GRAVITATIONAL FIELD MODELS FOR THE EARTH (GEM 1 \& 2)

FRANCIS J. LERCH

CARL A. WAGNER
DAVID E. SMITH
MARK L. SANDSON
JOSEPH E. BROWND
JAMES A. RICHARDSON
(NASA-TM-X-65970) GRAVITATIONAL FIELD N72-29423
MODELS FOR THE EARTH (GEH 1 AND 2) F.J.
Lerch, et al (NASA) 月ay 197241 p (SCL
$\begin{array}{lll}\text { 03B } & & \text { Unclas } \\ \text { G3/13 } & 37446\end{array}$
MAY 1972

GRAVITATIONAL FIELD MODELS FOR THE EARTH*

(GEM 1 \& 2)

Francis J. Lerch
Carl A. Wagner
David E. Smith
Geodynamics Branch, GSFC
Mark L. Sandson
Joseph E. Brownd
James A. Richardson
Computer Sciences Corporation, Falls Church, Virginia

May 1972
*A version of this paper was presented at COSPAR, Working Group 1, Madrid, May 1972.

Greenbelt, Maryland 20771

5

GRAVITATIONAL FIELD MODELS FOR THE EARTH

(GEM 1 \& 2)

Abstract

Two models of the earth's gravitational field have been computed at Goddard Space Flight Center. The first, Goddard Earth Model 1 (GEM 1), has been derived from satellite tracking data. The second, Goddard Earth Model 2 (GEM 2), has been derived from a combination of satellite tracking and surface gravimetric data. The geopotential models are represented in spherical harmonics complete to degree and order 16 for the combined solution and complete to degree and order 12 for the satellite solution. Both solutions include zonal terms to degree 21 and related satellite resonant coefficients to degree 22 . The satellite data consisted primarily of optical data processed on 300 weekly orbital ares for 25 close earth satellites. Surface gravity data were employed in the form of $5^{\circ} \times 5^{\circ}$ mean free-air gravity anomalies providing about 70% world coverage. Station locations were obtained for 46 tracking sites by combining electronic, laser, and additional optical tracking data with the above satellite data. Analysis of the radial positions of these stations and a value of mean gravity on the geoid indicated a mean equatorial radius for the Earth of about 6378145 meters. Results of geopotential tests on satellite data not used in the solution show that better agreement was obtained with the GEM 1 and GEM 2 models than with the 1969 Smithsonian Standard Earth II model.

 CONTENTS

Page
I. INTRODUCTION 1
II. DESCRIPTION OF SOLUTIONS 3
Data Used in the Solutions 3
Starting Values for Solutions 4
III. ANALYSIS TECHNIQUES 5
IV. RESULTS 9
V. TESTS OF SOLUTIONS 13
VI. SUMIMARY AND CONCLUSTONS 15
ACKNOWLEDGEMENTS 15
REFERENCES 16
ILLUSTRATIONS
FigurePage
1 Surface Gravity Data $5^{\circ} \times 5^{\circ}$ Mean Gravity Anomalies 17
2 Geoid Height: Zonal Profile 18
3 Geoid Height: Zonal Provile to $\pm 20^{\circ}$ Lat 19
4 Geoid Heights (Meters) 20

ILLUSTRATIONS (Continued)

Figure Page
$5 \quad \begin{aligned} & \text { Average Standard Deviation of Coefficients per Degree n } \\ & \text { of Satellite and Gravimetry Solutions }\end{aligned}$
6 Station Height Above Geoid vs Survey (GSFC Solution) 22
7 Stati.n Height Above Geoid vs Survey (SAO Solution) 23
8 Gravity Field Comparison Using BE-C Laser Range Data 24

TABLES

Table
Page
1 Satellite Data . 25
2 Standard Deviations Assigned to the Observations 26
3 GSFC Geopotential Solutions 27
4 Station Coordinates . 29

5 Comparison of Zonal Coefficients 30
6 Degree Vaxiances for Gravity Anomalies (Mgal ${ }^{2}$) 31
7 Comparison of Coefficients with S. E. II 32
8 Station Geoid Heights from the Combination Solution and M.SL Heights from Survey 33

9 Long-Arc Tests on Mean Elements for Resonant Satellites 34
10 Summary of Solution, Data, and Results 35

GRAVITATIONAL FIELD MODELS FOR THE EARTH

(GEM $1 \& 2$)

I. INTRODUCTION

The establishment of an accurate Earth model (geometric and gravimetric) is an essential requirement of any earth physics program(1). Progress in this are: . has been made at the Smithsonian Astrophysical Observatory using optical tracking data (mainly) and analytic techniques in the computation of orbits $(2,3)$. Work at Goddard Space Flight Center has proceeded with the object of extending the use of this optical data and also to the inclusion of highly accurate and dense electronic satellite tracking data available since 1965 (i.e. Tranet Doppler, Goddard Range and Range-Rate, and laser). Numerical integration, providing a precise solution for modeled forces, has been used extensively at GSFC for the computation of orbits. With this approach a preliminary solution for a geopotential model has already been obtained using 17 satellites and Baker-Nunn optical data only ${ }^{(4)}$. In this solution the geopotential fieid was complete to degree and order 8 in spherical harmonics and it included station coordinates for 13 optical tracking sites. The combined solution reported here is complete to degree and order 16 and is based on surface gravity as well as satellite optical data. The station coordinate solution has also been extended to 46 stations. In this new solution considerable improvement has been made through refinement in the modeling for drag and satellite resonant effects.

Tests of the new solution are presented which demonstrate improvement over other solutions in satellite orbit determination and better agreement with ground survey data. Consistent results have been obtained fox an adjusted scale of the reference ellipsoid from analysis of both station positions and surface gravimetric data.

II. DESCRIPTION OF SOLUTIONS

A geopotential solution (GEM 1) has been derived from tracking data (primarily optical) on 25 close earth satellites. Spherical harmonic terms in the geopotential are complete to degree and order 12 with zonals extending to degree 21 and selected satellite resonant coefficients to degree 22. Surface gravity data, consisting of $21,0001^{\circ} \times 1^{\circ}$ mean free-air gravity anomalies and used in the form of $5^{\circ} \times 5^{\circ}$ mean anomalies, have been combined with the satellite data to derive a geopotential (GEM 2) complete to degree and order 16 with similar higher degree terms as in the satellite solution.

Station locations were obtained for 46 tracking sites by combining satellite electronic, laser, and additional optical data with the data used in the satellite geopotential solution described above. Tracking systems consisted of 13 BakerNunn cameras, 23 Minitrack Optical Tracking System cameras (MOTS), 2 lasers, 3 Goddard Range and Range-Rate (GRARR) systems, and 5 NWL Tranet Doppler systems. A value of mean gravity for the reference system was determined through a simultaneous adjustment of this quantity with the geopotential coefficients using both the satellite and surface gravity data.

Data Used in the Solutions

a. Satellite Data: Data used in the satellite geopotential solution (GEM 1) is presented in Table 1. Approximately 300 weekly orbital arcs of optical data on 23 satellites formed the basis of the solution. Also included in the solution were 21 weekly arcs of Minitrack interferometer data on TIROS 9 and Allouette 2 satellites, which were principally used to support the determination of satellite resonant coefficients. Additional information is presented in Table 1 on satellite orbit geometry and the number of orbital arcs, observations and observation residuals.

In the solution for the 46 station locations, the data in the above 300 weekly orbital arcs (120,000 optical observations) were combined with 15 weekly GEOS-I and II orbital arcs of densely covered electronic and laser data (150,000 observations) including some additional optical data. Also, some 66 one- and two-day arcs of GEOS-I and II flashing light optical data were combined with the above arcs, mainly to strengthen the solution of the MOTS stations.
b. Surface Gravity Data: The source of most of the gravimetry data was the U. S. Aeronautical Chart and Information Center which provided 19,000 onedegree by one-degree mean free-air gravity anomalies. A further set of 2000 mean gravity anomalies were obtained from a number of other sources. These data were used to form 1707 five-degree by five-degnse mean gravity anomalies
by a straight averaging of the one-degree by one-degree mean anomalies, and provided a total coverage of about 70% of the earth's surface. See Figure 1 for a map of surface gravity data coverage.

Starting Values for Solutions

The a priori values of the geopotential coefficients and station locations used in the solution were as follows:

Zonals harmonics to degree 21,	Kozai (1969)(5)
Tesseral harmonics	SAO S.E. I (1966)
(2)	
Satellite resonant coefficients	GSFC preliminary analysis ${ }^{(6)}$
Station coordinates	Marsh, et al. (1971) ${ }^{(7)}$

The reference ellipsoid that was adopted for the solution was the same as that used by SAO in the Standard Earth II (1969) ${ }^{(3)}$; viz

Mean equatorial radius, $\mathrm{a}_{\mathrm{e}}=6378155$ meters
Flattening, $\quad f=1 / 298.255$
Product of mass of the earth and gravitational constant,

$$
\mathrm{GM}=3.986013 \times 10^{14} \mathrm{~m}^{3} / \mathrm{sec}^{2}
$$

III. ANALYSIS TECHNIQUES

The motion of the satellite was obtained by numerical integration of the equations of motion with the following forces being modeled: the earth's gravity field, atmospheric drag, solar radiation pressure, and lunar and solar gravity. The integration was performed in a cartesian, geocentric, inertial coordinate system referenced to the true equator and equinox of the epoch. The time frame was A1 time and modeling in the reference system included luni-solar precession and nutation of the earth and polar motion, the latter being obtained from the U. S. Naval Observatory who also provided the adjustment from UT1 to A1. The origin of the coordinate system for the pole positions was the mean pole of 19001905. The technique of weighted least squares was applied to the satellite observation equations with the standard deviations presented in Table 2.

The surface gravity data was given in terms of $1^{\circ} \times 1^{\circ}$ mean gravity anomalies (mgal) referenced to the International System. This data was used as described below in terms of the reference system defined by GM, a_{e}, f, and ω (rotation rate of the Earth).

Let W be the gravity potential of the Earth so that

$$
\begin{equation*}
W=V+\Phi \tag{1}
\end{equation*}
$$

where V is the gravitational potential, and Φ the centrifugal potential, and where

$$
\begin{gathered}
V=\frac{G M}{r}\left[1+\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left(\frac{a_{e}}{r}\right)^{n} P_{n}^{m}(\sin \varphi)\left(C_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right)\right] \\
\Phi=\frac{1}{2}(r \omega \cos \varphi)^{2}
\end{gathered}
$$

r, φ, λ spherical coordinstes of radial distance, latitude, and longitude, $\mathrm{P}_{\mathrm{n}}^{\mathrm{m}}(\sin \varphi)$ associated Legendre polynomial of degree n , order m and argument $\sin \varphi, \mathrm{C}_{\mathrm{nm}}, \mathrm{S}_{\mathrm{nm}}$ spherical harmonic coefficients.
 so that gravity g_{0}, on this surface is given by

$$
g_{0}=\left|\Delta W_{o}\right|
$$

The quantity g_{0} is related to the International System for gravity measurement as follows

$$
\begin{align*}
& \mathrm{g}_{0}^{\prime}=\Delta \mathrm{g}_{\mathrm{I}}+\gamma_{\mathrm{I}} \\
& \mathrm{~g}_{0}=\mathrm{g}_{0}^{\prime}-13.7 \tag{2}
\end{align*}
$$

where
γ_{I} is normal gravity on the International Ellipsoid ${ }^{(8)}$
Δg_{I} is gravity anomaly for the International System
-13.7 mgal is the Pottsdam correction.
The $5^{\circ} \times 5^{\circ}$ mean gravity anomalies were formed from a straight average of the given $1^{\circ} \times 1^{\circ}$ mean anomalies for each $5^{\circ} \times 5^{\circ}$ section and were represented at the mid-point of the section in latitude and longitude. A value of g_{0} was then computed from (2) using each of the $5^{\circ} \times 5^{\circ}$ mean anomalies, and the resultant g_{0} was taken as the observed quantity. A residual, $g_{0}-g_{c}$, was then formed for the equation of condition and expressed in terms of linear adjustments to the starting values of the spherical harmonic coefficients. The quantity g_{c} was computed as

$$
\begin{equation*}
\mathrm{g}_{\mathrm{c}}=\left\{\left(\frac{\partial \mathrm{W}}{\partial \mathrm{r}}\right)^{2}+\frac{1}{\mathrm{r}^{2}}\left(\frac{\partial \mathrm{~W}}{\partial \varphi}\right)^{2}\right\}^{1 / 2} \tag{3}
\end{equation*}
$$

where the partials are obtained from (1) with the use of our starting coefficients and reference system parameters. A constant term $\Delta \bar{g}_{0}{ }^{(9)}$, variation of mean gravity from the reference system, was added to the equation of condition for simultaneous adjustment with the spherical harmonic coefficients, Weighted least squares normal equations were then formed for simultaneous adjustment with the satellite normal equations.

In forming the weighted least squares normal equations the variance σ^{2} of g_{0} (observed gravity value corresponding to the $5^{\circ} \times 5^{\circ}$ mean anomalies) was obtained from

$$
\begin{equation*}
\sigma^{2}=\frac{\sigma_{0}^{2}}{\mathrm{~N}+1} \tag{4}
\end{equation*}
$$

where
N is the number of $1^{\circ} \times 1^{\circ}$ mean anomalies within a $5^{\circ} \times 5^{\circ}$ section and σ_{0}^{2}, the computed variance of the $21,0001^{\circ} \times 1^{\circ}$ observed anomalies, is 33^{2} (mgal ${ }^{2}$).

For an unobserved $5^{\circ} \times 5^{\circ}$ area, a value of zero was adopted with a variance of σ_{0}^{2}. The weighting of the gravity data was according to the formula

$$
\begin{equation*}
\mathrm{w}=\frac{\cos \phi}{\sigma^{2}} \tag{5}
\end{equation*}
$$

where the cosine of the latitude was introduced to account for the unequal area covered by the $5^{\circ} \times 5^{\circ}$ section. For a $5^{\circ} \times 5^{\circ}$ mean anomaly derived from 25 $1^{\circ} \times 1^{\circ}$ means, $\sigma=6 \mathrm{mgal}$ 。
IV. RESULIS

1. Solutions

The geopotential and station coordinate solutions were described in a previous section, Description of Solutions. The values of the geopotential coefficients, for the satellite solution (GEM 1) and the combined satellite/surface gravity (GEM 2) solution, are listed in Table 3. The station coordinates for the 46 tracking stations are listed in Table 4. The ellipsoid heights for the 13 BakerNunn stations have been lowered by 15 meters to account for an error in the computer program for the parallactic refraction correction. The solution value for $\Delta \bar{g}_{0}$, the variation of mean gravity from the reference system, was 3.28 mgal .

2. Zonal Coefficients

Zonal coefficients complete . 3 degree 21 in the GEM 2 solution are obtained from the combined effects of both satellite and surface gravity data. These zonal values are compared in Table 5 with the SAO 1966 (M1) and 1969 Standard Earth II values derived by Kozai from secular and long period orbit perturbations. The table also contains the zonal values from our satellite only solution. Since weckly satellite arcs were used in our solution the satellite zonal coefficients are obtained from the short term zonal effects. The comparison in the table indicates remarkable agreement with SAO S.E. II in the zonal values from our satellite only solution and even better agreement in our combined solution.

A zonal profile of geoid height is given in Figure 2 for the GSFC satellite and combined solutions and for the SAO Standard Earth II solution. Very little difference exists except in the region of 0 to $\pm 20^{\circ}$ latitude which is given on an enlarged scale in Figure 3 where differences of a few meters may be seen.

Generally high correlation exists between consecutive odd and consecutive even zonal coefficients in satellite solutions from secular and long term orbital effects. Correlations, although very large (generally greater than 0.9) for consecutive odd or even zonals, fall off as odd or even pairs separate in degree. However, in our combination solution the coefficients do not exhibit these high correlations and have essentially become decoupled through the surface gravity data.

3. Geoid Height Maps (Undulations)

Geoid height contour maps at ten meter intervals are presented in Figure 4 for the GSFC combined and the Standard Earth II olutions. The two solutions generally compare very favorably but differences $4: 8$ meters can be seen
between the relative highs and lows on the maps. An rms of 5 meters was estimated between the GSFC combined and the S E. II solution from a more detailed analysis. A maximum difference of 15 meters exists at -70° lat. and $20^{\circ} \mathrm{W}$ long., where the GSFC combination geoid is shaped differently from the SAO solution.

4. Degree Variances of Gravity Anomalies

Degree variances of gravity anomalies have been obtained, for each degree $\mathrm{n}=3$ to 21 , as follows

$$
\begin{equation*}
\sigma_{\mathrm{g}_{\mathrm{n}}}^{2}=\bar{\gamma}^{2}(\mathrm{n}-1)^{2} \sum_{\mathrm{n}=0}^{\mathrm{n}}\left(\overline{\mathrm{C}}_{\mathrm{n} \mathrm{~m}}^{2}+\overline{\mathrm{S}}_{\mathrm{n} \text { m }}^{2}\right)(\mathrm{m} \mathrm{gal})^{2} \tag{6}
\end{equation*}
$$

where $\bar{\gamma}$ is a mean value of normai gravity and $\overline{\mathrm{C}}_{\mathrm{nm}}$ and $\overline{\mathrm{S}}_{\mathrm{nm}}$ are the spherical harmonic coefficients in normalized form. These values are tabulated in Table 6 for our combined and satellite only solutions and for the S.E. II solution for purposes of comparison. Although the total sums of the degree variances differ by $3 \mathrm{mgal}^{2}$ between the S.E. II and our combined solution, individual differences are as large as $8 \mathrm{mgal}^{2}$. Comparisons of the solution with observed gravity anomalies are in process but are not available at the present time.

5. Geopotential Coefficients and Standard Deviations

Tables 3 a and 3 b show the geopotential coefficients obtained in the GSFC satellite and combination solutions. Table 7 presents an rms of geopotential coefficient differences with the Standard Earth II for each degree for a variety of solutions. Two other solutions in addition to the GSFC solutions are presented. These are the SAO 1966 Standard Earth I field and another SAO solution, the B13.1 which is similar to the Standard Earth II. It is noted that the smallest rms total is for the GSFC combined solution and the largest total is for the Standard Earth I.

The rms differences per degree between the SAO S. E. II and the GSFC satellite solution have been used in an analysis for determining the relative weighting factor between the surface gravity normal equations and the satellite normal equations. In Figure 5 the average standard deviations of the coefficients for each degree nare plotted for the satellite and surface gravity solutions. It might be expected that the two curves would cross at some point, such as at degree ten, above which the surface gravity would provide a relatively stronger contribution to the higher degree coefficients. However, the di sparity between the two curves suggests the satellite values are unrealistic. A more realistic standard deviation of the satellite coefficients can probably be obtained from the rms of coefficient differences between two
solutions containing satellite data. This was done with the GSFC satellite solution and the Standard Earth II and the resulting curve is shown in Figure 5. This curve crosses the surface gravity curve at degree 10 with a value of about $5.5 \times 10 \quad$ The satellite standard deviation at this point is 2.0×10^{-8} so that the ratio ror scaling of the satellite standard deviations is 2.7. This corresponds to a relative increase of weight of 7 for the surface gravity normal equations. In the combined solution a weight of 5 was finally used because the standard deviations for the surface gravity equations, although more realistic, may be somewhat optimistic.

It should be pointed out that the correlations among the non-zonal geopotential coefficients are generally very small. Under these conditions the relative weight of separate normal equations in estimating a parameter for a combined solution is nearly inversely proportional to the ratio of the squares of the standard deviations associated with the separate normal equations.

6. Comparison of Station Heights with Local Survey

The station heights above the geoid have been obtained for 46 stations using our combined satellite-surface gravity geopotential and station coordinate solutions. These heights were then compared with the mean sea level heights given by local survey. The comparison is presented in Figure 6. The mean sea level height, MSLH, for each of the stations was obtained from the survey sheets in the NASA Directory of Observation Station Locations published at Goddard Space Flight Center. The MSLH heights are listed in Table 8 for each of the stations along with the corresponding geoid height, N, obtained from our solution. The survey values of MSLH are generally listed with an accuracy of a meter or better. The full station coordinates obtained in our combined solution are listed in Table 4 which gives the ellipsoidal height (h), latitude, and longitude of all 46 stations.

These 46 stations are plotied in Figure 6 in terms of a letter signifying the tracking station data type, namely B - Baker-Nunn (13), M - MOTS (23), D Doppler (5), G - GRARR (3), and L - Laser (2).

The quantity plotted in Figure 6 for each of the 46 stations is

$$
\begin{equation*}
\Delta H=h-N-M S L H \tag{7}
\end{equation*}
$$

as a function of latitude of the station. Since the geoid heights, N, and the station heigits, h, are referenced to our ellipsoid of $a_{e}=6378155$, the zero value corresponds to this value of a_{e} on $t_{i s}$ plot. The average ΔH is close to -10 meters, implying $a_{e}=6378145$ meters is a better reference radius for this
set of stations. This value of $\triangle H=-10$ meters is based upon the MOTS, laser GRARR, and doppler coordinates; the Baker-Nunn coordinates were excluded from this calculation because of the adjustment for parallactic refraction made to the station heights, as noted above in section 1.

In Figure 7 a similar set of ΔH results were computed using the Standard Earth II ${ }^{(3)}$ geopotential and station coordinates for 37 sites. These results show an average value ff about $a_{e}=6378137$. There appears to be a systematic difference in the scale implied for the Northern than for the Southern Hemisphere, due principally to the European stations. These stations are circled in the figure and when excluded an average $\mathrm{a}_{\mathrm{e}}=6378143$ results.
7. Adjusted Ellipsoid Scale (a_{e}) Based upon the Mean Value of Gravity Variation ($\Delta \overline{\mathbf{g}}_{0}$)

The mean value of gravity variation $\Delta \bar{g}_{0}$ from the reference system was obtained as part of a general solution as previously described. The value of $\Delta \overline{\mathrm{g}}_{0}=3.28 \mathrm{mgal}$ was obtained. Using the simple relation

$$
\begin{equation*}
\mathrm{g}_{\mathrm{e}} \simeq \frac{\mathrm{GM}}{\mathrm{a}_{\mathrm{e}}^{2}} \tag{8}
\end{equation*}
$$

the variational relationship becomes,

$$
\begin{equation*}
\frac{\Delta \mathrm{g}_{\mathrm{e}}}{\mathrm{~g}_{\mathrm{e}}}=\frac{\Delta \mathrm{GM}}{\mathrm{GM}}-\frac{2 \Delta \mathrm{a}_{\mathrm{e}}}{\mathrm{a}_{\mathrm{e}}} \tag{9}
\end{equation*}
$$

Since the GM of the reference ellipsoid includes the atmosphere*, and the relative mass of the atmosphere to the earth is 0.85×10^{-6} and further, since

$$
\frac{\Delta \mathrm{g}_{\mathrm{e}}}{\mathrm{~g}_{\mathrm{e}}}=\frac{\Delta \mathrm{g}_{0}}{\mathrm{~g}_{\mathrm{e}}}=3.35 \times 10^{-6}
$$

where $g_{e}=9.780291 \mathrm{~m} \mathrm{sec}^{-2}$, we can obtain

$$
\Delta \mathrm{a}_{\mathrm{e}}=-\frac{\mathrm{a}_{\mathrm{e}}}{10^{6}} \frac{(3.35+0.85)}{2}
$$

or -13 meters. This implies that $\mathrm{a}_{\mathrm{e}}=6378142$ meters is a better scale for our reference ellipsoid.

[^0]
V. TESTS OF SOLUTIONS

Two tests have been applied to the solutions that have been obtained so far. Both concern the ability of the gravity fields to represent the motion of close earth satellites.

The first test was on 22 six-hour orbital arcs of the Beacon Explorer C (BE-C) spacecraft composed of laser range data from the Goddard experimental laser. The rms of fit to the data on the 22 arcs using the Standard Earth II gravity field varied between 0.9 meters and 4.3 meters with a mean of about 3 meters. With the GSFC satellite solution these rms values dropped to between 0.6 meters and 2.0 meters with a mean of about 1.3 meters. This considerable improvement was obtained even though no laser data on BE-C was used in the solution. These rms values are shown in Figure 8.

The second test involved the long-term behavior of INTELSAT 2-F1, Cosmos 41 rocket and Cosmos 382 rocket. The variation of mean elements over perinds of hundreds of days have been compared using the Standard Earth II and GSFC combination gravity fields. The results are shown in Table 9 from which it is evident that a three-fold improvement has been obtained with the GSFC combination solution. Further, it should be remembered that none of these satellites were used in the solutions for the gravity field.

murnemig Pant Brant Not muMm

VI. SUMMARY AND CONCLUSIONS

The first comprehensive GSFC Earth Model has been obtained. This consists of a combined solution for the geopotential field using satellite and surface gravity data (GEM 2) as well as the associated satellite only solution (GEM 1). It also includes a set of 46 geocentric station positions. Tests and compaxisons presented in the report yield encouraging results for these solu-tions, particularly in their capability for improved orbit determination as seen in the section on Test Results. Analysis is continuing with additional satellite and surface gravity data to derive a more complete geopotential model with spherical harmonics complete to degree 20. Satellite data from over 71 tracking stations are being processed for this solution.

In the present solution good agreement has been obtained between analyses of surface gravity data and station height data to provide for an adjusted scale of the equatorial radius (a_{e}) of a mean earth reference ellipsoid. A value of $a_{e}=6378145$ is adopted. Our present solutions, data used, and results obtained in this report are summarized in Table 10 for convenient reference.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the following organizations and people for their contributions to the preparation of this document:

Computer Sciences Corporation

William E. Strange for review of materials in the report, Wayne A. Taylor for computer utilization and data processing, Ralph D. Grant for program development and maintenance, and Kenneth G. Nickerson for satellite data. analysis.

Computing and Software, Incorporated

Donna R. Mentges and Paul E. Gibbs for computer and data analysis services including the geoid height maps.

Goddard Space Flight Center, Geodynamios Branch

Barbara H. Putney for computer program management and Ronald Kolenkiewicz for the BE-C laser test results.

REFERNNCES

1. NASA CR 1579 (1970), "The Terrestrial Environment: Solid-Earth and Ocean Physics," Washington, D. C.
2. Lundquist, C. A. and Veis, G., (1966), "Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth," SAO Special Report 200.
3. Gaposchkin, E. M., and Lambeck, K., (1970), "1969 Smithsonian Standard Earth (II)," SAO Special Report 315.
4. Lerch, F. J., et al. (1971), "Preliminary Goddard Geopotential Using Optical Tracking Data and a Comparisonwith SAO Models," GSFC X-552-71-143.
5. Kozai, Y., (1969), "Revised Zonal Harmonics in the Geopotential," SAO Special Report 295.
6. Nickerson, K. G., et al. (1971), "Summary of GEOSTAR Operations Activities," CSC Report No. 5035-14200-02 TM, under NASA contract NAS-5-11790.
7. Marsh, J. G., Douglas, B. C. and Klosko, S. M., (1971), "A Unified Set of Tracking Station Coordinates Derived from Geodetic Satellite Tracking Data," GSFC X-553-71-370.
8. Heiskanen, W. A. and Moritz, H., (1967), Physical Geodesy, Textbook published by W. H. Freeman and Company.
9. Rapp, R. H., (1972), "A 300 n.m. Terrestrial Gravity Field," presented at the AGU Annual Meeting, Washington, D. C.
10. Sjogren, W. L. , et al. (1966), "Physical Constants as Determined from Radio Tracking of the Ranger Lunar Probes," JPL Technical Report No. 32-1057
11. United States Air Force, ACIC, (1971), "10 $\times 1^{\circ}$ Mean Free-Air Gravity Anomalies," ACIC Reference Publication No. 29.
12. "NASA Directory of Observation Station Locations," (1970), Metric Data Branch, Goddard Space Flight Center.

Figure 4. Geoid Heights (Meters)

Figure 5. Average Standard Deviation of Coefficients per Degree n of Satellite ard Gravimetiy Solutions
(Syヨl.3W) HาSN $\cdot N-4=H \nabla$

Table 2

Standard Deviations Assigned to the Observations

Observation	Standard Deviation
GRARR \dot{R} (range)	10 meters
R (range-rate)	$3 \mathrm{~cm} / \mathrm{sec}$
Laser R	1 meter
Optical δ (declination)	2 seconds of arc
(cos δ)a (right ascension)	2 seconds of arc
Minitrack direction cosines	3×10^{-4}
NWL Doppler \dot{R}	$4 \mathrm{~cm} / \mathrm{sec}$
Gravity Data,	$33 /(\mathrm{N}+1)^{3 / 2} \mathrm{mgal}$
$5^{0} \times 5^{\circ}$ mean gravity anomalies	
(N $=$ no. of points given in $5^{\circ} \times 5^{\circ}$ section)	

」
㠋病

范㑑 品

篤寀

Table 4
Station Coordinates

	LATITUDE		LONGITUDE		HEIGHT
	SITN DDMM	SS.SS	$\overline{\text { DDDMM }}$	SS.SS	METERS
ANCHOR	146117	0.51	21010	29.69	68.7
LACRES	1033216	44.68	25314	45.42	1149.0
LASHM2	1065111	9.30	35858	26.32	221.5
APLMND	111399	48.67	2836	12.78	97.3
1BPOIN	10213825	49.77	28254	48.71	-40.1
1 FTMYR	10222632	53.45	278 \&	4.33	-31.1
100MFR	1024-3123	25.19	13652	15.89	129.9
ISATAG	1028-33 8	58.49	28919	53.60	707.2
1 MOJAV	10303519	47.90	2435	59.30	888.3
1JOBUR	1031-2553	0.66	2742	26.59	1539.0
INEWFL	10324744	29.84	30716	46.34	69.0
1GFORK	1034481	21.27	26259	19.87	219.4
IWNKFL	10355126	46.48	35918	8.38	104.0
1ROSMN	10373512	7.13	2777	41. 35	865.4
10RORL	1038-3537	32.15	14857	14.80	939.5
1 ROSMA	10423512	7.33	2777	41.44	865.5
1 TANAN	1043-19 0	31.72	4717	59.73	1364.4
madgas	1123-19 1	14.19	4718	11.75	1390.8
ROSRAN	11263511	45.51	2777	26.20	828.9
ULASKR	11286458	19.05	21229	12.44	341.6
PRETOR	2115-2556	48.21	2820	51.88	1579.8
1UNDAK	7034481	21.41	26259	19.60	217.3
1EDINB	70362622	46.76	26140	7. 73	21.4
1 COLBA	70373853	36.18	26747	41.11	227.3
1BERMD	70393221	49.86	29520	35.37	-15.2
1 PURIO	70401815	28.94	2940	23.77	-5.7
1 GSFCP	7043391	15.32	2831 C	20.33	0.6
10ENVR	70453938	48.02	25523	38.87	1759.3
godlas	7050391	14.53	2831 C	18.33	12.3
WALLAS	70523751	36.19	28429	23.76	-42.1
1 JUM40	7072271	14.54	27953	13.07	-30.6
$1 \mathrm{JUBC4}$	7074271	14.79	27953	13.11	-34.2
ISUDBR	70754627	20.40	2793	10.99	233.3
1JAMAC	7076184	34.78	28311	27.12	422.4
10RGAN	90013225	25.04	25326	49.06	1616.4
10LFAN	9002-2557	35.95	2814	52.83	1553.5
WOOMER	9003-31 6	1.98	13647	3.63	151.0
1SPAIN	90043627	46.74	35347	37.13	56.9
1TOKYO	90053540	23.00	13932	16.65	81.0
inatal	90062921	34.71	7927	27.60	1869.6
10UIPA	9007-1627	56.74	28830	24.82	2476.5
1shraz	90082938	13.87	5231	11.52	1578.2
icurac	9009125	25.19	2919	44.71	-28.8
1 JUPTR	9010271	14.15	27953	13.55	-26.8
1VILDO	9011-3156	34.67	29453	36.93	613. ${ }^{\prime}$
imauio	90122042	26.15	20344	33.98	3041.1
ausbak	9023-3123	25.82	13652	43.96	128.4

s әтqе

Comparison of Zonal Coefficients
 Normalized Coefficients Multiplied by 10^{6}

号	

S.E.II

 degree

Table 6
Degree Variances for Gravity Anomalies (Mgal ${ }^{2}$)

DEGREE	GSFC COMB	S.E.II	$\begin{aligned} & \text { GSFC } \\ & \text { SAT. } \end{aligned}$
3	33.577	32.842	33.344
4	21. 509	21.805	21.611
5	20.359	17.785	19.790
6	19.651	15.652	18.764
7	17.849	15.491	19.741
8	9.029	6.639	10.311
9	10.538	12.651	11.454
10	9.951	12.860	11.158
11	7.374	12.234	8.174
12	4.415	5.099	4.877
13	13.375	12.121	5.001
14	11.333	8.431	2.424
15	11.204	13. 21.5	2. 301
16	6.096	13.84.4	0.630
	196.	199.	

Table 7
Comparison of Coefficients with S. E. II Normalized Coefficients Multiplied by 10^{6} RMS OF COEfFICIENT DIFFERENCES BY DEGREE

DEGREE	$\begin{aligned} & \text { GSFC } \\ & \text { COMB. } \end{aligned}$	$\begin{gathered} \text { GSFC } \\ \text { SAT. } \end{gathered}$	SEI	B13.1
3	0.021	0.032	0.112	0.068
4	0.039	0.043	0.064	0.030
5	0.049	0.059	0.055	0.056
6	0.062	0.065	0.072	0.044
7	0.059	0.073	0.093	0.060
8	0.031	0.042	0.065	0.061
9	0.046	0.050	0.0	0.059
10	0.052	0.063	0.0	0.058
11	0.066	0.057	0.0	0.055
12	0.044	0.048	0.0	0.050
13	0.065	0.055	0.0	0.066
14	0.049	0.023	0.0	0.050
15	0.047	0.025	0.0	0.048
16	0.034	0.018	0.0	0.017
TOTAL RMS	0.050	0.052	0.077	0.053

Taple 8
Station Geoid Heights from the Combination Solution
and MSL Heights from Survey

cata type	STATION NAME	STATION NUNBER	$\begin{aligned} & \text { LAT* } \\ & \text { (UEG) } \end{aligned}$	$\begin{aligned} & \text { LON* } \\ & \text { (DEG) } \end{aligned}$	HSL (M)	GEOID (M)
0	ANCHOR	14	61.28	210.17	68.	7.
0	LACRES	103	32.27	253.23	1203.	-24.
D	LASHM2	106	51.18	358.97	190.	48.
0	APLMND	111	39.15	283.10	143.	-38.
0	PRETOR	2115	-25.93	28.33	1580.	24.
M	IBPOIN	1021	38.42	282.90	6.	-38.
M	IFTMYR	1.022	26.53	278.13	5.	-27.
M	100MFR	1024	-31.38	136.87	133.	1.
M	ISATAG	1028	-33.13	289.32	693.	26.
M	IMOJAV	1030	35.32	243.08	929.	-30.
M	1 jobur	1031	-25.88	27.70	1522.	25.
\cdots	INEWFL	1032	47.73	307.27	69.	8.
M	IGFORK	1034	48.02	262.98	253.	-26.
M	1 WNKFL	1035	51.43	359.30	67.	48.
M	IROSMN	1037	35.20	277.12	909.	-35.
M	10RORL	1038	-35.62	148.95	932.	16.
M	IROSMA	1042	35.20	277.12	909.	-35.
M	ITANAN	1043	-19.00	47.28	1378.	-7.
M	l Uisdak	7034	48.02	262.48	253.	-26.
N	IEDINB	7036	26.37	261.67	60.	-19.
\cdots	1 COLAA	7037	38.88	267.78	273.	-31.
M	18ERMD	7039	32.35	295.33	31.	-45.
M	lPURIU	7040	18.25	294.00	50.	-46.
M	1GSFCP	7043	39.02	283.17	53.	-38.
M	1 CEVVR	7045	39.63	255.38	1790.	-20.
M	1 JUM40	7072	27.02	279.88	14.	-31.
M	ISUDAR	7075	46.45	279.05	281.	-36.
M	1 JAMAC	7076	18.07	283.18	446.	-21.
G	Madgas	1123	-19.02	47.30	1399.	-7.
G	RCSRAN	1126	35.18	277.12	874.	-33.
G	ulaskiz	1128	64.97	212.088	349.	7.
L	godlas	7050	39.02	283.17	55.	-38.
L	hallas	7052	37.85	284.48	9.	-39.
8	lorgan	9001	32.42	253.43	1651.	-24.
8	LOLFAN	9002	-25.95	28.23	154\%.	24.
B	ISPAIN	9004	36.45	353.78	26.	51.
B	ITUKYU	9005	35.67	139.53	60.	39.
B	INATAL	9006	29.35	79.45	1927.	-49.
B	g.gutpa	9007	-16.45	288.50	2452.	31.
8	1 SHRAZ	9008	29.63	52.52	1596.	-9.
8	ICURAC	9009	12.08	291.15	7.	-25.
B	1JUPTR	9010	27.02	279.88	15.	-31.
B	IVILDO	9011	-31.93	294.88	598.	27.
B	inauio	9012	20.70	203.73	3034.	6.
B	AUSBAR	9023	-31.38	136.87	141.	-2.
B	WOOMER	9003	-31.38	136.87	162.	-2.

TSee Table 4 for more complete values.

Table 9

Long-Arc Tests on Mean Elements for Resonant Satellites

Table 10
Summary of Solution, Data, and Results

A. SOLUTION

Geopotential solution in spherical harmonic series (degree n, order m).

Type Solution	Complete $(\mathrm{n} \times \mathrm{m})$	Zonals Complete		Resonant Coefficients

46 Center of mass tracking station locations (see tracking systems below)
B. DATA

Satellite Data

Tracking Systems
13 Baker-Numn Cameras
23 MOTS Cameras
3 GRARR (range/range-rate)
2 LASERS
5 DOPPLER

25 Satellites (Data Processed)
300 weekly arcs of optical data
15 weekly arcs of electronic/laser data 66 one/two-day arcs of GEOS-I and II flashing light data
20 weekly arcs of Minitrack data

Gravimetry Data
$19,0001^{\circ} \times 1^{\circ}$ mean gravity anomalies of ACIC data, and $2,0001^{\circ} \times 1^{\circ}$ mean gravity anomalies from other sources, used to form $1,7055^{\circ} \times 5^{\circ}$ means, providing 70% world coverage
C. RESULTS

1. Station heights indicate $a_{e}=6378145$ meters.
2. Mean value of gravity ($\Delta \overline{\mathbf{g}}_{0}=3.28 \mathrm{mgal}$) indicates $a_{e}=6378142$ (m).
3. Solutio: for 327 zonal and tesseral coefficients including $\Delta \overline{\mathrm{g}}_{0}$ from satellite and gravimetry data.
4. Solution using optical and electronic tracking data for location of 46 tracking stations.

[^0]: *GM was obtained by the Jet Propulsion Laboratory ${ }^{(10)}$ from space probes and thus includes the mass of the atmosphere, while the free-air gravity anomalies were made at the surface of the earth and reduced to sea-level.

