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SIMPLIFIED THERMOCHEMISTRY OF OXYGEN IN LITHIUM
AND SODIUM FOR LIQUID METAL COOLING SYSTEMS
by Leonard K. Tower

Lewis Research Center

SUMMARY

Plots of oxygen chemical potential against composition of lithium - oxygen solutions
and sodium - oxygen solutions for a range of temperature were constructed. For each liq-
uid metal two such plots were prepared. For one plot ideal solution behavior was as-
sumed. For the other plot, existing solubility limit data for oxygen in the liquid metal
were used to determine a first-order term for departure from ideality.

. The use of the plots in evaluating the oxygen gettering capability of refractory metals
in liquid metal cooling systems is illustrated by a simple example involving lithium, ox-
ygen, and hafnium,

INTRODUCTION

The use of liquid alkali metals as high temperature heat transfer media is being ex-
tensively investigated. Familiar applications include forced convection cooling loops in
nuclear reactors. Recently, heat pipes containing alkali metals have been proposed as a
means of removing reactor heat (ref. 1).

Because of the elevated temperature in these systems and the high chemical reac-
tivity, some rather difficult materials problems are encountered. For instance, corro-
sion of containment vessels by the liquid is observed. Solution of the vessel wall by the
liquid metal has been studied (ref. 2) and found to be aggravated by small amounts
of oxygen dissolved in the wall material (ref. 3). The formation of a soluble ternary
oxide of the refractory and alkali metals is suspected as part of the corrosion mechanism
(refs. 4 and 5) for some refractory metals. ‘

Because oxygen in liquid metals at'elevated temperatures is apparently a cause of
corrosion, various schemes have been proposed for alleviating the problem. The alloy-
ing of oxygen-gettering elements with the metals used in containment vessel walls
(ref. 6) and the use of gettering traps have been proposed.



The success of such methods depends on the relative chemical potentials of oxygen
in the liquid metal and in the gettering materials. An estimation of the chemical poten-
tial of oxygen in the liquid metal becomes necessary in assessing the feasibility of getter -
ing methods.

No direct measurement of the chemical potentials of oxygen in the liquid metals is
known to exist. This information must therefore be inferred from solubility limit data
for oxygen in the liquid metals. This task is undertaken in the present report for lithium

and sodium, two coolants of considerable interest for nuclear reactor application. ,
‘ The present report contains plots of chemical potentials for oxygen dissolved in lith-
ium and in sodium as functions of temperature and concentration of oxygen in solution.
For each liquid metal two such plots were prepared. The assumption of ideal solution
behavior was made in constructing one plot. For the other plot existing oxygen solubility
limit data was used to determine the coefficient of a first order term for departure from
ideality. The form of the expression used for this nonideal correction was essentially
that of the regular solution (ref. 7). The use of the chemical potential diagrams in as-
sessing chemical stability of a system containing refractory metal, alkali metal and ox-
ygen is illustrated by an example involving hafnium,

‘Because of the uncertainties in the solubility limit data analyzed and the arbitrary
nature of some of the assumptions, thermochemical data herein for the nonideal case is
at best very tentative. The ideal case has been included for comparison so that the sen-
sitivity of the computed thermochemical results to the assumptions made in the analysis
can be assessed. The potential importance of liquid metal cooling systems to nuclear
reactor technology makes such tools as devised here for the analysis of thermochemical
problems necessary until more definitive information is available.

ANALYSIS AND DISCUSSION

Coordinates of temperature - composition phase diagrams have sometimes beenused

to determine the thermochemical properties of solution phases. Various analytical meth-

“ods have been devised for this task, some of them suitable for binary metallic systems
(refs. 8 to 10) and some for multicomponent systems (refs. 11 and 12). The methods
consist of determining the values of constants in Taylor series or similar expansions re-
lating the chemical potentials of the solution components to composite-variables.

In a study (ref. 13) related to the present one, the thermochemical properties of a
system containing cesium and oxygen was computed from an experimental phase diagram
(ref. 14). This diagram covered a far greater composition range than the solubility limit
data available for oxygen in lithium and in sodium. The method of references 8 to 10 as
used in reference 13 is not suitable for oxygen in lithium and in sodium.



A very elementary approach will be employed herein. The first assumption made is
that the components of the lithium - oxygen and sodium - oxygen systems are Li, Li20
and Na, Na,O. Experimental evidence shows the presence of O™~ ions in liquid alkali
metal systems containing oxygen (refs. 15 to 17). Even a small concentration of such
ions might affect the electrical conductivity (ref. 17) or play a role in the kinetics of the
corrosion mechanism (refs. 15 and 18). The absence of any quantitative data for concen-
trations of O relative to total oxygen in liquid lithium or sodium precludes considering
the effect here.

The second simplifying assumption is the applicabilityA of the so-called regular solu-
tion approximation in a modified form. Regular solution behavior has been found in
many binary systems involving metallic species (ref. 19). In systems exhibiting this be-
havior, p, and . of species a and b are given by

4y = p + RT In(1 - x) + Lx* (1)
o 2
ub=pb+RT1nx+L(1—X) (2)

where uo designates the free energy of the pure liquid at the temperature T in ques-
tion, x is the atom fraction of b in solution, and R is the gas constant. Ideal solution
behavior occurs when the interaction parameter L is zero.

Sometimes nonideality in solutions is handled by defining activity coefficients Ya
and ¥, such that (ref. 20)

My = ug +RT Iny,y (3)
W, = pp + RT Inyx 4)

where x =1 -y. The parameters Ya and o generally vary with x. If Ya - constant
as y —~0, Henry's law is said to be obeyed in the limit. If Yo < 1 as y —1, Raoult's law
for ideal behavior is obeyed in the limit. Similar considerations apply to Y- The be-
havior of equations (1) and (2) in the foregoing limits is seen to be nearly the same as
that of equations (3) and (4). The principle difference is that L either is assumed con-
stant or has a temperature dependence of the form L = L0 + LlT (ref. 19).

The modification adopted here consists of setting L0 = 0. Equations (1) and (2) then
become

iy = 1O + RT [In(1 - x) + Bx?] (5)



b, = B2 + RT [In x + B(1 - 0%] (6)

This modification will be shown to be advantageous in handling the experimental data for
oxygen in lithium.

Oxygen in Lithium

Measurements of the solubility of oxygen in lithium are reported in reference 21.
Solid dilithium oxide was placed in contact with lithium. The amount of oxygen remaining
in the lithium after filtration was then determined by analysis. Table I presents the re-
sults from reference 21.

The oxygen concentrations are also converted in table I to equivalent mole fractions
x of dilithium oxide (Li20) in a solution of Lizo and lithium. This is consistent with the
assumption herein that all dissolved oxygen is in L120

At the condition of saturation, Li O in the solid phase must be in equilibrium with
L120 in solution, and the free energy (FT)LI O( ¢) of crystalline L120 must equal the
chemical potential of dissolved L120

Equations (2) and (6) for b as L120 were evaluated for parameters L and B from
the x data in table I. Free energies of fusion, (AF’%)Lizo(c,l)’ for Li20 from refer-

ence 22 used in the computations represent an extrapolation into the supercooled region
for Lizo(l) since the temperatures are below the freezing point. The resulting L from
equation (2) and B from equation (6) are listed in table I.

The mean value of B for the data in table I is 1. 835 with a standard deviation of
0.221. No single satisfactory mean value of L can be determined from the data. If L
is permitted to vary linearly with temperature, a much better fit can be achieved, the
correlation being L = -1950 + 6.96 T. At the melting point of Li20, 1843 K (refs. 17
and 19), the value of L is about 9970.

Allowable values of L and B are limited by theoretical considerations discussed
in the appendix. The maximum allowable value of B is shown there to be 2. The max-
imum allowable value of L at the melting point is about 7300. Since the value of L ex-
trapolated from the experimental data exceeds this, the B formulation of equations (5)
and (6) was used herein with B =1, 835.

The solubility limit x for Li,O in lithium computed from equation (6) using this

B with (AFT)leo(c) fromaxt'eference 22 is shown in figure 1 against reciprocal temper-
ature. Also shown are the experimental data points from reference 21 used in determin-
ing B. The ideal solubility limit determined from equation (6) by setting B =0 is shown.
In the temperature range of the experimental data about two-thirds of a decade separates
the ideal and nonideal solubilities.
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Equations (5) and (6) with B = 1.835 together describe the thermochemical prop-
erties of the Li - Li20 system. For convenience in studies involving the presence of ox-
idizable materials, the thermochemical base is changed from LiZO(s) and Li(s) to an at-
mosphere of diatomic oxygen in equilibrium with the Li - Li20 solution. For the reac-
tion

Li,O(s) = 2Li(s) + = Oy(g) %)
2
thermochemical equilibrium requires that

N 1
“Lizo(s) - 2“Li(s) + 5 “Oz(g) (8)
Here,
= (F° = (F° RT In 9)
ko,(e = (Fr)o, = (Fro, *+ Po, | (

where the pressure p for thermochemical purposes is in atmospheres (1 atm =
1.013x10° N/m). Combination of equations (5), (6), and (9) yields

AFO AF? AF2
In po = (__T> = (__f) + <_T> +1n —x + B(l -2x - Xz) (10)
2 RT O2 RT LizO(c) RT Li20(c,1) a - x)2

where the standard state free energy of formation of LiZO(c) is

‘ 1
(aFg )Lizo(c) = (F'%)LiZO(c) - 2(Fp) L) - 5 (F9r)02 (11)

Values of [(F,(I),) - (Hggs)]/T for Li,O(c) and Li(c,1) were taken from reference 22, while
0 0 '
[(FT) - H298):|/T for Oy(g) and (Hf’ 298)L120( ¢) Were from reference 23. A plot of equa-

tion (10) appears as figure 2(a) herein. Figure 2(a) shows (AF% /RT)o against mole
fraction of Li20 in solution, for several temperatures. 2

By setting B = 0 equation (10) was also evaluated for the ideal case. The results
are shown as figure 2(b). Comparison of figures 2(a) and (b) reveals that (AF,% /RT)02

is higher (less negative) by about 4 units in the nonideal case. This amounts to about



23 000 joules per mole (5500 cal/mole) at 700 K and about 59 000 joules per mole (14 000
cal/mole) at 1800 K.

Oxygen in Sodium

Many determinations have been made of the solubility of oxygen in sodium. Refer- -
ence 16 summarizes and discusses data of many investigators taken prior to 1966. This
body of data together with subsequent information was evaluated critically in refer-
ence 24. The following standard equation for the solubility of oxygen in sodium was rec-
ommended as a result of the evaluation:

log;q § = 6.239 - %ﬂ (12)

where s is weight parts per million of oxygen in sodium. Converted to mole fraction x
of sodium oxide in solution equation (12) gives

log x = 14.37 - 5634 (13)
T

By using equation (13) together with equation (6) and values of (AF’CI)‘)Na o(c, 1) from ref-
2 ’

erence 22, B was evaluated at several temperatures encompassing the range covered by
the many investigators whose data contributed to the construction of equation (12). These
temperatures and the corresponding values of B are 400 K, 1.75; 500 K, 1.92; 600 K,
2.13; 700 K, 2.33; 800K, 2.53. The mean of these values of B is 2.13.

While B is understood to be a constant, the values determined from the curve fit of
reference 24 show a decided trend with temperature. Another approach would have been
to solve for B for each data point used in constructing equation (12) and to take the
mean, The amount of scatter in the data together with the number of assumptions in-
volved in the present analysis makes such an effort unwarranted.

The mean B of 2. 13 deduced from equation (12) exceeds the maximum allowable
value of 2 discussed in the appendix. For the Na - Na20 studies herein a value of B = 2
will be adopted.

Figure 3 shows the solubility limit Koot against reciprocal temperature for Na20 in
sodium, computed from equation (6) usinga B of 2 and (AF%)Na O(e,1) from refer -

ence 22. The ideal solubility limit found by setting B = 0 in equation (6) is also shown,
together with equation (13) from reference 16.



Figure 4(a) is a plot of (AFOR/RT)O against mole fraction of NazO in solution with
2

sodium at several temperatures for oxygen in equilibrium with the solution. The data
were computed for B = 2, the nonideal case, using equation (10), with thermochemical
data from reference 22. Figure 4(b) is the corresponding plot for B =0, the ideal case.

Example Using Oxygen-Contaminated Lithium in Contact with Hafnium

The use of figures 2 and 4 in evaluating the chemical stability of a system containing
a refractory metal in contact with oxygen-contaminated lithium can be illustrated by an
example involving hafnium. Hafnium is a common constituent of alloys that are being
considered for structures containing liquid alkali metal coolants. The hafnium in part is
intended as a getter to counter oxidation of the other alloying constituents.

The equilibrium between Hf02(c) and Lizo(s) is expressed as

2L120(s) + Hi(c) ::HfOz(c) + 4Li(s) (14)

which requires that

21L,0(s) * (FDui(e) = (FPr)Hfoz(c) +4ug4(s) (15)

Equilibrium (14) can be expressed as the sum of the following equilibria;
2Li,0(s) =4Li(s) + Oy(g) (16)
Hf(c) + Oy(2) ::Hf02(c) (17

The condition for equilibrium (16) to exist is given by equation (8), which can be reexpres-
sed as

2114,0(5) ~ 41Li(s) - (FDo,(e) = (AFT0,(g) (18)

For equilibrium (17) to exist,

(F%)Hf(c) + <FT)02(g) = (F 'Zol‘)Hfoz(c) (19)



: 0 . - .
Subtracting (FT)Oz(g) from both sides of equation (19) gives

(AFPI‘)Hfoz'(c) = (AFT) O,(g) (20)

where (AF?)Hfoz is the standard state free energy of formation for Hf02(c). When
(AFT>02(g) in equations (18) and (20) are equal, these equations can be combined to ob-
tain equation (15), the condition for equilibrium (14). A line of (AFT/RT)OZ(g) =
(AF?/RT)Hfoz( ¢) (see eq. (20)) is plotted on figure 2(a) for nonideal solution behavior,

and on figure 2(b) for ideal solution behavior. The HfO2 data are from reference 25.
The line and its x coordinate will henceforth be designated as x(HfOz).

For Na20 in solution (fig. 4) the line for x(HfOz) cannot be plotted since its small
magnitude places it too far to the left. The effectiveness of hafnium in gettering oxygen
from sodium is thus illustrated to be much greater than in gettering oxygen from lithium.

For Li20 concentrations to the left of the line x(HfOz) on figure 2, HfOz(c) will not be
stable, while to the right of the line it will be. To determine on which side of the line
x(HfOz) a given Li - Hf - O system lies, an inventory must be made of the total moles of
lithium (NLi)’ of hafnium (NHf), and of atomic oxygen (NO) in the system. All phases
and all compounds must be considered in the inventory. For this example the gas volume
will be assumed small enough to contain negligible material.

A simple criterion for the stable existence of HfOz(c) can be readily derived. In the
presence of stable HfOz(c) the excess oxygen forms Li20, the number of moles of which
are

N, .
L12

Of the total amount of lithium, NLi in the system, the amount as free lithium is

The number of moles of solution is
Nso1 = N1+ N0 (23)

The mole fraction x of Li20 in solution is then



x=—2 - (24)
Li"2 Hf'No

For Hf02(c) to be thermochemically stable

X = x(HfOz)
or

NO-2N

= x(HfO,) (25)
Ny + 2Ngg - Ng

If criterion (25) is not satisfied, HfOz(c‘) cannot be stable. In such a case the concentra-
tion x will be less than x(HfOz).

The example for HfO2 can be extended to other hafnium oxides and to solutions of ox-
ygen in hafnium when currently unavailable thermochemical data become available. Re-
cently the compounds Hf30(c) and Hf60(c) have been identified (ref. 26). Lines for these
compounds should lie to the left of Hfoz(c‘) in figure 2. Solid hafnium can contain up to
7 percent oxygen in solution (ref. 26). The lines of (AFT/RT)O2 for varying concentra-
tions of dissolved oxygen in hafnium will lie still further to the left of x(HfOz) in figure 2.

Hafnium as a minority element in some refractory metal alloys such as T-111
(tantalum - 8 tungsten - 2 hafnium) is in a single phase solution. For this case (F’?‘>Hf(c)
in equation (15) must be replaced by a chemical potential pertaining to hafnium in the
metal solution. An additional complication is the possible formation and solution of
L12Hf03 in lithium (ref. 2).

The foregoing example, despite the dearth of thermochemical data for hafnium ox-
ides and for oxygenated lithium, illustrates the procedures involved in estimating the ef-
fectiveness of getters for removing oxygen from alkali metals, The constructions in fig-
ure 2 provide a first order estimate of this gettering effectiveness for the Hf - O - Li
system.

CONCLUDING REMARKS

Plots of oxygen chemical potential against composition were presented for solutions
of oxygen in lithium and in sodium at several temperatures. Because of the uncertainties
in the experimental data used to construct the diagrams for nonideal solution behavior
and the assumptions required, plots were also presented for ideal solution behavior.



Comparison of the results for the ideal and nonideal cases gives an indication of the
sensitivity of the thermochemical results to the assumptions made in the nonideal anal-
ysis. The potential importance of liquid alkali metals in nuclear reactor cooling systems
justifies the use of the tentative data presented herein in analyzing problems involving

oxygen contamination until better data can be derived.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, July 7, 1972,
503-25.
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APPENDIX - UPPER LIMITS OF L AND B

Upper limits of L and B are imposed by thermochemical requirements. At fixed
temperature

iy = (Fp)p(e) (A1)

for x = Koot Otherwise, the purported x sat must be conceded to be erroneous and the
saturation line at that temperature shifted to a smaller value of x where p does in-
deed equal (FT)b( ) Figure 5(a) illustrates the situation which would exist in such a
case, This figure is drawn in such a manner as to suggest that one requirement for the
saturation point X ¢ 1s that the variation of ) with x be monotonic at x =x

For equation (2) to be monotonic,

sat’

3
<_“l’> BT 51-xL=0 (A2)
ox /T X

for x = Xgat-
A possible variation in T8 which satisfies inequality (A1) but not inequality (A2) is
sketched in figure 5(b). The situation depicted requires that a point of inflection lie be-

tween two real roots of inequality (A2). For a point of inflection

82 L
by __RT o1, _9 (A3)
8x2 T x2
the only positive abscissa of which is
x = 4/BL ' (A4)
2L

The locations of the maxima or minima of inequality (A2), where (3 “b/ ax)T =0, are

2R
L

|

x=1: 1- (A5)
2

D |t

If the point of inflection is to lie between the roots of aub/ ox as depicted, equations (A4)
and (A5) require that

11



‘/Blzl_l‘h-ifﬁ ‘ (A6)

2L 2 2 L :

‘/1-.2_@21-2‘/5! (A7)
L 9L

or

Squaring equation (A7) gives

1_3.3'_1'21_4‘/R_T+ET ' (A8)
L 2L L
and
4‘/I£24R;T (A9)
2L, L

Squaring again and rearranging result in

Ly (A10)
RT

However, for real x, equation (A5) requires that L/RT =< 2. Except for the special case
L/RT = 2, x = 1/2 these are contradictory requirements. The conclusion follows that the
situation in figure 5(b) cannot exist for chemical potentials obeying equation (2). The var-
iation of py, with x must therefore be monotonic, with inequality (A2) applying for

X =X

sat’ ,
From inequality (A2)

L<_RT (A11)
2x(1 - x)

The minimum value of the right side, occurring at x = 1/2, is 2RT. Therefore, the

maximum allowed value of L is L = 2RT.
Precisely the same arguments, applied to equation (6), give B = 2.

12
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TABLE I. - ANALYSIS OF SOLUBILITY DATA FOR

OXYGEN IN LITHIUM FROM REFERENCE 21

Temperature, | Oxygen in [ Mole fractionof | L B
°c lithium, |LisO in solution,
wppm x
250 58 2.516x10°8  |2185]2. 102
74 3.210 1932 1.858
85 3.687 1788 | 1.720
92 3.990 1706 | 1. 641
96 4. 164 1662 1.508
101 4.381 1600 | 1.547
109 4.728 1529 | 1.471
121 5.248 1421} 1,367
300 176 7.634x10°% | 2190 1.923
190 8.241 2103 | 1. 846
193 8.371 2085 | 1. 830
205 8. 892 2016 1.770
212 9. 195 1978 | 1.736
214 9.282 1967 1.727
214 9.282 1967 | 1.727
237 1.028x10~% | 1851|1.625
253 1.097 1776 | 1. 560
350 348 1.510x10°% | 2483(2.005
368 1.596 2415 1.950
374 1.622 2395 | 1. 934
383 1.661 2365 1.910
392 1.700 2337/ 1. 887
396 1.718 2324 | 1. 876
400 477 2.069x10™%  |3165]2.366
529 2.295 3027] 2. 262
604 2.620 2849 | 2. 130
729 3.163 2508 1.942
730 3. 167 2596 | 1.941
761 3.302 2540 1. 899
766 3.323 2532/ 1. 893
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