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RELABELING OF FINITE-ELEMENT MESHES USING A RANDOM PROCESS

by Ernest Roberts, Jr.

Lewis Research Center

SUMMARY

An algorithm is presented to relabel automatically the nodes of an arbitrary finite-
element mesh. The purpose of such relabeling is to reduce the bandwidth of the master
stiffness matrix produced by the finite-element method. The algorithm uses a random
process for the relabeling. Computing time is reduced substantially, compared to sys-
tematic methods.

INTRODUCTION

The finite-element method has become a commonplace tool in structural analysis.
A structure is merely modeled by a series of simple elements connected at a number of
nodes. An example is a flat plate, represented by many small triangles connected at
their corners. The advantage of the finite element method is that very complicated
overall behavior may be approximated by much simpler local behavior. If the local
regions are chosen small enough, and their properties are chosen wisely enough, in the
aggregate they closely simulate the original. Mathematically speaking, a difficult prob-
lem in the calculus of variations is replaced by an equivalent system of algebraic equa-
tions. The latter are quite conveniently handled by computers.

Equations can be written in terms of either the displacements of the nodes repre-
senting a structure or the forces acting on those nodes. The displacement formulation
is most frequently used. The displacement method offers a number of advantages for
many problems. One of them is a relatively modest demand of computer resources.
The master stiffness matrix produced possesses a number of desirable attributes: for
example, positive definiteness, sparseness, and bandedness. These, in turn, reduce
storage requirements, processing time, and roundoff errors. A further consequence is
that an elaborate algorithm is not required for matrix decomposition. This implies that
minimum programming effort is required for, at least, the matrix operations.

In spite of this, for many practical problems, the number of degrees of freedom



necessary to simulate a structure taxes the resources of a computer system. Every
effort must be made when developing a program to reduce storage requirements and
processing time, not only for the sake of economy but also to reduce roundoff errors.
It is known that the manner in which the various nodes of the model are labeled influ-
ences the matrix bandwidth. Hence, work is necessary to produce an algorithm for
automatically labeling the nodes of a model to minimize bandwidth. Akyuz et al. (ref. 1)
have reported a scheme which is at least partially effective. Barlow et al. (ref. 2) have
discussed the limitations of the method and have, suggested improvements. The question
dealt with in this discussion concerns the possibility of eliminating some of the limita-
tions with a minimum investment of programming effort.

Barlow's most serious criticism of Akyuz's algorithm is that there is no assurance
of producing a minimum bandwidth. The method produces a true minimum only when
the coupling between elements is simple. When the coupling is more complicated, the
bandwidth may be reduced but not necessarily minimized. He states further that the
interchange of single pairs of variables, which is the basis of Akyuz's algorithm, does
not ensure monotonic reduction. In his reply to Barlow, Akyuz (ref. 3) suggests that a
disturbance in the computational stream will restart the process should it stop before a
minimum is attained. Such a disturbance may be introduced by arbitrarily interchanging
a single pair of variables; this process causes no conflict with the philosophy of the
algorithm.

Akyuz's suggestion provides the motivation for this research. Namely, if Akyuz's
basic algorithm is used, will a disturbance produce a minimum, and can the algorithm
be increased in speed? It appears the answer to the first question is no, and the answer
to the second is yes. Furthermore, one of Akyuz's assumptions is questionable because
of the research results. (This point is covered more fully in the RESULTS section.) It
must be emphasized, however, that his method is effective, in that it reduces the band-
width of an arbitrary stiffness matrix. . ,

After the conclusion of this work, another reference appeared. It is included in the
list of references (ref. 6) without comment for the sake of completeness.

THE ALGORITHM

A characteristic of,the algorithm is an artifice, called by Akyuz the connectivity
matrix,; which is directly related tq the, master stiffness matrix. The basic scheme is
quite simple. One starts with a finite-element representation of a structure. All the
nodes are labeled in some arbitrary manner. One merely interchanges pairs of labels
in an effort to reduce the.bandwidth of the master stiffness matrix. However, it is un-
desirable to interchange label pairs arbitrarily - bandwidth might increase instead of
decreasing. One needs some intermediate criterion to decide if a given interchange



should be made without actually deriving the master stiffness matrix. The connectivity
matrix provides such a criterion, and it requires little storage space but, unfortunately,
some elaborate coding.

Figure 1 illustrates the relation between a finite-element representation and its
connectivity matrix. The elements of the connectivity matrix are either 0 or 1. Each
row of the connectivity matrix represents one node of the finite-element model. Each
element of the row (i. e., each column position) represents each of the other nodes of
the model. If the node in question is connected to some other given node, a 1 is placed
in that column position. Otherwise, a 0 is placed there. As shown in figure l(a),

(a) Original. (b) Relabeled.

Figure 1. - Example of connectivity matrix.

row 3 of the matrix represents node 3 of the model. Node 3 is connected to nodes 1 and
5 and, by definition, to itself. Therefore, column positions 1, 3, and 5 of row 3 con-
tain 1's, and column positions 2 and 4 contain O's.

The nonzero elements of the connectivity matrix occupy exactly the same position
as the nonzero elements of the master stiffness matrix. Furthermore, in figure l(b)
it can be seen that a simple relabeling of the finite-element model produces a banded
connectivity matrix. The O's in the upper right and lower left of the matrix need not be
stored. Finally, the operation is commutative. If the rows and columns of the connec-

However, it must be remembered that each node usually has two or more degrees
of freedom associated with it (e.g., two orthogonal displacement components, certain
derivatives, etc.). Therefore, there are at least twice as many rows and columns in
the master stiffness matrix as in the connectivity matrix. If the equations are ordered
properly, however, the ensuing comments are still valid.



tivity matrix are interchanged to produce a banded matrix, a new labeling scheme can be
derived from it. For example, if rows 1 and 3 and columns 1 and 3 are interchanged,
then nodal labels 1 and 3 on the model are interchanged.

We return to the previous comment that the connectivity matrix requires little stor-
age space but some elaborate coding. Inasmuch as the elements of the connectivity ma-
trix are always either 0 or 1, it is apparent that only a single binary digit is necessary
to represent each element. Therefore, many elements may be stored in each computer
word. However, normally only whole words (or at least bytes) of computer memory are
accessable by the standard instructions. Hence, subprograms must be written to access
and manipulate the individual bits of each word. And, of course, many machine cycles
are required for each reference to a specific bit.

Nevertheless, the programming problems are minor. If the master stiffness ma-
trix is too large to be contained entirely within the computer core memory and the con-
nectivity matrix is not, it is evident that less elapsed time is required to manipulate the

o
connectivity matrix than the stiffness matrix. Once a connectivity matrix has been de-
rived, and means are available for accessing its elements, we can begin interchanging
the various rows and columns for decreasing the bandwidth. One obvious way is to try
every possible combination and take the one producing the minimum. But a moment's
thought reveals that the number of possible combinations is of the order of the factorial
of the order of the matrix. Computing time becomes prohibitive. This being so, some
judgment must be exercised. The matrix must be swept through, and a rational criterion
must be applied to the decision of interchanging a given pair of rows and columns.

Inspection of figure l(b) reveals two things. First, the rows have increasing num-
bers of O's on the left moving down from the center, and increasing numbers of O's on
the right moving up from the center. Second, the rows have increasing numbers of 1's
moving toward the center. It is immediately apparent that these observations may be
used as criteria. A pair of rows and columns is examined. If either of the two criteria
applies, they are interchanged. If not, another pair is examined. Akyuz merely sweeps
through the connectivity matrix in a systematic manner examining each pair of rows and
columns in sequence. If an interchange occurs, he starts the process over again. He
stops when no more interchanges are possible.

This work deviates in only one major respect from Akyuz. The pairs of rows and
columns are chosen randomly instead of systematically. Furthermore, Akyuz's conten-
tion (ref. 3), referred to in the INTRODUCTION, that a disturbance in the process will
continue the path toward minimization is tested by randomly interchanging a pair of rows
and columns after the process has halted. Figure 2 is a flow chart illustrating the algo-
rithm.

2
The repeated input/output operations necessary to process a data store too large

for the core memory slow the processing more than the extra instructions to access bits.



Notes

JUse random number generator.
Numbers must be unique integers
less than matrix order.

(Y)lnterchange only-it more O's will exist
in row furthest from center. Examine
1's only if no change will occur.

) I' no change in O's will occur, inspect
to determine if a greater number of 1's
will exist in row closest to center.

(V)lnterchange both pair of rows and pair
of columns having indices.

Figure 2. - Schematic of algorithim.

DEFINITIONS

The label difference of an element is the maximum of the absolute values of the dif-
ferences between the labels of its three nodes. Examining the leftmost element of figure
3(a) shows that there are three possible differences in absolute value: 11-21, 11-81, and
12-81. The greatest of these is 7. The label difference for an entire map is the maxi-
mum of the element label differences. In figure 3(a) it is also seen that the label differ-
ences for the remaining five elements are 6, 5, 4, 3, and 2, going from left to right.
Therefore, the label difference for the map of figure 3(a) is defined to be 7. The ele-
ment label differences for the mesh of figure 3(b) are 2, 2, 3, 3, 2, and 2, going from
left to right, and 3 is the overall label difference.

For the purposes of this report, it is sufficient to consider only the bandwidth of the
connectivity matrix. When that is at a minimum, the bandwidth of the master stiffness
matrix is at a minimum. For the definition of matrix bandwidth, it is helpful to imagine
every row of the matrix, one by one. Count the inclusive number of elements between
the first and last nonzero elements of the row. The maximum of these counts, over all
the rows of the matrix, is the bandwidth.

A moment's reflection reveals that there is a minimum value for the matrix band-
width. This minimum occurs when there are no zero elements between the first and
last nonzero elements in a certain row. That certain row is the one containing the



3 5

(b) Relabeled.

Figures. - Grid for first test.

greatest number of nonzero elements. From the definition of the connectivity matrix,
that row is the one representing the node connected to the greatest number of other
nodes. In figure 3(a) nodes 2 and 6 share that property. Each is connected to 6 nodes,
including itself. That number is referred to as the maximum connectivity in this report.

THE EXPERIMENT

The three finite-element models tested are shown in figures 3 to 5. Figure 5 does
not show all the details of a very elaborate model. The model shown in figure 5 was
used in an application of a finite-element program (ref. 4). There were 369 elements
and 218 nodes. For each model an arbitrary labeling system was used as a starting
point. In the case of figure 5, three initial labeling schemes were investigated. First,
the nodes were labeled systematically in the order of increasing ordinates within in-
creasing abscissas. Second, the initial labels were selected by a random number gen-
erator. Finally, the initial labels were determined manually in such a manner as to
minimize the difference between labels for each element. Akyuz considers this a rea-
sonable measure of matrix bandwidth, and on the surface it certainly appears to be so.

In each case the algorithm of figure 2 was used in an attempt to reduce the band-
width of the connectivity matrix. For figure 5, a comparison was made with Akyuz's
method. The method of selecting the pairs of nodes was modified to take them in order
instead of randomly. The computer used was an IBM 360/67 operating under 360/TSS.

6
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(b) Relabeled.

Figure 4. - Grid for second test.
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(a) Overall grid. (b) Detail near crack tip.

Figure 5. -Grid for third test.



In addition, the model of figure 5 was run on another computer using Akyuz's program
as published in reference 1.

RESULTS

For figure 3 the minimum possible bandwidth was achieved. Before this occurred,
243 trials resulting in 12 interchanges were made, costing 0. 6 second of processing
time. Table I summarizes the process. An entry is made in the table each time one of

TABLE I. - SUMMARY OF COMPUTATIONAL

PROCESS FOR FIRST TEST

[Initial label difference, 7; initial band width,-8;
maximum connectivity, 6.1

Total tries

37
44
58
76
81
94
95
96

132
139
242
243

Current tries

37
7

14
18

5
13
1
1

36
7

103
1

Label
difference

f5
6
(5
5

4
4
3
3
3

Band width

8-

'

.*-

6

•

the criteria is satisfied and an interchange results. It should be noted that a given inter-
change does not necessarily reduce either the maximum label difference or the band-
width. Furthermore, the label difference may be reduced without reducing the band-
width. Finally, even when the minima on both label difference and bandwidth are
achieved after 139 tries, the criteria have not yet been satisfied. To satisfy the criteria
104 more tries are made, resulting in two more interchanges. This implies that a sub-
stantial reduction in processing time would be possible if a better criterion were avail-
able.

For figure 4 the minimum was not attained. In fact, figure 4(b), which was derived
manually, shows a better arrangement than figure 4(a). It was impossible to derive the

8



arrangement in figure 4(b) using the algorithm. In fact, the algorithm was useless. The
matrix was completely scanned, using both the random and systematic methods, and no
interchange satisfied the various criteria. When a disturbance was introduced by arbi-
trarily interchanging two rows and columns, the process began. However, the best that
could be attained was a labeling scheme which produced no narrower a connectivity ma-
trix than the starting point. After a second disturbance, a poorer matrix was produced.
Finally, after two more disturbances, no further progress could be made, and the com-
putational stream halted with the poor bandwidth of interruption two. Table n summa-
rizes the stream.

For figure 5 a positive result was produced. Less time was required for the random
method than the systematic method for each of the three initial conditions. However, the
results were disappointing.

Where the original labels were chosen systematically, the initial label difference
was 49 and the initial bandwidth was 72. No improvement resulted from either the ran-
dom program or the systematic program. The random program made 54 interchanges,
using 208 seconds of processing time, before it could no longer satisfy the criteria for
interchanging. The systematic program made 627 interchanges, using a total of 2463
seconds of processing time. At this point it was stopped arbitrarily, inasmuch as it had
made 109 357 attempts at improvement.

Where the initial labels were chosen by a random number generator, the initial label
difference was 209 and the initial bandwidth was 210. Admittedly, this is an unrealistic
starting point, and it is certainly a difficult test for any such computer program. The
random method reduced the label difference to 64 and the bandwidth to 88, using 3991
seconds of processing time, before it could no longer satisfy the criteria for interchang-
ing. It made a total of 1114 interchanges. The systematic method could not handle the
problem. It made 372 interchanges, using 2420 seconds of processing time, before
failing to satisfy the criteria for interchange. At the end of that time, the label differ-
ence was 206 and the bandwidth 209.

Where the initial labels were chosen manually, the initial label difference was 25,
and the initial bandwidth was 43. The random method took 138 seconds of processing
time and made 30 interchanges before it could find no further pairs to satisfy all criteria
and produce another interchange. The systematic method took 212 seconds and made 29
interchanges. In both cases the label difference was reduced from 25 to 24 but the band-
width remained at 43. When disturbances were introduced to the computational scheme,
the same result occurred as for figure 4. Interestingly enough, after the first disturb-
ance, the label difference decreased to 23, but the bandwidth increased to 45. That is
the question raised in the INTRODUCTION. Akyuz assumes that a decrease in label dif-
ference corresponds to a decrease in matrix bandwidth. This anomaly brings that as-
sumption into question.



TABLE II. - SUMMARY OF COMPUTATIONAL

PROCESS FOR SECOND TEST

[Initial label difference, 6; initial band width, 13;
maximum connectivity, 9. ]

Total tries Current tries Label
difference

Band width

Arbitrary interchange

419
436
456
468
469
472
492
530

420
17
20
12
1
3

20
38

11
11
9
8
7
7
7
6

13

Arbitrary interchange

949
962
965
987
989

1078
1150
1155

420
13
3

22
2

89
72
5

14
10

1 '

9
9

15

1

Arbitrary interchange

1574
1576
1584
1613
1615
1648
1660
1669
1705
1767
1895

420
2
8

29
2

33
12
9

36
62

128

10
10
10
9

I

15

!

Arbitrary interchange

2314 420 9 15

Process halted
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One additional item of information was produced. The program published by Akyuz
was run and produced a label difference of 21. Yet the bandwidth remained 43. Unfor-
tunately, two different computers were used so a time comparison is not possible.

DISCUSSION

One point to consider is the desirability of using a computer program to decrease
matrix bandwidth. It has become apparent that this relabeling program is expensive. It
is conceivable that the sum of the times to execute two programs would exceed the exe-
cution time required by a poorly labeled mesh. Furthermore, certain manual techniques
in common use produce a reasonable labeling scheme at the outset.

Certainly, if a given mesh is going to be used only once, the decrease in execution
time required by a well-labeled mesh does not justify the use of a relabeling program.
However, there are other considerations:

(1) Many meshes are themselves generated by computer programs. Since there is
no choice, these must be labeled automatically.

(2) Most meshes are used repeatedly, especially in solving elasto-plastic problems.
These problems traditionally require incremental or iterative processes. In such cases,
the sum of the processing times saved per increment can easily exceed the execution
time of the relabeling program.

(3) There is also the philosophy of using computers to perform routine clerical
tasks. Manual labeling techniques require much time of experienced technical personnel.
More efficient use of their time results from using any device such as automatic labeling
programs.

CONCLUSIONS

The following conclusions are inescapable based on the results obtained from the
experiments:

1. The relabeling scheme developed by Akyuz and modified here is path dependent.
The end point depends not only on the starting point but on the order in which interchanges
are made. This conclusion is substantiated by the fact that the program written by Akyuz
produces a different result from the program written by this author, following Akyuz's
algorithm. The obvious reason is that the rows of the connectivity matrix were scanned
in a different order.

2. Interrupting the computational stream by arbitrarily interchanging a pair of rows
and columns did not produce an improvement in the experiments conducted.

11



3. Selecting the pairs of variables randomly instead of systematically reduces com-
putation time.

These conclusions imply that a reasonable computer program exists to perform the
task of node relabeling. The program simplifies the task of producing the necessary in-
put data for any finite-element program. Although it does not ensure the absolute mini-
mum matrix bandwidth, it does produce a narrow one. The task of producing a minimum
width stiffness matrix is a formidable one and is essentially a research program in it-
self. The appendix contains a source program listing in FORTRAN IV for the IBM sys-
tem TSS/360. The subroutine for generating random numbers is taken from reference 5.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, August 21, 1972,
501-21.
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APPENDIX - SOURCE PROGRAM LISTINGS

C RELABELS AN ARBITRARILY LABELED FINITE ELEMENT MESH
C
C**************4̂ ************************************************************l
C*
C* INPUT
C*
C* 3 RECORDS REQUIRED
C*
C* A) NUMBER OF NODES, NUMBER OF ELEMENTS {FORMAT 901)
C* B) TABLE OF NODE LABELS FOR EACH ELEMENT* COUNTER-CLOCKWISE
C* IN ORDER OF ELEMENT LABELS (FORMAT 902)
C* C) TABLE OF COORDINATES OF EACH NODE, X AND Y, IN ORDER
C* OF NODE LABELS (FORMAT 911) *
C* *

C
COMMON / ONE/ ORDERfNELMNT,LAST,SCALE,WORD,LIMIT,HALF1,HALF2,MAX,
1 BAND,WHICH(2)tPLUS,UNUSED,DIFF
2 / TWO/ RIGHT(1024),LEFT(1024),ONES(1024)
3 /THREE/ ELEMNT(3,6821
4 / FOUR/ MATRIX(32,1024)
5 / FIVE/ CRDNAT(?,512)
INTEGER ORDER,WORD,HALF1,HALF2,BAND,WHICH,PLUS,UNUSED,RIGHT,ONES,

1 ELEMNT,TOTAL,CURENT,TIME1,TIME2,DIFF,XY.CRDNAT
C
C ***INITIALIZE CLOCK, READ INPUT***
C

CALL CPUTIM(TIMEl)
READ (5,901) ORDER,NELMNT
READ (5,902) ((ELEMNT(NODE,LEMNT),NODE=1,3),LEMNT=1,NELMNT)
READ (5,911) ((CRDNATUY,NODE),XY=1,2),NODE=1,ORDER)

C
C ***INITIALIZE VABTABLES FOR USE IN LATER SUBROUTINES***
C

CALL NITILZ
LIM12=3*LIMIT

C
C ***FORM INITIAL CONNECTIVITY MATRIX***
C

CALL CONECT
C
C ***GENERATE VECTORS OF COUNT OF NULL ELEMENTS***
C *********ON RIGHT AND LEFT OF EACH ROW**********
C

CALL GNRATE
C
C ***GENERATE VECTOR OF COUNT OF NON-ZERO ELEMENTS IN EACH ROW***
C

CALL NUMBER
C
C ***CALCULATE INITIAL BAND-WIDTH AND LABEL DIFFERENCE***
C

CALL WIDTH
C
C ***PRIMT HEADINGS FOR TABLE***
C

WRITE (6,905) DIFF,BAND,MAX
WRITE (6,903)
NBAND=0
NDIFF=0

13



TOTAL=0
NTRCNG=0

10 CURENT=0
20 CURENT=CURENT+1

C
C ***EXIT IF CURRENT NUMBER OF ATTEMPTS IS TOO LARGE***
C

IF (CURENT.GE.LIMIT) GO TO 40
TOTAL=TOTAL+1

C
C ***EXIT IF TOTAL NUMBER OF ATTEMPTS IS TOO LARGE***
C

IF (TOTAL.EQ.LIM12) GO TO 50
C
C ***RANDOMLY SELECT TWO DIFFERENT ROWS AND COLUMNS FOR INTERCHANGE***
C

CALL CHOOSE
C
C ***WILL NUMBER OF ZEROS AWAY FROM CENTER INCREASE?***
C

CALL CRTRNHS20,fi30)
C
C ***WILL NUMBER OF ONES NEAR CENTER INCREASE?***
C

CALL CRTRN2(£20)
C
C ***IF SO, INTERCHANGE ROWS AND COLUMNS SELECTED BY 'CHOOSE1***
C
30 CALL SWITCH

C
C ***RECALCULATE BAND-WIDTH AND LABEL DIFFERENCE***
C

CALL WIDTH
NTRCNG=NTRCNG+1

C
C ***IF BANDWIDTH OR CONNECTIVITY DECREASE,***
C ******BREAKPOINT AND PRINT TABLE ENTRY******
C

IF (NBAND.EQ.BAND.AND.NDIFF.EQ.DIFF) GO TO 35
WRITE (6,904) NTRCNG,TOTAL,CURENT.DIFF,BAND
NBAND=BAND
NDIFF=DIFF
WRITE (7,9021 I(ELEMNT(NODE,LEMNT),NODE=1,3),LEMNT=1,NELMNT )
WRITE (7,911) ((CRDNAT(XY,NODE),XY=1,2),NODE=1,ORDER)
WRITE (7,901) WHICH

C
C ***PROTECT AND REWIND BREAKPOINT FILE***
C

CALL SYSOBF(16,' CLOSE ,,FT07F001«)
C
C ***EXIT IF BANDWIDTH EQUALS CONNECTIVITY***
C
35 CALL DONEU10)

WRITE (6,906)
C
C ***READ CLOCK, PRINT EXECUTION TIME***
C
38 CALL CPUTIM(TIME2)

TIME=(TIME2-TIME1)/1000.
WRITE (6,909) TIME
STOP

40 WRITE (6,908) LIMIT
GO TO 38

14



c
c
c

50 WRITE (6,910) LIM12
GO TO 38

***FORMATS***

901 FORMAT 1215)
902 FORMAT (8(313*1X1)
903 FORMAT ( «0* ,' INTERCHANGE* f3X, 'TOTAL • ,3X, 'CURRENT' ,3X, 'LABEL' ,4X,

1 'BAND1/' ',14X,2('TRrES',4X),« DIFF' ,3X, 'WIDTH'/' ')
' ',111,18,110,218)
•I1, 'INITIAL LABEL DIFFERENCE = • , 14, 5X, 'INITAL BAND WIDTH*
,t =', 14, 5X, 'MAXIMUM CONNECTIVITY =• 13)
•OMINIMUM. BAND-WIDTH HAS BEEN ACHIEVED***PROGRAM HALTED')

904
905

906
908

«09
910

FORMAT
FORMAT
1
FORMAT
FORMAT
1
FORMAT
FORMAT

911
912

FORMAT
FORMAT
END

•0',' PROGRAM HALTED
•AT IMPROVEMENT')
' ',' EXECUTION TIME
•0' ,' PROGRAM HALTED
'AT IMPROVEMENT' )
(2014)
(F5. 1 ,19F4.1 )

AFTER' , 17, IX, 'UNSUCCESSFUL ATTEMPTS ',

L,IX,'SECONDS')
AFTER',19,IX,'TOTAL ATTEMPTS ',

SUBROUTINE NITILZ
COMMON /ONE/ ORDER, DUMY1, LAST, SCALE, WORD, L I M I T, HALF1, HALF2, DUMY2 (!»>, PLUS,

1 UNUSED,DUMY3
INTEGER ORDER, WORD, HALFl^ALFZ, PLUS/UNUSED
LAST=1
SCALE=ORDER*O.U656613E-9
WORD=(ORDER-l)/32-H
PLUS=WORD+1
UNUSED=WORD*32-ORDER+1
LIMIT=2*ORDER*(ORDER-1)
HALFl=ORDER/2
HALF2=HALF1+1
IF (MOD(ORDER,2).EQ.l) HALF1=HALF2
RETURN
END

10

SUBROUTINE CONECT
COMMON / ONE/ ORDER,NELMNT,DUMY(13)
1 /THREE/ ELEMNT(3,682)
2 / FOUR/ MATRIX(32,1024)
INTEGER ORDER,ELEMNT,COLUMN,BIT,ROW
00 50 ROW=1,ORDER
COLUMN=(ROW-1)/32*1
BIT=MOD(ROW,32)
If (BIT.EQ.O) BIT=32
CALL PUT (MATRIX(COLUMN,ROW),BIT,1)

00 40 LEMNT=1,NELMNT
00 10 NODE=1,3
IF (ROW.EQ.ELEMNT(NODE,LEMNT)) GO TO 20
CONTINUE

GO TO 40

15



20 DO 30 NODE=1,3
IF (ROW.EQ.ELEMNT(NODE,LEMNT)J GO TO 30
COLUMN=(ELEMNT(NODE,LEMNT)-l)/32-H
BIT=MOD(ELEMNT(NODE,LEMNT),32)

VK IF (BIT.EQ.O) BIT=32
CALL PUT (MATRIX(COLUMN,ROW),BIT,1)

30 CONTINUE
40 CONTINUE
50 CONTINUE

RETURN
END

SUBROUTINE GNRATE
COMMON / ONE/ ORDER,OUMY1(14)
1 / TWO/ RIGHT(1024),LEFT(1024),DUMY2<1024)
INTEGER ORDER,RIGHTtCOUNT
DO 10 K-ltORDER
RIGHT(K)= COUNT(K)
LEFT«K)=KOUNTCK>

10 CONTINUE
RETURN
END

INTEGER FUNCTION COUNT(ROW)
COMMON / ONE/ ORDER.DUMYlt3),WORD,DUMY2<7),PLUS,UNUSED,DUMY3
1 / FOUR/ MATRIX<32,1024)
INTEGER ROW,ORDER,WORD,PLUS,UNUSEDtCOLUMN,BIT
PLUS= WORD*I
DO 10 J=1,WORO
COLUMN= PLUS-J
DO 10 1=1,32
BIT= 33-1
IF(LOOK(MATRIX(COLUMN,ROW),BIT).E0.1) GO TO 20

10 CONTINUE
20 COUNT= tJ-1) * 32+I-UNUSED

RETURN
END

INTEGER FUNCTION KOUNT(ROW)
COMMON / ONE/ ORDER,DUMYH3) ,WORD,DUMY2 (10)
1 / FOUR/ MATRIX!32,1024)
INTEGER ROW,ORDER,WORD,COLUMN,BIT
DO 10 COLUMN=1,WORD
DO 10 BIT=1,32
IF(LOOK(MATRIX(COLUMN,ROH),BIT).EQ.l) GO TO 20

10 CONTINUE
20 KOUNT*(COLUMN-1>*32+BIT-1

RETURN
END
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SUBROUTINE NUMBER
COMMON / ONE/ ORDER,DUMY1(3>,WORD,OUMY2(3),MAX,DUMY3(6)
1 / TWO/ DUMY4(2048),ONESt1024)
2 /FOUR/ MATRIX<32,1024)
INTEGER ORDER,WORD,ONES,ROW,COLUMN,BIT
MAX=0
DO 20 ROH=1,ORDER
ON€S(ROW)=0
DO 10 COLUMN=1,WORD
DO 10 BIT=1,32
IF <LOOK(MATR!X(COLUMN,ROW)«BITI.EQ.l) ONES(ROW)=ONES(ROW)+1

10 CONTINUE
MAX=MAXO(MAX,ONES(ROW) )

20 CONTINUE
RETURN
END

SUBROUTINE WIDTH
COMMON / ONE/ ORDER,NELMNT,DUMYK7) ,BAND,HHICHC2) ,DUMY2<2) ,DIFF

1 / TWO/ RIGHT<1024),LEFTU024),DUMY3(1024)
2 /THREE/ ELEMNT(3,682>
INTEGER ORDER,BAND,DIFF,LEFT,RIGHT,ROH,EL£MNT
DIFF=0
BAND=0
00 100 LEMNT=1,NELMNT
DIFF=MAXO(DIFF,MAXO(IABS(ELEMNTU,LEMNT1-ELEMNT(2,LEMNTJ1,
1 IABS(ELEMNT(1,LEMNT)-ELEMNT(3,LEMNT}),
2 IABS(ELEMNT(2,LEMNT)-ELEMNT(3,LEMNT)I»

100 CONTINUE
DO 200 ROW=1,ORDER
BAND=MAXO(BAND,<ORDER-(LEFT!ROM)+RIGHT(ROW)M>

200 CONTINUE
RETURN
END

SUBROUTINE CHOOSE
COMMON / ONE/ DUMYK2),LAST,SCALE,DUMY2(6),HHICH1,MHICH2,OUMY3(3)
INTEGER HHICH1,WHICH2,SAVE
LAST= LAST*65539
IF(LAST) 10,20,20

10 LAST= LAST+2147483647*!
20 WHICH1= LAST*SCALE*0.5

IF (WHICH1.EO.O) WHICH1=1
25 LAST= LAST*65539

IFtLAST) 30,40,40
30 LAST= LAST+2147483647+1
40 WHICH2= LAST*SCALE+0.5.

IF (WHICH2.EQ.O) WHICH2=1
IF (WHICH2-WHICH1) 50,25,60

50 SAVE=WHICH2
MHICH2=WHICH1
WHICH1=SAVE

60 RETURN
END ... ; -i.
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SUBROUTINE CRTRNK*,*)
COMMON /ONE/ DUMY1(10),HHICHl,HHICH2,DUMY2(3>
1 /TWO/ RIGHT(1024),LEFTC1024),DUMY3<1024)
INTEGER WHICH1,WHICH2,RIGHT
LOGICAL TEST
TEST=.FALSE.
IF (RIGHT(WHICH1)-RIGHTIWHICH2>) 20,10,100

10 TEST=.TRUE.
20 IF UEFTCWHICH2)-LEFTCHHICH1M 40,30,100
30 IF (TEST) RETURN
40 RETURN 2
100 RETURN 1

END

SUBROUTINE CRTRN2J*)
COMMON /ONE/ DUMYH 6) ,HALF1,HALF2,DUMY2 (2) , V4HICH1,WHICH2,DUMY313>

1 /TWO/ OUMY4(2048),ONES(1024)
INTEGER HALF1,HALF2,WHICH1,WHICH2,ONES,CENTR1,CENTR2
LOGICAL TEST1,TEST2
TEST1=.FALSE.
T£ST2=.FALSE.
IF (ONES(WHICH1)-ONES(WHICH2)» 20,50,10

10 TEST1=.TRUE.
20 IF (WHICH1.GE.HALF2) GO TO 40

IF (WHICH2.LE.HALFU GO TO 30
CENTR1=IABS(HALF1-WHICH1)
CENTR2=IABS(HALF2-WHICH2)
IF (CENTR1-CENTR2J 40,50,30

30 TEST2=.TRUE.
40 IF (TEST1.AND.TEST2) RETURN

IF UNOT.TEST1.ANO..NOT.TEST2) RETURN
50 RETURN 1

END

SUBROUTINE SWITCH
COMMON / ONE/ ORDER,NELMNT,DUMYK2),WORD,DUMY2C5),WHICHI,WHICH2,DUMY3(3)

1 / TWO/ RIGHT(102 l») / LEFT(102 l * ) / ONES(1024)
2 /THREE/ ELEMNT(3,682)
3 / FOUR/ MATRIX(32,102 l | )
k I F IVE / CRDNAT(2 7 512 )

INTEGER ORDER / VJORO / V;HICH1 / WHICH2 / RIGHT / ONES / ELEMNT,WORD1 / WORD2 / BIT1 / BIT2 /
1 SAVE

DO 10 1=1,WORD
SAVE=MATRIX( I / VJHICH1)
MATRI X ( I , W H I C H 1 ) = M A T R I X ( I , W H I C H 2 )
M A T R I X ( I / W H I C H 2 ) = S A V E

10 CONTINUE
WORDl=(WHICHl- l ) /32+l
WORD2=(WHICH2- l ) / 32+ l
B I T l = M O D ( W H I C H l / 3 2 )
IF ( B I T 1 . E Q . O ) BIT1=32
B I T 2 = M O D ( W H I C H 2 / 3 2 )
I F ( B I T 2 . E Q . O ) B I T 2 = 3 2
DO 20 I=1 /ORDER
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SAVE=LOOK(MATRIX(WORD1, I ),BIT1)
CALL PUT(MATRIX(WORD1, I ),BITl,LOOKCMATRIX(WORD2, I )/BIT2))
CALL PUT(MATRIX(WORD2/I),BIT2,SAVE)

20 CONTINUE
CALL GNRATE
SAVE=ONES(WHICH1)
ONES(WHICH1)=ONES(WHICH2) .
ONES(WHICH2)=SAVE
DO 50 LEMNT=1,NELMNT
DO 50 NODE=1,3
IF (ELEMNT(NODE,LEMNT).EQ.WHICH1) GO TO 30 - . ;
IF (ELEMNT(NODE,LEMNT).EO.WHICH2) GO TO 1*0
GO TO 50

30 ELEMNT(NODE,LEMNT)=WHICH2
GO TO 50

1*0 ELEMNT(NODE,LEMNT)=WHICH1
50 CONTINUE

HOLDX=CRDNAT(1/WHICH1)
HOLDY=CRDNAT(2,WHICH1)
CRDNAT(1,WHICH1)=CRDNAT(1,WHICH2)
CRDNAT(2,WHICH1)=CRDNAT(2,WHICH2) .
CRDNAT(1,WHICH2)=HOLDX
CRDNAT(2 ,WHICH2)=HOLDY
RETURN
END

10

SUBROUTINE OONE(*)
COMMON /ONE/ ORDER.DUMYK 14)
1 /TWO/ RIGHT(1024J,LEFT(1024),DUMY2(1024)
INTEGER ORDER,RIGHT,ROW
00 10 RQW-2tORDER
IF (LEFT<ROW).LT.LEFT(ROW-11) RETURN 1
IF (RIGHT(ROW!.GT.RIGHT(ROW-11) RETURN 1
CONTINUE •- . '
RETURN
END

LOOKP PSECT
SAVE OS 19F

ENTRY LOOK
ENTRY PUT

ADDR DC AUOOK)
BIT DC F«0«
IW DC F • 0 •
MASK DC X«7FFFFFFF»
MASK1 DC X'80000000"
LOOKC CSECT
LOOK STM 14,12,12(13)

L 14,72(0,13)
ST 14,8(0,13)
ST 13,4(0,14)
LR 13,14
USING LOOKP,13
USING LOOKC,12

LONG SAVE

STORE FHD POINTER
STORE BWD POINTER
COVER OUR PSECT

19



*
*

*
SHIFT

*
ZERO

PUT

*

* HE

* HE
ZEROO

MEET
*
RTN

L 12,AODR COVER OUR CSECT
FUNCTION LOOK (A, I)

REGISTER 1 POINTS TO PARAMETERS
LM 2»3fO(l) GET ACDRS OF BOTH ARCS
L 2tO(Ot2) GET VALUE OF FIRST ARG
L 3,0(0,3) GET VALUE OF 20 ARG
LA 4,1 SET GPR 4 TO A ONE
SR 3,4 REDUCE BIT POSITION BY ONE
ST 3, BIT SAVE BIT POSITION
MASK AND TEST

SLL 2,0(3) NO. OF BITS IS IN GPR 3
L 6,MASK1
NR 2,6
LTR 2,2
LA 5,0
BZ ZERO BRANCH IF ZERO
LA 5,1
PUT ANSWER IN GPR 0, THIS IS A FUNCTION ENTRY

LR 0,5 PUT RESULT INTO 0
B RTN
STM 14,12,12(13) LONG SAVE
L 14,72(0,13)
ST 14,8(0,13) FWD PTR
ST 13,4(0,14) BWD PTR
LR 13,14
L 12,AODR
SUBROUTINE PUT (A, I, N)

LM 2,4,0(1) PICK UP AOORS OF ALL 3 ARCS
L 5,0(0,2.) GET THE WORD OF BITS
L 4,0(0,4) GET VALUE OF BIT TO BE STORED
L 3,0(0,3) GET WHICH BIT
LTR 4,4 IS IT A ZERO OR A ONE
BZ ZEROO

WANTS TO STORE A ONE BIT
LA 6,32(0) PUT A 32 IN REG 6
SR 6,3 SUB BIT POSITION FROM 32
SLL 4,0(6) SHIFT THE ONE TO POSITION
OR 5,4 LOGICAL OR BIT INTO POSITION
B MEET FINISHED

HANTS TO ZERO THAT BIT
SR 6,6 ZERO REG 6
L 7, MASK =X'7FFFFFFF»
LA 8,33(0) PUT A 33 INTO REG 8
SR 8,3 SUBTR BIT POSITION FROM 33
SLDL 6,0(8) SHIFT MISSING BIT TO POSITION
OR 7,6 PUT THE MASK BACK TOGETHER
NR 5,7 AND THE MISSING BIT INTO- WORD A
ST 5,0(0,2) PASS BACK TO CALLER
COMBINED RETURN
L 13,4(0,13) RESTORE GPR 13

LM 14,15,12(13) RESTORE THESE TWO
LM 1,12,24(13) RESTORE THE REST (SAVE GPR 0)
BCR 15,14 EXIT
END
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