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ABSTRACT

This thesis is concerned with determining optimal inputs to identify
- parameters of linear dynamic systems, Identification criteria are
presented for linear dynamic systems with and without process noise,

With process noise, the state equations are replaced by the Kalman filter
equations, If the identification performance index is expanded in a
Taylor's series with respect to the parameters to be identified, then
maximizing the weighting factor of the quadratic term with respect to

the inputs will insure that an identification algorithm will converge
more rapidly and to a more accurate result than with non-optimal inputs,
The expectation of this weighting factor is known as the Fisher informa-
tion matrix, and its inverse is a lower bound for the covariance of the
parameters, Direct and indirect methods of calculating the information
matrix are presented for systems with and without process noise, The
input design criterion used is the trace of the inverse of the informa-
tion matrix, Minimizihg this criterion appears to have some advantages

over maximizing the trace of the information matrix;

With amplitude constraints on the input, the optimal input is full

on in one direction or full on in the other direction (bang-bang). A
gradient method is then used to minimize with respect to the switch
times. The method is then applied to some simple illustrative examples,
For sufficiently long tests, the optimal switch times are equally spaced
and may be computed using the first few terms of the Fourier series for
a square wave, minimizing with respect to the fundamental frequency,

For reasonable amounts of deterministic input, the overall effect of

process nolse is to decrease the identification accuracy,

The method is then applied to finding the optimal elevator deflec-

tion to identify two damping derivatives of the short period longitudinal

Preceding page blank
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equations of motion of an airplane, A simulation verifies the improve-

ments of the optimal input over non-optimal inputs, Preliminary results
are also obtained using the method to find the optimal aileron and

rudder inputs to identify four damping derivatives of the lateral equa-

tions of motion of an airplane,
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Chapter I

INTRODUCTION

A, BACKGROUND

This thesis is cohcerned with determining inputs to identify param-
eters of a system with the greatest possible accuracy. The theory devel-
oped is applied to determining the optimal inputs (elevator, rudder,
and aileron deflections vs, time) for an aircraft flight test performed
to identify the dynamic stability derivatives of that aircraft, When we
consider that flight tests for a large commercial jet aircraft run as
high as $50,000 per hour [KR-1], then we can appreciate the importance

of designing meaningful flight tests,

There are many approaches t6 the problem of identifying system
parameters from input-output measurements,* Here, we consider systems
that can be adequately described by a set of linear differential equa-

tions with constant coefficients of the form

A
Il

Fx + Gu + w
: 1.1
z = Hx + v

where x 1is an n-dimensional state vector, u is a p-dimensional input
vector, 2z 1is an m-dimensional output vector, w is an n-dimensional
white gaussian process with zero mean and intensity matrix Q, and v is

an m-dimensional white gaussian measurement process with zero mean and

*
* See, for example, the recent survey paper by Astrom & Eykhoff [AS-1],



intensity matrix R,

In Chapter II we present a brief review of the major results of
optimal control and estimation theory which is used in developing the
resulis of this thesis, Estimating parameters in the F, G, H, Q, and
R matrices is known as identification and may be viewed as a problem in
nonlinear estimation, and the optimal input for identification may be

viewed as a stochastic control problem,

The process of describing a system by a set of equations of the
form (1.1) is called mathematical modelling, We divide the process into

three tasks:

Task 1: Structure Determination, Determine the order n and the

structure of the system, A brief introduction to this

problem is presented in Chapter III,

Task 2: Identification, Identify the unknown parameters in the

model assumed above, according to an identification cri-
terion, Measurements of the inputs and outputs from a
previously run test are used in an identification algor-
ithm, A history of identification techniques as applied
to the problems of aircraft may be found in Denery [DE-2].
Identification criteria and algorithms are presented in

Chapters IV and V respectively,

Task 3: Testing, Design and generate inputs to the system and measure

corresponding outputs, Choosing optimal inputs is the sub-

ject of Chapter VI through Chapter IX,.

B. INPUT DESIGN

In estimating the state of a linear system, the accuracy 1s independ-
ent of the control input, u, However, in estimating parameters of a
linear system (a nonlinear estimation problem), the accuracy is dependent

on the control input,



If we attempt to choose an optimal input prior to running any tests,
a prior estimate of the unknown parameters is required, If these estimates
are poor, another test may be required using a revised optimal input, This
is the approach used in this thesis as opposed to the more difficult feed-

back control approach,

The problem of designing optimal inputs for system identification
has received recent treatment by Nahi and Wallis [NA-1], Aoki and Staley
[A0-1], and Mehra [ME-3], They also take the approach of designing an
input before the test is run, based upon estimates of the parameters to
be identified, All of them suggest maximizing the trace of the informa-
tion matrix which can be a poor criterion, As a better criterion, I
suggest minimizing the trace of the inverse of the information matrix,
Nahi and Wallace [NA—l] formulate the problem with an amplitude constraint
on the input, as done in this thesis, Aoki and Staley [AO-1] and Mehra

[ME-3] considér the case of an integral square constraint on the input,

In practice, the input design for aircraft parameter identification
is a balance between (1) a good signal which is large enough relative
to instrument noise and vehicle disturbances, and, (2) maintaining the
instrumentation and the dynamics of the aircraft within their linear
regions, If the linear approximation is not a good one for the data
obtained from a flight test, then the input is far from optimal in a
practical sense, The only constraint considered in the aircraft prob-
lem in this thesis (Chapters VIII and IX) has been a control input am-
plitude constraint, The next step in the solution would be the addi-
tion of state inequality constraints to maintain the states within
their linear regions, A simpler solution to meet the linearity require-
ment would be the use of the solution in this thesis, but with the

amplitude constraint lowered to meet the linearity requirement,



C., REVIEW BY CHAPTER

In Chapter II, a review of optimal control and estimation theory is
presented, A contribution presented in this Chapter is the section on
calculating the information matrix for a nonlinear system, The informa-
tion matrix (whose inverse is a lower bound for the covariance) may be
calculated when the covariance itself may not be determined (such as

when the initial covariance is large in relation to the nonlinearities).

In Chapter III, some considerations on constructing canonical forms
are presented, A comparison is made between Denery's [DE-2] and
Spain's [SP-1] canonical forms, with respect to the number of parameters

in each form,

In Chapter IV, the maximum a posteriori criterion is developed for
the identification problem with noisy measurements of the output., With
the addition of process noise, the state equations are replaced by the

Kalman filter equations,

In Chapter V, two promising identification algorithms are presented,
The first method is Denery's combined algorithm, and the second is a

first order gradient algorithm, Both are applied to minimizing the perform-

ance indices of Chapter V.

In Chapter VI, we form the information matrix for the unknown param-
eters to be identified, The input criterion used is the trace of the
inverse of the information matrix, A simple example illustrates the fact
that maximizing the trace of the information matrix can yield poor results,
The information matrix as an input criterion is also developed from the
two identification algorithms of the previous Chapter, An interpretation
of the sensitivity functions for parameters in F and G is derived from
the extended Kalman filter, The Chapter concludes with calculating the

information matrix for the case with process noise,



In Chapter VII, we look at optimizing the input criterion developed' :
in Chapter VI, To minimize the trace of the inverse of the information
matrix with inequality constraints on the input yields "bang-bang' inputs
as optimal, The cbnjugate gradient algorithm is then used to optimize
the criterion with respect to the switch times, For long tests of stable
systems, the optimal input may be approximated as a éine wave, The last
six sections present éix exaﬁples; ® The first problem is to find the
optimal rocket sled acceleration to identify two parameters of an accel-~
erometer, o The next problem is to find the optimal input to identify
one parameter of a firét order system, e In the next two examples, the
first order system is repeated with process noise and with a state inequai—
ity constraint, e The last two problems illustrate the nature of optimal

inputs for the identification of parameters in unstable systems,

In Chapter VIII, we find the "opfimal" elevator input to identify
Md and Mq of the short period longitudinal dyngmics of an aircraft, The
switch times and the performance index are plotted as functions of the
length of the test, The two unknown parameters are identified using _
Denery's algorithm from simulated data using optimal and nonoptimal inputs,"
The simulation verifies the improved performance expected from the optimal

input,

In Chapter IX, we find the "optimal" aileron and rudder inputs to

identify the four dynamic stability derivatives (Zr, £ n n ) of the
p

p, r,

lateral equations of motion of an airplane, The only constraint consid-
ered was an amplitude constraint on the input, Without the addition of
state-inequality constraints, these results must be considered preliminary

for all but the shortest of flight tests,

In Chapter X, we present conclusions and recommendations for further

research,



, Chapter II
REVIEW OF OPTIMAL CONTROL THEORY

A. DETERMINISTIC CONTROL¥*

In deterministic optimal control theory, a performance index

t
3 = elx(t)]+ S f L(x,u,t)dt (2.1)
t
0 .

is minimized by choice of u(t) subject to the constraint
x = f(x,ut) x(to) = x (2.2)

where x 1is an n-dimensional state vector, and u is a p-dimensional
control vector. The calculus-of-variations approach to finding the optimum
u(t) yields a two-point-boundary-value problem (TPBVP) specified by (2.2)

and the adjoint equation

-
' (2.3)
where the Hamiltonian is defined by
H 2 L(x,ut) + Af(x,u,t) (2.4)

and the control u is chosen to minimize the Hamiltonian,

The first two sections are based upon Bryson & Ho [BRY-I].

-6-



For the special case where the cost function is quadratic in the state
and control variables, and the state equations are linear in the state

and control variables, we have

t
f
_ 1T \ 1T 1T :
J = ox (tf)Sfx(tf)+ St [2x Ax + Zu Bqut (2.5)
o
and
x = Fx + Gu, x(to) = X, (2.6)

where A and B are symmetric, A is positive semi-definite and B is

positive definite. The Hamiltonian becomes

X Ax + % ulBu + )F(Fx + Gu) (2.7)

prad
]
=

so that the optimizing control vector is
-1.T
u = -B 'GA. (2.8)

The two-point-boundary-value problem becomes

X = Fx - GB—lGTR, x(t ) = x
o o
(2.9)
A = -Ax - FI) Nt,) = s_x(f)
) f f £
This may be solved by the backward sweep method by letting
A = Sx (2.10)
so that
u = -B'e¥sx = -cx. (2.11)
-7~



S 1is determined by a matrix Riccati equation

& = -SF - F's - A + sGB™'a's, s(t,) = s, . (2.12)

The same result may be obtained by dynamic programming where we must

solve the Hamilton-Jacobi—Bellman partial differential equation
9J° min aJo
- St = q M(X: dx u,t)

(2.13)
Ilx(ty); t.)] = elx(t,)]

for the optimal return function ( the performance index expressed as a
function of the state x and time t). For the linear-quadratic problem

the optimal return function is given by

J%x,t) = % xTs(t)x . (2.14)

B. LINEAR STOCHASTIC CONTROL

For a linear system with state x that is initially N(xo, Po) (i.e.,
gaussian with mean X, and covariance matrix Po), driven by white gaussian
noise w with zero mean and intensity matrix Q(t) and described by

X = Fx + Gu + w , (2.15)

with measurements 2z that are corrupted by white gaussian noise v with

zero mean and intensity matrix R(t) according to

z = Hx + v , (2.16)

the conditional probability distribution of the state at time t, given



measurements Z(tf) = {z(t), t_st = tf} is gaussian with mean ﬁ(tltf)

, o
and covariance P(tltf).

For t = tf,

t

f
J = %IQ(to) - xo]TP;l [%(to) - x ]+ % St

[wTQ-lw + (z - HX)TR-I(Z - HX)] dt

ﬁ(tltf) and P(t|tf) are found by minimizing

(2.17)

subject to (2.15) above. This results in the two-point-boundary-value

problem
2(t] te) F -Q §(t|tf) 0
= +
. - -1
A R P A HR 'z
x(toltf) = x_ - Pox(to), A(tf) = 0.

This may be solved using the sweep method by letting

N

ﬁuy%) = X - PXNt)

where the filtered estimates X% £ %(t|t) and P S P(t|t) are

Kalman-Bucy filter equations

2 = FR+ Gu+ pHTR'l(z - HX), Q(to) =
P = FP+ PFL + Q - PHTR-IHP, P(to) =
and A 1is given by
A -F - PHIR )T + HTR-l(z - HX), A(tf)

(2.18)

(2.19)

given by the

0.

(2.20)

(2.21)



X(t|tf) is then given by (2.19), and P(t|tf) is given by

P(t|tf) = P+ PAP (2.22)

where A is determined by

A = -(F - PHTR-IH)?A.- ANF - PHTR-IH) + HTR-1H, j(tf) =0 . (2.23)

For the prediction case where t > tl’ x(t|t1) and P(tltl) are deter-

mined by

é(tltl) F&(tltl) + Gu

2t ]t) = 2(t) ;

(2.24)

. . T
P(t|t1) FP(t|t1) + P(t|t1)F + Q

P(t,[t) = P(t)) .

If we let our performance index be the ensemble average of a quadratic

cost function
t

J = EC = E{%XT(tf)Sfx(tf) + \

. |
[3x Ax + %uTBu]dt} (2.25)
t

o

then the separation theorem tells us that the optimal control is the
Kalman-Bucy filter followed by the optimal deterministic feedback controller.

For the optimal control u® to be realizable, it must be a functional

of Z(t) [the measurements up to time t, z(t), t sTs t], and our initial
information about the system., However, this would appear to imply that
(2.15) is no longer Markovian and Dynamic Programming techniques (as well

as calculus of variations techniques) are no longer applicable [WO-l, p. 211].

=10-



We know that 2 and P are sufficient statistics for the stochastic process

(2.15) given u; 1let us assume for the moment that just X represents a

sufficient statistic to mechanize u*. We can then define the stochastic

optimal return function; expressed as a function of X and t, °(&,t)
as the minimum of

t
f

J(R,t,u) = E{'}xT(tf)Sfx(tf)+ S

[ékax + %uTBu]dt|Z(t)} (2.26)
t

where E({-|Z(t)) represents the ensemble average for that subset of the
ensemble with measurements Z(t). Note that the return function (2.26) eval-
uated at to equals the performance index defined in (2.25). since the
"innovations" Vv in the Kalman Filter representation

£ = FR+ Gu+ KV (2.27)

is white with intensity R, the stochastic Hamilton-Jacobi-Bellman equation

for J° is

mﬁn{J:+%Tr(J§§PHTR'1HP) + 3%7A% + 3TrAP + 3u'Bu + J§(F§+Gu)} =0 (2.28)

which becomes

J: + %Tr(JgﬁPHTR 1gp) + 32TA% + 3TrAP + J§F§-%J§GB 1GTJ,:; = 0 (2.29)
with the terminal boundary condition
Ora _ lAT P
J [x(tf),tf] = 3R (tf)Sfx(tf) + %TrSfP(tf) . (2.30)
This has the solution
(¢ PN lAT' A
J(%,t) = 3%s(t)® + s(t), (2.31)

After solving the problem with this constraint, Wonham [WO-2] is able

to show that the resulting solution is the optimal solution for the
unconstrained case,

=11~



where S 1is determined by (2.12) and s 1is determined by

S + %TrSPHTR-lﬂP + 3TraP = O
(2.32)
s(tf) = éTrSfP(tf) .
The optimal control is then u = -B—lGTS§ = -CX as stated by the separa-
tion theorem. The average value of the cost is then
O ra _ lAT ~
J [x(to),to] = 2xoS(t0)x0 + %TrSfP(tf) +
te (2.33)
+ 3Tr S SPH'R 'HP + APdt.
‘ )
o
By adding the differential % dSP/dt inside the integral and adding
%[S(tO)P(to) - SfP(tf)] outside the integral, we obtain
= 1 R “+
J 2Tr(s(to)x(to) S(to)P(to) +
t (2.34)
f T -1 . .
+ S SPH'R HP + AP + SP + SP dt .
t
o
Substituting into the above equation for é and ﬁ, we obtain
te
J = %Tr{S(to)X(to) + S sSQ + cTsep dat} . (2.35)
-t .
o)

C. NONLINEAR ESTIMATION*

For a nonlinear stochastic system and measurements of the form

This section is based on Sage and Melsa [SA-1] and Jazwinski [JA-1].

~12-



Me
l

f(x,u,t) + G(x,u,t)w, x(to) = x

(2.36)

N
i

h(x,u,t) + v

we may define an "extended Kalman Filter" by linearizing about the current
y

estimate of the state:

. - T
s 30+ P R en(iu 0], 86y - x,
(2.37)
T T
P = §EP+P§£—+GQGT-9%—R1@P, P(t) =P
ox o% ox 0%
where éi A §£
5?{ BX A
X=X
and Sh a Ooh
aﬁ ax A
X=X

Two other promising methods in nonlinear filtering are, conditional

mean estimation and maximum a posteriori (conditional mode) estimation.

C.1 Conditional Mean Estimation

The conditional probability distribution of x given Z(t), is

given by Kushner's partial differential equation

R - gp) + (n- NE Nz - B (2.38)

where the operator £ is defined as

2(.) & -tr% (.)} +-§tr{%[(§x)TGQGT(.)]}. (2.39)

-13-



For R-1 = 0, this reduces to Kolmogorov's partial differential equation

which gives the predicted probability distribution in the absence of meas-
urements., Even though there is no known method for solving Kushner's
stochastic partial differential equation, it is useful in studying and
developing approximate solutions. Also, there is no known expression for
the conditional probability distribution of x(t) given later measure-
ments for the nonlinear system given by (2.36). From (2.38), we find fhat
the conditional expectation of a scalar function of x is given by

. /\ e ~n -1 A
% = '$;¥\+ 3tr GQGT¢XX + (¢h - ¢h)TR (z - h) (2.40)

where the expectation operator * is defined by

>

) J(F)plx|z(t) Jax . (2.41)

From (2.40) we find that the conditional mean and covariance of x are

given by
= T+ (x-%00®Yz-8) (2.42)
) ///\\2 ////:f\E ¥ & a1
P = f(x - x) + (x - x)f + GRG - — x

dt
(2.43)

+ (x-Dx-DTm-BrMNz-0) .

To evaluate (2.42) and (2.43) for the first and second moments of
p(le), we would have to know all the moments. An approximate solution
for % and P may be obtained by expanding f(x,u,t), h(x,u,t), and
G(x,u,t) Q(t) GT(x,u,t) in a Taylor series. By expanding to second order
and using the fact that for nearly gaussian densities

E{% % %

£Xi%51 = PrgPis t PPyt PPy (2.44)

we obtain the second order filter

-14-



2 T 2
A 197f oh -1( 127h | )
X = f+ 5 - t: P+ P e R z h ) a“z -
X X
(2.45)
T T 2. T
p - Xp.p éf— - P<§§— R é% P+ GRGT + ; 9 SE . pe Y
X ox% oR o% ox%
where N T
2 2
E 1 E [( ah] -1( 3°n )
= = P,.P, . +P P ) R {z - h--— : P} (2.46)
) 2 i3=1 ik £] kj £i 5x15xj §2
and the operation : 1is defined by
2
aZL.._ a{.}ij
——-éi : P = tr|—7— P| . (2.47)
dx X

C.2 Maximum A Posteriori Estimation

A criterion for the maximum a posteriori estimate of the trajectory

of x 1is obtained for the discrete case and its corresponding continuous

criterion is found by a heuristic limiting process. The equivalent dis-

crete system is specified by

x(k + 1) = o[x(k),u(k),k] + I'{x(k),u(k),kw(k)
(2.48)
z(k) = h[x(k), u(k), k] + v(k)
where w(k) and v(k) are gaussian and
Ew(k) wT(/z) = Q(k) 8,
(2.49)
Ev(k) vT(z) = R(k) Skﬂ .

L _
et X(kf) and Z(kf) denote x(ko),...

respectively.

x(kf) and z(k z(kz),...z(kf)

U
According to Bayes' rule

-15-~



plx|z] = p[IZ) )z(% [x] (2.50)

Since v(k) is gaussian
ke
plz1X] = H —l-—exp{- %(z(k)—h)TR_l(k)(z(k)-h)}, (2.51)

k=k +1 \l(zn) m IR |

Since w(k) is a white Gauss-Markov sequence
ke

p[x] = plx(k )] H p[x(k) |x(k-1)] (2.52)
k=k _+1 .

where p[x(k)|x(k-1)] is gaussian with mean ¢[x(k-1), u(k-1), k-1] and

covariance
Mx(k - 1), u(kx - 1), k-1]Q(k - 1) Pfx(x - 1), u(k - 1), k - 1} .
The conditional probability distribution is then
[xX(x,)|2(k,)] = A exp{-H|x(t_)-x ||
p f £ = o’ ol -1
. ke
1 2
- 3 20 =00y (2.59)
2 1
k=ko+1 R (k

2
; hm>-ﬂﬂwn»m4»bnmmﬂrj}

where A 1is independent of x. Maximizing the conditional probability

distribution is equivalent to minimizing the performance index

| Hlx(x_)-x || ; Ekf: |z(k+1) - hlx(k+1),u(k+1) 02
J = Z|x(x )- + = z(k+1) - h[x(k+1),u(k+1),k+l
. 2l XV 8o/ 7%, p;l 2 “ l ‘R-lﬂﬂ
o
(2.54)

2
sl LICOL S
Q &
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This criterion yields the maximum a posteriori estimate for the joint
probability distribution of x(ko), x(kl),... x(kf). The value of x(k)
found by minimizing (2.54) is not necessarily the mode of the marginal
probability distribution for x(k). In principle, we could obtain the
marginal probability distribution for x(k) by integrating the joint
probability distribution with respect to x(o), x(1),... x(k-1), x(k+1),..
x(N). Passing to the limit, the maximum a posteriori criterion for the

continuous system for the trajectory X(tf) & {x(T), to =TS tf] is

J = —;—[x(to) - xo]T p(')1 [x(t,) - x_]

> (2.55)
v = S {[z - n1" Mz - Bl + wTQ-lvv}dt

t
o]

A calculus-of-variations solution leads to the two-point-boundary-value

problem
x = f£(x,u,t) - G(x,u,t)Q(t)G(x,u,t)A, x(to) =x - Pox(to)
. T T (2.56)
A= - [gﬁ] A+ [%2] R'l[z - hl], %(tf) =0 .

An approximate solution to this two-point-boundary-value problem can be

solved by means of invariant imbedding leading to

A a dnT -1 A A
X = £(%ut) +P %R [z - h(%,u,t)], x(to) = X
(2.57)
T T
P = %% P + p[%%] + P g%{%%— R'l(z-h)} P + GQGT, P(to) =P .

Approximate smoothing algorithms can also be obtained in a fashion similar to
the filter algorithms. These require the results of the approximate filter

solutions.

-17-



D. AN _INFORMATION MATRIX APPROACH

The approximate filters of the previous section were derived on the
assumption that the covariance' is "small" compared to the nonlinearities
in f, G, and h. For example, in the scalar case, a "smallness" criterion

could be obtained by expanding f(x) to second order about x:

1) = 1@ 1) Ge®) e g ) (eR) e

X=X X=X

If the range of x-xX were + 30, then we would have to satisfy the con-

dition
2
af
2 <L s
o] — .
x of
XX
for the variance of x to be "small." Similar conditions would have to

hold for higher order terms in the Taylor series.

If the initial covariance did not meet this smallness requirement,
we could still solve (2.56) by some other technique. However, we would
still not have an estimate of the covariance of the state. -Such an esti-

mate may be obtained by calculating the information matrix.

The Fisher information matrix corresponding to a probability distri-

bution p(x) is defined as follews: [VA-1, Part 1]

2
-E é_éﬁgiﬁl (2.58)

2
x dx

=
>

>

[ ()p(x)ax.

If x has a gaussian distribution with mean x and covariance P,

where the expectation operator is defined as E(.)

then
1

(%) = —————— exp{-3(x - %)7P *(x - %) (2.59)
P rz;;sﬁr;r p{ } 9

and the above definition shows us that
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A general performance index of the form

iy
J = ¢f[x(tf),tf] + ¢o[x(t0),to] + S L(x,u,t)dt

t
o

may be written as

P COR G
where J(-) and J(+) are defined by

t

J(-)(t) = o [x(t),t 1+ S L(x,u,t)dt
to
te

(+) = X S X, U .
V(L) = ¢f[ (tf),tf] + ) L(x,u, t)dt

The adjoint variables are equal to [BR-1]

(+) )
SURE  ORICURSCIEES ORE

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

Let us make the assumption that the conditional probability distrib-

ution of x(t) given measurements Z(tf), is given by*

p(x) = Ae-J(x)

where A is independent of x.

(2.65)

This is not strictly true since J is the maximum a posteriori cri-
terion for the trajectory X(t) and not a criterion for the marginal

probability distribution, x(t).

-19-
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The information matrix for x(t), given measurements Z(tf), may then

be expressed as a function of the performance index (2,55) by

2
Leefey = B2L (2.66)
x f ox (t) .
X=X
Since
dJ aJ(')(’c )
- £ s (e, (2.67)
ax(tf) Bx(tf)
we have
ON(t,)
f
Ix(tf) 4 Ix(tf,tf) = =E m o (2.68)
The sensitivity matrix B%(t)
E Bthfi

is specified by the linear matrix two-point-boundary-value problem

X = ([ f{] - M)X - cQGTa, X(t,) = 1
| (2.69)
T T
A = (-N - g%- R! %)x - [gﬂ A, A(t) = -P'lx(to)
where
A o) A 87\(‘t
x(t) & E&%%)— and A(t) £ Em% s (2.70)

the ith row of M = KT(ami/Bx), where mz = ith row of GQGT, and the
ith row of N = %T(ani/ax), where n? = ith row of [(af/ax)]T . Once
the TPBVP of (2.56) is solved, the coefficients in (2.69) may be evaluated.

D.1 Linear System

As an example, consider the linear system and measurements specified

by
-20-



(2.71)
Z = Hx + v
with the performance index
ty
T -1 T -1 ) .
J = %[x(to)—xo] P [x(to)-xo] + % S (z-Hx) 'R “(z-Hx)dt . (2,72)
t .
o
The vector TPBVP for x and A is
x = Fx Mt ) = -Plx(t) - x ]
- o o o (o)
. - 2.
N = -FA + HR Nz-Hx), Nt,) = o, (2.73)
and the matrix TPBVP is then
X = FX, . x(t.) = 1
£ )
: T T -1 1 (2.74)
= - A - - A = - -
A F H R HX, (to) P X(to)
and the information matrix is
I(t) = -At,) . (2.75)

Now let us verify that this answer agrees with what the Kalman filter

would give: Let

¢xx LY
TS OVY
be the transition matrix for
F 0
-HR ' P
so that
X(t ) = o _(t ,t)X(t,) . (2.76a)
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Making the substitutions

X(tf) = I and A(to) = —P;lx(to) (2.77)

we have

Atg) = Loy (t,t) - epn(t,t )P 1o (t ,t.) . (2.78)

Differentiating

) T -1 T T ' -1
Bt_f A(tf) = [—H R H¢Xx(tf,to) - F ¢)\x(tf,to) + F ¢7\7\(tf,to)Po ]

-1
% ¢xx(to’tf) * [}%x(tf’to) - ¢X%(tf’to)Po ]d)xx(to’tf)(-)F

and simplifying

% Aty) = -H'R'H - FTACt,) - At,)F (2.79)

we find that Ix satisfies the equation for P_1 in the Kalman filter:

: T T -1 -1
= - - H = - .
I ILF-FI_+HRrH Ix(to) P (2.80)

For this simple example, a direct* derivation of J is easier;

readily leading to

2 ty
Ix(tf) = —2—‘])- = xT(to)p'lx(to) + S xT(t)HTR'lnx(t)dt (2.81)
b 4 tf A

and only the first equation in (2.74) is needed. Differentiating, we have

By "direct" we mean that the performance index is differentiated directly
without employing the adjoint variables.
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o) . T -1 T -1 : T T -1
= P~ Xx(t
st 1 (t.) (e ) " X(t)) + X ()P (t)) + X (t)HR Hx(tf)
g TT -1 T T -1 (2.82)
+ S X'HR HX + X H R HXdt.
t
o}
If we make the substitutions
. s d /Ox(t) ) o ox(t _
x(t) 2 3t ( x(t - Xty § T X(t)F
f f f ,
and (2.83)
X(tf) = I

we obtain (2.80).

E. NONLINEAR STOCHASTIC CONTROL

If we assume that & and P given by (2.37), (2.45), or (2.57) repre-
sent aset of sufficient statistics for p(x,tIZ), and z - h(x,u,t) is
approximately white with intensity R, then we can form the stochastic
Hamilton-Jacobi-Bellman equation. This makes the problem nearly impossi-

ble to solve. If we cannot make assumptions such as this there is no

known "exact" method of solving the nonlinear stochastic control problem.

The performance index for the nonlinear problem may also include

weights upon the moments of the cost as well as just the mean of the cost:

J = QEC+0.E(C - C) + -~ a E(c - P S (2.84)

In practice, this performance index could be expanded to second order as

is done in the second-order filter.
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Chapter III
STRUCTURE DETERMINATION

A. INTRODUCTION

Recall from Chapter I that the first task of mathematical modelling
is the determination of the system structure. In many applications, the
order and structure of the differential equations may be derived from
physical principles., Such is the case in deriving the equations of motion

of an airplane,

In more complex systems such as biological or economic processes, the
underlying processes are not well known. In such cases, an approximate
model of the system may be obtained by assuming a given order or other

structural information about the system and fitting data to it.

Let us assume that the structural information about the system may
be specified by a set of model numbers. An example of a model number,
other than the order of the system n, the number of inputs p, and
the number of outputs m, would be the order r of the minimal annihi-
lation polynomial.* A possible method of determining the structure of a
system is the following:

(1) Assume a given value for the model numbers (for example,
assume a first order system).

(2) Perform the other two tasks of mathematical modelling under
this assumption, namely (a) choosing an input and measuring
the corresponding output, and (b) identifying the parameters
of the assumed structure from input-output records.

A polynomial is an annihilation polynomial if it equals O when the
F matrix is substituted for the independent variable. The Hamilton-
Cayley theorem tells us that the nth order polynomial of the character-
istic equation is an annihilation polynomial. However, there may be
other polynomials of lower order that dre also annihilation polynomials.
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.3) Increase the values of the model numbers (for example, increase
the order by one) until a structure criterion is met. Two
possible structure criteria are: (a) the residuals (differ-
ence between the measured output and model output) are "close"
to being white. Such a criterion has been used by Mehra [ME-1];
(o) There is no significant reduction in the identification
criterion. A significance test for the reduction is given in
Astrom and Eykhoff [As-1]. The latter criterion appears to
be the more decisive [SP—l] but requires an identification at
one higher value of the model numbers than the former criterion.

The next section discusses useful results from realization theory
that may be applied to constructing canonical forms. It also discusses
the construction of canonical forms with four model numbers (m, n,

p, and r) and compares the canonical forms of Denery and Spain.

B. REALIZATION THEORY"

Realization theory for deterministic systems is concerned with
specifying the internal description of a system (i.e., specifying its
differential equations) from a known external description of a system (as
expressed by its impulse response matrix or transfer function matrix). For

the deterministic system

Xx = Fx+ Gu
(3.1)
y = Hx
with zero initial conditions, the output is given by
t
y(t) = S Ho(t,T)G u(T)dt (3.4)
t
o
or in the frequency domain, by
-1
y(s) = H(sI - F) “Gu(s) . (3. )

*
This section based on Kalman [KALrl].
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As far as any input-output relationships are concerned (with zero
initial conditions), the descriptions in (3.4) and (3.5) are equiva-
lent to the description in (3.3). However, the specification of
(F, G, H) from either (3.4) or (3.5) is not unique. Before proceeding
with the main results of realization theory for linear time invariant

systems, two definitions and one theorem are in order.

1. Definition 1:

(F, G, H) is strictly algebraically equivalent to (¥, G, H) if

and only if there exists a non-singular constant matrix T, such that

F o= TFT "
G = TG (3.6)
i o= mr!

2, Definition 2:

(F, G, H) is a minimal realization if there is no other realization

(i, G, H) with an F of order smaller than the order of F.

3. Canonical Structure Theorem

The state vector may be transformed into four mutually exclusive

parts (see Fig. 3.1):

Part A: controllable but unobservable;
Part B: controllable and observable;
Part C: uncontrollable and unobservable;

Part. D: uncontrollable and observable;

so that F, G, and H take the canonical forms
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FIG, 3,1, DIAGRAM OF CANONICAL STRUCTURE THEOREM
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From the above theorem it

a general system is given

Result 1:

- i
FAA FAB FAC FAD
o FBB o FBD
F = ;
0 0 FCC FCD
0 (o] (0] FDD
L -
GAT
B
G = G H (3.7)
(o}
o]
-
H=LO HB 0 HD]'

is easy to see that the transfer function for

by HB(sI - FBB)-lGB' so that we have:

Only the controllable and observable portion of a

Result 2:

system can be identified. We must not be too con-

fident that we "know" a system from a description of its
input and output. There may be other important parts
of the system that we know nothing about.

Conversely, we have,

A realization is minimal if and only if it is controll-

Result 3:

able and observable. We may generate a realization that

. contains parts A, B, C, and D,

However, a minimal reali-
zation consists of only part B of the above nonminimal
realization.

Finally, we have,

Any two minimal realizations (of a time invariant system)

are strictly algebraically equivalent. Algorithms for

finding a minimal realization are given by Gilbert [GI-1],
Kalman (KAL-1], Ho and Kalman [HO-1], and Silverman
[s1-1].
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There are at least three main criticisms of the realization theory
approach to mathematical modelling: (1) The transfer function (or impulse
response) matrix has to be determined before it can be applied. Why
not identify F, G, and H directly from measurements of the inputs and
outputs without first calculating the transfer function matrix? (2) 1t
‘is assumed that the transfer function (or impulse response) matrix is given
exactly; whereas with these external descriptions, the parameters in F,

G, and H may be very sensitive to small errors in the transfer function (or
impulse response) matrix. (3) One may be led to believe that an impulse

or sine input is the "proper" input to use.

C. MINIMAL PARAMETER SET

In parameter identification the number of independent parameters q,
needed to describe a system, is of great interest. If a realization is
of minimal order, any desired canonical form can be used to enumerate
the number of independent parameters. The information matrix provides a
means of verifying the identifiability of a set of parameters. The
independence of a set of parameters in the information matrix is equivalent
to the identifiability of the parameters. If the information matrix for
a set of parameters is singular for any input, then we do not have a

canonical form.

By knowing the order n, number of inputs p, number of outputs
m, and part of the structure of a system, Denery [DE-2] constructs a
canonical form involving n(m + p) parameters. The structural information
needed consists of the first n 1linearly independent rows of the observa-
bility matrix. If we do not know the first n linearly independent rows,

then we must examine each possibility for a given value of n.

For systems with an annihilation polynomial of degree r (but of un-
known order n 3 r), Spain [SPll] constructs a canonical form involving
r(mp + 1) parameters. If F has an annihilating polynomial of degree
less than n, then F is similar to a quasidiagonal matrix that has two
or more Jordan blocks with the same eigenvalue. It would then seem to be
a special case for a physical system to have r < n. Thus, Spain's number
of parameters is much larger (for multi-input multi-output systems) than
Denery's, except for special cases. However, Spain does not assume any
structural information and would not have to investigate a large number of

cases for each value of r.



Any square matrix with multiple eigenvalues is similar to a quasi-
diagonal matrix where each diagonal matrix is a Jordan matrix. The.
possibility of multiple eigenvalues suggests that this form gives us a
form with the minimum number of parameters. It is instructive to cal-
culate the number of parameters needed to describe a quasidiagonal canonical
form for the model numbers (m, n, bp, r). The results are shown in
Table 3. for n = 1, 2, 3. For n 2 4, the number of cases increases greatly;
for example, for n = 4, there are 14 different cases and for n =5
there are 29 different cases. For each case, the number of parameters
is less than or equal to that given by Denery or Spain, (Since each of
these cases assumes more about the system.) A method of calculating the
results shown in Table 3,1 is illustrated in the following example: Find
the number of parameters needed to describe a second order system with

two inputs and two outputs. There are three different cases:

Case 1: Distinct eigenvalues. See Fig. 3.2a, (r = 2). As far as

input-output relationships are concerned, we could make the following

replacements:
E11 7 811 Py , by 71
812 7 B1p Pyy Byy = Boy/hyy
g1 7 821 Py hi, = hyy/By,
899 - g22 h22 h22 - 1.
For this case there are eight parameters: kl, kz, gll’ glz, g21,

h h + The information matrix for these eight parameters is

€20 M120 21
nonsingular.

Case 2: Jordan form. See Fig. 3.2b, (r = 2). In this case we make

the following replacements:
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Table 3,1

The minimal number of parameters, ¢, of a canonical
form for the model numbers (m, n, p, r), Cases are
shown for n =1, 2, 3, For each case, q is shown
versus m and p,

Order and Case F Matrix g vs.m and p
n=1 m P 1 2 31 4
Case 1 [}‘] L lz213l4ls
r=1

213(4]5] 6
314|5| 6|7
4 5| 6| 7] 8
n=2 ‘}\ 0 mp 1|2 4
Case 1 1 1| a 1o
r =2 0 \
2 2|6]8[10] 12
3| 8{10{12}| 14
411012114} 16
n =2 1 12|34
Case 2 A
1{416]8(10
r =2 0 2
2|6 |8]10j12
3|8 (10/12}{14
4 110|12|14| 16
P
n =2 A 0 nNj112]3]|4
Case 3 : VNV
1
r =1 0 }\ / / /
2 \:\ 517]9
3 \\ 7]9]11
4 \\ 911113
= number of outputs v
= order of system Not Observable m

number of inputs

Not Controllable

= order of minmal annihi-
lation polynomial

-31-
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Table 3.1 (Contd)

-32~

Order and Case F Matrix q vs. m and p
= Pl1 |2 |3 |4
g 31 A 0 0
ase3 1 1 |6 |9 [12]15
r =
0 2, O
n =1, Case 1 @] 2 2 |9 |12(15)18
‘ 1
n = 2, Case 1 0 0 A4 3 |12115]18] 2
4 |15{18]21] 24
n =3 p 4
- A 00 il (2 (3
C
By 1|6]|9 |12[15
r =3 0 }\2 1
n =1, Case 1 @] 0 o 2 (9 |12]15|18
A 12| 1
n = 2, Case 2 2 3 |12]15]18] 21
4 [15|18|21] 24
p
n =3 A 1 0 m 1 3 4
Case 3 1 16 12]15
r = 3 0 by 1
2 |9 |12]15(18
0 0 X 3 [12]15]18] 21
4 [15]|18| 21|24
n =3 \, O O N1 [2 (3|4
Case 4 1 . Ve
r =2 N A
0 2, O <
= 1, Case 1 @] 0 o 2 \_\9 12|15
A 1
= 2, Case 3 2 3N 2]115(18
4 \:\ 15{ 18| 21
Contd.




Table 3.1 (Contd)

Order and Case F Matrix q vs. m and p
Plil2]3]4
n =3 A 0 0 m
Case 5 1 //////
re2 ° M ! 2 A 8 |11 14
N
0 0 A 3 N1t 1f17
4 \:\ 14| 17| 20
P
n=3 by 0 0 m .l\ 2\ 314
Case 6 1\\\\\\\
r =1 0 A 0 NN\
NN
0o 0 2 3‘\\\\\10 13
4 \:\ \\13 16
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FI1G, 3.2,

Fig. 3.2a

A

Fig, 3.2b

Schematic diagrams for an example in deter-
mining the minimum number of parameters of a
canonical form, The example was a second
order system with two inputs and two outputs,
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g . — g. . h h =+ 1

11 11 11 11
&2 7 %12 Py ] Byy 7 hyy/Byy
h h
Ba1 7 By 'y By = By/by

y9 ~ Bap My hyg = Bop/By, -
In this case we cannot normalize with respect to h22 due to the extra
coupling; however, both eigenvalues are the same so that eight parameters
are still all that is necessary; namely, A, gll’ glz, g21, h12,
Bopr Boge

Case 3: Two (1 x 1) Jordan blocks have the same eigenvalue. See
Fig. 3.2c, (r = 1). From the results of Case 1, we know that seven
parameters are sufficiently general; but perhaps they are not all iden-
" tifiable. From Fig. 3.2c¢, we see that as far as the paths from u1 to z1
are concerned, we cannot tell from measurements of the input and output
whether we took path g -1 or g

11 12
=0 (if it is not needed by some other connection).

12
12

In going from u, to z,, we reach a similar conclusion about h

going from u1 to zz,

€12
us choose g12 % 0 and h21 = 0. From u, to Zy5

clusion about setting h12 = 0., We thus have the possible form shown in

21" In
we have to keep either #0 or h, #0; let

we reach a similar con-
The informa-

Fig. 3.2d, with five parameters: A, g g

11’ 8120 8310 Bap-
tion matrix for seven parameters can be shown to be singular for any
input. This is a consequence of the linear dependence of the sensitivity

equations when kl = A For the set of five parameters, the information

9
matrix is nonsingular,
Although the results in this example were derived assuming that the

eigenvalues were real, we would get the same number of parameters since

for each complex eigenvalue, its conjugate is also an eigenvalue. Note
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1
u 1 z
1 s - \ 1
u 1 1 z
2 s - X 2
Fig, 3.2c
1l
ul gl]. @ Z
1
u o /1\
2 G!!’ s =2 /
Fig, 3,2d

FIG, 3.2, Schematic diagrams for an example in deter-

(Cont) mining the minimum number of parameters of a
canonical form, The example was a second
order system with two inputs and two outputs,
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that for all cases for which no Jordan blocks have the same eigenvalue
(i.e., for which r = n), the number of parameters is the same as that

given by Denery's canonical form, q = n(m + p).

Future research would be useful in determining the best model numbers
for multi-input multi-output systems. Considerations should answer the
following two questions: (1) What is the minimal number of parameters,

q, needed to designate an arbitrary member of the class defined by the
model numbers? (2) As the order of the system increases, how many differ-
ent cases, ¢, must be examined? In general, the more model numbers we

have, the smaller ¢ is but the larger c¢ is, Some optimum trade-off

should be possible.
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Chapter IV

IDENTIFICATION CRITERIA

A, INTRODUCTION

Let the vector, a, represent the unknown parameters in F, G, H,

Q, and R (and the initial conditions) , and Z(t) the set of measure-

ments up to time t, The identification criteria developed in this
Chapter are based on finding the value of a at the maximum of the

a posteriori probability distribution pa|Z
a = arg max paIZ .

This is a mathematically simpler approach than the conditional mean

approach summarized in Chapt, II,C, Since a is a vector of constant

parameters, we do not have the problem noted in Chapt, II.C that there
may be a difference between a maximum a posteriori criterion for the

joint probability distribution and the marginal probability distribution,

Since Bayes formula tells us that

_ P * P
Paz = 2l2__a | 4.1)

Py
the maximum a posteriori equation is

- anpzla Bgnpa

32 *T3a T 0 4.2)

The classical maximum likelihood criterion is to choose. that a for which

p, is a maximum, The maximum likelihood equation is then
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which is the same as the maximum a posteriori criterion with no prior

knowledge of the parameters.

In the next two sections the maximum a posteriori criterion is
applied to our linear system with two idealized error sources: (1) white

gaussian measurement noise of the output, and (2) white gaussian process

noise,

B. CRITERION WITH MEASUREMENT NOISE

Without process noise and with perfect measurements of the input,

us, the discrete system

- . (4.4)
X1 ¢x1 + Pui, x, given

with measurements

z, = Hx + v,

i
where
T
Ev. v, = R & .. (4.5)
i ] 1 7ij

The probability density of each measurement given the unknown parameters

(including x,) and the sequence u, is gaussian:

1 1 T -
= @ ——— - - - H .
P, la = exp{ Z(Zi Hxi) R, (zi xi)} (4.6)
i (2™ |R, |
Since the sequence xi may be calculated deterministically, each meas-
urement is independent and we may write

N
1

1 T -
P, X r] B e—— exp{— E(Zi - Hxi) R,
i=1 \/ (2ﬂ)“‘|R1|

1
(z; - H"i’} 4.7
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or N

' 1 m
gnp,, = 21 -3 2o R[] -
= (4.8)
1 T -1
- --2-(zi - Hxi) R1 (zi - Hxi) .

Thus, maximizing pZla with respect to a is equivalent to minimizing

the performance index
N
1 T -1
J = = £n|R I + (z, - Hx, ) R, (z, - Hx_)] 4.9)
2 i 1 i i 1 i i

with respect to a, subject to the constraint

X, = ¢x, + Iu, . (4.10)
i+l i i

If none of the parameters in R are known, then we can first minimize

1

with respect to the parameters in R to obtain [SP—l, p. 23]

1

N
T

— (zi - Hxi)(zi - Hxi) (4,11)

2|

R1 = .

1

so that minimizing the performance index, (4.9) is then equivalent to

minimizing
N
T
J = det| D, (z - Hx)(z - Hx) (4.12)
r 1 1 1 1
i=1
with respect to all unknown parameters except those in Rl' However,

if all the parameters in R are already known, then minimizing (4.9)

1
is equivalent to minimizing

J =

| =

N
T -1
;g; (zi - Hxi) R1 (zi - Hxi) . (4,13)

In the continuous systeﬁ, Eq. 1.1, the assumption that the measure-

ment noise v is white (uncorrelated) is a useful approximation if the
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correlation times of the measurement noise are short with respect to the
dynamics of the system being measured, However, in trying to estimate
the intensity matrix R, the assumption about independent measurement
errors is invalid as the measurement interval tends to zero, This is
reflected in the fact that the limit of (4.9) does not exist, However,
we can estimate R by thinking of v as a correlated process with a

very short (but finite) correlation time. In this case an estimate of R

is given by

o>
1R

+T
S C(T) dT ‘ (4.14)
-T

where the correlation matrix C(T) 1is given by

T-T

c(r) = Fi? S vV (6 + T) dt . (4.15)
o]

The value of R is a measure of the noise characteristics of the
instrumentation, and may be obtained from measuring the instrumentation
alone, without exciting the system, For the remainder of this thesis,

R will be assumed known, With R known, we can minimize the limit of

(4.13) with R1 = R/At:

te .
J = % S (z ~ Hx)TR—l(z - Hx) dt . (4.16)
t

We are now subject to the constraint

x = Fx + Gu, x(t)=x_ , (4.17)
o o
The latter performance index can also be derived by maximizing the likeli-
hood ratio [ME-2]
p
Z|H1,a

L= —2 (4.18)
Pzl u
o
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where H1 represents the hypothesis that
z = Hx + v

and HO represents the hypothesis that

The criterion developed in this section is also known as the output error

criterion [ DE-2, ME-2]

C. CRITERION WITH MEASUREMENT AND PROCESS NOISE

With process noise, the discrete system (4,4) becomes

x_1+l = ¢xi + 1"ui + wi, X, given , (4.19)

. - - T
In calculating the correlation E(zi - zi)(zj - Zj) for i # j, we

reduce the calculation to finding

M2 EG - X))y - XD
Refer, for the moment, to the first equation in (4.22) where Mo =0
since X, is given, For the case without process noise Qi =0, so
that Mi = 0 and the measurements are uncorrelated, However, with process
noise Qi # 0, so that Mi # 0, and the measurements are correlated,
Since the measurements are not independent, the probability density Pyl 4
cannot be equated to the product of the individual probability densities,
For this reason, a Kalman filter representation is used [ME-2], Since
it is known that the "innovations' are white and contain all the statisti-
cal information contained in the measurements [ KA-1], the probability

density Pyl g is given by
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_lvB

N 1 exp{ gL, } ) ,
| Y = — B, R 4.20
Z| a 2 'ii i .
. v (200™| B, |
i=1 i

where
X, = ¢.% + DIu,
i+l ii i i
X iven: (4.21)
- _1 - g s .
X, = =, +P.HTR. (z, -Hx, )| ©°
1 1 1 1 1 1 1
T
Mia = %P4+ 9
* M= 0; (4.22)
T T -1 o
P = M, -MHMHMH + R)) HM
1 1 1 1 1 1 1 1 1
and
= - Hx
vl zi X1

called the innovations sequence is purely random with correlation

T

T : i, | .
BBy, = EwVy = HHG - %)+ v]L HGx - %) 4+ v)]

T
MuH °
(HM H™ + Ri) Sij
Taking the natural logarithm of (4,19), we obtain

N
_ _1 m _1 - ) s Y, - u: (4.25)
lnpzla = gz; 2 In(2x) IBi| 2(zi Hxi) Bi (zi Hxi) .

The maximum likelihood estimate is then given by minimizing the objective

function

1

o
1

|-

.tvjz

i|B| + (z, - Hx)'B M (2, - HX) (4.26)
1 1 1 1 1 1

i=1

with respect to the vector a of unknown parameters in o, I', H, Q R

and X, subject to the two constraint equations
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M1
Il

_ T T -1 T -1
- M.H (HM_H +R.) HM,](H R  (z. -Hx.)
i+l oxy + Tu s ¢[Mi {1 (HMGH AR, i i

X =X (4.27)
i+l

If we can make the assumption that Mi is a constant, then consider-
able simplification results, This will eliminate the second set of con-
straint equations in (4,27), This assumption will be a good one if the
test is conducted over a long time interval so that Mi is nearly con-
stant for most of the test, However, if this assumption is not valid, then

we must solve the problem as formulated above,

In the "steady state Kalman filter representation’ [ME-2], we can

identify B and K instead of R, and Ql where B and K are given by

1
B = HMHT + Rl’ and K = MI-ITB—1 and M 1is the solution to
' T, T -1
M = ¢ M- MH (HMH +R1) HM]¢+Q1.

Note that the above equations cannot be solved uniquely for Ql' Our

problem now becomes: minimize the performance index

N
= % :E:[ﬂn|8| + (z - Hx ) B l(zi - Hxi)] (4,28)

i=1

with respect to the parameters in ¢, T', H, B, K, and X9 subject to

the constraint

X = ¢xi + Pui + ¢K(zi - Hxi) . (4.29)

For the continuous case we can proceed in a similar manner, If we
assume that R is known, then the identification criterion for the

steady state Kalman-Bucy filter representation is to minimize
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te
J = % S (z - H%)TR_l(z - HX)dt (4.30)

t
o

with respect to the unknown parameters in F, G, H, K, and X, subject to

the constraint
% = FX + Gu + K(z - HR), §(to) =x . (4,31)

As in the discrete case, if the assumptions regarding the steady state

are not valid, then we must include the covariance equation as another con-

straint,

This criterion could also be derived by émploying the criterion for

the maximum likelihood estimate of 2a and the trajectory =x(t), to =t s tf.

In this case we want to minimigze

1 T -1
J = E[x(to)-xo] P [xo(to) - x.]
t (4.32)
1yt T -1 T -1
+ 2 wQ w4+ (z - HX)' R "(z - Hx){dt
O
with respect to a and w(t), to st < tf; subject to
Xx = Fx +Gu+w . (4.33)

By performing the minimization first with respect to w(t), we obtain the

Kalman-Bucy filter equations

.
A
X

FX + Gu + PHTR_l(z - HX), %(to)

I
™

(4.34)

T -1
FP + PF 4+ Q - PH'R ‘HP, P(t )

.
Il

It

el

and the equation for the adjoint variable
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N = -(F - PHR TH)T\ 4+ Rz - Hx), A(tp) =0 . (4.35)

T
If we substitute w = -QGA and x = X - P, into (4,32), and add the

differential
d T }
T {X P\

inside the integral and
Tt) PCEL) ML) - AT(£) P(t ) A(E)
A (L, £ £ o o) M%

6utside the integral, we obtain (4.30), Our identification criterion then
is to minimize (4,30) with respect to a, subject to (4.34). The

adjoint equation (4,35) is not considered a constraint for the minimiza-
tion with respect to a since ') is not in (4,30) or (4,34). Once the
maximum a postériori estimate of a has been found, the smoothed

estimate of the trajectory using a = 4 1is the maximum a posteriori

estimate of the trajectory,

If we assume perfect measurements of the state and derivatives of
the state are taken, then the criterion of (4,32) and (4,33) may be re-

duced to minimizing

tf
. -1 . ’
J = % S (x - Fx - Gu)TQ (x - Fx - Gu)dt
t
)

with respect to the unknowns in F and G, Since the unknown parameters
in F and G are quadratic in (4,36), estimates may be obtained in one
step. This criterion is a special case of the criterion discussed in

this section and is known as the equation-error criterion [ DE-2 and ME-2],

D, CRITERION WITH PRIOR INFORMATION

To incorporate prior information, let us use the maximum a posteriori
equation and assume a prior probability distribution that is gaussian with

mean a and covariance A:
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1 1l T -1 -
p = —mm—— expt - —(a-3) A (a-a) (4,37)
a V (209 A p{ 2 }

or
1 1 -.T -1 -
gp, = -5 in2oA] - S(a-2)°A7 (a-3) . (4.38)
The performance indices are then modified to include the additional term
T -1

1 . -
3 (a - a) A (a - a)

and the constraint equations remain the same,
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Chapter V

IDENTIF ICATION ALGORITHMS

A. QUASILINEARIZATION¥

Denery [DE-1] combines two different linearization techniques to

minimize the. output error performance index

t
¥
J = % St (z - )T Yz - 2)dt (5.1)

where the system is modelled by

& = FR+cy,  R(t) =x
(5.2)

B

A
z

and 2z 1is a given set of measurements., J is minimized with respect to
the unknown parameters in F, G, H, and X subject to the constraints
in (5.2). His first linearization technique may be considered an exten-
sion of quasilinearization. Instead of modelling the system as given by

(5.2), % is instead modelled by

M
il

FX + Gu+ D(z-HX) = F X+ Gu+ Dz, x(t) =x
n 2

(5.3)

N>
Il

/\. AL ~
Hx + L(z - Hx) = Hx + Lz

where

¥
Denery's combined algorithm [DE-1].
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>

F - DH
(5.4)

e

H-LH .

iy

This set of equations is useful only if the system (2) is in a Denery

canonical form. Now, let

G = G -G
N (5.5)
5xo = xo - XN
and define ZN by
xN = FNxN + GNu, xN(to) = xNo
(5.6)
2y = 'y -
If we guess FN’ GN, HN’ and XN’ the unknown parameters are now in D,

8G, L, and 6x6 instead of F, G, H, and x_ . By augmenting the system
equations with the terms D(z-HX) and L(z-HX), Denery was able to make

the unknown parameters coefficients of known functions so that we may write

z = zy + <56>a (5.7)

where QO 1is a (q X 1) vector representing the unknown parameters in
8G, 8xo, D, and L. The ith column of the matrix (0z/dx) 1is given by the

sensitivity equations

‘A ~ ~ Odx
(%3;) = FN(S%;—) + ?FODCJ_ z + (%ﬁ)u: % (to) =BCX_:.LO

(5.8)
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Notice that in this formulation, the sensitivity equations are driven by
- the actual measurements z. Taking the derivative of the performance

index with respect to the unknown parameters,

t
f A~
gg = S (z - 3)TR"Y(-) $Lat = o0

t
o)

and substituting (5.7) into the result yields
t t
f a/\ T PN f AT
V0t (22) g at - S (2o - 2 ar
g (5& R (55 a6t = g/ B (2 zN)d

t t
o o

so that an estimate of ( 1is given by

t -1].t

f ~\T A ~
St (%;) R-l<§§)dt Stf (&—ZX)TR'l(z-zN)dt . (5.10)

Q>
]

An estimate of the unknowns in F, G, H, and X is then given by em-

ploying (5.4) and (5.5):

/G=GN+63
A
Xo = Xy + SXO
(5.11)

i o= (1-2)7"y

~
F = F_+ DH .

These estimates may then be used as nominal values in another iteration,.

X

This approach was found to be convergent even for large inaccuracies
in the initial guesses of the unknown parameters. However, the estimates
given by this method are biased even if the noise is unbiased (i.e., has

Zero mean value).
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After three or four iterations of using this extended quasilineariza-

tion technique, Denery suggests switching to the normal quasilineariza-
tion technique. 1In the method of quasilinearization, =z 1is represented

by (5.2) but'approximatéd by small deviations from the nominal by

z = Hoxo + (H - HN)x + HBx = Hex, + (H—HN)x (5.12)

where x, 2 Xy + 8x, xy is given by (5.6), and ®x is determined from

8% = FN6x + (F-FN)x + 8Gu, Sx(to) = 6xo (5.13)

so that xA is determined from

X, = Fyx, + (F - FN)xN + (GN + 8G)u, xA(to) = xy, + 8x° .

(5.14)

For quasilinearization, we assume that F - FN and H - HN are small so

that for a system in a Denery canonical form, we may write

F-F = DH

N D(HN + LH) =~ DH,

(5.15)

]

H-H = LH L(HN + LH) = LH,

where D and L. are small. Now substituting these into (5.14), we have

(5.186)

X, = FNXA + DzN + (GN+6G)u, xA(to) = Xy, + 8xo
2 = H +
NxA LzN .

This equation is identical to (5.3) except that Zy has repiaced z. The
solution is the same as the extended method except that zN drives the

sensitivity equations (5.8) instead of z.

The estimates obtained using this method are unbiased but the method

often does not converge if the initial guesses of the unknown parameters
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are far from their true values. Thus, it can be used after the first
method to obtain a combined algorithm insensitive to inaccuracies in the

initial values of the unknown parameters and yielding an unbiased estimate.

In summary, to find an estimate for F, G, H, and X, with initial

guesses given by FN’ GN’ HN, and XNo®

1. Calculate a nominal trajectory

Xy = FNXN + GNu, xN(to) = XNg | per
(5.6)
zZy = HNXN .
2, Calculate the sensitivity functions given by z or zy
. ~ 38
(8’;2)_F(8;’E)+8Dz . (288 (8x>(t)_ o
ox,/ = “N\oa, oc, %(n) (504.) ’ da, /e’ T oa,
i v i i i i i per
_ (5.8)
oz (63‘; > OL S
= = 2, ... .
Sy R 30t * da; *(n) ’ t=h % 4
3. Calculate an estimate of the unknown parameters in G, 8%0, D,
and L:
t -1 [t per
5.
5 = ({7 (&)Tn'l a/z\>d'c ' (a/i)TR'l( )dt (510
87 (5 56) B N(amz)at -
t t
o o

4, Calculate estimates of the parameters that can be used as nominal

val ues in the next iteration

e

¢ = ¢+ &

;;O = XNO + gXO (Is)elr-'l

H = (1-T)1m )
N

Al AN

F = F +DH .
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The amount of computation per iteration involves n + n-. q + 3q(q+l) + q

integrations over the length of the test.

Example: Identify the constant, a, in the first order system:

X = -ax + au, x(0) =0

zZ = X+ v

where Ev(t)v(t) = rd(t - 7). Note that this example is slightly different
from our development, since the same parameter is in F and G. Augmenting
the state equation with D(z-%), we have

-(a+D)X + au + Dz

R -a% + au + D(z-%)

Now,

Let
8G = O so that%:land%'='-l .

The nominal and sensitivity equations are

e
2
Il

-aNxN + aNu, xN(o) =0

8%

( ) = —aN(5§> +u - z, ‘Eg (o) =0 .

An estimate of O 1is given by

-1
a = ST (%%)Zdt ST (g%)(z - x)dt .
o] (o]

An updated estimate of a (which can be used as a nominal value for the

next iteration) is given by
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For the second set of iterations, the only change is that Xy replaces

z 1in the sensitivity equation.

B. PROCESS NOISE

With process noise, we can represent system Eq. (5.2) by its steady

state Kalman filter

W>e
il

FR + Gu + K(z - HX)

0 . (8-17)

N>
It

If we proceed as before with Denery's extension, we replace (5.17) with

RO
Il

FX + Gu + K(z - HX) + D(z - HX)

(5.18)
HR + L(z - H§) .

N>
Il

Obviously the sum K+ D may be identified by Denery's extension but
K and D cannot be identified separately. However, we can identify
F, G, H, and X, by the first quasilinearization technique, assuming that

K = O and proceed to the second technique.

Proceeding with the second quasilinearization method we approximate

2 in (5.17) with

zZ = Hoxo + (H-HN)XN + Hebx = Hox, + (H—HN)XN (5.19)

where x, = x  + dx, and Xy and 8x are given by
ky = Fyxy t G+ Kylz-Hyxy), xy(ty) = 2y,
(5.20)
ZN = HN*N
and

C/ . =54-



’

&% Fﬁx+@¢wx+(m%m+(m%xp%ﬁ)

(5.21)

+ KN[-(H-HN)XN - HNﬁx], 6x(to) = 8xo

so that xA is given by

*A = Fpx, + SFxN + (GN+6G)u + (KN+8K)(z-HNxN)
(5.22)

+ KN[(HN-SH)XN - HNxA], xA(to) = Xy, + Bx_ -
For a Denery canonical form we can write
% = F-F, = DH D(HN+LH) ~ DH.
H - H LH L(HN+LH) ~ LH .

(5.23)
8H

Il
il
]

Substituting and simplifying, we have

Mo
|

A = (FN-KNHN)XA + (GN+5G)u + Dz + Koz + 8K(z-zN)

_ (5.24)
- KNLzN, xA(to) = Xy, + Gxo

N>
]

HNXA + LzN .

Let O represent the unknown parameters in &G, 8xo, D, L, and 8K. The

sensitivity equations become

ox Ox
A A, Lo 08
(H) - ey (52 + St NS, ()t ()

~55-



axA ddx
o
B&Z(to) = Ba.

1

(5.25)
Cont,.
~ X
Z A oL
= -+ R
(&) - nle)* 36 =
Note that these sensitivity equations are driven by both =z and z_. An.

N
estimate of O is given by (5.10) where (02/3) is now given by (5.25)

and estimates of F, G, H, and x, are given by (5.11). An estimate of

K 1is given by
g = K + &K . (5.26)

Example. Identify a.and K for the first order system

Mo

= =-ax + au + w, - x(0) =0

zZ = X+ vV
and its steady state Kalman Filter representation
X = -a% + au + K(z - %), %(0) =0 .
For the first part of the algorithm, use the same algorithm as the previous

example, assuming that K = 0. For the second part, the nominal trajectory

is given by

Xy = -aXy toau + KN(z - xN), xN(O) =0
where for the first iteration, KN = 0, and aN equals its identified

value from the first part of the algorithm. The approximate trajectory

is given by
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iA = -(aN + KN)xA + (aN + K)u + Dxy + Koz + K(z - xN)

xA(O) = 0

N
z =

XA.

Let O, =8 =-D and ¢, = 8K, The sensitivity equations for «_ and O

1 2 1
are
B'A aXA) aXA
(ax—l) = '%*KN)(HI tu-xg 5 (0 =0
B'A axA axA
(3072) = -(aN+KN)<5a_2>+z-xN’ %, (0 =0
Estimates of al and az are given by
~ - r~ -
a T axA 2 T axA axA -11 .7 BXA
(04 -
1 S 5o ) dt S 3o \so-Jat 5 (z xN)dt
° 1 2 1
o o
~ T axA axA T BxA 2 T 8xA
(04 -
2 V@) () e \ (5, (et
o 2 o \ 2 J o\ 2
— — -
‘Updated estimates for a and K are given by
~ A
a = aN + al
~ A
K = .
Kyt G
The only problem in implementing this algorithm is that the term
T BxA 2
(522) at
%

o
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may be too small to allow an accurate estimate of K and the algorithm

will not converge.

the form

so that P = E(xz)

or

For x_= x, the second sensitivity equation takes

X

N

= -ax + v, x(0) =0,

is given by

e

= -2aP + r, p(0) =0,
= = - o 2at
T~ Za (1-e )

Actually, to be consistent with our steady-state Kalman filter hypothesis

of a long test, we may set

2 r
E(x") = 52

The covariance of K (assuming a is known perfectly) is given by

3a 4t = T s

ST r -1 g(aN + KN)

1
r
o

so that no matter what the input is we must have a sufficiently long test

to estimate

K.

C. GRADIENT METHODS®

Minimize the output error performance index

t
£
% S (z - Hx) R Y(z - Hx)at (5.26)
t

*
First paragraph based on Sage and Melsa [SA-Z].
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subject to the constraints

%

Fx + Gu, x(to) =

' (5.27)
4 = 0

where a' is a q'X 1 vector that denotes those unknown parameters in

F, G, and H, The Hamiltonian is

o= Jz-m)T RNz - mx) + \"(Fx + Gu) + T - 0 (5.28)

2

where A and I' are conjugate to x and a. The adjoint equations are given

by
iT = %:g = (z—Hx) R~ lg - }\F, }\T(tf) =
no Bﬁ_( ) T 1 OB IR,
i = - 5;: = z - 3—— X - 3—— X 5——
(5.29)
r (tf) = 0,
i = 1,2, ...q"'.

u and z are given functions so that the Hamiltonian is not minimized with

respect to u, The gradients with respect to a'and x are given by

r(t) = g—‘: and  A(0) =£%ﬁ. (5.30)

A steepest descent or conjugate gradient algorithm can now be implemented
as follows:

(1) Guess an initial value for 4 and X3

(2) Calculate x by integrating (per Eq. 5.27),

X = Fx + Gu, x(to) =

(3) Calculate the adjoint equations (per Eq. 5,29)
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A= HTR'l(z - Hx) - FTx, x(tf) =0

T T T
. T OH -1 T OF T 3G
Pi = X Ba—i R (z-Hx) - |x Ba—l + u gi A, Pi(tf) =0 .

(4) Values of a' and x(O) are updated according to

R N ()
(5.31)
xzew = x°1d - KK(O)

for the steepest descent algorithm and in a conjugate direction for the
conjugate gradient algorithm. This approach .requires integrating n + n

"+ gq' first order differential equations over the length of the test.

Another approach is to take the derivative of J directly:

e
%% = S (z-Hx)TR—l(-) [gg x + H'gi]dt - (5.32)
a=z01d ; '

where a (not a') represents unknowns in xo as well as F, G, and H.

(ax/aai) is generated by the sensitivity equation

() = o) 3= 5
i i i i
3 (5.33)
ax (t) - XO
3;; o/ 5;:
i =12, ...q9 .
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This version of the algorithm may be implemented as ' above except steps

(3) and (4) are replaced by (3') and (4').

(3'). For each a;, calculate (ax/aai) and (BJ/aai) according to

3 o 3 d
J . T ,-1 H
5—;; = S (Z - HX) R (-) [&-ix + H<£l)] dt (5.34)
1:o
< ax
()= *3) +§oneftw E()-52,  G.)
i i i i i i
i =1, 2, . q .

(4'). Values of a are updated according to

Jnew | Loud _ K(aJ ) (5.36)

i i 5ai

for the steepest descent algorithm and in a conjugate direction for the
conjugate gradient algorithm. This approach requires more computation

and will not be considered further.

With the addition of process noise, our original algorithm remains

valid except that (5.27) is replaced by
X = FX + Gu + K(z - HX), ?{(to) =X (5.37)

and the adjoint equations, (5.29), are replaced by

A= HTR'l(z - H®) - (F - KH)Tl, x(tf) =0
T
r, = T ggf R N z-m) - (5.38)
1
AT OFL T dGT AT OKX AT JH® T
- Sa. ug—+(z—Hx)6-—-x g—K A,
1



Chapter VI

OPTIMAL INPUT CRITERIA

A. INTRODUCTION

If we expand one of the identification performance indices of

Chapter IV to second order in a, we have

2
) = 3(3) + QI (aB) + 2@DTLE aR) ¢ L (e)

a=a . a=a

The minimization algorithms of Chapter V satisfy the likelihood equation

gg' = 0. ‘ (6.2)

A
a=a

The matrix
d%s
JaZ

A
a=a

is a function of the input. If it is maximized (in some sense), then
an iterative identification algorithm will converge faster and to a more

accurate result. This is our criterion for optimizing the input.

B. THE INFORMATION MATRIX

The Fisher information matrix (Chapter II, section D) corresponding

to the probability distribution p(al|Z) is defined as
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2 2 2 2
1 & - E 3 4npy g = -E 2tne, - E ———La 4% Js S (6.3)
a daZ da° da2 daZ

which is the expectation of the matrix above. pa denotes the prior prob-
ability distribution of a (without measurements). If the prior proba-

bility density is gaussian with covariance A, then we have

azznpa _
-E —a——;z— = A . (6.4)
a

The Cramer-Rao lower bound for Pa’ the covariance of a, is the inverse

of the Fisher information matrix, i,e,,

var('ﬁi -a,) =z [I-l] (6.5)

and

P = I (6.6)

where the equality holds if and only if [VA-1, Part I]

q BanZ a

Al o

8, - a, = z: Kij(a) ‘B_J_a. R i=1,2, ... q. (6.6)
j=1

J

The inverse to Fisher's information matrix represents an objective function
in u to minimize. Since it is only a lower bound to the covariance, we
should immediately ask how "good" a lower bound it is. In simulations

done by the author, it appears to be a "good" bound in that the actual

covariance is close to it. (See the simulation done in Chapt, VIII,)

There are other lower bounds that should be better: (1) the
Bhattacharyya lower bound which involves higher partial derivatives in
P, z» 2and, (2) the Barankin bound which provides the greatest lower
bound [VA-1, BH-1, BA-1]. Since these bounds involve considerably more

computation for a marginal increase in accuracy, they will not be
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considered further. Let us therefore assume that the approximation
P = I ' (6.8)

is valid.

If we formally take the second derivative of Eq. (4.29) with

respect to a, then the i,jth element of the information matrix is

given by
9 te T .
I, = E %g—;— = S g—g— x + H(%:—-) 7! gl:-.-x + H(B—z—> dt  (6.9)
i ] £ J J 1 1
o
- where
x = Fx + Gu, x(to) =X, (6.10)
and
\ A v Ox
Ox Ox OF oG Ox o
(6:;) = F(aai> + aai X + aai u, gl (to) =¥i . (6.11)

The indirect method for calculating the information matrix is presented
in the next section with the criterion determined from the gradient

algorithm.

The desired accuracy in our estimate of each parameter would depend
upon the purpose of our identification. For example, if we built an
observer/éontroller designed according to our esfimates, any deviation
from the true values/would result in an increase in the performance index.
Our design may be insensitive to some of the parameters or combinations
of parameters but very sensitive to others. We may therefore weight D

appropriately in an input performance index

(6.12)
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In general, the magnitude of D will depend upon the unknown‘parameters

we are trying to estimate.

Instead of minimizing the trace of 1I,”, a number of authors
maximize the trace of I directly [AO-1, NA-1, and ME-3). This is
simpler to do since the performance index is then a quadratic function
of the sensitivity functions. The problem with maximizing the diagonal
eiements of I directly is the possibility that off-diagonal elements

become large (in relation to the diagonal elements) so that the deter-
-1

minant is nearly singular. In such cases, the diagonal elements of I,

can be very large, even though the diagonal elements of I, are small.

The following simple example illustrates this danger,

Example: First order system with two unknown parameters. Find the optimal

input to identify the two parameters a and b of the first order

system
X = -ax + bu, x(0) =0
zZ = X+ Vv
where
Ev(t)v(t') = rd(t - t')

and there is an amplitude constraint on the input

]ul < m.

The sensitivity equations are

3) - ) -

) - o) e

By amplitude and time scaling, the above equations become
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X, = -x tu xl(O) =0
X, = Xy = Xy x2(0) =0
X, = -Xgtu, x3(0) =0

where a dot now denotes differentiation with respect to T and

- .
1 7 bm
x 2 a_2<3X)
2 T bm \Oa
< & 2 <BX)
3 - m\ob
2

The information matrix for a and b for a test of T sec is

[ v T a\d
& %)
)\ G)ee ) (BE)
o o
1
I = o I\ T 2
ax>(ax>dt 8 (ax> dt
(‘53 b Sb
o (3]
L : -
— -
bzm2 bm2
5 Y T~ V3
I a
r
2
b E
La ‘3 a 1
- -l
where vl, vé, and‘vé represent the quadratures
Tt
A
= T
v1 So x3 d
Tl
A
= T
v2 SO X2X3 d
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and T' is the length of the test in nondimensional times units. The

covariance matrix of a and b 1is approximated by

—~ -
5 4
a v _a v
2 2 2
bm 1 bm 3
4 3
-2 _ 5 2y
2 )
bm 3 m2 2
b —
P'511=r
v, - v2 ‘
V12 3

where 5 and 5 represent the normalized weighting and covariance matrices

— ‘ T
a5 a4
D — D v -V
2 1 3
i vZm 11 b 12 i
D = r and P =
a4 a3 -V v
=— D — D 3 2
bm2 12 m2 22 o Vz "
L . 12 3

The optimal input is full on in one direction and then full on in the
opposite direction (bang-bang) with switch times and normalized perform-
ance index as shown in Figs., 6.1 and 6,2, The solution shown was calculated

for

ot
n
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nondimensional units of performance index

-
L
N =
\_N=
N
3 Il i L 1 ! - T'
0 2 4 6 8 10 12

nondimensional units of time,

FIG, 6,1. PERFORMANCE INDEX VS LENGTH OF TEST .FOR ONE, TWO, AND THREE SWITCHES
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nondimensional units of time

12

2 4 6 8 10 12

nondimensional units of time

FIG, 6,2, SWITCH TIMES VS LENGTH OF TEST,



Figure 6.1 shows plots of the performance index»for one switch (N = 1),
through three swifches ( N = 3), for tests up to 14 time constants, For
the no-switch case (N = O), the performance index Tr P asympotically
approaches eight and is not shown but is optimal for tests under 0.2

time constants. Figure 6,2 shows the switch times,

If we were to use the suggested criterion of maximizing the trace

of I, we would have

It is easy to see from Fig. 6.3 that the optimum input for this cri-
terion is a constant step u =+ m, for any test length. Except for
very short tests, the constant input is the worst bang-bang input for

minimizing the covariance of the parameters! .

1 ) R '(ax)
“ DA 5T | T s +a Ja

y

S + a — (%%)

FIG, 6.3, BLOCK DIAGRAM OF STATE ANb SENSITIVITY
FUNCTIONS,

-T70-



C. INPUT CRITERIA FROM IDENTIFICATION ALGORITHMS

Now let us look at the identification techniques of the previous

Chapter and see if they also include a clue as to an input criterion.

C-1. Quasilinearization

Refer to the summary of the quasilinearization technique in Chapter
V. During the second set of iterations, the sensitivity equations are

driven by =z so that the state, nominal, and sensitivity equations are

N,
deterministic. Recall that

F = FN + DH and G = GN + 8G

~so that

o _ % ., o _ 3% _ 9%

da, -~ oa, o, da, ~ da,
i i i i

so that when FN = F, GN,= G, HN = H, and D = 0{ the sensitivity

equation in the quasilinearization technique is equal to

‘ v (3 d
(g_:) = F(%:) * (%1;) x + %giu, gf;i(to) = 5:—1’ . (6.13)

Also, H = (I-L)H so that (BL/aai)H = (an/aai)(I-L) and when a_ = a

N
we have
02 dx OH
(507 = H{3—) +3, % - (6.14)
i i i
In such a case
t
f AT .
S -1 b4 -1
a = 1 S (-—)R v dt (6.15)
A o
o

and its mean and covariance are given by

and E&&T ~1t . (6.16)

on
]
(@]
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However, in the algorithm, we have an iterative process that is repeated

A
until o = 0.

value of a.

The value of a

N

However, we can say that the smaller

true value of a.

.2'

Gradient Algorithm

The statistics of the resulting

-1
I is,

the closer a

for which this happens is the identified

are not easily derived.

is to the

We want to shape the input u(t) so that x(to) and P(to) will be

large (therefore our gradient will be steeper). In fact, the matrix
- -
on( to) ON( t)
Ox Ja
E o
BP(to) Br(to)
ox da
- o ~

is the information matrix! This may be seen by referring to Chapter II.D

and letting y denotes the augmented vector

(X> and
a

+
its adjoint. If ¢,= 0, then J=1J (t ) so that
o
35 (1)
T - V()
y to o
Therefore the information matrix of the state at time to’ given measure-
ments up through time tf is given by
(t,)
I(toltf) = E 5;(2—7 . (6.17)
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This is the information matrix we want for identification purposes since

we want to identify x(to) and a(to). If we let

then we have

ax(to) Bx(to)
ox oz
[o]
1(t |tf) = E . (6.18)
o BP(to) BF(to)
axo Jda

We can now illustrate how the information matrix may be calculated
using this indirect approach. The gradient method for the output error

criterion gives us the two-point boundary value problem

X = Fx + Gu, x(to) =X
A = HR Yz - Hx) - F, At,) =0
T T T (6.19)
. TOH _-1 T OF T G .
I‘i=xga—i'R (Z-HX)-XE-{_LI gi')\,
Pi(tf) =0, i=1,2, ...q" .

The sensitivity equations for (xT xT FT)T with respect to (x§ aT)T

are given by

~73-



&) - o) XN
(o] - O
(6.20)
<5:> = F<az>+g£' X+ 3 g%— (to) =0, i=1,2, q
and
(&) - @) - ) e -os
o/ (o] (o]
N T T
&) - - E ) e
@) B
i i i
(6.21)A

ar
i T -1 0H (93 TOH _-1_[Ox
(5;‘1> (= - mx)°R ag(s?)'xaa—.““%;)-

T OF (Ox OF oG \T/oA i .
- N 3_a.<3x ) - (aa. x + ox, u) (Bx )’ ox (tf) =03
i\""o i i o

apl T -1 OH [Ox T omt _-1|om x
£ = (2 - B)R " 5H57) - ¥ 5L a—-“H(a— -
OF T OF oG T or,
-[az(a’i)]*'(a?“a?“)(&—)’ &, (¢ =0
i j i i A J

(The trivial sensitivities %gﬂ and ég-iﬂ imply that a(t) equals a
o o .

constant, and

Oa
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Taking the expectation of (6.21), we have

M T/ T -1 N
(B}')"F(’dx_)'nk H(%z—-), S (t,) =0
o . (o] o

<api _ T OH -1.(0x OF o \Tan ) (6.22)
Ox = X 35 R 3x ) |32, *+t3a Y\ />
o i o i i o

5 T
i T OH_ _-1{ oK ) OF 3G oA
(5:') = - X 3R [am—j“ﬂ(zfi—.)]'(sa—i“xi“)(&f’

J
SF;
<6;_ (tf) = 0, i, =1, 2, ... q' .

To find the information matrix (before the test is run), calculate x from
(6.19), the sensitivity equations from (6.20), and the mean adjoint sensi-
tivity equations from (6.22). These latter functions at to give us the
elements of the information matrix. This indirect method involves more
computation than the direct method illustrated in the previous section.

For the direct method, x and (ax/aai) would have to be calculated but
then the elements of'the information matrix could be calculated from quad-
ratures of the sensitivity functions. An example of the equivalence of

the direct and indirect methods of calculating the information matrix was
shown in Chapt. II.D. The example in that section may be viewed as a

parameter estimation problem for the final state x(tf).
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3. Nonlinear Filter

It might be interesting to apply one of the nonlinear filter algor-
ithms of Chapt. II.C to our problem. For this discussion, let us assume
that a represents the parameters in F and G that are known very
poorly: P;: (to) =~ 0; the initial state X is known quite well:

Pxx (to) = 0; we are using a canonical form where H is known and the
intensity of the process noise Q is known. " By letting (ﬁ) be the

state in the extended Kalman filter, we have

2 = M+Cu+r 'HTR-l(z-H§), 2(t) =x
XX [o} o}
;\ T -1 AN A _
a = Pax HR (z—Hx), a(to) = a
a AN AN T
. AN
p = Fp 4 QLx¥CGuw) T +
XX XX a Xa XX

A L\T
O(F&+Gu T -1
'1;75_'_1 - - t)="pP 11
+ P - +Q-P_HR HP_ -, pxx( o) o (small)

o Fx+G ) T -1

. A x+Gu

= P R "HP P t = 0

xa Fan + a Paa H xa’ xa( o)

» T T -1 .
- - P (t = A (large

P_ = -P HR P, aalts) (1arge)

1f P_(t ), in addition to P__(t ). were small, then this would
aa' o ‘ XX' o :
yield a reasonable estimate of the state and the unknown parameters,
However, for the problem as formulated above, we cannot integrate the
covariance equations with P_ (t ) ~0 and P (t ) ~, or P_l(t ) =~ « and
-1 XX' o aa' o XX 0
Paa(to) ~ 0. (Not to mention the premise that for their derivation, the

covariances were assumed small relative to the nonlinearities.)
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Since we must have an estimate of a to design an input, we may

-1

drop the circumflexes on F and G, Making the definitions S = an Paa
and Ia = P;; , the last two covariance equations become

. ] - -1

S = FS + éﬁggiggl + (P P by _p )HTR HS, s(t) =0

a Xa aa xa XX o
(6.24)

. -1 -1

i = s'H'R HS, I1(t)=a

a a‘ o

-1 -1 T
If we assume that P = 0 and note that I =P - P P p >0
XX XX XX xa aa  xa
so that o <P p-1 pT <P__, we may drop the last term of the first
Xa aa xa XX

equation in (6.24). The ith column of S is then the sensitivity of x

with respect to a; and we have the same expression for the information

matrix as obtained by previous methods. The interesting point to note in

this approach is the interpretation of the matrix of sensitivity functions
-1

S =P P .
xa " aa

D. PROCESS NOISE

For a system with process noise, we can use the direct method of cal-
culating the information matrix since we were able to minimize (4.31) with
respect to w and obtain a Kalman filter representation of the system. For

a sufficiently long test, the identification criterion was to minimize

te
J = -% S (z - Hﬁ)TR'l(z - HR)dt (6.25)
t

o
with respect to a, subject to the constraint
R = FR + Gu + K(z-HR), %(to) =x_ . (6.26)

The .ialth- element of the information matrix is given by
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“ij

where Xy denotes ax/aai and is given by

éi = (F-KH)%i + <g§. - K gg )& + g: u + g§ (z-HX),
i i i i
(6.28)
axo
xl(t ) =6?,- .

Since the innovation ¢y =z - H%, is white gaussian noise with intensity

matrix R, we may rewrite the state and ith sensitivity equations as

W
]

FX + Gu + Ky, &(t,) =

(6.29)

o
]

XO
o OF OH G dK N Ox
(F-KH)Xi + (aai -K aai) + aai u + K Vs xi(to) = 3;? .

i

e

The mean of the state equation .Q X, and the mean of the ith sensi-

tivity equation ﬁi = xi are then given by

x = Fx + Gu,

dx (6.30)
. OF OH oG o
x, = (F-KH)xi + (aai - K aai>x + aai u, xi(to) =-5;; .

The covariance matrix P°C & E(?-x)(ﬁ-x)T, p°t = E(%X - x)(ﬁi-xi)T, and

ptJ & E(ﬁi-xi)(ﬁj-xj)T are determined from
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N T 00
% _ §p° 4+ p°%FT + KRK', P°°(t ) =0 ;
- 0i oi o0 3 dm. o) . Poi(‘FT_HTKT) N
P = FP + Ba—i a-i-
T
BK oi _ .
+ KR-B_a_i P P (tO) =0 ’ (6.31)
. T T
*ij OF _ OH oj _ ij + Poi OF _ OH KT)
P -(a—;. K3, (FE0P 3a, " da,
i i J J
1357 gTxT) + oK R K" pld(t ) =0
PP s R o =0
Performing the expectation in (6.27) we obtain
te
OH T ~-1{0H
I = !
13 S (5;- x + Hxi R SET x + ij dt
t 1 J
(o]
by rrlgpidyT o OH od T io dHT
+S r H + 35— P"H + HP 3 (6.32)
t i J
(o]

OH 00 BHT -1
+¥1P Ba_R dt .

J

The positive definite covariances in the information matrix imply that
process noise may increase the accuracy of our estimate. However, we should
note that the new sensitivity equations (6.30) that act as constraint equa-
tions in our optimization, are also modified by the process noise. For a
simple example shown in the next Chapter, process noise tends to decrease
the effectiveness of the input, so that the net effect is a decrease of

estimation accuracy with process noise.
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Chapter VII

SOLUTION FOR OPTIMAL INPUTS

A. INTRODUCTION

We have éeen that a reasonable criterion for judging inputs to iden-
tify q parameters in a linear system is some measure of the information
matrix of the parameters we wish to identify; To evaluate this cri-
terion, we must solve n linear system equations which drive n «q
sensitivity equations, which, in turn are used to generate 3q(q + 1)

elements of this information matrix.

Optimization of this criterion can be formulated as a calculus-of-
: -1
variations problemA(Mayer formulation) to minimize ¢[y(tf)] = TrDI (tf)

subject to the constraints
y = £(y) + Bu, y(to) =V, Iul =m (7.1)

where y represents the state, sensitivity functions, and elements of}
the information matrix. The dimension of y is then (n + 3q)(q + 1).
For the general case (with process noise), the constraints in (7.1) are-

given by

x = Fx + Gu, . x(to) =x_ 3 (7.2)
: ‘ axo

% = - - = i =1,2,... 43

xi = (F Iﬂ'l)xi + <5a—1 K 3. x + gj‘: ) Xi(to) Ki, i 1,2, qd;

| (7.3)

.
|

OH . \T -1 (OH -1
+ C, . I_.(t = A
b7 (S (G e meg ) v e 1) =T

(7.4)
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~where Cij represents the second integrand in (6.32). For the case with-

out process noise, Cij and K are equal to zero.

From the linearity of u in the constraint equation (7.1), with its
absence from the performance index, and its amplitude constraint, we have,
from Pontryagin's maximum principle, that the optimal input is bang-bang
with amplitude m. All that remains is to find the switch times that

optimize the performance index.

If we let A, A, (vectors) and kij be adjoint variables corres-
i

ponding to x, xi, and Iij respectively, we can form the Hamiltonian

q
E = KT(FX + Gu) + z ; }\,T (F-KH)X, + OF - K oH x + oG u
& i i Ja, Oa. Ja,
i=1 i i i
q q (7.5)
OH T _1fom
+ZZ)~...< x + Hx, | R + Hx |+ C .
i=1 =1 ga: i 53j * Jj ij
The Euler-Lagrange equations for the conjugate variables are
T T T(d 0 SER-
q _ _ _ F _ H A
A= A F :E: thSE— K 6;T> - :E: :E: ij
1= i i=1  j=i
T T
o[RS I,
i AN J %
(7.6)
h(tf) = 0 ;
T T 2 d T
. _ _ - H
i = A, (F-KH) jZ:ihij<g;x+Hx>RH
J (7.7)
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ij

A = tant = 99 i=1,2
i - constan —W, =12, ... q .
. J (7.8)

.j = .i, i+1, LY q .

To minimize the Hamiltoniah, the ith component of the input vector u

must satisfy the equation
u, = -m, sgn S, .- (7.9)
where the switching functipns Si are given by

H T &\ 06 N
S, = 3~ = }‘Gi+jz=;)“jb?; (7.10)

i

where Gi denotes the ith column of G. In this formulation we must
find an input u that satisfies (7.2) to (7.4) and (7.6) to (7.10). One

algorithm for this is
(1) Choose an initial switching sequence for the -input;

(2)  Integrate (7.2) to (7.4) forward with the given initial
conditions; ‘

(3) Calculate the constants Aij from (7.8) and integrate
(7.6) and (7.7) backward.

(4) calculate the switching function(s) by use of (7.10). If
the optimality condition, (7.9) is satisfied, then termi-
nate the algorithm, otherwise continue.

(5) Use some criterion to modify the switch sequences so that
(hopefully) the next iteration will be closer. One method
suggested by Ichikawa and Tamura [IC-1], is to locate the
minimums and maximums of the switching functions and
expand the corresponding switch intervals out from these
points. Create new switch intervals at minimums and maximums

as necessary.

(6) With the new sWitching sequences, go back to step (2) above.

-82-



An analysis of the computation required shows that we must integrate
n+q . n first order differential equations and %q(q + 1) quadratures
forward and n + q - n equations backwards for each iteration of this
algorithm. Hence, there are (q + 1)(2n + %q) integrations per itera-

tion, This number is independent of the number of switches.

A-1. Steady-State Sine Input

For long tests the optimal input is often a bang-bang input with
almost equal switch time intervals, In this case, a good approxima-
tion to the minimum value of the performance index and the optimum switch
times can be obtained by approximating the optimal square wave by its
first (and possibly higher order) Fourier component(s). Since we are
assuming a long test time, we may use the steady-state amplitude ratio
and phase shift calculated from the transfer function. We then have
only p angular frequencies wi, i=1,2,... p to optimize. If two in-
put frequencies are the same, then we would also have to optimize with

respect to their phase.

B. OPTIMAL INPUT ALGORITHM

Since we know that the optimal input is bang-bang, we can optimize

with respect to the switch times, t t

1’ PURRE tN . To insure a global
minimum, the optimal value of the performance index may be plotted versus
the length of the test for N = O, 1, 2 ... . For example, see Fig. 7.5
of section 7.D where for T = 8, there is a minimum for N =0, 1, 2, 3,
The minimum for N = 2 is the global minimum. The algorithm of the
previous section could converge to any of the local minima. It could

not be used in the systematic method outlined above since it creates

and annihilates switch times as necessary.

The algorithm that seems most promising for determining the optimum
switch times is the conjugate gradient algorithm. Using this method, the
minimum of a quadratic function of N parameters is found in N itera-
tions, The first iteration involves searching in the steepest descent

direction until a minimum along that direction is found. On subsequent
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iterations, the search is made in a conjugate direction.

The implementation of this algorithm to our problem is shown in

the flow diagram of Fig. 7.1 and follows Pierre [PI-1].

The following features concerned with the one dimensional search

. have been incorporated into the algorithm:

(1) If the one-dimensional search finds a minimum at a distance
greater than three times the value of the initial step size, Aq.
then a steepest descent search is continued; ’

(2) The initial Al' is taken as 1/5 the initial time interval
multiplied by the number of switch times. For a set of N
iterations the same value of A; is used;

(3) For a new set of iterations, the value of Ay 1is set equal
to 1/5 the average search distances for the previous N
iterations;

(4) A quadratic dr,cubic fit is used to find the minimum in the
one dimensional search; .

2. One Dimensional Search

The one dimensional search algorithm is shown in Fig. 7.2. Let r

be the direction vector in the t_ through t space given by

1 N

r = Hg ' (7.11)

where H is a matrix given by the conjugate gradient algorithm and g
is the gradient of the performance index. A change in the kth switch

time in the -r direction is given by

rkA .
8t, = - —4 : (7.12)

where

Since
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NUMBER OF SWITCHES (N-1) AND LENGTH OF TEST
CALCULATE INITIAL SWITCH TIMES (D) AND INITIAL
VALUE OF ONE DIMENSiONAL SEARCH (AT),

SET ICNT = O,

v

CALCULATE INITIAL VALUE OF PERFORMANCE INDEX (JO)

READ and WRITE: ACCURACY PARAMETERS, AIRCRAFT PARAMETERS///

CALCULATE GRADIENT OF PERFORMANCE INDEX
WITH RESPECT TO SWITCH TIMES (PJ)

ICNT = 1ICNT + 1
K =1

AOA = 0,0
H = I

v
(Contd)

FIG, 7.1 FLOW DIAGRAM OF CONJUGATE GRADIENT
ALGORITHM
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'

CALCULATE R =
CALCULATE ¢'(0) (PJO)

Al = AT
STORE D IN DOLD

- He PJ

v

PERFORM ONE DIMENSIONAL SEARCH,
STORE STEP SIZE IN AOP AND
VALUE OF PERFORMANCE INDEX IN JO

AND
AOP = AMIN ?

I

STORE PJ IN PJOLD
CALCULATE NEW PJ

v

HPJ”E s SMIN?

-¢, NO
AOP > 3‘A1
AND ICNT = 1

AND K =1 ?

¢, NO

YES
I ——
\ 4
YES
v

K = K+ 1

AOA = AOA + 0,2A0P/(N-1)

AT

v

K 2 N

YES

AOA

¢ NO

- CALCULATE NEW H MATRIX

FIG, 7.1 (Conclusion)

-86~

WRITE JO AND
SWITCH TIMES




INCREMENT SWITCH TIMES BY Al
IN -R DIRECTION, CALCULATE PERFORM-

ANCE INDEX, STORE IN J1,

YES 1< Jo NO

. A

SET A, = 34 CALCULATE A, AND
i DEC FOR QUADRATIC FIT
INCREMENT SWITCH TIMES v
A, - A, IN -R DIRECTION ;NCREZENZNSW;TE?R;éffEN
CALCULATE PERFORMANCE INDEX J2 2 1
CALCULATE PERFORMANCE INDEX J2

YES
JO~-J2-DEC
CAICULATE A3 FOR CUBIC FIT
YES
IF A > 6- =
3 6' A1 SET A3 6Al.
INCREMENT SWITCH TIMES A3-A2 IN -R
DIRECTION, CAICULATE PERFORMANCE
INDEX J3
INCREMENT SWITCH TIMES A_ - A v
NO 2 3 ____,C)
IN -R DIRECTION, CALCULATE J2
YES
AOP = A3 AQOP = Ag
JOo = J3 JOo = J2
RETURN RETURN

FIG, 7,2 FLOW DIAGRAM OF ONE DIMENSIONAL SEARCH ALGORITHM

-87-




no switch time changes by more than + A, and the sum of the absolute

values of the changes in switch times is

(7.13)

Sl b
]
>

S et | = 3 Ir
k=1 .

k=1

‘To first-order a change in the performance index in the -r direction

is thus

' A T A
= - . 4 e . — _ - - 7. )
B¢ (gl T+ g, &y rN) = rg g (7.14)
In the one dimensional search portion of this algorithm, we desire to
find the value of A ' which minimizes the performance index in the -r

~direction. ¢ may be considered a function of A with ¢(0) given and
0o(A T
1(0) ( 2' _EE ) (7.15)

A step of A1 is taken in the -~r direction and the performance index

¢(A1) is calculated. Since we have normalized our gradient, A1 may

be chosen as the maximum total expected change in the switch times, say,
»1/5 the interval between switch times multiplied by the number of switch

times.

If we are sufficiently close to the optimum (so that a quadratic

fit is a good approximation), then ¢ may be written in the form
2
¢ = a+ bA+ cA (7.16)

where the constants a, b, and ¢ are given by
a = ¢(0)

¢'(0)

o
1l

¢(a;) - ¢(0) - er(0)A

2
A1
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The minimum occurs at

b -%¢'(O)Ai
%2 7 “32c T W& T w0) - oA, (7.18)

Before using (7.18) as the next step size in the one dimensional search,

we should check to see if ¢(A1) is less than or only slightly greater

than ¢(0) + ¢'_(O)A1 . Let us set an upper limit on A, of 3A, whenever
1

¢(A1) = ¢o(0) + ¢'(0)A1 -5 ¢'(o)A1 (7.19)

and proceed with a cubic fit., Whenever A2 is less than 3A1, the pre-

dicted decrease is

-‘]i[qw (0)a, 12
pred ¢(A1) - ¢<0).' ?'(O)Al

dec = ¢(0) - ¢ (7.20)

If the actual decrease ¢(0) - ¢(A2) is not close to the predicted
decrease, we should go to a cubic fit. Otherwise, the quadratic approxi-

mation is sufficient for this one dimensional search.

For a cubic fit we approximate ¢ by
2 3
¢ = a+ DA+ cA” + dA (7.21)

where the constants a, b, ¢, and d are given by

a = ¢(0)

b = 4¢'(0)

c = e1 - d- A
d =

(e = &)/(8) - ) (7.22)
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1 ¢ t
e, = Slo(a) - #(0) - ¢7(0)a, ]

1 A1
(7.22)
1 Cont,
= = - - 1
e, = 2[¢(A2) 6(0) - ¢ (O)AZ] .
A
2
‘The minimum occurs at
-C +\’c2 - 3bd
= . 7.23)
A3 3d (
3. Calculation of Performance Index and Gradient

To compute the performance index ¢ for.a set of switch times tl
through ty Tequires integrating equations (7.2) to (7.4). The partial
‘derivatives of the performance index with respect to the switch times
are functions of Iij(tf) and Blij(tf)/atk, namely

¢ - -1 91 1

3¢ = -l S5 I . (7.24)
k ' k
These are given by
3 Ox, alij '
E—:O, gt—- =O’ sjt—" =0 s (7.25)
k k k
for t< tk' and
ax * [ - +
S = Xl - x| = G u(tk) u(tk)
k t=t tﬁtﬂ
. (7.26)
> o
= X - x = oG u(t,) - u(t+)
ot i i Ba, k k
k t=t_ t=t+ *
k
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= 1. - I, = 0 (7.26)
by + + N Cont.
t=tk t_tk
for t = tk. For t > tk, the partial derivatives are found by solving

3% .
5 - %)

(5
Ox Ox
i) - (F _ KH)( 1> + (SF _ OH >< X )
(5?; Btk Oa aai Btk (7.27)
oi Ox
< t1J> = (gg g’é + H 8:1) R-1<g% x + Hx ) +
k i k k J

with initial conditions at t = t, given by (7.26).

To compute the performance index involves the ihtegration of
n+gqe+n first order differential equations and %q(q + 1) quadratures.
To compute the gradient of the performance index requires integrating
( 7.27) with initial conditions given by (7.26). Since (7.27) requires
x and x_, (7.2) and (7.3) must also be integrated (unless their values
have been stored). Although this involves N (n + nq + n + nq) differ-
ential equations and N3q(q + 1) quadratures, they are not integrated
the entire length of the test. The computation involved is equivalent
to 3N(q + 1) (2n + 4q) integrations the entire length of the test.

For N > 2 this algorithm involves more computation per iteration than
the algorithm suggested in the previous section. However, it is still

used for the reason given at the beginning of this section.

-91-



C. EXAMPLE 1: ROCKET SLED TEST"

An accelerometer is modelléd by the equation

2
= 7.
y (1 + cl)u + c,u (7.28)

where y is the output of the accelerometer, and u is the accelera-

tion. In order to evaluate the constants c¢. and c the accelerometer

1 2?
is mounted on a rocket sled. The sled has a maximum acceleration

m,, and -can be water-braked with a maximum deceleration m If we assume

, 2°
that the accelerometer measurement is corrupted by white noise v, with

Zero mean énd spectral density r, then the measurement is given by

z = (1+ cl)u + czu2 + v . (7.29)

The identification performance index becomes

T

J = -21; S ‘{zv-v[(l + e )u+ ézuz]}zdt ) (7.30)

o]

Since J 1is quadratic in ¢, and c¢ the likelihood equation aJ/ac =0

1 27
is linear in c1 and c_:

2

T
%%; = % S [z - (1 + cl)u - c2u2] (-)udt= 0

: (7.31)
g%; = % S() [z - (1 + cl)u - czuz] (-)uzdt = 0

or T T T
S wdt - ey * S wat - c, = S (z - u)u dt, (7.32)
0. - Jo o

This Ekample suggested by Paul Kaminski [KAM%D
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T T T

4 2 (7.32

S ulat . c + S udt - c, = g (z - w)u“dt Cont?
(o]

Estimates of ¢ and c, are given by
T T -1 T
e S uZdt S wdt S (z - wu 4t
1 “o o o
= T T T * (7.33)
2
S \ u’dt S ulat S (z - u)u“dt
2 o o o
The information matrix for c1 and c2 is
. -
T 2 T 3
32 S u dt S u dt
o
1 = <4 - L . (7.34)
2 r T
S [P
u dt u dt
s o o -
The lower bound for the covariance matrix of c1 and c2 becomes
x4(T) -x3(T)
-%,(T) x,(T)
P = r 5 (7.35)
xz(T)x4(T) - x3(T)
where t
A i
xi(t) = go u’ dt . (7.36)

The terminal boundary condition Xl(T) = 0 1is required for the slied to

be at rest at the end of the test.

The identification performance index is used to find an estimate of
the parameters, and the input performance index is a measure of the accuracy
of the identification. The measure of the covariance matrix we desire to
minimize depends upon the purpose of our identification. Since the out-
put is of the form z = (1 + cl)u + czu2 + v, an estimate of the acceler-

ation U is made from the following (assuming |01| << 1, and |c2| << 1/u)
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- (1+c1) +"(1+c1) + 4czz

N N 2
i = ¥ z-¢z-0C.z (7.37)
2¢ ! 2
2
so that U is approximated by
= - - 7'
) u + (c1 cl)u + (02 gz)u + v ( 38)

and the error in the corrected accelerometeerutpdt is
2
8 = Be, - u+ deul +v. (7.39)

If the instrument is to be used at an acceleration level, a, then we
"would like to minimize the error at that acceleration so that our input

. performance index is given by

‘ 2
a a E6c1 E6c16c2

o = E(au)2 = tr = tr DP_.  (7.40)
4 2
E
a a E6016c2 » 6c2

Notice that for this problem, the weighting matrix D is independent of
the unknown constants. Our problem then is to minimize
2 3, a4
a x4(T) - 2a x3(T) + a xz(T)
6 = 5 (7.41)
xz(T)x4(T) - x3(T) :

subject to the constraints

il =u, xl(O) =0, . x,(T) =0
. 2
X, =u , xz(o) =0
% = uS x.(0) =0
3 ’ 3
R 4
Xy =u x4(0) =0
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and

- £ ] . 7. :
m,, u m, (7.43)
The Hamiltonian for this problem is a quartic in u:
H = ru+ s+ e +ru (7.44)
1 2 3 4
where
A =0 or 1 =constant, 1i=1,32, 3,4 (7.45)
i
where (assuming a = 1),
2 2
N x3(T) + x4(T)
0 = 7 2 53 = a negative number
[x,(T)x,(T) - x(T)]
Ny = (Dl + x,(8)] )
2, .2 (7.46
[XZ(T)X4(T) - x3(T)] :

2 2
xb(T) + x3(T)

1S :
4 2 2 a negative number,
[, (D)xy(1) = x(r)]

If the boundary condition xl(T) = 0 1is to be satisfied, then only the

four possibilities shown in Figs. 7.3a to 7.3d are possible.

The possibility of one and only one intermediate (constant) value
m0 is a consequence of the Hamiltonian being a quartic function of u

(and the A coefficients being constants).

The first three possibilities shown in Figs. 7.3a through 7.3c are
considered special cases of the fourth possibility. If u equals m

for t1 seconds, -m, for t2 seconds, and m for to seconds, then
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e ——

'/_‘. - e = e __. - e = e e =

_ u
My my
Fig, 7,3a: Case 1: uopt either m1 or -m2
4 H
L ) \\\\
. /
T~ — | - - _ _ __
t
. [\
™ m
o 1
Fig, 7,3b Case 2: u either m_ or m
. opt 1 o

F1GS, 7,3a and 7,3b HAMILTONIAN VS CONTROL
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J u
>
m2 mo
Fig., 7,3c, Ca s -
g se 3 uopt either mo or m2
? H
S
! u
+ »>
—m2 mo m1
Fig, 7,3d, Case 4: uopt either ml, mo or -m2

FIGS, 7,3c and 7,3d HAMILTONIAN VS CONTROL (Cont)
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1 2 o
= - t + =
x1 mlt1 m2 9 motO 0
X = m%t + mzt + m2t
2 11 22 0o 0 : . (7 47)
' 3 3 3
= - t
*3 mty T Mty tomts
4 4 4
= t. + t + t .
g T Mt T M T AGE,

The first two equations in (7.47) imply that

m,, m
t, = (r-1t) - t 2z 0
1 m1 + m2 o m, + m2 o
ml mo
= — - _—_ 2
t2 m, + m (T to) T+ m to =0 . (7'48)-

° 2 o
(7.49)
m
to = o } - T
1 o
The allowable region for mo and to is then given by
-m = = m
2 mo 1
. m2_
0O = t £ —— T - for m 20 (7.50)
o m, + m _ o
2 o
™
0O = t = T for m =0
o m, - m o
1 o

and is shown in Fig. 7.4,
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FI1G, 7.4 ALLOWABLE REGION FOR m AND to .
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In summary, we are required to minimize

- —_ 2.
_z(x - 2ax,. + a X’)
a 4 3 2
: = = 7.51
o T (7.51)
%9%q T %3
with respect to ’ m t
A o A o
m = - and t = —
m T
1
where
x & t. 4+t + m2t
2 ~ 2
- - - 3
fa -
x3 = t1 c t2 4+ mt
- N 4-
34 = tl + C t2 + mt
t
s a 1 _ (c - ct - mt)
1 - T c +1
Ez & zg = (1 -t + mt)
T c + 1
m
A 2
¢ = n
1
a = = .
1
As a numerical example, let
5:;?—-:0.01’
1

(i,e., the maximum acceleration from the rocket is 100 times greater
than the designed acceleration for the accelerometer), Let us look at

two particular cases:
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Case 1:

(i.e., the maximum braking thrust is twice the maximum rocket thrust),

Case 2:

For the case, ¢ = 2, the minimum value of ¢ 1is O0,75503 and

occurs along the three sides of the allowable region at t = 0, m= 41,

and m = -c, This means that the optimal input is u = m, for % T, and
u = -2m, for %T with no intermediate value of acceleration, As the

value of ¢ 1is increased, a local minimum ridge forms in the region
shown in Fig, 7,4, For the case c¢ = 6, the minimum value of ¢ is
0,69127 at m = -2,7 and t = 0.2. The optimal input is then u = m1
for 0,763T, u = -6ml for 0,037T, and u = 2.7m1 for 0,2T.

The foregoing Example has two interesting features: (1) the
optimal input may be designed without knowing the values of the parameters
that are to be identified, and, (2) there is the possibility of one and
only one intermediate thrust level, However, if the accelerometer is
modelled by higher order terms in (7.28), then more intermediate values
of thrust could be optimal, A

f

D, EXAMPLE 2: A STABLE FIRST ORDER SYSTEM*

Find the optimal input to identify the parameter a in the first

order system,

X = -ax + au' , x(0) = 0 , (7.53)
Z = X 4V
where
Ev(t)v(t') = rd(t - t') ,

The first part of Example 2 was given in Nahi and Wallis [NA-1].
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and, the input is amplitude constrained by

lut| = m. (7.54)
The sensitivity equation is
Ox d |

By amplitude and time scaling, the System, sensitivity, and constraint

equations become

X, = -x o+, xl(O) =0
X = - - =0
X, X) ~ Xy o+ U, xz(O) (7.56)
IuI = 1
where the dot now denotes differentiation with respect to 1, and
T 2 at
. & X
toon (7.57)
. & 2 5X>
2 m (55
A u'
u = - .
m
The information "matrix" is simply the scalar
T T!
1 =\ _1_<ax>2dt _ 2 4 (7.58)
a r\da - 3 ¥y 9T :
ar :
o o
and the variance is approximated by
3
~ -1 -1
P = 1 = 2L, (7.59)
2 .
m 3
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where

3 9 x3(0) =0, ‘ (7.60)
The input performance index is
¢ = P, (7,61)

The gradient of ¢ with respect to the kth switch time ¢t is

k’
3 Ox
gg_ = -EL P @ (7.62)
k m k
ox
3
(T)
ot
is found by integrating (7.56) and
akl axl axl _

(5?;) = '(5?; ’ 3t (t ) = 2ult)) ;

(axz) - (2 sz) axz (t,) = 2u(t)) ; (7.63)
Bt—k Wk BQ J B—t; K kK’ y
aX axz BXS

(a—r) = 2"2(5?;)' 3 B = °

from tk to T.

Plots of the local minimum of the performance index for N = 0 to 3
are shbwn in Fig, 7.5, Figure 7,6 shows a plot of the global minimum of
the performance index superimposed on a graph of the optimal switch times,

As the length of the test increases, the center switch intervals become

approximately equal,
Since the optimal input is piecewise constant (alternatively plus and

minus one), (7.56) and (7.60) can readily be integrated from tk to tk+1 to
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give

xl(k +1) = u-[u- xl(k)]e_Ak
x2(k + 1) = xz(k)é-Ak + [u - xl(k)] Ake—Ak
(7.64)
x4 1) = x (0 4 3 %0 (A - e 2%y
+ 1 x (k)[u-x_(kK)][1 - e—ZAk(Z + 1)]
2 %2 1 A
1 - x 07301 - e 2%k (a2 1)
+ 3 x) e . Ak + ZAk + 1
where
A = T T Y

An exact (square wave) analysis assuming all the intervals are equal can

be made by using (7.64); where, for steady state it can be assumed that

x,(k + 1) = -xl(k), x2(k + 1) = -xz(k) and they are negative for u = -1:
-a
- - -1 - (-1 -
%10 (-1 xlo)e
(7.65)
- -a
o0 = xzoe + (-1 - xlO)Ae .
Hence,
-5
x - l-e
10 1+e
-a
2 e ’
¥*20 L 2 o (7.66)
1 +e )
Tt |1_2 28 . =2a
' = 1 - -1- X 1 -~-e 2 +1
x(1) = T L0 ) g (o ) (26+1)]
24 2
+ i-'(l+x10 [1-¢e (22 +2A+1)]}
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Substituting for X0 and x20 and simplifying, we have

X @) = ___._T___§ [1 + (1-28)e” " - (1e2a)e 28 -e‘s‘j . (7.6T)

AL £ %)

This has a maximum of 0,213 T' at A = 3.28. The corresponding angular

frequency is w = 0,958,

If we had approximated this square wave with its first Fourier

component, we would have

4
u = ; sin wtT , (7.68)

Since
%, s
o = T3 (7.69)
(s + 1)

the steady state amplitude ratio M is given by

w
M = —_—3 - (7.70)
l +w
Thus
? T 2 2 A=£
]
X3(T') = S Xg dt = (%) ——-—% ?—A—- S Sinzh)'[' dT
o (1+w%) 0
2
- __8wT! (7.71)
2 .
2 2 :
(1 + w)

This has a maximum of 0,203 T' at w =1,

If we take the first two Fourier components of a square wave, we

have
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4 .
u = 4 sin wt + — sin 3 wT (7.72;
o1

3n
X_ = 4 sin wT + é% __§£L_§ sin (3wT + 6) (7.73)
2 " 1+ w 1+ 9w .
9 2 2 2
9 2
x2 = (é ——u—)—?—z' Sin2 wT + (?34—“)———(»—2—3 sin (3wt + 6)
2 (1 + w) (1 + 9w)
2 2 (7.74)
(é> 1 gw 5~ sin wT sin (3wT + 6)
T8 1+ W)L+ 9w)
2 ' p)
x (1) = 24T . L (7.75)
3 - 2 2.2 2 2.2
(1 + w) 7 (1 + 9w)

This has a maximum of 0,211 T' at w = 0,97. ‘The first three Fourier
components yield a maximum of 0.212 T' at w =0,96, Taking the first,
second, or 'third Fourier components yield a very good approximation to
the exact steady state solution, The computation is much simpler, In
this case, we had to optimize with respect to only one parameter, w

E, EXAMPLE 3: A STABLE FIRST ORDER SYSTEM WITH PROCESS NOISE

Find the optimal input to identify a and K in the first order

system:
X = -ax + au' + w, x(0) =0
(7,76)
Z = X 4+ V
where
Ew(t) w(t') = qd(t - t')
Ev(t) v(t') = r5(t - t')

and the input is amplituded constrained by |u'|'§ m; The steady state

Kalman filter representation for this system is

-108-



X = -aR% + au'+ Ky, %) =0
(7.77)
~
Yy = Z - X
where .
Ey(t) y(t') = rd(t - t') .

The steady state covariance is given by

2
P = -ar + Vazr + qr (7.78)

-hence, K is given by

K = -a+ Va2+q/r . (7.79)

Thus, we may identify the intensity of the process noise q by identify-
ing the steady state gain K. For no process noise q =0 =K =0

which was considered in the previous Example,

The identification criterion is to minimize

T

;g = X S 1z - %%:¢ (7.80)
2 o r

with respect to the unknown parameters a and K, subject to the constraint
A
P

= -(a + K)X + au' + Kz, %(0) =0 , (7.81)

The first order sensitivity equations are

@):-(“K)(g)-;”: E o -o0
(7.82)
(g%) = -(a + K) (g%) - X+ 2z, 5% (0) =0,
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The information matrix for

where

band

I
*
X
2
x
3

x + Bx

%, |

= -ax_, +
1

a and K is

au + Ky,

1
= -(a + K)xz - X, + U,

= =(a + K)x_ -
(a + )x3 + v,

that
-a 0
-1 -(at+K)
o} 0

0 —i£7

0o iz

-(a+KZ i3~
o 0 ]

-( atK) 0
0 f(a+K)

ST
E x x dt
o 2 3
T
S E x_ dt
o -
xl(O) =0
0) =0
xz( )
x (0) =0,
3 .
’ x (0
a % (0)
, -
+ |1, xz(O)
0 x_(0)
S 3
—6 e - =
x1 K
8x2 + 0 v
Ox 1
| 773 L
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o) 0 = 0
x (0)
6x2(0) = 0 (7.86)
Contd,
0 = O .
x4(0)
The expectations in the information matrix are given by
2 _2
E = X
*2 %9 T %99
E XXy = XKoXg o+ X23 (7.87)
2 -2
E = X
%3 ¥3 * %33
but X, = 0, and X 1is given by solving
X.. = -2aX K2 X, _(0) =0
11 - n+t+ton 11 =
Xig = "X - (2a + K)Xlz, xlz(O) =0
X13 = =-(2a + K)X13 + Kr, X13(0) =0
(7.88)
x22 = -2X,, - 2(a + K)Xzz’ X22(0) =0
. _ _ _ X —
%23 X1g ~ 2@+ KX, 03¢0 =0
X, = -2 K X_.(0) =
33 (a + )X33 + r, 33( ) =0,
The information matrix now becomes
- N
T 2 T
X X dt
So Xg + Xpp T go 23
I = 1 (7.89)
= 7 T T
S x23 dt So X33 dt
| ° .
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where for long tests, the covariance elements are approximately constant,

so that
o |
o
T
S X23dt =
o
T

K2rT

2a(2a + K)(a + K

KT

)

2(2a + K)(a + K)

rT

2(a + K) °

The lower bound of the covariance matrix for a and K is

[T T 7
- x
S Xgq dt S 53 4t
[o) (o]
T T P
- . d X< dt
S X, dt S X, 4t + S ®
) o o
P=r
T T T T
b . X - d
S X, dt + S % dt S a3 dt S X,q dt
o o o o

(7.90)

(7.91)

The optimal input to minimize the variance of a and/or K 1is found by

maximizing

or minimizing

subject to the constraints
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Z _ .= . - _

x1 = ax, + au', xl(O) =0

.: - -z - gt [} - —

%, = X (a + K)xz + u', x2(0) =0 (7.93)
|u'| = m,

This reduces to the case without process noise if K is set equal to
zero,

The optimal input continues to be bang-bang, but the switch times
are changed by the addition of process noise, Normalizing the constraint

equations, we have

X = - 0) =
x) x, +u xl( ) 0
iz = Ux U WX, +ou, x2(0) =0 (7.94)
Iul = 1
where the dot now denotes differentiation with respect to T, and
T 2 at
x &
1 7 m
4 2« :
2 T om X2 (7.95)
u & W
m
a K
ng + = l+% .
a ar

The problem may now be solved as in the previous Example for differ-
ent values of 17, The performance index ¢, is shown vs the test length
for various values of n in Figs, 7.7 through 7,9, As the process noise
increases, the switch intervals become shorter and the effectiveness of
the input is reduced, Figure 7,10 shows the performance index and switch

times for n = 2,
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For long tests, we can show that the increased information from the
covariance term is not sufficient to compensate for the lost effective-
.ness of the input (except where the deterministic input is severely con-

strained). For a long test, let us approximate the input with

4

u = P sin wT . (7.96)
Since
X
2 s
= = 7.97
u (s + D@ + 17 ¢ )
the steady state amplitude ratio M is given by
w
M = =) ) R (7.98)
A+ w)ly +w)
L
and T ) . 2 w2 . )
o @+ W+ W)
This has a maximum of
8T' _
-3 at w = /7 .
n (g + 1)
If K 1is known, the covariance of a is
T .
r S _ X33dt
o
T T 9 T T
g ,Xzzdt + 8 x2dt . S X33dt - S X23dt
o o o

For long tests, the inverse of the covariance of a is
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1 _ m 8T' (n - DT
3 - 5 + > -3 . (7.101)
ar g(n+1) 2a (n + 1)
If we let
o é,—%— and B & I ,
ar ar
then, | [lﬁ 62+( o+ 1 -1)2]
e > (7.102)

A plot of this function is shown in Fig, 7,11 for different values of 8,
From this figure, we can see that a little process noise usually degrades
the overall accuracy of identification, However, where the input u is
restricted to small values (B small), a larger amount of process noise can

increase accuracy,

To get an idea of a reasonable amouﬁt of process noise compared with
the deterministic input, let us assume that the process noise could be
generated through the input u, w = au, and that we constrain the

variance of u so that 3ou equals the magnitude of the inequality con-

straint:

o = ag_ = -= . (7.103)

If the correlation time is yu, then

2 2 a2m2
d = 200 g 22T . (7.104)
w 9

In terms of « and B this inequality becomes

2 2
g < 2pa m - 2pa B2 (7.105)

ar 9a2r 9

so that a realistic o in Fig, 7.11 is very small and would only degrade

the overall identification accuracy,
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F, EXAMPLE 4: A STABLE FIRST ORDER SYSTEM WITH
A STATE INEQUALITY CONSTRAINT

Solve the problem in section 7,D with the addition of a state con-

straint

|x] = am. (7.106)

For o 2z 1 this constraint has no effect since x is always within the
region |x| = m, for Iul £ m, The optimal solution is made up of con-

trol constrained arcs (u' = + m) and state constrained arcs (x = + om),

The scaled equations are

X, = - 0) =0

X X, +u xl( )

iz = "X, T X+, xz(O) =0

k., = x2 x.(0) = 0

3 T a0 3~ (7.107)
|u| s 1,

|x,| = o o<a<1l .,

The time, ta’ needed to get to the state constrained arc is given

by
l - o .
t = ={n if u = +1
a 1l - x
: 1
(7.108)
1 -
t = -4n % if uw o= -1,
a 1 - x1

Let us define the switch times as the time when the control, u goes to
+ 1. If the interval between switch times is greater than ta, then we
follow a constrained arc for a portion of the time between switch times.,
A typical input and output sequence is shown in Fig, 7,12, The problem
may be solved as before with the addition that if the Eth switch time
is greater than t + ta, then the control u is set equal to %1

k-1

to t * .
from tk_1 o k-1 " ta_ and set equal to o from ta + tk-l to tk
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FIG, 7.12, INPUT AND OUTPUT CURVES WITH A STATE
INEQUALITY CONSTRAINT,

This problem has been solved for « :-% and is shown in Fig, 7,13, A
comparison with Fig, 7,6 shows that the switch times are closer together
than the case without .a state constraint, As before, the first and last
switch intervals are smaller than the central intervals and the central

intervals are approximately equal,

Now let us see how the steady state solution is modified by the
state inequality constraint. Recall that without a state-inequality
constraint, the steady state solution yielded a time between switches of

3.28 time units, and that the maximum deviation in x was given by

1 - o-3.28

= — . = 7.10
X0 —5.38 0.929 ( 9)
1l +e

so that for « =2 0,929, the steady solution is already solved with

o = 1 _ 4,70
- 0,213 = T :

For a < 0,929, we must allow for a portion of each switch interval to

be on a state constrained arc,

Let us define tc as the time between switches on a control con-

strained arc, and ts the time on the state constraint, If we start
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at xl(O) = -0 and x2(0) = -B with u = +1,  then at tc we have

(t) “te
x, (£ = a = (-a- 1e + 1
(7.110)
-tc te
t = - - (-y -
Xz( c)‘ Be (-a l)tcev .
On the state constrained arc xl = @ so that at bts + ts
xl(tc + ts) = o .
' (7.111) .
(t 4+ t) (t Yo 'S
X + = = e .
2 c s B x2 c
The value of tc and B 1is then
l -«
tc ~4n 1 +
(7.112)
1 - wte S
'B ) 1 4 1 -a e—ts ]
1l + o
The total increase in x3 during this time is Ab + Ag where Ab
is the increase of x3 onﬂthe control constrained arc, and’ AE is
the increase on the state constrained arc. Ab and Ag are given by
1.2 -2tec 1 [ -2te ]
A, —Eﬁ(l-e )+§B(—a—1)1-e (2tc+1).
1 2 —4lc 2
o 1 1 -
+ 3 (o + 1) [ e (2tc_+2tc+1)] (7.113)
1 2, -2tg
= = t 1 -
As 5 xz( _c)( e ) .
The normalized covariance is then ¢' = (tc + ts)/(Alc + AS)T'.

For a given value of (¢, this can be minimized with respect to t .

‘ , : s
- A plot of tc’ tc + tS and ¢' T' is shown in Fig, 7,14 for ¢ = 0,05
to 1,0, As (o becomes smaller, the covariance increases and the switch

intervals become smaller,
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The interesting feature of this Example is the fact that the state
does stay'on a state constraint for a portion of each cycle, and the

frequency of switching is increased,

G. EXAMPLE 5: AN UNSTABLE FIRST ORDER SYSTEM

Find the optimal input to identify the parameter a in the unstable

system

M
]

ax + au} x(0) = 0, a> 0
(7.114)
zZ = X+V,
The sensitivity equation is
<%§) = a<%§) + X+ Uu. (7.115)

If the only constraint is the input amplitude constraint Idl £ m,

then the optimal input is u'= +m with no switching, To maximize

T

| (3.

we desire the largest possible x and u' terms driving the sensitivity
equation, If u'= * m, then the input from u' and the input from x

are as large (in absolute values) as possible., For this Example, whenever
X 1is outside the region |x| < m, then the system cannot be controlled
by an input whose amplitude is constrained by |d| < m, For this reason

we may wish to add a state variable inequality constraint

|x| = am ‘ | (7.116)

" where O0O< <1,

-126-



The optimal input is made up of state constrained arcs (U' = 3 ¢ m,
x = * g m) and control constrained arcs (u' = * m when IxI < am), By

amplitude and time scaling, we have

TRt X0 = x4
iz = X, + X +U, x2(0) =0
. 2
= 0) =
*3 *gr x3(0) =0
lu] = 1 (7.117)
=
x| = @

where the dot now denotes differentiation with respect to 1, and

T & at

é X

X T n
x s 2 8x>
2 " m (5;

A u'
u = — .

m

The information "matrix" is the scalar

T ]
I - <Bx)2dt a ' m 2 21 d _ m2 (T
- Jda B (a) 22 7T T a3 X3
o o (7.118)
so that the variance is
a3 -1
o~ 1]
P = m2 x3 (T') . (7.119)

On a control constrained arc (u = + 1), the solution to (7,117) is given

by
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T
xl(T) = (x10 + u)e - u
T T
XZ(T) = Xp0e + (x10 + u)te
1 2 2t
X3(T) = Xzt 3 x20(1 + e ) (7.120)
1 2t
+ 5 xzo(x10 + w1l + " (27-1)]
Fg(x,+ w?e? N2 - 2t+ 1) - 1]
4 10 e ( - -

and on a state constrained arc (x1 = xlO)’ the solution to (7.117) is
given by
(W = %,
x. (1) = x_ e (7.121)
2 20
1 2 27
x3(T) = Xgyt+ 3 x20(1 + e ) .,

Let us now evaluate the performance index along two paths. The.
first path is u = sgn x(0) until the state constraint is hit and then
to stay on the state constraint. The second path is u = -sgn x(O) until

the other state constraint is hit and then to stay on that state constraint.

Along path 1 we have

xl(T) = (xlo + l)eT -1

x (1) = (x .+ 1)7e’ o | (7.122)
2 10 :
x3('r) = -}I(xm + 1)2[e2T(2T2 - 2T+ 1) - 1],
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for O0s TS T3 and
x, (7)
5, ()
xB(T)

for 127 where

Along path 2 we
xl(T)
xz(T)
x3(T)

for O and

A
A
A
S

xl(T)
xz(T)

x3(T)

where

2 2
+ 1) [eztszl - 2t +1) - 1]

1
=7 & 1

10

1 2 2 27 2(t-1,)
= 1 1 1
+ 2(x10 + 1) i@ [1 +e ]

T is given by

1
1
T, = 4n ih_iEQL .
* %10
have
T
= (Xlo -1e +1
T
= (xlo - l)7e
1 2r 27 2
= 3 (x;9- 1 Le“ (21" - 2t + 1) - 1]
= -a
T
= (x10 - l)Tze
1 2 27 2
- = - 2 - _
4(x10 1" [e (2r2 2T2 + 1) - 1]
1 2 2 27 2(t-1,)
fud -1 2 2
+ 2(x10 ) T,e (1 + e )

12 is given by
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*10

It can be verified that xB(Tl) valong path 1 is greater than X3(T)
along path 2, However, it can also be verified that Ixz(T2)| along
. path 2 is greater than Ixz(rz)l along path 1, This means that if
x3(T2) along path 2 is not greater than x3(72) along path 1, it will be
. at some later time, Let us designate T3 as the time at which x3(73)’
along both paths are equal, Also consider that once on a state constrained
arc (with a sufficient magnitude for xz), it is better to stay on that

arc than go to the other constraint or go off and return to that arc.

For these reasons, we can say that the optimal input is u = m sgn X,
until the state constraint is hit and then is such as to stay on the

constrained arc, for a test whose length is less than 1 However, for

3°

a test whose length is greater than the optimal input is u =

T

. 3’
-m sgn xo until the opposite constrained arc is hit and then is such as
to stay on that constrained arc, However, in both cases, the optimal

input involves going to a constrained arc and staying on the constraint,

This-Example has two interesting features: v(l)'Since the state and
sensitivity equations are unstable, the information matrix grows much
faster than for a stable system, This means that an unstable system may
be identified more accurately than a stable system, (2) The optimal

input involves no switching,

H, EXAMPLE 6: AN UNSTABLE FIRST ORDER SYSTEM WITH TWO PARAMETERS

Find the optimal input to identify a and b of the first order

system

[l
o

a> 0

N.
It

ax + bu', x(0)
(7.128)
zZ = X +V

with an input amplitude constraint |u'|

1A

m, The two sensitivity equa-

tions are
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(3) - )+ -

ax) 3
b/
and the information matrix is

- —

@ | )
[ @@ | @

M| -
o]

i o
By amplitude and time scaling, we have
il = x +u, x1(0)7= 0
kz = %X, + X, xz(O) =0
ks = X+ u, x3(0) =0
|u| = 1

where a dot now denotes differentiation with respect to T,

T = at
a
Xl = E X
2
¥ % Z—m(g_:)
*3 ° % <%§> ’

(7.129)

(7.130)

(7.131)

and
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For the initial condition given, x_= X The information matrix
becomes
2
b x_(T') - x (T")
2°5 6
2| 2 :
1 = B (7.133)
- a“r b
— T' Tl
x6( ) x4( )
where
po= X (0) =0
X, = X X, =
- x_(0) = 0 (7.134)
5 T % 5.0 :
Xg = X X, XG(O) =0,
The covariance matrix is approximated by
2
-ab
a x4 a x6
2
ra3 | -abx6 b X,
P 2 — . (7.135)
m b X x - x2
45

If we weigh the coefficients of variation aa/a and cb/b equally, then

our performance index becomes

x (T') + x_(T')
¢ = 4 S 5 . (7.136)
x4(T') x5(T') - x6(T')

Figures 7.15 through 7,17 show plots of the performance index versus
one switch time for tests of T' = 0,5, 1.0, and 3,0 time units, In each

case, one switch is better than no switches,
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Plots of the performance index versus two switch times were also
run, However, in each case the best two-switch sequence was the one-
switch case, For this reason, it is believed that the optimal input is
bang-bang with one and only one switch, This is in marked constrast with

our stable systems that involve repeated switching for long tests,

Now let us solve the problem with the first order state-inequality

constraint

where O0< <1,

As in the previous Example (G), the optimal input is made up of

state constrained

bm
X = +00— ,
- a
and control constrained
u' = +n

arcs,

In mechanizing a program to calculate the performance index as a
function of the switch times, the switch times are defined as the times
when the control u goes to +1 or to =1 (not when it goes to some

intermediate value to stay on a state constraint).

Figures 7,15 through 7.17 also show plots of the performance index
for the case ¢ = 0,9, As in the case without a state inequality con-
straint, one and only one switch is optimal, This example is quite similar
to the previous unstable system, The main difference is that to identify

two parameters, the optimal input involved one and only one switch,

-136-



Chapter VIII

OPTIMAL INPUT FOR THE IDENTIFICATION OF THE LONGITUDINAL

DYNAMIC STABILITY DERIVATIVES

A. PROBLEM FORMULATION

The approximate longitudinal equations of motion (short-period os-

cillation) for an airplane are®

M: + M M.z M M.z
§ = 2944 (2%, Qo 2=
I
Iy Iymuo ¥ Iymuo
Z Z
& = g+ 2qa+—=25
mu mu e
o
where
q = pitch rate
¢ = angle of attack
Se = elevator deflection.

Mse

I

Let us assume that all the parameters except M& and M
q

y

s
e

(8.1)

can be deter-

mined from wind tunnel tests. Hence, we wish to identify the normalized

parameters

Mq
Py = sndpy =7

~« QF
A

from a flight test.

This form of the equations was taken from Denery [DE-1]
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For this test, let us assume that the only measurement is the pitch
rate q, which is corrupted by white gaussian noise of density R (a
scalar). Our problem is to determine the optimal input Be for the
identification test with the constraint

s
|8l = B¢, - (8.2)
The identification performance index is
T :
1 2
J = 3z So (z - q) dt (8.3)

so that the information matrix is

[ (" dq \ ' a\(2q i
1 So (Sp_l) o %o (%;I)(B;ﬁ dt

Ia = 1—1 . aq . T aq 5 . (8.4)
LSO (g{):) (%p—z)dt So (gg) dt—J

If we approximate the covariance matrix for P, and p2 by I;l, and

put an equal weighting on their accuracy, our input performance index

becomes

¢ = Tr I~ ., (8.5)

In order to evaluate the information matrix, we must calculate the

two sets of sensitivity equations

) Lttt (M BY), LT
Bpl Iy Bpr Iymuo Iy' Bp mu

Z5e dq
+',;,;;5e, $(0)=0;

(8.6)
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&) -(@)-=(E) Zo-

(8.6)
cont.
(o) - BTNy (e B0y X
sz | Iy pz Iymu0 Iy' op./ - apz
| (8.7)
Jole’ dq a [ dx _
(%) - () =) 55 (@ =0

‘B. NORMALIZATION

The state, sensitivity, and constraint equations may also be written

in the form:

a+ 8g318 . a(0) = 0

q=k2q+k e

3 34

]
o

- - a
o q+ kg0, _ (0)

iV - oV 4k (1) 4 g+ x o q(l)(0)= 0

34 54

32 (8.8)
1) - 1), k54a(1), Aoy = o
2 _ 1{3201(2) . 1{34(%(2) v, 20y = o
of2) o ,(2) k54oz(2), 2oy = o
|8e| = aemax 4

where the ith superscript denotes the sensitivity equation for P, -
Thevcorfespondence between 0ld and new coefficients is shown in Table
8.1. k32 and k34 are unknown and 6g31 and k54 ére known from wind
tunnel testing. By amplitude and time scaling, we can reduce the

above set of equations to the form:
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Table 8,1

RELATIONSHIP BETWEEN COEFFICIENTS IN (8,1) and (8.8).
The numerical values are those in [DE-1] for the C-8
airplane in a landing configuration, We assume that
some parameters are known or unknown from wind tunnel

testing,
01d New Numerical Known or
Coefficients Coefficients Values Unknown
Md + Mq
k -1,588 unknown
I 32
y
Mdza Ma
— - unknown
Tmu T 1 k4 0.562
y o y
[ ] M
M ?de be -Bg -1.658 known (if Bg
+ — 31 51
I mu I
y o y
za
. -1 k
— k54 .737 nown
o
z5e 8g51 0,005 assume =
mu
o
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where the dot denotes differentiation with respect to 7

2

N

x, +u,

6%y T C2%g

X 7 Xy,

“CiXg T CX, t X, = X,
Xg = Xy,

-clxs - 02X6 + Xl ,

Xg = X

1,

>

n

e

o

11>

e

e

ne

e

K54

q
8g31 * 6emax
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In terms of the normalized variables, the information matrix becomes
- —
T! 2 TI
x, dt S x,Xx dT
52 52 go 3 o 35
-0g
I = 315 ©max (8.10)
a RK T T
54 I x.x.dT xsz
35 5
(o} o
o -
where T' is the length of the test in normalized units of time. The
input performance index is then
-Rk
54
6 = (N (8.11)
Se2. B
€31 “emax
where
| 1
x7(T ) + x8(T )
o' = > (8.12)
t t - t
x,(T")xg(T') - x(T")
and
é = x2 x.(0) =0
7 5 7
x = x.(0) =0 (8.13)
8 3 ? 8
Xg = XX s xg(O) =0 .

The evaluation of

4

¢ for a given input requires nine integrations

(2 state equations, sensitivity equations, and 3 quadratures) the

length of the test.

B.1 Gradient of the Performance Index

To calculate the gradient of the input performance index we must

we have

calculate axi/atk for i=1,2, ...9. For t<t,

o, 1, 2,... 9 . (8.14)

o,
%y
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1,2,... 9 (8.15)

1
w L
I
He

[
L]
b
=
.
'..l
]

which equals zero except for i =1 which is

o, ) \
W = u(tk) - u( tk) = + 2, (8-15) !
k .

For t >t

Ve must integrate a set of 15 differential equations., The

first six equations are given by (8.9) with the values they had at t = tk
as initial conditions. The last nine equations (with initial conditions

given above) are:

§7 = -C;X, - CyXg x7(tk)'= + 2

is = x, - Xg xg(t,) = ©
ig = —clx9 BT + X, - Xg , xg(tk) = 0
ilo = X3 7 %10 ‘xiO(tk) 0
éll = SopX . - CXy, Xy xll(tk) = O
X9 = X5 7 Xy %15(t) = 0
X3 = 2Xg¥%); x,5(t) = 0
i14 = 2x.Xg x14(tk) 0
i15 = Xg X, t XX xls(tk) = 0 ;

where x7 through x15

of the input performance index with respect to the kth switch time is

designate axl/atk through axg/atk . The gradient

then
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do" xls(T‘) + x14(T') ) [x7(T') + x8(T‘)]

atk D p2
X [xls(T') xg(T') + x,(T)x, ,(T*) - 2x9(T')x15(T')]
where D = (T') % (T') - x2(T7)
= x7 8 9 .

A computer program for the optimal inputs is shown in Appendix A,

C. RESULTS

For one switch (N = 1), a plot of ¢' was made versus tl for
various test lengths, namely, T'=1, 3, 5, and 10 time units. These
are plotted in Figs, 8.1la through 8.1d. For the first three cases, there
was only one central minimum. For the last case, we see two local minima,
the one on the left being the lower. Since the inverted plateau of this
latter case is quite long (and the performance therefore rather insensi-
tive to changes in the switch time), we might suspect that only one

switch is not a global minimum for T' = 10 time units.

For each of the figures 8.1la through 8.1d, there was also a local
minimum at t1= O. This corresponds to the N = 0 case (i.e., no switches).
In general, we may say that for the N switqh case, there is a local
minimum corresponding to the N-1 case. In using the algorithm developed
in the previous Chapter, our initial values of the switch times are near

the center, so that we converge to a central minimum.

A plot was made of ¢' for the optimal switch times for N = O
through N = 3 and is shown in Fig. 8.2. The lowest value of ¢! from
this curve and the switch times are shown in Fig. 8.3. This, then, is the
solution curve. For example, if we wanted to know what the optimal input
54 +10 = 7,37 time
units. At this test length, t! = 3.00, t! = 6.18, and ¢' = 61. In

1 2
other words, the optimal input is full elevator on for 4,07 sec, then

is for a 10 sec ‘test, we would look under T' = -k

full elevator on in opposite direction for 4.31 sec, and then full elevator

on in the original direction for 1.62 secs.
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nondimensional units of performance index
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nondimensional units of performance index

nondimensional units of performance index
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D. STEADY STATE SOLUTION

For é very long test, we can approximate the repetitive bang-bang
inputs with é sine wave. The system and sensitivity equations consist

" of three second-order systems of the form

(8.18)

" where x1 - x2 replaces u for the first set ofvsensitivity equations

and x1 replaces u for the second set of sensitivity equations. The

transfer functions are given by

xl(s) - s +-1
uis sz+s(c1+1)+‘c1+c2
xz(s) 1

— 2 - .
u:s: s + s(c1 + 1) + ¢y + cy

A block diagram for the calculation of ¢ is shown in Fig. 8.4. If the

input is approximated by u = 4/x sin wt, then for a long test

. 8
x7(T') = — T'M“(w2 + 1)2
' T
x8(T') = §§ o’ wz o+ 1) . (8.20)
7t
3/,
x9(T') = j% T' cos 6 M4w(u? + 1) 2
B

where M and 9 are defined by
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s 17 ¥ s +1
] i
2 2
s” s(c1 + 1) + c1 + c2 s” ¢+ s(c1 + 1) + N + c2
s + 1 x1 s + 1
3 )
8 + s(c1 + 1) + c, +¢, s + s(c1 + 1) + c, + ¢,
1 16 42 2 . 2
u=2 sin wt X, = 2 Mzw(w2+l)2sin(wt+9), X, = —— Mw (0w +1)sin” (wt+6)
n 3 =« 8 52
16 4 ,2 3 | .
X, - X_ = i Mw sin(wt+8), X = i M2(w2+1)sin wt, x == Mw(W+l)2sin wt sin(wt+s)
1 2 5 b1¢ 9 Tr2 :
= 16 4, 2 .2 . 2
x. = i M(w2+1)2sin wt, X = == M (W +1) " sin wt
1 g 71t2

FIG, 8.4 BLOCK DIAGRAM FOR STATE, SENSITIVITY FUNCTIONS, AND
ELEMENTS OF THE INFORMATION MATRIX i



M = -
. 2,2 2 21%
[(c1 + Cy - W ) + W (c1 + 1) ]

(8.21)
sin 8 = ——E—l;——jr .
(w + 1)2
Substituting (8.20) into (8,12) and simplifying, we have
2 .
o' = 3 12 gw =2 2 . (8.22)
- T'Mw (w + 1)(1 - cos” 6)
B .
Substituting for M(w) and 6 we then have
2 2 2,2 2 2 2
7 (2w + 1)[(c1 +tc, - W )T+ w (c1 + 1) }
6! = . (8.23)
2, 2
8T'w (w + 1)
For c + c, = 3.185 ‘and c, + 1 = 3.15, this has a minimum of &' , =
1 2 1 min

398/T' for w = 1.05. This corresponds to a switch time interval of 2.99

time units or 4.05 seconds. This is in agreement with the solution curve,

Fig. 8.3.

E. SIMULATION

A simulation was run using Denery's combined algorithm to identify
P, = Md/Iy and p, = Mq/Iy from measurements of the pitch rate ¢. The
cemputer program for the simulation is shown in Appendix B,
Recall from Table 8,1 that
. + = .
Pl Pz = Kk
(8.24)

, that if ti . -
so that if we can estimate k32 and k34 we can estimate p1 and pz accord

ing to
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(8.25)

To use Denery's [DE-] combined algorithm, it is necessary to trans-
form to a canonical form where the unknowns are coefficients of the meas-

ured state q. The equations of motion take the following form:

%y f00 /% €11 x,(0)
= + 5 3 = O (8.26)
e
%9 far % \*2 €21 x,(0)
%y
a = [1 o] (8.27)
X9

h = = +
where x1 q and X, klg kza so that

q = a .
q (fl1 + kl)q + kX + gy Se
(8.28)
. 1 1
d = - - - o —_ -
K, [?21 By (fy kl)}q k@ kz(g21 k8,00, -

By matching the coefficients in equations 8.28 with the first two equa-

tions in set(8.8) we have

g, = 6g31 (known)
ky = kg

11 T Kap Tk = kg kg, (8.29)
kl = -k54 (known)
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= + . = k - -
21 kg Tk - Ky 34 ~ K54 ° Kap (8.20)
cont
= . = - . 5 . )
€9y kl' 6g11 k54 g3, (known)
If we can identify fll and le from Denery's algorithm, then we can
cglculate k32 and k34 from
A ~
kgg = T11 7Kgy
(8.30)
ﬁ ~ A ~
30 = ¥y = Iy T K5yt Ky
Notice that we cannot identify all six stability derivatives (Md /Iy’

Mq/Iy, za/huo, zSe/muo, Ma/Iy, Mge/Iy) from the five coefficients

(x 8g31, k54, 8g51) and with a scalar measurement we cannot

‘ 32’ k34’
identify the above five coefficients from the four canonical coefficients

(£,

f .
17 Ty Ep B
derivatives, the scalar measurement is satisfactory.

Since we are only trying to identify two stability

For simulation purposes we use values for the stability derivatives
calculated from the five coefficients identified in Denery's 17-second test.
However, one other stability derivative such as Mé/Iy is needed or we may

make an assumption such as Md = Mq . The numerical values for this simu-

lation were shown in Table 8.,1.

Now applying Denery's algorithm to the second-order system (8.26), we

have
£° 1T
11
F, = o H = [1 o] | (8.31)
L2t

where Fn and Hn are given by
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so that for this example

Estimates of f and fz

11

F = F - DH
n
H = (I - L)H
11
&G = 0, §X° =0, D= .
D21
1 are given by
a n
f = f._ +D
11 11 11
- n
f21 = f21 + D2/1 .

The simulated measurement

z, is given by z = x, + v where

1

X = + + « O 0) =0

*1 f0% P EXp gy 0 B, x,(0)

X = L] 8 3

%5 fo1*1 * gy B0 x%(0) =0

The nominal output is given by zn = xn1 where

X 2 0x +x o+ g + B x . (0)
nl 11 “nl n2 11 e’ nl

x ) £ x +g.. «d x _(0)
n2 21 nl 21 e”? n2

The sensitivity equations for D11 and D2

n

n
f21

are given'by

1
f “n1 + axnz + 2z (or z )
11 SD 5D n
11 11
xn1
Dll
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and

ox X Ox
nl) _ .0 nl + n2
R} - d oD
D21 11 D21 21
(8.38)
ox X
n2 n nl
= f — )+ 2z (or z ) .
21 n
8D21 8D21
Esti i b
stimates of D11 and D21 are given by
- T ,ox 2 T  dx Ox 7-1
ISR L, \9Dy o \ 9P11/\%Py;
= r
D : T ox x T 3% \2
21 S( nl n1>dt n1)dt
A ED1 5]'.’21 o 51)21 (8.39)
L. = .
"~ ST axnl
S (z - z_) dt
o P11
1
X - [
r
S axnl
D (z -z ) dt
L. ° D21 .
By combining the linear transformations
- - m
A 1 ~ 1
P — O] fk - =
1 k54 34 k54
A = 1 ~ + m (8.40)
P -— 1}l\k —
2 k54 | 32 ) k54
™ "
and n
k39 1 1/ “Ks4
" " 1. 3 * 2 ) (8.41)
34 |54 1 21 -y '
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we find that

A -1 _1_7 N ™
p £ - - —
1 Koy 11 54 kg,
= + (8.42)
3 o -—=1\% My )
Py ke, 21 T
L i 54

The covariance in our estimates of the parameters p1 and P, is given in

terms of the covariance of fll and f21 by

- -\ T
P = E(p-p)(p-0p (8.43)
- 2 1 1 1 n
Poin K, Poiz * 2 Ppoa K, Ppi2 ~ 2 Ppo2
_ 54 54
1 1 1 *
T Ppi2 ~ 2 Ppag 2 Ppoz
o 54 54 54 J
For a four-second test, T' = “Kgy 4 = 3.00. From Fig. 8.3, we

see that for T' =3, N =1 is optimal with ti = 2,04 and ¢' = 228,

In this case the normalized covariance for D11 and D21 (or fll and f21)

is

P = . (8.44)

The predicted covariance for D11 and D2 is then

5
~Rkg , - 297 -159 )
€31 emax -159 156
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2 -4
Substituting values in (8.45) with R = 0 At = (0.1)2(0.01) = 10

into (8.43), the predicted covariance matrix for P, and P, is

0.,0297 -0.0159

~-0.0159 0.0156

Iﬁ the simulation, Denery's algorithm was appiied to 20 sets of data
and the results are summarizéd in Table 8.2. Except as noted in the first
column, all of the tests had a bang-bang input with a switch at 2.72
sec, a standard deviation in measurements of 0.1 rad/sec, and an initial
guess of P, and p2 of -0.60 and ~0.80 respectively. The average number
of iterations for the 20 tests is shown for the equation error and the
output error portions of Denery's algorithm in columns 2 and 3. The re-

sultant covariance of the estimates is shown in columns 4 through 6.

From Table 8.2 we can make the following conclusions: (1) With an
optimal input, Denery's algorithm converges faster and to a more accurate
estimate than with a non-optimal input. (2) The predicted covariance
given by the inverse of the information matrix is very close to that cal-
culated in the simulation. (3) For large errors in the initial estimates
of the unknown parameters, the equation error portion takes more itera-
tions.to converge; but, the number of output error iterations remains the
same. (4) An indication of the final accuracy in our estimates is pro-
vided by the number of iterations needed for the output error pdrtion
of the algorithm to converge. 1In a sense, then, the bias from the equa-

tion error portion serves a useful purpose.

A computer listing of this simulation is shown in Appendix B,
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Table 8.2

RESULTS OF DENERY'S IDENTIFICATION ALGORITHM APPLIED TO 20 TESTS.

input with a switch at
ments of 0, = 0.1 rad/sec,
p; = -0.60 and py =-0,80.

Except as noted in the first column, each set of tests had a bang-bang
t; = 2.72 sec, a standard deviation in measure-
and an initial guess of the parameters of

-8G1-

Equation
Error Covariance Matrix
Condition Iterations Iterations ,
' ' P11 P12 P22

Optimal, t1 3.45 0,026946 -0,015152 0,015005
= 0,2 sin 1,57t 3.85 0,073325 -0.,058342 0.054742
= 2,65 3.45 0,026368 ~-0.015742 0.015737
= 2,79 3.45 0,027971 -0,014758 0,014366
Initial Condition, 5,00 0.026946 -0.015152 0.015005

and p_ = -10.0

2

= 0,01 2,95 0.000260 -0,000154 0, 000154




OPTIMAL INPUTS FOR THE IDENTIFICATION OF THE LATERAL

Chapter IX

Approximate lateral

plane are*

IXZ
r + if—
zz
I
l.) XZ
I
p.9.9

e

DYNAMIC STABILITY DERIVATIVES

A,

equations of motion for a conventional air-

PROBLEM FORMULATION

where
B = sideslip angle
r = yaw éngular velocity
p = roll angular velocity
*

e

B}

Y

_B g

w Pty e

nr np

T r + if—-p +
z2z ZZ

£ £

R SR B
I I

XX XX

= P

= r

taken from Bryson and Ho [BRY—l, p. 173].
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The equations and numerical values used for these computations were



¢ = roll angle

Yy = yaw angle

8 = rudder deflection
r

® = aileron deflection .
a

We wish to identify the four dynamic stability derivatives n np,
ﬂr, and ﬂp, assuming that the other stability derivatives and the two
control derivatives are known from wind tunnel tests. These four dynamic
stability derivatives depend upon motion of the aircraft and may be
difficult to determine from wind tunnel tests. Let us identify the

pvarameters in the normalized form:

nr n 2r £
Py=T— s P=t1—, Py =7, and p,=7—.
VA4 V44 XX XX

For this example, let us assume that the only output measurements are
yaw rate r and roll rate p, each corrupted by uncorrelated white
gaussian noises of density R (a scalar). Our problem is to determine

the optimal inputs 6r and 6a for the identification test.

B. INPUT CRITERION

The identification performance index is

T
J = %E S (z1 - r)2 + (z2 - p)z dt (9.2)

so that the i,jth element of the information matrix is then

L, - '_1]; S': <g:i><a;j> + <g§i>(ggj> dt (9.3)

which is a quadrature of products of the sensitivity functions., As an

input performance index, let us choose
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e = Tr IV, (9.4)

The four sets of sensitivity equations for pl’ pz, p3 and p4

are the same as (9.1) except that the inputs are

(0] [07] 0] (o] [ o 7
n
r P 0] 0 =X 5
Iz T
(o) d instead of 25
an imstea o
) ’ r p T;i Sa
0 0
of Lo Lol 0] Lo

and the "states" are the sensitivity functions

oB or op L) s
op.” Op,’ OJp,” Op,’ and Sg_.
1 - R 1 1 1

where i =1, 2, 3, 4. The last equation in each set, V¥ and BW/Bpi,
i=1, 2, 3, 4 1is uncoupled from the other equations and may be dropped
since there is no state constraint on V¥ and we are not using measurements

of VY. The system equations may also be written in the form

B = 016 -+ c2¢
r = c.B+ec,r+ec p+cd® + c.b
3 4 5 7
6 r a (9.5)
D = + + .
P 085 Cgor + 0P C118r + c126a
.

where
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£ I n
1 < B _xz_ B >
g o = XX ex zZ
¢ T ¥ 8 = o
n I £
B _ xz B 2 I n
I I I < r XZ T )
_ zZ zZ XX T - 1
€3 = XX XX 22z
D c =
9 D
I £
nr _ Xz T 2 I n
I I I P XZ P
_ zz 727 XX I~ T 1
€4 = XX XX zz
D C =
10 D
np IX ﬂp (9.6)
z
<1 T > _ lxz Dor
_ ZZ zZz XX I I
¢s = XX zZ
D c =
11 D
n
o}
¢ T 1 5 c.. = *8a
ZZ 12 IxxD
I
_ Lxz Poa
I i _ - Xz XZ
ZZ XX b = 1 *
c, = XX 2z
D

The sensitivity equations for Py5 P, Py and p, are of the same form

as (9.5) with the following modifications:

n

o)

(1) For P, substitute r for E_z Sr and set Sa = 0.
zz
ng,.

(2) For P, substitute p for T— Sr and set Sa = 0.
2z

; “Ba 4 d set 5 =0

(3) For p, substitute r for 7— B = and se . =0-
XX
Eaa

(4) For P, substitute p for T— Sa and set Sr = 0.
XX
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Evaluating the performance index requires 30 integrations (4 state
equations, 16 sensitivity equations, and 10 information matrix quad-

ratures) over the interval from O to T.

C. GRADIENT OF THE PERFORMANCE INDEX

The partial derivative of the performance index with respect to the

kth switch time tk is given by

1
g—:; = -TrI;l F: 1;1 . | (9.7)

The elements of ala/atk are found by integrating product terms involv-
ing X, and axi/atk, i=1, 2, ... 20. The differential equations for
axi/atk, i=1, 2, ... 20 are the same as those for X5 i=1, 2,

20, except for the elimination of the inputs 6r and Sa. They are in-

tegrated forward in time from tk to T with initial conditions given by

axi ’ : '

3;; (tk) = Xi' Xy . _ . (9.8)
=t =t+
t tk t~tk

Evaluating the partial derivative of the performance index with respect to
the kth switch time requires 50 integrations (20 state and sensitivity
equations, 20 equations with respect to tk, and 10 quadratures for the

elements of aIa/atk) over the interval from tk to T .

With more than one input, the assignment of switch times for each

individual input becomes a little more complicated. For this problem

the first input Sr’ has’ N1 switches at times t

t t
1,1 1,2,

1,N]
t s

1:2,N2 . There are a total of N switches at tl’ tz, cee tN where
N = N1>+ N2. Figure 9.1 shows a possible switch assignment for the case
N1 = 2, and N2 = 3. Since the individual switch times are incremented by

different amounts, this assignment can change with each iteration.
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D. RESULTS

The conjugate gradient search routine for the optimal switch times

is similar to the Chapter VIII Example implemented in Appendix A,

To insure a global minimum, we proceed as before by plotting the
optimal performance index for a number of cases that depend upon the
number of switches. For the scalar input case, we had one case for N
switches. With two inputs, however, we have 2(N+1) possible cases

for N switches.

For N = O (no switches) we have two cases: N, =0, N, = 0. (no
switches for either input), and the two inputs either start (1) with the
same sign, or (2) with opposite signs (i.e., in-phase or out-of-phase,

P=+1).

For N = 1, we have the four cases: (1) N1 =1, N =0, P =+1

2
(one switch for input Sr’ two inputs initially same sign); (2) N1 =1,

N2 =0, P=-1 (one switch for input Sr’ two inputs initially the opposite
sign); (3) N, =0, N, =1, P =1 (one switch for input & , two inputs

initially the same sign); (4) N, =0, N, = 1, P = -1 (one switch for

input Sa’ two inputs different signs). :

Each of these cases is an optimization problem with respect to one
parameter. Figure 9.,2a to 9.2d show the performance index ¢ versus the
parameter of interest for a test length of five seconds. The end values
of the performance index correspond to an N = O case. The performance
index versus the length of the test for an optimal input is shown in Fig.
'9.3 for each of the six cases of N =0 and N = 1. Each case is specified‘
P).

by the triplet (N , N

1) 2)
For N = 2 there are six possible cases, namely: © (2, o, 1),

° (2, 0, '1): ° (1: i, 1); o (1: 1, '1): i (0: 2, 1): d (0) 2, -1).

Each of these cases involves an optimization problem with respect to

two parameters. Values of the performance index afe shown on a grid of the

two parameters of interest in Figs. 9.ha to 9.4f for a five second test.

Except for the (1, 1, -1) case of Fig. 9.hd, each of these cases has its

minimum at a minimum of an N =1 case.
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All six cases for N = 2 were examined in a similar fashion for
test lengths of one and ten sec, For thé one sec test, each case had
its minimum at an N =1 case, For the ten sec test, each case had
its minimum at an N =1 case except for the (2, 0, 1) case, (The
switch times for this case weré 1.5 sec and 5,3 sec for the rudder, and

no switching of the aileron,)
No N = 3 cases were investigated,

Unfortunately, these solutions cause such large deviations in the
state that the linearity assumptions are violated, One method of
satisfying the linearity requirement is the addition of state inequality
constraints, For this problem this means two second-order state in-

equality constraints on g and ¢ ,

With state inequality constraints, the steady state (assuming a
stable system) wave shape may be somewhat irregular, A Fourier analysis
may then be tried by optimizing with respect to the relative amplitude

of higher order terms in addition to the frequency.

However, these problems are left for future research,
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Chapter X

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

A, CONCLUSIONS

Optimal input design for system identification has been investigated.

The primary conclusions are:

1, The information matrix, I, (for the parameters of a linear
dynamic system) provides a useful measure for input design,
The criterion used in this thesis was the trace of I"1
(which is a lower bound of the covariance of the parameters),
Minimizing this criterion appears to have some advantages over
maximizing the trace of I, In simulations where the trace
of I was minimized, I was a good lower bound in the
sense that it was approximately equal to the actual covariance

of the parameters,

2, An optimal input for system identifiéation excites the system
as much as possible, With amplitude constraints on the input,
an optimal.input is either full on in one direction, or full
on in the opposite direction (bang-bang inputs)., The addition
of state inequality constraints can be important in practical
problems where the instrumentation and the dynamics of the
system must be maintained within their linear region, With
the addition of state inequality constraints, the éptimal input
is still bang-bang but with intermediate values while on a

state constraint,

3. For long tests, the optimal switch times are often equally
spaced, In such cases, we may assume a square wave input and

optimize the performance index with respect to the fundamental
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frequency using a few terms of the Fourier series for a square

“wave, With state inequality constraints, the shape of the

The

input pulses may require several terms in a Fourier series for

an adequate approximation,

The results of a simple example indicate that for reasonable
amounts of deterministic input, the overall effect of process
noise is to decrease the identification accuracy, However,
for systems with no (or very small) deterministic inputs,
process noise contributes to the identification accuracy by

providing excitation,

The solutions in this thesis for the optimal aircraft flight
test may be modified to insure that the instrumentation and
dynamics of the aircraft stay within their linear regions,

One method of meeting the linearity requirement is to lower
the input amplitude constraint, A design allowing full in-
puts but with switching to meet state¥inequality constraints

should prove better but has not been solved,

B, RECOMMENDATIONS

following areas are recommendations for further research,

The methodology developed in this thesis should be extended to
include the addition of state inequality constraints. Of immed-
iate interest would be the addition of state inequality con-

straints to the aircraft identification problem,

The information matrix also provides a criterion for determin-
ing the best instrumentation to use, Instead of heavily instru-
menting aﬁ aircraft or other system, it may be possible to
obtain almost as much information with far less instrumentation,
This would not only lower instrumentation costs but lower the
complexity and execution time of identification algorithms,

Identification algorithms could also be structured to process
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only those measurements that contain the most information (at
least for initial iterations), However, optimizing the best
input/instrumentation combination together would be quite

difficult,

As mentioned ih Chapter III, more research would be useful in
determining the best model numbers (numbers that specify struc-
tural information about the system such as order or degree of
the minimal annihilation polynomial) for multi-input multi-output
systems, Considerations should answer the following two ques-
tions: (a) What is the minimum number of parameters needed to
designate an arbitrary member of the class defined by the model
numbers? (b) As the order of the system increases, how many

different cases must be examined?

The calculated value of the information_matrix may vary with
changes in the estimated value of the parameters, Instead of
expanding the identification performance index to second order
(as in Eq, 6,1), we could expand it to third or higher order.
The third order tensor

p 07

da°

may be viewed as the sensitivity of I with respect to the
parameters, In addition to minimizing Tr I—l, some measure

of this term should be minimized,
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APPENDIX A

This Appendix is a computer listing of the gradient algorithm
developed in Chapter VII, which is applied to the optimal input problem
in Chapter VIII. A flow diagram of the conjugate gradient algorithm
is shown in Fig, 7.1, and a flow diagram of the one dimensional search
portion of the algorithm is shown in Fig, 7.2, Subroutine POINT cal-
c¢ulates the value of the performance index by integrating the state,
sensitivity, and elements of the information matrix, whose differential
equations are in subroutine FCT, Subroutine GRAD calculates the
partial derivatives of the performance index with respect to the switch
times, which requires integrating the equations in subroutine FCTP,

Subroutine ADAMS (not shown) was the numerical integration package used,
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2XskaXkaXziskakzizkaiskalgEs NN ool el

THE OPTIMUM INPUT Tu [NENTIEY 2 PARAMLTLRS
(v ALPHA DOT AND M Q) OF THE SHORT PERIOD DYNAMICS
OF AN AIRPLANE 1S A BANG-BANG INPUT
wITH SWITCH TIMES GLVEN BY THIS PRUGRAM.
Tu FIND THE GLOBAL MINIMUM CF JPy, RUN THIS PRGGRAM
SCVERAL TIMES wlTh DIFFERENT VALUES FOR N AND PLCT
118 RESULTS. ACCURALY 1S CONIROLLED BY SPECIFING
J MAX o AMINLSMIN '
JP = TRACE CF THE COVARIANCE OF THt TWQ PARAMETERS
M=NUMbER UF SWITCih TIMLD INTEKVALS
T=L=LENGTH GF TEST
D)= [ TH SWITCH TIME
IMAX=MAX T MUM NUMBER OF TTERATIUNS
AMIN=MINIMUM INCREMENT TG ASSIGN 10 SWITCH TIMES
SMIN=MINIMUM SUM OF SQUARES OF PJ*'S
PJ=PARTIAL DER Of JP wiTh RESPECY TO SWITCH TINMES
LE=LETA=DAMPING KATIO
wN=UNDAMPED NATERAL FREQUENCY
REAL JP 4453 J0yJdlsdcyJd3
EXTERNAL ADAMS .
CIMENSION U(10)3PJ(1U)eX{15,11)HILO,10)4RULC),
L DR{10U),0G(L1C)DOLD(10)4PJOLD(LU),UX(10)
COMMON C1,C2,5U
CUMMUN/ZSL/N,Dy Xy V1 4V2,4V3,DET
1 FORMAT('1%,35X,'ZETA=*¢Fb.3,"* OMEGA N='4,Fb6.3,
C ' Cl=',F6e3,0' (2=1,Fb6.3) .
2 FORMAT (/7% 1 ,360Ry "N=? 14/ TXs'T?,LUX,"JP? 99X,
C *D(2) THRU D{Ne¢l)?) . ’
3 FORMAT (' ',F9.3,F1l3.5,10F11.5)
1u0 FURMAT({110,2FL1U.5)
101 TORMAT(2FLlU.5)
192 FORMAT(713)
READ{5,100) IMAXAMIN,SMIN
REAUIS5,101) ZE,nN
READ(S5,102) N1,N2,N%,LL,L2,L3
CLl=2.%¥LE¥¥N~-1.0
C2=WNEWN~C1
WRITE(O,L) CLEsanN,CLlyL2
DO 33 N=NL1yN2s,N3
TN=N
WRITE {642) N
NO 32 L=L1,L2,L3
T=L
ND{1)=0.0
NO 5 I=24N
S DII)=D([-1)+T/TIN
DIN#1)=T
o\[=o.2*(N°1’*1/]N
ICNT=0

CALL PUINI(JO)

I+ (NLEQ.Ll) GuU Tu 30
CALL OGRAD(PJ)
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(s NaNe

8

10

11

12

LCAONTINUE

ICNT=ICNT +1

K=1

AOA=V.0

DU 8 I=2,N

Ul 8 J=2,N

H‘I'J,“-Ooo

IF(I.EQ.J) H(I,J)=1,0

IF (ICNT.GE.IMAX) GO T 30
CUNT INUE ‘
Al=AT
Do 10 |
ooLD( )
RS=0.0
PJO=0.0
DU 12 I=2,N

R{l)=0,0

00 11 J=2,yN
REDY=RITI)Y+H(TL, 1P (J)
RS=RS+ABS(R{1))
PJO=PJO+R{L)*PU(T)
PJO==PJO/ RS

Hoa

2N
D(1)

ONE DIMENSICNAL SCEARCH

13

14

L5

L6

L7

18

DU 13 [=2,N

DIL)=D(I)-KR(T)*AL1/RS

CALL POINT{JL)

IF (U1.LE.JU+.83333333%PJ0%Al) 60O TO 195
A== 53PI0AL®AL/ (JL1-JdU—PJO%AL)
VEC=—e5%P JUXA2

DO 14 [=2,4N

DEDY=D(I)-R{L1)*{A2~AL)/RS

CALL POINT{J2)
LrtAads{tJu—J2-DEC)/DEC)GELO.1) GD TO 17
Gu T0 20

A2=3.,0%Al

DO 16 I=2,N

DCE)=D(I)=R{L)*(A2=AL) /RS

CALL POINT(J2)
El=(J1=-00-PJO0%Al )/ (Al%Al)
E2=(J2-Jd0-PJO0=A2)/{A2%A2)

Ee=(EL-tZ)/ (AL-A2)

E3=Ei-E4*Al _

IfF (E3%E3-3.0%PJO0*E4 LT, J.0) GO TN 20
As=(—E3¢SCRT(EIXEI=D . 0%PJIOXEA) )/ (3. U%ES)
IF (A3.LE.0.0) GU T 20

[F (A3.GE.b.0%al) A3=6.0%A1

DO 18 [=2,N

2(0)=DC1)-R{1)*(A3 -A21 /RS

CAaLL PCINT (J3)

Ir (J3.LE.Ju2) GO TO 22
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OO

DO 19 [=2,4N
1y O(I)=D(1)=R{1)*(A2-A3) /RS
CALL POINT(J2)
20 AOP=A2
J0=J2
GO TU 23
22 CONTINUE
AUP=A3
Jo=J3
23 CONTINUE

EnD OF ONE OIMENSIONAL SEARCH

IF (KJEQel +AND. AP LELAMIN) GU TO 30
DO 24 1=2,4N
24 PJOLOLT)=PJI(])
CALL GRAD(PJ)
$=0.0
D0 25 1=24N
25 3=S+PJ(L)*PJI(I])
IF{(S.LE.SMIN) GU T0O 30
IFLAOP.GE .3.0%A1 JANDLICNT.EQ. L AND.K.EQeLl) GU TU 9
K=K+1
AUA=ADA+0 .2*A0P/ (N—-1)
IF (KJGEJN) AT=AOA
IF (K.GE.N) GO TU 6

CALCULATE H MATRIX
DU 26 [=2:N
DX(1)i=D(I)=-DOLDLI(])

20 0601)=PUCLL)-PIOLD(I)
0U 27 1=2,N :
OR(I1)=0.0
NO 27 J=2,N

27 DRUI)I=DR{I)+H{[,I9)%05(J)
!)Ml=0.0
DM1=000
DU 28 [=2,N
DML=UML+OX{1)*DG(1)

28 DM2=DM2+DGLT)=DR(T)
D0 29 [=2,N
00 29 J=2,N

2% HOLyJd)=HUL,J)+DX(1)#DX(J)/OML-DR(TI)=DR(J)/DM2

60 To 9
30 CUNTINUE

IN=N+]

WRITE (693) T,J0,(D(I)eI=2,1IN)
32 COUNTINUE
33 CONTINUE

RETURN

END
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SUBRAUTINE POINT(JP)
VALUES OF X AT THE S41TCH TIAES AND VALUE OF JP
EXTERNAL FCT
KEAL JP
JIMENSIUN O(LOI o X(L15,11) o XI(LS),AF(L5)
CUMMON Cl4.C24U
COMMON/SL/NgDeZoViaV2,V3,DET
NN=9
DO 1L K=1yNN
X({Ky11=0.0
1 AL{K)=0.0
00 3 I[=1,N
Us{-1)ex([+1)
CALL ADAMSINN®L,0(1)y0tI+1) X1 XFyFCT)
DO 2 J=14NN
XI(J)Y=XFLJ)
S X(Jdy[+1)=XF(J)
3 CONTINUE
Vi=X{ TyN+1)
v2=X(8,N+1)
V3=X{9yN+1)
NDET=VI1®V2-V3xV3
PlLl=V1/CET
?742==-V3/0LT
P22=V2/DET
JP=PlLL+P22
RETURN
END
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SUBROUTINE GRADI(PJ)
C PARTIAL OERIVATIVES OF X WITH RESPECT T SWITCH TINMES
EXTERNAL FCTP )
DIMENSION DULJ) o X(15,LL)PILLO)XLILL5)yXF(L5)
COMMUN Cl,4C2,yU
COMMUN/ZSL/NsD X V1, V2sV30ET
NN=15 :
DI 5 J=2,N
Us(=1)%%x(J+1)
DO 1 K=1,6
1 XL(K)=X(K,yJ)
Xt{7)=—-2.%U
DO 2 K=8,15%
2 XI1{K)=0.0
[I=N-J +1
D0 4 (=1,11
CALL ADAMSINN+L,D(1+J-1)sD(1+J) X1+ XFyFCTP)
U0 3 K=1,NN
3 RE(K)I=XF(K)
us-uU
4 CONTINUE
PVYLI=X1(13)
Pv2=Xxltila)
PV3=XI(15)
PILJ)=(—PVLIALVZEV2+V35VI)=PV2E(VLI*VI1+V3EV D)
L +2.%PV3EVIX(V]I+V2))/DET*®2
5 CONT INUE
RETURN
END
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SUBRUUTINE FCT(T,X,0X)
C DIFFERENTIAL CQUATIONS FUR STATE,SENSITIVITY
C EQUATIUNS AND INFORMATION MATRIX
DIMENSION X(1i5}1,DX(15)
CCMMUN Cl,C2,4U
nx(l)--ul*x(l)-cz*4(2)+u
DX{2)=X{1)-X(2)
NX{3)==ClxXx({3)-C2%X(4)+X{1)-X(2)
DX(4)=X(3)=X(4) '
DX(5)==Cl*x{5)-C2¥X(6)+X(1)
DX(6)=X(5)~-X(6)
LX(7)=X{(S)*X{(H)
DX{8)=X{3)%xX(3)
CX(S)=X{3)%X(5)
RETURN
tND

SUBRnUTlNE FCYP(T,4X,DX)
(o GIFFERENTIAL EQUATIONS FUR. STATE,SENSITIVITY
(o EQUATIUNS, THEIR DERIVATIVES WITH RESPECT TO
o SKWITCH TIMES AMD DERIVATIVES (OF INFORMATION MATRIX
DIMENSION X(15),DX(15)
- COMMON CL,C2,U
UX(L)=—CLlAX{L)=-C2%X(2)+U
DX(2)=X(1)=-X(2)
OX(3)=—ClexX{3)- CZ*X(4)+X([)—X(2)
DALL)=X(3)=-X(4)
DX{5)==CLleX{5)=C2*X{6)+X(1)
OX{6)=X15)=X(6)
DX(7)=—CLleXx(T7)=C2%X(8)
CX{8)=X(T)1-XK(8)
DX(9)==CLEX{9)=C2%X(LOI+X (7 )1=X{8)
OX(10)=a(9)-X(10)
OX{11)==CeeX(1L)=C2=X{12)+X( 1)
GX(12)=x{11)-X(12)
DX(13)=2.%X(5)*X(11)
DX(la)=2.%X(3)=X(9) ,
DX(15)= X(3)eX(LL +X(5) ¢X(9)
RETURN
IND
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APPENDIX B

This Appendix consists of two parts, The first part is a computer
listing of the simulation algorithm developed in Chapter VIII, The
simulation consists of applying Denery's combined algorithm to repeafed
sets of simulated data and calculating the covariance of the resulting
estimates, The second part is a listing from the simulation program
for the optimal input case for a set of 20 tests, Of special note are
the last three columns which (when multiplied by R = 10-4) show values
of I;l based upon the estimated values of the parameters, These values
ranged from slightly under the true covariance (shown in the last line)
to 50% over the true covariance, and indicate the sensitivity of the
information matrix with respect to errors in the estimates of the param-

eters,
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OO0

COOCOHOOOOO

IOENTIFICATION SIMULATICN USING THE QOPTI{MUM INPUT
TO IDENTIFY M/ADOT .AND M/Jd FROM THE SHORT PERICO
DYNAMICS OF AN AIRPLANE
REAL K32yK34,KN32,KN34,K54,M1,K11,K21,KRLL,
C KR21,K14 .
DIMENSIGN ULLuu0) ,Y(1000),XI{ SO)XF( 50),
C L(1000),SW(LO)yST(6,1C0),SUM(L10)
COMMON Uy YoSWT oFLL ) F214FNL1LyFN21,GLl1yG2Lle2,
C K14 yK54,G o811 9eK34,SW NN
EXTERNAL FCTLl,FCT2

1l FURMAT(8F10.5)

2 FORMAT(313,1X,110,2FL1C.5)

3 FORMAT("1*,30Xy? IDENTIFICATION ALGORITHM?,

C ' WITH OPTIMAL INPUTS*'/® N=¢,[3,' NT=',]I3,
C " IP=1,13," [X=',110," S=',Fl0e5¢"' ACC=',F1l0,.5)

4 FORMAT(' SWITCH TIMES ARE ', 10Fl1l.5)

5 FURMATI(' K54=1,Fl0.59" Gl1=",F1l0.54* G21="*,

C F1l0e5¢" ML= 3FLOe59"'Kl1=",F10454' Kl4=*,F10.5

C /7% SIMULATED (ACTUAL) VALUES OF THE UNKNOWN °*,
C ' CONSTANTS ARE ON THE FIRST LINE'/* NOMINAL *,
L YSTARTING VALUES ARE ON THE SECOND LINEt/

C ' VALUES USING DENERY"S ALGORITHM ARE ON SuU8
CSEQUENT LINES?)

6 FORMAT{//40X,"' TEST NUMBER',I[3/
29PK22" g TX s 'PLY" 98X 'P2'98X+'PL1?',8X,*PLl2',8X,'P22")

7 FORMATI(® ',14,2(2F1l0.643F11.6))

8 FORMAT({//' K-STATISTICS CALCULATED FROM THE ABCVE !
Lel3,? TESTS'/O9X s 'FLlLl? 37X tF2L,7Xs"PK2L1YyTXy'PK22"?,
2TXs PP LY 38X, 'P21,8X,'PLl1?,8X,'PLl2%',8X,'P22*)

9 FORMAT(SX,2{2F10.6,3F11.6))

LT FORMATI(® *,14,2FL10.6933X,2F10.61}

INITIALIZATION

AM=0.0

DO 30 [=1,10
30 SuM(I)=0.0

DO 10 [=1,50
10 XI(I1)=0.0

READ IN FOLLOWING PARAMETERS

N= NUMBER OF SwiTCH TIMES +1

NT= NUMBER OF TESTS

[P= PRINT OPTION

[X= RANOCM NUMBER

S=  STANDARC DEv Uf MEASUREMENTS

ACC=REQUIRED ACCURACY OF ID ALGURITHM

T= LENGTH OF TEST i

SH= SWITCH TIMES
READ (542) NoNT,IP,[XeSsACC

ARITE(G6,3) NyNT,IPoIX9SvACC
READ(S541) (SW(Thel=14N)
WRITE(694) (SW{l) I=14N)
T=SW(N)

NN=N—1

KNJWN CUNSTANTS FOR THF C~-8 AIRPLANE
G=32.10
READ (95491) K4 ,6LlLlsMLeKL1l9KLi4G
G21=—K54%Gl11
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WRITE(6,5) K5443GL1l1,G21eM14K11,Kib
C SIMULATED VALUES FUR UNKNOWN CONSTANTS
READ (5,1) P1,P2
K32=P1l+P2
K34=P1*K54 +M]
FL1=K32+K54%
F21=K34-K54%K32
NUMINAL VALUES FOR UNKNQOWN CONSTANTS
READ (5,1) PSL4PS2
A CALL TO ADAMS WITH SUBROUTINE FCT1
GENERATES TRUE INPUT AND OQUTPUT.
CALL ADAMS(540.0,17 s ALy XFyFCTL,1IP,41)
ALGORITHM REPEATED ON NT SETS UF DATA
‘DO 21 K=1,NT
[CNT=0 .
WRITE(646) K
WRITE(6,17) ICNT,Fl11,F21l,PLl,P2
PN1=PS1
PN2=PS2
KN32=PN1+PN2
KN34=PN1%K54+M1
FN1L=KN32+K54
FN21=KN34-K54%KN32
WRITE(641T7) ICNToFNLL,FN21,PN1,PN2
C NUKMAL RANDCM NUMBER ADDED TU MEASUREMENT
00 11 1=1,401
A=0.0
DO S0 J=1,12
[Y=[X*65539
LF(IY) 55,56456
55 (Y= IY*2147483647+1
56 YFL=1Y
YFL=YFL*,4656613E-9
[X=1Y
50 A=A+YFL
V=(A-6.0)*S+AM
11 2Z{1)=Y{I)+V
C [UENTIF ICATICN ALGOR]ITHM
SAT=1.0
15 ICNT=ICNT+]
IF (ICNT.GE.1Q) GU 1O 20
C A CALL TO ADAMS wWlITH FCT2 GENERATES NOMINAL QuUTPUT,
C SENSITIVITY EQUATIONS AN) NECESSARY QUADRATURES
CALL ADAMS(1240404T 4 XI4XF4FCT2,0,1)
Wl=XF(7) -
W2=XF{(8)
V1sXF(9)
vZ=XF({10)
V3=XF(ll)
DET=V1#%V2-Vi*V3
PK1l=V1/DET
PK12==V3/CET
PKR22=V2/DEYVY
KRLLI=(V1%Wl=-V3I*W2)/DET
KRZL=(~V3%xidleV22W2)/DET
FNLL=FNLL+KR11

o o0 o
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(@]

I

T

16

20
S

21
C

22

23

FN2L1=FN21+KR21

KN32=FN11-K54

KN34=FN21+K543%KN32

PNL=(KN34-M1) /K54

PN2=KN32-PN1L
PLI=PKLLl#+2.*%PKL2/K54+PK22/K54%%2
Pl2==PK12/K34~-PK22/K54%%2
PR2=PK22/K54%%2

WRITE(6,7) ICNT,FNLL1yFN2L,PKLLyPKL2yPK22,PN1,PN2,
CPLl1,P12,P22

f CHANGES IN ESTIMATES ARE LESS THAN ACC THEN PROCEED
O STEP 2 OR IF ON STEP 2 STOP

IF (ABS(KR11).LT.ACC .AND.ABS(KR21).LT.ACC) GO TQ 16
GO 10 15 .
IF (SWT.LT.0.0) GO TU 20

ICNT=0

SHT=-1.0

GU TO 15

CUNTINUE

TORE ESTIMATES FOR LATER ANALYSIS
ST(1l,K)=FNLL

ST{2,K)=FN21

ST{3,K}=PN1

STl4,K)=PN2

SUM(1)=SUM(1)+FNIL1L

SUM(2)=SUMl2) #+FN21

SUM(6)=SUM(6) +PN1]

SUML7)=SUM(T7)+PN2

CONTINUE .
ALCULATE THE ACTUAL MEAN AND COVARIANCE
SUMEL)=SUM(L)/NT

SUMIZ)=SUM(2}/NT

SUM(6)=SUM(6) /NT

SUM(7)=SUM(T)/NT

IFINT.EQ.1l) GO TO 23

WRITE{6,8) NT

DO 22 J=1,NT

SUM(3)=SUMI3) #(SUM(L)=ST(L,J))*%2
SUMI4)=SUM(4) +(SUM(L)-ST(L,J))&={SUM(2)=-ST(2,J))
SUM(S5)=SUM(5} + (SUM(2)-ST(24J))%%2
SUM(E)=SUM(8)+(SUML6)=ST(3,J))%%x2
SUMI9)=SUM(I) + (SUM(OG)=ST{3.J))&(SUM(T)I=-ST(4,J))
SUMELUI=SUMILO)+(SUM(T)=ST(44J))%%x2
CONTINUE

SUM{3 )=SUM(3 )/{NT-1.)

SUM{4 )=SUM(4 )/ INT-1a)

SUMIS )=SUM(S5 )/ (NT=-1.,)

SUM(B 1=5UM(8 )/(NT-1,)

SUM{9 )=SUM(9 )/ (NT-1.)
SUM{L0)=SUM{1U)/(NT~1.,)

WRITE(6,3) (SUMIT),1=1,10Q)

CUNT INUE

RETURN

END
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SUBROUTINE FCTL(T,X,0X)
C GENERATES SIMULATED INPUT AND OUTPUT MEASUREMENTS
REAL K32'K340KN321KN340K54'MvilloKZloKRlloKRZ11K14
DIMENSION X( SU) DXL S0),U{1000),Y(1000),2{1G0C),SW{10)
CUMMUN UpYySWT yFLL yF2LyFNLLIFN2ZLsGLL,G2142,
C Kl4yKS4,GoKL1LyK34,SW 4NN

[=INT{l00.0L%T) +1

Ull)=0.2

N0 L0 J=L1y0NN,2

1O IF(TGE.SHW{J) e ANDaTaLTSWIlJ*1)) ULIDI=-0,2

CX(L)SFLL#X(1)+A(2)¢GL1%U(T)
DX(2)=F21%£(1) +G21%U(1)

DX(3)=X(1)
DX(4)=K11l%X(4)=-G*X(3)+K14%(KS4%X{1)+X(2)) /K34
Y(i)=Xx{1)

RETURN

END

SUBROUTINE FCT2(T4X,DX)
o GENERATES NUMINAL OUTPUT AND SENSITIVITY EQUATIGNS.
o PERFURMS GUADRATURES.
REAL K32,K34,KN32,KN34,K564,M1, K1LlsK2L,KRL1sKR21,KL4
DIMENSION X{ 5U),DXI( 50).U(1000).Y(lOOd).Z(lOOC).Sw(lO)
COMMUON Uy Y sSWT,FLL,F21,FNLLyFN21,GL14G21y2,
C Kl4sKS4yGokl1l K34, Sk NN '
[=INT{100.0L%T) +1
DX({L)=FNLI®X(L)¢X(2)+GLL*ULI)
DX{2)=FN21%X(1) +G21%ul 1)
YD=x1(1)
IF (SWT..6T.0.0) YB=2(1)
DX(3)=FNLL1*:X(3)+X(4)+YD
DX(4)=FN21%X(3)
DX(5)=FNLL#=X(5)+¢X(6)
DX(6)=FN21*A{5)+YD
DXCT)=AL3)%(2(1)=X(1))
OX(B8)=X{5)*(L{1)=X{1))
UX{9)=X(H)%X(5)
DXLLO)=X{3)%X(3)
OX{ll)= X(3)%X(5)
KETURN
END

)(J\:
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\N=

K54=

2 NT= 20 ]P=
SWITCH TIMES ARE
=-C, T3700 Gll1=

0 Ixs=

2.72000
«1,65800 6213’

IDENTIFICATION ALGORITHY WITH JPTIMAL INPJTS

8642571 S=
4,00000
-1,22195 M=

0.10000 ACC=

0.2001)

SIMJLATED (ACTUAL) VALUES OF THE UNKNIWN CONSTANTS ARE ON THE FIRST LINE
NOMINAL STARTING VALUES ARE ON THE SECOND L INE
VALUES USING DZNERY"S ALGORITHM ARE ON SURSEQUENT LINES

)
-t
m
o

NP WwN+~OO

ITER

N~ WN~=O O

L]
. -4
UN""UN"‘OO%

F11
~2.3264999
-2.13%5969
-2.575132
-2.580450
-2.530305
-2.530293
-2.584389
-2.584394

F11
-2.136999
=2.371102
-2.372629
-2.370625
-2.378772
~2.373819

Fll
-2.324999
=2.126599
-2.475343
-2.476C08
-2.478018
-2.463063
«2,468243
~2.468239

F21
-1.73235¢4
-1.736776
-1.765865
-1.758013
-1.757697
~1.757630
-1,755280
~1.755255

F21
~1.732354
'10736776
-1.826%91
-1.826750
-1.826752
-1.821386
~-1.821304

F21
-1.73235%
-1.736776
-1.687208
~1.685228
-1.685178
-1.683057
-1.683061
-1.683062

PK1l

142.308960
187.007721
127.413330
187.391678
191.162231
191.956039

PK11

129.856369
151.385330
151.346756
152.064804
153.371766

PK11

133,456299
162.816788
163,024536
167.,729202
165.730011
165.768539

TEST NUMBER 1

PK12

-2.678180
-4,6C8769
-4,718835
-4,721217
-5.020158
-5.121044

PK22

86.636978
105.542740
105.256958
105.230209
110.734)12
110.820129

TESY NUMBER 2

PK12

=1.825404
~2.002089
-1.998884
-1.928270

PC22

87.611633
102.4091 3%
102.405640
102.024313

Pl
=0, 794000
~0.600000
-0.998664
-1.014627
-1.,016318
-1,014916
-1.722283
-1.022322

Pl
-0.794000
-0, 600000
-0.712373
-0.71155)
-0, 711542
=J.T726369

~2.053610 102.014399\-0.727128

TEST NUMBER 3

PK12

~2.951298
~-5.,087181
-5.131815
-5.335139
=5.260556
-5.262742

PL22

81.954559
91.530783
91.579351
93.436859
92.623393
92.445724

Pl
-0.794200
-0.600000
-1.004649
=1.2103951
-1.011030
-1.003933
-1.204127
-1.0064122

P2
=0.754000
~0.800000
-0.339468
-0.828823
=-).323386
~0.528376
-0.325106
~-0.825071

P2
-0.794000
-0.800000
=-0.921729
=0.322079
-0.922082
-0.914802
«0.314691

P2

-0.794000
-0.390000
-0.733693
-0.73C057
-0.72%987
-0, 727110
~0.727115
-0.727117

-1,14718 Kll= =0,02000 Klé= 33.73599

P11 P12

31).073366-153.136688
393,823730-200.562637
334,001709-200.185837
373.937500-200.139832
408, 7430896-210,770248
409.878174-210.973633

P11 P12

296.,106934-163.773987
365.358398-191.256638
365.3064588-191.245850
345.130127-190. 445097
346.753033-190.600922

P11 P12

292,347612-156.886719
365.323730-175. 601898
345.552734-175.565079
354,228760-179.260696
35).173584-177.305817
350.2645326=-1T77.337753

P22

159.502808
194,3C921%
193,783081
193.733841
203,.95864%
204.025145

P22

161.297195
188, 540100
188,533551
187.832733
187.814484

P22

150.282248
168, 696640
168.601976
172.021713
170.168030
170.166991
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ITER

WR e P WUNHOO

Fl1
=2+324999
=2.136999
-2.,284547
~2428£882
-2.,285925
-2.284099

F11
~2.324999
-2.433477
=2.4%4536
=2, 444704
-2.4464708
-2.4T1483
-2.471676
~2,471675

Fll
~2.324999
~2.1356999
=2.239425
=2.293766
=2.293321
-2.293926
=2.,297057
=2.297C5)

Fl1
~2.324999
~2.136399
~2.188787
-2.191311
-2.191385
~2.139894

F21
-1.73235¢
-1.736776
~1.857075
~1.,A57093
-1.652517
-1.852555

F21
~1.732354
-1.736776
=1.69229]
~1.637715
-1.692807
-1.,692703
=1.692704

F21
-1.73235¢%

~1.736776

~1.863508
~-1.865191
-1.865171
=1.8651567
~1.861°01
~1.8€18656

F21
-1.732354
«1.736776
~-1.905384
-1.909681
=1.900767
-1.905387

PK11

120.559219
133.709457
133.901566
139.385620
137.780502

PK11

125.637634
150.590363
151.648666
151.665543
161.7276478
166.702698
166.736938

PK11

117.775528
131.381104
131.838181
131.850693
139.816023

140.248489

PK11

116.597244
120.755470
121.011558
124.478424
124.265320

TEST NUMBER 8

PK12

-1.280013
-1.017851
-1.018634
-1.114999
-1.147380

PK22

Pl
=0.794000

- =0.50C330

86.242981
99.123133
99.266541

.99.325864
93.235359

TEST NJUMBRR ¢

PK12

-2.613599
~4.,323940
~-4.331157
-4.330857
-5,098780
-5.103216

PK22

85.299253
94.545303
95.294340
95.307724
92.325385
93.814117
93.817245

TEST NUMBER 10

PK12

-1.161313
~0.905633
-0.909387
=0.910005
-1.068251
-1l.114726

PC22

82.820740
95.321%37
96.111191

95,115394

100.5603639
100.445915

TEST NUMBER 11

PK12

-0.892555
«0.376576
~0.367716
=0.368123
-0.392182

Pg22

81.,317728
93.633502
33.73534%3
97.881545
97.296509

-0.585584
~0.586556
-0.586574
-0.590108
=0.5902205

L
=0. 794000
-0.500000
-0.956838
=0.960693
~0.76C708
=0.960710
~0.394144
~0.996%73
=0.994477

Pl
=0.794000
-0.500000
~-0.579470
-0.582528
=0.58270C9
=J.562718
~0.590282
=0.590322

Pl
=0.794200
~0.600000
=0.423011
=0.419705
=0.6419563
=0.425053
=0.425204

P2
=0, 794000
=-3.320000
=0.352062
=J.363226
~0.3532%1
=0.9570¢41
=J.357092

P2
~0. 794000
-0.800000
~0.739639
=) 746395
=0.T746998
=J.7402339
-0.742198
-0.740199

P2
«03.794000
-0.300000
-0.971955
«0.974212
=0.374208
=0.353775
~0.959727

P2
=).73464000
=-0.800000
-1.028775 .

P11 P12

232.813059-162.514221
318.961914~183,871445
319.420166-184,136566
323.722556-183.824219
321.751953-182.414642

P11 P12

2372.753418-15).569687
336.385475-179.929352
333.843750-181.318512
333.8864033~-181,3423%2
344,4647510~176.348679
353.255371~-179.634552
353.307373-179.545317

P11 P12

273.403809-1564.352658
310.213623-177.603821
311.251221-178.179184
311.274902-173.189606
327.931396-186.655176
328.200928-18£,.440079

P11 P12

267.833740-152.025513

=1.034605 293, 793701-172.526474

-1.J3%721
=1.028778
-1.028689

294.573584-173.163147
305.631685~180.704071
304.457031-179. 659637

P22

15€6.777635
182.490372
182.754440

182.311340

180.857419

P22

157.023422
174.062408
175.441788
175.46606¢6
169,977280
172.716263
172.722015

P22

152.476929
1764375015
176.9¢5282
176.954855
185.215729
184.927567

P22

150. 814438
172.015533
172. 664215
180.204590
179.12751¢8
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ITER

Newn~0O

ITER

NewWwnN =00

o
-4
m
F-

N=PpPUWN~OO

ITER

NP WN=OO

Fll
-2, 324999
~24136999
-2.325520
-2, 328340
-2.328370
-2.325012
=2.324396

Fl1
=2.3264999
-2.136999
-2.233837
=2.233345
-2.233349
-2.233424
-2.233425

F1l
=2.324999
-2.136999
-2.35521%
-2.253938
=2.353744
-2.353756
-24353107
-2.353959

Fl1
'2.324999
-2,136969
-2.213266
~2.299773
-2.209902
-2¢209897
-2.227175
~24220163

F21
-1.73235¢6
-1.726776
-1.701275
=1.702418
~1.702429
-1.700657
=] .73056563

F21
-1.73235¢4
-1,736776
-1.652736

‘-1.652827

~1.652828
-1.650047
-1.653068

F21
-1.732354
-1.73677%
~1.693687
-1.701396
-1.701526
-1.701535
~1.699333
-1.6291374

F21
-1.732356
-1.736775
-1.77327
=1.77343°7
=1.773444
=1.769747
=1.76977)

PK11l

122.9781¢5
137.696655
137.944901
140.942C01
14).321671

PK11

119.383148
125.675514
125.6309725
124.212830
124.1577¢€0

PK11

133.71899%4
152.0676537
152.064506
152. 042694
145,2976%3
145.122070

PK11l

126.440781
133.013931
132.735962
132.745590
123.594513
125.093826

TEST NUMBER &

PK12

-2,303796
-3,2933893
-3,295957
~3,451774
=-3,451281

P<22

79.657913
Re,457967
84.620316
84.2538J25
83.83958%

TEST NUMBER 5

PK12

~2.483619
~3.4£8634
«-3,485826
=3. 423622
-30468212

P<22

74.036227
73.103378
73.091873
72.817551
72.5576502

TEST NUMBER 6

PK12

-3,000283
-4,386977
~4,302353
-4.205185
-3.698842
-3.730597

P22

B5.315757
91.171509
91.532331
91.56335%
85.995880
85.739375%

TEST NJMBER 7

PK12

-2.113433
-2.122506
-2.109680
-2.110481
-1.609366
-1.710092

P22

83.306549
98.165298
88.047397
88.049583
83.485107
83.816152

Pl
-0,794300
-0, 600000
-0.836691
-0.837976
-0.837322
«0.,836996

31
~0.794300
-0.600000
-0.310863
~0.810252
-0.810254
-0.8141064
-0.814103

Pl
-0.794)00
-0. 600000
-0,876580
‘00864257
~0.864574
'00564574
-0.866913
-0.8662%08

P1
=0, 794000
-0.500000
~0.52675)
-0.622949
-0.623154
-0.623145
-0.638439
-0.538338

22
=0.794000
-0.800000
-0.751828
-).753380
=0.753394
=3.752990
-0,750998

22
=J.734000
-0.800000
-J.635968
-0.536093
-0.586094
=J3.53232)
-0.,682322

P2
=3.734300
-0, 800000
-0.741533
=J.752671
-0.752169
=J).7521802
-0.749194
~0.,763250

P2
=-0. 734000
-0.800000
-0.3%3516
-0, 369824
~0.849747
-0.3%9751
-0N.R%4735
‘3.3““765

Pll P12

275.883789-149,779922
322.125000-159,959732
302.573355-160.262161
335.450439-159.824997
304.040039~159.035553

Pll P12

252.519043-139.766159
263.730225-13%.320358
269.,664795-139.295364
257.563477-138.705643
25T7.151367-138,287842

P11 P12

298.932861~-151.143158
331.823%86-173.303558
332.365723~174.663501
332.298096-174.413986
313.,657715~153,3641278
313.041748-162.858017

P11 P12

285,547119-155.233237
301.090088-165.195426
300.561279-164.962891
300,575416-164.3767270
281.661865~155,883728
234,043945-156.629883

P22

146,654022
1585, 421104
155.,750239
155.141464
156,352575%

p22°

136.396271

134.586807
136,565628
134.060577
133.582201

P22

157.072220
167.€5108¢9
168.62585¢6
168.572495
158.322510
157. 726158

p22

152.371323
162.216513
162.100372
162.103668
153.70005¢8
156.309555
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m
»

WR = WN~O0O

ITEP

N WwN~O0O0

—
-
m
=

NP W00

Fl1
=2.3249299
~2.136999
=2.232770
~2.,238173
-2.2336437
-2.233449
=2.262530
-2.26282]

=2.262836.

F11
~2.326999
=2.1356999
-2.377703
-20381046
-2.381035
=2.367299
=2.367343

F11
=2.3246999
-2;136999
-2.267365
-2.262108
=2.262210
-2.262203
«2.277335

=2.2774630

F21
=1.732354
~1.T36776
~1.54380)
-1.54392¢
~1.543785
~-1.543781
-1.537107
=-1.5363%1
~1.536200

F21
=1.732354
-1.736776
-1.816300
~1.819830
-1.819797
-1.81R245
~1.81823°

F21
-1.T73235¢4
~1.736776
=1.690909
~1.682506
~1.6885641
~1.698542
=1.683142
~1.683072

PX11

106, 704391
111.681473
112.025391
112.042953
122.484665
126.052063
125.094652

PK11

126.670517
167.755127
148.092330

153,733932

151.192108

PK11

129.175385
139.312759
133.826080
133.834732
129.638657
131.937653

TEST NJMSER 12

PK12

~2.604049
~47435946
“4.506532
-4,507106
-5.387023
-5.795786
-5.803203

TEST NUMBER

PK12

=1.749697
=-1.961792
~14949160
=2.090427
-2.018483

PK22

656.783223
61.783355
61.754293
61.76617)
63.413864
64.261948
64.262651

13
PK22

90.536380
105.487350
105.85647%
101.999%51
100.681213

TEST NUMBRER 14

PKl2

=2.772858
-3.717070
-3.,712728
=3.712760

=-3.107097 -

=3.319160

PC22

75.33553%
77.250595
T6.951647
T76.956323
78.224899
T3.72231%

Pl
=0. 794000
-0.600000
-0.950326
-0.962841
-0.963278
=-0.963316
~0.9964%3
-0.227232
=0.997037

Pl
=0. 794000
=0.600000
-0.732801
~0.731396
-0.731389%
=0.719752
-0.719811

Pl
=0.794J00
-0.600000
~0.792679
=0, 790606
=0. 790658
-0.813110
~0.8132°9

P2
-0.734020
=-0.,800000
«De3%6343
-2.538332
-0.538139
~0.538132
~0.529077
-0.528738
-0.528796

P2

-0.73%000
- 0. 260000
~3.937971
-0.312650
~0.912645
“).713549
-0.910532

p2
=J.7340)0
=0.800000
-0.737885
=J.734501
=0.734551
=).7364553
-0.727224
=0.727130

P11 P12

235,715583-126.478882
237.4556408-119.765015
237.923523-119. 786148
237.951538-119.793106
253.851379-124.057327
293.039355-125.173325
260.152832-126.186311

P11 P12

298.101318-169.056778
3647.235889~196.869095
348.263555-197.531540
347.192383-190.622253
342.0285564-182,097687

P11 P12

275.398193-162,460602
291.521582-147.265533
290.572510~146,708893
233.530088-146.717926
232.085338~148.231628
285.,839355-149.398315

P22

122.945587
113.7¢409¢
112.674170
113.677663
116, 747940
118.309311
118,310226

P22

166.682709
104,207245
194, R8682¢
187.785858
185.358917

P22

138.698257
162.222031
141.6712920
141, 680267
146 ,015752
l164,894714
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ITER

N™WN~OO

ITER

N PWUN-OO

ITER

-]

Nt WA=~ OO

Fl1
~2.324999
'20136999
-2.253712
~2.255710
-2.255547
=2.264157
-2,264108

F11
~2¢324999
-2.136999
-2.277517
-2.282319
~2.282465
-2.282470
-2.290104
-2.290143

Fl1
=2.324993
-2.135399
-2.363742
-2.359R85
-2.371849
-2.371853

F21
-1.73235¢
-1.736776
-1,632620
~1.636217
=1.,636190
=] .,632467
-1.632505

F21
-1.732356
*1. 736776
~1,73653)
-1.738117
-1,738032
-1,73202%
-1.733313
-1.733235

' F21
-1.7323%54
=1.736776
~1.845277
=1.867555
-1.,867540
‘108‘4112
-1.864132

PK11l

119.216415
126.782898
126.974228
127.295258
128.550812

PK11

114.632480
125.216295
125.557169
125.5778 35
124,228256
135.359055

PK1l

127.526077
148.427856
148.562005
152, 600555
152.845306

TEST NJMBER 15

PK12

=2.736012
-4,037299
«4.015491
«3,896711
-4, 041291

PK22

75.96656¢4
T4 .574583
T4.215283
T2.668381
72.853553

TEST NUMBER 16

PK12

=1.711743
-2.136583
-2.161252
~2.162268
-2.530125
«2.655038

PK22

76.626B46
81.602%89)9
81.593909
31.5694000
864.82%9J6¢4
84.863532

TEST NUMBER 17

PK12

'1057529“
-1.563622
-1.553377
-1.661098
-1.715062

PK22

91.239503
107.552512
107.752838
104,524%35
104.345520

Pl
=0 794000
-0.600000
-0.858)28
-00855155
-0.355128
=0.868717
-0.868537

P
=0, 794000
=0.500200
-0.736882
-0.743520
=0.7463751
-0.743770
-0. 757805
=0. 757949

Pl
=0. 794000
-0.600000
-0.584323
=Ce 682504
-0.5€2210
-0.589187

p2

-0.794000
-0.800000
=0.558674
~0,663554
=).553519

~0.658440
=J.5586518

P2
=-0.794000
=0.320000
=-0.833735
-3.301819
=3.321703
-0.801699
-0.795299
-0.795194

P2
~0.73%000
-0. 800000
-J.24%47218
-0.950309
~0.950288
~0.945666

P11 P12

266.499268-143,570572
275.218506-142.957657
275.793457-143,371033

271.655518-139,073196
273.655518-139.621353

P11 P12

253.151123-163.396240
231, 243779~-153.133835
281.8344673-153,.334869
231.847900-153.336411
297.255502-159.605515
498-802002-159-840485

P11 P12

299.408936-169.745499
350.532%420-22J.131088
351.156250-200.485809
343.725807-194,372437
3649. 604492-194,4321°0

P22

139.85821%
137.679645
137.922607

133,785950
134.137924

P22

161.07355%09
150.2348018
150.402374
150.402542
156.17251¢6
156.237991

P22

167. 608063
198.0C9491
198.,378113
192.618576
192.105372
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—
-
m
-]

WN~ePrPwN~OQO

ITER

N WN~>O0 O

1TER

NeWN=~O0O

Fl1
~24324999
~2.136999
=2.497520
-2.491613

=2.4581192.

-2464651232
-2.513418
-2.514222
~2.514250

Fll

=2. 324999

~2.136999
-2.189367

'~2.188383

~2.18R4006
=2.194294
~-2.196297

Fl11
=24324999
-2.136999
-2.238272
~2.28326438
-2.299249
-2.286997
-2.287026

F1l1
-2.331799

F21
=1.73235¢6
=1.736776
~1.738799
-1.752057
-1.75115¢
-1.751187
-1.74R343
=1. 7485004

~1.748567.

F21
=1.732354
-1.736776
-1.731376
-1.731304
-1.73131)
=1.7269562
=1.726341

© F21
-1.732354
-1.736776
-1.794726
-1.795503
-1.795507
-1.792812
-1.792807

F2l
-1.745412

PK11

147.810928
183.652557
193.248947
183.1901 25
172.6492477
176.852295
177.022797

PK11l

119.651111
123.314423
123.239334
119,254791

120.036102

PK11

120.25e759
132.762085
132.850113
1364957413
136.503967

K21
0.011646

TEST NUMBER 18

PK12

-3.268583
=5.129959
-4,952271
~4.959242
~44156542
-4,448544
-4.453040

PL22

95,51052)
111, 462921
112.031207
112.00145)
102.414337
103.388301
103.983963

TEST NUMBRER 19

PK12

-1.966081
-2.166901
=2.166092
-1, 982204
=2.,073486

P22

T6.685562
78.146072
T3.133595
77.58398%
77.538803

TEST NUMBER 20

PK12

=1.592830
~1.671544
=1.669686
-1.811252
-1.830860

PK12
-0.000109

P22

B83.357243
92.322305
92.40512

91.735353
91.312088

K=STATISTICS CALCULATED FROM THE ABOVE 20 TESTS

PK22
0.008150

Pl
=0.794J20
=0.500020
=0.957776
~0.933887
-0.934539
=0, 936585
~0.960725
-0.961229
=0.961253

Pl
~0.724000
~0. 600000
~0.659595
-0.658808
-0.558922
-0.57051¢
=0.570643

21
=0.794300
=-0.6C0000
“0.672646
-0.472546
=0.672560
=0.5733%¢6
=0.674002

Pl
=0.783282

P2
«J3.736000
«0.800000
=3.332764
-0.820732

=0.819507

-0.313552
-0. 815692

=J.315993

-0.81599%

22
<) 734000
-0.800000
=0.732671
=-0.792580
=0.732582

“0e78L679°

=0.786654

22
«J.7940030
=-0. 800000
~0.87E626
-0.379682
-0.879689
=).376232
=0.876024

22
-0.811721

Pll P12

332.520264-180.274582
402.782227-212.169144%
403.034668-213.066365
402.947330-212.928955
372.321777-194,183484
332.188721-197.300430
38).565387-197.,481552

P11l P12

265.968018-143.849457
273.0565186-145.810806
272.915527~146,742005
267.469482-145,525360
258.415527-145.565025

Pll P12

273.064209-155.644302
307.253799-172.238907
307.503174~-172.387741
317.873291-171.458328
309.582275-170.594101

P12

P11 .
-0.%15152

0.025346

P22

175.839500
205.208587
20¢&. 346848
206,20C012
188,569583
191. 264420
191.439438

P22

141.181778
143,.,870651
163.2025535
142.825815
142.752625

P22

153.483078
169.9702371
170.12223¢
169, 000732
166.10990¢%

P22
0.015005
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