, these
techniques must be applied to the multispectral scanner
data with caution, for they could cause more harm than
help in the automatic classification of any particular
set of data. For example, under conditions of variable
cloud cover, sun sensor calibration proved quite un-
satisfactory. In general, however, it would appear that
drift and illumination calibration will generally be
required for aircraft data collected over large geographic
areas.

Variations in ground cover conditions often are much imore
pronounced than anticipated. I[owever, adequate training
of the classifier, involving selection of samples to re-
present the total range of crop conditions and stages

of maturity, did allow satisfactory classification of
the data. Studies involving adaptive classification
techniques must be developed and tested.

Preliminary work on aerial estimates of acreage of

major crop species and various other cover types for
areas in excess of 300,000 acres indicated a high

degree of accuracy, and offers good promise for
improving current techniques for such acreage esti-
mates. It is significant that these results were
obtained with scanner data that had not been geo-
metrically corrected. This technique also appears

to offer another method of evaluating the accuracy

of classification results, provided the area sampled

is large enough, and that the existing acreage figures
from other sources are reasonably accurate.

It is believed that these results concerning a developing capability
to accurately identify and map various agriculture cover types and
obtain accurate acreage estimates (as were indicated in Figure 18) are
among the major milestones that have been achieved in automatic data
analysis research to date.
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Earth Resources Data Analysis Sequence

Basic Cover Type Mapping

|
T

Clouds ice 8 Water Soils&  Vegelation Urban Other
Snow Geologic Features
Features
Notural Cultural
Grasslend Brushlond Forest Orchards Row Crops  Small Forages Other
& Vineyards Grains
(a)

“Lg-25

Other
( Pollutants, efc)

Row Crops Vegelohvejondmon
Corn Sorghum Soybeans Cotfon, Sugor Beets, - Maturity Stresses
l efc in other geographic areas J
ACVIEOQE Y‘F-‘ldJ'ﬂdlCﬂYO'S Nutrient Insect Disease Moisture
Maps Tables  Vegetotive Vegetative l l
Density Condition Southern Corn Other
Leaf Blight

(b) (c)

Figure 1. Data analvsis sequence in automatic identification

and mapping of various earth resources and their condition.
Figure 1-a shows the basic cover tyvpes that could be manped

and one possible subdivision for the vegetative categoryv.

The acreage and vield factors are of primarv concern for each

species of concern, as pointed out in 1-b. The complex

interactions of manv stress factors, all of which mav influence
spectral response of the vegetation being sensed, are indicated

in l-c.
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Figure 2. Spectral reflectance of various soil conditions.

These data were obtained in situ under conditions of natural

illumination.

Figure 2-a shows reflectance of three soil

tvpes in a dry condition, while 2-b shows marked differences

in reflectance between wet and drv soils for two soil tvpes.
Figure 2-c¢ indicates that the reflectance for some soil types
in a drv condition is very similar to the reflectance of

other soils that are wet. The surface condition of a drv

soil can cause significant differences in spectral reflectance,
as shown” in 2-d.
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| OBr—

BE= Water (Northern Portion of Fltn)
E= Water (Southern Portion of Fltn)
B8 Bare Soil (Northern)

Bare Soil (Southern)

Green Vegetation (Northern)
£33 Green Vegetation (Southern)

84r-

Relative Spectral Response

040-0.44 0.66-0.72 0.80-1.00
(Blue) (Red) (Reflective IR)

Wavelength Band

Figure 3. Spectral variabilitv of basic cover types along a
North-South flightline. Data from areas about 60 miles
apart are shown for three wavelength bands. The bars
represent mean spectral response *lo. Distinct differences
exist for the water and the vegetation response between the
two locations sampled.



48-28

Peoria

Bioomingtan

Lafayelte

Champaign

Indianapalis

|

|

|

[

1

I

|

Springfield |
|

/4
¢
1

/

Scale
= 50 miles

(a)

Flightline Locations within the
40 County Test Site

133 miles : \

i |
-—21 miles ————
Bloominglon |
7 b 958 9 & ZSm\h——J !
s T S o R . w e
43 42 4l 40 | | Lafoyatte |
: \ |
1
ILLINOIS i | |
!
| - |
| Tippecanoe
| Counly
|
Champaiqn ! INDIANA
I
Scale |
—_ A1 1 1 1 J :
40 miles |
|
(b)

Figure 4. The 40-County test area showing the general location
of the flightlines is shown in 4-a. The length of the flight-
line segments and distances between segments is shown in 4-b,
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Ilumination Changes of 40 County Test Site
Data Values of Sun Sensor, Channels 3,6,11 Julyl, 1970

245} , 3
230t /
2iSpF ———
/

200

mmm—
185+

- 6
170} -
|55L-_ —— -
140}
125
1o ¢
A
,
=r L
b=

gob  emee mee==-

r ------
65+ Fl 43 FI 42 Fi 4l Fl 40 *Gain Changed n

Time: 1059 Mo ns 1130 Channels 11,12,13
S50 G- L L e .

o] 10 20 30 40 50 €0 T BO 90 100

Miles
Direction of Flight ——

Figure 5. Sun sensor signals in three wavelength bands, along
E-W flightline. Time of data collection 1is also shown, and
indicates a general upward shift in illumination levels from
west to east as the data were being collected. A distinct
change in gain setting is indicated in the Channel 11 data
in F.L. 40. These changes were corrected in the calibration
procedures.
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Classification Accuracy of Wheat in the 40
County Test Site Flightlines, July I, 1970

Calibration Channels

P2 2~ Point 3,5,8,11,12
G Oift 3,5,8,11,12
100 (I Orift 5,8,10,11,12

SOt

80

70 F

60

50

2

Z

40

Percent Accuracy

777

30+

A

20+

7777777

A A

IHINERPTTRT G OO TR DO RV R T

77 7 A A A 2

AL T RO
AR

V777

41 42 43
Flightlines

Figure 6. C(lassification accuracv for wheat test fields in
each of the flightline areas. Only F.L., 40 was used for
selection of training samples., The 2-point calibration
(drift and sun sensor) appears to give much more accurate
classification results than drift calibration only.

Note that F.L. 40 (where the training samples were selected),
is approximatelv 80 miles from F.L. 43,
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Cover Type Classification
For Test Samples Representing 500 Sq. Mile Area

o N
40~ 9/3.| Yo Classification Accuracy

96.9% No. Points not
Correctly Classified

No. Points
Correctly Classified

30

Overall Accuracy =94.1%
9l.1%

20

No. of Data Points (in thousands)

94.1%

Corn Soybeans  Forages Other

(Water, Sail,
Trees)

Figure 8. Classification results of test sample points for
all flightlines in combination. The high percentage correct
classification shown, along with the large numbers of sample
points, indicates very good extrapolation from the training
fields to the entire area.



Percentage Correct Classification

Accuracy of Cover Type Classification for
Test Samples Representing 500 Sq. Mile Area

(Numb_ers Indicate Total Data Points tested in each Class)
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100 -
90
80t
70
S 18] |3 o
60| <+ « 0 i o ”
- ; - (es] N
fo)) N 0 v S -
M N M = o o
50
-~
0
Corn Soybeans Forages Water Soil Trees

Figure 9. Accuracy of classification of test samples.
The accuracy and number of data points involved are
indicated. The individual classes of water, soll and
trees (previously combined as "other') are also shown,
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ADP Results of Acreage Estimates
(Actual Area= 322,560 Acres)

Computer Classification Percentage of
Cover Type Acreage Estimate* Total Area
Corn 84,210 26.0
Soybeans 56, 760 17.5
Forages (Hay, Pasture, Stubble) 123, 020 38.0
Woods 25, 940 8.0
Urban & Other 33, 920 10.5
(Roads, Water, Misc.) —
Total= 323, 850 Acres 100 %

*An Estimated 83,072 Acres Were Scanned

Figure 10, Acreage estimates of major cover types in
Tippecanoe Countv, based upon computer classification of
the various cover types. The cover tvpes have been combined
to facilitate comparison with published figures of acreage
estimates.
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Land Use Mapping

Green Vegetation Features

COMPARISON OF RESULTS

Computer
Material Classification Estimate
Roof 8.0 8.2
Asphalt 10.1 7.6
Concrete 6.3 T
Trees 15.2 18.6
fArass 60.1 59.9
(c) (d)

Figure 12, (a) Black and white reproduction of a color
infrared photo of subdivision studv area. (b) Computer
printout of classification results showing only areas
classified as tree & shrubs or as grass. (c) Printout
of areas classified as man-made and hard surface area.
(d) Percentage of total area classified into the various
cover tvpes bv computer compared to area percentages
estimated by a very fine dot grid and using an aerial
photo.



Radiant Temperature

Radiant Temperature

Effect of Scan Line Averaging on Data Noise

Individual Scan Lines

Averaged Scan Lines

Dota Points along Line of Flight

Figure 13. Effects of scan line averaging on data noise.
Data on top shows data points along the line of flight for
a single column of data, using non-averaged scan lines.
Bottom data shows averaged scan lines. The reduction in
the amount of noise in the data is evident.
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Figure 14. Computer printout of thermal data calibrated to
indicate true radiometric temperature, and comparing
individual scan lines and averaged scan lines of data.

Note the more distinct '"speckled" pattern in the individual
scan line data, particularly in the portion of the Wabash
River above the point where the Tippecanve River comes in
from the left (west).
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Causes of Spectral Variability

* Natural, Geographic Variation
of the Materials

e [llumination Conditions
e Atmospheric Conditions

e |nstrumentation Drift and
Adjustments

* Data System Imperfections

Figure 15. Major causes of spectral variability. Satellite
data from ERTS and SKYLAB should allow some of these factors
to be minimized (as compared to aircraft data collection
techniques) thereby allowing a better understanding of the
natural geographic variations of the vegetation, soils,
water, and other earth resources materials of concern.





