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, ABSTRACT

The nuclear and emitted radiation characteristics of the radioisotope

elements and impurities in commercial grade plutonium dioxide are

, presente&in detail• The development of themethods of analysisare

presented.
?

!,. Radioisotope thermoelectric generators (RTG) of 1575, 3488 and 5679

thermal watts are characterized with respect to neutron and gamma photon

i., source strengthas well as spatialand number fluxdistribution The
results are presented as a function of detector position and light element

i contamination concentration for fuel age ranging from 'fresh' to 18 years.
The data may be used to obtain results for given 180 and 236pu con-

centrations.

with reported exl_erimental values for SNAP-27
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i The ever increasing requirement for long-lived and compact power sources
has led to the recent evolution of a number of very successful generators.

i Specifically, the development of the radioisotope thermoelectric generator
(RTG) for both te_estrial and space flight applications has progressed very

I significantly. A number of plutonium dioxide fuell_d RTG's are already in
actual use. The NIMBUS weather satellite is powered by a Space Nuclear

Auxilary Power system, i.e., SNAP 19. Instrumentation lefton the Moon
by the Apollo 12 and 14 missions are powered by SNAP 27 units. Future

I space missions include RTG assemblies. Unlike solar cell generators
their power output is not dependent upon solar flux and thus they are

: I suited for deep outer planet spate missions of I0 to 20 year duration.
I

I The radioactive properties of RTG's require that special attention be given
to theirengineering design from both the standpoint of mission safety and

I mission operational requirements. This report is concerned with these
factors as they relateto the gamma photon and neutron radiationemitted

I by plutonium-oxide fuelled generators. The radiationdata presented will
be oflnterest to spacecraft, RTG and science experiment designers. It

I permits radiation fieldmaps to be developed to aid in location and protec-
tion of sensitive electronic packages and science experlments. The data

I may also be used for determination of personnel exposure and protection.

I The RTG photon and neutron radiatioa result from the natural radio-
gamma

activity of the plutonium dioxide heat source. The gamma photons are due

I mainly to the plutonium isotopes and their daughter products with small
contributions resulting from induced fission and neutron interactions with

I materials in the source assembly. The neutrons resultmainly from

!
! ,

....... - ....... _=__. : ........ _.-_:. : _-_--_ ............. _....... • .... ...=. ........ _j._._
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plutonium decay alpha emission.and thus (_, n) reactions witl, low atomic

number tnpurity elements including the 180 component of the oxide; a

small contribution is due to plutonium spontaneous fission. The neutron

flux may be decreased by reduction of the impurities and depletion of

180.

|

The natural radioactivity of the isotope 238pu consists of alpha particles

I, accompanied by a spectrum of gamma photons and spontaneous fission

neutrons. Commercial grade plutonium consists of 238pu and other Pu

!',, isotopes as indicated in Table 1-I (1"3). Even though the 238pu is only

r. ~ 80% abundant, it contributes ~ 99.9% of the total alpha activity. Since

{" the average energy of emitted alphas is ~ S.5 MeV, (a, n) reactions occur

_ with low atomic number elements such as oxygen which is abundantly

, _ present in PuO 2 as indicated in Table 1-I. The use of oxygen inwhich the 180

' _:i isotope is depleted by a factor of 100 reduces this effect correspondingly by ~ 100.
', Again, the presence of impurity beryllium or fluorine even in low anundance may give

-.: _.'i rise to'a significant ({_,n) neutron yield; some light impurity element yields are

:': fi.. given in Table 1-II (3) The spontaneous fission (SF) neutron emission

. o of plutonium is primarily that of 238pu since the other contributing isotope
i%.'

• t,' 240pu 238pu!_ , has an SF rate ~ 0.015 that of . The SF neutrons have a

' FI' Maxwellian distribution peaked at~0.7 MeV, an average energy of ~ 2.0 MeV,
, _,

!:- and a maximum energy of ~10 MeV. Fast photo-neutrons are also pro-
238

i" duced in PuO 2 due to energetic gamma photons from Pu spontaneous
fission and the 236pu daughter, 208T_,, interacting with impurity

elements.

.i PuO 2 sources emit X-rays and gamma photons as a result of spontaneous

_': and induced fission, non-fission neutron interactions, decay of fission

products and their daughter products, and alpha interactions with light

|: 2
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I
elements such as 180. The gamma photons emitted by PuO 2 are presented

ii in detail In Section 2 of this report. The gamma photon activityfrom Pb,

Bi and T4,daughters increases wlth time after238pu purificationto a

I maximum at -_ 18 years; thls Is readily seen in the decay in

Figure l-I. Freshly separated plutonium fuel has a 'soft'gamma

I spectrum. With increasing time the decay daughter products of the small

236pu impurity increase the intensityof %he 0.2 - 0.3 and 2.0 - 3.0 MeV

l photon groups. Spectral hardening is complete at approximately 18 years.

Long-llved 241Am, a daughter of 13 year 241pu, yields increasingly intense

gamma photon emission rates wlth age. However, since the photon energy

l is 0.06 MeV, itis easily shielded and so is not intensely present in the

emission spectra of encapsulated sources.

As indicated above fast neutrons are emitted by PuO 2 primarily_s theresult of the three interactionphenomena: spontaneous fission, alpha-

neutron emission rates forthese effects;(3)detailed neutron data is pre-

1: sented in Section 3 of thls report. The ((_,n) neutron emission rate depends

on the impurities present in the source, since the reaction requires thepresence of low Z elements, as seen from Table l-II. Table l-IIIlists

neutron activitydue to ((x,n) fornormal and 180 depleted PuO2; I%also
_:i gives the photo-neutron production rate.

The alpha and beta radiation emitted by PuO 2 sources does not

present any problems ifthe source encapsulation h_s a wall thicknessgreaterthan ~ 1000 mg/cm 2. (e.g., ~ 0.06" Ta).

! Section 2 of this report presents gamma photon source and calculated

i emission flux data for a hypothesized SNAP RTG. The data was deter-mined for 1575, _468 and 5679 watts of thermal power. The flux data

#

J 3
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!

I was calculated as a function of PuO 2 age at the RTG exteri_r surface
and points on both the axial and radialmid-planes. Sectlon _ of this

I report presents neutron source and emission flux data similarto the
photon data of Section 2. Section 4 consists of a briefreview of the data

I in Sections 2 and 3. A comparison of the calculated data with published
data is presented. Pertinentinformation and methods of calculation are

ii given in Appendlees A through J

1

i[

l

I

il

4
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I TABLE I-I

,11 RADIATION PROPERTIES OF PuO_ 1"3)

A, Chemical Composition PuO 2

Plutonium (total) tiff. 2%

; Oxygen 11.8%

}:_ B. Isotopic Composition (I)

Activation of Contribution to the
• Pure I_otope,. Activityof 1 gram of
i Isotope Abundance %= (a) d/sec-g i-(}5) Product= (a)'x(b)/100

236 Pu 1.2 x 10-4 1.97 x 1013 2.37 x 107 (_)

,'." i011!: 238 Pu 81% 6.35 x i0II 5.14 x (_)

239 Pu 15 % 2.27 x 109 3.4t x 108 (_)

if::! 240Pu 2.9_ 8.38x109 2.43x1o8 (_)
_ +. 010241 Pu 0.8 % 4.12 x 1012 3.30 x 1 (_)

:: '_:': 108 05,C 242 Pu 0.I % 1.44 x 1.44 x 1 (_)
'c

[:' C Specific Activity 238pu 16 8 Curies/gm

,: cm 3
: :_+t', D. Density of PuO 2 10.0 gm/

Plutonium Fraction 8.82 gm/cm 3 (238pu 7.15 gm/cm 3 PuO 2)

Oxygen 1.18 gm/cm 3



f

i_ TABLE I- II

SPECIFIC NEUTRON YIELDS FROM(3)
LIGHT ELEMENT IMPURITIES

I

Neutrons Per Second*

Element for on _ Part p_eLMillion

I Li 4.6
Be 133

I B 41
C 0.2

I N 0.0 (_, n threshold too high)
O 0.I

I F 18

Na 2.2

I Mg 2.1 '

A1 1.0

I Si O.2

P < 0.03

I S < 0.03

!
* In 1 gm Pu metal containing 81% 238pu

I
I
!
!
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TABLE I-III

PuO 2 8OURCE NEUTRON ACTIVITY (3)

(1) Spontaneous Fission Rate

238pu : 2.6 x 103 n/sac-gin 238pu

fuel : 1,8 x 103 n/sea-gin PuO 2

(ii) (ej, n) Neutron Emission Rate

PuO 2 (normal O): 1.13 x 104 n/sec-gm 238pu

PuO 2 (18Oreducedto I/i00): ~i..13 x 102 n/sec-gm 238pu

(excludes (¢x, n) due to other ImpuritLes)

(iii) Photo-Neutron Production Rate: -,_5.0 x 102 n/sec-gm 238pu

(varies with concentration of 208T$ daughter of Pu 236)

7
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, 2. GAMMA PHOTON RADIATION CHARACTERISTICS

i 2. i .! troductton

This report secti_ presents the calculation of the gamma photon flux

emitted by p!-atonlum dioxide fuelled RTG capsules. Gamma photon fluxes

were determined as a function of energy and fuel-age for RTG model cap-

sules with thermal power capauitle8 of 1575, 346B and 5679 w(th). The

calculations included the determination of source data to account for

plutonium decay, nuclear fission and the (_, n) reaction.

Production grade plutonium dioxide fuel consists of a mixture of plutonium

isotopes having the approximate composition shown in Table l-ldl; other
1%

possiblecompositionsmay be found in thereferences(2, 3). Each of the

isotopeslistedinTable I-Ihave the propertiesof naturalradioactivity

and neutlonfissionas given in Table 2.id,"4-ii). The determinationofthe

totalgamma photon source intensityand spectraldlstributlonis'described

in Section2.2.

The data presented in this report were determined for a standard RTG,

namely: a hypothesized SNAP 27. The radioisotope fuel used in the SNAP 27

fuel capsule is plutonium in the form of plutonium dioxide microspheres. The

fuel is contained in a cylindrical annulus as shown in Figure 2-I. The basic

model capsule was assumed to produce 1575 watts of thermal power. The

1575 w(th) capsule power was extended volumetrically to 3488 w(th) anu

5679 w(th) in order to study the effect of fuel self shielding on radiated

photon fluxes. Gamma photon transport in the RTG was determined by the

method of discrete ordinates d2J RTG surface fluxes were extended to
J _

o
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radial and axial midplane spatial detector locations by means of th_ point

kernel technique _131"". The calculation of the photon flux distributions is

described in Section 2.3.

2.2 Gamma Photon Sou_'ce Spectra
#

The gamma photons emitted by plutonium dioxide were separated into four

components, categorized according tQ their origin, namely:

I. Plutoniumisotopesand thelrdecay products,exoludlnq236pu.

If. Fissionand decay of fissionproducts.

Ill. Radioactivedecay of 236pu and daughternuclides.

IV. The alpha particle reaction, 180 (a, n)21Ne, which yields a
22

gamma spectrumdue to the decay ofthe Ne compound nucleus

to 2iNe '

:_ Other categories whose contribution to the RTG external radiation field

were reasonably neglected are, namely:

V. Bremsstrahlung and inelastic gamma photons which are a function

of spacecraft geometry and materials.

VI. Gamma photons resulting from the 170 (_, n)2ONe reaction.

The gamma photon calculations were carried out for twenty (20) energy

groups. The upper and lower limits of the highest and lowest energy

intervals were taken as 7.0 MeV and 2.0 keV, respectively. In each of

the corresponding gamma energy intervals, the sources of prominent gammas

emitted by the plutonium dioxide fuel were determined for time periods

p beginning with the "fresh" (time of chemical extraction) fuel and extending
up to 18 years of fuel aging.

P
p ,
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!
: The gamma photon spectrum emitted by 238pu, 239pu, and 241pu was

I calculated as the abundance multiplied by the activity of the isotope at the

equilibrium time considered. The activity of daughter nuclides 241Am,

I 237U and 237Np is calculated in Appendix A. The gamma activity of the
236

i plutoniumisotopes,exclusiveof Pu, and theirdecay productsvariesonly slightly up to 18 years and thus was assumed to rAmain constant

i with time. The gamma photons omitted by the plutonium Isotopes andtheir decay products arn given in Table 2.1iI(, 3,9,14). The reference (9)

data was used wher_ available, otherwino references (1) and (14) were

I used.

I
The gamma rays emittedby prompt fissionwere assumed tohave the spectral

.i

I shape provlded by the spontaneous fission of 235U'15" In the gamma photon

t }

energy range, 1.30 to 1.0 MoV, the photon spectraldistributionwas obtained

I from the relationship

I N(E)= 26.8e"2'30E, photons/fisslon.

I In the range, 1.0 to 7.0 MeV, the distribution was obtained from the .
relationship(15)

I N(E)= 8.03-I'IOE photons/fission. It

I
Equilibrium fission product gamma photon emission was determined using

I analytic functions fitted to the data of reference (14). The functions and
the reference data are given in Table 2-III. The gamma photons emitted by

I prompt fission and equilibrium fissionproducts were integrated numerically
in each energy interval to yield the total number of photons produced per

fission. Details of these calculations are given in Appendix B.
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236
In the present work the Pu iaotopo was considered as a PuO 2 fuel

impurity which ranged from 1,2ppm (1,2 x 10 "6 gm 236pu per gm Pu02),

aB typical of the current commercial product grade, down to O. 1 ppm as

desirable in the bio-medical grade. The gamma photon activity as a function

of time wan calculated as detailed in Appendix G. The activity of the 236Fhl

daughter nuclides was calaulatad from the growth of 1.91 year 228Th. The

_alvulation is detailed in Appendix D as a function of 236pu impurity,

i.e., 0.i to 1.2 ppm. The gamma photonsomittodby236pu and the daughter

nuclidesareglwn in Table 2-1V(I,9). The reference(9)data was used in

thiswork.

Alpha particles interacting with 180 may give rise to the formation of very

sho_-lived compound nucleiwhich promptlydecay accompanied by the

emission of a neutronand gamma photons. The photon emission due to

180 (G,n)21Ne interactionsisdetailedinAppendix E and tabulatedin

Table 2-V. The radiatedgamma photonfluxesproduced by the 180 (_, n)21Ne

reactionat time periodsotherthan "fresh"were obtainedby multiplyingthe

fresh180 ((_,n)21Ne gamma yieldvalues by the timedecay factorsgiven

inAppendix E.

It iS indicated in reference (16) that the 170 abundance and (t_, n) cross

section are approximately 10% of the corresponding values for 180. Though

the 170 interaction has not been fully investigated and documented, and

thus cannot be adequately treated at this time, it can be reasonably

neglected.

The gamma photon source spectra derived for each of the source categories

I through IV above, are listed in Tables 2-II through 2-V. These sources are

detailed for 0 (fresh), 1, 5, lO and 18 years as a function of energy in

ll

........ "...... O0000001-TSB12



it Tables 2-Vf(a) and 2-VI(b) through 2-X(a) and 2-X(b). The (b) tables give

the sum of the isotopic photons and fission photons, and the 236pu-chaln

ili photons detailed in the (a)tables as well as the 80 reaction photons and
l

theirtotals. Table 2-Xl summarizes these totals for each fuelage as a

_ function of energy.

The calculations assumed the 238pu half lifeas 87.4 years(7)and the

fission yield as 2.75 _ 0.01 neutrons/fisslon_6)'. The half-llfeof 241pu

ii was tmken as 14.0 years (7).

2.3 Gamma Photon Fluxes

The gamma photon source spectra discussed in Section 2.2 were used to

determine flux distributionsat the RTG surface and exteriorspatial positions.

The flux calculations were carried out for 1575, 3468 and 5679 w(th) model

capsules. Figure 2-II gives the dimensions of the three model capsules

and their material zones as a function of thermal power. The material

composition of the capsule zones are detailed in Table 2-XII

Gamma photon flux transportto the RTG surface and exteriorspatial positions

on the radialand axial midplanes were calculated using the ANISN (17) and

QAD (18)computer codes. ANISN, a discrete ordlnate(12)code was used to

determine surface fluxes. QAD, an integratingpoint kernel(13) code was

,isedto calculate the fluxes at detector points outside the RTG. The

gamma spectrum was assumed as unchanging from the capsule surfaceto

detector positions d_stortfrom the capsule surface. The calculations were

carried out for "fresh," I, 5, 10, and 18 year old fuel.



!
i The twenty group gamma photon cross sections were determined using amodified version of the GAMLEG (19) computer code. The cross sections

t in each of the energy intervals were averaged for PuO 2 product fuel withthe gamma photon flux spectrum given in reference (1).

I
Table 2-XIlI gives the calculated gamma photon surface flux as a function

, of energy and power, at the capsule radial midpiane for fresh fuel. The
I'

fluxes are calculated for the decay of the plutonium isotopes and daughters,
236

" keffectiw _, and fisslen but exclude Pu. The calculated values of are

'" noted as 0.17, 0.30 and 0.40 for the 1575, 3468 and 5679 w(th) capsules.

ii Table 2-XW presents similar photon flux data for the 180(_, n)21Ne reaction

!, as the photon source. Tables 2-XV through 2-XVII give similar photon flux

i data as a function of fuel age for 236pu and daughters as the photon source,

for the 1575, 3468 and 5679 w(th) capsules, respectively.

(t"
!.,

_" Tables 2-XVIIT through 2-XXII give the calculated total photon fluxes at

," axial and radial detector positions at and beyond the capsule surface,

" i.e., at cylindrical coordinates (r, 8, z) as defined in Figure 2-III. The

!_ data in these tables corresponds to the total fluxes given in Tables 2-XIII

"":' through 2-XVII at (r, 8, z) = (capsule radial surface, 0, 0). The total

_i fluxes given in Tables 2-XVIII through 2-XXII, integrated over all sources,
are shown graphically in Figures 2-IV through 2-IX as a function of detector

distance r0 with fuel age as the parameter. Figures 2-IV through 2-VI are

for the radial midplane while Figures 2-VII through 2-1X are for the axial

I mtdplane.

ii Figure 2-X gives the source-integrated total photon flux as a function of

capsule power for r = 100 cm and 1, 5 and 18 year old fuel. The curves

ease datamay interpolated for other than the
demonstrate the with which be

tabulated dependent variables. A further example is given in Figure 2-XI

!
| 13
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I
I where the totalphoton fluxis plottedas a functionof fuelage forthe

three model capsules.

I
The calculations presented above allow the prediction of the gamma photon

i flux as a function of the following variables:
236pu 180I fuel impurities such as and ,

i II fuel capsule power, and
III fuel age.

I If the 180 impurity is reduces from 100% to I0% as in the case of 180
depleted oxygen then the 180 (a, n)21Ne photon flux data may be multi-

I plied by the corresponding appropriate value in the range 1,0 to 0.1.
Again since the 236pu and daughter photon flux data corresponds to a

I concentration of 1.2 ppm it may be readily corrected for o,_her concentrations.
For example, if 236pu is given as 0.1 ppm then it is only necessary to

I multiply the "236pu fluxes" given in Table XV by the ratio 0.1/_ .2 to
get the correct photon flux.

I
An example of the use of the calculated data presented in {his report, section

I is given in Appendix F. The example computes the photon flux at r = 100 cm
for a capsule power of I575 w(th), a 236pu impurity of 1.6 ppm, "normal"

I oxygen, and 5 year old PuO 2 fuel.

I
I
I J
|

!
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_ FIGURE 2-I
TYPICAL PLUTONIUM FUELLED RTG CAPSULE
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:I FIGURE 2-11
i GEOMETRY OF MODEL FUEL CAPSULE

I

| 16

0000000I TBC05



i
AXIAL DIRECTION

FIGURE 2--111

RTG COORDINATE SYSTEM
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I FIGURE 2-IV

I GAMMA PHOTON FLUX AS A FUN_;'rlON OF DE'rEc]oI_ tIADIALDISTANCE FROM 1575 w(th) CAPSULE AXIS WIIH FUEL AGE A£ THE PARAMETER
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, FIGI.IRE ;_---_(

GAMMA PHOTON IIADIAL AND AXIAl.. tint;.- Mr-']EH I,ItITi"I3N

FLUX AS A FUNCTIUN (_ll t-;APt$1JI.I_PCJWt.]tlWITH
FUEL AGE A_ TIlE PAI'IAMETER
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I TABLE 2-III

GAMMA PHOTONS EMITTED FROM

EQUILIBRIUM FISSION

t
Gamma. Photon Energy Calculated

(MeV) _ Numb9 rofphotons/_ission (I5) P_otons/F!Ssi0n,

0.1,0.4 1.61 1.61

I 0.4=0.9 4.84 4.86
0.9-1.35 0.50 0.50

1.35-1.80 0.60 0,61
1.80-2.20 0.31 0.28

2.20-2.60 0.12 0.11
.60-3.00 0.01 0.04

'_: * The photon yield per fission was caloulated using analytic functions fitted

to the above tabulated values of photon yield per fission. The functions

hl): used were:

f Gamma Ray Energy Punction N(E) =(Mev) (photo n s/fi s s ion)

•i-.4 21.5E

.... 4-.65 5.77 eE
-i.IE

•65-.9 2Z.60e

.9-•965 -121.5E + 117.75
i 0.30E

.965-1,35 0,,38e

1.35-1.60 0. 00045e 5 .3E

ii 1.60-1.80 586.8e "3'5E

,; 1.80-3.0 67.8e'2"3E



I
I
I TABLR2-IVGAMMA PHO_')N_] PROM 236Pu and DAUGHTER NUCLIDE8

Gamma Photon Energy Abundanoe (% of IBotope decay)

236pu 46,0 (1) (48.0)(9) 4.7 x 10 -2 3,1 x 10"2

110.0 1,2 x 10-2 1.2 x |u "2

165,0 6.6x10 -4 6,6x 10-4
520,0 1.7 x 10-4

570.0 1.0x10 -4

I|_ 64_,0 2.4,,i0-4
q

212pb 115.1 0,7
0.2

I! 176.7 82.0(3 )
238,6 47.0

300.1 3.2

415.2 0.16

], 21291 As a result ot _8deaey (66% yield)

40.0 2.0
#

_i 288.0 0.5460.0 0.8

727.0 7.3 7.1

1". 785.0 1.1. 893.0 6.6 0.42

953.0 0.2 0.10

1079_ 0.66 0.60

1513.0 0.86 0.31

,_:,,_ 1800.0_ 8ma11 0.11

1809,0J

.,i. 1620.0 1.8

_T' 21291 As a result of 0_decay (34% yield)

_i;,,... 288.2 0.28

" 328.0 o.1io

• 434.0]

453.0_ 0.42

473.0[
493.oJ 4

208T_ 280.0 10.0
511.0 2s.o 23.0

i_ 583.0 80.0 86.0
860.0 15.0 12.0

2614.0 100.0 100.0 _

The gamma activity oi 236pu was calculated as discussed In Appendix C.

The radioactive decay chains end corresponding daughter nuclide activity ere

ii, aalculeted in Appendix D.

• From reference (3)

29
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I TABLE 2-V
GAMMA PHOTONS DUE TO 180(o(,n)21Ne REACTION

I' Gamma Photon Energy*

_. _ (MeW , Photgnsj_m,B_g Pu02

i 0.35 4 x 103

i| 1.38 8.9 x 102!
l.90 I.8x 102

I:'! 2.40 1.8x 102
2.70 I.8x 102

:[
*Althoughreferences(i0)and (ll)suggest0.35,1.38, i.75 and 2.87 gamma

i_ photons, itisfeltthatthe 1.75 MeV and 2.87 gamma rayscontainedthe

li! above as unresolvedresonances.
The photonsemittedper neutronemissior_,neutronemission ratesand other

il_ pertinentdata are presentedand calculatedinAppendix B.

|
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I TABLE 2-XII

, MATERIALPROPERTIES OF

MODEL FUEL CAPSULE

'T

Denalty_ Atomic Density* Modified
Zon__q_ Material __ __atgms(!gm_3.... Atomla Dens J.ty **

I Void 0.0 0.0

2 Tungsten (W) 19.3 _063190 4.67628

3 Plutonium-_uel(PuO 2) 7.306.** 0.01632 I .79520

., Ii" Plutonium (Pu) 0.01632 1.53408
j, ,.

' Oxygen (O) 0.03264 0.26112

" ' 4 Tantalum(Ta) 16.6 O. 05526 4. 03380

* This densitycorrespondstothe Po Legendre expansionterm inthe Kleln-Nish_a

_ cross sections.

"' :'_ **

!::iI I_ Thisdensitycorrespondsto the PI-P5 Legendre expansionterms inthe Kleln-Nishinacross sections. The PI-Ps Legendre terms of hydrogenwere utilizedand corrected

": _ by the Z (atomicnumber)of the isotopeused infileanalysis.

' *** The PlutoniumDioxide fueldensity, 10.7 gm /cm 3,was multipliedby the volume

_,:_: fraction 0.683.

F_
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3. NEUTRON RADIATION CHARACTERISTICS

3.1 Introduction

This report section presents the result of c;alaulations of the neutron flux

emitted by plutonium dioxide fuelled RTG capsules. Neutron flux dis-

tributions were determined aa a function of energy for the three RTG

model capsule_ already described in Section 2, namely: 1575, 3468

and 5679 w(th). The_ flux calculations were b_sed on neutron yield

spectra which were derived to account.for plutonium spontaneous fission

and both oxygen and contaminant light element (_, n) reactions.

Since the RTGemitted neutron flux _ a function of the total neutron yield

per gram of giver_ plutonium dioxide, __he yield spectra must be obtained

as discussed in Section 3.2. Measurements and calculat/ons of the

spectrum of alpha particles and of neutrons in production plutonium

dioxide fuel are presented.in the literatured-3," 22-27). U_tely,

there is considerable variation_with respect to the emitted spectral

components and their intensities.

The totalneutron yield for plutonium dioxide with oxygen of natural

abundance and no impurities or self mult_plicat/on may be as Iow as

1.7 x 104 neutrons/sea-gin of 238pu(28). Plutonium dioxide sources

larger than 100 w(th), typically have a total specific neutron yield between

2.0 x 104 and 3.0 x 104 neutrons/sac-gram Pu 238 (1,28). The total

specific yield may be taken as 75% due to the 180((_, n)21Ne reaction,

12% due to the spontaneous fission of 238pu and 10% due to the con-

tamtnant light element ((_, n) reactions with the remaining 3% due to lesser

known phenomena such as 170((x, n)21Ne, (7, n), etc. Typical yield values

are:

53
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!
I I. Plutoniumfission..... spontaneous fissionneutronyields

of.2586 (±388)neutrons/sec-gm 238pu have been reported(29'30).

I II. Oxygen (_,n)reactions..... 170/180 (a,n)21Ne neutron

yieldsrangingfrom 12,.400to 14,500 neutrons/sec-gm 238pu.,

I have been reportedinreferences(i)and (28),respectively,

Ill• Impurity(_,n) reactions..... an impurity(_,n)neutron

I yieldof4000 neu1:rons/sec-gm238pu istypicalfor commercial

fuel,though values as high as 10,000 neutrons/sec-gm 238pu

I have been reported.

There are cur/entefforts(29)toproduce PuO 2 depletedin 170 and 180 in
I orderto reduce the neutronemission ratetoabout 20% thatofthe natural

• I oxygen .PuO2.

Section 3• 2.1 describes the method used to defermine the neutron fission

I spectrum. Section 3.2.2 and Appendices G, H, I and I detail the method "

used to determine the 180({z, n)21Ne neutron spectrum. The impurity

I element ((x, n) spectrum was calculated as described in Section 3.2.3

and Appendix K.

I
The neutron yield spectra were used as source terms for determination of

I neutron transport to the fuel capsule radial and axial surfaces, and surface

flux spectra thus obtained• Neutron transport was calculated by the method

I of discrete ordinates (12) Neul:ron flux geometric reduction from the capsule

surface to exterior spatial locations was calculated by means of the removal

I ._ (13)cross sectiontechniqueand pointkernelgeometry . These calculations

i and obtainedresultsare discussed inSection 3.3.

I

!



i
3.2 Neut!gn Sour_ Spectra

3.2.I FissionNeutrons

The neutron fission spectrum was determined from the reported neutron

total spontaneous fission yield rate of 2.6 x 103 neutrons/moo-Ore 238pu(30).

The 2.6 x 103 value does not inolude the spontaneous fission of 240pu

because of its low abundance in the fuel and the fact that its fission rate,

29 neutrons/seo-gm 240pu, is less tttan the uncertainties indicated in the

literature for the spontaneous fission mt.o of 238pu. The ftssior_ spectrum

was determined from the uranium _Lssion spectrum relationship (15)normalized

to the plutonium total spontaneous fission yieM, as

N(Ps) I/2.exp 29), (3l)= 2.00154 x 103 Es . .

where E isthe fissionneutronenergy. An alternativerelationshiphas
S

been reported w_ich gives the number of spontaneous fission neutrons

produced per MeV pergm of 2381%/as(2_

I/2 . exp (-Es/l 34) (3 2)N(Es) = 2.04 x 103 .E s . .

Thisrelationshipis based on a totalspontaneous fissionyieldrateof

2.8 x 103 neutron/seo-gm 238pu (28). The totalnumber ofspontaneous

fissionneutronsproducedby 238pu inany energy intervalmay be obtained

afterintegrationof equation(3.i), overthe energy interval,as

N = NIEs)dE s = 2.00154 x 103 exp(-Es/1.29) dEs,(3.3)
L

where, EL and EH are the lower and upper limits of the neutron energy interval

in energy units of MeV.
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I
1 The total sp.ontaneoua fiaalon neutron yield rate was caloulated for

twenty-three (23) energy intervals, in the range 0,025 eV to 10 MeV.

I The results .of the calculation are given in Table 3-I for the RTG plutonium

dloxklefuel. In Table 3-_,aolumn 2 isthe spontaneous fissionyleld-per

I gm of 238.,_,, The spontaneousfissionyieldineach energy intervalwas

dividedby the totalneutronfissionyieldto determinethe spontaneous

I fission spectrum given in column 5 of Table-3,,I,

I In the neutron flux rosults presented later in thls section, the value of

kef f corresponds to the ratio of the calculated total neul:ron fission rate

I in the subcritioalsystem volume tothe assumed neutronfissionsource

normalizedtounityinaccord wlththe group dlst/Ibutiongiven in Table

I 3-I. The fissionrateforeach neutrongroup g, and foreach volume

element, was integratedas:

2 ith

i where N i isthe scalerflux(neu_'ens/cm-see);Vi isthe elemental
'g3

volu'_e (cm); and _ri,g is _e number-of neutrons released per fission
multiplied by the fission cross-seotion corresponding to gro_,p g. A

I more extensive multigroup txeatment of-t/_e multiplication constant, kef f,
etc. is given in the reCerences (17' 31)

| "

3.2.2 Oxygen (a, n) Neutrons

1 The oxide in the plutonium dioxide fuel source contains natural oxygenwhich consists of the oxygen isotopes 160 170 180, and m the relative

_. abundances 99.759, 0.037 and 0.204% (23). Alpha particles interactingI
!
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!
t with lnw atomic number isotopes may give rise to the formation of

very

short-lived compound nuclei which promptly decay accompanied by the

emission of a neutron. The oross section for this (0_, n) reaction is negligible
for the relatively stable 160 isotope. However 170(_, n)20Ne and 180(_, n)

,| 21Ne reactions represent the principal seuroes of neutrons in plutonium

dioxide.
t

The total neutron yield produced by the i_0(_, n)21Ne reaction in the

i,[ plutonium dioxide product fuel tabulated in the
are currentliterature

(1, 3, 4, 21, 32-35). The (_, n) neutron yields in the references are

expressed as the numerical difference between the measured total neutron

yield and the calculated neutron fission yield• Variations in the (_, n)

_', spectrum uncertainties in the calculated fission yield andresult from

lack of knowledge of light element contaminations in the plutonium dioxide

? reported( 1 24)_.. fuel. Though oxygen (=,n)neutronyleldshave been '

informationhas not been given Jn sufficientdetailto allow spectra1

I.i,:;,: calculations to be carried out. in the remainder of this subsection and

Appendices G, H, I and J the (a, n) total neutron speotrum and the methods of

_ii calculation are presented

if' In the present work, the (u, n) neutron yield from the irradiated oxygen

nuclei was assumed to be totally due to the 180 isotope since the maximum

yield for the 1ZO(a, n)20Ne reaction is ~ 10% of the 180(a, n)21Ne reaction

yield(16! the 170 abundance is 0. 037% as compared to 0. 204% for 180.

Further consideration of fl_e 170(_, n)21Ne neutron yield is not possible

until more experimental information becomes available•

An alpha particle of initial energy E, collides with the atoms of the trans-

t_ port medium and is thus degraded in energy until thermal equilibrium with

[
| $7
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the medium ia aahleved, Each alpha particle aolliaian with the I BO
nualeus aorreepond_ to an inelaatia (a, n) reaation providing the alpha

energy isgreaterthan the thresholdenergy. The thrgsholdisthe lowest

energy f_rwhloh the Itx,n)reactionsan oaaur, The alpha particle"slowing

down" proaess gives rise to an energy spectrum of inelastia aollision

neutrons. If t_otropic _oattoring in the canter of mas_ eoordlnat¢_ _y_tem

i_ aaatuaad, the number of neutrons with energy En, generated by the alpha

par_iclooolli_ionwith iao targotnucleimay bo obl;aln_daa

N(En)den _ N(_cm) BinOomd@om
2

where, @oralsthe scatterangle inthe centero(mass coordinateBystem.

The readermay refertotexts fora discussionon the penetrationof charged

particles !36) .

The intermediate 22Ne nucleus resulting from the LSo(a, n) reaction decays

to various 21Ne levels as follow_ (21 ,32,33 )..

55% _o the ground state,

35% to the first exalted 0.35 MeV state,

~ 10% to the second excited 1.73 MeV state,

~ 1% to the thir" excited 2.84 MeV state.

The (ix, n) reactions were calculated for each of these inelastic collision

schemes. The Q values for the reactions were taken as -0.70, -1.05,

-2.43 and -3.54 MeV for ground, first, second and third states, respectively.
238 (1-3)

The two alpha particles emitted by Pu , namely:

5B
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Energy (MoV) Alpha ParticleperDisintegration
5.495 0.72

b_ 5.432 0.28
b

were taken as a single 5.50 MeV alpha particle for all calculations.

The dynamlos ofth_ 180 (_,n)21No reactionare given inAppondlx G.

The alpha particle energy loss per unit path length, (dE_/dx)l, resulting

from collisions with oxygen and plutonium atoms-in the fuel, is discussed

I in Appendix H. Th_ 180 (a, n) 21N_ n_utron yield Apectrum is discussed

in Appendix I. Appendix I deseribe_ the numerical integration of the 180

(eLn) 21No spectrum over the twenty-three energy groups used in the

present work.

The 180 (_, n) 21No neutron spectrum was determined for the Pug 2 product
fuel in twenty-three energy groups in the range 0.025 eV to 10.0 MeV.

Table 3-II presents the results of the calculations. The da_a are normalized

to a neutron yield value of 1.22 x 104 neutrons/sec-gm 238pu; an experimentally

measured value of 1.24 x 104 neutrons/see-gin 238pu has been obtained

for reactions with 170 and 180_37)"". Table 3-III is the spectrum normalized

to unit emission.

3.2.3 Impurity (0_,n) Neutron Yield

Commercial grade PuO2 contains small quantities of uniformly mixed low
atomic number impurity elements which yield neutrons through the (_, n)

reaction. The neutron yield, which may be significant, varies with each

commercial f_el feedstock. Thus in order to calculate the total PuO 2
neutron yield it is necessary to explicitly identify the impurity elements

present. Since the yield spectra have not been generally reported they

wuru assumed, in the present work, to be similar to the 180 (_, n) 2INe

59
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I yield spectra ae given in Table 3-III. This assumption if the impurity

aonaentratien ie relatively small and better data is unavailable.

i
Table 3-IV presents an analysis of a typical Pu(NO3) 4 feed steak u_ed in

I the production of commercial PuO 2 fuel (38) . The 238pu lant_pe emits
I MS. 5 MeV alpha particl_s which in turn interact wlth the Impurltles. The

I 5.5 MeV alpha particles have au_ficient energy to exoeed the (a, n)

threshold and the coulomb barrier of the low atomic numbered impurities ('_9) .

i Noutron yield data for 1:he major impurity elements are determ_ed in

Appendix K; the yield units are: neutrons/sec-_m Pu per ppm of impurity.

1
For example if a Li impurity of 5 ppm (by weight) is present in PuO2 ,

I then the neutron yield will range from, 5 x 4.3 = 21.5 to 5 x 5.5 = 2 7.5,

neutrons/sec-gm Pu, The range variation results from the range distribu-

I tion of experimental data. An excellent compilation of light element
(a, n) reactions is given in Chapter I of reference (40); reference (41)

I is also recommended.

I 3.3 Neutron Fluxes

I The neutron source spectra yields discussed in Section 3.2 were used to

determine neutron flux distributions at the RTG surface and exterior spatial

I positions. The flux calculations were carried out for three fuel capsules

already described in Section 2, namely: 1575, 3468 and 5679 w(th).

I Figure 2-II gives the dimensions of the three model capsules and the material

zones as a function of power. The material composition of the capsules'

I zones are detailed in Table _-XIII.

I
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I The neutron transport to the RTG surface and extarlor spatial positions

was calculated using the ANISN (17) and QAD (18) computer codes.

I ANISN was used to determine surface fluxes and QAD was used to obtain

exteriorfluxes. The neutron collisiongroup constants were calculated

I using the "Evaluated Nuclear Data File''(42)and the'_{.J. Howsrton
Evaluated Data File''(43).The microscopic collisioncross sections were

I averaged f_rtwenty-three neutron groups with a ne-_trsnflux spectrum
thermaiized to 20°C and oontlnuously varied as d function of energy E,

I up to approximately 0.2 MeV. The measured 238puo2(I) emission neutron
spectrum was assumed as the fissionweighted flux spectrum up to 7 MeV.

I From 7 MeV to i0 MeV, +he 238pu fission spectr,,.m:vat assumed for
weighting. Additional calculations showed that even when thermalized

_:'I up to 600°C the thermal neutron fluxes remain relativelyunchanged.

I Table 3-V gives the calculated neutron flux as a function of energy and .
power at the capsule radial midplane surface for 180 (_, n) 21Ne dnd

I fissionneutrons. Table 3-VI gives similar radla/ surface fluxes for fission

neutrons only. The calculated values of keffectlve are noted as 0.17,

• i 0.30 and 0.40 for the 1575, 3468 and 5679 w(th) capsules.

_1 Tables 3-VII, 3-VIII and 3-IX give the calculated total neutron flux at

axialand radial detector positions at and bel.ond the capsule surface,

I i.e., at cylindrical coordinate positions (r, 8,z) as defined in Figure 2-III.

The data in these tables corresponds to the total fluxes given in Tables

3-V and 3-Vl at (r,e,z)= (capsule radial surface, 0, 0). The total

fluxes given in Tables 3-Vll to 3-1X are shown graphically in Figures 3-I

through 3-1V as a function of detector distance r, with capsule power as the

parameter. Figures 3-I and 3-1I are forthe radialmidplane while

_ Figures 3-Illand 3-1V are forthe axial midplane. Figures 3-I and 3-11I

I 61
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_ are for 1SO (a, n) 21Ne plus fission neutrons while Figures 3-II and 3-IV
are fission neutrons only. Data for 180 (_, n) 2INe may be obtained by

subtraction since the values of kef f are less than unity, i.e., since the
fuel capsules are subcritical.

, The surface neutron flux produced by the impurity light element (_, n)

neutrons may be determined as
I
j ,

,,',,, (3.s)

_,' where

(Pc = surface neutron flux produced by the oxygen (a, n) reaction,

f! eg. Table 3-V minus Table 3-VI;
,, Yo = neutron yield produced by the oxygen (_, n) reeetion per

_ second per gram of Pu, eg. 9882 n/sec-gm Pu based on 80%
"_ 238pu in Pu and 1.22 x 104 n/sec-gm 238pu;

i::i: I.i_. Yi = neutron yield produced by the impurity element (0_, n) reaction
per second per gram of Pu, eg. the Appendix Table K-II data

ii; e x0 oreoooni (using the maximum yield per ppm of impurity value).

Equation (3.5) assumes that the light element (_, n) neutron spectrum

el corresponds to the 180 (0t, n) 21Ne neutron spectrum.
'i

T

An example of theuse of the calculateddata presentedinthisreport

sectionis given inAppendix F. The example computes the neutronfluxat
F

.". _ r = 100 cm for a capsule power of 1575 w(th), "normal" oxygen and a
100 ppm boron impurity.
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FIGURE 3-1

I NEUTRON FLUX AS A FUNCTION OF DETECTOR RADIAL DISTANCE
FROM CAPSUI.E AXIS WITH POWER AS THE PARAMETER

I (NEUTRON SOURCE: 180(_,n_1 Ne AND FISSIONI
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FIGURE 3--11

I NEUTRON FLUX AS A FUNC'IICIN OF DFTE(.TOR RADIAl. DISTANCE
FROM CAPSULE AXIS WITH POWER AS THE PAR&METER

i (NEUTRON SOURCE: FIB_;ION)
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FIGURE :]---III

NEUTRON FLUX AS A FUNCTION OF DETECTOI_ AXIAL DISTANCE

FROM CAPSULE AXIS WlTtl POWER AS THE PARAMETER

(NEIITRON SOI.IRCE: 'lBO(_on)21 Ne AND FISSION)



I
FIGURE ;_,-.IV

I NEUTRON FLUX AS A FUNCTIONOF DETECTOHAXIAL DISTANCEFROM CAPSULE AXIS WITH POWER AS THE PARAMETER

i (NEtJIRON SOURCE: FISSION)
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_, TABLE 3-I

PLUTONIUM ISOTOPE SPONTANEOUS FISSION NEUTRON SPECTRUM

Neutron Energy

Interval Neutrons Neutrons Neutrons/sea-am 3 Fission

(MeV) sec-qm238pu sea-gin PuO 2 (PuO 2 Fuel) Spectrum

0.025 - 0.i0 x I0 "6 3.72 x i0 -8 2.64 x ]0 "8 19.3 x I0 "8 0,0

0.010- 0,30x 10-5 6.90x 10-6 4.93 x ]On6 36,03 x 10-6 0.0

0.030- 0.30 x 10-4 2.13 x 10-4 1.52 x I(I-4 ii.ii x 10-4 0.0

0.030- 0.555 x 10 -3 1.73 X 10 -2 _.24 x 10 "2 9.06 x 10 -2 ' 0.0

[ 0.555 X 10 -3 - 0.0170 2.92 2.09 15.27 .00113

0.0170- 0.0448 9.52 6.80 49.70 .00368

!i 0.0449- 0.122 41.39 29,55 216.0 .01598

"!: 0.122- 0.201 55.97 40.0 292.32 •02162

" 0.201- 0.331 108.94 77.78 568.43 .04204

0.331- 0.546 202.24 144.39 1055.2 .07805

:' 0.546- 0,702 152 14 108 62!: . • • 793.8 .05871

0.702- 0.90 190.74 136.18 995.22 •07361

: 0.900- 1 16 237.86 169 82 1241.07 09180
$

1,16 - 1,49 272.56 194.59 1422.08 ,10518

_ 1,-49 294 11 210.0i " 1534,7 .i1351

1..,91 -- 2,45 295.72 211.12 1542,9 ,11412

2.45 ?" 3,14 266.52 190.28 1390.59 ,10286

3,14 - 4,04 214.13 152.88 1117,27 .08264

!i 4,04 - 4,46 64.58 46.11 337.0 ,02493

4,46 - 5,18 76,26 54.44 397.86 .02943

i 5.'18 .- 6.66 76 51 54 62 399 17 02952

il, - o.o ,oo .oo,o
Total 2.6 x 103 1.86 x 103 13.52 x 103 1.0000

[i o,
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I TABLE 3-III

1 180(cx, n)21Ne NEUTRON SPECTRUM

i Neutron EnergyInterval Noutron Speatrum*

(MeV) (N(E)

2,5 x 10"8-i0 "7 0,0

i0"7-3,0 x I0"6
0,0

3,0 x 10"6-3.0x I0"5 0.0

_ 3.0 x J.0"5-5.55 x I0"4 0,0

_'_ 5,55 X I0"4-1,70 X I0 "2 ,00022

1,70 x I0"2-.4,49 X 10 -2 ,00045

4,49 x i0"2-1.22 x I0-I .002_)

1.22 x i0"I-2,01 x i0"I .00216

2.01 x 10"1-3.31x I0"I .00376

3.31x 10"1-5.46 x 10 "I .0078

S.46x 10"1-7.02 x 10 "1 .00821

7.02 x 10"1-9.00x 10 "1 .01019

9.00x 10"1-1.16 .02883

1.16 - 1.49 .04875

1.49 - i.91 .07483

I.91 - 2.45 .17095

2,45 - 3.14 .34745

3.14 - 4.04 .26938

4.04 - 4.46 .02475

4.46 - 5.18 .000105

5.18 - 6.66 .0

6.6a - 8.55 .0

8.55 - I0.00 .0

Total O.99983

* Number of neutrons emitted

er unit neutron emitted by
80(¢x, n) 21Ne reaction
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I 4. DISCUSSION OF RESULTS

!t Basic gamma photon and neutron source charactistics have been determined
and flux data obtained for plutonium dioxide RTG fuel capsules. The fuel

capsules ware hypothesized based on the SNAP-27. The methods for
characterizing the sources have been given in adequate detail. The cal-

_ culatton of the photon and neu%ron fluxes wore _arried out using computer
codes in the public domain. The source data may be used as input to

i| transport calculations in other than SNAP-27 configurations, as for example

| in SNAP-19 where the fuel is not annular but consists of solid discs,

I ., ." Alternatelythe flux data in this reportmay be

i.e "hockey-pucks

corrected to approximate data for other fuel conflgurations.

]
The results may be considered as useful startingpoints for analyzing RTG

I radiation interferencewith science experiments or instrumentation on
space probes. Similarlyitmay be used to determine biological hazards

I" in the presence of RTG's. The results may be modified as indicated for2

analyses of biomedical problems where PuO 2 power sources are proposed,

J as forexample in "heart programs. "

II Although the data in Sections 2 and 3 do not include exposure dose information
this may be readily obtained by employing standard conversion factor

information,44 ," 45). Table 4-i presents RTG capsule radial gamma photon total

I I_ dose rate at one meter as a function of fuel age with power as a parameter.

_}i The table also Indicates the percentage contributionfrom the source com-
ponents: 236pu, 180, and Pu isotopes and daughters. It is noted that the

__ isotopes and daughters are the major source (~ 97%) component in fresh
fuel, whereas 236pu is the major source in aged fuel (~ 91%). Figure 4-I

i_ gives the one meter radial and axial dose rate as a function of fuel age for

76
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the 1575 w(th)model capsule;thissizeapproximatesSNAP-27. Referencp

I (46)gives radialand axialexperimentalvalues of 8 and i.6 mr/hour for
a two yearold 1500 w(th) SNAP-27. Allowingforthe 5% differencein source

thisvalue isin good agreementwith the presentcalculations
power, very

as seen in Figure 4-I.

The capsule _urfaee neutron flux data given in Table 3-V and the reference

(45) conversion faat, ar_ _ere usad.t.o-obtain the surface dose rate for a

1575 w(th) capsule. The data in Table 3-VII was used to convert surface

!( dose rates to one-meter radial and axial dose rates of 52.4 and 30.5 totem/hr.

Since these dose rates are based on source yield data which accounts only
..

_ for 180 (0_, n) 21Ne reactions and fission,_a !nnrreotion' for (_, n) impurity

reactions is required. If impurities concentrations are not identified but

-'t total yield data is, an estimation of the (0L n) impurity flux may be carried

out. Reference (24) gives total neutron yield for SNAP-27-1 as 2.2 ± 0.1 x

i]il 104 neutrons/sec-gm 238pu, and the dose ratesabove (52.4 and 30.5 mrem/hr) .

are based on 1.48 x 104 neutron/sec-gm 238pu, which suggests an impurity

.... 0 4_neu 2 38pu '!_ yield of 0.72 x 1 tron/sec-gm ie., an additional "-"49% yield,

For this yield radial and axial total neutron dose rates of 78 and 45 torero/hour

_ are predicted. The actual total neutron yield value depends on the PuO 2
quality control during the production process. If the total neutron yield

.,, is taken as 19,000 neutrons/see-gin 238pu, the SRP value as in reference

(37), then radial and axial total neutron dose rates of 64 and 38 torero/hour
,Q

are predicted. These dose rates may be compared with references (47,48)

radial and axial measurements of 93 and 42 torero/hour, respectively. The

] reference data represents a mean for three different capsules.

"_! Since the experimental dose data of the references includes laboratory

neutron and photon scattering it is suggested that this may be the major

l!
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reason for the dlfte_rencebetween oxperlmont and prediction. The backscatter

I dose is a function of experiment geometry, structuralmaterial composition

and thickness as well as neutron and photon spectral distribution. For

gamma photons the Increa:r in excess of the directdose, resulting from

concrete floorand wall scatter, would be only _ 5% . Itis possibly

for this reason that the above gamma photon predictions are in good agree-

ment wlth experiment. The increase in excess of the dlreatdose for

neutrons is conslderab]y greater forconcrete floorand wall scatter, wlth

a value of .'30% estimated as probable; this percentage is based on

estimates using referencr_s(50) and (51) albedo data. In order to obtain

an accurate determination ,_fbackscatter the details ,:'fthe specific
)

experiment are required. A '30% backscatter' forneuh'ons would increase

the radial and axial totaldirect-dose rates of 64 and 38 torero/hoursto

yield 'laboratorydose' rates of 83 and 49 totem/hour respectively. These

dose rates are within the experimental data accuracy of 93 and 42 torero/hour

± 20% (47)"

),

!i
, _:'_
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l APPENDIX A

GAMMA ACTIVITY DUE TO DIRECT DECAY OF

l 24 Ipu AND DAUGHTER NUCLIDES

The dlreat decay of 241pu yields a 145 keY gamma photon whose Intensity

I is ob_alned as:.." photons/see-gin PuO 2 = 3.92xi012 dis x(.008) x(.881)x(abundanoe)

/ I whore

O. 008 is the fraction gm 241puI' ' gm Pu
and

_'_ ]i 0.881 is the fraction _m Pu

_ii gm PuO 2.' Thus, the 145 keV photon activity is obtained a_
/

:,' 'g sec-gm Z41Pu

.""i seo-gm PuO 2

,:... There are two decay modes available to 241pu. The gamma photon yields
of the 241pu daughter isotopes in these chains is presented in the remainder

l of this appendix. The decay chains available to 241pu are:

z !
241pu _ 241Am _ 237Np )

j: i 81
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I
and

I
"6.75day" 2,14 x 106,/ . (II)

I ,Decay Chain I
JJ

I Dooay _haln I qivas rise to a gamma spectrum which is eal.eulatod from the
following abundaneea (9):

GammaEnergyIkeV) Abundanea (°_ of lsotop_ dgoay )

60 36.

:", lOl 4 x lO"2
,!,

,: 208 6 X I0"4

" '{, 335 8 X lO"4

370 4 x I0"4

:, ,V 663 5 x I0"4

.. __" 772 3 x 10 "4

• :.I:;L_ The gamma activity may be calculated from the Bateman equation. Where

.' .._. t' I the decay chain is represented as:i.

' ' I A -> B " ' ) C "---)

kA kB kc

I
the activity of 241Am, represented by BXB, isobtainedas

"' NBXB BkA : kBXA e "_t -e "kBt x NAO

:"!"""I kB-XA

y -

....';' I 82._!'/!i
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I whQro

' NB)'B = dls/sec, of daughter nuclide B,

NAO = initial number of atoms A; equal to Avagadros number

(No) flividod by the gm-atomtc mass of the parent A, given

as MA

The decay constants )'A ' A'Bcorresponding to the parent and dauqhter

_: nuclldes wQrooalculated ns, _ = .0495 year"I = 1.567 x 10"Ssoc "I

[ % = .001604 year"I

| The aotlvity of 241Am is thus obtained as

s'c-'gm PuO 2 \gm PuO 2 / k AB_)'A (e'kAt_e'_'Bt)x (abundance),,L,

' I;2,: Decay Chain II

Decay..._haln II yields four photon lines which may be calculated from the

relationship;
• B.

_' photons =/_.A No e-_At)lqm 241pUlPuo2

x (abundance) x (yleld)

sec-gm PuO 2 _- M A gm J

!

where the yield is assumed as 2.3 x 10-5

!i
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I" The photon energyand abt_ndaneesassumed, were (9).,

i
.Gamma En.er_y_(keY) A_b.unds.nce(% ofisotopedecay)

i 14. 41.

I 33.2 16.60.0 .... 3.6..

208.0 23.

iT

I The expression,e'kAt,gives thedecay factoras:

'" :' R Time 0 1 5 10 18 •,,':.,,
(years)I

!h::i?!|
,. ,._..

'_ ' Decay 1 0 0 952 0.781 0.610 0.410
. /:: ,.,i:_,',"_'.' Factor

'6'"

.. :" ._ ,._:¢

• '.

, ,.., ,{,

:'l :t/ " 't

...., '_;'._.:.
•.,.' 84
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I APPENDIX B
TABULATION OF PROMPT FISSION AND

I EQUILIBRIUM FISSION PRODUCT GAMMA PHOTON8

Thisappendix pressntstabulationsof prompt fissionand equilibriumfission

I productgamma photonemission. Th_ tabulatlonsa_e given in supportof

Section2 of thisreport.

I
I

;_

I

I

I

" i 85
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I
• . TABLE B-I

! PROMPT FISSION AND EQUILIBRIUM FISSION
PRODUCT GAMMA PHOTONS*

!
Gamma Ray Energy PromptFission EquI1.FissionProduct TotalFission

I Interva!(MeV) Gamma Spectrum Gamma Spectrum Gamma Spectrum
I

I 7.0-6.0 0.007 0.0 0.007
, 6.0-5.0A 0.020 0.0 0.020

5.0-4.0 0.060 0.003 0.063
J J

4.0-3.0 0.179 0.027 0.207

'I 3.0-2.0 0.538 0.267 0.815

::i.: 2.0-I .8 0.198 0.173 0.371

i: ;_ 1.8-1.6 0.247 0.312 0.559

_'.?_ i.6-1.4 0.308 0.267 0.575

I 1.4-1.2 0.384 0.117 0.501

i::;,:.:::':, 1.2-1.0 0.478 0•106 0.584

:_,_, 1.0-0.9 0.302 0.307 0.609

::"::" 0.9-0.8 0.380 0.888 I.268
i

0.8-0.7 0.479 0.9910 1.470|•::iLii!::i

• '.> 0.7-0.6 0.602 1 077 1.679

!_!ii'_ ,,. 0.6-0.5 0.758 1.000 1.758
,..:," 0.5-0.4 0.954 0.905 1 859

I 0.753 1.954
0.4-0.3 1 .201

0.3-0.2 0.0 0.538 0.538

I 0.2-0.044 0.0
0.323 0.323

0.044-0.001 0.0 0.0 0.0

': * Tabulation units are: "Number of photons emitted/fission."

........._-......._-_.--_:,_ if_. :....."_'--/_J- •.....
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I
I/

...._ I TABLE B-II
PROMPT FISSION AND EQUILIBRIUM FISSION

PRODUCT GAMMA PHOTONS

I Total Fission Photons (14)

Gamma Ray Energy, Gamma Spectrum sea-gin PuO 2

I Interval(M_V) (7/fission) keff=0.17" 0.30* 0.4 I*

I 7 0-6.0 0.007 5 0 10 0 15 1
, . . . • .

6.0-5,0 0.020 14.0 28.2 43.0

J 5.0-4.0 0.063 45.0 88.8 1.355 x 102
; 4.0-3.0 0.207 147.0 291.9 4.451 x 102

: 3.0-2.0 0.815 5.787 x 102 11.492 x 102 1.752 x 103
2.0-1.8 0.371 2.634x 102 5.231x 102 7.977 x 102

I 1.8-1.6 0.559 3.969 x 102 7.882 x 102 1.202 x 103
1.6-1.4 0.575 4.083 x 102 8.108x 102 1.236x103

. .,q, ,

1.2-1.0 0.584 4.147 x 102 8.234 x 102 1.256x 103

i I 1.0-0.9 0.609 4.324 x 102 8.587 x 102 1.309 x 103
:, 0,9-0.8 1 268 9 003x 102 17 879x 102 2.726x 103

.. :. • • .

ii? I....i?,:: 0.8-0.7 1.470 10.044 x 102 20.727 x 102 3.161x 103

:: 0.7-0.6 1.679 11.921x 102 23.674 x 102 3.610x 103

I ii !iI o°o 7+oxo
....+ 0.5-0.4 1 859 i3.200x 102 26.212 x 102 3 997 x 103• ;+ . .

0.4-0.3 1.954 13.874 x 102 27.552 x 102 4.202 x 103
0.3-0.2 0.538 3.820x l02 7.586x 102 1.157 x l03

I 0.2-0,044 0.323 2.294 x 102 4.554 x 102 .695 x 103

0.044-0.001 0.0 0.0 0.0 0.0

• The fission rates determined for this study(14)were 710 1410 and 2150": t

'+': i n/sec-gm PuO 2, for the 1575, 3468 and 5679 w(th) sources, respectively.

+:': i 87
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I APPENDIX C
236pu GAMMA PHOTON ACTIVITY

1' The gamma photon activity dub to 236pu eontanimation in the PuO 2 fuel

was based on a 1.2 ppm impurity.

The activities were calculated as follows:

d is = 1.97 x l013 di___sx e -_.t x (abundance),
_,i' ssc-gm 236pu sec

,,! i,; and

dis x
sec-gm PuO2 sec-gm 236pu (gin PuO2)

The results of the calculations are tabulated as:
2_

i':'" _"i'_ Gamma Energy(9) Abundance (s) photons photons

" !i! (keV) (% of isotope decay) see-gin Z3bPu sec-gm PuO 2

48 3.1 x 10-2 6.107 x 109 6.46x 103

ii0 1.2 x I0-2 2.364 x 109 2.50x 103

165 6.6x 10-4 13.0 x 107 13.75 x I01

520 1.7 x 10-4 3.35 x 107 3.54 x i01

570 1.0 x I0"4 1.97 x 107 2.08x i01

645 2.4 x 10-4 4.728x 107 5.00x i01

i.
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The expression, e , was calculated to obtaln the decay factor as:

[ Time 0 I 5 i0 18(years)

I Deaay 1.0 0.784 0.296 0.087 0.013
Paator

I
I
]
Ii

:!
I
I
I
i

I

I
i

| s9
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,_ APPENDIX D

236pu DAUGHTER NUCLIDE GAMMA PHOTON ACTIVITY

The activity of the 236pu daughter nuclidas was determined from the growth

of228Th, using the Bateman equation. The decay chain forthisfamilyis:

a 232 U _ 228Th _ 224Ra 22 21

_(34_)
212pb 212Bi _ 208T _,lO.6h 1' 60m

t

' 60m (66%) 3m

,. 212po ___ , 208pb
"i o.3_

[, The gamma photon activify is controlled by the growth of the 1.91 year

228Th. It may be calculated from the Bateman expression where

232U cx 228Th o_
_ 236pu _ _ 1.91y '

._: is represented as:

1_ A _ B, _CXA XB Xc

I %he final nuclide activity may be written as

[_. ,-_* +_A_"e-_"*+_L_°'_°*lx
I X (yield)x (abundance)x (concentration)

I
I 9o
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I

where

N = number ofatoms ofdaughterC,

NAo = MA No ,
MA

MA = actual mass of 236pu in PuO 2 ,

MA = gram atomic mass = 236 gm ,

NO = 0.6023 x 1024, Avogadro Number ,

XA = . 24316 year "l , 236pu decay constant ,
u

, XB = 0.009365 Fear -1 , 236U decay constant ,

k c = 0.36474 Fear -1, 228Th decay constant.
2.

The activityof 228Th as a functiontimewas calculatedas:

TIME lyears) dis/sec-_m 236pu

i 2.738 x i0 I0

5 3.2216x i0 II

i0 5.6957 x i0 II

18 7.1566 x i0 II

91
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When applied to PuO2 fuel in which the cc)ncentratlo_ of 236pu may vary,

; t the actlvlW of the 22BTh per gm of PuO2,becomea:

228Th Nuclide Actlvlty/gm-PuO 2

236pu Concentration Y_ars
,,. (ppm) 1 5 10 lB

' I 1.2 2.8B15 x 104 3,383 x 105 5.981 x 105 6.891x 105

0.8 1.021 x 104 2,256x 105 3.98? x 105 4,594 x 105

I 0.6 1.441 x 104 1.692 x 105 2.990x 105 3.445 x 105

O.l 0.240x 104 2.819x 104 4.984 x 104 5.742 x 104I
I
• i|

" |

!

I
I
!
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i APPENDIX E

180(_, n)2INs GAMMA PHOTON AGTIVITY

!
The 1%(0(,n)21Ne ;reactionyields gamma photons as well as neutrons. If

I the totalneutron omission rate for 238pu is assumed as I .9 x 104 n/seo_gm

238pu(14), then 1.24 x 104,O.26 x 104 and 0.4 x 104 n/seo-gm238puare ..........

:_i the emisslon rate components for the 180(=,n) 2 iNe, spontaneous _isslon

and (a,n) impurity interaotlons,res_ctlvely. (37)The photon activityfor

180 reactions may be obtained as/!

photons = 1.24 x 104 n x photons/neutron emitted,

seo-gm 238pu sec-gm 238pu

and thus

i_' photons = photon .....x 0 714
(% •

sec-gm PuO 2 seo-gm 238pu

,v.,

Gamma photon activities were caloulated as

_i Gamma Photon Photons emitted./ Photons Photons

Energy (MeV) neutron emission (1) sec-gm 238pu sec-gm PuO2

0.35 0.45 .558 x 104 .400 x 104

I 1.38 0.I0 •124x 104 .089 x 104
1.90 0.02 •025 x 104 .018 x 104

_I 2.40 0.02 .025 X 104 •018 x 104
2.70 0.02 .025 X 104 .018 x 104

1
i
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i

i
Thesephotonemissionratesmay be aorreetedforthedecreasein238pu

I aativity, using the deaay faster e" .007734 year'_,t which yields

I
_ME

I (years) 0 I 5 I0 IB

Deaay

I Pactor i .0 0.992 0.962 0.926 O. FJ70

t

I

!
I
I
I
i

i
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I
APPENDIX F

EXAMPLE FLUX CALCULATIONS

I An example gamma photon fluxand an example neutronfluxcalculation

are presented in this appendix. Both calculations are for a point located

I ata radialdistanceof i00 cm. from a 1575 w(th)capsule. Normal (180
I

undepleted)oxygon iSassumed ineach case.

!
236

I. The gamma photon fluxfora 5 year old PuO 2 fuelcontaininga Pu

[ impurityof I.6 ppm is obtainedas follows:

From TableXV.'II,the 'Decay of
Isotopesand Daughters'flux = 2,000 7/cm2-sec

From TableXlX the '180(a,N)21Ne
flux = 44 7/cm2-sec

'_i From Table XX the '236pu and
Daughters' Flux x (1.6/1.2) = 5,181 7/om2-sec

'" Total flux = 8,952 7/cm 2-sec

i_: An estimateofthe dose correspondingto thisfluxmay be obtained,

"I using Table 4-I,as

= 17.54 x 0.175 + 17.54x 0.825 (1.6/1.2)

= 22.4 mrem/hour

The above calculationassumes thatonly236pu change with age issignificant.

The oxygen fluxFieldmay be corrected(x0.962)using the tablegiven in

jI Appendix E. This calculationmay be correctedforothercapsule power

i values by interpolation,as inFigure2-X.

I

95
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2. The neutron flux for FuO 2 fuel containing a 100 ppm boron (only)

I impurity is obtained as follows:

I From Table 3--VII the
180(a,n)21Ne + Fission Neutron' = 427. ? n/am2-sec

i flux
From Table 3-VII the

.I 'Fission Neutron' flux = 78.5 n/c_2-sec
Thus,'lSo(a,n)21Ne _ flux = 349.2 n/cm2-sec

!
Appendix Table K-ILgives the boron yield (maximum) as 46.9 n/sec-gm

I Pu per ppm or 4690 n/'sec--gm Fu per 100 ppm. From Equation (3.5) the
boron impurityfluxisdeterminedas

= 349.2 x 4,690/9,_82 n/cm2-sec

I = 156.7 n/cm2-sec

i The totalfluxis simplyequal to

_i 165.7 + 427 = 593.4 n/om2-seo

:.i_ An estimateof the dose ratecorrespondingto thisfluxmay be obtained

by scale-faotoringthe 52.4 mrem/hour dose rategiven in the textof

"_ Section4 as

I = 52.4 x (593.4/427.7)= 72.7 torero/hour.

t The. above may be obtained for other power values by repeating the cal-

culations for 3468 and 5679 w(th) and interpolating at the desired power.

i,: 96
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it APPENDIX G
THE DYNAMICS OF THE 180(a, n)21Ne REACTION

, The (a, n) reaction may be considered as an inelastic collision between two

initialsystems and the reactionwrittenas

�180_n+ 21Ne + Q
8 i0

The total-kinetic energy of the interacting system corresponds to the kinetic

energy of the alpha particle

Eot= _f - Q

where

Q is the energy equivalentofthe differencebetween the masses of the

initialreactantsand productinvolved.

It can be shown that the total "kinetic energy before the collision in the cen-

ter of mass coordinate systemis the sum of the kinetic energy of the incident

alpha particle and oxygen target nucleus. The reaction masses and energies

may be defined as follows:

Mot = therestmass of the alpha particle,

M o = the restmass of the oxygen atom,

M N = the restmass of the neutron,

MNe = the restmass of the neon atom,

Ea = the kineticenergy ofthe alpha particleinthe laboratorysystem,

97

O0000002-TSE02



I

E=, _ the kineticenergy of the alpha particle in the center of mass

: it coordinate system,

._ En = the kinetic energy of the neutron in the laboratory system of

coordinates,

gn' _ the kinetic energy of the neutron in the center of mass coordin-

ate system.

" The total kinetic energy prior to collision may be writt.e_n as

_:,
0 "

, _' the totalenergy of the incidentalpha particlerelativetothe targetnucleus.
,l

:"_ The totalenergy ofthe incidentalpha particleinthe centerofmass system

is

I: )
":._.: "' Mo
...,,.., Ed = P-_ +M_'-: 0 a

: _. The energy of the emittedneutroninthe centerofmass coordinatesystem

.:'_:i/__' isobtainedas

_"....i.._ En _MNE + M ....

which reducesto

O + Mo E_ = MNE (Q + Ed). z_'= _MN+MNP.I Mo+M_ IMN+MN_.

" I 98
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The emitted neutron energy in the laboratory system of coordinates is En

where

MNM = E=+_ 2/-_ _ cosScm
En=Er_ +(Me +M=) 2 (Me + M_) V M_ V MN.t

This expression relates the neutron energy in the laboratory system,.E n ,

i| in the center of mass coordinate system.

The kinetic energy of the emitted neutron is determined from the O value

-!iI of the reaction, the incident alpha partic!.a energy, E,_, and the angle

of scatter in the center of mass coordinate system as

. _;: En = a(E0() + b(Eo() cos ecm

•__ where

MNN , Q+ Mo E + MN M_ Ea

_" and

 NM= 12E=I 2 ,. E
'-' b(Eo_= (MO+ MOt) _-_-a/ _MN + MNE _oo+ Mot

, If the probability of emission into an angle, ecru, in the center of mass co-

ordinat_ system, is isotropic, then p(Scm) _sin ecru)/2, is the probability

. of scattersuch that

O0000002-TSE04
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I

180° 180° +I i.+I

t where

d# = d(cos 8cm).

:I Rewrlttlng

] sinecru-_(i-cos2ecru)i/2

I

the probabilityof scattercan be rew"ritten

S i b2 a2 En2 + 2Ena I/2
- - dEn = 1

!I_ This equationgives the probabilityofscatterinthe centerofmass coordin-
ate system interms of a(Ea), b(E(_),and En which are parametersofthe

I alpha particleand emittedneutronenergy in the laboratorysystem of coordin-
ates. Itintegratesto unityforparticlesscatteredover allangles of emission.

The equationexpressesa uniformdistributionof scatteredneutronsinthe
laboratorycoordinatesystem.

I

I 7

!
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IG" I APPENDIX H
ALPHA PARTICLE ENERGY LOSS PER UNIT PATH LENGTH

I
Alpha particles are emitted during the decay of 238pu with an energy of

5.50 MeV. They eventually lose thleenergy by collision with the oxygen
. and plutonium atoms pre_sent in the PuO 2 fuel. The loss in energy, per

:, ,1 unit of path length traveled by the alpha particle, may be determined from
:' the expres sion:

7,

:E . t
7'"

_" i_ where

!!il Ii = the mean excitation energy (52) of the material species, i.

: ' '_":::"'I The mean excitation energy was assumed to be 91eV and 893eV for the:..:...:' oxygen and plutonium isotopes (36)

.';i?", ! E_t = the energy of the alpha panicle (MeV)

... N i = the atomic density of the scattering nucleus (atoms/era3).

A more detailed discussion of this subject is given in the excellent article

by Pano (36).
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APPENDIX I

180(_, n) 21Ne NEUTRON YIELD

The 5.5 MeV alpha particles emitted by the radioactive decay of plutonium

238 interactwith 180 by a Inelasti,_collisionto produceneutrons. The

alpha particlein thls(a,n)reactionwillhave a maximum energy of 5.50

MeV and a possibleminimum thresholdenergy

P'th= -(I+ ma)O
mu

Q is the energy equivalentofthe differencein masses of reactantsand

productsofthe reaction.Thls term isdiscussed in more detailin Appendix

G.

The incidentalpha particlewith energy P'th< Eth< 5.5 MeV collideswith

180 and forms the compound nucleus 22Ne. The 22Ne emits a neutronand

decays tothe excitedand ground statelevelsof 21Ne. The yieldand Q

values from thisreactionwere given in Section3.3 as: 55% to the ground

state(Q = -0.70 MeV), 35% to the firstexcitedstate(Q = -1.05 MeV),

10% tothe second excitedstates(Q = -2.43 MeV), and i% tothe third.

excitedstate(Q = -3.54 MeV).

The number of neutrons produced in each energy group J and the correspond-

ing Q value of the reaction was calculated according to the relationship:

Nj(Q) a(Ect)Eai .(Ej) i/2du dEa
J (zj+ I)

3"8117x103 I161°ge_" "4823x10291E0t}+ 941oge [5 .4823 x lO2 Eat]893
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I

I where

I tT(E_) = the cross section for the formation of the 22Ne (38),

P'0_ = the energy of the alpha particle in MeV.

I bt(Ej+l), _t (El) are the lower and upper values of cOS%m from which

the energy group j can be produced.

The number of neutronsproduced ineach energy group J, by the decay of

] the compound nucleus through22Ne allpossibledecay channels,was

calculatedas

, Nj = 0.55 Nj (-0..70)+ 0.35 Nj (-1.05)+ 0.10 Nj (-2.43)+ 0.01Nj(-3.54)

where

,,%

._ Nj(-0.70),Nj(-I .05),Nj (-2.43),and Nj (-3.54)are the number of

i_,. neutronsproduced fromthe particularQ value reaction.

.... The sum, _Nj isdeterminedas the totalnumb6r of neutronsproduced inthe

] 180(a,n)21Ne reaction. The fraction Nj/_Nj as calculated for an arbitrary

10,000 groups J, is plotted in Figure I-I.

!
The equation relating the neutron energy, En, the incident alpha particle

energy, Ea in the laboratory system of coordinates, to the angle of scatter,
8oreinthe centerof mass coordinatesystem is

:: En = a(Ba) + b(B0_) cos acm

I

!
i 1C3
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!
i_ This equation has been derived and discussed in Appendix G.

To lllus_ate the relationshipbetween _'n'E_ and 8cm (angle of scatter),

Figure I-Ifwas tabulated for the following oonditions:

•, O = -0.70 MeV; the Q value for the inelastic collision whiah will

yield the ground state of 21Ne.
t'

MNE (mass of 2110TM isotope) = 21 .00000 a.m.u .,

_i M N (mass el incident neutron)= i .008665 a .m.u.,

Me (mass of target nucleus 180) = 17.999160a.m.u.,
!?
T

Ma (mass of alpha particle) = 4.001506 a.m.u, where a.m.u, is the

_i standard atomic mass unit.
i

.c,'
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FIGURE I-II
' NEUTRON ENERGYAS A FUNCTION OP ANGLE OF 8GATTER

IN THE C-M SYSTEMWITH ALPHA PARTICLE ENERGY AS THE PARAMETER
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I APPENDIX l

I
INTEGRATION OF 180 (a, n) 21Ne SPECTRAL YIELD

I

n°u,.on.(]_j) = 1,22 x I04 _8pu j j (3.5)

J=EL J=ELwhore

' Nj = 0.55 N)¢Q = -0.70 MoV) + 0.35 Nj (Q = -I.05 MoV)

, + 0.10Nj (Q =-2.43 MeV) 4- 0.01 Nj (O =-3.54 MeV) (3.6)
J

and

!! _, NJ = the total number of neutrons produced by the 180(_,n)21Ne

II J reaction.
N.

." N(Bj)= the number._ neutronsinthe laboratorysystem, between

. EL and EH, the lower and upper energy limit of the interval.

The number of neutrons in each group J, for each Q value, was numerically

integrated according to the relationship:
4..

" L

' ._(E.I)

where

_ _(B) = cosine of the scattering angle in the center of mass

coordinatesystem,

I
• I :_07

O0000002-TSE12



il

"t

i

--_ Nj - the number ofneutronsineach group J inthe laboratoryI system of coordinates(j= I0,000 was used inthe cal-

culations},

I _ (Ea) = the compound (a,n)nuclearcross_sectionforthe 180

rsactlen(39!,correctedto the laboratorysystem ofco-

'_ ordinates,

, F.a ,, the range of the alpha particle energy appropriate to group
,,i
_, J and each value ofQ.

'i Since iso_ropicscatteringtsassumed inthe centerofmass coordinate

system, the integral in equation (3.7)

_(%} 7.(zj) _(zj)

|_i;['_'::I:'I / i/2 du = /1/2d(cosScm) = fl/2slnecmdScm, (3.8)

I:

llii!':! oorro,,on,,*o ooo*n,contributing to group J _n the laboratory coordinate system.

:,:,:_ If_thecompound nuclearcross.sections_ (Ec_are plottedas a functionof
I incidentalpha particleenergy,Shapiro(39) suggeststhatalthoughthe dis-

tributionwillhave the correctshape, the numericalvalues ofthe compound

"! nuclearcross sectionsmay be low. To correctforthisfactthe fraction
_4

_:_ J=Ei J

Ii 108
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was calculated and multiplied by l .22 x 104 neutrons/sec-gm238pu, the

I experimentally measured yield of the 180(0_ ,_21Ne inelastic neutron re-

action rate in PuO 2 (the normnlizlng value of the tota_ yield from the

I 180(0¢' n) 2INs reaotlon).

I t

The nuclear cross sections for the formation of the compound nucleus 21Ne, i0

I were determined from the tabulated quantities of Table J-I , with g = 4 and .....
Vo/B = l .-0 as given by Shapiro (39) . The cross sections calculated by this

I method are normally given in terms of the aloha particle energies in the
cen_r of mass coordinate system. Table _-I gives the alpha particle

_i energies, converted _l. m the C. M. to the labora_:ory system and the cortes-=
pendingealc_latednuclear cross sections.

171 Although the da_a of Baird and Willard (33) is an excellent source of nuclear

cross sectionsforthe 180(0_,n)reaction,the lowest alpha partlcleenergy

is 2.25 MeV and thus thedata isdifficultto interpretforaveraged crass

sectionsnearthe resonance I_eaks;data foralpha particleenergiesdown

I_ to at/eaat__l.O..MeVis desirable .-

Ifthe relationshipbetween neutronenergyStoup, J,alpha particleenergy, E(x

and the angle of scatter,cOSecm_____ , inAppendlx G, iswrittenas

|
 (zj) = +/3 ,

1 then the following combination of integration limits apply for each neutron

I energy group J and va],_ Q, where, /a(Zj) = (+i), (-I) and (> - i and <+ i)are defined as cases A, B and C, respectively:

I (Ej) - (Ej+i)

I A-A = (I- i)/2;no neutronsin group j
A-B = (i-(-I)/2=I;allneutronsare ingroup J

! .
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I
!
_i A-C = (1-(e(_j œ�Ä�_))/2; some of the neutrons are in group J

B-A cannot occur since, /_(Ej)>/_(Zj+i)

B-B = (-1-(-1.01))/2; no neutrons in group J

B-C same as B-A

" C-A same as B-A

C-B = (aEj + _ + 1)/2; some neutrons are ir_group J

C-C = _(Ej -Zj+t)/2; someneutrons_,r_in groupj

a _/

1
II
I
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I
TABLE l-I

.'1 e

NUCLEAR CRO88 SECTION8 FOR FORMATION

I OF 180 (=,n) 21Ne COMPOUND NUCLEUS (38)

I
I

E_.(MeV) __(E,y)(10-24 barns)

ii:
i..222 2.52 x L0"3

1.834 10.69 x 10-3
2.445 17.32 x 10-3

3.056 48.36x 10-3
3.667 23.7.5 x 10-3

4.278 166.04 xlO -3
4.890 189.30 x 10-3

I 5.501 198.13 x 10-3

!
!
I
I
!

I
I
i.l 111
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I
I APPENDIX K

CONTAMINANT LIGHT ELEMENT (a, n) NEUTRON YIELD

Low atomic number elements present as contaminants (l) which _ ...................................................

i unifort_ly mixed with the, plutonium isotopes in the oommerical PuO 2fuel, produce additon_l neutrons by the (a, n) reaction with the impurity

•" _. given element (3' 53, 54).

-. The neutron y',eld Ny, for the X(a, n)Y reaotton with the given LmpurRy

'. element X, where X is uniformlymixed with the PuO 2, may be obtained
0 aS ,

T,
NF = KXNpttTx Sx N_;

. . SpuNpu + SxN x ..

! where

!i •
the yieldis the number of neutronsl_rOducedpergm of Pu permillion

ofthe contaminantelement,X,
partsby_lw_e_ight

K = the 238pu fractlonof plutonium,

k = the 238)u disintegrationconstant,

' Nx ffithe number ofatoms of element X,

I Npu = t'_:.._,number of atoms ofthe plutord.umpresent,

, Tx = the thicktargetyieldforthe elementX (yieldproducedby the

I alpha particleincidenton the thicktarget _omposed of the

elementX).

Sx = the atomic stopping power for the alpha particle incident on

i materialspegies, x.
z

Neutronyieldswere calculatedusing the thicktargetyieldsand atomic
tE_

I stoppingpowers data given in.TableK-I,

!
:1 112
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I
The (a, n) neutron yield Ny was calculated using the approxtmate rela- - ....

I tlonsh_p

/........1............................/A'/ I_._I
I where

il No = 6.024 x 1023, Avogadro number,

Ax = the atomic mass o! the elementx. I

Ifmlnl_numand maximum valaes ofthe ratioofthe atomic stoppingpowers

_i are multiplied by the minimum, and maximum _ick target ytetd, respectively,
Table K-II yields result.

[

:I
1
!
!
I
ii 113
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I

)/c,,IwZ=oonumr_. +7 \_/zp,_,7"

I ** these unoertaintiemwere given as +25%, -40%.

I

114
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I T_BLB K-II
LIGHT _LEMZNT (_,n)YIgLD

.| (neutrozm/_ea_gm Pu, per ppm impurity)
I

Element Ma_mum Yield* Minimum Yield* Yield (2)

f
Ll 5.5 4.3 4.6

i

ii Be 191.0 126.5 133.
/

B 46-.9 35.1 41.

l G .3 .2 .2
t"

N u _ m

j'r'_ 0 .2 .l . I

22.7 I_.2 18.o

_ii Na 2.7 1._ z.2 '

Mg 2.4 1.8 2.1

::' A1 1.3 .9 1.0

Si .3 .2 .2

;',_i * The maximum and minimum yields- . e not observed yields , but calculated

using all posstSle thick target yields and srop,pin_ pewers given in the

literature, The values will inelude uncertainties in the observed thick

target yiel_s._hen.uaed_by the reader ..........

I1

i,
!!

_ ......._._, _,_':.-_---.:-_----T'III-:T _ _:-:-_-C-__;"._-:"_72/-1_..__.-'2';._.._'-_.._-__:'C-_.:_".'_-.-:_:-_. - " :__.'2-_" _-:-r-.._:.... _.: .,'!_;,:_.._
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