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INTRODUCTION

Research in multispectral data processing at LARS/Purdue is directed
at supporting a substantial level of applications research as well as
advancing the technology of remote sensing data processing. During the
past year significant progress has been made in both respects. Almost the
entire multispectral data analysis process, from data editing to results
evaluation, has been impacted, and the new level of technology has been
vigorously tested by the data analysis operations associated with the
1971 Corn Blight Watch Experiment.l

The following discussion of these advancements is organized to
follow generally the steps utilized in the multispectral data analysis
procedure. In terms of Tigure 1, we begin with the data display process
used to accomplish data editing and proceed clockwise through clustering,
statistics computation, etc. In the interest of brevity, each result
will be treated here in a general way and references given to available
sources where a more detailed treatment may be found.

DATA EOITING FACILITY

The special-purpese digital display system delivered to LARS/Purdue
late in 1979 [1] represents a tremendous potential for facilitating the
man/data interface. Juring 1971 the first software for utilizing this
system became operational and was made available to LARSYS users [2].
With this software, the user can display a television-quality image of
digitized multispectral data and, by means of a light pen and xeyboard,
accurately specify areas in the data to receive special attention

1The 1971 Corn Blight Wateh Lxperiment is described elsewhere in these
proceedings.
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(Figure 2). Two advantages of this mode of man/data interface over the
familiar gray-scale line-printer output (Figure 3) are the higher quality
of the image available to the researcher and the ease and accuracy with
which features in the data can be located and designated to the computer
by means of the light pen. These features greatly improve both the

speed and accuracy with which the data analysis can be executed.

Data editing represents only one of many potential uses of the
digital display hardware. Examples of other applications to be studied
include on-line display and evaluation of analysis results and
implementation of a highly interactive data analysis capability.

One feels compelled to note at this point, however, that line-printer
output still represénts a proven and acceptable means for displaying both
data and analysis results. But as technological advances bring down
the cost of video-type displays and step up the speed of digital data
transmission, digital display systems suitable for image data -- now
available only on a limited basis as research tools -- will become
increasingly attractive as a standard means of interfacing man with such
data.

CLUSTER ANALYSIS

Multispectral cluster analysis (sometimes referred to in the literature
as unsupervised classification) has been under study for some years as a
means for data compression and similarity analysis. A clustering techaique
has been developed at LARS/Purdue, for use in conjunction with supervised
classification, as an aid in class definition and training sample selection.
A computer program [3] prints point-by-point maps of the clustering
results (Figure 4), indicating the relative homogeneity of the analyzed
areas; this information assists in the process of selecting training
samples for characterizing the different spectral classes in the data.
Also provided is a quantitative analysis of the separability of the
clusters in the multivariate measurement ('feature') space.

The clustering technique described above processes data poiats in
the measurement space. Another promising approach, currently under
investigation and discussed further in a later section of this paper,
is the clustering of sample statistics in parameter space.

FEATURE SELECTION

A feature selection criterion has been developed [4] which
eliminates the considerable level of human interaction with the
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computational processing heretofore required for the selection of data
channels preferred for classification. The basic problem faced in connection
with feature selection is finding a means for estimating error probaoi-
lities (or probabilities of correct classification) accurately since for
multivariate problems it is generally not feasible to calculate these
probabilities directly even in the relatively simple case in which

Gaussian distribution of the data within classes is assumed. The problem

of finding an estimator of probability of correct classification in the
multiclass and multivariate case is unsolved. What is commonly done in
practice is to estimate the probabilities associated with all pairs of
classes and take an average or weighted average of the pairwise probabilities
as an estimate of the overall probability of correct classification [51].

To do this effectively, however, requires availability of a function, based
on the statistical separability of pairs of classes, which behaves like the
probability of correctly discriminating between the classes.

Divergence is a monotonic function of statistical separability of
two classes which has been used in this manner. However, this separability
measure has the disadvantage that it increases without bound as separability
increases, whereas probability of correct classification saturates at
100 percent (see Figure 5). This difficulty has been circumvented by
writing the feature selection program to allow the user to specify a
limiting value (MAX) which artificially saturates the separapility measure.
To do this properly, however, the user must learn to judge for a given
type of problem what constitutes an appropriate saturation value.

In an effort to remove this latter shortcoming, alternative separability
measures have been investigated. In particular, a separability measure
referred to here as Bhattacharyya distance, or B-distance, has been found
to nave tne sort of behavior sought and indeed to provide a much more
reliable feature selection criterion than divergence [4]. This furthner
suggested a transformation of divergence which closely approximates the
feature selection properties of the B-distance but requires far less
computation. The transformed divergence has been implemented at LARS/Purdue
as tne standard feature sclection criterion.

POINT CLASSIFICATION

The next step in the procedure for multispectral data analysis, the
multivariate classification method, has not been altered, but some newly
completed research has reconfirmed the wisdom (from a practical viewpoint)
of selecting the Gaussian maximum-likelihood approach for analysis of real-
world multispectral data. This approach [6] assumes that the class-condi-
tional distributions of the data in all classes to be recognized can be
adequately represented by multivariate Gaussian distributions, or, in any
case, by the union of a small number of such distributions. Although
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pattern classifiers based on this approach have been applied successfully

at various remote sensing facilities involved with machine analysis, some
important questions regarding this choice of approach have remained

open: How much improvement in classification accuracy could be obtained

by using a nonparametric classification method which requires no a priori
assumptions regarding the data distributions? How much would classification
accuracy degrade if the classifier were of the computationally faster and
simpler linear variety?

An experimental investigation yielding a considerable volume of
results [3] nas demonstrated that, for agricultural remote sensing data,
very general nonparametric models can be expected to produce only mar-
ginally better results than the Gaussian classifier. In general the
improvement is not sufficient to warrant the substantial increase in
computational resources required (time, machine memory). On the other
hand, another study [7] suggests that the extra cost of the Gaussian
classifier by comparison with linear classifiers is generally well
justified. The linear classifiers investigated have shown markedly
poorer ability to generalize from training fields to data not used for
training the classifier.

SAMPLE CLUSTERING AND SAMPLE CLASSIFICATION

The term "perfield classification’ has been used in the literature
to refer to the classification of an entire agricultural field based on
all data drawn from that field. This approach takes advantage of the
spatial context of the data, the fact that local regions tend to be com-
posed of members of the same class (the same 'population," in statistical
terminology), by using the combined information in a number of observations
to infer the classification of the aggregate. To divorce this concept from
the agricultural frame of reference, 'sample classification" is defined
as the classification of any aggregate of data points assumed to be from
the same population. It is often tne case that decisions concerning the
aggregate can be made faster and more reliably than decisions concerning
the data points taken inclividually.l

As intensive study of this approach [3] has been completed in which
both sample clustering and sample classification were investigated. The
results of this study are too extensive, both in number and in scope, to
receive adequate treatment here. Tollowing are some nighlights.

1The greatest benefits in this respect generally accrue when the
aggregation is performed before the decision process is applied (eg.
by finding a parametric characterization of the aggregate) rather than
after (eg., poll-taking after classification).
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For agricultural remote sensing data, the accuracy of sample
classification is relatively insensitive to whether parametric or
nonparametric methods are used to estimate probability distributions.
As noted earlier in this paper the potential improvement in accuracy
obtainable using nonparametric methods is too small to justify the
considerable increase in cowmputation time and complexity.

Althougi many measures of statistical separability are available
for use in sample <classification, the experimental results using
agricultural data were relatively insensitive to the choice of separa-
bility measure used. However, a separability measure known as the
Jeffries-Matusita distance does have some theoretical as well as practical
advantages worth exploiting:

1. TIts behavior as a function of dimensionality resembles

that of probability of correct classification (in the
parametric case).

2. It is a metric over a large space of distribution functions.

3. It is among the simplest separability functions to compute.

Sample clustering, achieved by first computing a parametric
characterization of the samples and then applying cluster analysis to
the statistical parameters (Figure 6), appears to offer several advantages
over the more conventional point-by-point clustering. In experiments
with agricultural remote sensing data, sample clustering has exhibited
a distinct tendency to produce more appropriate class/subclass structures
leading to better classification accuracy for both point and sample
classification. In addition, a dramatic time saving is achieved for
cluster processing because of the considerable degree of data reduction
accomplished by representing a largze number of data points by relatively
few statistical parameters.

STATISTICAL JLESIGN AND ANALYSIS

Finally, the effective utilization of large quantities of remote
sensing data demands the development of statistical models which can be
used for specifying data collection and data analysis schemes and for
evaluating the results produced by such schemes. The 1371 Cora Blight
Watch Experiment and forward-looking considerations related to the ERTS
and SKYLAB satellites have particularly highlighted tuis need. Conventional
models developed for ground data collection alone are simply not adequate.

A recent study [8] has formulated a taree-stage sampling model
for remote sensing and used the model to evaluate the precision of crop
acreage estimates and to determine tne effects of the number of flight-
lines, number of segments within flightlines, and the subsampling density
within segments on the precision of these estimates. While this work has
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1as perhaps raised as many important questions as it has answered, it
represents tne initiation of a significant effort to determine systematically
the cost-benafit relationships associated with the remote sensing technolosy
and to utilize these relatioanships both in guiding and evaluating its
application.
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Figure 6. Parameter space representation of a sample (one-
dimensional Gaussian case).





