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NOMENCLATURE

Some symbols which are used'only in small parts of the
paper are defined there but omitted from this table-

General tensor notation is used in the first part of the
analysis. In particular, the summation convention is implied,

and a comma preceding a subscript indicates covariant differ-

entiation.
cf - local skin friction coefficlent
cp - specific heat at constant pressure
Cy - gpecific heat at constant volume
e - internal energy
gij - matrix tensor
Gy, - - ratio of wall temperature to free stream stag-
nation temperature, TW/TS
H - see Eq. (7)
k - conductivity
K - u‘zué
M - Mach number
p - pressure
Prp - dimensionless constant
- vK
R - gas constant
ReX - ?:ZSEigsegggbeg gaiiﬁ on distance from the
> FeTe e
(k oT/9y ),
St - Stanton number, Cppeue(Taw'Tw)
T - absolute temperature
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T - adiabatic wall temperature

aw
Tg - free stream stagnation temperature
U; Or u,v,w, - velocity components
VC, VV R VTT - dimensionless constants
X; Or X,¥,2 - coordinate system
53 - Kronecker delta
Y - ratio of specific heats, cp/cV
99 - boundary layer thickness, value of y for
which u = 0.99 Ug
- .6
5M ~ value of 599 for ReX = 10
AN - scalar measures of length
M, l* - first and second coefficients'of viscoslty
p - density
o - ratio of mean density to mean temperature, E/T
Tg - stress tensor
o - see Eq. (6)
Y - see Eq. (5)
Subscripts
e - free stream conditions
s - derivative with respect to temperature
£ - derivative with respect to time
W - wall conditions

Bars indicate mean values and primes indicate departures

from the mean.
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1. INTRODUCTION

A simple analytical model of transition was constructed by
the authors in 1967 in order to study whether stream tube
stretching effects might be responsible for the low Reynolds
number transitions of boundary layers near the stagnation
points of blunt bodies (Ref. 1). This simple model was not an
invariant model and could not, therefore, form the basis for any
general theory of turbulent shear layers. The model dld, how-
ever, predict a number of features of actual turbulent boundary
layers with sufficient accuracy to encourage its origlnators to
undertake the development of an invariant model designed expressly
for the computation of turbulent shear flows. For the case of
incompressible shear layers, the development of the model was
not too difficult (Ref. 2). Thé model for incompressible layers
follows closely the pioneering work of Kolmogorov (Ref. 3),
prandtl (Ref. 4), Chou (Ref. 5) and Rotta (Ref. 6) in that 1t
seeks a second-order closure of the equatlons for the mean and
fluctuating velocity fields that were originally studied by
Reynolds (Ref. 7). '

From the inception of our work on incompressible turbulent
shear flow, the ultimate goal of our efforts has been the
development of a method for computing the behavior of shear
layers iﬁ compressible flows. This aspect of our research
efforts in turbulent modeling has been supported in 1ts entlrety
by the National Aeronautics and Space Administration. 1In this
report, we will present the results that have been obtalned to
date under NASA contracts NASW-1777 and NASW-2224,

This study has been limited to the case of a flat plate
boundary layer where the mean pressure can be taken to be
constant. Thus, we restrain somewhat the complexity of the

analysis.



2. ANALYSIS

The basic equations used in this study are the following:

Continuity
p,. + (puﬂ) = 0 (1)
t Wb
Momentum
_ A b
puit + pu ui’£ = - p,i + Ti,ﬂ, (2)
where
b 3k N J £ ”
Ty = eYlniug g tuy gt O5HRU, (3)
Energy
4 A
+ = - + Y 4
peg tpue 4 pu ', + Vv (4)
where
¥ o= ¢ - H (5)
and
_.m 4
¢ = TP (6)
.o L, o
H= -g (.»\1’2),m (7)

The thermodynamic relations of a "ecalorically perfect'" gas are uged
p = PRT (8)

e = c T (9)

where R and CV are constants.

Writing the dependent variables in these equations as the

sum of a mean and fluctuating part (p = p + p', for example), we



can deduce equations for the mean quantities and the second-

order correlations of the fluctuations by protracted manipula-

tions. The resulting set of equations will be less formidable

if we make some simplifying assumptions. They are
1) Fourth-order correlations are neglected.

2) Third-order correlations involving u, u¥*, or-
neglected.

3) The fluctuations p' and T' are related by
pT! + Tp' = 0

4) The mean flow is steady. -

5) The mean pressure is constant

P . =0
Py =

are

(10)

(11)

6) The fluctuations in viscosity and heat conduction are

related to the temperature. fluctuations by  the

expressions
1 = 1
" hgT
¥1 = K
K ~ugT
k' = k_T"
S
1 = 1
Wiy = HgT
*¥1 = % 1
u,i LLsT,i
t = '
k,i ksT,i

where the subsdript s denotes a derivative with respect to

temperature evaluated at T

(12)

(13)

The- first two of these assumptions.are based on the known

properties of compressible turbulent boundary layers; the terms

in question are at least quite small if not -entirely negligible.

The third assumption needs further explanation. If the mean of

the equation of -state
| 5 = R(FT + p'T7)

is .subtracted from the equation of state (8), we obtain

(14)



p' = R(pT' + Tp' + p'T' - p'T") (15)

Experimental evidence [Ref. 8] shows that for a boundary. layer
on a flat plate :pf/ﬁ is- small in comparison with T'/T and
p'/p . On this basis we assume that (15) is dominated by the-
first two- terms on the right-hand.side, i.e., that (10) is true,
and that p' is of the order of the last two terms in (15).

The fourth and fifth assumptions are appropriate to- the
flat plate boundary- layer flow under.investigation. The sixth
assumption.is justifiable when the first two assumptions are:
valid.

The divergence of.the velocity fluctuation u:ﬁ_ is
evaluated by the following steps. The equation obtained by
subtracting the mean of. the continuity equation from the- contin-

uity equation itself may be interpreted as the relation govern-

ing p' .. It.is linearized in the fluctuations, giving.
iy . ' .y
'+ O o'+ ou! + v ooty =0 16
pg- T wp! urtp o, Fopuly teplu, (16)

A similar procedure using the energy-equation yields

A " iy - A= _
_pel + pu e:z + p'u-e’z + pu'-e’ﬂ =
- T E‘fﬁﬁ VR (a7

Using (9) and (10) and taking into account the assumptions noted

above, (16) and (17) can be combined to give

u:L——*lwl (l8)

It is now practical .to writé the equations for the mean

quantities and for the-seéond;order correlatiohs. They are
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+

Sut? ! zcu!T' cu'ﬁu!T'> =
i i i s
-4

(5u'£ﬁ{uj - ﬁgou{ujT'>’£ + <ou'ET')’£uiuj

' =k~ - somats £ izs
ouﬁTlu ui,ﬂ ouiT u uj g U ujpuizﬂ

s

——

'gtl— - 1 1Mty _
ujT ui,ﬂ ou uiT uj,ﬁ =

7, --
u! uipuj,ﬁ - ou!

+ p'ul , + u!Ti’z + uiijﬂ (21)

y4

+

(fulrinr - ahoTiTy )

y 4

+

(5u'zT' )JT'T' - 20T'T'ﬁ£"f‘,ﬁ

+ 2u!'"T'pT 4" 2ou!

b

Lo 5T Loami zi|=

2 b4 i
=3 Tyt - 2p'T'u’z (22)



{ ~=1 -4 - / T\
Cy Lpu (uiT'))ﬂ + (pu‘ uil' - u ouiT'T‘))z + \Gu' T'))zu{T'
oy _2- 7 =
- ouiT'u T,B - ol'Ttu ui,ﬂ + u' uipT’z
-
i = To- L
+ u' T'pui,ﬂ - ou' uiT'qﬂ_ou' T'T‘ui’z =
-
___]_- T - 1 r_'g - tm
= g upt ufptuly - ey (et g
ST J/
+ Cvp’T;i + CVT'Ti’ﬁ (23)
In these equations,
o = §/T (24)
-5 _ Rdli=(s - 1 J=xd
5= 8 !“\ul,ﬁ + u£’1> + g | T'J')£ + T'ué}1> + éiu*u,ﬂ
- (25)
V=% -H, v =¢' -H (26)
—  =m-4 - | mn , / Aom
¢ = Tﬁu) + u{ g uz,nu}m + (u u >,£,m
/- 44 . .
TR G un,ﬂ) Tt (27)
H= - g'® iw(fi"f ) o+ k_(T'T',) | (28)
{ B 5 b :mi
- F
sﬂ 1 ,,@ _ L ] _ 11 1 1
Witi g * Ty g = 8 !L(M“i“j),m),z 2uus Uy
- / ) . 2
+ Qu)ﬂ \uju;i + aiu; ;
- —
/@mf‘r_ -
*oHgE ﬂ (ui,m * um,i)ujT(J,ﬂ
iw 9 - 0 —‘} 9 . tyyt
Ty -
+ i(uj,m + um)J)uiT iy éui,m'kum,i)T ul g
_ o - ) * —m Nkl
(85, m+ B, 7700, 5+ 13 (a05T0),
A
/oW T _om Ty Tiyg! )
(T )5 T el Ty “m)J‘ (29)




2 Lm- = ( b E)
Tt — 1 1191 1
T Ti’z = g “T'ui,m,ﬁ + us{T,ﬁ g T ui,m + 'I"u,i
fm|, = = —
+ g [}u1,m + um,i)T'T'],ﬂ
fm, - - Py
t g (ul,m,ﬂ * um,i,E)T T'}’
1 * m {11
+ 5 Mg [:(U., T'T'>,i + u’m’lT'T'] (30)
ll__m.l-lz Y/ "( 171 ll)
ui¢ = Tzuiu’m + u,m[% g uiuﬂ,n + uiu’
R i} ~ w=d ~-m
FLE u'T'(uz’n + un,ﬂj} + usu’zu’mu{T' (31)
||_"'mt_|:2 £ "(mn 4 1 11)
T'o' = TﬂT u’m +ut [@ g Tu , + T u’ﬂ
Tl * ~m 1
+ g TT (uz’n + un)z)] v ppd” 00 TNT (32)
— = dor—m— £fm = ol
- THt 1 tmi
wH! = kg uiTjﬂ,m + kK & [}iT'T,ﬂ,m + 2T,£(uiT ),m
- o7 11! .
2T 4T ul,m] (33)
= 1 c- in| Ay — Lm(T'T'T )
— Tty - = tmt - 1 1
T'H' = 5 kg [ET T ),z,m 2T’£T’m] + k.8 , 47 ,m  (34)
We .now display the models used to close the above-listed set
of eQuations. As in Ref. 2, we set
1 _ - =4 ll_l
pluj g * Py 5= - P71 (39} - 3 euy%) (35)
where
®=x=ulyy (36)

and - A (A1 in Ref. 2) 1is a

scalar length to be determined.



To the same order that (10) is justified, it is unnecessary to
modify (35) for the effect of nonzero divergence of the turbulent

velocity field. By analogy with (35), we write

’ 1-. q ==
tmt . e =2 1t
p'T!y = - 3PPy 3 wlT (37)
where P is a dimensionless parameter,
Again following Ref., 2, we write
Tyt — —~ 117! Ty ! tip!
ujuiug = VCAq[}uiujlk + (ujuk),i + (ukui),%} (38)

where V _, 1s a dimensionless parameter,. (In Ref. 2, A2 repre-
sents VA .) Analogously we set

1 t | 1 1 l 1 1 A
uiujT = VVTAq[EuiT ),j + (ujT )’%} (39)
1 | S i
wiT!T! = VTTAq('I‘T')’i _guo)
where VVT and VTT are dimensionless parameters,.
In accord with the approximation (10), we model
Tl . '
uip' = 0 (41)

This corresponds to setting A3 = 0 in Ref. 2., By analogy,

p!'T' = O : (42)
We also set
Ty = O (43)
From Ref., 2 once more
—_— gmn uiui
1 — e e b
“,mt,n T T3 T2 | ()
Analogously, 8., uiT'
1 P decholt . A
“i,m',n T T3 T2 . (us)
g —_— _
= mn T!'T!
T:mT:n = —g—-—xg— (46)

In these models, X 1is another scalar length to be determined,.



We also set

wug =3 (Wu)) o (47)
1171 — l 11! L8
T uj 5 =3 gijT u’ﬁ (48)

As mentioned above, many of the models are taken from Ref., 2.
Most of the others are similar to models we have used 1in
studies of atmospheric turbulence [Ref. 9]. The models (43),
(47), and (48) are new to this study.

Using the notation

Sy

q/A (49)-

ST'= qu/A (50)

we substitute from (25) through (50) back into (19) through
(23) to obtain the following set '
-=f= Ty /. y/

- a 1 Y901 - gutulT!
puTuy ou' T'ui’ﬂ + [pu ug ou uiT

s

yptac®® (T + ()4 )] 4

+

o (I ) I (g I (51)

2 2

E '

u!"T £

- ou

O

TITT 4 VTTAqogﬂm(TJT“)’HJ;ﬂ

1 [-|_mn/- - )
S & (u'g)n " ung)u:m

i
|
ko]
o
-
S
+

+

(52) -

+
0"
=
3
o
=
=1
=
=
+
nj— >
P
]
=
3
>
=
RS
N



_z(

TIT?)

+

+

S veina (3o - o)1+ D))

Lo ((TTT T
[ku 4qo<(u£T )5+ (5T ),1)],13

I ) — oy
1 1 1 1 — 1 {
<cu T 4 uiuj OuiT u

- ______ﬂ__
- 1 1
uj,ﬂ oujT.u ui’z

- T -
pu' u{ui’ﬁ + pu' ujui’ﬁ

VVTAqggﬂm [<(9&T'),i ¥ (uiT'),m>aj,z

((uéT(),j +A(ujT')’m)ﬁi’é]'

173 ij ;
- OJut — 7 7
i ( ! )
2u 2 + “sT,ﬂ (u! ui)’J + (u! uj),i

g | Ty @ . (53
glm (VTTﬁAq(T'Tl),m e (cu'ETl),gT'T'

— - — Ji —
t I ! rm ITI
20T'T'u T’£ + 2pu'”T 4t 2g VTTAQG(T ) mT,z

2

2 mn~4§ ;- - ¥~ -m Py
c_ (usg v (uz,n M un,z) Mo zu,m> T

p a ’
L [Egﬂm(T‘T') - ok L
¢ I’ Xg
D
EKngm(T"T';T;E),m:] (54)
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[-3-1,1 (uj‘_Tl) gszfVTﬁAq<(uiT‘-);m * (uf;'lT|):i):l),e

oy rre—ws Iy
[VTTAqouz(T'T‘)’i],E + (ou' T')’zuiT'

+
-4~ e
- ¢T'T'u u.,ﬂ - ou{T'u T}z
R R ] 4m -
+ pu! T'ui’z + pu! u{T’z + VppAdog (T'T'),mui,ﬂ
E i —
+ VypAdog ((u{T'),m + (u&lT')’i)T,z

1 ) ulT! )
m(: = i m -
PR ) - g T
1 ulT?
- 2 58S T - O —
5 PepYy 2
| (e - TS -
+ g [(T|T'(u1,m + um,i)),ﬂ +T‘T'(u., -Fum,i),a
1 9« (———~ﬂn ) -m
+ 5 us[lT'T'u’m 1 + T'T'u’m’%] (55)

In these equations, o , n° , k, by uf , and k, are known
functions of T ; p 1s a known constant ; and from (14) and

(10) - |

p = ———— (56)
R(T - T'T'/T)
After nondimensionalizing the equations, we next expand
them by inserting numerical values for the free indices and
implementing the summation convention, This task was accomplished
by the computer program TENSR which was developed for this project
under NASA Contract NASW-1777. The resulting equations were then

11



reduced to their two-dimensional boundary layer form. In ‘
terms of the Cartesian coordinates x, y, z (instead of xl,i
Xy x3) and the velocity components u,.v, w (instead of u,
Uss u3), the criteria used for dropping terms were

w=20 (57)
3
55 =0 (58)
v << u (59)
d d
o o (60)
ox << oy
put with ud/dx the same order as vd/dy . In the resulting

equations, it can be observed that there 1s no production term
for v'w' and that the only production terms for u'w' and
WITT contain the factor v'w' . In addition, none of the other
unknowns depend on v'w' , u'w' , or w'T' in any way. We,
therefore, no longer consider these three quantities or the

equations governing them.
The resulting set of equations then becomes the following:

puu, + pvu, - ov'T'ﬁy + (5u'v’)y + (VVToAq(u'T')y)y:(ﬁﬁy)y
(61)
puT, + 56'fy - GV'T‘_T_.y + (pVITT), + (vTToAq(W)y)y
= = (v - D, + vg) « vy - 1)Mg
a[a§ S CAZp %]
y(FE), + % e (TTT) o (62)

12



pu(utu'),

pu(viv?')

pu(wrw')

Fa(aTT),

Fa(TTn),

)

pv(u'u')y + 2putviug - (VCpAq(u'u')

y'y

C.wta' -+ 58S (viv' + w'w')

uU 3 PPy

20u'T'(qu + vuy) + 2V’VTqu(u'T')yuy

Jl{utut 1ty

(p{u'ua )y)y + EuS(u T uy)y (63)
TJV(V'V')y - 3(VC§Aq(v'v')y)y + Cyyv'v!

1= Tt 1!
gpSV(u u' + w'w')

=gt T AT '
(B(v'vi)g)y = 2ug Ty (V1 )y (64)
EG(W'W')y - (VC;SAq(w'w_‘)y)y + Cyp¥'w!

1l - 19! 1yt
§p8ﬁu11 + v'v')

(R(w'w')y )y (65)
Svluty! Avivty  — 3 ty!

pv(u'v )y + pv'viug Q(VCpAq(u v )y)y
Cyyt'v?t - ov'T'(ﬁﬁx + Gﬁy) + 2VVT0Aq(v'T')yﬁy

T tu?t T (Gt LR

(p(utv )y)y + uSTy(u v )y + us(v T uy)y (66)
g 1 Tpim S L

PV(T'T )y + 2pv T}Ty (VTTpAq(T T )y)y

Copp T - EOT'T'(EE% + GE&) + 2VTToAq(T'T')yE&
(it 1T '
R((T'T') )y + 2k (T'T'T )y (67)
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ﬁﬁ(u'T')x + EG(u'T')y + 5(V'T‘ﬁy + u'v'ﬁ&) - (VVTﬁAq(u'T')y)y
+ Cypu'T! - oT'T'(uuX + vuy)- ou'T'(uTX + va)
+ oAq(VTT(T'T')yuy + VVT(u'T')yTy)
oo - - -
= - 1)M ty! kK(urT!
(v - DmZalarun) iy ¢ (RWTH ),
+ ks(u'T'Ty)y~+ " (T'T'uy)y + usT'T'uyy (68)
sulv! v 5 T - SAq(viTt
cu(v T')X + pv(V'T')y + pv'v'T‘_y E(VVTpAq(V'T')y)y
TITT - aulT'(aT ) vITT) T
+ Cyqpv'T ov!T (uTX + va)_+ 20AqVVT(v‘T )yTy
- - 2= o) o K(v ! T
' (69)
The mean of the continuity equation is appended to these
equations, 1i.e.,
(pu)y + (pv)y = (ov'T'), =0 | (70)

which is used to determine Vv since the equation for the
momentum in the vy direction 1s not useful for determining v
in a boundary layer.

The following new symbols appear in (61 ) through (69 ):

Cyy = (ov'T1)y f% + % oSy (71)
Cuyy = (ov'T')y + f%u+ 5SV (72)
Cpp = (ovIT!) = %E—- - 2(y - 1)M§usﬁ§ (73)
Cyr = (d;TTT)y + ax; k % pSp - (v - l)Mgusﬁ§ (74)

14



Me is the Mach number of the free stream and enters the equations
in the process of making them nondimensional. The viscosity M
has been made nondimensional by dividing it by peueL where L

is the reference length, Similarly, k has been made nondlmen-
sional by dividing by cppeueL. Note that, under the boundary
layer and modeling assumptions, the second coefficient of viscos-

ity up* has dropped from the equations entirely.

15



3. NUMERICAL STUDY

The numerical integration of Egs. (61) through (69) was
performed by an implicit finite-difference method. 1In this scheme,
nonlinear terms are handled by arbitrarily evaluating a portion
of such terms at the known position value, leaving a linear factor
containing one of the unknowns. For this system of nine equations
in nine unknowns, each element of the tridiagonal matrix which
arises in the application of the implicit method 1s itself a
nine X nine matrix. The process of writing Fortran statements
to evaluate the elements of these matrices was 1arge1y accom-
plished by a computer program called DIFFR which was also developed
for this project under Contract No. NASW-1777.

Theiprogram'that performed the numerical integraﬁion of the
finite-difference equations was debugged on the IBM 1130 at A.R.A.P.
Rental time on a META-4 facility was used for actual program execu-

tion.

The values of the parameters that have been found successful
in previoﬁsbnumerical studies (Ref. 2) were used. Accordingly,
A was set equal to the smaller of 0.7y and 0.15699 , Where
699(x) is the value of y for which u = 0.99 u, ; A was

determined from

AC =

a + bpad/iL

where a:.= 2.5 and b = 0.125 , and VC was set equal to 0.1
As a first approximation, we set VVT = 0.1 , VTT = 0.1 , and
P. = 1.0 gince these parameters did not appear 1n the earlier

T
studies.

The viscosity was determined by the Sutherland law with the
constant equai to 114°C . The Prandtl number was taken as 0.71
. A free stream temperature of -55OC and vy = 1.4 were used. The
initial conditions on u and % as functions of y were approx-

imately the laminar profiles appropriate to the given Mach number,

16



Reynolds number, and wall cooling conditions. The turbulent corre-

lations u'u' , v'v' and w'w' were given small initial values
(the maximum for each was 1072 relative to. ug ) in a "spot" of
turbulence extending from about y = O.2699 to y = 0.6599 . The

other turbulent correlations were set to zero.

Five full runs were executed, with the remaining parameters
varied according to the following table.

Rexi Rexf yg Eﬂ
o x 10" 107 0 1.0
> x 10% 107 0 0.8
10° 3 x100 3 1.0
5 X 100 2 X 108 6 1.0
5 x 100  10' 6 0.8
Here, Rexi and Rexf represent the initial and final values
of the Reynolds number based on X ;3 M is the free stream

e
Mach number and G,W is the ratio of the wall temperature to the

free stream stagnation temperature.

In Fig. 1, we show the curves of local skin friction coeffi-
clent, Cp , Versus Reynolds number for the five runs. The values
and trends follow previous experimental and theoretical work.

In Fig. 2, we show the heat transfer at the wall as a func-
tion of Reynolds number for the two Me = 6 cases. Since the
heat transfer is negliglble for GW = 0.8 , we assume that case
represents an adiabatic wall. The recovery factor is, therefore,

- Taw = Te 0.8 xXx8.2 -1 _
r = = = 0.77
e e

- This is considerably lower than the usually accepted value of
about 0.89 .
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Knowing the adiabatic wall "temperature, the Stanton number
for the other Me = 6 case can be determined. In Fig. 3, we show
the variation of - St along with the Reynolds analogy factor,
2St/cf . Again, there is considerable discrepancy between these
values and those generally reported in the literature. For example,
although there is considerable scatter in the data presented in
Ref. 10 , the values of the Reynolds analogy factor given there
are almost all below 1.3

For the Mach number zero case, the adiabatic wall temperature
is the free stream temperature and the recovery factor is inde=-
terminate. The Stanton number can be calculated for ' .the case
G, = 0.8 and is found to range from 1.24 to 1.32 , agaln some-
what high.

These results concerning recovery factor and Stanton number
indicate‘that some adjustment of the model parameters is in order.
As was mentioned above, there was no precedent to establish values
for VVT’ VTT’ and PT
chosen were somewhat off the mark.

; 80 1t is not surprising that the values

Profiles of the dependent variables for the case M, = 6,
G, = 0.8 at gex = 10 million are shown in Figs. 4-6 . It
appears that T has a high slope at the wall but, as will be
shown below; this is not the case; the change in slope cannot be
represented at the scale of Fig. 4. With regard to the small
hump in the ; profile near the outer edge, it may be worth
remarking that the hump does not exist in a plot of pv which

increases smoothly with y .

The profiles of v'v' and w'w'! -are nearly identical

except that the peak value of w'w' is a little higher, but
viv' . spreads a little farther at the outer edge. Both these

effects are easily explained by the factor 3 in the velocity
diffusion term for v'v' in (64), whereas the corresponding
term in (65) for w'w' has the factor 1 .

Figﬁres 7-11 show the development of the profiles through
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and past transition for u , v , T , u'v'! and u'T' (the latter
two being fairly typical of all the correlations), stlll for the
case M, = 6 and G, = 0.8 . It should be noted that 599 , |
the quantity used to normalize the ordinate in those plots, varles
widely as a function of Re, as shown in Fig. 12. Also, in that
figure, the curve of c¢p VS. Re, for this case 1s repeated and *
the values of Rex for which profiles are plotted in Figs. 7-11

" are indicated. It is of interest that there 1s a stage early

in transition where Vv 1is negative for all y and 699 stops
growing.

A different perspective on transition is obtained 1if the pro-
files are all plotted with the same y scaling. This is done in
Figs. 13-17. For the larger Reynolds numbers, of course, only a
portion of the profile is shown. In Fig. 13, 1t is seen that
du/dy at the wall increases and then decreases as the Reynolds
number increases - the same gﬁfggt seen in the Cp curve (Fig.
12).

In Fig. 15, it is clear that ai/ay at the wall does, in-
deed, stay close to zero for this case, in contrast to the appar-
-ent slope for high Reynolds numbers in Figs. 4 and 9.

This whole group of profiles shows that changes in conditions
close to.the wall are relatively slow, compared to the impression
one might get from Figs. 7-11. '

In Figs. 18-22, profiles are presented for all five cases at
a Reynolds number of ten million. In order for the temperatures
and température fluctuations to be comparable among the cases, we
have normalized them by dividing by TW - Te rather than Te .
Hence, the case M, = 0, G, =1 (for which T = Tg = Te) is
omitted from Figs. 20 and 22.

These sets of profiles i1llustrate the quantity of detall
available from the computer runs. It should be emphaslzed that
the curves demonstrate the behavior of our model. The relation-
ship between the details shown.and those of real flows 1s yet

to be established.
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4, SUMMARY AND CONCLUSIONS

A simplified set of equations for the means and second-order
correlations in a compressible turbulent flow at constant pressure
has been derived. The set has been closed using the princlples
of invariant modeling and further simplified by boundary-layer
assumptions. Finally, the equations have been written in finite-
difference form and solved numerically.

Five cases, representing different Mach numbers and wall
temperatures, have been run using one set of values for the
parameters introduced 1n the modeling. The results are very
encouraging since they show many of the characteristics of real
compressible boundary layers and are quantitatively correct.

We feel that this study should be continued along two lines.
First, more runs should be made wlth the current program to under-
stand in more detail the balances involved in the model 1n order
to determine those changes required to improve results. Second,
work shouid begin on the extension of the model to cases where

the mean pressure 1s not a constant.

We thank John Yates, Barry Gilligan and Milton Teske for
their contributions to this study, the staff of the Management
Science Department of Batten, Barton, Durstine and Osborn for
their cooperation in sharing thelr computer, and Sylvia Harrington

for her excellent typing.
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