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Abstract

The problem of controlling a time-invariant system with parameter

uncertainty is considered with incomplete state feedback. The controller

is designed by minimaximizing (1) a quadratic performance criterion, (ii)

a sensitivity (or loss) criterion, involving the state of the system, the

control and the uncertainty vector. The resulting optimal controller is

linear and optimal feedback gain matrix must satisfy a set of nonlinear

algebraic equations. Some algorithms for algebraic minimax problems are

presented.
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I. INTRODUCTION

The design of a controller for a linear dynamic multi input-multi output

system having parameter uncertainty is considered in this paper using a mini-

max technique. The problem is posed with the constraints that the controller

be linear and require only the available outputs of the system. Control of

this class of system with no parameter uncertainty has been treated by

of pr<

[2-6]

Levine and Athans . . Minimax controller design for this class of problems

using complete state feedback has been suggested by many authors.

In this paper, the problem is treated Initially by minimizing with

respect to a feedback gain matrix and maximizing with respect to uncertainty,

a quadratic performance index Involving the system's state, the control and

an uncertainty vector. The resulting controller is specified by the gain matrix

which in turn must satisfy a set of algebraic nonlinear equations. This

design procedure often leads to a pessimistic result either because the

uncertainty does not act so perversely as assumed or because the control often

makes an effort to reduce the cost where it is high even with perfect know-

ledge of parameters. To meet this objection, other criterion and in particular,

a minimax sensitivity criterion are also examined. The optimal feedback

gain matrix for the regret criterion is shown to satisfy a set of nonlinear

equations similar to those obtained for the standard criterion. Some recursive

algorithms to solve these nonlinear equations and their convergence are discussed.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider an n order linear system with state vector x(t)eR and output— m

vector y(t)eR defined by

x = A^ + B0U + (A-AO)X + (B-BO)U (D

£ = Cx (2)
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(AO-BOFC)X

with a controller

u = -Fy = -FCjc (3)

where AQ,B_ are nominal matrices. Using (3), (1) can be represented as

x = (AO-BQFC)X + KA-AO)-(B-BO)FC]X = (AO-BQFC)X + (W-WQ)X

£ (4)

where £ represents the effect of uncertainty.

Since the uncertainty is assumed to be limited, £ will likewise be constrained.

In order to place any restriction on the form of (W-W_), let W-W- <= DGC..

D, C. are fixed and G contains variable terms. An example is,
• • •
• • •
• • *

0 0 0B=BQ, A-AQ=

, G - [a0-aQ,

Thus the uncertainty vector is specified as

[0,0,... 1]

(5)

where G is the gain matrix associated with the uncertainty vector and C.

has rank n or less. Both C, C. are assumed to haVe maximum rank, i.e. rank

equal to number of rows.

Substitution of (5) in (4) gives

x - (AO-BQFC + DGC^X. (6)

In order to achieve a design through optimization, the feedback matrices

F and G will initially be chosen to minimize and maximize, respectively,

the performance criterion

J(F,G)= dt
Ju=FCx, u=FCx, ̂ =GC :x

m t

x [Q + C F RFC - C,G LGC J x dt:
~ 1 1 "

C7)
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i.e.

(i) Find F and G such that

min max J(F,G) = max mln J(F,G) (8a)
F G G F

We shall also consider the following minimax procedures to obtain optimal

gain matrix F.

(ii) minJ0(u,5*)|
F 'u=FCx

1 f0" T x
where 5* is obtained from max [min Jn(u*,0) - ± \\ t ̂5 dt] (8b)

* J

u* minimizes J_ assuming G=0.

(iii) min max [J(F,G) - J*(G)J (8c)
F G

where J*(G) = min [J_(u,£)]__,,„
J. U ~~ — £=\>t>«X

f ji 1~~

(iv) min max [J(F,G) - J*(G)] (8d)
F G

where J*(G) = min [J(F,G)J given G.
F

Criterion (ii) is less pessimistic in the sense that £ is given the first

play and in making its play assumes that u_(x) is obtained by an optimal full

state design (with ̂ =0) for the nominal plant. Matrix F is then chosen to

minimize the criterion based on the announced strategy of £.

In criterion (iii), (iv) the best control with perfect parameter information,

i.e. £ known, is obtained with full state feedback and output feedback respectively.

Matrices F,G then minimize and maximize respectively the difference between

the actual cost and cost with perfect parameter information.
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III. MINIMAX PERFORMANCE CONTROL

(i) Direct Conflict of Interest

Let the Saddle point be defined by the following inequality

J(F*,G) <_ J(F*,G*) < J(F,G*). (9)

It is clear from (6) and (8) that J is determined by the initial state, 3c(tfl)

as well as matrices F and G. That is^

J = J(F,G,x (tQ)). (10)

In order to make the optimum F and G independent of x.(t~), x.(t/t) can be

treated as. a random vector in which case J may be replaced by

J(F,G) = E[J(F,G,x(t0)]. (11)

E (•) denotes expectation with respect tox(tn). The necessary condition— u

that F and G should minimize and maximize J(F,G), respectively, requires l J

|£ = |=- E[J(F,G,x(tn3>] = E[|£ (F,G,x(t ))]=0 (12a)
OC v t. ™~ v vJ? w

|̂  = |g E[J(F,G,x(tQW = E[J£(F,G, x(tQ))]=0 (12b)

The interchange of order of expectation (i.e. integration) and differentiation

T91is critical here and is valid under rather general conditions. J

The partial derivatives of (12) will be evaluated by the application

of the following well-known Lemma:

Lemma 1

* tf
J=J(x(tft)) = W(x(tn)) + L(x,t) dt- 0 - 0 Jt -

where

x « f(x,t) and W(x̂ (tQ)) is the penalty on the initial states x(tQ)

then
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where

~ = " ft = " fe IL + -~]' -{tf* ° °

This Lemma follows from the variational calculus where the first

variation of J with respect to x(tQ) is [X/tg) + 3W/ax]
T6x(tQ) . See for

example pp. 48-49 of [10].

In order to apply the lemma, the elements of F and G are treated as additional

"states" which satisfy

F = 0, G = 0. (13)

Vector multiplier X will be used for the regular state constraint (6) and

matrix multipliers A (t) and A (t) will be used for matrices F and G

respectively. It is to be noted that the Hamiltonian H will be independent

of Â (t) and A (t) due to (13). Thus the Hamiltonian H for (6), (7) is

H - xjj (A0-B0FC0 + DGCpx] + | x1 [Q + CTFTRFC - Ĉ LGĈ x

(14)
= Tr[(A0-B0FC0 -f DGC^x X^ + ~ (Q + C

TFTRFC - cjGTLGC1)xx
T] .

Tr denotes the trace and

i =-!§=- (A.-B-FC + DGC1)
TX - (Q + CTFTRFC-Ĉ GTLGC)x, \ (tf)=0;

*TC OX U U X X X "* *~X Z

(15)

= - RFCxxV + B X x V , Ap(t f ) = 0; (16)

0. (17)

According to the lemma, the necessary condition (12), and integrated forms

of (16) and (17), we obtain
tf

(18)0 = E[|£]= E[AF(tQ)] » E f iRFCxxV - B^xV] dt
t

[|£] = E[AG(tQ)] - -E f f [LGC^cJ - D1^1 ]̂ dt (19)
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Thus if R and L are constants, (18) and (19) yield

-1 f f cf T T T f f f cf A tF = R X I B0 ElA^x/JC1 dt I I r C Efxx'jC* dt | (20)n tf T T V
1 C Efxx^C1 dt

t. t, .
-1 f f T T T F f f T T T1

G = L M D EjA x ] C* dt C. E[xx1]C, dt (21)
J -x 1 L J 1 — J 1 J
C0 C0

(20) and (21) can now be simplified. If X = K(t)x is assumed, then (6)

and (15) give

-K = A^K 4- KA^ + Q -f CTFTRFC - C*G*UX , K(tf) - 0 (22)

or K(t) = [ 4>I(T,t) [Q •»• C F RFC - C^G LGC. ] +4<T.t) dt (23)
J * 1 1 *
t

where 4*^ is the transition matrix corresponding to A. = (An-BAFC + DGC,)»» *f U \j j, •

Limiting attention to the time invariant case (Q,A0,B-.,C,D, constant)

with tf=», tQ=0, equation (20)-(23) yield

F = R~1BjKMCT[CMCT]~1 (24)

G - i r K M C ICjMC]" (25)

where
r» A^(T-t) _ _, T A^(r-t)

K = e (Q+C F RFC - C^G LGCj e dr

~f T T T T A*°

(26a)
t ^o _ _ _, ^o

= I e (Q + C F RFC - C*GT-GC.) e do ,
Jn -1

or

K(AQ-BOFC + VGC.J + (AO-BQFC + DGC-J^)^ + Q + CTFTRFC - C^GTLGCI - 0;
(26b)

and
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M = f E[xxT] dt = f e Elx(t0)x
T(t0)J e * dt, (27a)

or

(AO-BQFC + VGCJ M + M(AO-BQFC + DGCI)
T + Eix(tQ) iT(t0)j = o (2?b)

T —1 T —1
[CMC ] and [C-MC ] exist because C,C. have maximum rank and M is positive

definite.

If E[x(t0)] ^XQ, EKxCt^-x^) (xCt^^j)1] ^XQ (28)

E[x( t )x T ( t ) J = X + x (29)

Then

is positive-definite for X.^0. Thus M is a positive definite solution of

(27b) if X0jiO, M is positive semi-definite if XQ=0.

The optimal cost can be seen to satisfy

J "- \ E I J^^Q) fe(t0)] = \ Tr [KE(x(t0)x
T(t0))] = \ Tr

= Tr [K] when E [x( t )x T ( t ) ] = I .

Remark 1
A . A

It can be easily seen that min max J(F,G) = max min J(F,G)
F G G F

IV. COMPUTATION OF F* AND G*

The feedback gain matrices F and G are specified by (24) and (25), where

K&M are given by (26b) and (27b) respectively. These equations must be solved

numerically and the following algorithm similar to can be conveniently

used for this purpose.

F -, G . and M are computed using:
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Gn+l -

<VB0Fn+lC + "WV Mn+l + Vl <VB0Fn+lC + DGn+lC

(32)

where K , is given by the following equation:
TOfri

(A0-VnC + ̂ W1 Kn+l
 + Vl <A0-B0FnC4DGnCl)

- CIGnLGnCl = °'

The iteration starts with an initial guess of F_ and GQ such that (A.-B-F.C

+ DGQC^ is stable and also (Q + CTFjRFQC - Ĉ LĜ ) is positive definite.

Thus K, is the positive definite solution of (33). With this value of K_,

(30)-(32) can be solved simultaneously to get F-, G- , M. which, in turn, give

new estimate, K£ and the iteration proceeds.

Xjednia 2

—1 T — ]_TIf (BQR BQ - DL T) ) >^ 0 and C = C., the above algorithm will converge

in the sense that Tr[K -K .,] > 0 for all n.n IHM —

Proof :

The proof closely follows [11].

M can be expressed as
n

Mn - f **n **n dt = *n*n (34)
;o

If C = Cĵ , then

(BnF -DG ) C= (BnR~1B][-DL~1DT) K M CT(CM CT)~1C (35)U n n U U n n n
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and

CT(CMnC
T)"1C (36)

Substitution of (35) and (36) into (32) and (33) yield equations identical

to those of [11] for which Tr[K -K̂ l j> 0 is proven except that B.R" BQ-DL"" a

-1 Treplaces B_R B_. Thus Lemma 2 holds. Proof of convergence under less

restrictive assumptions is under study.

V. MINIMAX PERFORMANCE CONTROL

(ii) Indirect Conflict of Interest

In the previous formulation, the feedback matrix 7 has been chosen in

a most ̂ favourable way after the uncertainty vector was allowed to take its

'worst 'value. This will lead to a very conservative design approach. On

the other hand, it may be assumed that nature is not perverse enough to alter

its strategy with that of the control. Under this situation of indirect conflict

of interest, the previous formulation may be modified as follows.

The game is, as usual, defined by

X = AQX + B0U + D£. (37)

To start with, let us assume .§=0. The optimal control u* is obtained by

minimizing m

| f
0

subject to (37).

Thus the resulting control is given by

u* = - R-̂ POX (39)
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where P_ Is given by

<5oAp + o + Q

Substitution of (39) in (37) yields

'*- + D£' (41)

To include the effect of uncertainty at this stage, the performance

criterion (38) is modified as

dt (42)

The 'worst* value of £ is obtained by maximizing (42) with respect to £,

subject to (41), and is given by

where P. is the solution of

(43)

+ V V V V + Q + W V P l D L l ) p l °° °

(44)

Using the estimate of £ as in (43), the original system is reduced to

i = (AQ + DL"IBTPI)X + BQU (45)

with the controller

u -̂ -Fy » -FCx a (46)

Now F can be chosen to minimize E[J] - ~ E \ xT[Q -f CTFTRFC]x dt
jo"

subject to '(45). The optimal F is given by

F - -R~1BJPMCT(CMCT)~1 (47)

where P and M are given by

BQFC)T P + P (AQ -»- DL'^^-BjjFC) + Q + CTFT

(48)

(AQ + DL"^1^ - BQFC)T P + P (AQ -»- DL'^^-BjjFC) + Q + CTFTRFC=0

+ M(AQ + DL'
1!)̂  - BOFC)

T + i - o. (49)

Remark 2

(a) To be more general, u* in (39) and f* in (43) nay be constrained
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to the form

u*0 - - F*Cx, $*

(b) It. should be noted that this formulation assumes that the existence of

matrices PQ, P-j^ and F that stabilize (AQ + D L ' p ^ B g F C ) and

- DlTVp^. Under this condition, (47)-(49) can be solved using basically

the same algorithm as described in Section IV.

VI. MINIMAX SENSITIVITY (OR LOSS) CONTROL

If G as defined in (5) were known, the ideal optimal control would be

obtained by minimizing

[CO

J - -| {xT(Q-C^GTLGC.)x + uTRui} dt (50)/ JQ - 1 1

with respect to u_ subject to

x - (An + DGC.)x + Bu. (51)— u j. —

The resulting 'ideal* optimal control u* is given by

u* ̂  -R~1Bjpx* (52)

where P and x* satisfy respectively

and

P(AQ + DGC^) + (AQ + DGCj^)? + Q -

x* = (AQ + DGC^ - B ^ p ) ^ . (54)

The resulting cost,

*oo

J*(G) = \ J x*T [Q + PBQR"1Bjp - C^LGCj^Jx* dt (55)

is the best that can be achieved with complete state feedback and perfect '

parameter information (G) . Now we consider a performance sensitivity or

"regret loss" criterion.

S(F,G) = fU(F.G), JJ (G)] ' (56)
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fy A 21
is a performance sensitivity function if l ' ' J

1) f(') is continuous jointly in its two agruments

2) f > 0 -> J(F,G) > J*(G)

3) f = 0 -> J(F,G) = J*(G)

In this paper, attention will be confined to the following sensitivity

function

S(F,G) = J(F,G) - J*(G) (57)

A

The immediate problem is now to minimize and maximize S with respect to F

and G respectively, subject to (6), (53) and (54).

(57) modified to include the equality constraint (53) is
»00

S - Tr[N(P,G)P.] + \ E xT[Q + CTFTRFC-C?!GTLGC1 ]x dtJ . / j — x i —

too

- TE 2*T IQ + PBR BTP-(£GTLGC,]x* dt (58)1 Jo L *-

where P is a matrix Lagrange multiplier.

Thus the problem reduces to minimizing and maximizing (58) w.r.t. F and G,

subject to (6) and (54) and

F = 0, G = 0, P = 0 . (59)

Thus the Hamiltonian H for this case is given by

1 T T T T T 1 —"* *** T *T
H = i Tr[(Q + C F RFC-cjG LGC^aoc ] - y Tr[(Q H

Tr[(A-BFC + DGC..)xAT] + Tr [ (A-BR̂ B̂ P + DGC.)x*XT.J (60)1 — x u 1 x*

with
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A = - - = - (Q + C RFC - C,G LGC.)x - (A-BFC + DCC.)* , A (»)=0;
~X oX J. -L J. "—X ~̂ C

(61)

1 T T T
PBR V " C1G LGCi>2* - (A-

(62)
)-Os

= - RFC22cC + B X ^ c , AyW-O; (63)

|f = BR"1Bj(ftc*x*T + 4***T), Ap(~)-0, (65)

Now according to Lemma 1 and the necessary conditions (12), we obtain after

integrating (63) *— (65)

0=E[Ap(0)] = E J [RFCxx
TCT-Bjxxx

TCT] dt (66)

0

0=E[AG(0) + |̂ Tr(N(P,G)P1]= D
TP (P.,, -I- P̂ ) Ĉ

E T T f ° ° T T T f ° ° T T
C.xx^C, dt -I- LGE C,aK*x* C, dt + D1 E(X x^,) dt
11 J 1 1 J -xr- I

o+°TI, rc*J at

0-E[Ap(0) -I- ~ Tr(N(P,G)P1)] = (AQ + DGC][ -

f 00 fCO

BQR"1B^P J E(2*x*T) dt - B0R^Bj J (VAx*T) dt (68)

We claim as usual that

A = Kx, A a - K*x* (69)



-14-

as may be verified by (61) and (62) provided K, K* satisfy

(AO-BQFC + DGCI)
TK + K(AO-BQFC + DGĈ ) + Q + CTFTRFC-C*GTLGCI=O (70)

it *

(AQ-BOR̂ B̂ P + DGCI)
TK + k(A0-B0R~

1Bjp + DGCI) - (Q + PBR"
IBJP-Ĉ GTLGCI

(71)

Furthermore
(CD • »OO

M = E[xxT] dt, M*= E[x*x*T] dt are given by
' J

(AO-BQFC + DGC.,^) M + M(AO-BQFC + Dcc^1 + E[x(t0)xT(t0)]=o (72)

(A0-BQR~1Bjp + DG^) M* + M* (AQ-tQK~ljfy> + DGC^1 + E[x*(t0)x*T(t0)] = 0

(73)
*

It can be easily seen from (53) and (71) that K = -P (74)

Using (69) and (74), (68) reduces to (P̂  + P̂ ) = 0 for

(AQ + DGC^ - BQR~
1Bjp) is stable . (75)

Thus (67) and (66) give

+ K*M*) c [ C ( M - M * ) C ] ~ 1 (76)

F - R~1BjKMCT(CMCT)~1 (77)

Solution for F requires simultaneous solutions of (70)-(73) with (76)-(77).

Remark 3

It can be readily verified that (a) the optimal cost S = j Tr [K+K*] ,when

E[x(t0)x
T(t0)] = E[x*(t0)x*

T(t0)]=I (78)

** ">

(b) min max S(F,G)= max min S(F,G) (79)
F G -3 F

It should be note from (52) that u* was allowed to be linear function of all

state variables. A more general and perhaps more realistic formulation would
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be to constrain u* to the form

u* =-E*Cx* (80)

Now if G were known F would be chosen to minimize

.00

T â KĤ GLGC. + C^RF-Clx
z J -1 *• •"• •"•

dt (81)

subject to x = (A-BJ-jC+DGĈ x (82)

In this case, F* is given by

F*= R~1BjK*M*CT(CM*CT)~1 (83)

where K* and M* satisfy

- (AQ + DGCj-B^C)1!^ + K*(AQ + DG^-B^C) + Q

f

+ CTF*TRF*C-C^GTLGC1=0 (84)

N.(F* G,M*) - (A + DGC - B F*C)M* + M* (A + DGC. - B_F*cJ + 1 = 0
*L \. U X U X U JL U 1

x* satisfies

and

x* - (A + DGC- - BF*C)x* (86)
_ JL J. ~

J*(G) = min J is given by
Fl

J*(G) = x*T[Q + C R F - C L G C d t . (87)= \ f x

We may define the criterion analogous to (58) as

S = J(F,G) - J*(G) = TrlN1(F*,G,K*)P1

jx*dt
1 1 1 1
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where P and P. are matrix Lagrange multipliers.

Now minimizing and maximizing (88) w.r.t. F and G respectively subject to

(6) (86), it can be shown •••• in a similar Way that V* K*, M* satisfy

(83), (84), (85) respectively and F, G, K, M satisfy

F - R~1BjKMCT(CMCT)~1 (89)

G = iTT^OKM + K*M*) C? {C. (M-M*) C^]"1 (90)
1 1 1

(A-BFC + DGC-^K + K (A-BFC + DGC-) + Q + CTFTRFC - C^GTLGC = 0

(91)

(A-BFC + DGCp M + M (A-BFC + DGC^* + 1=0 (92)

VII. COMPUTATION OF F, F*, G

An algorithm similar to that mentioned earlier can be used to solve

the feedback matrices. As before, at iteration n, positive definite matrix K

and negative definite matrix K* are obtained from:

(A-BF C + DG cflC ., . K .. (A-BF C + DG C) + Q + CTFTRF C - C?GTLG C = 0n n n + 1 + n + 1 n n x n n I n n l

(93)

(A-BF* C + DG C.)TK* + K* .. (A-BF*. C -f DG C.)
In n r n+1 n+1 x In n 1

-(Q + CTF*T RF* C - Ĉ GTLG C,)=0 (94)
In In 1 n n 1

F , F* , G , M ,M* are then obtained by simultaneous solution of (83) -(85)

and (89)-(92), with K,K* replaced by K*, K*. The algorithm starts with

initial guesses FQ.̂ Q, GQ such that (Â B̂ C + DGQC) and

are stable and also (Q + CTFjRF0C - Ĉ GjLGQC) and (Q + C
TF

are positive definite.



VIII. SOME STABILITY BOUNTY IN TERMS OF PARAMETER VARIATION

The perturbed system (1) can be represented as

i = A0X + Bgu + (A-AQ)X + (B-BO)JJ (95)

= [(AQ-BOFC) + AA + ABFC]X (96)

where F is given by (24). The following analysis is also true for F, given

by (47), (77) and (83).

Define the Liapunov function V(x) as

V(x) = ̂cT&c (97)

where K ,a positive definite matrix, satisfies (26). The time derivative

V(x) of Vfr), evaluated along the trajectory (96), is given by

V(x) = -̂ cT[-(A0-B0FC)
TK-K(A0-B0FC)-2KAA-2KABFC]x (98)

f

Using (26), (98) reduces to

V(x) = - •^cT[(Q+CTFTRFC-C^GTLGC1)-2KAA + 2K(DGC1K~1 + ABFClT^Klx (99)

Let the norms of 3* amd .^atrix A are defined as follows

II I I A i T N1/2
I |x| I = (x_ x)

||A||& SUP II^H so that 1|A|| = ̂ * [ATA]

where \ (•) is the maximum eigenvalue of a symmetric positive definite matrix
IQcllC

(•). Restricting terms in the brackett in (99) to be at least p.s.d. to

guarantee stability of perturbed system (96), the bounds on AA and AB can be

found as

AA < ̂ (Q + C^RFC-CLGC) (100)

DGC

lFCK'1!
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It should be noted that (Q + CTFTRFC-C^GTLGC ) is at least positive

semidef inite under the condition mentioned in Lemma 2.

IX. EXAMPLE

Following example will be considered to illustrate various theoretical

formulations discussed earlier .

Let the system be described by
rQ ri

(102)
rQ ri to]

i - [-1 J * + [ij u = A* + V

y « [0 1] x = ex (103)

with controller

' u =-fy = - f [0 1] x_ (104)

'a* in CIO 2) is the uncertain parameter. Let the nominal system correspond

to the, one with a = 0. Thus (102) can be written as

= AQX + bgu + d 5 (105)

with £ constrained to be

5 - gx2 = gy = gcjc (106)

where g is the gain (i.e. an estimate of the uncertainty) to be determined.

Consider the following performance criterion

J = min max E 1/2 f [xTQx+Ru2-L?2]dt (107)
f g JO

with

g
fl 0"

Q
0 0

, R - 1, E[x(0)£ (0)]

f optimal for the nominal system (i.e. with no parameter uncertainty) is

determined to be o.816. f and g for different values of L are obtained
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through minimax procedures (i), (ii) and (iii) and using algorithms of

sections IV and VII. Simultaneous nonlinear algebraic equations, e.g.,

equations (30) - (32) of minimax procedure (i) and (ii) have been solved

at each iteration using a conjugate gradient technique. The computed

values of f for different values of L are tabulated for various minimax

procedures.

TABLE I

0.1

0.2

0.3

0.5

).7

Minimax Performance Control

Criterion CD

.878

.947

1.03

1.265

1.69

Criterion (ii)

.914

.96

1.1

1.277

1.71

Minimax Sensitivity Control

Criterion (111)

.824

.844

1.08

1.354

1.815
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To study the effect of uncertainty, J is computed for different values

of 'a* using f as tabulated above and

J = -^ Tr K = 4 E / [xTQx + Rf2xJ.ldt (108) .
/ / -/0 /

where K is the solution of

(A-bQ fc)
TK+K(A-bQ fc)+Q+c

Tf2c = 0 (109)

and are plotted as shown in Figures (l)-(2). In Figure 1, cost J is plotted

as a function of the uncertain parameter 'a', using the feedback gain as

determined in minimax performance sensitivity criterion (iii), for different

values of L. For comparison, we have also plotted the 'optimal' cost as a

function of parameter "a1 if it were known. In Figure 2, different design

criterion are compared as "a" varies from nominal. It can be seen that the

minimax procedure effects the design of f in such a way that the system will

operate acceptably over a wider range of parameters than a purely nominal

design.

For any particular parameter set, however, the nominal design may be

superior. It is also evident from Figure (l)-(2) that the penalty on the

uncertainty should be relaxed to accommodate larger parameter variation.

For limited parameter variation, different design approaches give nearly

identical performance whereas the minimax performance sensitivity control

offers better design when the parameter variation is large.
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X. CONCLUSION

The problem of controlling a system with parameter uncertainty is

treated using only available output feedback. Since the controller is

designed with incomplete state feedback, the uncertainty is likewise

constrained. To achieve a design via optimization, a quadratic cost

function involving the system state, the control and the uncertainty vector,

is defined and the optimal feedback matrices relating the control and the .

uncertainty are chosen to minimize and maximize, respectively, the performance

criterion. The resulting controller is linear, the optimal feedback matrix

being specified by a set of simultaneous nonlinear equations. The above

procedure usually leads to a conservative design. To meet this objection,

a sensitivity or loss criterion is defined. Minimaximization of the sen-

sitivity function with respect to feedback matrices yields a linear con-

troller. The optimal feedback matrices must satisfy a set of nonlinear

simultaneous algebraic equations. Some algorithms to solve these algebraic

minimax problems and their convergence properties are discussed. An example

is treated to illustrate the various formulations presented in this paper.

It should be noted that the restriction imposed on the control and the

uncertainty can be relaxed by generating the required optimal control as

initial condition response of a linear dynamical system with suitable order.

In particular, it is assumed throughout the paper that the nominal system

is stabilizable with output feedback. In order to relax the restriction

on the uncertainty vector, a more general dynamical controller as reported

r 131
in may be examined in this manner. Detailed results on this will be

reported in a future paper.
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