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Abstract

The problem of controlling a time-invariant system with parameter

- uncertainty is considered with incomplete state feedback. The controller

is designed by minimaximizing (i) a quadratic performance criterion, (ii)
a sensitivity (or loss) criterion, involving the state of the system, the
control and the uncertainty vector. The resulting optimal controller is

linear and optimal feedback gain matrix must satisfy a set of nonlinear

algebraic equations. Some algorithms for algebraic minimax problems are

presented.
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Levine and Athans.[

a minimax sensitivity criterion

I. INTRODUCTION

The design of a controller for a linear dynamic multi input-multi output
system having parameter uncertainty is considered in this paper using a mini-
max technique. The problem is posed with the constraints that the controller
be linear and require only the available outputs of the system. Control of
this class of system with novparameter uncertainty has been treated by

1]. Minimax controller design for this class of problems

using complete state feedback has been suggested by many authors.lz-ﬁ]
In this paper, the problem is treated initially by minimizing with
respect to a feedback gain matrix and maximizing with respect to uncertainty,

a quadratic performance index involving the system's state, the control and

an uncertainty vector. The resulting controller is specified by the gain matrix

- which in turn must satisfy a set of algebraic nonlinear equations. This

design procedure often leadsAto a pessimistic result either because the
uncertainﬁy does not act so perversely as assumed or because the control often
makes an effort to reduce the cost where it is high even with perfect know-
ledge of parameters. To meet this objectioﬁ, other ériterion and in particplar,
[7] are also examined. The optimal feedback
gain matrix for the regret criterion is shown to satisfy a set -of nonlinear

equations similar to those obtained for the standard criterion. Some recursive

algorithms to solve these nonlinear equations and their convergence are discussed.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider an n'" order linear system with state vector Eﬁt)eRm and output

 vector y(t)qu defined by

% = Agx + Byu + (A-Ao)_xs + (B-By)u (1)

y =Cx ' 2)

rd



with a controller

u = -Fy = -FCx ' 3
where AO’BO are nominal matrices. Using (3), (1) can be represented as

5=mf%m&+[m4&4&%wm§=mf%mg+(w%g.
f (AO—BOFC)§_+-Q£ “4)

where £ represents the effect of uncertainty.
Since the uncertainty is assumed to be limited, £ will likewise be constrained.
In order to pléce any restriction on the form of (Wkwb), let W-W_ = DGC..

0 1

D, C1 are fixed and G conSains variasle terms. An example is,

s e O
s e

[~ RN

B=Bo, A-AO= 0

0
(ag=ag)..-(a e, 1)

= = 3 - & b - = ‘ T
Cl'—I, G [ao GO, (!1 0.1 as e an_l an'—l]’ D [0,0,.-.1]

Thus the uncertainty vector is specified as
£= Gclz‘_ ' (5)

where G is the gain matrix associated with the uncertainty vector and C1

has rank n or less. Both C, C, are assumed to have maximum fank, i.e. rank

1
equal to number of rows.
Substitution of (5) in (4) gives

X = (AO-BOFC + DGCI)E. 4 (6)
In order to achieve a design through optimization, the feedback matrices

F and G will initially be chosen to minimize and maximize, respectively,

the performance criterion

J(F,G)= [% I [x'Qx + u'Ru - £ LE] dt:] I, @,E)
» 0 u=FCx, E=6Cx u=FCx, £=6C x
-1 j [x"[q + c"F'REC - cl6"L6C, ) x dt; @)
o X



(1) Find F and G such that

min max J(F,G) = max min J(F,G) (8a)
F G G F :

We shall also consider the following minimax procedures to obtéiﬁ optimal

gain matrix F.

(11) min Jo(u, E*)

F u=FCx
where £* is obtained from max [min J,(u*,0) - i N '{LE de] (Bb)
3 tx un O 2 | N&Ye
u* minimizes JO assuming G=0.
(iii) win max [J(F,G) - J’l'f(G)] (8¢c)
: F G
% =
where Jl(G) mljl.n [JO(-E’-E-)]§=GC1§_
(iv) min max [J(F,G) - J§(G)] (8d)
¥ G

where JE(G) = min [J(F,G)] given G.
F

Criterion (ii) is less pessimistic in the sense that { is given the first
play and in making its play assumes that u(x) is obtained by an optimal full
state design (with £=0) for the nominal plant. Matrix F is then chosen to

minimize the criterion based on the announced strategy of §.

In criterion (iii), (iv) the best control with perfect parameter information,

i.e. £ kndwn, is obtained with full state feedback and output feedback respectively.

Matrices F,G then minimize and maximize respectively the difference between

the actual cost and cost with perfect parameter information.
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II1. MINIMAX PERFORMANCE CONTROL
(i) Direct Conflict of Interest

Let the Saddle point be defined by the following inequality

J(F*,G) < J(F*,G*) < J(F,G*). : A 9)
It is clear from (6) and (8) that J is determined by the iniéial siatg‘gﬂto)
as well as matrices F and G. That is,

J = J(F,G,g_(to)). ‘ (10)
In order to make the optimum F and G independent of gﬁto), gﬁto) can be
‘treated as. a random vector in which case J may be replaced by

J(F,6) = ELI(F,6,x(cy)]. | oqan
E (-) denotes expectation with respect to'§ﬂto). The necessary condition

that F and G should minimize and maximize J(F,G), respectively, requires (8]

-

A - B3, Gx(e] = EY (F,6,x(eM=0 (128)
3—;— = %5 E[J(F,G,x(t )] = E[-g%(F,G, x(t))1=0 (12b)

The interchange of order of expectation (i.e. integration) and differentiation
is critical here and is valid under rather general conditions.lg]
The partial derivatives of (12) will be evaluated by the application

of the following well-known Lemma:

Lemma 1
If tf
J=J(x(t,)) = W(x(t,)) + L(x,t) dt
where 0
x = f(x,t) and W(gﬁto)) is the penalty on the initial states zﬂto)
then
aJ _ W_(x(t,))
ENh M) + 54 0

i



where -

R .~ R 2 I REYCR I

" This Lemma follows from the variational calculus where the first
variation of J with respect to.g(to) is [lﬁto) + aW/QEJ?QEKtO). See for

"example pp. 48-49 of [10].

In order to apply the lemma, the elements of Fland G are treated as addifional

"states" which satisfy
F=0,C=0. 13)

Vector multiplier Ax wili be used for the regulér state constraint (6) and

matrix multipliers AF(t) and AG(t) will be used for matrices F and G-

respectively. It is to be noted that the Hamiltonian H will be independent

of AF(t) and AG(c) due to (13). Thus the Hamiltonian H for (6), (7) is

T,. | 1. T T.T CTT
H=_}1‘[(AO—BOFCO+DGCI)_§_]+25 [Q + C'F'RFC - CIG'LGC,]x
(14)
: T,1 T_T _ oI.T
= Tr[(Aj~BFCy + DGC)x A, + 5 (Q + C'F'RFC - C,G Lccl)g__].
Tr denotes the trace and
. 3H _ _ T, _ T Topn o Tol e Yah.
SR = (Ao B,FC 4-1)(;01);x (Q+CFRFc-clc LGc)g_,.g_x(tf) 0;
(15)
N _ 9H _ T.T T. _T.T \ - q.
'.A'-F(t),_'-a___RFC&C +BOXXC s A‘F(tf) 0; (16)
: _ _8H _ _ T.T T, T.T . 7
Ag(t) = - 55 = - 16Cxx'Cy -~ DAXC),  Agleg) = 0. a7

" According to the lemma, the necessary condition (12), and in;egrated forms

of (16) and (17), we obtain

te

33, _ T.T _ T, _T.T
0 = E[35]= E[Ap(ty)] =E L [RFCxx"C” - BjA x'C'] dt (18)
0

t
0 = E[33) = E[A(t)] = -E J f [Lec ol - p"ax'cl] ae (19)

%o
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Thus if R and L are constants, (18) and (19) yield

t t -1
-1 f _T T, .T f T, .T
F=R j By E[ALx JC” dt [ j C E[xx ]JC dt 1 (20)
to : t
t t
£ f =1
G =1L 1 I .DT E[> xT] CT dt [ I C E[xxT]CT dt ] (21)
—xX 1 1 = "1
to o

(20) and (21) can now be simplified. If Ax = K(t)x 1is assumed, then (6)

and (15) give

K = AJK + KA, + Q + C'F'RFC - CI6'16C,,  K(t,) = 0 (22)
te
or K(t) = J 4a(t,t) [Q + C'FREC - €1671GC, ] ¢, (1,t) dr (23)

t

where ¢, is the transition matrix corresponding to A, 4 (A)-BoFC + DGC,),

Limiting atéention to the time invariant case (Q,AO,BO,C,D, constant)

with te=>, t0=0, equation (20)-(23) yield
F = R_lBgKMCT[CMCT]-l ' - (24)
¢ = 1 T [c.mcty? (25) .
1 164% _ ,
where T
© AL (1-t) A, (t-t)
K = J e & (+cTF REC - c{cTLccl) e dt
t
© T
A*o A*o
= J e’ (Q+ CFRFC - C§GTLG81) e do -, (26a)
0

or

, T T_T T.T - o
K(A=BoFC + DGC,) + (Aj~BGFC + DGC,) K + Q + C'F RFC - C,G LGC, = 0;
(26b)

and
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[ ) <o T
A*t At
u 2 J E[xx'] dt = j e’ Elx(tpx (tg)l e (27a)

]
or

FC + DGC ) + E[x(t ) X (t ] =0 (27b)

(A -B FC + DGCl) M +-H(A 0

o

[CMCT]'-l and [CiMCi]_l exist because C,C1 have maximum rank and M is positive
definite.
1f E[x(t )] —_:50, E[(X(t )=x %) (X(to)-x ) ] 4 X, (28)
Then
T T .
E[x(tg)x " (tg)] = X, + x %, (29)

is positive-definite for XO#O.w Thus M is a positive definite solution of
| (27b) 1f X#0, M is positive semi-definite if X =O. |

The optimal cost can be seen to satisfy

= % E 1 ET(to) Kx(ty)] = l Tr [KE(x(to)x (tgM = i T IK(XO —o—o)] |

= -%-‘Tr [K] when E [z(to)zT(to)] =1,

Remark 1

. It can be easily seen that min max J(F,G) = max min J(F,G)
F G G F

IV. COMPUTATION OF F* AND G*
The feedback gain matrices F and G are specified by (24) and (25), where

K&M are given by (26b) and (27b) respectively. These equations must be solved.

[11]

numerically and the following algoritim similar to can be conveniently

used for this purpose.

G and M

n+1’ Cn+l bl 2re computed using:

F
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T.-1 ’ (30)

1T T
F1™ B T BoK g Mne € (M 4CT)

_ -1 T T T,~1 | :
Cpy = L ' K1Mas1€1 €M 69 : (31)
(Ag=BgF,,,C + D6 1C) M\ +M . (A -BF , C+DG_ +1c1}' +I=0

(32)
where Kh+1 is given by the following equation:
(A-B.FC+DGC)TK .. +K .. (A-B.F C+DG C.) +Q + CIFIRF C
0 On nl n+l n+l 0 0On nl _ n n
T.T ..
- €,6 16 C, = 0. | (33)

The iteration starts with an initial guess of Fo and G0 such that (AO-BOFOC

+ DG0C1) is stable and also Q + CTFgRFOC - CfchGOC) is positive definite.

Thus K1 is the positive definite solution of (33). With this value of Kl,

(30)-(32) can be solved simultaneously to get Fl, Gl’ Ml which, in turn, give
new estimate,Kj and the iteration proceeds.
Lemma 2

If (BOR-lBg - DL_;DT) >0and C = Cl, the above algorithm will converge

in the sense that Tr[Kn-Kh+1] > 0 for all n.
Proof:
The proof closely follows [11].

Mn can be expressed as

e T A T
M= J Sxn Pxn dt = v, (34)

0
If C = Cl’ then

_ -1.T_ -1 T, T, T.-1
(ByF_-DG_) C= (B,R 'Bj-DL LT, kM CT M e e (35)



and
1.T

T, Too T = Trom eyl © (r B -1 T
C (FnRFn GnLGn)C C (CMnC ) CMnKn(BOR BO—DL 1D ) Khﬂh
T, T,.-
T chH e (36)
Substitution of (35) and (36) into (32) and (33) jield equations identical
to those of [11] for which Tr[KhéKnﬁll >0 1s.proven except that BOR lng-DL 1DT

replaces BOR lBg Thus Lemma 2 holds. Proof of convergence under less

restrictive assumptions is under study.

V. MINIMAX PERFORMANCE CONTROL

(11) Indirect Conflict of Interest

In the previous formulatioh, the feedback matrix F has been chosen in
a most favourable way after the uncertainty vector was allowed to take its
'worst'value. This will lead to a very conservétive design approach. On
the other hand, it may be assumed that nature is not perverse enough to alter
its strategy with that of the control. Under this situation of indirect conflict
of interest, the previous formulation may be modified as follows. |

The game is, as usual, defined by

x-Ao__ Byu + DE. (37)

To start with, let us assume £z0. The optimal control 23 is obtained by

minimizing

J = -;'— J (ETQg. + EIRE) dt ‘ (38)
0 :
aubject to (37).

-Thus the resulting control is given by

uk = - R 1plp x ' (39)

-0 0 o*
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where Po is given by

T ’ -1.T
AOPO + POAO + Q - POBOR BOPO =" 0 (40)
Substitution of (39) in (37) yields

X = (AO-BOR 'BOPO)_E + DE. - (41)

-To include the effect of uncertainty at this stage, t:he"performance.'

criterion (38) is modified as

3=1 J.o [x" (@2 BRBIP)x - £'LE] 4t o (42)

The 'worst' value of E is obtained by maximizing (42) with respect to £,
subject to (41), and is given by
B LT o S

ﬁae P, is the solution of

1
" -1.T -1.T -1.T -1 T
(AO-BO§ BOPO}‘PI + Pl(Ao-BOR BOPO) +Q+ POBOR BOPO-P].DL ]'D Pl =0

0
where P and M are given by
(A, + DL‘lnTpl - BOFC)T P+P (A + DL-]'DTP]_-BOFC) + Q + CTF'RFC=0
(48)

(44)

Using the estimate of £ as in (43), the original system is reduced to

. - T . ’
| X = (A0 + DLllD P1)§_+ Bog (45)
with the controller -

Ty = -Fx | ] 46)

1 T T.T
Now F can be chosen to minimize E[J] = 5 E x [Q + C'F'RFC]x dt
‘0

subject to '(45). The optimal F is given by

F = -R 1B'pMc’ (cMcT) L : _ N (Y))

-1..T -1.T T )
(AL D) P,-BGFC)M + M(& + DL L P, - BFC)T + I = 0. 49)

Remark 2

"(a) To be more general, u* in (39) and 5_5 in (43) may be constrained
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to the form

‘* = - F* ®* = Nk
u*, F*Cx, §0 C.x

— 0 071~
(b) 1t should be noted that this formulation assumes that the existence of
. -1 T -1.T
matrices PO’ Pl and F that stabilize CAO + DL 1D PI—BOFC) and (AO-BOR BOP0

- DLleTPl). Under this condition, (47)~(49) can be solved using basically

the same algorithm as described in Section IV,

VI. MINIMAX SENSITIVITY (OR LOSS) CONTROL

If G as defined in (5) were known, the ideal optimal control would be

obtained by minimizing

3=1 J (xr(@-cTeTrec, )x + u'Ru} dt ~(50)
0o T ETETR
with respect to u subject to
% = (Aj + DGC)x + Bu. (51)
The resulting 'ideal' optimal control u* is given by
u* = -R'lngpgf ' . (52)

where P and x* satisfy respectively

T . -1.T T.T. .. A _
P(&, + DGC,) + (Aj +DGC))'P + Q - PBR ™ ByP - )G LGC,AN(P,6)=0 (oo

and

. el T
x* = (A0 + DGC1 BOR BOP)gf. _ (54)

The resulting cost,

@) =1 | =T [q+pBR7IB%P - cT6TL6C, Jx* at (55)
1 2 0 0 4) 1 1°=

is the best that can be achieved with complete state feedback and perfect

parameter information (G). Now we consider a performance sensitivity or

"regret loss" criterion.

S(F,6) = £[J(F,6), 7 ()] (56)
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‘ ; ¢ [754, 2]
is a performance sensitivity function if
1) f(-) is contiﬁuOus jointly ir ‘ts two agruments
2) £>0-~ J(F,G) > Ji(G)
3) £f=0-~> J(F,G) = Jf(G)
In this paper, attention will be confined to the following sensitivity

function

S(F,6) = J(F,6) - %(6) | (57)

The immediate problem is now to minimize and maximize S with respect to F
and G respectively, subject to (6), (53) and (54).
(57) modified to include the equality consiraint (53) is

. -]
s = TE[N(2,6)B,] + lg j x'[Q + C'F'RPC-C]GTLGC Ix dt

2
0

- "E’Ej _;5*T [Q + PBR‘IBTP-cTGTLGcI]g'r dt (58)

0 1

where Pl is a matrix Lagrange multiplier.
Thus the problem reduces to minimizing and maximizing (58) w.r.t. F and G,

subject to (6) and (54) and

F=0,6=0,P=0 . | (59)

Thus the Hamiltonian H for this case is given by

=3 Te[(Q + cTFTch-c'{cTLGcl)go_:Tj -2 el + PERBGP - C{GTLGCI)_:g*x*T]
+ Tr[(A-BFC + DGC.)xA'] + Tr [(A-BR™IBIP + DGC.)x*A1.] (60)
1'="x 0 1/—= —x*

with
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2 - - @+ c"F'ree - cJ6"L6C))x - (A-BFC + D6C A, A (=)=0;

- ' (61)
%f Q + pBR"lngp' - ci'cTLccl)z* - (A—BR_lBgP + 1)(:(:,1)1'3x .

- | (62)

A s (=)=0;

3H _ TT . T, T.T e

= - RFCxx'C + B x'C', Mg (=)=0; (63)
3H T.T #xT T T. T T T.T -
- = - - - - * )=

G LGC155-C1 LGClgg.Cl D Axx Cl DA _x*G, AG( )=0; (64)
ﬁ = -1.T % T *T 00 ) s |

5 = BRBy(BxFxrl 4+ ) xr0), Ap(=)=0, (65)

Now according to Lemmg 1 and the necessary conditions (12), we obtain after

integrating (63) ~— (65)

0=E[AF(0)] = E J“ [RFCxx

T.T T, .T.T
c -Bolxx C7] dt (66)

0

_ 3 _ T T, .T
0=E[A,(0) + 5Tr (N(P,G)P;]= D'P (P, + P)) C;

- 1GE j cpexC] de + LGE J ¢ x*x+cT at + D I EQx'C]) at
0
0 0

T [ r o oxTeTy 4
+ D J E[A_,x*'C]] dt (67)
0
-1

a o r T,
0-E[Ap(0) + 35 Tr(N(R,G)P))] = (Ag + DGC) ~ BGR "BP) (P) + P;)

-1t [ T AT {7, LT
BOR BOP JOE(E*g* ) dt - BOR BO J (21*5*. ) dt (68)
0

We claim as usual that

A = Kx, A, = Kix* (69)
—x —x = .
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as may be verified by (61) and (62) provided R, K#* satisfy

To | = T.T T.T
(Ag~BoFC + DGC,) K + R(A)=B(FC + DGC)) + Q + C'F'RFC-C)G'1GC,=0  (70)
1T ™ % -1.T 1.T. T.T
(Ay-BgR™BP + DGC,) R+ R(A,~BRBP + DGC,) - (Q + PER B,P-C,G LGC,)=0
(28]
Furthermore
a ® s {7 T
M= J Elxx ] dt Mk= J E[x*x*"] dt are given by
0 } 0
(Ay-BQFC + DGC.) M + M(A)-BFC + DGC)" + E[X(ty)x  (t,)1=0 (72)
(A5-B R “15Tp 4 pec,) M + M*(A,-B R “1gTp + peC ) + E[x* (£ )x*T(t )] =
0 1 BgR "By 0’X" (&g
(73)
- ) % .
It can be easily seen from (53) and (71) that K = -P (74)
Using (69) and (74), (68) reduces to (P; + P]) = 0 for
(A + DGC, -~ BR'BGP) is stable . (75)
Thus (67) and (66) give
¢ = 1T + M) € [c (M—M*)CT -1 " (76)
F =R lngmc (cmcH™? an

Solution for F requires simultaneous solutions of (70)-(73) with (76)-(77) .

Remark 3
It can be readily verified that (a) the optimal cost § = %-Tr[iii?],when
T - T =
(b) min max S(F,G)= max min S(F,G) 79)
F G 3 F

It_should be note from (52) that u* was allowed to be linear function of all

© state variables. A more general and perhaps more realistic formulation would
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be to constrain u* to the form

* =-FXCx*
u¥* =-F3Cx

Now if G were known Fl would be chosen to minimize

C]x dt

J ='% J b4 [Q—C GLGC + C
0 l

subject to X = (A—§f1C+DGC1)§

In this case, Fi is given by

-1.T -1
-
Fl R B0

where K*¥* and M* satisfy

K*M*C (CM*C )

N ( »G,K*) = (A + DGC, - oF*C) Kﬁ + K*(A + DGC, ~

1 1

”

T,.,T T.T
* T =
+C Fi RFlc—ClG uGCl 0

N, (F%,G %) 4 (A + DGC, - BFAC)M* + M (A + DGC

1 01 1

x* satisfies

X* = (A + DGC; - BFFC)x*

1

and

J§(G) = min J is given by
F
1
1 {7 .7 T.T, ., T.T
* = = % - %
J3%6) =3 Jo x*"[Q + C'F{RF,C - C{G Lccll_:g dt.

We may define the criterion analogous to (38) as

= J(F,G) - J§(G) = Tr[Nl(F’{,G,K*)Pl + NZ(F{,G,M*)PZJ

2

- B

F*C

01

(80)

(81)

(82)

(83)

ByFXC) + Q-

(84)

J+r=0
(85)

(86)

(87)

(88)

+1 J % [Qc TFIRFC-CTGTLGC, Ixdt ——113 x* L[ Q4C L% "RF*C-C -G ILGC - Jx*dt
o X 1° MoC X 5 O E 1 RFFC-C,6 L6C X
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where P1 and P2 are matrix Lagrange multipliers.

Now minimizing and maximizing {88) w.r.t. F and G respectively subject to
(6) (86), it can be shown .~ ina similar way that Bi, Kk, M* satisfy

(83), (84), (85) respectively and F, G, K, M satisfy

F = R'lsgch(cncT)'l (89)
6 = L7nF(ar + pat) ¢ [cy ) €17 » (90)
T : T.T T.T
(A-BFC + DGC,) K + K (A-BFC + DGC,) + Q + C'F'RFC - C)G'L6C, = 0
(91)
(A-BFC + DGC)) M + M (A~BFC + nc;cl)T + 1=0 (92)

VII. COMPUTATION OF F, F;, G
An algorithm similar to that mentioned earlier can be used to solve
the feedback matrices. As before, at iteration n, positive definite matrix Kn

aﬁd negativé definite matrix K; are obtained from:

T_T T.T _
(A BF C + Dc;nc'fxn+1 + K Il(A-m:-’nc + DGnC) +Q+C¢C an?nc - clancncl- 0
(93)
: T

- * X * -

(A BFlnC + Dcncl) K |1f K: ohl (A BF*lnC + Dcngl)
T..T T.T ,

- %* % - =

Q+¢cC Fln RF lmc clanGncl) 0 (94)

*
Fn’ F 1n

and (89)-(92), with K,K* replaced by Kg. K;. The algoritim starts with

» G, M ,M* are then obtained by simultaneous solution of (83)-(85)

initial guesses FO’FKO’ G0 such that (AO-BOF C + DGOC) and (Ao’BoFioc + DGOC)

0
T.T _ T T Tors ool
are stable and also (Q + C FORFOC ClGOLGOC) and (Q + C FIORFIOC—C GgLGOC)

are positive definite.
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VIII. SOME STABILITY BOUND: TN TERMS OF PARAMETER VARIATION

The perturbed systeﬁ (1) can be represented as

]

X

Ayx + Bou + (A-A0)§ + (B'BO)H (95)

= [(AO—BOFC) + AA + ABFClx (96)
where F is given by (24). The following analysis is also true for F, given
by (47), (77) and (83).

Define the Liapunov function V(x) as

V@) = 3xKx - (97)

where K ;a positive definite matrix, satisfies (26). The time derivative

'ﬁQE) of V(x), evaluated along the trajectory (96), is given by

.

V(x) = [ (Ay-B,FC) Tk~ K(A,-B FC)-ZKAA-ZKABFC]g_ ‘ (98)

Using (26),. (98) reduces to

V) = - 2x"[ (¢ FRFC-C1GTLGC, )-2KAA + 2K(DGC KT + ABFCK DKlx  (99)
Let the norms of x amd ..atrix A are defined as follows
lxll & &To/?
. 2
“A“—H -1 llax|| so that }al] = AX/2 [aTa]
X

where Amax(-) is the maximum efigenvalue of a symmetric positive definite matrix
). 'Restricting terms in the brackett in (99) to be at least p.s.d. to
guarantee stability of perturbed system (96), the bounds on AA and AB can be

found as

[laal| <2, (@ + cTrlzr c-clc L6C, ) (100)

2| |k}
]incclx'lil
.l

||aB|] < (101)

| |FeK
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It should be noted that (Q + C'F RFC-ClG LGCl) is at least positive

semidefinite under the condition mentioned in Lemma 2.

IX. EXAMPLE
Féllowing example will be considered to illustrate various theoretical
formulations discussed earlier.

Let the system be described by
. [0 :.] 0 _
x=1, '_x;+v1 u=A_§+§ou (102)

y=1[01] x =cx | : (103)

with controller
ey ecf01x | (104)
'a' in (10‘2) is the uncertain parameter. Let the nominal system correspond

to the,one with a = 0. Thus (102) can be written as

_’..(..: M1 x + 0 u + 0 £
-1 0 .1 1
=A0_:£+_130u+§_5‘ (105)

with £ constrained to be -
E = gx, = gy = gex - (106)
where g is the gain (i.e. an estimate of the uncerﬁainty) to be determined.

Consider the following performance criterion

3 = min max E 1/2 I [_:_:_TQ§+Ru2—L§2]dt (107)
f g : 0 '
- 11 T
with q = [ :l, R=1, E[x(0)x(0)] =1
0 0

f optimal for the nominal system (i.e. with no parameter uncertainty) is

determined to be 0.816. f and g for different values of L are obtained
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through minimax procedures (i), (ii) and (iii) and using algorithms of

sections IV and VII.

Simultaneous nonlinear algebraic equations, e.g.,

eqﬁations (30) - (32) of minimax procedure (i) and (ii) have been solved

at each iteration using a conjugate gradient technique. The computed

‘values of f for different values of L are tabulated for various minimax

procedures.

TABLE 1

Minimax Performance Control

Minimax Sensitivity Control

-1 ’ Criterion (i} Criterion (ii) Criterion iii)
L
b.l .878 .914 .824
0.2 .947 .96 - .844
0.3 1.03 1.1 1.08
0.5 1.265 1.277 1.354
.7 1.69 1.71 - 1.815
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To study the effect of uncertainty, J is computed for different values

of 'a' using f as tabulated above and

J=3% rk=1g /Q [x1Qx + REx21dt (108)
2 2B J, E&T R
where K is the solution of
(a-b, £e) TRHK (a-b ) fe)+Qicifle = 0 " (109)

and are plotted as shown in Figures (1)-(2). 1In Figure 1, cost J is plotted
as a function of the uncertain parameter 'a', using the feedback gain as
determined in minimaxvperformance sensitivity criterion (iii), for different
values of L. For comparison; we have also plotted the 'optimal' cost as a
function of parameter 'a' iffit were known. In FigureAZ, different design
criterion are éompared as "a" varies from nominal. It can be seen that the
minimax procedure effects the design of f in such a way that the system will
operate acceptably over a wider range of parameters than a purely nominal
design.

For any particular parameter set, however, the nominal design may be
superior. It is also evident from Figure (1)-(2) that the penalty on the
uncertainty should be relaxed to accommodate larger parameter variation;

For limited parameter variation, different design approaches give nearly

identical performance whereas the minimax performance sensitivity control

offers better design when the parameter variation is large.
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X. CONCLUSIO&

The problem of controlling a system with parameter uncertainty is
tfeated using only available output feedback. Since the controller is
designed with incomplete state feedback, the uncertainty is likewise
constrained. To achieve a design via optimization, a quadratic cost
function involving the svstem state, the control and thé uncertainty vector,

is defined and the optimal feedback matrices relating the control and the .

uncertainty are chosen to minimize and maximize, respectively, the performance

criterion. The resulting controller is linear, the optimal feedback matrix
being specified by a set of simultaneous nonlinear equagions. The above
procedure usually leads to a conservative design. To meet this objection,

a sensitivity or loss criterion is define&. Minimaximization of the sen-~
sitivity function with respect to feedback matrices yields a linear éon—
troller. Tﬁe optimai feedback matrices must satisfy a set of nonlinear
simultaneous algebraic equations. Some algorithms to solve'these algebraic
minima# probléms and their convergence properties are discussed. An example
is treated to illuétrate the various formulations presented in this paper.
It should be noted that the restriction imposed on the control and the

uncertainty can be relaxed by generating the required optimal control as

initial condition response of a linear dynamical system with suitable oxder,

In particular, it is assumed throughout the paper that the nominal system
is stabilizable with output feedback. 1In order to relax the restriction
on the uncertainty vector, a more general dynamical controller as reported:
in [13] may be examined in this manner. Detailed results.on this will be

reported in a future paper.
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