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1. THEORETICAL FRAMEWORKS FOR TESTING
. RELATIVISTIC GRAVITY

An aétrdndmer detects mysterious pulses in the li_ght from a star
at the center of the Crab Nebula, and theorists speculate that their source
is a rotating neutron star (a "pulsar")., Massive aluminum cylinders in
Ilinois and Mai‘yl_land are suddenly and simultaneously set into vibration,
and theorists suggest that a gravitational wave has Ijust paAssed through
the solar sy.stem. Radib astronomers discover that space fs filled with
black-body radiation with a té’mper_ature of about 3° Kelvin, and theorists
say that it is a by-product of the initial *big bang" of the Universe. X;ray
. astronomers discover aperiqdi; fluctuations in the X-ray e’rhiséidp from
C'ygnus-'Xl; optical astronon;érs discover that Cygnué-Xl ié associated
with a.single-line spectrovscopic ‘binai'y star;.. and from this evidence
theorists speéuiate that the X-rays come from a Black Hole in orbit
around v_a x.1’or'ma1 star. - - | '

But w‘hevn_ the theorists sit down}aﬁd‘begin to construct detailed
models forlthese phenomena, they suddenly pull up short. Ail ‘thesé
phenomen.ar,. they notice, involve "relativistic" gravitation in a vefy
cruciai way. Newton's theory of gravitation is.cert.ainly inadequate to

.describe these phenoinena quantitatively; and two of them .(bla,ck holes
and gravité.tional waveé) it cannot déscribe éven qualitatively. Experi-
mental tests in the solar system up to 196_0 seem to cénﬂrm Einstein's
felativiét,i_c theory of gravity,_ so perhaps that is the theory fo uée in
model-building. But those experiments were of such low accuracy (only
20 per cent precision in most cases), that they also seem to confirm

several alterhatives: Whitehead's Theory, the Belinfante—’Swihart Theory,



Dic.ke-Brans—Jordan Theory, Yilmaz's Theory, Papapetrou's Theory,
voo ».' Theorists are hamstrung. Unless they have some strong r»eason’
for believing one of these theories over the others, they ,éan have little
confidence in the models they build to explain asfrophysical p'henbmena.
Fortunatély, the same advances in laboratory and space technology

that made possible the discovery of these a_étrophysi_cal phenorhena, wili
aiso, in the coming decade, give the ‘theoretical astrophjrs_icist strohger |
eXpezjimental reasbné for Bélieving 6n1y'§_rig théory of gravitatioﬁ. v T.he
technoiogy of the 60's has handed us a set of high-precision to.ols for. ,
testing 'gravifationél theoriés i1_1 the 70's; radar ranging to plam’ets and
satellites, with accuracies better‘than 15 meters; laser ranging to the
Moon, accurate to better than 30 centimeters; long baselline‘_inter—»
ferometry, capable of measuring aﬁgles down to 3X 10"% seconds of
arc; ;tomic and molecular clocks, stable to one part in 1014 over periods
as long as a year; g_ray'i'meters_', able to megsure changes' in acceleration
on the Earth as small as 10710 g; and. many others, |

| ‘These developments -= _diééoveriés in astro‘nomy'» and astro-
physics , and ad\.rancing.technology -- have made the s‘ystematic, high-
‘precision testing of :g‘ra.vi»tation‘theories an important and exciting task
for the 70's. | |

Although there are many new experimental 'pqssibil_'i‘ties s the cost’

of carrying out mést in terms of manpower and money 1svvery- high.-
(The megabuck is a useful unit of measure Vfor' some of the tests.) For
this reasc.)_n,v it is crucial that we have as good a _théore‘tic.a..l fr_amewbrk
as possible for comparing the relative values of the \}arious experiments

and for proposing new ones which might have'been overlooked. -



.The 'm;ost simple-minded theoretical framework would be ‘a direct
comparison of general_relativity with Newtonian theory. Indeed, it was
just such a comparison which motivated Einstein's original three tests --
the gra\}itational redshift,._ the deflection of light, and the perihelion
shift of Mercury.- One rnight think that we should merely continue to
measure these and other non- Newtonian, general - relativistic effects
to higher and higher accuracy;. and only if a discrepancy between experi-
ment and theory is found, should we begin to consider'other theories.

But because of the lack of high precision data favoring general
relativity over any other theory, and because of the large (and growing)
‘number of competing theories, there is a great need for ‘a theoretical
frax_nework which is powerful enough that it can be used to design and
assess experim'e_ntal'tests in detail, yet is gene_ral enough that it is not
biased in favor of general relativity. It should also provide a machinery
for analysing all the theories of gravity which have been invented as
alternatives to Einstein in the past 70 years, for classifying them, for
elucidating their similarities and differences, and finally for comparing
their predictions with the results of solar-system experiments.' We
would like to see experiment force us, with very very. few a priori assump-
tions about the nature of grairity, toward gen‘eral. reiativity or some other
theory. | ‘

A leading exponent. of this viewpoint is _Robert H. .Dickef It has:
led him and others to perform several high-precision null experiments
(Eotvos-Dicke-Braginsky experiment; Hughes-Drever experiment; ether-
drift experiments) which‘greatly vstrength.en our faith in the foundations

of general relativity. (See Dicke 1964; also Sect. 2 and 3 below.). Without



this viewpoint, some of the null ekﬁerimeﬁts might not have been Per_—
formed,. and we would certainly not understand so well their significance.

Dicke»himself.h‘as suggested one type of theoretical framework
for comparing various theories of gravity and analysing the gignificance
of various exp'eriments., His framework (see Sect. 2 below) is palftieularly _
powerful for d.iscussing the null experiments ; fordelinea_.ting the qualita-
tive nature of gravity, and for devising new covariant theories of gr.avit}.r.i

The Dicke framework assumes almost nothing about the nature of
gravity. It_>helps one to design and discuss experiments which test, at a
very fundamental level, the nature of spacetime and gravity. Within it
one 'asks such qo.est_ions as: Do all bodi.es respond to gravity with the
same acceleration? Is space 1ocally; isotropic in its intrinsic properties?
What types of fields, if any, are associated with graﬂty ——_-scala;' fields,
vector fields, tensor fields, a.ff_ine' fields, ... ?

‘ Cruci_a.l among these experiments is the Eotvos ‘experiment (as
imoroved bericke’arid Braginsky and thei.r collabor'at‘ors) which verifies
to hig‘l accuracy the composition- independence of acceleration of labora-
tory—sized bodies ("Unlversa.lity of Free Fall"). By analysing this experi-
vment within the Dicke framework, one arrives at a %mmber of "fair-
confidence" conclusions about the nature of gravity. These are (i) that
gravlty is associated at least in part, with a "metric”; (11) that freely
falling test bodies move along geodesms of thls metric; and (iii) that in
loeal freely falling frames of this metric, all the non-gravitational laws
of physics take on their special-relativistic forms. C_urr_enf research is
groping toward a moxjelconvincing proof of this "fair-conﬁdence" conclu-

sion (cf. Sect. 3). Theories of gravity which'Satisfy conditions (i), (ii)



and (iii) aré called "métric" theorvies.

A second theoretical frarﬁework starts where fhe Dicke frame-
work leaves off, by taking the postﬁlatés (1), (ii) and (1i1) of metric
theories as its foundation. This framework is the Parametrized Post-
Neyvtonia‘n (PPN) formalism of Eddington (1922), Robertson (1962), and
Schiff (1967), as impro.véd and extebnded by Schiff (1960a), Baierlein
(1967), Nordtvedt (1968b), Will (1971a) and Will and Nordtvedt (1972). -

';I‘he PPN framework takes the slow-m.otion, pbsthewtonian
limit of all conceivable metric theorieé and characterizes that limit by
a set of ~9 feal-valued parameters (see Sect. 4 for defails). Each |
mefric théory of gravity is characterized by 4a set of particular values
for these PPN paramefvers. 'i‘hg task of sola_r-s'ys’tefn gravity experi-
ments in the coming decade can be regarded as onev of meésuring the
values of these PPN parameters aﬁd thereby delineating, hopefully,
'whig:h theory of gravity is correct. v '

In the following two sections, we will discuss the chke frame-
work, and the foundation whici'x it and the Eotvos= Dicke-Braginsky experi-
ment lay for the PPN formalism. The remaining four sections deal with
the PPN formalism in detail. Sect. 4 sets up the formalism and analyses
the structuré of the PPN metric; Sect. 5 reviews metric theories of gravity
and their post-—Newtoﬁian_limits; Sect. 6 derives PPN equations of motion;
and Sect. 7 analyses specific solar-systerﬁ experiments in detall, ‘and
uses the curfent status of expérimen’c fo put lirﬁits on the values.o_f the

PPN parameters, thereby ruling out several theories of gravity.



2. THE DICKE FRAMEWORK

2°1. Statement of the Framework

The Dicke framework for analgrzing experimental testo of gravity
was expounded in Appehdix 4 of Dicke's (19645 Les Houches lectures.
Here we shall preeent a slightly generalized version of Dicke's frame-
work, and we shall couch it in slightly different langu’age.i

Dicke .beg_insvwitl.l two statements about the type of mathematical
formaiism to be used in discdssing gravity. These statements have little

physical _content;i they serve primarily to deline,a'tte.the vantage potht

1See, however, Trautman's (1965, p. 101) remarks about the physical

significance of assuming spacetime to be a differentiable manifold.

from which gravity will be viewed. They say:

Statement (i): Spacetime will be fega'rded as a 4-dimensional |

manifold, with each point of the manifold corresponding to a physical
" event. The manifold need not a priori have either a metric or an affine
connection.

Statement (i1): The theory of gravity will be expressed in a form

that is independent of the particular coordina.tes‘ used; i.e., the equations
of gravity and the matia.ematical entities in them will be put into covariant
form. |

Notice that even if there is some physically preferred coordinate
system in spacetime the theory can still be put into covariant form.,
For example, one can introduce four scalar ftelds, whose'numerical _

 values are equal to the values of the preferred coordinates:



alg) = x(@), - Bla) =yl@), Y@ =za), &g =t
(2.1) o '

q a point in spacetime; ('x,y,z,t)-prefen;ed coordinates;

and one can then regard these fields as associated with gravity.

The Newtonian theéry o;lfk gi'a.vity is an example of a theory tiaat
is not no.r_fnally expressed.vin covariant language; the Newtonian equations
- VZU = - 4nGp, F = mYU -- are valid only in a pva.rticular:‘class of
coordinate frames. However, as Cartan has shown [ see Tfautman (1965)
for a review] s | Newtonian theory can be expressed in an a.l-ternatﬁe co-
variant form involving a nonmetrical affine connection.

"Stratified Theories” of_gra{rify (cf. Secﬁt. 5) are also examples
of theories which have phy,sicallir preferred éoordinate systems, bﬁt
which can still be put into covariaﬁt férm. |

Having 1a_.i& down his mathema.ticél viewpoint (statements i and ii
aboye), Dicke then_ hn.posves two cqﬁstra.ints, whic_h he requires of all
acceﬁtabl"e thep‘ries of gravity. They are:

Constraint 1: Gravity must be associated with one or more fields

of tensorial character (i.e., scalars, vectors, and tensors of various

ranks). |

Constraint 2: The dynamical equations which govern gravity must
be derivable fr.om an in\vrariant action principle. |
| These constraints have deep significance;théy strongly confine
the theovi'y‘r. | For this feasoh',_we should be willing fo accept‘ them only
if fhey are f_uﬁdam_ental to our subsequent ax.'gu'r.nents.. F§r most ap_plica-

tions of the Dicke framework they ia_re not need‘ejd at‘all. ‘Therefore, we

shall usually not assume them. If we ever need and use them, we shall



state so explicitly..
There is one final item in the Dicke framework -- an item of
great significance

Guiding prin01p1e° Ockham's (1495) razor -- Nature likes things

as simple ‘as possible (pluralitas non est ponenda sine ne'cessitate).

This guiding principleis used, of course, to tell us what kinds
of .theories of gravity are the most. likely to be correct -- and, there- |
fore what kinds of experiments are the most important ones to perform.

Notice that by telling us to apply Ockham's razor within a covariant
mathematical framework, Dicke builds a very particular bias into his
formalism. Only those theories which look simple when expressed in
covariant form are deemed promising. By this criterion, general
re.lativity'is very promising -- peri'laps the most promising theory of alll
H'oweveri, Newtonian theory is not. U In its covariant form (T.rautman-
1965), by contraSt _with'its conventional form, Newtonian theory is_ex-.
ceed.ingly complicated. A physicist working in tne Dicke fra,rnework'would
never be so pathological as to dream up a theory like that of Newton!

Keeplng this bias in mind, we shall proceed to discuss experiments

within the Dicke framework.

2.’,2. The Fields Associated with Graviﬂg

| The Dicke framework is particularly useful for designing and -
interpreting experiments which ask what types of fields are associated
with gravity. When Dicke himself uses it for this purpose, he imposes
coristlraint 1 (above) -- _i.e. , he considers only scalar, vector, and tensor

flelds. To be on the safe side however, we shall go all the way and admit



any field that takes on a covariant form; i.e., we shall abandon con-
straint 1.

(1) Second- Rank Tensor Fleld

First let us consider tensor fields of rank.. (g). There is very
étrong experimental evidence that at least one such field exists in the
Universe: a symmetric field xpij whicil, far from all gravité.f_:ing bodies,
reduces to the Minkowgkii metric nij" Far frcnamA gravitating bodie's.,
this nij has orthonormal tetrads which are related by Lorentz trapsfor-
mationé , and determines the ticking rates of a.tomic and nuclear clocks
and _thé lengths of labofatory rods. ) |

The evidence for sﬁch a field comes ,largely_frdm elementary
particle physics. Sinée thése experiments are pe‘rformed at high |
energies and velocities, and ovei- véry srﬂall reg.i‘ons of space and time,
the effects of gravity on t'heir oAu_f..come are negligible. T_hﬁs we may

treat such experiments as if they were being performed far from all

_ graiiitating matter. The evidence provided By these experirhents is of

two types: . First, experiments which measure space and time intervals
directly -- e,g., measurements of the time dilation of the decay rates
of unstable particles,-z. Second, experiments which reveal the fundamental

role played by the Lorentz group in particle physicé ,3 including every-day,

?For a 2 per cent test of time dilation with muons of (1 - VZ)—1/2~ 12 in

.a st&rage ring, see Fé.rley, Baliley, Brbwn, Giesch, Jostlein, van der Meer,
Picasso, ana Taﬁnenbaum (1966) For eariier tirﬁe dli’ation- expefiments
see Frisch and Smith (1963), Durbin, Loar, and Havens (1952), Rossi
and Hall (1941), Ives and Stilwell (1938, 1941), -For an experlment

which verifies, to one part in 10 » that the speed of light (y rays.) is



iﬁdependent of the velocity of its source (decaying 7°) for source
velocities v > 0,99975c, see Alv'a'.gef, Farley, Kjellman, and Wallin
(1964).
3

See I_icht_:enberg (1965) for a discussion of Lorentz invariance, spin

‘and statistics, the TCP theorem, and relevant experiménts.’

high-precision verifications of four-momentum conservation vand of.:vthe
relativ‘is-tic laws of kinemat_ics.l Tq cast out the Minkowskii metric nijb
entirely would destroy the theoretical backing of such experiments.

Let us noticé what pa{rticle-physics experiments do and.do not
tell us about the tensor .ﬁeld, Lpij: First, they do not guarantee that
there éxist global Lorentz frames -- i.e., coordinate aystems exteﬁding

throughout all of spacetime, in which4

-4Here and throughout most of these lectures we use units in which the

speed of light is runity (see Sect. 3 for a »discussioﬁ of units and notation).

(2.2) 4y = Minkowskii metric ;= diag (1, -1, -1, -1) .
Nor do they demand that at each'event g there exist local frames, re-
1ated‘ by Lorentz transformations, in which the laws of elementary

particle physics'take on their speclal relativity form. They only demand

that, in the limit as gravity is "turned off" (either by Working far from

gravitating bodies or by performing experiments where the effects of

gravity can be ignored), the non-gr_avitaﬁonal laws of physics reduce to

the laws of special relativity.

Second, elementary particle experiments do tell us that the times

10



measured by atomic clocks in the limit as gravity is turned off depend
only on‘velocity;' not upon acceler.ation. The measured squared interval
is ds2 =My cixa dxb, independently of acceleration, Equivalently but
more phys.ically, the time interval measured by a clock moving with

velocity v% relative to a coordinate frame in the absence of gravity is

(2.3) ds = (n_, dx* ORI (V},{)Z- W2 - (v*)% 1/2 4,

» ihdependently.of the clock's acceleration dzxa/dtz. If this were not so,
then particles moving in circular orbits in strong magnetic fields would '
exhibit different decay rates than freely moving particles, which they do

not (Farley et al. 196());5 and °'Fe nuclel would show acceleration

5The experirnént of Farley et al. is a 2 per cent check of acc’elerat_iori—
independénce of the muon decay rate for énergies E/m =(1- v2 -1/2 . 12
a,ﬁd for accelerations, as meésured in the muon rest frame, of
a=5X 1020 cm/séc2 = 0.6 cm. Note that, at accelerations a fé.ctdr

33 2

j0i3 iarger than this (a ~ 10°° cm/sec” ~ 1012/cm), in one light

travel time across the muon it- accelerates up to nearAthe speed of
light, if it was initially at 1"est° Such large _accélerati'ons will probably
affect the deca.ir rates -- not because of ariy breakdown in relativity
theofy, but because the decay cannot be analysed within a .sj.ngl_e ;b_

moving Lorentz frame. The muon ceases to be a valid special relati-

\}1st1c clock. See Ageno and Amaldi (1966) and_Baﬂéy and Picasso (1970).

dependence in the ‘frequency of their Mossbauer transitions, which ihey
do not (Sherwin 1960).,

'We shall henceforth agsume the existence of t_he symmetric. -

11



tensor field quJ. .

(ii) More than One Second-Rank Tensor

The Hughes- -Drever experiments rule out, with very high precision,
the existence of more than one second-rank tensor field, both coupling |
directly to matter, (See PP. 14-22 of Dicke (1964) for discussion.)

They do not rule out, however, additional second-rank tensor fields |
which couple only to gravity or to matter's gravitational self-energy, |
because the effects of self-gravity in those experiments were negligible.
Experiments inhichin_azbe used to rule out such fields are discussed in

Sect. 7.

(1i1) Vector Field

Various ether- drift experiments make it unlikely that a vector
field coupling directly to matter is pres‘ent_. [See PP. 22-25 of Dicke
(i964); also Turner and Hill (1964); Champeney, Isaak, and .Khan (1963).]
Again; vector field's which couple only to ma_tt_er's gravitational energy,

can only be ruled out by experiments -which involve gravity (Sect. 7).

(iv) Scalar Field

No experiment performed thus far has been able to rule out or
reveal the presence of a scalar field. However, future studies of the
polarization properties of cosmic gravitational waves might reveal the
scalar field, if it is present. The deformations produced in a disk
placed perpendicular to the incoming waves are area- preserving (quad-
rupolar) if the waves are purely tensor in nature; but they can be area-
changing (monopolar) if the waves have a scalar component. Other
rvays‘of experimentally delineating a scalar field are discussed by Dicke
(1964). -

12



(v) Scalar, Vector, and Tensor Densities

~When Dicke (1964) writes down his constraint 1 (cf. §II.a above),

he explicitly states that he will not éonsider theoriés in which boson

fields such.as gravivty..'transform as tensor densities; he admits only
tensorial fransformation laws. However-, if we conclude that a metric
field is present, such a constraint becomes superfluous. - Ansr scalar,
vector, or tensor density can be expressed in terms" of the determinant

of the metric ‘and a corresponding pure scalar, vector, or tensor.

Hence, With a metric present we can ignore the densities. Without a metric
we must search for expei‘iments to rule out tensor-density fields.

So far. we have éaid nothing about the e:ds,tence_ of a metrié field
in spacetime: none of the experiments discussed above offers any |
evidence for its existénce. For such evidence, we must turn to the
Eotvos experiment (and possibly to the gravitational redshift experiment),

and to a conjécture which originated with Leonard Schiff.

13



3. SIGNIFICANCE OF THE EOTVOS-DICKE-BRAGINSKY EXPERIMENT

3°1. Introduction

Although Einstem considered the gravitational redshift one of the
most important of the predictions of general rela_tivity, it was not until
1965 that a truly accurate confirmation of the redshift vcould be made.
That year, Pound and Snider (1965), using an improved version of the
experiment performed five. Yeé.rs earlier by Pound_and.Re‘bkn, confirmed
the gfavitatio_nal redshift of p'ho,tons climbing up the Harvard tower
through the Earth’s gravitational field. Their accuracy of one per cent
was made possible by the use of the M.o.ssbauer effect (recoilless emission
and ab.sorption of photons). However, inthe intervening years, the inter-
pretation of the redshift experiment had changed.

The work of Schiff (1960b) and Dicke“l(i 964) suggested that the
redshift expetciment_ was not .a strong test of generai relativity at all.

The gravitational redshift, they claimed, could be calculated by appealing
to (i) conser{ration of energy, (ii) elementary quantum theory, and

(iii) the Eotvos experiment, i.e. the measurement of the compos1tion—
independence of gravitational acceleration for 1a,boratory sized bodies.
This univera.lity of gravitational acceleration was first verified by

-Baron Roland Ve Eotvos (Eotvos, Peka.r and- Fekete 1922) to one part in
109 precision, and improved by Roll, Krotkov, and Dicke (1964) (one
part in 1011')_ and more recently by Braginsky and Panov (197V1) (onepart
in 101'2)'. Leonard Sohiff was working on what he felt‘wo'uld_be a more |
convineing "sroof" of this point of view at the time of his tragic death in
January 1971. | | |

A second point of view, spelled out by Schild (1962) and others

14



was that the gravitational redshift, while not a strolng'test of general
relativity itself, does prove that space and time , as rx;eaeured by rods
and atomic clocks, has to be curved by the presence of gi-atritating
masses. .

A third point of view has emerged from recent res.ea.r_ch'(Lee,
Lightman and Thorne 1972). This interpretation is in .seme sense an

“amalgamation of the other two, and is outlined in the following subsections.

3°2. Completeness, Self-Consistency and Agreement with Special
Relativistic Physics | '

Any theory of gravity which is to be taken seriously at all must
satisfy the following three constraints.

(i) It must be complete, that is it must be capable.of anaiysing

from "first principles" the outcome of every experiment of interest. It
is not enough for the‘vtheory to postulate that bodies made of different
rnateria.l.f‘all with the 'sfarne acceleretion. The theory must mesh with and
incorporate a condplete set of electrvqm.ag'netic and quantum' mechanical
laws, which can be used to calculate the detailed behaviof of atoms in
gravitationel fields. | | |

(i1) ’v It must be self-consistent. A gravitation theory is consistent

1f its prediction for the outcome of every experiment is uniqu.e . e. if,
"when one calculates the prediction by two different methods , one always
gets the same result. |

(111) In the limit as gravity is "turned off", the non- gravitational

laws of physics must reduce to the laws of special relativity, We call a

theory with this property a "relativistic" theory. Elementary particle
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experiments convince us that a theory of gravity must be "relativistic "
to be viable. | |

Table 3.1 contains a partial list of theories of gre.vity which
. violate some of these constraints, and are thus non-viabl_e. (See |

Thorne, Will and Ni [ 1971] for further discussion.)

3°3. Schiff's Conjecture

The Eotvos-Dicke-Braginsky (EDB) experiments verify, to high
precision, the composition-independence of the gravitational acceleration
of laboratory bodies. This can be restated as the Principle of the

Universality of Free Fall (UFF) which states that "if an uncharged test

body is placed at an initial event insPacetime and is. given-an initial

velocity there then its subsequent world line will be indepe.ndent of its

internal structure and composition" (see Misner, Thorne and Wheeler

[1972] for detailed definitions and discussion). The EDB experlments_
are direct tests of UFF, | '

Dicke's (19‘64-) "Weak Equivalence Principle" and Bondl's (1957)
"equality of passive and inertial mass" are equivalent to UFF.

Dicke (1960) and Schiff (1959, 1960b) have discussed the theoretical
significance of the EDB experiments. Lee, Lightman, and Thorne (1972)
have used their ideas as the founda.tion of a viewpoint for analysing the
EDB experiment, a viewpoint summarized by "Schiff's Conjecture":

Any complete and self-consistent gravitation theory which embodies the

Universality of Free Fall must also unavoidably embody the Einstein

Equivalenc’e.Principle, which states that all the non- gravitationé.l laws

of physics are the same in every local, freely falling frame. By "local
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freely falling frame" we mean a reference frame which falls along one
of the universal tesf-body world lines, and which is small enough fhat
one can ignore inhomogeneities in the 'grav.itationalﬁeldsbi.

A useful theorem which can be used to extend Schiff's conjeéture

is the following: A {complete and self-consistent) gra\}itation theory is

a metric theory if and only if it is relativistic and embodies the Einstein

'Equivalence Principle. By metric theory of gravity we mean any theory

which (i) endows spacetime with a metrié », (i1} chooses geodesics of the
metric as its universal test-body trajectories, and (ii1) chooses the
special-relativity laws of physics ‘as the laws to be satisfied in its freely

falling frames (see Misner, Thorne and Wheeler [ 1972] for discus sion)6.

6Thi.s definition of "metric theorx"' is more restrictive than the one used

by Thorne and Wi_.ll (1971) and by Will (19717a).

This theorem is a straigh’.cfdr'ward. conseq'uencé of the definitions of
"relativistic" and "metric" theories and of the Einstein Equivalence
Principle. |

Thus, if the E.o.tv.o's.eDicke—Bragin_sky experiments have been

carried out to 'sﬁfficiently high precision (verification of UFF) , and if

Schiff's conjecture is correct, then in order to agree with the EDB |

experiments and to be relativigtic, a theory of gravity must be a metric

theorz.

The EDB experiments therefore become a powerful tool for dis-
tinguishing metric theories from non-metric theories, and for rliling

out the latter.
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3°4, Proofs of Schiff's Conjecture

ILeonard Schiff's interest in ba proof of the conjecture that the
Universality of Free Fall implies the Einstein Equivalence Prin'ciple
was rekindled in the fall of 1970 during a conference on Aexperimenta.lv

tests of gravitation theories held at the California Institute of Technology7,

_7Kip' S. Thorne, priva.te communication.

and he set to work on a proof, using theéophisticated quantum mechanical
techniques he had used in earlier discussions of UFF (Schiff 1.959_, 1960Db).
Unfortunately; his untimely death in January 1 971 cut. short the analysis.

- Lee, Lightman and Thorne (1972) have made preliminary steps
toward a proof of the conjecture. Centr_al to their discussion is a special

case of Schiff's_ _Conjecture:- Every relativistic Lagrangian-based theory

of gravity (cornplete and self—consistent) which embodies AUFFVis neces-

sarily a metric theory. They are tacking this specialized conjecture from
two directions: | | |

(1) a direct proof, using general concepts in the '-'theor_y of |
La.gr_a.ngia.n-based theories"; |

(ii) an indirect proof, by demonstrating the absence of a counter-
example: a Lagra.ngian-based non-metric theory whi_chl embodies UFF,
i.e. agrees with the Eotvos—Dicke—Braginsky experiment to infinite
precision. Several Lagrangia.n ba.sed, seemingly non-metric theories
are known, one of the strongest contenders is a theory due to Belinfante
and Swihart (1957a. b c) But calculations by Lee and Lightma.n (1972)
suggest tha.t the Belinfante-Swihart theory violates the Eotvos Dicke-

Braginsky experiment, although probably at a level higher than the
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current experimental'lirnit. Their results also shovv that, at least to the
order (in a power series expansion in the .Belinfante-Swihart gravitational
field) to which the theory agrees with the EDB experiment, it can be
rewritten as a metric theory consistently to that same order.'-

| While these results are still a long way from ruling out all non—.
metric theories of gravity, they '.strengthen our conviction that the
Eotvos Dicke-Braginsky experiments and the Universality of Free Fall

form a powerful tool for sifting through metric and non-metric theories.

3*5, Significance of the Gravitational Redshift Experiment

The gravitationai redshift is a direct consequence of the Einstein
Equivalence Principle and of the principle of "relativistic" gravity (vvhich
together produce a .metri‘c theorv of gravity [ see Subsect. 3°3]), i.e. |
it can be derived using_the standard Yelevator argument” first used by
Einstein (see, for example, Schiff 1960h), or d_irectlv from the postulates
of rnetric. g.ravitation theories. If the Schiff conjecture is correct, then
the redshift becomes a direct consequence of the Universality of Free
Fall or the Weak Equivalence Principle. For this reason, many authors
have viewed the redshift experiment as a weak test of gravitation theories
(Dicke 1964, Schiff 1960b). |

However, one should be more generous toward the redshift experi-
ment, because in the absence of a rigorous proof of the Schiff con_]ecture ’
it still provides a useful test of gravitation theories (albeit under restricted
circurnstances). This latter point of view has been spelled out by Schild
(1962) and bv Thorne and Will (1971). Their viewpoint can be summarized

as follows: -
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We first make a restrictive agsumption about the nature of gravity
(an aséumption less restrictive howéver, thé.n as sumiﬁg ."relativistic"
gravity ‘plus the Einsfein Equivalence Principle). We assﬁme that
grévitation ig relatiyistic , and that thefe exist local framés in which
atomic clocks measure proper time in ‘the spécial relativistic manner

(cf. eq. I 2.3] ). We assume nothing however, abouf the mbtibn of these
frames, which we denote "local Lorentz frames”.

The redshift experiment of highest precision is that of Pound and

Rebka (1960), as improved by Pound and Sniider.(1965)’. It reveals a
redshift of z=AN/\= (gh/cz)(ii 0.01) for photoﬂs climbing up through -
a height h in the Earth's 1oca11y homogeneous gravitational field --if
the emitter and receiver are at rest relaﬂv’e to the Earth's surfacé.

Here g is the acceleration of test bodies at the surface of the Earth.
This tells us that the local Lorentz _fra:riés accelerate downward with
the same acceleration, g, as acts on a free particle (td_withi_n 1 p’vér cent
precisién). To arrive at this c.onclusi:on from thé.expériment, we argue
as follows: | ‘

| We wish our argumént to be as independent of fhe special
relativistic laws of physics as poss.ible. ’i‘he inyi aspects of s‘pecial .

: i'elativity that we shall use are (i) the relationship between the Mi_nkowékii
metric of the local Lofentz frames and the ticking rates of atomic clocks;
and (ii) the conservation of wave fronts in electromagnetic waves. Let
us assume (fai_sely) thatthe local Lorentz frames were unacce_leréfed
relative to the walls of the tower used in the Pound-Rebka experiment.
We can theﬁperform a calculation in that particular Lorentz frame which

was attached to the walls of the tower and was large enough to cover the
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éntire tower. The static nature of .tvhe AemAitter, receiver, gravitational
field, and Lorentz coordinate system guaranteed that','although the
spacetime trajectories of the wave crests might have been bent by gravity,
they were certainly the same _frorh one crest to another, except for a
tranélafion AtLr in the Lc_)re,ntz'time coordinate, Hence, the coordinate
rates i/AtL of emission and reception of wave crests were the _v.sa.me.
But by aséumption these Lorentz coordinate rates were also the. proper
rates measured by the atomic clocks (57Fe nuclei) of the experiment.
H'en‘c.e, theory predicts ::zero réciéhift, in coﬁtradicfidn with experiment,
Our assumption that the local Lorentz frames were unaccelerated must
be w£ongl |

' We must assume, then, that the local Lorentz frames were
accele'rated. relative to the _tov)er. Since gravity pointed Qgrtically and
all horizontal directions were equivalent in all respec’;s , the acceleration
(Sf the Lorentz frames must have been -vértical. Denof:e by a its value
in the déwnward direction. As in our previo'us argument, in a static
coordinate system (i.e., in coordinates at rest relative to emitvter,
receiver, and Earfch'é sta'.tic gravifational field) the wé.ve-crest tra-
jectories must have been identical, except for a t;me trva.nslatior.x Ats
from one crest to the nexf. But in this case the static coordinates_weré
" not Lorentz coordinates. Rather, they were acceleré.té.'d upx?vard (in the
+ 2z direction) relative to the Lorentz frames (here c  is the speed" of

light):

ct; = (zs + cz/a.) sinh (ai;s'/c) ,

(3,1) ‘ zy (zS + cz/a) co_sh (ats/c) y

X T %g 2 ‘ Yi.=ys°
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[ For an elementary derivation and discussion of this transformation
law between Lorentz frames and accelerated frameé-, see, e,g., Misner,
Thorne, and Wheeler (1972).] Hence, proper time as measured by

atomic cl_ocks was given by

_ 2 2 2 2 2
| o dr” = c. dtL - de -dy; " - dz;
(302) : .
‘ ' S 2,2 2 2 2 2 2
=(1 + azs/c )" et dt " - dxs - dy " - dz_".

Since, as before, the wave-crest emission and reception rates were

the same (1/Ats) when measured in static coordinate time, they were

related by
v (1 +az /cz)At
AN _ em’ _ 8 rec’/ s : 2
~ T v -1= — 2 —1=a(zsrec"zsem)/c'
‘ rec (1 taz_ em/c )At '
(3.3) B . °
= an/c?,

when measured in the proper time of the atomic clocks. But thé éxp_eri-
mentally measured rgdshift was gh/c2 to a precision of one per cent.

'Hence, the downward acceleration of the Lorentz frames was the same

as that of a free particle, g = 980'cm/sec2, to a pvre(.:ision of one pgr cent.
_ In_ sumnﬁary., the redshift experiments reveal that, to a precision

of ~ 0.0t GI\I/I/R2 whére M and R are the mass and radius of the

Earth, the local I_o_ren‘tz. frames at the Earth's surface ‘é.re unacceleratedv
relative_b to freely falling test bodies; Equivalently, test bodies move

along straight lines in the local Loren’;z fram'es. If we 1dentify as the
metric the unique second rank'tenso_r field g which takes the Minkowskii

form in every freely falling frame, then elementary differential geometry
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tells us that the te st-body trajectories are geodesics of t.’:he'metric g .
Thus, in the absence of a proof of the Schiff Conjecture, gravi-
tational fed_s_hift e#perir'nerits ma.y_stiil be a valuable tool in testing the
validity of metric theories of gravity. For this reason, it is vei'y im-
portant fhaf the precision of the redshift experiments be improved as
much ns possible -- both on Earth (homogeneous field) and elsewhere in
the solar system (inhomogeneous fields). Of particular interest will
be experimenfs 1n which atomic clocks are ﬂown in spacecraft and
rockets (Kleppner, Veseot and Rameey 1970, Vessot and Levine 1971,

Vessot 1971).

3°6. Gravitation ae a Geometric Phenomenon

These analyses of .Schiff's Conjecture and of tne gravitafional
redshift have instilled in some theorists a very strong conviction that
oniy metric theor‘ies of gravity_have a‘hope of being completely viable,
~ Since the remaining sections deal solely' with metrie theories of gfavity,
v&e wiil briefly review here some of the key formulas of differential
geometry; and will set down once and fo;; all the conventions and notation
to be used.  We discuss one by one the thee "postulates™ of metric

theories of gravity:

i. Spacetime' is a four-dimensional manifold endowed.withv a’

metric g . The metric is a (g) tensor, with components gij in a
particular xi coordinate system. This metric endows spacetime with
a "Riemannian affinity" rj:jk (not a tensor) defined, in a given coordinate

system by
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i _ 1 im
=738 (g - g;

Jk,m) T

mj,k | 8mk,j
(3.4)

I'k.jk = ({n ‘/-g)?j .

[ Notation: g is the determinant of gi_]’ comma denotes partial derivatlve ]
The Riemannian affinity is used to define the covariant derivative

[ Notation: semicolon denotes covariant derivative]:

i i i k
A .= A + \ Yy
3J 2 J PJkA
(3. 5)
ST rkijAk -
where

-Under a transformation of coordinates of the form
o 1 g, 03
(3.7) ehT = ey,

the metric transforms according to the standard tensorial transformation

law: .
k
A T 9% 8x
(3.8) (g..) .
T 5T (ox )Jr Bt

If the transformation is infinitesimal, i.e.

(3.9) (T = b+ gled)

then gij' transforms to first order in §i according- to
‘ o T 2 e o

Covariant derivatives of tensors transform as tensors, while partial
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derivatives do not. Thus far there is no physical content, just mathe-

matics.

2. Test-body trajectories are.geo‘desics of the metric. A curve
is a geodesic of the metric if there exists a parameter \ which

* parametrizes the curve xi(,)\')' such that the curve satisfies

2 i i .k
d"x i dx) dx _
(3.11) oz TTxma A =0 -

Here N\ is called an affine parameter. Eqﬁation (3. “), can also b_e

derived by minimizing the invariant quantity
(3.12) do = (g3 axt ah) /2,

along the trajectory, i.e. by using the standard variational calculation:

| | .

T 2 i 1/2 -
= = dx dxj
(3.13) 0-55.4"#-55;1 By ax ) 4 -

'Equation (3.13) ylelds equation (3.14) only if do = d\# 0.
In local freely falling frames, coordinates can always be chosen

so that at a given event q,
i ] n )

We still lack a connection between physical objects and the metric.
This connection is given by Postulate 3.

3, In local freely falling frames, the non-gravitational laws of

physics take on their special relativistic forms., These special reiativity
laws include the following:

a. Physical rods and atomic clocks measure sp_acetime intervals
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given by
y(3.15;) o dszznij dxi dxj .

b. Maxwell's equations have the form

b os4nit, F +Fk.1j+
?

g F, =0,
vJ - Tk jk,1 ’

(3.16) F

where Fi'] is the Maxwell field tensor, related to the four-vector

potential Ai by _

.1 . = - s

and where Ji is the current four-vectors
c. Equations of Motion for stressed matter have the form

(3.18) i ;=0 | R : | )

where Ti'j is the.. stress-energy tensor for matter and non-gravitational

fields.

In non-freely-falling frames, the non-gravitational laws of physics
take on curved-spacetime forms, which are obtained from the special
relativistic forms by invoking the rules:

My ™ 8y

n..n

"comma semicolon"

These rules are sometimes referred to as the "Strong Equivalence

Principle”. The result:

(3.19) a. de? = By dxct dxJ .
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4 _ o, _
b, FY. = 4nJ Fiik Kisj FJk’i 0,
(3.20)
F1j= i;j-AJﬁ.’
(3.21) Co TiJ;J.=O,

and so on. For a discussion of pos.‘sijb]_.e "Strong Equivalence Princ_ipl.es"
which use nbn—Riemann affine connections, see Thorne a.nd Will (1971).

A consequence of the geometrical optics limit of the curved-space-
time Maxwell equations (3.20) is th.;.t photoné travel along null geédesics
of the metric, i.e. geodesics which satisfy
(3.22)  ds’= g5 dx* dxd = 0.

- Because of the_~arbitrariness of coordinates in spac.e_time, the
results éf any experiment must always be ‘expres sed in terms of' invariant,
physically—ineasu_.r_ablé quantities: >times measured by atomic clocks
(proper time), di‘sf:a.nt‘:es measured by physical rods or by light signals
(proper distance), and so on. | |

| We complete this review of gfa.v_ity as a metric phenomenon with
a summary of notation, conventions and ‘u_.nits to be used throughout these
lectures:' |

a. Rorﬁan iﬁdiceé run over the values 0, '1" 2 and 3; Gi'eek
indices run over the values {, 2 aﬁd 3.

b. Ténsors and four-vectors are wr'itte.n é.bstractly using thick
type, e.g. g K ; and in component notation using 1talic type, e.g.
glj' Ki three dimensional Euclidean vectors will be written in bold-face
type, e.g. a, X .
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c. The Minkowskii metric has signature - 2, that is .
(3.23) ' ny; = diag [1,-1,-1,-1] .

~d. Round brackets surrounding indices denote symmetrizatién;

square brackes denote anti-symrrietrization, for example,
3 24) A =-1-(A‘+A)

. (1) ©Z Yy T O
G.25) A =i(a.-al

: | (4] =2y~ 7

e. We use "geometrized" units: ﬁnits in which the speed of light
i§ unity -and the Newtonian gravitational cénstant as measured far from
the solar system and galaxy, in _the mean regt—frarhe of the Univefse,
is unity. In these units, the mass of the Sun 1871 «473 km.

For a much more thorough discussion of grax}iation as geometry,

the reader is referred to Misner, Thorne and Wheeler (197_2).
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4, THE PARAMETRIZED POST-NEWTONIAN FORMALISM

4°1, Introduction'

In thié sgction, and for the rem.aind‘er of these lectures, wé will
assume thatvwhatever the correct theory of gravity ’is , it must be a
mefrié theory. This assumption rests oﬁ our.‘con\‘riction that the high-
precisioﬁ E.o.tvgs-Dicke-Braginsky experiments and the gravitational
red_shiﬂ_:'experimen.ts together may be used to rule out all non-metric
theories of gravity (Sect. 3). Of .course, until this con_viction‘has been
completely justified, wér must keep a small portion ob’f our'minds open
to non-metric theories. But for the remaining sections, we will focus
on metric.gravitva‘tional theories. |
| When we examine the fundamén’_cal postulates of metric theories
of gravity. (Sect. 3), we notice a crucial fe‘ature:. .‘nvo matter how com-

plex the theory, no matter what additional gra’.vitationval or cosmologi-

cal fields it deals with, freely falling matter responds only to the metric

gij' This is embodied in the quaﬂons of motion

2.1 i .k S
(4.1) 9——}52— riJkédl(XJ—%J;\— =0, [ test bodies]
' aé dh | |
(4. 2) | TiJ y =0, | o [ stressed matter]

where the covariant derivative is computed solely from the metric
using standard formulas for the Christoffel _sjrmbolé (see Sect. 3).
Ti‘j is the stress-energy tensor for matfer’and all non-gravit'ational

fields, and X\ is an affine parameter along the test-body's world line.
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Thus the only gravitationa;l field \;vhich entérs the eqf;ations of motion
(4. 1.) and (4. 2). ‘is.the metric. The role of the other fields which a |
-given theory may céntaiﬁ can only be that of helping to g.enerat,e the
spacetime curv:ifur_e associated with the metric. Matter may‘cr-eate
these .ﬁelds, and they plus the matter rhay generate the metric, but
they cannot act back directi_ly on the matter, The matfer‘re sponds
only to the metric.

From thi_s'Point qf view, the metric g “and the equations of
motion become the primary theoretical entities, and all that distinguishes
one metric theory frém é.nother is the particular way in which matter
(and possibly other gravitational fields) generates the metric.

The c‘omparison va metric theoriés of gravity with each other .
and with experimént Becomes particularly simple When one tak‘es‘ the
slow-motig)n, post-Newtonian limit. Fo'rttz;nately, the_post-I Newtonian
1limit is sufficiently accurate to encompass alli solar-syétem tests that
can be performed in the foreseeable future, with the éxception of
gravity-wave experimenf:s. (Gravity wé.ves do not e#‘ist in the post-

- Newtonian l_im‘it. )

4° 2.  The Post-’-Newtpnia.n Li.m‘it

In the solar syétem, gravit_altiorg vis weak‘enqugh. thét Newton's
theory of gravity is adequate to explain all but the most minute effects.
To an éccuracy of about a part in 105,’ light rays fravel' on straight

lines at constant speed, and test bodies move according to

(4.3) a=vUu,
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where a is fhe Body's acceleration, and U is the Ngwtonian gravita—
tional potential. From the standpoint of a mefric théory of gravity,
Newtonian physics may be viewed as a first-order approkimation, or
a weak-field limit. Consider a test body momeﬁtafily at rest in a
static external gravitational field. Fromthe géodesic equation (4.1),

the body's acceleration in a (t,x) coordinate system is given by

o .
a - r"IOO

H

(4.4) = %gaﬁgoo,E3 )

In the complete absence of gravity, we know the metric must reduce
 to the special relativity Minkowskii métric

(4. 5) | gy

§ = My = diag (4,151, -0).

In the presence of a very weak gravitational field, then, equation (4.4)

can Yiéld »Newtoniap gravitation, equa_.tion (4.3) only if
(4. 6) (P L

(4.7) =~ | - 20.

850

Equations (4.6) and (4.7) along wi.t_h the equations of motion

represent the Newtonian limit of any metric theory of gravity. But

the Newtonian limit no longer .suffice‘s when we beg_in to demand |
accuraéie-s greater than a parf iﬁ 105'. For example, it caﬁnot account
for Mercury's additional per'i.heli_on' shift of ~ 5 X 10-? _ré.dians pef |
orbit; Thus we need a more accurate approximatiori to the épacetiine

" metric, which will correctly account for solar-system effects which
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go beyond, or "post" Newtonian theory. This higher order approxi-

mation to the metric is known as the Post-Newtonian Limit
(Chandrasekhar 1965). |

The key features of the post-Newtonian limit can be better
understood if we first develop a "bookkeeping" system for keeping
track of "small quantities". | In the solar system,. the Newtonian
gravitational potential U is nowhere larger ’lchan 10_"5 (in geometrized
units-, U is dimensionless). Planetary velocities are related to U

by virial relations 'which yield

(4.8) - vVsu.

The matter making up the Sun and planets is und'er. pressure p, but
this pressure is generally smaller than the matter's gravitational
energy density pU, where p is the rest-mass density of matter; in

other words

(4.9) p/PSU,
(p/p is ~ 10_5 in the Sun, ~ 10_10 in the Earth). Other forms of
energy in the solar system (compressional energy, radiation, thermal

energy, etc.) are small: the specific energy dénsity. II (rati'o of

energy density to rest-mass density) is related to U by

(4.10) . n<uv,

_ ' /  .
9 in the Earth).. These four small

(I is ~ 10_5 in the Sun, ~ 10
quantities are assigned a bookkeeping label which denotes their "_ord_er

Qf smallness ",
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(4.11) U~ vi~p/p~I~o0(2).

Then single powers of velocity v are O(1)', UZ is O(4), Uv is O(3),
Ull is 0(4) and so on. Alsd, since the time-evolution of the solar

system is governed by the motions of its constituents, we have
8/31: ~owvoe V ’

and thus

l3/8t|.

Tofex] " O

(4.12)

We ca.n'nowba.n'albyse the "Post-Newtonian" metric using this
bookkeeping system. The variational principle, equation (3.13) from
which one can derive the geodesic equation (4.1) for a single particle,

may be rewritten

i . 1/2

B | j
dx” d
5§ A [gij‘ar—d?.—} - dt

@]
BT

B - o . a P 1/2
GS‘A v[go.o'i'ZgQav +ga‘3vv] odt .

(4.13)

The integrand in equation (4.13) may thus be viewed as a Lagrangian
1 for a single particle in a metric gravitational field. From equations

(4.6) and (4.7), we see that the Newtonian limit corresponds to
(4.14) L=t -20- 2,

as can verified using the Euler-Lagrange equations. In other_words‘,
Newtonian physics is given by an approximation for L correctto O(2).

Post-Newtonian physicé must therefore involve those terms in L of



next highest order, o(4).

But what happened to odd-order terms, O(1) or O(3)? Odd-
order terms must eontain edd pewers of velocity v or f‘ime-derivatives
9/dt. Since these terms change sign under time reversal, odd-order
terms therefore represent ene‘rgy inﬂew or loss by the system. But,k
conservation of baryons, a fundamental low of physics, ~prohib1ts terms
of Of1) from appearing in L, and conservation of energy in the
Newtonian limit prohibits terms of O(3) These eonservation laws
are discussed further in Subsect. 4°7. In general relativity, the
first odd-order terms which caﬁ appear in L are O(7) terms: these
terms represent energy losf from the system by gravitational radla—
tion (see Chandrasekhar and Esposito [1970], and Burke [ 1971]).

'In order to express L [eq. (4.13)] to O(4), we must know

the various metric compbnents to an appropriate order:
i 2 » » o
(4.15) L _{1‘ -2U- v+ goo[ Q(4)] + ZgoQ[O(3)]v
a By 1/2
+ gap[ o(2)]lv v } .

Thus the post-Newtonian limit of any metric theory of gravity requires

a knowledge of

g to O(4),

00
8o t° 0o(3),
8ap to o(2) .

The post-Newtonian propagatio-n of light rays may also be

obtained using the above approximations to the metric. Since light
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moves along null trajectories (ds = 0), the Lagrangian L must be
formally identical to zero. In the first order, Newtonian limit, this

implies that light must travel along straight lines, at speed 1, i.e.

(4.16) o=L=0 NS VLS Y

In the next, post-Newtonian order, we must have
(4.17) S O=1L ={1 - 2u - ve 4+ géﬁ[O(Z)] vavﬁ}.i/z.

Thus to obtain post-Newtonian corrections to the propagation of light

rays, we need to know

oo to 0O(2),

go43 tq 0(2).

4' 3. The Most General Post- Newtohian Metric

We now proceed to devise the most general post- Newtonlan
metric which any reasonable metric theéry of gravity might predict
for a system of "perfect” fluid. Recall: a pei-fect nonviscous fluid is

one which, in the Newtonian limit, bbeys the usual Eulerian equations

of hydrodynamics:
8p/0t +8(pv)/0x" = 0,

o _
dv U 0
(4.18) PIE P TaT
- ox ox

+ v

mn

o)
3o

a 9
'ax“

»

4
dt

where v® is the vei_ocity of an element of fluid, p 1is the rest-mass



density of matter in the element, p' is the total pressure (matter plus
.radiation) on the element, d/dt is the time derivative "following the

fluid®, and U is the Newtonian gravitational potential,i defined by
| p(x',t)
(4019) U =§ —‘:‘— dX' °

The same fluid in a metric theory of gravity is described by an

energy-momentum tenso r: of the form
(4.20) : Ti‘] =(p +pll + p)uiu‘]' - pgi'j ’-

where u.i is the fluid's four- velocity. We assume thronghout that
.the matter composing the solar system can be idealized as perfect ,.
fluid; for the purposes of most solar-system experiments in the |
coming decades, this has been shown to be a.n adequate assumption
(Will 1971a). _

This general post Newtonian metric should sa.tisfy the following
cenditions: |

(a) ‘The deviations of the metric from flat space are all of
Newtonian or post—Newtonia;n. orde‘r; no post-po,st—Newtonian cr higher-
order deviations are included (see eq. [4.15]). |

(b) The metric becomes Minkowskian (flat space) as the
distance lx - x‘[ between the field point and the matter becomes large.

(c) The metric is generated only by the rest mass, energy,
preé_ure , and velocity; not by their gradients. ‘This is a reasonable
cendit_ien to put on physically acc'eptable bmet:ric theories-, and is. a

condition which can be relaxed quite easily if there is ever any reason
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to: do so.
| (d) The coordinateé are'chosen such that the metric coefﬁci_énts

are dimensionless. |

(e) The form. of thev metric should be indepéndent of our choice
of the origin of the ,coordinate system, and of the orientation of the
spatial axes. The metric sﬁodd depend on fimé only implicitly, via
the evolving distribution of the fluid.

These conditions limit the possible gravitational té-‘rrhs which
may appear in the post- Newtonian metric:

i) 'gaﬁ‘ to O(2): From ’conditiop (e), gaﬂ must behave as a
three-dimensional tensor uﬁder rotations, thus the only O(2) te_rms

which can appear are
(4.21)  glO@] s Ub,g, Uug,

where Uaﬁ is given by

p(x', t)(x—x')a(x-x

| _ N
(4.22) Uyg (%) =S“ B ax' .

x - %!
1) g, to O(3): These metric components must behave as

vectors under rovtat_ions, 'and thus must contain at most the terms

(4.23) g ,[00)]: V,

, Wa, waU, Wﬁuaﬁ’

where

| p'v! dx' p'v! « (-x"Mx-x"),
(4. 24) v -S’____;; W -g ~

a...

ERES
72
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and where the vector w, assumed to be O(1), represents the velocity
of our chosen coordinate system relative to the mean rest-frame of
the Universe (recall: v is the velocity of each element of matter

relative to our coordinate system).

iil) g to O(4): This should be a scalar under rotations, and

thus may contain at most the O(4) terms:

>

(4. 25) Eool OWI: UL, 2, @), &5, @, G, B,
2 a B a., a :
w U, ww Uaﬁ’ w VQ, W Wa/" :
, wheré.
1 12 L'y
q:i = _LV____Xm , d)zz _;&*dx' ,
lx—xll ~. Ix_x'l ~
A : _ . "t ~ P dx
(4. 26) &, = LA dx' -, &, =\ —=
_ 3 T - %4 ;
. Cx- %' | [x - x']
p'[V"’(X-X')]Z ’ : p'x -x") | dv'
AL PN & ()
lx—x']3. ~ Ix-x'l dt "~

At first glance, the reader might be'distﬁrbed by the presence -
of metric terms which.-depend dn our coordinate sy.stem's velocity w
relative to the mean rest-frame of the ‘Universe. However we can find
no ap r‘iori reason for ignoring bsuch ferm_s. These terms do not |
viélate the pi'incip.les:of special relativity, sinﬁe- théy a.re_‘purely'gravi-
’_catioria,l terms, whilé si)eéial relativity is valid only when the éffects

of gravitation can be ignored; but they do suggest that the response
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of matter to gravitation may be affected by motion relative to the
Universe. Nonetheless there is good reason for including them:
several metric theories of gravity say they should be included (see

Sect. 5). -

Gauge

We can restrict the form of the post- Newtonian metric some-

4°4, Coordinate-System Freedom and the Standard Post-Newtonian-

what by making use of the arbitrariness of coordinates embodied in
the postulates of a metric theory. An infinitesimal coordinate or

"gauge " transformation
(4.27) et =+ el
~ changes the metric to

S gjzi :

- (4.28) : gL. ﬁ.gij - f;i

By choosing

(4.29) 6, =X,

where X is the so-called "supefpotential" (Chandrasekhar and Lebovitz

1962b) given by

(4.30)

we obtain , to post- Newtonian order,
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fo_

(4.31) gaﬁ = gaﬁ

+ ZeUﬁa - ZeUa

g p-

So by an appropriate choice of €, we can eliminate one of the terms

(eq. [ 4.21]) from Baps We will eliminate Uaﬁ° Similarly by choosing

‘ “ 23
(4‘32),_ S go" >\1X30+>\-2W X’a

weé obtain, to post- Newtonian order

1 ' - a ' o
(4.33) g€, = 8oo T2 %y - zxia- 2)\103 S2Lw Vot 2hw W
By an appropriate choice of )\1 and XZ,'we can always eliminate the
terms 8 and waWa from 800" Note that the transformation equations

(4. 29) and (4.32) do not introduce any new terms of O(3) into 800"

We will thus adopt a standard Post-Newtonian gauge -- that
gauge in which the spatial part of the metric is diagonal and isotropic
I(i.e. no U .), arid,in which g contains no terms B or woW._.

. af , _ - 200 . o
There is no physical significance in this gauge choice; it is purely a

matter of convenience.

4°5, The Parametrized Post-Newtonian Metric

We now know the most general form for the post- Newtonian
perfect-ﬂuid‘metric in any metric theory of gra\}ity. | Now the only
way any one theory's metric can differ from any other theory'sb is
in the numerical coefficients which multiply each"terrn in the metric.
By replaciﬁg' each numerical coefficient by an arbitrary Paramete:,
we obtain a."sup,er rﬁetr’ic theory Qf gravity"., whose special cases

(particular numerical values of the parameters) are the post-Newtonian
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metrics of particular theories of gravity. This "super metric" is

called the Parametrized Post- Newtonian (PPN) metric, and the

parameters are called PPN Parameters.

How many PPN parameters do we need? In the standard PPN
gauge, the metric contains a total of fourteen terms, but only nine
PPN parameters are needed. We will show in Subsect. 4° 6 that the
five. v:.—dependent metric terrns are not completely independent: theirv
multipliers (parameters) are related to the multipliers of the nine
other metric terms.

We will also show in Subse_ct‘. 4°6 and 4° 7 that we can give a
physical significance to our nine PPN parameters if we use certain
linear combinations of parameters as multipliers of the individual
metric terms. With these remarks, and with detailed_prodfs left .'
to Subsect. 4°6 and 4'7, we give the PPN metric, in Table 4.1.
Table 4. I also includes detailed definitions of the PPN.coordinate :
system and the matter varlables , formulas for the perfect- ﬂuid
stress- energy tensor to post- Newtonian order, and the equations of
motion.

Th1s use of parameters to describe the post- Newtonian’ limit

of metric theories of gravity is called the Parametrized Post- Newtoman

(PPN) Formalism. A primitlve version of such a formalisrn was

devised and studied -by Eddington (1922), Robertson (1962) and Schiff
(1967). This Eddington- Robertson- Shiff formalism treated the solar-
system, metric as that of a spherical non- rot_ating Sun, and idealized
the_planets as test bodies moving on geodesics of this metric. The

metrio in this version of the formalism reads
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Boo = 1 - 2M/r Zﬁ(M/r)Z‘v ,
(4. 34) 8o = O
Bp = - (1 + 2YM/P)B,g

where r = (XZ +y2 + zz)i/z, M is the mass of the Sun; and P and

y are PPN parameters.
- These two parameters may be given a physical interpretation

in this formalism. The pé.rameter B measures the amount of

" non-linearity [(M/r)Z] which a given theory puts into the g com-
ponént of the metric, and th_e p>ai'a_.meter Yy measures the amount of

curvature of space produced by a given gravitating body in a given

n'ietkric.: theory (for a detailed discussion of the physical meaning of'
space-curvature, see Misner, Thorn,e‘, and Wheel'er'[‘1__972]). N
More gené‘ral versions of the formalism were examined by
Shiff (1960a), Baierlein (1967), Nordtvedt (1968b), Will (1971a), and
Will and .Nordtvedt”(1972).' fn these lectures, we will use the Will-

Nordtvedt version of the PPN.'fornialism.

4'6, Lorentz Invariance and the PPN Metric

The PPN metric has a considerable amount of symmetry built
into it. o

(i) By using metric terrﬁé constructed from relative distances
[x - x' | between fleld points and. the matter, we have made tl.'lek metric
1ndeper_1&ent of our choice of coordinate system origin.. Put diﬁ'e’rently', '

we have guaranfeed that the metric be invariant under a three-

dimensional linear translation:
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(4.35) ‘ NI R

(ii) We have made the metric independent of our choice of the
origin of time by making all time dependence in gij implicit, via
the evolving distributi_ons of density, pressure, etc. Thus we have

built into the metric, invariance under a 1inear time translation:
(4. 36) tT=t+b‘.

(iii) By constructing the_ metric terms out of th_i'ee—'dimensional
scalars, vectors and tensors where appropriate, we have made the
metric independent of our choice of axes, i.e. invariant under a three-

dimensional rotation:

- af _ Ja B . o TPp _ .o
_(4'37) | x —Rﬁx 5o RIgRT =%

(y) A further symmetry has been_ bt'J.iltbinto the mefric in Table 4.1,
Alth.ough‘the' PPN metric contains_terms which depend on the (arbitrary)
velocity of our éhosen cerdinéte system relative to the Universe, the
results of physical méasuiements clearly must not (this is fhe funda-
mental poétulate of covariance -; the results of ﬁhysical measurements
cannot depend on éfbitrary coordinate systems); For a system such
as the Sun and planets, the only unique physically measurable velocities
are thelvelocities of elements of matter relative to each othef and to the
~solar-system center of.n}ass, and the velbcity wp of the éolar-systgm
center of mass (Bafycenter) relative to the Uﬁi.verse's comoving frame
(as rﬁeasu‘;'éd, for example, by studying doppler shifts in the cosmic

microwave radiation). Thus the PPN pred.iction for any physical effect
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can depend only on these rélattve velocities and on Wps never on the
arbitrary coordinate-system velocity We The only way to guarantee
this is to demand that the PPN metric have the same fun'ctional form
(when written in the standard gauge), independent of the velocity of

the coordinate system relative to the Universe.. Put differently, the

PPN metric must be invariant under a Lorentz transformation (o.f

low velocity, of course, to preserve the post-Newtonian approximation):

-1

.38 T LxJ nl =L kL

j
kM

In this subsection we will prove that by writing the :v—dependent metric
terms in the manner shown in Table 4.I, we have built this constraint
into the PPN metric.

Since the PPN metric (in the standard g_auge) contains.all
possible metric functions cons istent with our conditions (a) to (d) in
Subsect. 4° 3',~invari.anee in the form of the metric under_ the é.b_ove
transformations is equivslent to invariance in the valnes of the PPN
parameters, The set of linear trensformations we.have discussed -
above forms the ten parameter Inhomogeneous Lorentz Group (four -
translations, three rotations, three Lorentz transformations -~ these
are the only 1inear tranformatlons which lea.ve invariant the
Mmkowsk.ii_,.metnc , the form taken by gij far from the matter).

We can thus restate our s’ymmetry conditions (i) to (iv) on the PPN
metric in the following wey' | |

The PPN parameters must behave as scalars under (post-

Newtonian preservmg) transformations in the Inhomogeneous Lorentz

Group.
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It rernains only to prove tbhat the PPN metric'in Table 4.1 has
indeed had Lorentz invariance built in. |

Consider the PPN metric (Table 4.I) written in a coordinate
system which movee at velocity w relative to the mean rest-frame
of the Universe. We make a Lorentz transformation to a new frame
which moves at.velocity u rel_ative to the old frame, assuming ,E‘I
is small, i.e; of 0(1)°, This transformation from old coordinates
(t, x) to new coordinates (T, §) can be expanded in powers of u ‘to
the required order: this approximate form of the I_orentz Transformati.on

has been called a Post-Galilean Transformat1on (Chandrasekhar and

Contopoulos 1967), and has the form

TH
n

: §+(1+%u2)u7 +%(§'u)g+[0(4)jxﬁ',
(4.39) 3 ~ o

K
1]

(1 45 Z+—-u)+(1+—u)§ wtfoB)] xT ,

where ur is assumed to be O(0).

We now apply this transformation to the PPN metric and show
that in the new coordinates (1,§) it has exactly the same form as it

had in the old coordinates (t,x). We use the standard transformation

Claw (x°=t, £%=7):

' 3Xk 8x£'
(4'4_0) gij(g”r)': g‘gql‘ ’a_gj" gk‘e_(f:t)_ .

We must also express the functions (fields) which appear in gkl (x,t)
in terms of the new coordinates. Since p., AH, and p .are all measured
in comoving local inertial frames, they are unchanged by the transfor-

mation: for any given element of fluid,
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P(x,t) = P(E,T)
(4.4:1') _ ‘ H(f:t) = H(E:T) ’
plx,t) = p(E,7) .

If vix,t) and v(§ ,T) are the matter velocities in the two coordinate

systems, they are related by
(4.42) v=v tut+0(3).

If o ls the velocity of the new frame relative to the Universe, it is

~

related to w by
(4.43)  w=w-ut0(3).

The elements of volume dx' and df' in the two frames are related

by the usﬁal Jacobian tran‘sformatio.n’flaw, which gives

(4.49) dx'=(1-v'-u-3u’+oa) at' .

Wé make use of a formula given by 'Chandrasekhaif' and Contopoulos

(1967), n_a_rne]..y.,

g g 1 2 | |
(4, 45) : = 1 +x(un" )" +(u-n")(v'*n") +O(4); ,
' o e o)
yvhere_
(e.46) n'=(-8V/[E-E'].

We then find, using equations (4.41), (4.42), (4.44), and (4.45), along

with the definitions of the metric functions , equations (4.19), (4.22)
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(4.24) and (4.26), that

(4.47) - Ulx,t) = (1 - —u )U(f; T) - u V (6,7)

+ uaWa(é,'T) +-—i— uaupU ﬁ(é ,T) + O(6),

U, aliet) = Uyglf,m) +0(4)

(4. 48) ap'®
(@49 VG0 = V6, +utUE.T) +O00)
(4. 50) WLt = W(E,m) 4 Pu_q(&,7) +005)
(4.51a) 'éi (x,t) = &4 (§,7) + ZuaVa(é,'r‘) ¥ QZU(E,Tj ¥ 0(6),
‘(4_. 51b) .§2(3’4)(§,t) = @2(3’4)(5,7)' +0(6) , |
(4.52)  Glx.t) = GfE,T) +2 gl +uabu g + o)

p~
Applying transformation equations (4,.39) to the PPN metric (Table 4.1)
and making use of equations (4.40), (4.43), and (4.47) to (4.52), we

obtain, for the metric in the (7,€) system, to post-Newtonién order

g, (£,7) = 1 - 2U(E,T) + 2U(5,m)°
- {2y + 2 +a3 + gi)cbi(g,-r) + ;1.0(,;:"")
o - 203y = 2B L HLLIRHE,T) (L5084 (E,m)
(4.53)
3yt €4)<I>4(§,T)]

2"” tue, ™) +a, ww‘*u ap&r™

- (2a,- ai)w Vv (6,7) (L - Ly- ‘_’2’“ x(g,'r),oa .

+(011-01
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g, :32.(4y+3 ta, -a2+g1)va(§3rr) +.§_(1 ta, -4 )W (E,T)
(4. 54) | | f%(ai —-Zaz)vwaU(ﬁ_,T) +a2wpUap(€,T)
g -t e g
(4.55) gt - [+ 2vUE, M8,

Note that because of the presence of gravitating matter, the

Lorentz transformation has introduced additional terms into the metric:

(1 - ;1 - a’z)u X’Oq in goo ’

1, B
-2-(1 - Qi - az)u X !ap 1n goa M

But these terms can always be removed by an infinitesimal gauge
transformation
T

(4- 56) . » t =t +%(1 - gi - az)uBX:ﬁ °

In other wo:fds_, a pure Lorentz transformation of the PPN metric .

takes it out of the étandard PPN gauge. Thus the Lorentz-transformed
PPN metric eqs. (4.53), (4.54) and (4.55), written back in the standard -
PPN gauge, has exactly the same functioﬁél _forfn as the original PPN
metric. Q.E.D.

| | We can now see the physical significance of the PPN parameters
ay, @, ‘and ays which appear as multipliers of the Xv—depende;nt terms

in the metric. These parameters measure the extent and manner in

which motion relative to the mean rest-frame of the Universe affects
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the post- Newtonian metric, and produces observable effects. The

parameters @, @, and a, have been named "preferred frame"

) parameters (Will and Noi'dtvedt 1972) since they measufe the sizes

of post-Newtonian effects produced by motion relative to the "preferred"
rest-ffame of the _U'nivers.e. If all three are zero, no such effects are
presenf. Further discussion of preferréd—-frame'effects appears in

Sect, 6 and 7.

4°7, Conservaﬂon I.aws in the PPN Formalism .

Conservation laws in Ne\ﬁtonian' gravitation theofy are fa.iniliar:
for isolated gravitating systems, ma.és is conserved, energy is con-
served, line.ar' and angular momenta are conserved, and the center of
mass of the system moves uniformly. Not so in every metric theory
of gi-avity. Some theories violate somé of these conservation laws
at the éost-Newtonian level, and it is the purpoée of this section to .
explore suéh violations using the PPN formalism.

W’e-begin by making a numbelj‘ of a'ssumptions_a_bout the propertieé

of matter which should be valid in any theory of gravity.

Assumption 1: The total number of baryons §A in any sample of

matter is conserved. Conservation of baryon number is one of the

most fundamental laws of physics, and should certainly be valid in
the presence of gravity. This law can be expressed as a continuity
equaﬂon for the baryon number density n: ina local inertial frame

momenfarily comoving with the matter, the equation

(4.57) 0= d(6A)_/dt = d(n&V)/dt
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is equivalent to

(4. 58) on/ot + (8/0x ) (nv") = 0 ,

where v is the matter velocity in the comoving frame (v =0 but
V * v# 0). The Lorentz-invariant version of this continuity equation,

~

valid in any local inertial frame is

’ n _ B o o a, i
(4.59) _ 0= z=(nu”) +——X—a(nu )—(nu),.1 )
where u- is the baryon four-velocity, gfven"by

(4.60) ol = dxl/as .

Equation (4. 5‘)) can then be generalized to curved spacetime using the

standafd "comma-goes-to-semicolon” rule (Sect. 3)
' i
(4. 61) 0= (nu),, .

Equatiori (4; 61) is thé law of Baryon Conservation in covariant form.

Assumption 2: Matter is composed of a chemically homogeneous,

electrically neutral distribution of atoms composed of neutrons, protons,

and electrons. The chemical composition of matter is static.

For the pur_pése of solar-system experimental tests (although
not for the theory of solar and planetgry structdre) this assumption is
a reasonable model for solar-system matter..

The rest-mass deinsity of.matt.er p is a physically measured
quantity, obtained as follows: in va local inertial frame which comoves

momentarily with an element of matter, add together the rest masses
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of all the atoms in the element, and divide by the volume &V of the

element. Then

. element
(4. 62) p = Z B, /8V.
3 A

 where By is the rest-mass of the i'th atom.

Lemma: For matter which conforms with Assumption 2,

(4. 63) o =pn,

where n is the number density of baryons, and p is a constant,
Proof: The mass of each atom consists of baryon rest-mass,

and binding energy, and .may be written
(4.64) LI SAp_ Apy s

‘.wh‘eré 6Ai is t_he number of baryons in the atom, Fo is an a_,tomic_

masbs unit, ‘and Api is the "mass-excess", related to the nuclear and

atomic binding eneérgy. Then from equation (4. 62)
: : ‘ element

p=(6ap  + Z Bp,)/8V
o | T
(4.65) _ element

= (6A/8V)(p, * Z Api/éA) .
i
Because of our assumption of chemical hdrriogeheity and time-inde-
pendence, the rest-mass per baryon

‘ - element v
(4.66) Bo * Z Ap,/6A =,
iv .
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is a constant. Thus

(4.67) _ p=pn. Q.E.D.
| Lemma: If baryons are conserved, and matter conforms

w__ithAs'suinption 2, then

(4. 68) '(pui);i =0 .
Proof: It.is sufficieht to _work in a local comoving inertial

f?ame. From equation (4. 57) and tl'aevconstancy of p, we get
(4.69) :  0 = d(unéV)/dt = d(pﬁV)/dt ,

‘wh‘ic‘h is equivalent to |

(4.70) 0= 9p/dt +sz

The 'general'ization of this equation to arbitrary inertial frames and to

cufved spa".cetime proceeds as before; thus
4.71) (pu) ;=0. Q.E.D,

Equation (4.71) is the Law of Cdnservation'of Rest Mass, in covariant

form. For matter which Qbeys Assumption 2 it is ‘valid in any metric
theory of gravity, both at the post-Newtonian level and at the exact,

strong-field level.

By combining this law with the equations of motion for stressed .
~ matter,

K ' i
(4.72) - T:.j-O,

we can obtain a further impor'tant law, which too is exact and theory-
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independent: the Law of Local Energy Conservation or the Law of

Isentropic Flow.

We follow Chandrasekhar (1969) and evaluate the'equation

(4.73) u.lTl'].. =0 ,

3J

using the perfect-fluid stress-energy tensor, equation (4.20). We
work in a local inertial frame, momentarily comoving with the

element &V of fluid. Then from equation (4.73),
(4.74) | (8/8t)(p +pII) + V .+ (p + oIl +p)v = 0.

This can be rewritten

(4.75) (@/at)(p +pll) +(p + PV * v 4TV ¥ =0 .
But
(4.76) 7 - v = (1/6V)d(6V) dt .

'I“hué equation (4.75) becomes
(4.77) - (d/at) [(p + pII)&V] + pd(&V)/dt = 0 .

So, in a local comoving inertial frame, vt_h’e_ change in the total energy

(rest-mass plus internal) of an e_iement of fluid is ba.lanced by the

work done [ pd(6V)]; this simply expi'esses Local Conservation of Energy,

or Isentropic Flow, since from the First Law of Thermodynamics, and

from equation (4.77)

(4.78) Td (Entropy) = d (Energy) +pdV =0 .

53



\

Because of the Conse}'vation of Rest Mass, p&V 1is constant, and

equation (4.77) .c':an be written in the form
(4.79) - pdll/dt - (p/p) dp/dt =0 .

In frame-invariant curved-spacetime language, equation (4.79) has

the form (C-handrasekhar 1969):
(4. 80) - ui[n’i+ip(1/p)’i]=0'.

These exact, covar‘iant,.theory-independent local conservation laws
are summarized in Table 4.1I.
We can obtain a useful form of the law of Con_se_rvé,tion of Rest

Mass by noticing that

(4.81) (pui);i'= (1/V-g)pV-g u_i).,i ,
wher_e
(4.82) » g = det ”gij .

In a coordinate system (t,x), equation (4.71) can thus be written

(4. 83) 0= (pV-g ui)"i = (pV-gu?)  + (Vg u®v)
since
(4.84) u_.d =u%% .

: ' %
By defining the "conserved density" p :

: ' * ' ;
(4. 85) p = p¥-gu® ,
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' we can cast equation (4.83) in the form of an "Eulerian" continuity

equation, valid in our (t,x) coordinate system:
. ’ * *
(4. 86) 9p fot +V c p v =0,

This "conserved" density is useful because for any function f

defined in a volume V whose boundary is outside the matter
*x * _
(4.87) (d/dt) S‘ p fdx =§ p (df/dt) dx .
v
Notice that equation (4.87) implies

. * .
(4.88) - dM/dt =0, M= S' p dx,
A Ty ~

where M is the total rest mass of the particles in the volume V;

from equation (4.85), we get,

M= S[ puV-g] dax

(4.89) S bd (proper v_o_lume_)'

total rest mass of particles. -

- The cqnservation laws s,g.:‘nmjarized in Table 4.II are purely
local cqnservation lawsg they depend énly on properties of matter as- |
measuréd in local, comoving inertial frames, .where relativistic and
gravitafional effects are negligible (hence they are theo’ry-in‘dependent).
Equation (4.89) represents our first "global" or "infegral" conservat;ion
law; however, it is really r;othing‘ more than conservétién of baryoﬁs |

cqui)led with our specific model for matter.
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However, when we attempt to devise more gene ral integr‘al
conservation laws, such as for total ene;;gy (as opposed to just r‘est—
mass), total momentum, or total angular momentum we run:into
difficulties. |

It is well known [see, for example, Landau and Lifschitz
(196.2)]» that integral covnservatbivonllaws cannot be dbtained directly

" from the equation of motion for stressed matter,
(4. 90) ™ =0,

because of the presence of the Christoffel symbols in the covariant
derivative. Rather, one searches for a quantity iJ which reduces

to Ti‘]' in flat spacetime, and whose ordinary divergence is zero, i.e.,

(4.91) @9 ;=o0.

Then, providing ®iJ is symmetric, one finds that the quantities
(4.92) pl - S‘ e¥as , Y- S‘ N L
‘ z ) z

aré conserved, .i. €., the integrals in equation (4.92) vanish when taken
over a closed 3-dimensional hypersurface Z. If one chooses a coordinate
system (t,.f) in which 2 is a constanté-time -hypersvurfac-e and extends
infinitely far in all directions, then p and Jij are independent of

time, and are giveﬁ by
(4.93) pl= g®i° ax , J9= ZS. Ligdlo gy

where dx is a volurhe element of ordinary th;'ee—_dirhens ional space.

C 2 56



An appropriate choice of ®" allows one to interpret the components of
P1 and JY in the usual way: as measured in the asymptotically flat
spacetime far from the matter, P° is the total energy, P¥  is the

total momentum, JaFS is the total angular momentum and 3% deter-

mines the motion of the center of mass of the matter.

The quéntity ®.ij, norrﬁally called the stress-energy complex,
- has beeﬁ found for the exact versions 6f general relativity ‘(L'an_dau.and
Lifshitz. 1962), Bra.nsA-Dic:ke theory (Nvutku 1969b, Dykla 1972)vand
others (Ni 1972¢). It has also been explicitly calculated in the post-
Newtonian and post-post—Néwtonian approximations of ge_neralh rela-
tivity (Chandrasekhal_' 1969; Chandrasekhar and Nutku 1969). (A wide
yariety of non- symmetric stress-en.ergy complexes have been found |
for general relativity, but only the symmetric version guarantees
conservation of _angular'mo'rnentﬁm‘. 3
Here we will focus oln' thé post-Newtonian limit, and will use .

_t-h'e PPN formalism to attémpt to construct a ®1‘j.

| The most general possible form for @ij which reduces to Tij '
in flat spacetiﬁe (negligible gravitational fi:elds) , and which is accuraté

to poSt- Newtonian order,is

ij

(4.94) @9 = (1 - auy(rii+ ),

where a is a constant (to be determined), and tJ is a quantity (which
i'nay be i_nterpreté_d as gra‘vitaﬁonal‘stres.s-er;ergy)itwhich vanishes in

flat space-time, _a'nd which is a function of the fields U, Uags’ q>1 , CI)AZ’ ¢3"
'I>4,d, vV, and W_, thevir'deriv.atives, and w (é,nd may also contain

the matter variables p, II, p, and v). We reject terms in _@iJ of the
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- form

B, nrtd,  e/mTd, W'Y,
since such terms do not vanish for arbitrary distributions of stressed
matter in regions of negligible gravitational field.

By combining equations (4. 90), (4.91) and (4. 94) we find that
tY must satisfy (to post-Newtonian order)

ij ij- i ik ik ij
4,95 B _au V=1, T +1'J.T +au . T .
~ (4.95) LT .3 I K al ;

In order to solve eqﬁation (4.95) for. tiJ we will use the
following equations, which are equivalent to the definitions for the v
metric functions, equations (4.19), (4.22), (4.24), (4 26) and (4. 30),

to express matter variables in terms of field quantities:
VZU = - 4mp VAR = - 4wpv
‘ 0 a a ’

vie, = - 41rpv2 , V7@, =- 4wl ,

1
(4. 96)

v, = - 4mpll , V@, = - 4mp ,
3 - 4
2 | o o :
Vi =-2U0 , v =-U 3
and we will use the following identity, which is valid for any function f:

" | | 1 o2
(4.97) 4wt = - 20/0xg) (U (of gy = 78apY,yF,y) T U,V

We substitute into eq.uatiozi (4.95) the formulas for TiJ and for‘the'

PPN Christoffel symbols calculated from the metric _(Table 4.1), and
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l _ _ : :
use equations (4.96) and (4.97) to obtain (to post-Newtonian order)

for i =0,
amt® ;= (8 /o0 16y +2a - 5)|vU| 2]
(4.98) | L axP) By +a- 2)U U o |

+ 3y ta- 3)UsY(VYsﬁ - Vﬁ,y)] .

Equation (4.98) can bé_integrated directly (making use of the condition

that tiJ vanish in flat spacetinie) to yield

(4.99) 0 = (8m {6y + 2a - 5)|VU|® ,

(4.100) o

o
]

-4, : '
- am T [By ta - 2U U By ta- 30U (Vo -V,

An expression for the conserved total energy can be obtained
using équations (4.93), (4.94), and (4.99). The result is (after an

integration by parts):

U+ dx,

o -

(4.101) P° =§ 0¥t + _12-,v2 -

where we have used the PPN version of the "conserved” density

(cf. eq. [ 4.85])

(4.102) p2 = p(1 + S v +3yU +0()) .

The first term in equation (4. 101) is the total conserved rest-mass of
particles in the fluid (eq. [4._89] ). ‘The other terms in equation (4.102)

are the total kinetic, gravitational, and internal energies in the fluid,
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whose sum is conserved accordiﬁg to Newtonian theory {which can be
used in any post—.Nerton’lan terms). - Thus P° is simply the total
mass—energyvof the fluid. So far we have vfound nothing new. Equation
(4. 102) for P° can be found directly using the conservation o£ rest-
mass (eq. [ 4.88]) and Newtonian theoAry.

For i=a, we must first compute ta@ to Newtonién order.
Equation (4.95) yields |
(4.103) 4111:043"3 = (a/axg)_'(vu’qu,ﬁ' - isaﬁu U \'() -

- from which we obtain the standard Newtonian result (Chandrasekhar 1969)

@00 7 =(4*)—_1(U,aﬂ,,ﬁ' 3 8p0,40, +

Newtonian o

ap

This Newtonlan approximation for t can now be used to simplify 311
post-N_éwtonian terms in equation (4.95). We obtain after a lengthy

calculation, the post- Newtonian eqﬁ.ati_on for t9:

4mt™ (B/Bt)[ (ay+2ta - 20, +20,)U U
—_ - + +a-
+2(4Y+4+&1)U,’Y(VY:Q Va,-y) (5yt+ta-1)U YVO‘:Y
- (5y ta- 1)(8/8xY)(UV ) +012W[3U pU o --12- 1w U U 5]

[N

+ (a/axﬁ)‘g[ 1 -}2—(5y+2§.2— a- 1)U] (U,QU,p' > GapU’YU’Y)

+IU (48 L) g - 7 84gU (820 ]

+ (4‘Y+3+a1—az+§1)[ U.,(QV‘B),O -‘Z 6apU’YVYs°]
1

f (1 +a2 B gi)[Us(aWﬁ):o -2 6Q§U9‘YWY,0
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- 2lay Fate Vg 1V p,y] " 7%V v, 8] iy 8

2
aﬁ(U,o)

1 ’-)
B 2 045

1
=6 U_-
2 aﬁUm ny.é)

1 |
-z layt2ta - 20, +20)6

| t
(4.105) |
+1a

23¢>z)w(Ul'.]'

Y. 6
- a,w'w (U:(QUB)Ys5

L VY ' Lo
--(oz1 —203)w_ (V‘y,(aU,ﬁ) -5 aaﬁst5U’5)

+ZawY(x‘ U -—%6

2 ,oyla ,B) apX ,oYﬁU,ﬁ)

1 | ' ‘ Y
+-—2- (a1 +2a2)w(aU’p‘)v’o— azéaﬁw U,YU,o

+—1-ar U [V
'Y

Y
> oy ]+aww[ U’ﬁ]U

v (@¥8) " VeV B,y )Y

!
+7(a

- 22,)U wi U o lau (v ]

. 24U Yy La™el " Y8l oy
+ (5y +a +1)U(pv*P + 6%Pp)
+ 4mQ% ,
w‘hezl'e
(4.106) 4% = (2y +2 tay + 1)@
+2[(3y - 28 +1 + L)@, H (L HL )P, +3(y AL
and whére
- @ ean 1 2, | -1 2
(4.107) Q% = (0U/8x") 5 agtt )pv i+ azpy e w + (8) L, 1vul”
+ ;3pn +3¢,p t (87) Y G] .

The term QF can not in general be written as a combination of
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gradients and time derivatives of fluid quantities and gravitatidnal
fieldS -- \or' so we believe. (We have been unable to develop a com-
pletely rigorous proof; but strong arguments that this is so'are given
in Will [1971c] ) Therefore, in order for to{‘j (and hence ®aj) to
exist and to have a f.or.m which involves only matter and .gravitational
field variables and their derivatives, each PPN parameter combination
Q% (eq. [4.107]) must vanish separately, i.e., the parameters muat

satisfy
(4.108) §1=§Z=§3=Q4=a3=0.

These cond1t1ons can also be obtained using Chandrasekhar's (1965)
'technique which consists of integrating the hydrodynamic equations of
motion over all space and calculating a conserved momentum P?

Using the PPN formalism, .the_ corresponding result is

(d/dt)S. V [1 +—1-V + (Zy + 1)U +II +p/p]

(4.109) gy -t gi’va -zl tay- t%,

~

1, . 1 B |
- > lay - @)W U - S a,w Uap}dx
+ S‘ Qa dx =

The second term in equa_tion (4.109) can be written as a total time
derivative of an integral over all space, only if 'Q'a can be w‘ritten as
a combina_tic}_n of time derivatives, and spatial .di.verg_en-c-es (which lead
to surface integrals at infinity tha’_c vanish). But according to fhe |

reasoning given in Will (1971c), this can only be true if the five
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parameter constraints of equation (4.108) are satisfied. Then Q%= 0,
and we have a conserved momentum.'
We now see the physical signi'ﬁcance of the parameters

Ql , LZ’ §3, §4 and ag: They measure the extent and manner in which

a given theory of gravity predicts violations of conservation of total

momentum. If all five are zero for any given theory, then momentum
is cons._eryed; if some are non-zero, then total momentum may not be
conserved. ‘Notice'thaf:. the parameter a3' plays a duai role in the
PPN formalism, both as a conservation-law par'ameter, and as a
prefei'red-frame parameter.

In order to guarantee conservatio»ri of _angulér momentum, btafp
must be symmetric. The 1:‘1'[3 part of equation (4. 105) contains some

antisymmetric terms; in order that they vanish for arbitrary systems,

we must have
(4.110) a, =a, =0,

It is the symmetry of t°%, i.e. uniform motion of the center
of mass which then fixes the value of a. Comparing t°% of equation
(4.98) with t*° of equation (4.105), we find using equations (4.108)

and (4.110):

(4. 111) =1 - 5y.

We apply the name Fully Conservative Theory to any theory of
gravity which possesses a full complement of post-Newtonian conser-
vation laws: momentum, ang{ula.r momentum and center-of-mass

motion, i.e. whose PPN parameters satisfy
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(4.112) | a =a2=a3=§1=.§2=§3=.§4:0_

A Fully Conservative Theory cannot be a preferred-frame

theory (ar1 =ea,=a;= 0). For such theories, tY and ®"Y have the

_form:
(4.113) | £°° = - (8v)'1(4Y +_3)|YUfz_:
oa ao -1 :
(4.114) t°% = %9 = (4m) [(zy+1)U’QU’O+(,2y+2)U,p(vﬁ’a-Va,p)] ,
B - am ! [1-Gy-1)UlU U .-16 U U )
',a B 2 af fY"Y
' 1
+4lU 2 8 7 %pU 2y
| e
: * (4Y+3)[ U:(QVB):O — 2 6“6U’YVYs0]
(4.115) , _
_ v 1 _
+[U,awﬁ).o_‘75_apU,ywy;o]
- 80+ OV, 1V g,y] "7 CapVT v, 8] VT, 6l
1 2
-= (2y+1)6a‘3(U’0) ,
(4.116) @Y = [1 + (5y - HUN(TH + ),
and the conserved qua;ntities are
(4.117) ‘P°=S‘p*(1+%v2-%U+H)’dx,
(4.118)  P° =S. p*{v"‘[i +% 2.+(2Y+1)U +II +p/pl]
] %(4\, +3)VY - % w® }df ,
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(4.119) 7P - zS‘ P*X[a{;rﬁl[i +2v24(2y +1)U T+ p/p]
T 3)vAl . 2 Wp]} dx
(4. 120) 7%° = g o *x%(1 +%v2 - _12.U +10) dx - P% .

By defining a center of mass X', given by

: S . -
o '_fpxé(l +—§-v2—%U+H)d§

(4.121) . X' = % - ,
Jeltt +5v* - S U +1I) ax

we find from equations (4.117) and (4.‘1 20) and the constancy of J°,

that
(4.122) ax%/dat = P*/P° ,

i.e., the center of mass move_'sunifobrmly with velocity P%/P°,
The c.:_onserved' quantities P1 and Jij' transform as a four-vector
and an antisvyfnmetz"ic ténsor under low-velocity Lorentz Transfor-
mations (for diséussion see Will [1971c]).
Some thgqries of gravity may possess only énergy and momen-

tum conservation laws, i.e., their parameters may satisfy

81 =tp=83=6,=23=0,
(4.123) '
' one of {011,012}.9e 0.

" We call such theories Semi-Conservative Theories. Their conserved
energy P°, and momentum PY%, are given by equations (4.101) and

(4.109), and Pi transforms under Lorentz Transformations as a
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four-vector. There is no conserved JlJ in such theories. Semi-
conservative theories may be "preferred-frame" theories (ar1 + 0,
a, # 0).

Non-Conservative Theories possess no conservation laws

other than for energy; their parameters satisfy

(4.124) one of {4y, 4,y bgy Lys @3} # 0 .

'i’here is a close conneétion between conservation laws and
Lagrangian formulations of metric theories. Any metric theory
whose field equations are derived from an invariant L.agrangian action
principle can be shown to possess integral éonservatibn laws for.
ghergy and momentum (Trautman f1962], and. references cited therein).
Thus any Lagrangian based xﬁetric theory of gravity is at least Semi-

Conservative, i.e., has PPN parameter values
@125 fsl ety iyt n

Table 4,111 summarizes these conservation law properties of

metric theories of gravity.
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5. Metric Theories of Gravity and their Post- Newtonian Limit

5°1. Introduction

We now breathe some life into the PPN parameters by examining
a wide class of twentieth-century fnetric theories of grévity and calcu-
lating their PPN parameter values. This section will iliustrate an
important application of the PPN formalism, that of comparing and
ciassifying metric theories of gravity. Mu;:h of the. discussion in this
sectio.n is based on work by Wei-Tou Ni (1972a); lother pertinent
references are Thorne, Will and Ni (1971), and Will and Nordtvedt

(1972).

5°2. General Relativity

a. Principal references: Einstein (1916); Standard textbooks

and references cited therein, e.g., Synge (1960), and Misner, Thorne,

and Wheeler (1972).

b. Gravitational Fields Present: g

c. Arbitrary Parameters and Functions: None (we will ignore

the "cosmologicali constant" A, which is known to be too small to be
measurable in the solar system).

d. Field Equations: The field equations are derived from an

invariant I.._égrangi_an action principle:
(5.1) O‘=v6‘Sv(vr-gR +1,) dx,

where R is the scalar curvature formed from the metric (see Misner,

Thorne and Wheeler [ 1972] for formulas), and where I.'I. is the inter-
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"~ action-Lagrangian, which incltides the mutual coupling of the gravitational

field with all matter and non-gravitational fields. I_I has the form
(5.2) LI'= I_I[ g'ij’ matter and non-gravitational field variables],

and in local inertial frames of gij’ has the standard special relativistic
form. Thus the thebry satisfies the postulates of a metric theory (see

Sect. 3), and hence,

oL

. R . 3 .v 1 I
(5.3) TlJ =0; TlJ =
weo T Bm/og OBy

By varying the Lagrangian in the usual way we obtain the field equations

- )
(5. 4) Ry -z g R =T,

where Ri is the Ricci Tensof. Equation (5;3) also follows directly

j

from the field equatio.ns .

e. The Post-Newtonian Limit: In this section all our discussions
of the post-Newtonian limits of metric théories of gravity are based
on the standafd teghniqu.eﬁs developed by Chandrase'kha'r (1965). We |
will use these techniques here to derive the post-Newtonian metric for
general relativity, and Ithereby obtain its PPN ﬁarameter values. Our
calculation can then be used as a prototype for obtaining the post;
Newtonian limit of nearly every metric theoi‘y of gravity (for an exception,
see Subsect. >5'8). Using the "bookkeeping" scheme developed in
Subsect. -4' 2, we solve thé field equations (5.4) for o0 to 0Of(4),
8,e tO O(3), and | 8ap to O(2) for a stre'ss-energy.terisc.n' given by

equation (4. 20). We first rewrite equation (5.4) in the form
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(5.5) R, = 8n(T, - +g,T) ,
where
(5. 6) T=g

We choose an asymptotically flat coordinate system which is at rest
relative to the mean rest-frame of the Universe (w = 0; this assumption
is not necessary in general relativity, but is in many other theories

[ see Subsect. 5°7]), and write

(5.8) 8

J=ni.+h..

b
The calculation then proceeds in stages:

(i) hoo to O(2). To the required order .

-vho‘_” T00='p,‘ T=p,

(5.8) - Roo =

then equation (5.5) becomes

2

- whose solution is
(5.10) h =-2U.
00

(ii) b, to O(2). When we impose the gaﬁge condition

(5.11) nl, - nY - nY =0,
equation (5.5) becomes, to the required order

. 2
(5.12) v ha'ﬁ = 8Tl’P5aﬁ ’
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whose solution is

(5.13) hyg = ~2Ubg .

(iii) hoa ‘to 0(3), When we impose the gauge condition
' 1.p B _
(5.14) zhﬁ,o-ho,ﬁ_o’

we get to the required order,

120 1 t

(5.15) R e =37 Vihye-3 U‘,oa’ Too "7 8aT =~ PVq *
Then, equation (5.5) becomes
(5.16) V2h = - lémpv_ 4+ U _

) . ) o P a - » OO .’_
By ﬁsing the fact that
(5.17) U=-1g? =V - W,

_‘.. : 2 X X,OCY - a ?
we obtain
(5.18) n =—4v +lw

* v 2 ‘a2 ot

Nptice that our resulting expressions for hoo’ hoa and haﬁ do satisfy

the gauge conditions [egs. (5. 11-) and (5.14)] to the nécessary order. |

(iv) hoo__ to O(4). In our chosen gagge, R_oo evaluated correctly
to O(4) is given by

| R S 2 L2
(5.19) R = V5h - U%+40vU.

To the necessary order, we also have
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_1
00 Zgoo

T = 4mp + 8mp(v> - U +5 w +%P/P)-

(5..20) - T Hs

Then the solution to equation (5.5) is

. ) . : _ 2
(5.21) By =-2U+2U% - 4d, - 4, - 2b, - 6&,.

[e] e}

_ (v) g‘ii and the PPN parameters. The final form for the metric

is
B = ;- 2U +20° - 48, - 2[28, + &, +38,],
5.22) Bou = Iv, + 3w,
gap = - (1 #2005, .

Since the metric is already in the standard PPN gauge, we can read off

the PPN péramete_r values immediately (see also Table 5.1):

y=8=1 .
(5.23) |

f. Discussion. We note 'from‘ equations (5.23) that general
relativity is a Fully Conservative Theory (afi =0, gi = 0) with no preferred-

frame effects (afi = 0).

5°3, Scalar-Tensor Theories

A variety of metric theories of gravity have been d'ev_ised which
p‘ostulate in addition to the rﬁetric, a scalar gravi't.ational field ¢. The
most general such theory was examined by Bergmann (1968) and

Wagoner (1970), and special cases were studied earlier by Jordan
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(1948, 1955), Thirry (1948), Brané and Dicke (1961) énd by Nordtvedt
(1970b). We will examine the Bergmann- Wagoner Theory in detail,
then will discuss the various special cases.

a. Principal References: Bergmann (1968), Wagoner (1_970).

b, Gravitational Fields Present: <p, .

c. Arbitrary Parameters and Functions: Two arbitrary functions

of ¢, the "coupling" function w(¢) and the cosmological function \(g).
Me) is known to be too small to be measurable in the solar system, so

it will be dropped.

d. Field Equations': The field equations are.-derive'd' from an

invariant action principle
_s(Ty Uy o 420
0=25)|V-g{oR - [uwle)/9l g0 ;0 ;+20\ ¢
(5.24) _ ' o : ' '
+I_I(‘gij,...)]. atx .

In this form, the theory satisfies the postulates of a metric theory (for
a discussion of other "non-metric" representations of the theory, 's.e‘e

Ni [1972a]). The resulting field equations are

i _ 8w .. w(gp) 1 yk

. Ryj-zeuR- ey =Ty t=5" (0 40 -89 27 )
(5. 25) | |

| y |

A=Y
: : 2 . . ' : . . .
S 207 d\/de - 2\ _ 1 ( _dw ,i)'

(5.26) Oet =2 ~3Fzae 8T ~g 2,097 ) -

The stressed-matter equétions of motion,

(5.27). : TiJ,J. =0,
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follow from the form of the interaction Lagrangian, or directly from

the field equations.

‘e, The Post-Newtonian Limit: Far from the solar-system,
the scalar field ¢ is assumed to have a present value Py det_ermined
by the rest of the Universe. In a coordinate system at resi 1v'e1at‘ive
to the Universe, we write

8y;

J=1‘|i.+h'. R

BN N

(5.28) =9 T

olp) = wtwle too.

where

- I -
(5.29)  w= w(tpo), w' = dw/dcpl¢o .
(We assume the _cosmological function \ is zero.) Following the
technique of Chandrasekhar (1965), the field equations (5.25) and
(5. 26) may be solved, and the post- Newtonian metric obtained (for

details, see Nordtvedt [ 1970b], Ni [1972a]). The result is

1.- 2U +2(1 + A)U? - 4 (3 2w )@1

8oo 4 + 2w
' 1+ 20 1 4w\ .
-4(-———-—-A)<1>-z<1>-6( )¢ -
) - 7 ’
(5.30) T T 2 3 7 To) %4
1/10 + Tw 1
a3 TrEes) Vet 3 Wy s
. ) 1 +tw .
gqﬁ——[i +z(2 +_w)U]6ap ,
whefe »
(5.31) A= 0"/ 2054+ 20) .
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By comparing. equations (5.30) with the PPN metric in Table 4.1, we can
read off the PPN paramet'er values for this theory (see also Table 5.1):

y=<é—:—g>, .{3=1+A,
(5.32) ‘ .

The Newtonian gravitational constant G (as measured by studying
Keplerian 6rb_'1ts far from the gravitating matter) is related to the

scalar field in the theory by

(5.33) G 4”L?“")z1 ,

- 1(
Today ~ E 3+ 20

(G =1 by our use of geometrized units.) If the asymptotic

Today »
scalar field evolves in time as a result of the changing structure of the
Universe, G may change secularly with time from its présent value

of unity according to

| (1 dG)- g 26" 1 (dqo
(5.34) (c&), - -[“——-"7]7; *). .
» Today (3 +2w) o “Today

" f. ‘Other Theories and Special Cases:

(i) Nordtvedt's (1970b) Scaiar-Te_nsor Theofy is equivalent
to the vBergr'nann-Wagoner Th'eoi‘y in the special casé of zero cosmolo-
gical function, i.e., A=0- (Ni 1972a).‘ Its PPN paz;ameters are the
s_arn'ev as in the Bergmann—Wagoner Theory (see Table 5.1).

(ii) Dicke-Brans-Jordan Theory is the special c;is_e w = const. ,
A =0 of the Bergmann- Wagoner;_Nordtvedt theoriéé (Jordan 1948, 1955;

Thirry 1948; Brans and Dicke 1961). Its posf-Newton’ian limit was
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calculated by Nutku (1969a), and its PPN parameters may be obtamed _
from the Bergmann- Wagoner- Nordtvedt PPN parameters by settmg
=0 (see Table 5.I). In the limit w— + oo, Dicke Brans Jordan
Theory reduces to general relativity. | o |
g DlsCuS sion: We note that the Scalar Tensor Theories are
all Fully Conservative Theories (a =0, g = O), with no preferred
frame effects (ari = 0). | ' | .

Since gravitation appears to be a long-range, purely attractive
force, one mig.ht expect't‘he V'Universe's global matter . distribution to
affect local gravitatmnal phys ics; and to play a dominant role in
establishing'any "preferred" reference frame. In fact from thlS

"Machian" point of view, the mystery seems to be' How can a metric

theory of g ravity av01d at all havmg ajreferred frame related to the

Universe rest- frame? General relativity and the Scalar Tensor theories

obviously avoid preferred frame effects (cf. their parameter values E
di— az = a3 =0 in Table 5.1) even though the Scalar Tensor Theories .
embody several "Machlan concepts [ef. eqs. (5 33) and (5 34] Before
we discuss theories which_c_ig have preferred frames, we must first
shed some light on how these exceptional the'o.ries avolid them. We
confine our attention to Lagrangian—based metric theories (so that -
ay =‘§1 = ; 1; =L, = 0) which assume no preferred frame a priori
(later in this section we will examine theories which do assume "prior
geometry ) | |

_ Consider a local gravitational system, such as theisolar system, .

which is embedded in the Universe. We separate the computation of ‘

.the metric into two parts: a Umversal or cosmological solution, and
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a "local" solution. From this v-iewi)oinf, the Universe affects the local
gi'avité.tional physics of.kthe system by establishing the boundary con-
ditions (at a boundary "far" from the matter) fof the various fields
generatéd by the local system. The local systém Mfeels" its relation-
ship to the Universe via the asymptotic field values of the flelds
pr'esént;‘metric g , scalar field ¢, veActo_r field K ,. sec_;ond-rank
tensor field C, and so on. Several conclusions follow:

1) A theory which contains solely a metric field yields local

‘gravitational physics which is identical in all asymptotic Lorentz frames,

and which does not change with Universe evolution. In addition, .’the

Newtonian gravitational constant (cf. Sect. 6) is unaffected by the

proximity of matter, All this follows from the invariance properties
of ﬁij ‘(the.asymptofic form of gij$ » the only field coupling the local
system asymptotically to the Universe, and from general covariance,
Which allows us to always find a coordinate systerﬁ in which the .mefric
field takes this Minkowskii form at the. boundary between the Univer‘s_e

and the local system. |

©2) A theory which contains a metric field and a scalar field - ¢

yields physics which is identical in all asymptotic Lorentz frames , but

which may vary with Universe evolution; G_may be affected by prbximity
of rr%atter. These conclusions follow from invariance of both | nij and

¢ under Lorentz transformations, but now K2 ' may vary with Universe
evolutionl and may depend on the proxifni’ty of matter,

3) A theory which contains a vector field K, and/or an additional

second-rank tensor field Cij yields local physics which may depend on
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motion relative to a preferred Universe rest-frame, and which may

vary with evolution of the Universe; G may be affected by proximity of

matter. This follows because the asymptotic values of Ki and Cij
are not invariant under Lorentz transformations (an exception would

be ] proportional to ‘nij),

Cij [ asymptotic
In summary, it is the Lorentz invariance of the asymptbtic

fields ¢ and nij- which fnake‘,s it :impossible. to have preferred-frame
effects in theories containing solely those fields. Thus we must appeal
tovvectér— or tenéor-metric theories (or to fheories with "prior
‘geometry") for preferred-frame evffects.

| - It is commonly believed-that cosmological vector:fields and
additional second-rank tensor fields are absent from physics .(ICf. Sect. 2).
The Hughes-Drever experiment (measu_.r'ement.of the i.sotropy of inertial
mass) and a variety of laboratory "ether-drift" ékper_iménts have been
used by Dicke [('19'64); see also Peebles and Dicke (1962); Peebles

(1962)] to rule out these fields. Closer examination of these arguments

shows that the experimental evidence rules out only those vector and

"second tensor"” cosmological fields which couple directly to matter.

Since these experiments were performed under cdndition_s where the

effects of gravity wefe negligible, they do not rule out vector and second-

tensor fields which couple only to gravity.

We now proceed to discuss such theories.

5° 4; Vector-Metric Theories

We agssume these theories are deriva_.ble from a coordinate-

invariant vLagran‘gian, with no a priori assumption of a special coordinate
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frame or of any prescribed form for the tensors in the theory. For
simplicity, we restrict ourselves to theories which have linear field
equationé for the (timelike) vector field; nevertheless, a wide variety

of theories is possible. The general Lagrangian has the form

| LV—M = I_I (gij; matter and non- gravi.t_atlon_al figlds) |

'R +1,KK.RY + 1k, KD

KR+ kKK, £33

(5..35) o tIyR K,

i

K, x4 kit
isj :

kg 6%y

Kj;J ,

where Rij and R are the Ricci tensor and scalar formed from the
metric, ki’ ey k6 are dimensionless coupling constants. The PPN
parameters for a special case of the se vector-metric theories have

been computed:

a. Principal References: Wil and Nordtvedt (1972)..

B. Gravitational Fields Presenf:: g, K.

c. Arbitrary Parameters and Functions: K, the asymptotic

"strength" of the vector field.

d. Field Equations: The field equations are derived from an

invariant action principle:

?

_ -1 , y ik jf 4
(5.36) 0= S‘[w/-gGo {R +Ki°ij;1_g g‘j }_+ L’I]d X,

where Go plays the role of an unrenormalized gravifa.tional constant.

This theory corresponds to the case [éq. (5., 35)] ki = k4-=AG-o_1 ,
kz = k3 = k5 = k6 = 0, The field .equations are
(5.37) K, =0,

Ul C G '
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, 1
(5.38) Ry, - 5 ;R = 87G T;; + 0.,

where e.lj is the vector-field stress-energy tensor given by

=K, K™+ KT, -Lx™ g P,

: ij  Timj m;i 3] 2 ;mT m ij
(5.39) '
' 1 m m m

+-Z- (K 'Sij - Kis f - st i) cm
where
. 40 . =K, ,tTK. ..

(5 .) siJ isj jii

The stressed-matter equations of motion
i -
(5.41) . T ;5 =0,

follow from the form of L, or directly from the field equatioﬁs°

e. The Post-Newtonian L imit: The metric is expzinded about

the flat-space Minkowskii metric according to

(5.42) gyt = gt ayle

where ,‘ far from the matter, hij tends asymptdtically toward zero.
We also expand th¢ vector fleld Ki' ab_qut ita Vasymptotic valﬁe. How-
ever, in order to simplify the calculation, we work in a coordinate
system in which the a.symptotic vector field has only a time céfnpqnent;

i.e. asymptotically
(5.43) K =0,

. Then, in this coordinate s'ystém, we have

2= kK, = K2,
J (o]

(5.44) K i
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far from the configuration of fluid. . The frame in which KO = K and
Ka =0 is pre.sumably the rest-frame of the Universe's smoothed-out
distribution of matter. The expansion of the vé_ctor field can thus be

written

K K +¢(X,t_) s

¢)

(5. 45) ‘
- K

o

ka(frt) ’

where ¢ 1is O(Zv) and ka is O(3), and both go to zero far from the
matter. The resulting PPN metric is (see Will and Nordtvedt [1 972]

for details):.

2

goo‘: 1 - ZU + ZU - 4@1 ~ 4@2 - 2¢3 - 6@4’ .
| 1 K2 1 - K?
(5. 46) g = _'(7_—-———.-—)V +—(1 +——-—)W ’
. A oa 2 { +iK2 o 2 1 +1'K2 a
‘ 2 .2 .

and the PPN' param.eters have the values (see also Table 5.I)

L

2
K9,

y=B=1, a =0, a, =K/(1+
(5.47) '

The gravitational constant G is related to G, and the vector field by

G
Groda '=;_'f9——2_51"
4 t+5K

If the asymptotic vector field evolves in time, G may change from its

present value according to
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1 /4G K dK
(5. 49) Eygs, - - [ dK } o
G<dt Today 1 +-2- K2 ( de Today

f. Discussion: This Vector-Metric Theory is a Semi-Conservative
theory (a3 = 1;1 = §2 = §3 = §4 = 0) and does predict preferred-frame

effects (az # 0, see Sect. 7).

5°5, Tensor-Metric Theories

A wide class of Tensor-Metric Theories can be constructed
following the same prescription as for the Vector-Metric Theories.

For a symmetric tensor field Cij-’ we can devise a Lagrangian of the

form
L,i, M I_I(gij;' matter and norifgravitatioﬁ'al. fields) :
i, 'R + kZ'CijCin + k3'.(C.'iJ.gijv)2R
(5.50) 4 k4"C-ijg_§j C R + k_,)'cﬂ‘(clzRij
* ké'cij;kcij;k ¥ k7'cij;k-cik;i ¥ kS'Cik;kcié;j
J.'k9'cij;.j o't klio'C'-'ij;kc':zm;kgijgjZrﬁ ‘

We point out here that the .aBove equation (5‘_ 50) alone does not
reveal the full richness of possible Lagrangian terms for vtensor-metric
theories. If Cijb is a non- s'ingﬁlar field, one can défine Chrigtoffel
symbols in terms of Cij° Also, third-rank tensors Sijk can Be pro-
duced by taking the difference of the Cristoffel symbols
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Covariant derivatives can be defined with respect to each tensor, glJ

or Cij’ and tensor densities can be formed using either

V-g

or
.\[[detC|

All these quanti_ties can be used to construct Lagrangian terms.
Nordtvedt and Hellings (1972) have studied these Tensor-Metric

Theories in detail.

5°6. Conformally Flat Theories -

Conformally flat theories possess a global Lorentz metric nij
and a‘s_calar field |, which generate the physical metric via the alge-

braic equation

The scalar ﬁeld is generated by the matter via a wave-type equation.
One of the most famous of the confo rmally flat theories is Nordstrdm S
Second Theory. |

a. Principal References: Nordstre’m (1913, 1914), Einstein

and Fokker (1914), Whitrow and Morduch (1960, 1965).

b. Gravitational Fields Preéent: n, ?s g

C. Arbltrary Parameters and Functions: None.

d. Field Equations: In the form derlved by Einstein and Fokker

(1914), they are
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(5.53) C..., =0,
(5.54) R = 24+T ,

where Cijk£ is the Weyl conformal tensor constructed from g But
~ the vanishing of the Weyl tensor guarantees the existence of a flat

spacetime metric and a scalar field ¢ which generate g1.j by

2

J
Equations (5.53) and (5.54) also allow ¢ to be calculated from the
variational principle
" (5.56) | o_sg(l_ --3- g)dx.
The field equation (5.54) then becomes
‘ i] A3
(5.57) . <n'¢ij-_4"T¢ .

Equai:ion (5.57) is Nordstrgm's original field equation.

e.. The Post-Newtonian Limit: By solvmg the field equat).on

(5.57) for ¢ to the appropriate order (see Ni [ 1972a] for details) we

obtain
o 2 o ,
goo-1-2U+U.+6¢2 2(1>3+6<Ia4 ,
s =-Llv +ilw

(5.58) €oa™ " Z ' Z "a’
gaB = - (1 - ZU)Gaﬁ._’

from which we get
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(5-59) @ mep ey =ty =ty=0,=0.

Notice that Nordstrgm's Second Theory is a Fully Conservative Theory
(ozi = ¢, = 0) with no preferred frames (o) = 0). |

f. Other Theories or Special Cases: A variety of conformally

flat theories have Been devised. We list them here, and quote their
PPN parameter values in Table 5.1. | The reader is referred to Ni
(1972a) for details and references. »

(i) General Confor mally Flat Theory (Ni 1972a),

(ii) General Conformalljr Flat Theory, Lagrangian based (Ni 1972a),

(iii) Whitrow-'l.\/Iordu.ch Conformally Flat Theory (Whitrow and

| Morduch 1960, 1965), |
(iv) LittleWood-Bergmann_Thedry_(l_ittlewood 1953, Bergmann
1956), |
(v) Nordstrgm's First Theory (Nordstrgm 1912).
‘ g. Discussion: We will see in Sect. 7 fhat Con‘forvmall_y-Flat

| Theories all predict zero bending of 1'1_ght _ray.s by the-Sun and zero
relativistic time-delay of light sig'nalls paséing by the Sun. This can
also be deduced from the confor.mal invériance of Méxwell's eﬁdatiqns
(i.e., invariance under a tfansformation gij — LLZgij): propagation of
light rays in t.he metric qozn.lj is identical to propagation in the ﬂgt

épace metric nij’ namely straight-line propagation at constant speed.
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5'7. Stratified Theories with Time-Orthogonal Conformally Flat Space
Slices '

Some metric theories of gfavity endow spaéetime with a "prior"
geometi'ic structure, which exists independentiy of field equations or
the distribution of matter in the Universe. This "prior geometry" can
: té.ké many different forms. Conformally flat theoriés of gravity exhibit
"prior geom.etry" by insisting that the metric of spacetime be conformally
flat (vanishing Weyl tensor) re.ga.rdless ot the mot‘ion and evolution of the
mafter.v An important class of theories of gré.v‘ity which postulate a
"prior geometry" are the "Stratifi.e.d Theories with Time-Ortﬁogdﬁal
Conformally Flat Space Sliceg" (Ni 1972a). |

| f~'1l‘hevse theories are devised using the following prescription: The
Universe'é large-scale distriBution o:f' matter determines a preferred
feference frame whose space slices ("strata") are conformally flat,
é.lthough .the full spacetime is not. In this preferred frame, the metric

has the form

(5. 60) : dsz- = ez? d'(:2 - ezq" (dx2 + dyz + dzZ) -

where ¢ and | are scalar flelds. In ge‘omc_etric, coordinate-free :
language, such theories have (i) a background, flat metrié n ; (ii) a
Universal time cbordi.nate t (a scalar field) which is cbvariantly
constant and has timelike gradients with respect ton ; (iii) scalar

gravita'_ciohé.l fields ¢ and U; and (iv) a metric g construction from

n, t, ¢, and ¢ ‘by

(5.61) g - ez"’n e -2 di@dt.
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These theories differ from one another by their field equations for ¢
and . Some Stratified Theories contain a single gravifational field

¢ and constructvthe metric using functions of ¢:
(5.62) g - -eZg(¢)n+[er(¢) - 28l di@dt .

We Qvill describe a recent theory of this type, published by Nathan Rosen:

(1971a,b)

a. Principal References: Rosen (1971a,b), Ni (1972a).

- b. Gravitational Fields Present: n, ¢, Y, t, g .

c. Arbitrary Parameters and Functions: Three parameters

a, b, c. In order to have the correct Newtonian limit, b must satisfy
- 7 >
(5.63) b=2+c"/4a .

The post- Newtonian limit is independent of a, and so contains only one

arbitrary parameter \, given by

(5.64) . \=c/2a .

d. Field Equations: The field equations are derived frofﬁ an

invariant action principle

[ ) 4
(5_- 65) 0= 6§ \[‘[—g gl‘](a‘l'l"’iq),j-*-'bq’,iq”j + C¢,i¢,.j). + LI] dx, -

‘and are given by (in the preferred‘ reference'frame)‘

- -2 2
a{3 e )P+ el

' -2 2 1 2 -
900—%(¢!O)2+3¢’0¢;0] - € Lp[v ¢+—2— ,Y¢I +Y¢’Y¢]}

refte®y  +3w 0 -5 e HIvRs [Tl - - T
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a{_e—2¢[¢,00+(¢,0)2+¢,o¢,o] +e—2¢[v2*+ IYLHZJrY‘P’Y‘P]}
(5. 67) ' b{e—2¢['¢,oo+(4‘,0)2*‘34"0‘/”0] - e;ZqJ[V2.¢_+ [y¢,2+y¢. Yq,]}

* C{% e—2¢[4‘,60+ 3(4},0)2 - ¢_,OO+'(¢,O)2]

1 -2y o |
L BTty + |y 2V +[T0 |2} = - 8aT,
where
» o _ oo _ ij
(5. 68) T, =g%°T,,  T=g'Ty.

The stressed matter equations of motion follow from the form of LI’

namely

(5. 69) i -0,

3

e, The Poét— Newtor;iaﬁ Limit: Working in the preferred
reference frame (af fest with respect to the Uﬁiverse), ‘we may compute
the post- Newtonian metric from equations (5.66), (5. 67) and (5.68),
making use of the constraint (5u63). Then, in our Standaljd PPN Gauge,

the resulting metric takes the form

_ g 2 s |
o0 = i -2U0 f—z(3 +N)U” - 2(1 1‘)\)@1 - (51 - 1)@2— 211)3— 6)\434,
: 1, 1o
(5.70) goa__-'Zva ta W, o
Bap = = (L +200)G0p o

with PPN parameters
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Y= X, ﬁ:%(3+)\,), ai=—4(1+)\),
(5.71) -

Note that Rosen's theory is a Semi-Conservative Theory with préferred—

frame effects.

f. Other Theories or Special Cases: There are several other

Stratified Theories, many of whi.ch are discussed in detail by Ni (1972a).
Two additional stratified theories were devised by Ni himself. We list
them here and quote their PPN Iiérameter values in Table 5.1. |
(i) Page-Tupper Theory (Page and Tupper 1968),
(i) Pépapétrou'é Thebry (Lagrangian-based) (Papapetrou..
1954a,b,c), |
(iﬁ_) Yilmaz's Theory (Yilmaz 1:‘.958, 1962) (as completed by Ni
- [1972a]), |
(iv) Ni's Lagrangian Stratified Theory (Ni 1972a),
(v) Ni's General Stratified Theory (Ni 1972a),
(vi) Coleman's Theory (Coleman 19715, _
- (vii) Einsteir_i's Theory wii;h "Variable Velocity of Light"
(Einstein 1912), -
(viii) Whitrow-Morduch Theor.y with "Variable Velocity of Light"
(Whitrpw and Mordﬁch 1960, 1965). | -
g. Discussion: We conclude lthis subsection with a theorem

concerning the‘PPN parameter ai for stratified theories:

In every stratiﬁed. theory of gravitir with time-orthogonal,

conformally ﬂatvspace slices, the PPN parameter a, has the value
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(5.72) ai - - 4(1 ty) .

_Note that all the. stratified theories in Table S.I obey equation (5.72).
In Sect., 7, we will make use of this result albng with the experimentally

measured value for y (~ 1.0% 0.1) to show that all the stratified theories

in Table 5.1 diéagree violently with éxperiment.

~ The proof_of't‘his theorem goes as follows: Pick any stratified
theory with time-orthogonal conformally flat space slices. Using é
<‘:oor<_ii.nate system at rest with respect to the Univevrsé, compute the
post-Newtonian metl;ig: due fo an arbitrary configuration of matter.
‘To put this metric into the ?’stan‘dalrdi" PPN gauge, it may be necessary

to apply an infinitesimal gauge transformation [ eq. (4.27)]

T T

(5.73) t' =t +ex , x' =x,
. ,0 ~ ~.

for some value of €. Since Boq WS initially identically zero [ by

assumption, cf. eq. (5. 60)], in the new gauge it becomes

(gw)lr = X oq

(5.74)

- eV teW .
o a’
By comparing this with the PPN metric in Table 4.1 we obtain

1 _

"(5.75) |
%(1-&2-§1)=€.-

Adding equations (5.75) we obtain, finally,

'~ (5.76) a = - (4y +4),
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independent of gé.uge, €. Q.E.D.

5°8. Whitehead's Theory

a. Principal References: Whitehead (1922), Synge (1952).

b. Gravitafional'Field Present: ” , g . :

c. Arbitrary Parameters and Functions: None.

d. Field Equations: Whitehead's (1922) theory of gravity is a
lorentz-invariant action-at-a-distance metric theory. foe metric g
determines the geodesics along which freely} fé.lling test bodies move,"
and in the local inertial frames of g , the nqn—gravitationai laws of
- physics take on their standard si)ecial relaﬂvistic forms. . The theory

also contains a global Lorentz mefrié n Which is physically un-
-observable, But which appears in the equations used to calculate g:
for a field point with 'féur—vector positio‘n X, g.b is givén by thg

following equations (cf. Fig. 5.1)
Eap{X) = My - ZZ SR WIVA S
k
Y= X-Xpe» Yy V=0,

w =Y, * (@X /do) ,

2 a b
do -nabdx dx” ,

(5.77)

where "." means contraction wi__th. respect té nab,hand where m, is
the rest mass of the k'th p.artiéle. Thus the metric g_, is determined
at a point in spacetime by the effect of all other masses along the past
n- "ight cone" o_fy the Il)oi.nt.. In order to generalize equations (5.77) to

continuous, fluid systems, we notice that the total rest masses of -
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particles in a small element of volume along the past n—light cone
is equal to the flux of matter across the corresponding element dE;
of the three-dimensional hypersurface which comprises the n—light—cone:
(5.78) ' S‘ m, = (V-g pu€dx ),
: L c

element '

on n-cone
where p is the rest mass density of matter, as measured in a local
co-moving inertial frame of g, and u® is the four-velocity of the
element of matter. The superscript (-) indicates quantities to be
evaluated along the past | |-light-cone. Then

g XK=, - zgz_ 5

(y ') (y")
_'___3___3__b (-J_g puc dzc)- .

(5. 79) Y =X-X, Y 'Y =0,
wo =Y+ (dX /de) .

Note that when written in terms of p, equa."cion (5.79) for the metric .is
now an implicit integral equation for géb, since gab itself appears

inside the integral.

e. The Post-Newtonian Limit: In_ the post- Newtonian metl;ic,
all field quantities are evaluated on a constant_-timé hypersurface Z,
rather than along the past n,' "light cone” X7, at each point. By
following beaCh element of fluid frorﬁ the past n—light cone to the
present (Z), one can show that if dE is the intersection of. the world
tﬁbe ot a given element of m'attver with the constant-time hypersurface %,

then, because of conservation of rest-mass, equations (4..71) and (4.81),

91



(5.80) (V-g pu® dB )" = ¥-g pu® dZ_ = V-g' p'u®' ax',

as long as no net flow of matter has occurred across the walls of the
element's world tube. We must also express (y-)i. and w  interms

of quantities evaluated on Z. The crucial formulas are

(r7)% = o) o x! [y Geox e
- %lﬂ-f'lz dv""/_dt ,
(5.81) 1) = 'f’i‘"{i tylelx-x)/|x-x'| *%V'z |
+ 2o Gex) /[x-x' 17 - 4 (f—;g').’,dg'/dt} :
W= lx-x'l{i +%"[ v'e (f"f')/lX-i{' I] 2 +-12-(x—x')'dv'/dt} .

“We make a gauge transformation toipubt ,th'e metric in the standard PPN

gauge:
' ' e o
Xa — Xa + S' P (X—X ) _dX' ,
(5.82) | AN

0',_.,0_ 'v ! v__5_
x x ZSp In l”jfldx Zx,o ,

and obtain

1 -2U + 20> -+’2<I>1‘- 4%, - 6G

o0 ~
. p'p"(X—x') (X'-X") (x-x") : ‘
+ ZS‘ ——-———-—-—-———~ ~3 . < nd Sl - il > R
AN PRTL R Gy P PV
St 7
(5'83) - goaz_iva +Ewa ’
Bup = - (1 +2U6,q
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_ Except for the final term in o0’ this is the same as a PPN metric with

parameter values
(5.84)

The éxtra term in oo’ which prevents us from analysing Whitehead's
theory completely within the PPN framework, will be shown (Sect. 7)
to have striking observable consequences.

£, Othei' Theories or Special Cases: Generalizations of

White'head's theorir have been examined by Schild .(1.956, 1962),

g. Discussionr Inr its original forrr;, Whitehead's theory could
not describe measufements made by rods and atomic clocks, and said
nothing about the trajectories of photons. The interpretation we hse
‘here was first introduced by Synge (1A952) to make Whitehead's theory
complete. For further diséussion of Whitehead's théory, see Témple
(1924), Rayner (1954, 1.955), Clark (1954), .Whitrow and Morduch ‘(1965),

and Will (1971d).
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6. EQUATIONS OF MOTION IN THE PPN FORMALISM

6°1. Introduction

One of the fundamental posful_atges of any metric theory of gravity
is that "test" bodies, i.e. bodies wifh negligible size and structure,
follow geodesics c;f the spaéetime metric. The early Eddington-
Robertson-Schiff versions of thg PPN formalism treated thé sun and
planets as test bodies and used the geodesic equation of fnotion

L P

(6.1) . _5_2.+rjkﬁx__&)\_‘=.o,

where A is an affine parameter a_long the boldy's wofld line, to calculate
their trajectories. 'How.ever, the test-body model for the pianets ;xs
unréali'stic and inadequate for stud’ying.a'_ll the experimental tests made
possible by current technology. Rather, the'planets must be viewed as
finite, self-gravitating "clumps" of matter. One model for the pla:;xets
builds them up out of swarms of test-bodies which interac_t with each
other only throu_.gh_.their mutual gra{rité.tional attractib.n, i.e. an "id’gal“
gas (Nordtvedt 1968b). Each test body follows a geodesic of the metric
produced by the other test bodies in the planet, as well as by other
planets, and the motion of each planet is obtained by averaging the
motions of all the constituenf test bodies. Another model treats the
planets as éelf—grévitating "clumps" of perfect honviscoué fluvi‘d (will
19715_.).' Each element of fluid obeys the "stressed-matter" equation of

motion _

(6.2) oTH =0,
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and the motion of each planet is o.btaint-ed by averaging over all the
constitueht _ﬂuid elementé. Detailed justification of the perfect—ﬂuid
model fér the planets is given in Will (1971a). In Subsection 6'3, we
will derive PPN ‘equations of motion for the planets using the perfect-
fluid model.

‘The PPN fofma-lism treats photons as test;bOdies with zero
mass; their trajectories are therefére null geodesicsvof the mefric,

i.e. geodesics constrained by
(6.3) 0 = (g ax' asdy1/2

This result foliows dir.ectly from the curved-space ';ra.cuurrxl Maxwell
Equations, v51id in any metric theory: |
FJ =0 ,
(6.4) ' I
Flagm =%
when Qe take.the geometrical optics (photon) limit., In Subsection 6°2
we will derive PPN eqﬁations of motion for photons,

The femainder of Sect. 6 is devoted to deriving PPN équ’.aﬂons
for the precession of the spin of a rotatingv body (gyroscope or planet)
(Subsect. 6°4), and to obtaining an expression for the Newtonian gravi-
tational constant as measured by a Cavendish experiment perforfned in

the solar system ("locally measured G") (Subsect. 6°5).

6°2. Equations of Motion féf Photons in the PPN Fofrnalism '

We begin with the photon geo.deéic equation

95



2 i - k
x l'dx dx
(675) 2 +rjk‘d“T

=0 R
where ) is an "affine" parameter measured along the photon's tra-
jectory (d\ is not the same as ds, which is zero for a null trajectory).

We can rewrite equation (6.5) using PPN coordinate time t rather than

\ as affine parameter by noticing from equation (6. 5) that (x° = 1):

a% dd dx® .
+ axr ox .
(6.6) =z T°. ik I dx 0.
Then equation (6.5) can be rewritten
6.7} a%® epe. @ r°, axd dx ax® _
* dtZ jkdt dt dEI de ~

The solutions to equation (6.7) must be null geodesics, and so must
satisfy

dxi dsxc)

(68) T__d__ =0.
To post-NeWtonian,accuracy, equations (6. 7) and (6..8) may be written

(see Table 6.1 for expressions for the Christoffel symbols Fljk):

: 2 :
' 2.« dx |. e (dx
d"x" - 98U - ~ dx { '~ | o1 _
t 9x”
(6.10) 0=1 - ZU ]dx/dtl (1 +2yU) .

The Newtonian, or first-order solution of these equatio‘ns- is

@ . — ] . —
(6.11) XNEWTONIAN = @ (t - ) nl =1,
in other words, straight-line propagation at constant speed, |dx/dt| =

By' writing
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(6.12) | x® = n%(t - t )+ xp"‘_ ,

and substituting into equations (6.9) and (6.10) we obtain post-Newtonian
equations for the deviation _xpa of the photon's path from uniform,
straight-line motion:

2 «a

A% 89U o
(6.13) Z? =(1+Y)['_E -Znn-VU} ,
_ dt dx ~ T '
(6.14) n - dfp/dt =-(1+y)U.

We will use these equations in Sect. 7 to derive expressions for the
deflection of light by the Sun and for the time-delay of photons passing

close to the Sun.

6" 3. Equations of Motion for MasSi(re Bodies in the PPN Formalism

In Newtonian gravitational theory, massive, self-gravitating
bodies,_i_._e_._ planets, obey very simple equations of motion; provided
we neglect tidal couplings between them (torques, tidal dissipation |
effects, etc.). By defining an inertial mass and a center of mass for

each body according to

(6.15) - m, =

i pdx ,

v ith body
(6.16) X, = (1/mi)§ px dx ,
v i~ o~

one can show, using the Newtonian equation of continuity (eq. [4.18])

that

(6.17) dm,/at =0 ,
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(6.18)

]

d}si/dt = (i/rnl)S pv dx,

(6.19)

a, dv.l/dt = (1'/mi)§ p(dv/dt) dx .
2 P~ ~

By using the Newtonian perfect-fluid equation of motion (eq. [4.18]) we

obtain the follow‘_ing expression for a:,

(6.20) a =v .
(6.21) N - z<-mj + LgaP rijarijﬁ + )
. | = . -1-'-.—: —2- J ————5— coe ’
i Y Ty

where mj is the inertial mass of the jth massive body, Qjaﬁ is its

quadrupole moment deﬁned by

(6.22) Qj"ﬁ ;S p(3:%xP - x%26%P) ax ,
i |

and T3 is given by

©2) g%
We now wish to ger_ﬁeralize these éqﬁations to the post-Newtonian

approximation, using the PPN formalism. Because theire are many

different "mass densities" in the ﬁost-Newtoni'an limit -- rest-mass

of baryons p, mass—energy density p(1 *+1II), "conserved” density p*,

and éo on -- there are a variety of possible definitions for inertial mass.

We will use the following deﬁnitién:. Construct a coordinate frame

completely surrounding the ith massive body and momentarily at rest

with respect to its center of rest mass, i.e. a frame in which
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Ji#Ty o
Jio" e

Let this frame fall freely along a test-body trajectory in the field éf all

 (6.24) VREST MASS =0

the other bodies except the ith. In the -"interbody" region of this frame
.(far from the ith body, yet between the ith body and the other bodies),
let the coordinate system be asymptotically Minkowskiian to some desired
degree of accuracy (we ignore tidal gravitational forces produced by the |
external bodies). In this frame, the Newtonian grévitational potential
is T, prbduced (to our desired degree of accuracy) only by the ith body:
S p' dx'
(6.25) 'ﬁ=§ —

g Ix-xl
The velocity of each element of matter in the it_h body relative to this
frame is E}(}:). -:Using these quantities we now define the inertial mass

of the 'ith body:

(6.26) m, = S‘i»p*(i +%—;2 i

T +H)7d.x .

Note that m, is the total mass-energy of the body -- rest-mass of

particles, plus kinetic, gravitationél and internal energies -- as
measured in a local, comoving "inertial" frame éufrounding the body.
As long as we ignore tidal forces onvthe‘ ith body, then according to
‘our discussion of conservation laws in the PPN formalism (cf. equation

[4.101]), m; is conservedto post-Newtonian accuracy, i.e.,
(6.27) dm,/dt = 0 .

This can also be shown by explicit calculation using equations (4.18),
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(4.87), and (6.26).

We also define a center of inertié.l mass, valid in the PPN

coordinate system:

. * - —
(6. 28) Xi=(1/mi)g ot (t +-12-v2--jé-U+H)x dx .
~i : < =
. * .
By making use of the equation of continuity for p (eq.[4.86] or
[4.87]), and by using Newtonian equations of motion in any post-Newtonian
terms, we obtain for the ith body's velocity v, relative to the PPN

coordinate system:

a_ a
vy = dX_i./c.it |

(6.29)

=(1/m.)§‘ [p*(i +-1—v2-lU+H)Va+p—\7a‘—'-ji- Wa] dx ,
'y 2 2 2 ~
where |
P - x(x-x)"
(6.30) w =§ R ~3 ax' .
i |x - x'] ~
The acceleration aia is thus given by )
a, %= dv,%/at
=1 g *(1+1—2-1U H)ﬁ’i dx
- m, i S 2 2 dt ~

(»6.31)

where T Ty and Pi are determined'purely by the internal
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vst‘r_uctur>e of the ith body. Formulaé for these and other "internal"-
terms are given in Table 6.II. The acceleration of the center of inertial
mass is thus more than just the weighted average of the accelerations
of individual fluid elements; it includes accelerations which depend only
on i:he internal structure of the body or on the body's x)eiocity (Xi.)
relative to the PPN coordinate system. The meaning of many o.f'these
additional terms will b_ecome clear later.

We now evaluate the first term in equation (6.31) ﬁsing the PPN
perfect-fluid equaiions of motion. We substitute the post-Newtonian

expressions for '_I‘lj (Tabl¢,4. I) and for the Christoffel symbols rijk

(Table 6.I) into the stressed matter equation of motion

(6.32) | Tij.j =0

. ‘ . : *
and rewrite the equation in terms of the conserved density p . The

résulting equation of motion for each element of matter is given by

*dv_ _ *3U ,
P Hv =" 2% - 2 (et +3y0)) +_P_( e By
- g Ly raov -—(4Y+4+a Ve - 3 @, Uw?]

«f *3U 8 1 %0 o a
t+v (p —5?--5{2)--2-(1 +a’2-4_§1)P E?(V -W7)
(6.33) |

5-% 0T [(ay +4+ qi)vﬁ +(a, - 2a3.)wp] Vg o

| o 1 By P |
+ > G- u * )
o2 L2 ci 3 @pw W Ug Faw (V- W)l
+ ot :;f[ 2 ,12 w v+.2(cz +a -ai)w -(ZF3 2)U+3Y ::*] ’
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where & is giveﬁ in Table 6.1,

We now substitute this expression for p* dz/dt into equation
(6.31), .and.perform the integration, using Newtqnian equations where
necessary to simplify any post-Newtonian terms. Considerable simpli-
fication of the equations results if we assume that the internal strp.cture
of each massive body is statipnary. This is a reasonable approximation
for the solar system, since any secular changes in the structure of the
Sun or plan.ets o»cc>urv over time scales much 1onge‘r than orbital periods.
Moreover, any peﬂri‘odi(.: changes in internal structure, such as tidal
deformations of the Earth, can be shown to have negligible post-Newtonian
orbital effects when averaged over several peribds of oscillation. This
.assumption of stationary structure allows us to use several Newtonian
virial relations to simplify post- Newtonian expressions.: These relatioﬁs ,
éasily derived using equatiohs (.4. 18) and the formulas given in Tablg 6.1I,

have the form for each massive body:

6.3 2o 1Poo- 2T +0°f + Pp
| as .
a2 / |
(6.35) —ZI=O;ZE+Q+3P’
at |
6o R TP ot [Eia (Pl
oxw T - T
(6.37) L0 -0-nP +uP 3k,
(6.38) Fa=0=-1,
(6.39) %—P:O.zg .%’.d?f ,
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(6. 40) —d('it_ PWad§=0=—ta-Ja+';'a+3j**a-m*Q_Pa,
(6.41) d-it—gp V¥ dx = 0= 7%+ 77+ +0%,

The final ferm of the equation of motion is

@ _ . (1/mi)-[ —é—(a3+ gi)tia + ;1(_7-'10:._ % Ji**a)

+ L M 0, %,% +32,P71

a3
" (mp)i 81&
my axi£3
J .
+) -—J—3i—_{(2y+-2m2 TE oy pe1egy)) X
#1 Ty i iv | 1o 1
+ (2y+26+1+%a1- ) - __(1 +a, _ g )z k~j "'Jk
' : ' k#ij
2.1, o 2
7yvi +--2-(4y+4+ar1)z'i Xj—?-(2y+;+az+a3)vj :
(6.42) 2,1
__(oz +oz3- ozi)w +-Zaiw Vi 2'(cz' » —2a3)\ﬁ'zj
3 ~ 32 .3 -
+-2.(1 -faz)(zj ,Eij) 5 2(w r ) + 3 (w- r )(v ,~ij)}
S m,r,
- Slayt3ta -a, 4L )z LWL
#1008 gy T
I'l‘lj ' .Q’
+Z —3 Iy [(2y+2)v, - (2,y+1)vj] vy
LT - . |
1 mJ '
-5 __? 3T [ (4y+4 +°~"1)l’i - (4y t2-a, -Zaz)v +2a2\5]
j R

1
Z ~ij aizi - (ai-laz)zj + ZQZXV] w
i
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where

W

(6.43) Ty, =

245 T Iy / i

. - . *
The first six terms in equation (6.42) ia, Jia. Ji* a’mia’ ’

{Eia and Pia ‘depend only on the internal structure of the ith massive

body, and thus represent self-accelerations of the body's center of
ihe_rfial mass. Such self-- accelerations are associated with breakdowns
in conservation of total mbmentum, since they depend én the PPN
"c.onservation law" parameters a,, Lys -LZ" 1_1.3 and §4. In any Semi- _

Conservative theory of gravity, i.e. one which has
(6.44) @3 b =y =t3=8,=0,

these self-accelerations are absent. Note too, that sp_herically éym-
metric massive bodies feel no sélf—accélerations régardless of the

%k,
theory of gravity, since for them the terms I a’ J’ia, J’i oz’ ia,

-~y
.":

ia’ and Pia‘ are identically zero.

The next term in equation (6.42):
, _ @
(6,45) ' —a3(w +’Vi)l3Hi‘3 /rni_ ’

is a "self acceleration” which involves the massive body'é motion relative
to the mean Univer"sval rest-frame. It _dépends on the "conservation-law-

prefefred-fr-ame" paraméter as, which is zero in any Semi-Conservative
théory of gravity. For any static massive body, 'f =0 and. thus I_-Iidp\

is zero, but for a body which rotates uniformly with angular velocity X\,

(6.46) v=AX(x-X),
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and

H Pa _ 65\(6)\ g p*p.*'
i

I

* i —
(6.47) Y oz

Byd a
€ xy(Qi) 5°

For a nearly spherical body, the isotropic part of Q% . makes the
Yy Y § ™

dominant contribution to equation (6.47), i.e.
a_1 .«
- U L
(6.48)
@yl eaﬁY)\ Q, .
y 1
Then the ac.celeration term in equavtion} (6.45) becomes

In Section 7 we will‘vse.e that this term may produce strikingly large

observable effects in the solar system, if «

3 is different,from ZEero.

The next term in equation (6.42),
. "
'(.mp)i BH

my Bxf

(6.50)

H

is the "quasi- Newtonian" acceleration of the magsive body. Here
(mp)iap is the "passive gravitational mass tensor" (Nordt vedt 1968b,.

Will 1971a), given by
6.s1) )P (6Pl sy -3 -ap tay - 10 /m]
afp, |
- (az + LZ = gi)ﬂi /ml} s

é.nd la is the "quasi-Newtonian potential”, given by
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- - | [m )5 1 ap ri'ari’ﬁ
(6.52) Hix) =Z 2 ) s A,

r J
i 4 Tij
where m_ is the "active gravitational'mass" of the jth body (which

may be .a function of position):

[ ey = m[ 1 +(8P-y-3- 3@y 78, - 20,00 /m,

(6.53) | + LB /m G g t3L, 4L, )P /m,

g B s Brov
*3 5@ /mpayyTr Ol

In equation (6.52), QjaB is again the quadrupole moment of the jth

body, defined by

corrections

(6.54) Q.oz_ﬁ =§ p*(3x.-axp' ) xzs'aﬁ) dx + (post-Newtonian)
i J. X
' J

In Newtonian theory, the active gravitational mass, the pas svive gravi-
tational mass‘ and the inerfial mass are the same, hence each massive
body's acceleliation is 'independe‘nt cﬁ its mass or stru;turé ("Equivaienée
principle” -- see Sect. '3). However, according to eiiuati;)ns (6.50) and
(6.51), passive gravitational mass need not be equal to inertial mass in
a given metric theo'ry of gravity (and in fact may be anisotropic); their
difference depe.nd_s on several PPN parameters, and on the gravitational
| self- energy (Q and Qap) of the body. This "breakdowp in the Equivalence
Principle” for massive bodies has béen called the ‘-"Nordtvédt__Effect"
after its discoverer (Nordtvedt 1968b; see also Dicke 1970, and will
1971a). The 'observableAconsequences of the "Nordtvedt effect" will be
discussed in Sect. 7. The existence of this "Nérdtvedt effect" does

not violate the Eotvos-Dicke-Braginsky experiment (Sect. 3) since
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the laboratory-sized bodies used in those experiments had negligible

self-gravity, i.e.

-39
12/ml; sporaTORY BODIESS 107 -

‘According to equation (6.53), "active" gravitational mass for massive
bodies may also differ from inertial mass and pa_ssivé gravitational
mass. In Newtonian gravitational theory, uniform ceﬁter—of—mass
motion of an isolated system is a resultvof‘the law "action equals‘
reaction”, i.e. of the law "active gravitational mass equals paséive
gravitational mass". In the PPN formalism oneé .can still use such
Newtonian language to vdes,crib_e the "quasi- Newtonian" acceleration,
equa.tioh (6.50). From Subséct, 4°7, we know thét uniform center-of-
mass mot-ion is a proi)erty of Fully-Conservative theories of graﬁrity, :

i.e. theories which have
(6‘.55) a1=a2§_a3=§1=;2=g3=§‘4-_40,n

By su’bstituting these parameter values intb eQuations (6.51) and (6.53),
we find that for Fully—Cohservative theories, the active a.nd.passive

masses are indeed ec_iua.l and isotropic, and are given by

(6.56)  m,=m_ =m[l+(h-y-3)Q/m)].

a

In general relativity l(y =P =,1)v, thé active, passive E_n_q inertial masses
are idéntical -- thére is no Nordtvedt e.fvfect_in general relativity.

The remaining terms in equation (6.42) we will call N-Body
accelerations. These aré the post-NeWtonian correctioli'lsrto the Newtonian

equations of motion which would result from treating each body as a test
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body moving along a geodesic of the PPN metric prpduced by all the
other bodies, assuméd-to be point maISSes. It is these térms ,which
_ﬁroduée the "classical" perihelion shift of the planets, as well as a
host_'of other effects, to be examined' in Sect. 7. For the case of general
relati‘vity, the N-Body terms in equation (6.42) are in agreem‘ent with
the equatioﬁs obtained by de Sitter (1916) [once a crucial error in

dé Sitter's work has been corrected] , Elnstéin, Infeld and Hoffmann
(1938), Levi-Civita (1964), and Fock (1964). In chke;Brans—Jordan

theory, the N-Body tefm_s reduce to those obtained by Estabrook (1969).

6*4. Equations of Motion for Spinning Bodies in the PPN Formalism

. The motion of spinning bodies (gyroscopes, planets, elementary
pai'ticles) in curved é.pacetime hé.s.been a subjecf of considerable research
for mahy years. 4Thi>s research has been aimed at discovering (i) how a
body's intrinsic #ngdar mofnentum (épin) alters its trajectory (deviatiéns
fr‘om g_eodésic .mot'ion). , and (ii) how a body's motion in curved spacetime
alters its spin.

| No really satisfactory solution is available for the first pro‘blem,
because of the difficulties in defining a center of mass of a 'spinnin.g
body in curved spacetime. The most successful attémpts_ at a solution
have been made by Mathisson (1937), Papapetrou (1951), Corinaldesi
and Papapetrou (1951), Tulczyjew and Tulczyjew (19v62) and.Dixon (1964,
- 1970), 'I‘hei central conclusion of these caléulations has been that fhe
intrinsic spin sh (i.e. sU evaluated in the body's "center-of-mass"

frame) of a body should produce deviations from .geodeéic motion of

the form
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(6.57) méal ~ s u*r!

where uk is the body's four-velocity, and Rijkl .is the Riemann
curvature tensor. However, these calculations differ greatly in details
and interpretation. For a spinning body moving with velocity v‘ in a
Newtonian gravitational potential U~ M/r, these deviations are, in
order of magnitude:

sa ~ (5" m) |y | (M/x°)
- (6.58) '

20 /5) /) ay g onaN

where b is the radius of the body, and \ its rqtational angular velocity.

For a planet rotating near break-up velocity ()\.2 ~ m/b3), we have

sa S (m/b)1/Z(M/r)i/z(b/r)aNEWTONIAN

(6.59)

< n-12 .
~10 " aNEWTONIAN ?

and for a 4-cm-radius gyroscope orbiting the Earth (frequency 200 rps),

' : -20
(6.60) 6a S 10 a_NEWTONIAN .

Thus, for the most part, spin-indu-eed devi_a,tions fro.m geodesic motion
can be ignored in the solar system. In ouf derivation of massiQe-body
equations of motion (Subsect. 6°3), we ignored the effects of tidal grav1—
tational forces (Riemann curvature tensor); thus our equation of motlon
(eq. [ 6.42]) does not include the effects of spin. |
It is pfoblem (i1), the effects of e body's metion' on its spin which
is well undervs_tood. All calculations to date have shown that, as long as

the direct effects of tidal gravitationai forces (Riemann curvature tensor)
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on the spinning body can be neglected, the spin s is Fermi~- Walker

Transported along the body's world line, Here, the four-vector S

is given By
. i_ 1 ijkt
(6,61)‘ S =3z € SMU.j ,
i .
(6.62) u's, =0,

The equation of Fermi-Walker tfanspbrt_ is then

. ui(a.jS

' j
(6.63) u’'S .3 j) s

where a' is the body's four-acceleration, given by

(6.64) ai = ujui_j .

The_'reader is refe_fred to Misner, Thorne and Wheeler (1 97.2) for more
detailed discussion of Fermi-Walker transport.

| It is convenieﬁt to analyse equation .(6. 63) in a local inertial
frameb.which is comoving with the body. The basis vectors of this
f;'a,me are related to the basic vectors of our PPN coordinate sysfefn
by a Lorentz transformétion plus a normalization, and are given b.y

(see Misner, Thorne and Wheeler [1972])

i_ i
e~ =u ,
o
o _ - N
fs:»'3 =(1 - \(U).Gof3 +%_Vavﬁ + Q_(4)

Then, because of equation‘_(é. 62), the spin is a purely spatial vector in

the comoving orthonormal frame, i.e,
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= enlg = uls =
(6.66) Sg—eosi-usi-o.

We now calculate the prec.ession of the spatial ,éomponents of the spin

S&. Since e&;lu.i = 0, we have, from equation (6.63),

= oabd
O—ea u;Si;j
(6.67) - |
' _ o Jaa jod
—_uSa;j_ Siu es iy

Since S5 is a scalar (scalar product of two vectors), we have:

(6.68) WS~ , = ulsa

@

j = dS&/ds .

The second term in equation (6.67) 1s most easily evaluated in the PPN

coordinate frame. Using equations (6.65), we first obtain relations

»~

between Si and Si:'

(6.69) . S

S, = - VoS5 TOBIS;

1]

(6.70) s

Then after some simplification, we get, to post-Newtonian order,

dS& _

(6.71) o= = 551 V[ap] T Eolp,al TV T IV[Y a]lr

- where a, is the body's four-acceleration. This can be rewritten in

three-dimensional vector notation:

(6.72) ds/ds =@ X § ,
(6.73) S @=ilyxa+Uxnt@y+iyxyul,
(6.74)  h=go.eh -
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In eciuation (6.71) it does not matter whether the vectors entering into
SE are evaluatea. in the PPN coordinate frame or in the comoving fra.rne.
since their spatiai basis vectors differ only By terms of O(2). We

" have calculated the precession of the spin relative to a comoving frame |
which is rotationall-y tied to the PPN coordinate fra.me, whose axe_s'

are fixed relative to the distant galaxies. Thus we have calculated the
spin's precession angular velbcity &3 relative to a frame fixed with
r.e's'pect to the distant galaxiés, We wﬂl discuss the oB,servable conse-

quences of this precession in Sect. 7.

6°5. Cavendish Experiments and the Locally-Measured Newtonian
Gravitational Constant ' .

Here we derive an equation which is not really ;n eQuation of
motion, but is neve;theless a fundamental result in the'P‘PN-forma'lism.
Since the formulation of the Dicke-Brans-Jordan scalar-tensor theory,
consider.able interest has focused on the Conétancy of the Nertonian
gravitational constant .(‘}. One line of investigation examiﬂes the eff‘ect |
éf the evolution.of the Univer'se on the value of G | as measured in the
mean rest-frame of the Universe far from any local distribution .of
matter. Several theories .predict a secuiar rate of change of this
"const;nt" (see Sect. 5), whose "present" value has been set equal to
‘unity by our choice of units.I A second line of 1nves£igation examines
the effect of‘nvearby matter (piahets and stars) and of moticsn through the
Unlverse on the value of G measured in laboratory Cavendish experi-
ments (Brans 1962a, Nordt;fedt 1970b, Will 19741d), This value is

no'rma_lly called the "locally measured" gravitational constant. In an
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idéalized version of such a Cavendish e_xperiment one measures the
relative a.,cc'eleration of two bodies as a function of their masses and
of the distance between them. Distances and times are measured by
means of phys‘ical rods and atomic clocks at rest in the laboratory.
Thé gravitation’ai constant G is then identified as that number with
dimensions crn:)'g—is'ec-2 which appears-in Newton's law of gravitation
féi' the two bodie.s. |

Since graviméters are extremely vsensitviire devices for measuring
acceierations , we shall use as our Caveﬁdish experiment a gravimeter
at. rest oh the sﬁ.rface of the Earth. A calculation for Cavendish expéri—
ments with both bodies of laboratory sizes would proceed similarly and
would produce the same final answer.

We idealize our Earth-gravimeter Cavendish eﬁ;perifnen’c as
follows: a body of maé m, (:Ea.rth) is freely falling through spacetime.
A test bbdy'With negligible mass (gravimeter) is moving through space-
time, rhaintained at a constant proper distance S frém the Earth by a
four-acceleration F . Aninvariant "radial® unit four-vector Er"
carried by the gravimeter points directly toward the center of mass of
| the Earth. Then, é.ccordi_ng to Newtén's law of gravitation, the radial

|

component of the acceleration as measured by the gravimeter is given by

.79 F.E_=Gm/x?+x (DE /D7) - (DE /D7),

r

where D/DT is the covariant derivative with respect tvo,t.he.gravimeter's
proper time T along the gravimeter's world line, The last term in
equaf.ion (6.75) is simply the centrifugal acceleration, defined in an

9

invariant way (except for corrections of order 10~ mi/rp2 which
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we ignore; see below).. Since F- Er is an invariant quantity, we can
calculate it in the PPN coordinate syste'm and then use eqb.ation (6.75)
to identify the locally-measﬁred gravitational constant G.

| Throughout this calculation, we will neglect any terms which

9

produce accelerations of 10° ’ g or smaller, as measured by the
gr"a.vimet‘er° This amounts to neglecting Earth-generated post-Newtonian
accelera.tions of the gravimeter, post—Newféniaﬁ c;orrections Ato. the
centrifugal accel’erat.ion and to tidal accelerations, a.rit_i ofher, 'mor.e :
complicated acceleré.tions; We do this because 10_9 g seems to be the
current 1limit of reliable Eart_h'—bbund gravimeter data. For further
discussion of relativistic affects which produce accelerations smaller
than 10-9. g'_see Nordt;/edt (1971a) and Will (1971d). Of course all these

9g) in a

neglected accelerations wquld be even more negligible (<< 10
laboratory-type Cavendish experiment. o
.We do the calculation in a PPN coordinate system whiéh is

: morhenfarily at rest with respect to the Earth. The PPN metric is

gi\;en by the expression in Table 4.1, vwhe're now the velocity w _is the

Earth"s velocity relative to .th.é mean rest—frame of the Unliverse (denoted

w,). At any given moment of PPN coordinate time t, eachbody, denoted

by a S_ubsc'.ript j» has a three-vector position denoted )ch(t) agd a fre'lobity

"denoted Xj(t)' We treat the gravimeter (j = 0) and the s‘un, planets and

stars (j=2,3,...) as point masses, and the Earth (j = 1) as a spherically

symmetric distribution of perfect fluid, but with negligible self—gravity_.

[ See Nordtvedt (1971a) for the result of treating the Earth as a mas'six}e,
9

self-gravitating body, with resultant accelerations of magnitude S 10 " g

due to the equivalence-principle bréakdown, and accelerations dependent
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on the structure of the Earth.] We will separate the Néwtonian'gra.vi-
tational potential U due to the Earth from that due to the other plahets

and the sun

(6.76) U(.}f) = U (x) + Z mk/rk_ )
: ' k#1 '
where .
o - /2
(6.77) T SX %X I = l?j = }~{k, =|:Z (X'Xk)a(x‘xk)a] .
o .

We first calculate the proper distance r_ from the gravimeter to
the center of the Earth. We use a physically reasonablé‘deﬁnition for
rIS -- namely one half the proper time (as measured by the gravimeter) .
required for a photon to travel from the gravimeter to the center of the

Earth and back;
(6.78) r =iS' o ulx ] -Lv Z(t)} dt
: ’ P 2J, <o Z o -
. . o

where t_ and t. are the PPN coordinate times corresponding to emis-
sion and reception of the light signal, and the int»egr»al .is taken along the
gravimeter's world line. The round trip time ('cr - té) is obtained by
ihtegrating the geodesic equations (6.13) and (6.14) for the light signal
along its ‘pa._th from its emission at fo(te) to its aeﬂeétion at the ce;nter
of the Earth fi(td) and back to its reception at Eo(tr); and is given by

(see also Subsect, 7°2)
r

(6.79) - to =[x (6) - x (e |+ Ix (e - x (e |

G'Ir .
+(1 +y) S‘ ~ Ulx(0)] do +0O(3),
o -

e
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where ¢ is PPN coordinate time t along the path of the light signal.
We take into account the motion of the gravimeter and the Earth during
the time of transit of the signal according to
a .« a1 2 a
x, (t.) = x_ (t) +(t -t )v ~ t=(t - t,)" dv, /dt,
(6.80) ‘ B

o - a 1 2 o
Xy (td) ® Xy (te) +-—2- (td -~te) dv1 /dt .

The velocity voa_/ and accelerationé dvoa/dt and dvia/dt are all to be
evaluated at t = te. Equé.tibns (6.78), (6.79), and (6.80) lead to the

final result

v ° T m .
(6.81) r -"-51'"1-_"'_9.__:..1.'.9.+YZ ___lf_].i_ar ,
_ P 10 T - Ty P
k1,0
where

o)

I P
,‘51'p =19 [—(d/dt) Yo Zi0"ZV% U (x

(6.82)

1 my {1 CF o
tZY Z —3 Gtz T, ), Uil +O(3)} :
k#1,0 "1k Te

The proper distance rp is to be kept constant (by the force which holds

the gravimeter at rest on the surface of the Earth). Thus

d | dr = d dt=0 ,
rp/ rp/ _ ;
2 2 2 2
d dt™” =d dt™ =0 ,
r,/dT T/ | -
Equations (6.81) and (6.82) along with equations (6.83) then give the

following results:

(6.84) Y 510/?10 = 0O(3),
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(6.85) +0(3)=0.

<dL’1 i dl’o) CZ10 Y
dt dt Tio Tio
Wé.'a.l_.so find that the term 6rp _'i.ri equation (6.81) leads only to gravimeter-
measured accelerations of less than 10-9 g, and can thus Be ignored. It
is equation (6.85) which we will use to determine the acce_leration
fneasured b;>r the gravizheter. |

Assume that the Earth follows a geodesic of spacetime (neglect.
self-accelerations and eq‘uival.ence—vprir»lciple vibla’tiozxs), buf that th.e B

four-acceleration of the gravimeter is F.

j i -
(6.86) WEarth? Earthsj = 0
j i |
(6.87) u gravimu gravim;j =F
i —
(6.88) Fi% gravim = 0 -

In PPN coordinates, equations (6.86), (6.87), and (6.88) may be written

| d‘.’.ai I,a
v dvoa ‘ b a
(6.90) T + rabc(fo)vo Vo - I'o (EO)VO v V
= : 2, .0
= (dT'gravim/dt) (F - v, F),
(6.91) . F°=F-.y_ +0(4), |

where vio = voo =dt/dt =1, and

/d) =1-2 Z (mk/r k) - v, + (10 g terms)

(6.92) (dr
' ' k1,0

gravim

By making use of the PPN Christoffel symbols (Table 6.1I) along with
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equations (6.89), (6.90), and (6.91), and using the Newtonian equations
of motion to simplify any post-Newtonian terms , and as usual 1gnoring

small force terms, we get from equation (6.85):

. a_ B a_ B 2.af 2
¥ Iio_ Z Mo T O Tre tTak 8 ) LYo

T T 5 R T

10 k1,0 Ty T1o0 10

by .
(6.93). _ | | ~10 VU, G )[ Tk
. rig ~ 1wo , . 2’ Ty

| K#10

1 27 1 By =10
- gley-ap-agdwy ]-‘z“zwi Y1, YUy %) -

For a spherically symmetric Earth, it is straightforward to show that

| Mzio
(6-94) YUl(?fO) = - 3 1 - 3 Z _> +O(6) ’
: T10 ’ k10
M B Y. @ 2 v 2B 2 B ay
my(" )=- —5Br5 10 Tip “T10 T10'® ~T10 10 O )
F10°
I By, a _ 2 yeab ) _ 2 BB
(6.95) t——(5715 T ' T10 ~T10 T10 & * Ti0 T10 O
2 a.afy ;
-Tyo Typ 0 )t O,

(neglecting terms leading to forces sma.llér than 10-‘9 g), where M and
1 are the rest mass of particles and the spherical moment of inertia of
the Earf:h. |
‘We must now compute the invariant r_adial unit vector E -
The tangent four-vector to t_hg photon path ')\a‘ at the moment of _ .
emission by the gravimeter is given according to thg photon's geodesic

equation by (ignoring terms leading to small _forces)
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=1,
(6.96) '

z = (rio-a'/rio) [1 - (1 +y)Z mk/rik] + O(3) ..
kt1,0 '

The radial unit four-vector Er is the direction of the emitted photon,
as measured by the gravimeter. This is simply the projection of )\i
onto the hypersurface orthogonal to the gravimetef's four-velocity ui,
suitably normalized (see also Subsect. 7°2):
L \a a a b c c d

(E)7 = (87 - w u )W/ [(87 4 - uTugh™|
(6.97) ‘
= [Z*/(\ u )] - u? .
Then the invariant radial component of the gravimetef's four-acceleration

is
(6.98) | F_= (Fﬂa)/(xbub) - Fu .

From equations (6.81), (6.84), (6.91), (6.93), (6.94), (6.95), (6.96),
and (6.98), we get for the radial acceleration measured by the gravimeter:
2
v
5 ‘ T r
k1,0 ix Tt1o p

. a ﬁ a B 2 af
oo Z MyTig T BTyp Ty T Ty 8)

T

‘ | + (M/rp )[1 -(4f-vy-3-1¢,) Z mk/rik
(6.99) - | | 10 |

1 2

- { 2
mzlegmaymag)w T - san(wite))

1 1 2
+ = 3(w,*e )" - w Z)] ’
2 MrpZ ~1 ~17 i J

where
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(6.100) & 7 X0 7100

The first term in equation (6.99) is simply the Newtonlan tidal accelera-

7 g. The second term is the Newtonian

tion, which is of_. the order of 10°
centrifugal acceleration (~ 10_3 g), which is equivalent (to the necessary
_acéuracy) to the 1n§ériant expression rp(DEr/D'r) . (DEr/D'r) in equgtion
(6. 75).- From the third term we gét thellocally—measured gravitational

. constant G:

G=1-(4Bp-y-3-L,)U

.~ external
(6.101) +_12'[a3 - a, ta, (1 -___.I__z.)] w‘i'2
1 ( 31 ) 2
- = \ 1 - (W € ) .
2 2 Mr 2 ~1 ~T

We will discuss observablé consequences of equation (6.101) in

Sect. 7. We note here that general relatlvity predicts (see Table 5.1)
(6.102 G=1,

~and Scalar-Tensor theories predict

(6.103) G_—-l—[ i +A]U

2+ w external ’

in agreement with results obtained by Brans (1962a,b) and Nordtvedt

(1970b).
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7. OBSERVABLE EFFECTS AND EXPERIMENTAL TESTS OF
"METRIC THEORIES OF GRAVITY

7°1. Introduction

In this Section we make use of the PPN equations of motion derived
in Sect. 6 to analyse specific effects and experimental tests in the solar

system.

7" 2. Light Bending and Time Delay: Measuring Curvature in the

Solar Systeni :

The bending of light rays by the Sun, and the added delay in the
round-trip travel timeof a radar signal whlch passes the Sun both measure
the parameter Yo A hght ray (or photon) which grazes the Sun is

deﬂected by an angle
1 "
(7.1) 662—2-(1+y)1.75 s

independent of the frequency of light. A radar signal sent acros s the
solar system past the Sun to a planet or satellite and returned to the
Earth suffers an additional non- Newtoman delay in its round trip travel

tlme, given by, for a ray which passes close to the Sun,

(7.2) ot = %(1 +y)[ 250 psec - 20 psec ln(dz/_r)'] ,

round-trip

where d is the distance of closest approach of the ray in solar radu,
and r is the distance of the planet or satellite from the Sun, in astro-

nomical units.
Measurements of these two effects have given us our most pre-

cise measurements of the parameter y to date.
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The prediction of the bending of light by the sun was one of the
great suc.césses of Einstéin's general relativity. Eddington's confir-
mation of the bending in the first days following World War 1 helped
make Eins.tein farrious_, However, the experiments of Eddington and his
co-workers had only 30 per‘ cent accuracy,. and succéeding experiments
weren't much better: the results were scattered between one half and
one and a half times the Einstein value, ;hd the accuracies were low.
However, the development of long-baseline radio vinte.rferome‘try _has‘
altered the sifua’cion. Long-bas eliné and very-long-baseline (VLBI)
interferometric techniques have the capability in principle of meas uring
angular separations and changes in angles as small aé 37>< 10_4 _secpnds
of arc. -Coupled with this’ technologital advance is a heavenly coinci-
dence: Each October 8, two strong Quasi Stellar Radio Sources‘ 3C273
and 3C279 pass very close to the Sun (as seen from the Earth), in fact
3C279 actuaily' goes behind the Sun. By measuring the relative bending
of the two signals from these quasars, radio astronomers over the past
few years have been able to measure the coefficient 1/2(1 +y) in equation
(7.1), which has the value unity in general relativity. Their results:

October, 1969

Muhleman, Ekers, and Fomalont (1970) 1,04 fg:iS
Seielstad, Sramek, and Weiler (1970) 1.01 £0.12
October, 1970 _
CHill (1971) I  1.0720.17
Sramek (1971) | ~ 0.90%0.05
Shapiro et al. (1971) - © 1.03%0.2
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One of the major sources of error in these experiments is the
solar corona, which bends radio waves much more strongly than it bent
the visible light rays which Eddington observed. Improvements in dual
frequency techniques may improve accuracies by allowing the coronal
bending, whic}r deéends on the frequency of the wave, to be measured
separately from the gravitational bending, which does not.

Tlhe "time-delay" effect was not predicted by Einstein; it was-
1964 when this effect was discover.ed by Shapiro (1964) as a theoretical
consequence of general relativity and of other theories of gravity (see
also Muh_leman and Reichiey [ 1964] ). In the following years, attempts
were made to measure this effect using radar ranging to targets passing
through "superior conj.unction':' (target on the far side of the Sun; radar
signale passing closev to the Sun). Two types of Atargets were employed:
planets su‘ch as Mercury and:Venus., used as passive reﬂectors of the
radar signais;' and the Mariner VI and VII spacecraft, used as active
retransmitters of the radar signals. Detailed analyses of the measured |

round-trip travel times yielded the following results for the coefficient

1/2(1 +y):
Passgive radar to Mercury and Venus o 1.02 £0.05
(Shapiro, Ash, Ingalls, Smith, Campbell, Dyce,
Jurgens and Pettengill [1971] )
Active radar to Mariners VI and VII 1.00 £ 0,04

(Anderson, Esposito, Martin and Muhleman

{1971])
Here as in the light deflection measurements’ , the solar corona causes
uncertainties in the measurements because of its slowing down of the

radar signal; again dual frequency ranging may help to reduce these

123



erfors. For detailed discussion of experimental problems and prospects,
the reader is referred to other lectures in this volume, aﬁd to Davies
(1971).

Expressions for the light bending and time delay can be obtained
in a straightforward way using the PPN photon equations of motion (6.13)
and (6._14); Consider a light signal emitted at PPN coordin.ateAtime t,
at a point X in an initial direction described by the unit vector n,

where‘
(7.3) n-.mns= 1.

Including the post-Newtonian correction ..}fp’ the resulting trajectory of
the photon then has the form |

M) =t ,
(7.4)

x(t) = x tn(t-t) + gp(f) .

- We compute the compoﬁents of xp parallel and perpendicular to the

unperturbed trajectory, given by
(7.5) xp(t)” =n-° fp(t) )
(7.6) x, () = x () - g(g ENOREE

Equations (6.13), (6.14), (7.5) and (7.6) then yield

2 «

L - d%x C
(7.7) Pt [ - afa -y
' ' _ dt - ox

dxg |
(7.8) dtP = - (1+y)U.
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For simplicity we assume the Newtoniaﬁ gravitational potential U is

produced by .a static spherical body '(Sun) of mass m, i.e€.
(7.9)” U=m/r

Along the unperturbed path of the photon, U then has the form

m

(7.10) U[X(t)] r(t) lx T at-t)]
e ~' e

Equations (7. 7) and (7.8) can be inte_gratedv along the unperturb'ed photon

path using equation (7.10), with the result

i ma (x0-n  x0m
(7.4 T %l = WY % G (
o _ » r(t) +§(t) - n
(7.12) Xp(t)” =-\ "“Y)min[ T +fe;5 ] ,
where
_(7.13) S=BX(§eXB)’

Note that d is the vector Joimng the center of the Sun and the point of
closest approach of the unperturbed ray (see Fig. 7.1).

Equation (7.11) represents a change in the direction of the photon's
traj'ectors,', a deflection toward the Sun (in the direction —gl)

Consider an observer at rest on the Ea:th (®), who receives
the photon. The ‘a._ngle 0 (see Fig. 7.1) between the direction of the
incoming photon and}the direction of a photon emitted by the Sun and
received by the observer is a physically meas urable quant1ty , and can

be given an invariant mathematical expression. The tangent four-vectors,
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dxl/dtl and dxel/dt? of the two incoming photons are projected onto the
hypersurface orthogonal to the observer's four-velocity, oh using the

"projection operator" (see Subsect. 6°5):

(7.14) Copdasdiud.
: 1 1 1

The inner product between the resulting vectors is related to the cosine

of 6 ("dot" means d/dt):

S VP R N S
X@ (6i —uiu)xk(éj -uju)

(7.15) cosG=_— e
'

° i i B 1 L) k
xOI(éiJ— uiuJ) | 3y 6_j - u

If we ignore the velocity of the Earth, which only produces aberration,

then equation (7.15 simplifies to
» . . « 1 3. ° 0
(7.16) , cos® =1 - [(giij xJ)/(gooxgox ) .

By substitutirig equations (7.4), (7.8), and (7.11) into equation (7. 16) ,

we get to post-Newtonian accuracy,

I mf(2 H\/Ze 2 X R

We define the angle 90, ‘the angle between the unperturbed photon path

and the photon emitted toward the Earth by:

(7.18) _ cos 90 =ng°n .

The difference 66 = 6 - 90 between these two angles measures the
deflection of the photon's trajectory, and is g_iyen‘to- first ord_ér from

equation (7.17) by

126



n

(7.19) 80 = (”Y)Zm(“@r -”e ”)

For a photon emitted from a distant star or galaxy,
(7.20) r,>> e '(5e'5)/re~-1-'

" Also, to sufficient accuracy

(7.21) (,’f@-' ’1;1)/r(B = cos 90 .
Thus

+cos 9
(1.22)  se=(Y)Im( o),

For general relativity (y = 1), equation (7. 22) is 1n agreement with results
obtained by Shapiro (1967) and Ward (1970).
The deflection is a maximum for a ray which just graze.s'the Sun,

i.e. for Go'z 0, d = solar radius. In this case

' I U "
(7.23) 80y 4y = 3 (1 HY)LIT5 .

 The time delay is obtained from equation (7.12). The time taken
for a signal to propagate from x_  to x _is given from equations (7.4)

and (7.12) by

r{t) +x(t) 0 ]

(7.24) (-t = x- x| *‘”‘f’m‘“[r EROEE

»IFor a signal emitted from the Earth, reflected off a planet or spacecraft
at xp and received back at Earth, the round—trip»ltravel time At is

given by (Fig. 7.2)
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(rgtxg’ nllrp-xp* n)
T

(7.25) At = z[x®- xpl +2(1+y)min

where n is the direction of the photon on its return flight. Here we
‘have ignored the motion of the Earth and planets during the round trip

of the signal. To be completely correct, the round-trip travel time
should be expressed in terms of the proper time'elapsed during the
round trip, as measured by an atomic clock on Earth but thls introduces
- no new effects, so we will not do so here. The additional "tlme delay

5t produced by the second term in equation (7.25) is a max_1mum when
the planet» is on the far side of the Sun from the Earth (superior con-

" junction), i.e. when

(7.26) Xg' 1= r@ s P. ne - ro, d = solar radius;

‘then

'(;7.27') 6t = 2(1 +y) m{n (4r® P/d )

—;—(1 +y)[250 p.sec 20 psec In(—-—) (———)]
w.here RO is the radius of the Sun, and a i.s an astronomical unit.
For further discussion of the time delay see Shapiro (1964, 1966a,b)
and Ross and Schiff (1966). The time delay can also be measured by
analysing its effects on the arrival times of the pulses of radiation from
pulsé,rs (Reichley [1971], Kovﬁqs , Will and Thorne [ 1972]).

By comparing the éxperimentally measured values of the parafneter

combination ——(1 +y) with the predictions of various metric theories of

gravity (Table 5.1 ), we can see immedlately that a11 the Conformally

Flat theories of gravity (y = -1; no bending or time delay) and the
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Einstein and the Whltrow Morduch Stratified theories (y = 0; half the

observed effect) are ruled out.

‘Some theories are made uncomfortable but are not quite ruled
out by the light deflection and time deiay experiments. These are the
Scalar- Tensor theories. In order for these theorles to agree w1th the
-tlme delay measurements within two standard deviations, their coupling
constant w must be larger than 6. These theories :educe to genera.l

relativity in the limit w — oo.

7°3. Perihelion Shifts

In the past gseveral years, the theoretical interpretation of the
perihellon shifts of the planets has become more and more complex
The measured perlhehon shifts are accurately known after the effects
of the other planets and of the ' 'general precession” of the Earth's
rotation axis have been subtracted out, Mercury has a residual perihelion
shift of 43 seconds of arc per century; and this shift is knowh to a
precision of about‘i p‘er cent from radar—ranging da.ta for the p‘lanets
(Shapiro 1971). For Earth the residual shift is 4 arcseconds per century,
knosvn to about 10 per cent accu_raey.

The PPN prediction for these effects can be easily obtained
from the PPN equation of motion (6;42). We consider a two-body system:
one of the bodies is a test body, the other .has mass m, self gravitational
' ene?gy Q., a‘ small qua:drupole moment Qa[i; and rotates uniformly with
angular velocity }. The o:bit of the test body is ina plane normal to
’):, e.nd the entirehystem is' moving relative to the mean rest-frame of

the Universe with velocity w. We work in a PPN coordinate system-
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which is at rest with respect to the massive body.

Then, from equation (6.42), the acceleration a,. of the test body

~T
is given by
ar=Y#
mr’ '
+——3: {(Zy +2ﬁ);n—1- -\(v‘2 - %(az+a3- ozi)w2
(7.28) r '
Feylwey) +3 a0 )
mZeX mr 1
t(2y +2)v 3 -w— s oy +a,w) .
T or ~or - ~

The massive body is not affected by the test body (negligible mass) but
does feel its own "self accelerations" (see Subsect. 63, eq. [ 6.42]).
Because we have assumed the massive body is nearly spherical, the

only significant "self-acceleration™ is the term (eq. [6.49])
(7 29) a = - as(ﬂ/m)\g X b, .

Making use of equations (6.52) and (6.53), along with our assumption of a

nearly spherical massive body (Qaﬁ ~ -:15—_96&5) , we obtain for Vlﬂ:

o .
a]ﬁ. __Tat QBY (51.51}1,01 Zéaer)

7 v — - .
9x -

-7 3 5
r r

(7.30)

For a body which is a.:iially symmefrié about its rotation axis X\, Qp‘Y

can be shown to have the form

(7.31) . P¥= mRZJZ(ﬁﬁiY - abyy,
where .Zl'2 is a dimensionless measure of the quadrupole moment, given

by

(7.32) 3= (C - A)/mR%;
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where

C = [ moment of inertia about rotation axis]

(7.33) A

[ moment of inertia about equatorial axis]

R = radius of massive body]

"The relative acceleration between the test body and the massive body

is thus

(7.34) as= '%T. - .‘3m ,

and is given from equations (7. 28) , (7.29), (7,30) and (7.31) by

a=- ma;r'_.'/r3 +%(mR2JZ/r4) [15(&.’ %):13 - 6(:)\; Az)z - 3%]

mxr

' 2 1 2.
: +———§(ZY +2§)—— - yv —-2-(02+a3-¢1/1)w
(7.35) ' r '
Pz eglye ) gty o)
mr-v' mr

Fley 2y - w—y - (agy o
T or r
+ d3(§2'/m) WX\ |

" We consider a planetary orbit with the following instantaneous
orbital elements: eccentricity e, semi-major axis a, and angle of
perihelion relative to the equinox ® . |

.Following the .standard procedure for computing perturbations of

orbital elements (Smart [ 1953] , Robertson and Nooﬁan [ 1968] ), we

resolve the accelera’cion a (eq. [ 7.35]) into a radial component R, a

component W, normal to the orbital plane, and a° component & normal
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to I8 ‘and R, and calculate the rates of change of the orbital elements

using the formulae (in the notation of Robertson and Noonan [ 1968] ):

(7.36) %?:-%cos¢+ (p r)siw’

. : de i1 - ez r . s ap

(7.37) T % a@sinqo +_e-(_;__r)]. ,
| 3

(7.38) -g—:-’-z—-}-l——(—E+Re sing)

where h is the angular momentum per unit mass of the orbit, ¢ is the
angle of the planet measured from péi’ihelion, and p is the semi-latus

rectum given by
| o 2
(7.39) =a(l -e”).

We: calculate the perturbatidns (eqs. [ 7.36] , [ 7.37] , and [ 7.38]), to
first ordér, retaining only secular terms, and using a Keplerian ellipgé v

as unperturbed orbit, given by
(7.40) "~ r=p(l +ecos <;}o)“1 ’
(7.41) rz(dcp/dt) = h = constant .

For the secular changes over one orbit, we obtain, to zero'th order in ‘

the eccentricity (e # 0):

(7.42) Aw = 6”m 3-—(2+2y B) +J (R /m)i
/Zw
_ -217[ 1(——) -8- a,(wp -wQ )- 3( )( ) WQ_J ,
, m1/2
(7.43) w{ (3) —éf-_—él- W ‘Z 3( )( )w] ,
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(7.44) | A»a = O(ez) ,

wl:ler.e: Yp and W are the components of w in the direction of the
planet's perihelion (wP) and in the direction at right angles to this
(wQ), in the plane of the orbit. The perturbations in equation (7;.35)
can also be shown to produce secular changés in the inclination and
é.nglé of nodes of orbits, proportional to JZ and to the comporllent of
'w normal to the orbital plane.

We focus on the perihelion shift, equation (7.42). The first
term is the "classmal" oer1helion shift, Wthh depends on the PPN
 parameters Yy and B and on the quadrupole moments JZ and whxch
WOuld be present even if the solar system wére at rest in the Univérse
(w = 0). .'Th'e other terms in equation (7;42) a’reb."prefer‘réd—fi'ame"
perihelio‘n shifts. We now evaluate the periheiion shift for Mércﬁry
‘and Earth, using sténdard values for the orbital elements (Allen 1‘963),

numerical values for the Sun's gravitational energy and rotational

angular velocity:
’ (lm/r'n)O ~ax10"® , xO ® 3 X 10-6‘se¢'1,,

and an adopted value for W Throughout this section, we assume that the

solar system's motion through the Umverse is due to its (nearly circular)

orbltal motion around the Galaxy, i.e. we assume w 1s 200 km/sec in

III = 90°, bH = 0°, Interms

the direction given by galactic coordinates

of the Geocentric Ecliptic coordinate systernb (z-axis normal to the Earth's
‘orbit, x-axis directed toward the Sun at vernal equinox) the direction of
w is given by \ = 346°, B = 600,_and in the Geocentric Equatorial co-

‘ordinate system (z-axis normal to the Earth's equator, x -axis same as
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before), it is given by @ = 318°, & = 48° (see Smart [ 1960) for definitions
of these astronomical coordinate sysfems, and for equations to trans-
form from one to the other). For Mercury (§) and the Earth (@),

equation (7.42) yields, in seconds of arc per century:

- 4X104a

(7.45) _ (Az’ﬁ)PpN = 43] %(zwz-p)] +4[ J2/3x10'5] +35a, +8a, 37

(7. 46) (A3gppy = 4l 5 (2y+2-p)] + 570, + a,- TX10%a,

Note that Jz for the Suh is .positive (oblateness), but is probébly smaller
than 5 X 10-5, so we have normalized J2 by writiﬁg equation v(7.45)

| in térms of (J2/3 X 10—5). The effect of J, on 'the‘Earth's perihelion

is below the experimental uncértainty. The méasured perihelion shifts

are

(Aw

woBsERVED = 43 * 0-4 .

(7.47)

(Aw

@) OBSERVED = 4% 0-4 -

Because of the complicated PPN-parameter dependence. of
equations (7.45) aﬁd (7.46), reliable separate measurements 'of all
the PPN parameters and of J2 cannot be made, Howevgr, we can
obtain a useful limit on the parameters a,, o, and s, by combining .
equations (7.45) and (7.46), eliminating the term involving Y and B,
and treating JZ as an expel.'ifnental.uncertainty: then in order that |
the_PPN,perihelionI shiﬂ:s agree with themeasured shifts within the

experimental er‘for, the parameters a, a, and oy must satisfy

- 170,000 @, | < 0.2 .

(7.48) |13 @, +0.07 «

1 2
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Note that general relativity is in excellent agi'eement with
perihelion-shift measurements (y=p =1, g =a, =a, = 0), as long as

the effect of _JZ is smaller than the experimental error, i.e. as long as

(7.49) J2'53x1o'6.

Since light-deflection and time-delay éxperiménts limit the
coupling constant w of Scal'ar—Tensor Theories to values »lai-ger‘than
~ 6 (two standard deviations), these theories can agree with perihelion

shift measurements for w™~ 6 6n1y if

‘.IZ ~3X 10_5 [ Dicke-Brans-Jrodan] ,
(7.50) '

JZ - 10-4A ~3X 1_0-5 [Bergmann-Wagdner—Nordtvédt] .

 7"4. Geophysical "Preferred-Frame" Effects

We focus attention on the "locally-measured" Newtonian gravi-
tational constant, which was calculated in Sect.  6 by considering the

Earth's gravitational for_ce on a gravimeter at rest on the surface of

the Eavrth:‘
G=1- (4‘3_ -Y-3- gZ)Uexterna.l
i : I 2
(7.51) +-[(a/ -a,) ta (1-_>]w
o Z 3 .1 2 MRZ @

1 ( 31 ) 2 .
-5 1 - - (W ‘e ) ’
2 2 MRZ ~ O ~r

where M is the mass of the Earth, R its radius and I its spherical

moment of inertia; W is the Earth's velocity through the preferred»

Universal rest-frame, and e. 'is a unit vector joining the gravimeter
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and the center of the Earth.

Measur'ements of the absol.ute value _of G are accurate to at most
a part in 105 (Rose E}:__a_l. 1969), and so cannot discern the post-Newtonian
corrections to G in equation (7.51). However, measurements of the
effecté of variations in G are much more accurate; heﬁce v&e wil_l con-
centrate on such variations.

Because of the Earth's eccentric orbital motion, the external
potential produced by the Sun varies on Earth by only a part in 1010;_
too small to be detected with conﬁdénce by Eairth—bound gravimeters or
Cavendish experiments | see, however Wilk (1971) for preliminary
studies of an orbiting C;a,vendish experiment to be performed in a highly
eccentric orbif, with variations in U as large as a part in 107] . We
will t‘hu>s consider only the "?referred-frame" effe.i:ts in equation (7.51),
whicﬁ depend on the Earth's ve_locity relative to the rest-frame o_fthe
Universe, |

The Earth's velocity w is made up of two parts, a uniform
velocity \Z'.of the solar system rAel'ativé to the pi'eferred frame,b and the

Earth's orbital velocity v around the Sun, thus

w®2 =-w2+2\2°z+vz s

(7.52) | |

| (e e,)° = (w2 )® + 2we e Myee) +(y-e)?.

So because of the Earth's rotation (changing- Sr) and .orbital motion .
(changing Z)" there will be variations in the gravimeter meaé_hfemen_ts_
of G, given by (we retain only ferms which vary with amplitude larger

than 10~ G)
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AG/Gz(-—é—ozz+a3-ar1)\Zoz
(7.53)
tra[(wee )it 2(wee)vee )t (vee )]
427~r ~ ~r't'e Rr ~ ~r! 4

where we have used the fact that, for the Earth,

1

(7.54) 1= MR%,

In order to ,comﬁare this variation in G with gravimeter data,
we must perform a ha'i'mclanic analyéis of .the terms in equation (7. 53).
The frequencieé involved' will be the sidereal rotation of the Earth £,
due to the'cvha.nging. e relative to the fixed direction of w, and its
orbital‘sidereal- frequency w due to the changing direction of v relative
to W, along.with harmonics and linear combinations of these frequencie'sl.
We work in Geocentric Ecl_ip_tic Coordinates (see Subsect._. 7°3), and

assume a circular Earth orbit, with the Earth at vernal equinox at

t=0. Then
(7.55) w = w[ cos ﬁ(éos Ne + sin )\'Ey) + sin Bez] ,
(7.56) = v(sin wte - cos wtsy) .

1<

For a gravimeter stationed at Earth latitude L., |
e =cos L cos (Rt -€)e
(7.57) " +[cos L sin (2t -€)cos O + sin L gin 6] ey '
- [cos L sin (Qt - €) sin © - sin L cos 6] g,

where € is related to thevldn_gitu_de of the gravimeter on the Earth, and

0 is the "tilt" (23—1/20) of the Earth relative to the Earth's orbit
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(ecliptic). Equations (7.55), (7.56), and (7.57) give
(7.58) WV = WV cos B sin (wt-\),

2 2T1 . 3,1 200 .2
(wee)? = w[L+3(% - sin )(5- stn® 1)

(7.59) ) ’+é— sin 26 sin 2L cos (St - € - @)

+—jé- cos‘2 5 cos2 L cos 2(2t - € - 01)] ,

3

| (Y. fr)(l’,' Sl") = WV{ 1 COIS B sin (wt - \)

+ (I%- sinZL)[ -é—cos Bsin(wt-\) +%sin 6 sind cos wt]

+-‘11-sin8(1 - cos 8) sin2L sin [ (Q +w)t - €]

- —zji-cds §8in 8 sin 2L cos [ (R +w)t - € - ]

- -Zs_in 5(1 +cos 8)sin 2L sin[ (R - w)t - €]

- %cos 6 sin @ sin 2L cos [(Q-'w)tv- €-a] -

'+'%f cos &(1 - cos 6)c'osZI.. sin[ (2Q +w)t - 2€ - o]

) o, |
- 7 cos &(1 +cos 8 )cos "L sin[(2Q + w)t - 2€ - a]}
2 2f1 .31 20,1 1, 2.
(rre)? =5 1305 - Pz - g en®o)

- -Z—(% - _sinZL).sinZB cos 2wt

+% sin 20 sin 2L sin (Qt - €)
( - -}I,sin 0(1 - cos 8)sin 2L sin [ (R + 2w}t - €]
7.61) ' - | '

+"1f sin §(1 + cos 0)sin 2L sin [ (R - 2w)t - €]
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- +% sinze coszL cos 2(t - €)

2

- —é—( 1 - cos 9)2cos L cos [2(Q + w)t - 2€]

. '7,% (1+cos e)ZCOSZL cos [ 2(Q - wit - 2€] }

where we have use'd both the ecliptic coordinates (\,f) _é,nd the eéuatorial
coordinatés (a,8) _corres‘ponding to the dire'ction of \f, in order to simplify
the various expressions. _

Equations (7. 5‘8), (7.59), (7.60, andv (7. 61) reveal four different

types of variatio.ns in G.

i) Semi-Diurnal Vériatiqns: These are the terms which vary with
frequency around 2§: 2Q, 2Q +tw, 22 - w, 2(Q tw), 2(Q - w); i.e. have
periods ardund twelve hours (w << {) and vary with latitude according
to qoszL. These variations are completely analogous to the twglve—ho_ur
solid-Earth tides produced by the Sun and .Moon, called "’Sémi—Diurnal
sectorial Waves" by Melchior (1966). The true g‘ravimeter measurements
for thése tides‘afé affected not only by the variation in G, but also By the
displacement of the Earth'_s surfage relative to the center of the Earth, and
by the deformation of the‘ Earth. This vafiatlon in g:avi.meter readings

is related to the variation in G by

(7.62) (Ag/8)sEp1-prURNAL = 1+ 182G/ Qgppm1_prURNAL

where the factor 1.18 is a combination of so-called "Love Numbers"”,
which depend on the detailed structure of the Earth (Melchior 1966).

1) Diurnal Variations: These are the terms which vary with a

frequency around & {, Q+w,-w, +2w, Q- 2w; l.e. have periods
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" around 24 hours, and vary with latitude according to sin 2L. These
variations are corﬁpletely analogous to the 24-hour "Diurnal Tesseral
Waves" of the solid Earth (Melchior 1966), and give gravimeter readings

related to the variation in G by the same factor:

(7.63) (Ag/e)prurnar = 1-18(AG/GpryprNaL -

) Long-Period Zonal Variations: These are the variations with
- frequencies w. énd 2w, and with latitude dependence (1/3 - sinZI_), which
are completely analogoué to the long—pe.rioc;l tides produced by the Sun

and Moon, calléd "Long-Period Zonal Waves" by Melchior (1966). These
long-period zonal waves produces \-r_a.ri"é.tions in the Earth's mome.ht of
i.neftia »- which in turn cause variations in thebro,tav.tion rate of the Earth,
These rotatioﬁ-rate varjations are related to the amplitude o.f the zonal

‘variations by (Mintz and Munk 1953; Melchior 1966)

(1.62)  _ (aQ/Q) =0.41 A

ZONAL ZONAL '

where A is related to the zonal variations in G in'equ'ations '

ZONAL
{7.60) and (7.61) by

' _ 1 2.,
(7.65) (AG/G)ZONAL = AZONAL(_—3-_—‘.sin L) .

' i{r) Long-Period Spherical'Variations: These are the variations

(egs. [ 7.58] and [ 7.60]) which_ have frequency w, but no latitude de-
pendence; they represent a yearly variation in the strength of G, aﬁd
have no couﬁterpart in Newtonian tidal theory. Thesé. v_ariaﬁons produce
a purely spherical deformation of the Earth, as oppo‘sed to the Sectorial,

Te_ssefa.l, and Zonal waves which produce purely quadrupole deformationé.
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This yearly spherical "breathing” of the Earth as G varies causes a
variation in the Earth's moment of inertia, which in turn causes a vari-

ation in the rotation frequency, given by

(7. 66) (AR /Q)gpupricar = - A/ = (1/100AG/QgprmricaL

Detailed calculations of this change in the Earth's moment of
inertia due to the spherical variation in G are given in Nordtvecit and
Will (1972). |

By combining equations (7.58), (7.59), (7.60), and (7.61) with

‘the expression for AG/G, equation (7.53), substituting numerical values

10

ve 30 km/sec, w= 200 km/sec, 0= 23> ,

(7.67) C he 346°, ae 318°,

B 60°, e 48°,
andbusing equat_ioi;s (7.62), (7.63), (7.64), and (7;66), we may compute
the afnplitp.des of all the various cbmponents of the Earth tides (Ag/g)
and of the variatidns»in the Earth's rotation rate (AQ/Q). These ampli-
tudes are listed in Table 7.1.

The largest predicted Earth-tide components are the sidereal
diurﬁéJ_. an_d serﬁi-diurnal (2 aﬁd 2Q2) tides. O_thér, smailer‘comi)onents
include diurnal and semi-diurnal sqlar—timé tides [ (R - w) and 2(R - w)],
and tides with frequ.enc'ievs 2Q - w and Q - 2w. The most im'poftant of

these is the 12-hour sidereal time (22) tide, with amplitude (see

Table 7.1)

(7.68) (Ag/glppy & 3 X 10-8 a, C.OS_ZI- .
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The semi-diurnal tides predicted by Newtonian theory have three
principal frequency components, a 12-hour lunar-time component (cie~
noted MZ)’ a 12-hour solar-time coﬁponent (SZ)’ and a 12-hour sidereal-
time component (K,). (The sidereal compoﬁent depends>on the declination
(t.i‘lt) of the lunar and solar orbits relative to the Earth's equatorial plane.)

Thes e components of the tides have amplitudes of

(Ag/g)M ~9x1078 cosZL .
' 2

- (7.69) (Ag/g)sv ~4 X 10-8 "coszL R
(Ag/g)K ~1 %1078 cos?L .
2 :

The M2 tide is easily separated from the other two éemi-di'urnal
tides by means of Fourlier ‘analysis of one month's gravimeter data. How-
ei/e;-, separation of the S2 and Kz tides requires at least one year of
continuous gravimetei' daia. Because of gravimeter drift and long-period
tides, sﬁch a separation is not easy to obtain [ see Barsenkov (1967)
fbr a partial sepé.ration of SZ é.nd K2 using 19 months of data faken
at Talgar, U.S.S.R.].

Experimental measurements of the co‘mbin'ed‘ 'S and K2 tides

2
(a_mplitude ~5X 10—8 g) are found to agree with the predictions of -
Newtonian gravitation {coupled with reasonabie models for the structure

of the Earth) to a frecision of 2 per cent (Harrison, Nesé, Longman,
Forbes, Kraut, and Slichter 1963; -Pariiskii, Barsenkov, Volkov, Gridnev,

and Kramer 1967). Thus any discrepancy between Newtonian theory and

experiment for this component of the tides must be less than one part in
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109 at any latitude for which reliable gré.vimeter data is avallable. By
comparing equation (7.68) with this experimental limit, we find that @,

must satisfy
(7.70)  Je,| <3x 1074,

We have used the semi-diurnal sidereal tide (2Q) to put an experimental
upper. limit on the value of @, (eq. [ 7.70]) rather than the larger
diurnal sidereal tide (Q), because agreement between Néwtonian theory
and observation is not as good for_the diurnal as for the semi-diurnal
tidal components, possibly because of diurnal effects due to heating by
the Sun (Hax;rison_e_:_g:__gl__.‘ 19.63).. It may be possible to improve this upper
limit by a:s ndﬁch as an brder of mégnitudé, by analysing long (one’year)
Eérfh-tide time series.,‘ coupled with improfied models fér the effects
of oceah tides on the'gravimeter measurementé (Berger e_t_ial. 1971,
Harrison et al 1972) |

‘We can also put an experirnental limit on the size of the predicted
yearly variation in the Earth's rotation frequency {2 with amplitude,

according to the PPN formalism (cf. Table 7.1)

(7.71) (22/Qppy = (Z2a, +ay - a)(3x107)

The observed yeé.rly variation in the Earth's rotation rate (measured by
comparingv astronomical time with atomic time standards) has an anipli—

tude of
| \ .. -9
(7.72)  (AR/DopgprvED ¥ 4 X 10

(Sinifh and Tucker‘ 1953). But this variation can be readily understood
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usiné Newtoniah geophysics: it is produced by an annual variation in the
angular momentum of the atmosphere due tol seasonal changes in wind
patterns and by a long-period (one year) Earth-tide produced by the Sun
(Mintz and Munk 1953; see also Melchior 1966). These calculations yield
agreemeﬁt .with the observed variation in § with uncertainties around

15 per cent, .hence the PPN variatl:io_n in the Earth's rotation rate must
é;.tisfy |

(7.73) (AQ/Q)PPN? 6x 10710,

Equations (7.71) and (7.73) thus show that the PPN parameter combina-

tion (2/3 a, + ay - ai) must satisfy

(779 |Ea, tay e <02 .

Although the zonal yearly varlation in fhe Earth's rotation rate

(Table 7.1) is apparently larger than the spherical va_,ria.tion,» we have
ignored it, because the limit set on @, by the Earth tides (3 X 1074,
makes this effect too small to be discernible. Thus we have focused
on the spherical variation in Q in order to set a limit (eq. [ 7.74]) on
the combination (2/3 , + as - 61'1). | A :

- Wenow combine the three experimentally determined limits
on the PPN preferred-frame parameters, eqﬁﬁtions (7.48), (7.70),
and (7.74) and obtain 1ndivid‘ua1 upper limits on the values of a;, ay,
and gy asi listed in “Table _7.iI. For comparison; Table 7.1 aiso lists
j:he predicted values for ai, @, and a, fof all the metric theories which

until now, were condisered viable, i.e, agreed, with the light-deflection

and time-delay tests.
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From Table 7.II, we can see immediately_that the stratified

theories due to Page and Tupper, Yilmaz, Papapetrou, Ni, Coleman,

and Rosen cannot be correct theories of gravitation -- they disagree

violently with experiment. In fact, we can be more.generalv, We have

shown (Sect,. 5) that any Stratified Theory (with time-orthogonal, con-
formally ﬂa.tv space slices) which agrees with light-deflection and time-

delay experiments must have a "~ -8, which is ’forty‘ times larger than

our experimental upper limit. Hence no'"Stvratiﬁed Theory" of gravity,

past, present, or future, can be the correct theory of grav1ty.

A second conclusion emerges from Table 7.II: the squared
magnitude of the-cosmological vector field (K) in the Vector-Metric

Theory must satisfy
(7.75) K%< 3x107%

in orde1:~ to. agree (within the_.exPerimental uncertainty)-wit_h Farth-tide
‘data. Frofn this point of view, .these results a‘re complementary to‘the
Hughes-Drever (isotropy of inertial mass) and "ethei_'—dl;ift" experiments
discussed in Sect. 2. Those experiments put limits on the strengths of
cosmological vector or tensor fields which couple to matter's nuclear

or electromagnetic energy (Peebles 1962, Peebles and Dicke 1962,
Dicke. 1964), while our results put limits oﬁ vector or tensor fields which

couple to matter’'s gravitatienal energy. There is a wide class of such

vector- metric and tensor-metric theories (Sect. 5) and the limits on
ai » Aoy and a, should be pushed as low as possible in order to put
more stringent limits on these cos_mological vector and tensor fields

(see Subsect. 7°9).
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A third conclusion obtained from Table 7.1I is that the limits on
ai; ay, and Aa/3 do not distinguish between general relativity and scalar-
tensor theories; these theories are not preferred-frame theories and
predict ﬁo preferred-frame effects (for a discussion see Sect. 5).

Throughout this section we have assumed that the solar system
méves through the Universe with a velocity w equal to its nearlly circular
orbitallvelocity around the Galaxy ("‘. 206 km /sec in the direction
21T 2 90° H = 0°). | A more realistic value for w would be the solar
system's velocity through the cosmic microwave radiation, when it is
ultimafely measured with confidence. Cﬁrrent- measurerr‘lent.s'of this ‘
velocity, obtained by studying the anisotropy in the measured tempera-
ture of the microwave radiation (caused by the Doppler shift) are not
yet completely reliable (Conklin [1969]; Boughn, Fram, and Pa.rtri.dge
[1971]). Th’oé,e results .which' have been obtained, however, are in
.rough agreement with measurements of the solar system's velocity
relative to clusters of galaxies, obté,ined by stu’dies of galactic réd-
shifts (de Vaucouleurs a.nd Peters 1968), and suggest a net velocity of

bl ~ 24° (see Sciama [ 1971]

~ 200 km/sec in the direction 4 I. 290°
for a discussion). But because of the experimental uncertainties, this
value for our velocity relative to the Universe should not be given much
weight at this time.

For thevsake of il_lu_stration, however, one can repeat the calcu-
lations of Subsect. 7'.3'and 7'4.\;sing this new value for l:v. The result-
are,

V ing limits on the PPN paramefers @, @y, and @

1’ 3
(7.76) ]a.1-1<o.1, [a2|<zx1o'2, {a3l_<'8x1o‘_6,
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which are not significantly different than those givén in Table 7.1L.

7°5. Experimental Disproof of Whitehead's Theory

Ever since its inception in 1922, Whitehead's theory of gravita-

tion has been a thorn in Einstein's side, because it agrees with general

relativity in its predictions for all the "classical tests" -- light bending,
time delay, perihelion shifts. "Howevex_-, it has recently been shown
(Will 1971d) to_pré_dict Earth-tideé caused by the Galaxy which are 200
times larger than observations will permit.
| To see this, we repeat the calculation of the locally measured
grav1tationa1 constant (bubsect. 6°5), using the metric of Whitehead's
theory. According to equation (5.83), the Whitehead metric is the same

as a PPN metric with parameter» values

Y.zi, ﬁ:l, a1=c2 = o =§Z=0’
(7.77) o |
§1=‘6: §3é‘1s §4=-1,‘

except for the following additional term in 800

_ plp"(x-x") [’ -X") (x-x") |
(7.78) 6goo=2§ mz - dx' dx" .

x-x! l? | [x-x"]

This extra metric term changes only the equation of motion fdr the
gravimeter via the Christoffel symbol I‘a/oo -- other effects of Sgoo

-. are eithér of post-post-Newtonian order or produce forces smaller than
10-9 g. The resulting chaﬁge in the force ¥ is (cf. Subsect. 6°5):

. 79 6F-r10/r10-—.-—(M/r10 5[ Z my 1k+ Z m e+ r, /]
k1,0 k#1,0 :
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Combining equation (7, 79) with equations (6.98) and (6.99), and substi-

tuting the parameter values of eqﬁation (7.77), we obtain

_ @« B, a B 2B 2
I Z Mo T1o BTk Tik T Tk © Yo
r . 5 T r
k#1,0 - 1k T10 P
(7.80) - :
+(M/r2) 1+Zz m, /r +Z m,(e - r )Z/r 3
P k/ "1k k'Zr ~1k itk |°
k#1,0 k#1,0
The value of G identified with equation (7.80) is
: _ | .~ | ,
(7.81) GywmTEHEAD =+t 2U *}: Uple e -
- .
HAe‘re UI; is the Newtonlan gravitational potential due to the kth external
body (including Sun, Moon, planets and stars) and 1 is a unit vector from

the Earth to the centér of mass of the kth body. There are no "preferred
frafne" effects in. eqﬁation v(7‘.81), since @ =a, =a; =0 for Whitehead's
theory. ‘ | | |
| Since the Whitehea'd metric musf be calculated in a global Lorentz
coordinate system of naﬁ [or at best in a spacetime of constant qur\}a;
ture (Temple 1924)] , the field due to the ‘galaxy cannot be removed by
transformation to a local inertial frame surrounding the solar system

(as one would do in genéral relativit}}). Thus the anisotropic term in

equation (7.81) will be dominated by the central regiohs of the galaxy:

—_ . 2
(7.82) - GyurrenEap = 1 T2U T Mg,/ Rga1(€gar” &)

The dominant effect is a twelve-hour sidereal-time Earth tide, analo.gous

to the (w- er)2 tides of equation (6.101), with amplitude
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(7.83) (A2/8) wirrEHEAD © (2 X 10™7) cos?(L) .

This is 200 times larger Ehan the experimental limit of a part in 109

(Subsect. 7°4), and so, after 50 years, Whitehead's theory is ruled out.

7° 6.‘ Precession of an Orbiting Gyroscope

Since 1960, much effort has been directed toward testing theories
of g.rav.ita.tion using an orbiting supercounducting gyroscope (Schiff [1960a],
afticles in Davies [ 191’1]). . The object of'thé experiment is to measure
‘the precession of the gyroscope's spin axis S relative tb the distant stars

as the gyroscopé orbits the Earth. According to the PPN formalism, this

precession is given by (Subsect. 6°4);

(7.84) dS/ds =@ XS ,
(7.85) Q=3lvxa+yXxh+y+t)yxvul,
(7. 86) h=ge; -

Here a is the gyroscope's four-acceleration, whichis zero for an
orbiting body (free fall). In a PPN coordinate system at rest with
respect to the Earth, equation (7.85) along with the expression for goa

in Table 4.1, yields

: 21 . 1 4

(.87 Q=duyrare)TXV-fewe X YU L2y tyX YU,
where

(7.88) V= Voo

Since the Earth is momentarily at rest in the PPN coordinate system,
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v, can be shown to have the form

p'v! g orxJ {
- -~ Vb =~ .
(7.89) Y-S dx' % - 5 = +o( 3),

x|~ T r

where J is the Earth's angular momentum vector, and r is the vector

from the Earth to the gyroscope. Using

(7.90) U~ m/r ,.
we‘get
Q:-i@ tata )L [7-32G 0] +La, B(wo X 1)
M 3T T T I e T s
(7.91)

- _;_ (2y 1 1) %,(ZXE) -

The first term in equation (7.91) is called the Lens-Thirring
precession or the "draggiﬁg of ‘inertial frames" - (for a detailed dis-
cussion of this effect see Thorne [ 1971]). For a gyroscope in a polar
‘orbit with its spin axis directed normal to the orbital plane, this dragging
of inertial frar‘nes. produces a secular precession 6f thé spin axis with

amplitude (see Fig. 7.3).

(7.92) [Lpeliiéfféirfi“g]” 31;‘(4\"*4*“1)[0!‘05 of arc in one year] .

The second term in equaﬁion (7.91) is a preferred-frame effect which

produces only periodic precessions of a_mplitude

Preferred Frame7y A=3
Precessions ] 011[ 10

(7.93) of arc] s

which are probably too small tqbe-ineas_ura;ble. The third term is called

the Geodetic precession, caused by the curvature of space around the
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Earth. For a polar orbit with the gyroscope axis in the plane of the
orbit, the Geodetic precession produces a secular rotation of the spin

axis of amplitude (see Fig. 7.3)
(7.94) . [Geodetic P-recession]} ~ %—(1 +2y)[ 7" of arc in one year] .

For a review of experimental and theoretical aspects of this
expenment to be attempted by Fairbank and collaborators at Stanford
Umversity, see papers by Everitt Fairbank and O Connell in Dav1es

(1971), and lectures by Fairbank in this volume.

7°7. The Nordtvedt Effect

The breakdown in the Equivalence Principle for massive, self-
gravitating bodies, which'nia,ny theories predict, has a variety of
observable consequences. In vquasi-Newtonian language, this Eqvuivalence-‘
Principle violation may be expressed by attributing to each massive body
a "péssive gravitationé,l mass tensor" mpaF3 which méy differ from its
inertial mass m. According to equation (6.42), the 'quasi‘.--Newtonian
part of the body's acceleratbion‘ may be w.ritte‘n | |
(7.95) %= _(ml')qﬁ/m) all/oxf ,
where ]Il | is the q\iasiﬂ Newtonian gravitational potential and mpaﬁ

is given according to the PPN formalism by

(7.96) mp"‘p- = m{(l - nlsz]/m)a".ﬁ%ﬂ"-‘p/m}.
where

(7.97) m=4p - y-3-0!1+a’2-§1,
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(7098) 5 ‘g:gi —QZ-QZ ’

‘and whefe Q and Qaﬁ are the bod?’s internal‘grbavitational energy and
gravitational energy tensor (see Table 6,1II).

‘ The most important consequence of the Nordtvedt effect is a
polarization of the Moon's orbit about the Earth (Nordtvedt [ 1968c]).
Becva.use' the Moon's se_lf—gravita.tional energy is much smaller than the
Earth'_s , the Nor_dt.vedt effect causes the Earth and Moon to fall toward
the Sun with s»l.ightly' different accelerations. Including their mutual
attraction, we have (from eéuationé (6.50) and (6.52), neglecting qﬁad—
rupole moments, and post- Newtonian effects on_a_m_c_:ﬁzg gravitational

masses):

) = - (m®® /m)(MRP/R® - m 2P /rY)
(7.99)

-v(MRoa//RO3 + r_nr“/r.3) )

where m, M., and m _-are the masses of the Earth, Sun, and Moon
respectively; R is the vector from the Sun to the Earth, r is the

vectbor from the Earth to the Moon, and R is the vector from the Sun to

~0

the Moon; ma‘3 ‘is the Earth's passive gravitational mass tensor. We

have neglected the cohtribution of the Moon's § ‘and Qap. Since r << R,
we can make the appro#imation

(7.100) R /R = RY/R> - (rﬁ/R5)(3RaRﬁ - R%s%Py |

Th'eri‘ the relai;ive Ea#‘th—Moon acceleration aa,_deﬁned by

) |

(7.101) 2% = (a )" - (ag

’
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can be c.alculated using equations (7.96), (7.99), and (7.100), giving

%= /e - (6% || /m - £0% /m) (MR /R)

(7.102) |

| -£ (Qaﬁ/m - -:1%-60459/m)m0'1‘5/1_-{5 + (3R‘?Rp— Rzéalﬁ)Mr‘?’/R5 s
where
(7.103) p=mg +m-(n+36)]Q] .

The first term in equation (7.102) is the Newtonian ac.'celerati‘.on
betwéen the Earth and Mooﬁ and the second term is the difference between
the Ea:th's and Moon's acceleration toward the Sun (qudtvedt effect).
The third term res_ults from the fact fhat the acceleration of the Earth
tow.ard the Moof; has a component normal to the Eé.rth—Mqon dirécfion
(caused'by the ahiébtropy in qu});_ it is two:orders of magnitude smaller
than the second term, and will be _nevglec_ted. The 'fou,.rth term is the
| classical tidal pertﬁrbation on thé Moon's orbit; 'sin_c_é it is a purely non-
relativi.sti_c perturbation, we will not consider it further. Hence the
equaf:ioh of motion of the Moon relative to the Earth, including the per-

turbation arising from the Nordtvedt effect is
(7.104) = a%= - pr¥/x - 6*P 1] /m - £2°P /m)(mrP/R3) .

For an axialiy symmetric Earth which rotates with angulai- velocity A\
with morﬁent of inertia I, and which has negligible stresses, one cé.nv
show that Qaﬁ h;'a.s the form (In a coordin:;te system whose x- y plane is.
the plane of the Earth's orbit around the Sun, .and'whbse x-axis poihts

in the direction of the vernal equinox):
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1 0 0

(7.105) : Qaﬁ = 0439 +—1If 0 1 -3 sinze 3 ‘s‘in 8 cos 6

'3—
0 3 8in 0 cos 1 -3 cosze
where 0 = 23-1/20 (the "tilt" of the Earth), and (Chandrasekhar and

Lebovitz 1962a)

(7.106) G

For the Earth we get [ see MacDonald (1966) fof;vai_ues for Q]:

(7.107) Q/m=- 4_.85x1o'1°, ¥/m = - 3.95 x 10713,

We as sume that the Moon 8 unperturbed orbit is circular with
angular velocity W, and in the x-y plane, and also that the orbit of
the Earth around the sun is circular with angular velocity W .

We work in an inertial coordinate system centered at the Sun.

Then the acceleration a” and the angular momentum per unit mass n®

are given by
(7.108) a’ = dzra/dtlz and  h%= [ X(dr/at)] “
and the following relations hold
er/dt2 =rcafr t hz/r3 ,
(7.109) - |
an®¥/dt = (r x a)* .

Thus, by making use of equations (7. 104) and (7.105), and by defining

52° = [(n +5£) 2] /m - $£¥ /m] M/R?
(7.110) :

§a,' = £(¥/m) sinz.e (M/RZ) s

154

14



we obtain (A = w_ - ws)

o
2 2
| h
SRR
t r r :
1 o1
(7.111) -5 ba cos[(wo+ws)t+2¢o] )

% = - r{(éao +% sa')sin At'fé' 6a' sin [ (wo )t + 2?’0]} .

~where the phase ?q is related to the angular position of the Sun and
Moon at t = 0. We next linearize about a circular orbit:
h=h + 6h,
‘ o
(7.112)

r=r *6ér,
o :

and use p./r03 =h 2'/x' %2 -woz. ‘Integration of the resulting equations

.'O (o]
gives
o, . 0,1 ' rosa'
. 1 = - 1 . — ! - - h
. (7 13) ) ‘Sh A (68. + ) Sa )COS Aj\t Y-Z—(—JO—-_F—O)—JCOS-[ ((.k)o"’ws)t + 2¢0] ’
L 1+ Zwo/A _
6r = (5ao+—2-5a,') —QTF— cos At
(7.114) °

N ! +2wo/(w.o‘+oos) . '
> 8a' [ > ] cos [(w tw )t + _2"”01 .

w, - (wo+ws)
The first term in equation (7.114) is the perturbation due to the

isotropic part of the Nordtvedt effect (Nordtxﬁedt 1968c). It represents

a polarization of the Earth-Moon s'ystem by the external field of the Sun.

This "polarizatibn of the orbit" is always directed toward the Sun as it

rotates around the Earth (cf.  Fig. 7.4). The second term in equation (7.114)
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is a direct result of the anisotropy in map. It is a polarization which
rotates in a sense opposite to that of the rotating Sun.

Using equations (7.107), (7. 1;0) and (7.114) and the values
M/R2 =5.9%107° km/sec2 and 6 = 23-1/2°, and making use of the
fact that W, = w0/13 : 2 X 10"7 sec-1 » we get for the isotropic Nordtvedt

effect

(7.115) & 840 (n +1£) cos (0, ~w )t cm,

61'(isotropic)'

and for the anisotropic effect

(7.116)

, -2,
ar(anisotropic) ~ - 5,3X107°¢ cos[(wo +ws)t + Zq:o] cm.,

Hoped-for acc{lracy of laser ranging to the cornér reflectors
on the Moon is ~ 10 .cm, so ahalysis of the ranging data should yield an
estimate o.r'an upp.ervlimit fpr the parameter n +% €. In terms of PPN
parameters, | '

(7.117) n+é—§=45—y-3-ozi_+%ozé-_§.z;1-%gz,

The amplitude of the anisotropic effect (eq. [7.116]) is four
orders of magnitude smaller than that of t_ﬁe isotropic efféct, putting it.
well below the expe'c.ted 10-cm accui'acy of lunar laser ranging, and
hence unmeasurable (Will 1971b). .. )

The predictions of Va.rio.us theories of gravity for the paramefers
5 +é’-§ and § are shown in Ta.ble 7. 111, |

Other potentially observable consequences of the Nordtvedt effect

are discussed by Nordtvedt (1968a, 1970a, 1971a,b). These include shifts
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in the stable Lagrange points of Jupiter (measurable by ranging to the
Trojan asteroids), modifications of Kepler's third law, and polarizations

of orbits produced by Jupiter. |

7°8. Other Perturbations on the Earth-Moon System

There are a variety of other perturbations of the Moon'é orbit
which are potentially measurable by lunar laser ranging. These include

i) périodié perturbations in the Earth— Moon range produced
by the non;iinear superpogi’cion of the gravitational fields of the Sun and
the Earth (Balerlein [ 1967] , Krogh and Baierlein [ 1968], Nordtvedt
[1972]). Furthef research 'is. needed ,b'efore the co1;np1ete PPN-parameter-
dependences of these effects are known with confidence.

ii) _"preferred—frame". perturbations caused by the solar system's
motion through the Universe., These periodic perturbations depend on
PPN parameters a, » @y and a3, _énd éorne may have amplitudes as large
as 70 km. For.a Partial catalogue of these effects, see Nordtvedt and

will (1972).

7°9. White-Dwarf Pulsations and Preferred-Frame Parameters

Recent research by Ni (1972b) has shown that it may be possible
to push the limits on «,, az’ and a, as low as .10_6 by means of s‘xtbudies
of the puléations of‘white dwarf stars. According‘ to the PPN formalism,
" motion of pulsating white dwarfs relafive to the mean rest-frame of the
ﬁ_niverse éhou_.ld produce instabilities, i.e. exponential growth or decay
of the amplitudes of their pulsation. ‘Observational studies of white-dwarf

pulsations put stringent limits on pulsation instabilities. These limits,
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coupled with studies of the proper motiens of white dwarfs put stringent
limits -- as low as 10"6 --on a,, a, and s, provid_ed one assumes
there are no other sources of p'ulsation daﬁping which couid stabilize
these preferred—freme instabilities, Unfortunately, there remein crucial
uncertainties in’ the theory of the damping of white dwarf pulsations,
which must be uﬁderstood béfofe white dwarfs may become a high-

precision tool for measuring PPN parameters.

7°10. Secular Variation in the Newtonian Gravitational Constant

Several metric theories of _gravitjr predict that the Newtonian
gravitational constant as measured far from the solar system in the
rest- frame of the Universe should vary with time as the Unwerse evolves.

For Scalar- Tensor theories (eq. [5 34])

(7-148) : ( Today [1 +(3+2 )2] ( Qday .

and for the Vector-Metric theory discussed in Sect. 5,
(7.119) = [ ] :
' ('G-)Today 1 + = K (

where ¢ end K are the magnitudes of the scalar and vector fields of
those theories. Since these' fields vary as a result of the evolutien of the
Universe, their logarithmic derivati\}es_ should be of the order of the
inverse Hubble time, i.e. | 7 | | |
(7.120) —(dt)”- ’a%)”ﬁ—”-wi—** .

o 107 years :

Thus for Scalar-Tensor theories,
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(7.121) ~ 10710 (years)™!,

(G/G)Scalar-Tens'or'

and for the Vector-Metric Theory, taking into account the experimental

upper limit on the value of K% (eq. [ 7.751),

(7.122) (G/G) 2 (years)™ ! .

Vector-Metric

Dicke has suggested that a variaticn in G of the order sp.ggested
by equation (7.121) would not be inconsistent with geophysical, planetary
and astrophysical data (see Dicke a.nd Peebles [1965] for discussion and
references)

Such a variation in G should cause the orbital periods ‘of planets
to vary when compared with an atomic-time scale, and recent analysis

of pla.netary radar ranging data has put a 1imit on such variations of
> ' -10 -1
(7.123) (G/G)< 4 X 10 - (years)

(Shapiro, Smith, Ash, Ingalls, and Pettengill 1971). A more useful
limit on G must'there.fore awalt furthevr 1mprovements (or more datal).
Lunaf 1'aser ranging may also be able to put a limit on G, as long as the
gsecular effects of the Earth-Moon tidal interactions do not obscure the

effects of a changing G.

7*11. Currently Viable Metric Theories (as of June, 1972)

" We have assumed that the correct theory of gravity must be a
metric theory (see Sect. 3 for a partial justification), and have used the PPN
formalism to analyse experimental tests of these theories. Experiments

to date have proclaimed'many theories to be non-viable:
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(1) Conformally‘ Flat Theories -- disagree violently with 1i_ght-
deflection and time-delay experiments.

(11) Stratified Theories (with time-orthogonal conformally flat

space slices) -- predict "preferred-—frame" effects in violent
dis agreement- with observations.

(iii) Whitehead's Theoxy -- predicts. Galaxy-induced Earth tides,

in violent disagreement with cbservations.
Other theories are still viable, or may be made so by‘an appropriate

choice of a "coupling constant”

(i) General relativity -- agrees with all experiments to date.

(ii) Scalar=Tensor theories with w > 6 -- agree with all experiments.

Improvements in the light-deflection and time delay experiments

may push w higher (toward the general relativity limit).

2

(1ii) Vector-Metric Theory with K%< 3X107% -~ agrees with

all experiments. Improved Earth-tide measurements may push

K% lower (toward the general relativity limit). 7

" (iv) Theories yet to be invented or found in the literature -- Lurking

" in the literature may be other metric theories which pa-s,s all
experimental teéts; and theories currently being invented (in
particular by Ni and by Nordtvedt and Hellings) may also be
viable. '

Thus there is still an important role for thé theorist in thé field of
Experiméntal Gravitation. ﬂe must continue to examine theories of gravity,
gsearch for new experiments, evaluate the significance of cufreﬁt experi-

ments, until the results of the experimenters can allow him to say he has

confidence in only one theory of gravitation.
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TABLE 3.I. A Partial List of Non-Viable Gravitation Theories

- —

Theories and References

e —

Comments, including some but not all the
reasons why the theory is non-viable*

Newtonian Gravitation theory

Hoyle's C-field theory
[ Hoyle, 1960; Hoyle and

Narlikar (1963, 1964)]

Milne's kinematical -
relativity

[ Milne (1937, 1948)]

Poincaré's (1906) theory
as generalized by Whitrow
and Morduch (1965)

Whitrow-Morduch vector
theory [ Whitrow and

Morduch (1960, 1965)]

Is not relativistic. _ _

Was devised originally as a foundation for
the steady-state model of the Univerée.'
Is'incorh_plete -~ lacks an.equatiqn govern-
ing the rate at which the C-field creates
particles.

Was devis.ed.originally-to handle cex;tain
cosmolégical problems; Is - complete --
makes no redshift prediction; predicts
zero deflection of light. |
Action-at-a-distance Ithe‘o‘ry in flat space-
time with an adjuétab_le pa.rarheter- n.

For n< 2 predicts zero redshift. For

'n = 2 gives internally inconsistent treat-

ment of light propagation.

Contains a {(ector gr_avitaticﬁalﬁ'eld that
resides 1ﬁ flat spacetime; possesses a
£reély specifiable parameter p. For

P :-»0,' predicts no redshift. For p# 0
gives internally inconsistent fre‘atmént

of light propagation.
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TABLE 3.I. Continued

Theory and References

Comments, including some, but not all the
reasons why the theory is non-viable

Kustaanheimo's various
vector theories

[ Kustaanheimo (1957, 1966)
Kustaanheimo and Nuotio
(1967); Whitrow and Morduch

(1960, 1965)]

B irkhbfffs (1943) theory

Yilmaz's (1971) theory

_antain a vector gravitat_:ional field that
resides in flat spacetime; possess several
freely specifiable functions, which can be

adjusted to give agreement with the "four

standard tests", Are incompléte -- do

not mesh with other laws of physics,
except .by imposing them in the _globéi
Lorentz frame of the flat spaéetime
metric, which then gives internal incon-
sistencies: different redshifts for light
viewed as photons and light viewed as
waves] non-zero redshifts fér photons
between points -at the ‘sanie gravitational
potgntial. Als.o sevéral scalaxf‘and‘ tensor
theories. whicﬁ suffef the éaihe problems.
Glves same prediction as general relativity
for 4 standard tests; but predicts crazy

resgults for internal behavior of matter --

2 oc? . -
o P =PC s Vsound —_»Vlight'

Contains a tensor gré.vitational field used

~to construct a _metric. Is inconsistent --

differential equation for the metric in

terms of the tensor ﬁeld»is not integrable.
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TABLE 3.I. footnote

>':These theories are non-viable in their present form. Future modifi-
cations or specializations might make some of them viable. If we have
-miginterpreted any theory here~,-w'e apologize to its proponents, and we
urged them to demonétraﬁe explicitly its self—consistgncy, completeness,

and correct expgrimental predictions.
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TABLE 4,I. The Parametriéed Post- Newtonian Formalism

Coordinate System: the framework uses a particular, nearly
globally Lorentz coordinate system in which the coordinates are

1 .2 .3
).

t, x , x , x Three-dimensional, Euclidean vector notation
is used throughout. All coordinate arbitrariness ("gauge freedom")

has been removed by specialization of the coordinates.

. Matter Variables:

1. p = density of rest mass as measured in a local Lorentz frame
momentarily comoving with the gfavitating matter.

2. e .(dxa/dt;) = coordinate velocity of the matt_e.r.

3. w, = coordinate velocity of PPN coordinate system relative to
the mean rest-frame of the Universe.

4, p = pressure as measured in a local Lorentz frame momentarily
comoving with the matter.

5. II = internal energy per unit rest mass. It includes all forms
of ndn-res_t-mass, non-gravitational énergy --e.g., ‘energy

of compression and thermal energy.

PPN Parameters: .

Y 59 ai"az, (23,, giygzs 43: §4 .
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TABLE 4.1 (Continued)

D. Metric
800 = 1 -2U0+ Z;SUZ _ (Z_Y +2 ta, +;_1)<1>1 +410‘,
- 2[(3y - 2p+ 1+ )08, + (1 +L)&, +3(y +1,)¢,]
.+ () - a, - 03)W2U + azwdw?Uap - (2‘013 - ai)ana
g, :%(4y F3tay -a, HE OV, 4 _j;:(i +§2 - §1)W§
+% (:a/1 - Zaz)waU + g:rzzwﬁUa/‘3
'gap =- (1 + ZyU)SQp

E. Stress-Energy Tensor:

TOO = (1 +1I +v2 + 2U)

2

°% = p(1 +11 +v% +2U + p/p)v,

=
1

Tap 2

pv gl +IL+ v +2U +p/p) +psap<1. - 2yU)

F. Equations of Motion

i. Stressed Matter
i | 1 i gk o ek
™ =0 i.e., TY .+ T+ T=0
3 »J jk kj

2. Test Bodies

dzxi
dhz

ik
i ax ax®
P oo °°
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TABLE 4.1I.

Local Conservation lLaws

Law

Covariant Form of
Equations

Conservation of Baryons

Conservation of Rest Mass

Isentropic Flow

i, 1 i
(nu);i——\/-_;(w/——gnu)’i
i1 P
(Pu );i—J_g ({"'g Pu)"i

u'i[H,i tp(t/e) 4] =0

1]
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TABLE 4.III. .Integral Conservation Laws

_ PPN Parameter Values Type of Conserved

{Ci ,C.Z_,§3 ) §4,.a3} {a1 ,az} Theory Quantities
all zero | all zero Fully Conservative P, J'J
all zero may be non-zero Semi-Conservative '. Pi

may be non-zero any values Non-Conservative ' p°
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' TABLE 5.1, Metric Theories of Gravity and Their PPN Parametric Values

Theory and its 1
adjustable parameters

8L7

General Relativity™ - 1+t 0o o o 0 0

Scalar-Tensor Theories

+
a. Bergmann- Wagoner-Nordtvedt (w,A)L -!é—_,_—g— 1+A 0 0 0 0 0
: : L 1+w
b. Dicke~-Brans-Jordan (w) |  5Ta 1 0 0 0 0 0
L K> ‘
Vector-Metric Theory (K) 1 1 0 —T 0 0 0
_ . 1+-—2-K
Conformally Flat Theories
" a. Nordstrgm-Einstein Fokker™ 44 4 0 0o -0 0o 0
b. Ni's Lagranglan Theory (q)" 1 1-q- 0 0 o 0 0
. c. Ni's General Theory (p,q) . . =1 " 1-q O 0 0 0 4+p-2q
d. Nordstrgm - S LR | 0 0 0 0 0
e. Littlewood-Bergmann -1 —12- 0 0 0 0 -1

- f.  Whitrow-Morduch (q) -1 1-q O 0 0 0 -2q



6L1

TABLE 5.1 (cont'd)

ad?u};iZ;}rea;:r:r;etersT Y p @y a, @3 4 1 LZ 43 L4

5. Stratified Theories (with Time-

Orthogonal Conformally Flat

Space Slices)

a. Rosen (M N F(3HN c4(t+) 0 0 0 o o o

b. Papapetroul‘_ 1 1 -8 -4 0 0 . 0 0 0

c. Ni's Lagraﬁgiaﬁ Stratified Theory:L 1 1 -8 0 0 -0 0 0 0

d. | Ni's General Stratified Theory (p,q) 1 1-q -8 0o -4 - 0 "p-2g-2 0 -2

e. Yilmaz 1 1 -8 0 -4 -0 -2 0 -2

f. Page-Tupper (a,c) a 1+c.  -4(1+a) 0 -2(1+a) O 1+at2c 0 -(i+a)

g. Coleman (p) 1 1 -8 0 -4 0 p-2 0 -2

h. Einstein's 1912 Theory 0 0 -4 0 -2 0 -1 0 -1

‘i, Whitrow-Morduch Stratified Theory 0 -1 -4 0 -2 0 -3 0 -1
6. Whitehead's Theory 1 1 0 0 0 -6 0 -1 -1

(plus additional metric terms)

T

The superscript L refers to theories which are

Lagrangian-based.



TABLE 6.1. Christoffel Symbols for the PPN Metric

° _=-ou/et, I°_ =-08U/5x",

T°.p = Youq 8U/BE + glay+3 4 -a) L)V, o)
PRt L W gyt g (o 2w U )
+%a WYUy(a,ﬁ) ,

I“’o'o = - au/ax” + a/a:i“[(ﬁ +y)U% - 20 +%z_;16

1, B 1 20 21 0 9 1B ]
+ > "‘zw wilg - 5 (@yta-a )w'U +5 (2, - 2ay)w Vg

- a/at[% (4y +3 +ay - e+ 8) V, +2(l +a,-L )W,

o1 : § ]
+.z(ai— Zaz)waU + azw Uaﬁ ] »

I* 5 = Yo, 8U /bt - Flaytata )V, o

i
8 1"e",p]

I

pr = V(8apU g ol

t 5, Uﬁ ﬁ{.

where

Z(Zy+2+a +; )q> +_.(3Y zp+1+g )%,

: 3
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TABLE 6.1I.

Massive-Body Integrals in the PPN Formalism

Vector Integrals

% skt *n [+% .
* k! *u pp (x x") (x x')(x x')
mf :Sl PP (x-x)3 dx dx' dx", mi*oz —g T dx dx'dx"
L li‘"i‘"”i‘ x'| : lf =" x| T
*x *1_12 P *'7 ? - (x-x")
tia :S‘ PPV (}; X) dx dx' s g 3 — d%df
{ lx Xrl ~ o~ i ]x x'l
* %
o P e vOT - (x-x") p" *'[V'-(x-x')] (x-x")“
T, =§ 3 d:Nc' , § £ dx dx'
{ l ll ~ , Ix xl, ~
PO =§ P p(x-x) X, 3" To” n'(ng- x)? 4x dax?
i }x i{’l ~ lx x'l - T

Tensor and Scalar Integrals

* okt nB
ap _ 1 (x- x') (x-x") :
Qiﬁ"'fgp e ® ol M
* ‘ ' :
Iiaﬁ = 5‘1 P (X')ci)a!(x"}(i)s d?j s S Ii
Pl =S P df ’ _ Ei
i . .
* ®_
% - S" | "”<x-x P e an k P

' l3 ~

i
—
. o]
*
X
)
3
e

=S~ p*H‘dx
1 x
oo™ T e (') (x-x") Y-y B
:S‘ ind -~ 5 — dx,dx'
i |x-x'| -
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TABLE 7.1. Geophysical Preferred-Frame Effects

Effect ‘ Frequency Amplitude
i) Semi-Diurnal 2Q - 20 1 %107 @, cos’®L
Earth-Tides (Ag/g)
20 -w - 1x10°8 @, cos’L
ZQT 3x10°8 vozlz cos’L
20+ <1077
29 + 20 <1077
if) Diurnal Earth-Tides Q- 20 <1079
(Bg /g)
Q-ow 1X10_8azsin2L‘
Q 7% 1078 @, sin 2L
Qto 3x1077 &) sin 2L
Q +t20 <1079
iii) Zona.l Variations in w 8 X 1077 @,
Earth_'s Rotation
(AR/Q) 2w <1077 a,
iv) Spherical Var_iatj.on in wT , . 3 X 10—9 (2/3 @, + @, - ai)

Earth Rotaﬁon

(AQ /)

Used to put limits on the values of the parahiéters @, a,, and @,

T

(Subsect, 7°4). . : ‘
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TABLE 7.II. Experimental Limits and Theoretical Predictions

for the PPN Parameters @y, @, and @3

- EXPERIMENTAL LIMITS ON @y, @y, AND a,

le,|<0.2

-2
,]azj <3X10

-5
]a3| <2X10

THEORETICAL PREDICTIONS FOR @y, @y, AND «a

3
Theory and its - a1' T afz" a,
adjustable parameters ‘
General Relativity | 0 0 ' 0
Scalar-Tensor Theories (w,A\) 0 : 0 0
Vector-Metric Theory (K) 0 KZ/(i +1/2 KZ) 0.

Stratified Theoriés:

a. Page and Tupper (a,c) ~-4(1 +a) 0 -2(1 +a)

b. Yilmaz o | -8 0 -4

c. Papapetrou -8 -4 v 0 '

d. Lagrangian Stratified -8 0 .0
Theory (Ni)

e. General Stratified -8 . B ¢ -4
Theory (Ni) (p,q)

f. Coleman (p) -8 0 -4

" g. Rosen (\) ’ Co-4{i+N) 0 . 0 0
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TABLE 7.1II. Theoretical Predictions for "Nordtvedt Effect" Parameters

Theory ' Nordtvedt Effect Parameter

(a) Isotropic: (n +-é—€) (b) Anisotropic: §

General Relativity ‘ 0 K 0

Scalar-Tensor Theq ries

a. Bergmann-Wagoner- 4A +1/(2 + w) 0
Nordtvedt _
b. Dicke-Brans-Jordan C1/(2 +w) 0
Vector-Metric Theory _ -;KZ/(i -{--;— KZ) - KZ/(l +-é— _KZ)
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Caption for Fig. 5.1.

Fig. 5.1 - Kinematical quantities used to calculate the metric for
Whitehead's theory. The metric at a peint P is deter-

mined 'by- all the masses which cross the past "n-light-cone”
Z" of P. |
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Figure Captions
Fig. 7.1. Schematic diagram of _gravitationai light bending.

Fig. 7.2. Round-trip trajectory of a photon from the Earth to a planet

or spacecraft,

Fig. 7.3. Two gyroscopes in polar orbit around the Earth. The
gyroscope with its axis pointéd normal to the orbital plane suffers
a pi'ec:e'ssl‘on due to the "dl_'agging of inertial frames"., The
gyroscope whose axis lies in the orbital plane undergoes a

"geodetic precession”.

Fig. 7.4. Isotropic Nordtvedt Effect -- a polariz‘a.tion of the Moon's
_ orbit with the maximum (apogee) always Vdirec’_ced toward the

Sun.
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