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ABSTRACT

This thesis is concerned with determining optimal inputs to identify

parameters of linear dynamic systems. Identification criteria are

presented for linear dynamic systems with and without process noise.

With process noise, the state equations are replaced by the Kalman filter

equations. If the identification performance index is expanded in a

Taylor's series with respect to the parameters to be identified, then

maximizing the weighting factor of the quadratic term with respect to

the inputs will insure that an identification algorithm will converge

more rapidly and to a more accurate result than with non-optimal inputs.

The expectation of this weighting factor is known as the Fisher informa-

tion matrix, and its inverse is a lower bound for the covariance of the

parameters. Direct and indirect methods of calculating the information

matrix are presented for systems with and without process noise. The

input design criterion used is the trace of the inverse of the informa-

tion matrix. Minimizing this criterion appears to have some advantages

over maximizing the trace of the information matrix;

With amplitude constraints on the input, the optimal input is full

on in one direction or full on in the other direction (bang-bang). A

gradient method is then used to minimize with respect to the switch

times. The method is then applied to some simple illustrative examples.

For sufficiently long tests, the optimal switch times are equally spaced

and may be computed using the first few terms of the Fourier series for

a square wave, minimizing with respect to the fundamental frequency.

For reasonable amounts of deterministic input, the overall effect of

process noise is to decrease the identification accuracy.

The method is then applied to finding the optimal elevator deflec-

tion to identify two damping derivatives of the short period longitudinal

Preceding page blank 
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equations of motion of an airplane. A simulation verifies the improve-

ments of the optimal input over non-optimal inputs. Preliminary results

are also obtained using the method to find the optimal aileron and

rudder inputs to identify four damping derivatives of the lateral equa-

tions of motion of an airplane.
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Chapter I

INTRODUCTION

A. BACKGROUND

This thesis is concerned with determining inputs to identify param-

eters of a system with the greatest possible accuracy. The theory devel-

oped is applied to determining the optimal inputs (elevator, rudder,

and aileron deflections vs. time) for an aircraft flight test performed

to identify the dynamic stability derivatives of that aircraft. When we

consider that flight tests for a large commercial jet aircraft run as

high as $50,000 per hour [KR-1], then we can appreciate the importance

of designing meaningful flight tests.

There are many approaches to the problem of identifying system

parameters from input-output measurements.* Here, we consider systems

that can be adequately described by a set of linear differential equa-

tions with constant coefficients of the form

x = Fx + Gu + w
(1.1)

z = Hx + v

where x is an n-dimensional state vector, u is a p-dimensional input

vector, z is an m-dimensional output vector, w is an n-dimensional

white gaussian process with zero mean and intensity matrix Q, and v is

an m-dimensional white gaussian measurement process with zero mean and

See, for example, the recent survey paper by Astrom & Eykhoff [AS-1].



intensity matrix R.

In Chapter II we present a brief review of the major results of

optimal control and estimation theory which is used in developing the

results of this thesis. Estimating parameters in the F, G, H, Q, and

R matrices is known as identification and may be viewed as a problem in

nonlinear estimation, and the optimal input for identification may be

viewed as a stochastic control problem.

The process of describing a system by a set of equations of the

form (1.1) is called mathematical modelling. We divide the process into

three tasks:

Task 1: Structure Determination. Determine the order n and the

structure of the system. A brief introduction to this

problem is presented in Chapter III.

Task 2: Identification. Identify the unknown parameters in the

model assumed above, according to an identification cri-

terion. Measurements of the inputs and outputs from a

previously run test are used in an identification algor-

ithm. A history of identification techniques as applied

to the problems of aircraft may be found in Denery [DE-2].

Identification criteria and algorithms are presented in

Chapters IV and V respectively.

Task 3: Testing. Design and generate inputs to the system and measure

corresponding outputs. Choosing optimal inputs is the sub-

ject of Chapter VI through Chapter IX.

B. INPUT DESIGN

In estimating the state of a linear system, the accuracy is independ-

ent of the control input, u. However, in estimating parameters of a

linear system (a nonlinear estimation problem), the accuracy is dependent

on the control input.

-2-



If we attempt to choose an optimal input prior to running any tests,

a prior estimate of the unknown parameters is required. If these estimates

are poor, another test may be required using a revised optimal input. This

is the approach used in this thesis as opposed to the more difficult feed-

back control approach.

The problem of designing optimal inputs for system identification

has received recent treatment by Nahi and Wallis [NA-1], Aoki and Staley

[AO-1], and Mehra [ME-3]. They also take the approach of designing an

input before the test is run, based upon estimates of the parameters to

be identified. All of them suggest maximizing the trace of the informa-

tion matrix which can be a poor criterion. As a better criterion, I

suggest minimizing the trace of the inverse of the information matrix.

Nahi and Wallace [NA-1] formulate the problem with an amplitude constraint

on the input, as done in this thesis. Aoki and Staley [AO-1] and Mehra

[ME-3] consider the case of an integral square constraint on the input.

In practice, the input design for aircraft parameter identification

is a balance between (1) a good signal which is large enough relative

to instrument noise and vehicle disturbances, and, (2) maintaining the

instrumentation and the dynamics of the aircraft within their linear

regions. If the linear approximation is not a good one for the data

obtained from a flight test, then the input is far from optimal in a

practical sense. The only constraint considered in the aircraft prob-

lem in this thesis (Chapters VIII and IX) has been a control input am-

plitude constraint. The next step in the solution would be the addi-

tion of state inequality constraints to maintain the states within

their linear regions. A simpler solution to meet the linearity require-

ment would be the use of the solution in this thesis, but with the

amplitude constraint lowered to meet the linearity requirement.

-3-



C. REVIEW BY CHAPTER

In Chapter II, a review of optimal control and estimation theory is

presented. A contribution presented in this Chapter is the section on

calculating the information matrix for a nonlinear system. The informa-

tion matrix (whose inverse is a lower bound for the covariance) may be

calculated when the covariance itself may not be determined (such as

when the initial covariance is large in relation to the nonlinearities).

In Chapter III, some considerations on constructing canonical forms

are presented. A comparison is made between Denery's [DE-2] and

Spain's [SP-1] canonical forms, with respect to the number of parameters

in each form.

In Chapter IV, the maximum a posteriori criterion is developed for

the identification problem with noisy measurements of the output. With

the addition of process noise, the state equations are replaced by the

Kalman filter equations.

In Chapter V, two promising identification algorithms are presented.

The first method is Denery's combined algorithm, and the second is a

first order gradient algorithm. Both are applied to minimizing the perform-

ance indices of Chapter V.

In Chapter VI, we form the information matrix for the unknown param-

eters to be identified. The input criterion used is the trace of the

inverse of the information matrix. A simple example illustrates the fact

that maximizing the trace of the information matrix can yield poor results.

The information matrix as an input criterion is also developed from the

two identification algorithms of the previous Chapter. An interpretation

of the sensitivity functions for parameters in F and G is derived from

the extended Kalman filter. The Chapter concludes with calculating the

information matrix for the case with process noise.

-4-



In Chapter VII, we look at optimizing the input criterion developed

in Chapter VI. To minimize the trace of the inverse of the information

matrix with inequality constraints on the input yields "bang-bang" inputs

as optimal. The conjugate gradient algorithm is then used to optimize

the criterion with respect to the switch times. For long tests of stable

systems, the optimal input may be approximated as a sine wave. The last

six sections present six examples; * The first problem is to find the

optimal rocket sled acceleration to identify two parameters of an accel-

erometer. * The next problem is to find the optimal input to identify

one parameter of a first order system. e In the next two examples, the

first order system is repeated with process noise and with a state inequal-

ity constraint. * The last two problems illustrate the nature of optimal

inputs for the identification of parameters in unstable Systems.

In Chapter VIII, we find the "optimal" elevator input to identify

M. and M of the short period longitudinal dynamics of an aircraft. The
a q
switch times and the performance index are plotted as functions of the

length of the test. The two unknown parameters are identified using

Denery's algorithm from simulated data using optimal and nonoptimal inputs.

The simulation verifies the improved performance expected from the optimal

input.

In Chapter IX, we find the "optimal" aileron and rudder inputs to

identify the four dynamic stability derivatives (L, ., nr, n ) of the

lateral equations of motion of an airplane. The only constraint consid-

ered was an amplitude constraint on the input. Without the addition of

state-inequality constraints, these results must be considered preliminary

for all but the shortest of flight tests.

In Chapter X, we present conclusions and recommendations for further

research.

-5-



Chapter II

REVIEW OF OPTIMAL CONTROL THEORY

A. DETERMINISTIC CONTROL*

In deterministic optimal control theory, a performance index

tf
= *[x(tf)] + 

t0

L(x, u, t)dt

is minimized by choice of u(t) subject to the constraint

x = f(x, u, t) x(t ) = x

where x is an n-dimensional state vector, and u is a p-dimensional

control vector. The calculus-of-variations approach to finding the optimum

u(t) yields a two-point-boundary-value problem (TPBVP) specified by (2.2)

and the adjoint equation

A = [x] ·;~ (2.3)

where the Hamiltonian is defined by

~N - L(x,u,t) + ?Tf(x,u,t)

and the control u is chosen to minimize the Hamiltonian.

The first two sections are based upon Bryson & Ho [BRY-1].

-6-
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For the special case where the cost function is quadratic in the state

and control variables, and the state equations are linear in the state

and control variables, we have

xJ (tf )Sfx(tf) +

x = Fx + Gu,

0I lxTAx + 1uTBu dt
o

X(to) = xo

(2.5)

(2.6)

where A and B are

positive definite.

symmetric, A is positive semi-definite and B

The Hamiltonian becomes

= 1 xTAx + uTBu + T(Fx + Gu)
2 2

so that the optimizing control vector is

u = -B-1GTr .

The two-point-boundary-value problem becomes

x = Fx - GB1 G T?

= -Ax - FT

x(to)= x

A(tf) = Sfx(ff) 

This may be solved by the backward sweep method by letting

A = Sx

u = -B 1GTSx = -Cx.

-7-
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(2.7)

(2.8)

(2.9)

so that
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S is determined by a matrix Riccati equation

S = -SF - FTS - A + SGB GTS, S(tf) = Sf

The same result may be obtained by dynamic programming where we must

solve the Hamilton-Jacobi-Bellman partial differential equation

aJo
= Mu ,(x v u,t)

U ? X-X;

(2.13)

J[x(tf)j tf) ] = *[x(tf)]

for the optimal return function ( the performance index expressed as a

function of the state x and time t). For the linear-quadratic problem

the optimal return function is given by

J°(xt) = 2 x S(t)x . (2.14)

B. LINEAR STOCHASTIC CONTROL

For a linear system with state x that is initially N(x , Po) (i.e.,

gaussian with mean xo and covariance matrix P ), driven by white gaussian

noise w with zero mean and intensity matrix Q(t) and described by

i = Fx + Gu + w , (2.15)

with measurements z that are corrupted by white gaussian noise v with

zero mean and intensity matrix R(t) according to

z = Hx + v , (2.16)

the conditional probability distribution of the state at time t, given

-8-
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measurements Z(tf) = tz(t), to s t tf) is gaussian with mean ^(titf)

and covariance P(tltf).

For t _ tf, x(tltf) and P(tltf) are found by minimizing

t
o

(2.17)

[wTQ-lw + (z - Hx)TR-(z - Hx)] dt

subject to (2.15) above.

problem

This results in the two-point-boundary-value

(x(t /tf)\ H F

. IHTR-1H

0 R

HR - z (.8

x(toltf) = x - Po (to), A(tf) = o .

This may be solved using the sweep method by letting

x(tltf) = ^ - (t)

where the filtered

Kalman-Bucy filter

estimates ^x ^x(tlt) and P - P(tlt)

equations

are given by the

A T
x = Fx + Gu + PHTR-l(z - Hx),

P = FP + PF + Q - PH R-HP,

(t) = x

p(t ) = 

and A is given by

A -F - PHTR-1H)T + HTR l(- H), h(tf) - O .

-9-
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(2.20)

(2.21)
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x(tltf) is then given by (2.19), and P(tltf) is given by

P(tltf) = P + PAP

where A is determined by

A = -(F - PHTR-1H)TA - (F - PHTR-1H) + HTR-H, n tf) = 0 . (2.23)

For the prediction case where t > tl, x(tltl) and P(ttl1) are deter-

mined by

x(tltl) = Fx(tltl) + Gu

x(tlIt1 ) = X(ti) ;

(2.24)

P(tltl ) = FP(tltl) + P(tltl)F + Q

P(tllt
l

) = P(tl) 

If we let our

cost function

performance index be the ensemble average of a quadratic

tf

J = EC = E{~xT(tf)Sfx(tf) + I [ixTAx
+ iuTBuldt}

then the separation theorem tells us that the optimal control is the

Kalman-Bucy filter followed by the optimal deterministic feedback controller.

o
For the optimal control u to be realizable, it must be a functional

of Z(t) [the measurements up to time t, z(T), to 0 T S t], and our initial

information about the system. However, this would appear to imply that

(2.15) is no longer Markovian and Dynamic Programming techniques (as well

as calculus of variations techniques) are no longer applicable [WO-1, p. 211].

-10-
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We know that x and P are sufficient statistics for the stochastic process

(2.15) given u; let us assume for the moment that just x represents a

sufficient statistic to mechanize u*. We can then define the stochastic

optimal return function; expressed as a function of x and t, J(fit)

as the minimum of

t

J(%t,u) = E{u xT(tf)Sfx(tf) + [x"Ax + 1uTBu]dt|Z(t)} (2.26)

where E{.IZ(t)) represents the ensemble average for that subset of the

ensemble with measurements Z(t). Note that the return function (2.26) eval-

uated at t equals the performance index defined in (2.25). Since the

"innovations" V in the Kalman Filter representation

x = FR + Gu + KV (2.27)

is white with intensity R, the stochastic Hamilton-Jacobi-Bellman equation

for Jo is

u {Jt+iTr(J^)PH R HP) + lx Ax + ITrAP + u Bu + J^(Fx+Gu) = 0 (2.28)

which becomes

O o T -1 1 T,- T oTJ + ITr(J^PH R HP) + 1x Ax + ½TrAP + J^Fx-2J^GB G J^ = 0 (2.29)t 2 xx X x x

with the terminal boundary condition

J x (tf),tf] = (tf)sf(tf) + ^TrSfP(tf) . (2.30)

This has the solution

J(t)= 2x S(t)x + s(t), (2.31)

After solving the problem with this constraint, Wonham [WO-2] is able
to show that the resulting solution is the optimal solution for the
unconstrained case.

-11-



where S is determined by (2.12) and s is determined by

+ TrSPHT R- HP+ +TrAP = 0

(2.32)
s(tf) = ITrSfP(tf) 

The optimal control is then u = -B -1G TSx = -Cx as stated by the separa-

tion theorem. The average value of the cost is then

J [X(to),t ] = ixS(t o)x + jTrSfP(tf) +

(2.33)t f

+ Tr Sf SPHTR- HP + APdt.

t
o

By adding the differential i dSP/dt inside the integral and adding

A[S(to)P(to) - SfP(tf)] outside the integral, we obtain

J = ½Tr(S(to)X(to) + S(t)P(t) -

(2.34)

+ t
f

o

SPHTR- HP + AP + SP + SP dt.

Substituting into the above equation for S and P, we obtain

J = Tr(S(t )X(t) + SQ + CTBCP dt)

t
0

(2.35)

C. NONLINEAR ESTIMATION*

For a nonlinear stochastic system and measurements of the form

This section is based on Sage and Melsa [SA-1] and Jazwinski [JA-l].

-12-
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x = f(x,u,t) + G(x,u,t)w,

(2.36)
z = h(x,u,t) + v

we may define an "extended Kalman Filter" by linearizing about the current

estimate of the state:

X = f(x,u,t) + P
ahT -l 7IhTI R- [z-h(X., u, t) ], X(to) = X

p = af p+p
aT Tf +GT ,ah -1 ah

+ GQG -- R - P,a;; aa aa^

ax ax 

X=X

oh ah I=x
aax ax

Two other promising methods in nonlinear filtering are, conditional

mean estimation and maximum a posteriori (conditional mode) estimation.

C.1 Conditional Mean Estimation

The conditional probability distribution of x given 2

given by Kushner's partial differential equation

P = £(p) + (h - h)TR-l(z _ h)p

where the operator £ is defined as

.tr + 1 tr+ )f GQG

Z(t), is

(2.38)

k2 .39)

-13-
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and

(2.37)

P(t
o

) = P

x(to ) = xo



-1For R = O., this reduces to Kolmogorov's partial differential equation

which gives the predicted probability distribution in the absence of meas-

urements. Even though there is no known method for solving Kushner's

stochastic partial differential equation, it is useful in studying and

developing approximate solutions. Also, there is no known expression for

the conditional probability distribution of x(t) given later measure-

ments for the nonlinear system given by (2.36). From (2.38), we find that

the conditional expectation of a scalar function of x is given by

A/'. GQG/(O- O Oh) 1(.= f+ tr xx + (h - h) R (z - (2.40)

where the expectation operator ^ is defined by

(?a) - f(?)p[xlZ(t)]dx . (2.41)

From (2.40) we find that the conditional mean and covariance of x are

given by

x =f + (x- x)hR (z h) (2.42)

P f(x - ) + -(- )f + Q d X
- d-

(2.43)

+ (-x -h)- xh - h)R 

To evaluate (2.42) and (2.43) for the first and second moments of

p(xlZ), we would have to know all the moments. An approximate solution

for x and P may be obtained by expanding f(x,u,t), h(x,u,t), and

G(x,u,t) Q(t) GT(x,u,t) in a Taylor series. By expanding to second order

and using the fact that for nearly gaussian densities

E(XkLi7j} = PkPkij + Pik Pj + PkjPi (2.44)

we obtain the second order filter

-14-



1 2f 6h
T

R-l(z - h 2h : )x -- : P + P R- - h :
X= 2 a^2 c2 ,-2

* = f P + P 6fT p Ph
T

R- h p + GQGT +T 2GQGT
-p+P-P -- -P+Yl2 ~x x 62 

Fa 1
ki 2

N 2 T

__ _ [hik Rj = PkjPi) l hi'J = I j~~~

and the operation : is defined by

ij

= t{. -)ij]

C.2 Maximum A Posteriori Estimation

A criterion for the maximum a posteriori estimate of the trajectory

of x is obtained for the discrete case and its corresponding continuous

criterion is found by a heuristic limiting process. The equivalent dis-

crete system is specified by

x(k + 1) = I[x(k),u(k),k] + r[x(k),u(k),k]w(k)

(2.48)

z(k) = h[x(k), u(k), k] + v(k)

where w(k) and v(k) are gaussian and

Ew(k) wT(e) = Q(k) 5 k£

(2.49)

Ev(k) vT(L) = R(k) 5k 

Let X(kf) and Z(kf) denote x(ko),... x(kf) and z(kl), z(k2 ),...z(kfj

respectively. According to Bayes' rule

-15-
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a 2h : P) (2.46)

6)2
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(2.50)pIXIZ] = Pp[Z X]p[X]p[xlz] - 1ZP I

Since v(k) is gaussian

kfkl 1 expjr- (1 z(k)_h)TR-l(k)(z(k)_ h). (2.51)
k-k +1 V(2i)m JRI

0

Since w(k) is a white Gauss-Markov sequence

kf

p[X] = p[x(ko)] H_
k=k +1

o

p[x(k) Jx(k-l)]

where p[x(k)|x(k-l)] is gaussian with mean ~[x(k-l),

covariance

u(k-l), k-l] and

r[x(k - 1), u(k - 1), k-1]Q(k - 1) r[x(k - 1), u(k - 1), k - 1] .

The conditional probability distribution is then

p[X(kf) I Z(kf) ] = A exp{-IIx(to)_xoII2 1

0o

kf

- I E iz(k I
R

-hl2
ik=k +1 R-Rk)

(2.53)

+ JIx(k) - ,[x(k-1),u(k-l),k-l]lII(QrT) 

where A is independent of x. Maximizing the conditional probability

distribution is equivalent to minimizing the performance index

kf

2 211 x(k0) o-II 1 + 1 Iz(k+l) - h[x(k+l),u(k+l),k+]112 k

O k=k
o

(2.54)

+ Jlw(k) -1 (k
Q (k)

-16-
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This criterion yields the maximum a posteriori estimate for the joint

probability distribution of x(ko), x(kl),... x(kf). The value of x(k)

found by minimizing (2.54) is not necessarily the mode of the marginal

probability distribution for x(k). In principle, we could obtain the

marginal probability distribution for x(k) by integrating the joint

probability distribution with respect to x(o), x(l),... x(k-l), x(k+l),...

x(N). Passing to the limit, the maximum a posteriori criterion for the

continuous system for the trajectory X(tf) A_ x('), to _ _ tf) is

J = [x(t) - To ] P [x(to ) - x
o ]

t (2.55)

+ I. fi{ - h]TR-l[z - h] + wTQ-l1 dt 
t

o

A calculus-of-variations solution leads to the two-point-boundary-value

problem

x = f(x,u,t) - G(x,u,t)Q(t)G(x,u,t)., x(t ) = x - Po (to )

fT rTh T -ll 1(2.56)
[= - f] + [ R [z - h \(tf) = O.

An approximate solution to this two-point-boundary-value problem can be

solved by means of invariant imbedding leading to

= f(^xu, t) + P 7 R 1 [z - h(x,u,t)], (to) = x

(2.57)

p7P[ -. R- (z-h)J P + GQGT, P(to) = PO

Approximate smoothing algorithms can also be obtained in a fashion similar to

the filter algorithms. These require the results of the approximate filter

solutions.
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D. AN INFORMATION MATRIX APPROACH

The approximate filters of the previous section were derived on the

assumption that the covariance/is "small" compared to the nonlinearities

in f, G, and h. For example, in the scalar case, a "smallness" criterion

could be obtained by expanding f(x) to second order about x:

I 2
f(x) = f( ) + 2 ( ) +

x=x x=x

If the range of x-x were + 3a, then we would have to satisfy the con-

dition

4f2
2 x
x ~ - 9f

xx

for the variance of x to be "small." Similar conditions would have to

hold for higher order terms in the Taylor series.

If the initial covariance did not meet this smallness requirement,

we could still solve (2.56) by some other technique. However, we would

still not have an estimate of the covariance of the state. Such an esti-

mate may be obtained by calculating the information matrix.

The Fisher information matrix corresponding to a probability distri-

bution p(x) is defined as follows: LVA-1, Part 1]

I - -E 2np(x) (2.58)
x ax

where the expectation operator is defined as E(-) - ftf (.)p(x)dx.

If x has a gaussian distribution with mean x and covariance P,

then

P(x)=, expE-X - x) -P x x) (2.59)p(x A = (2J)nlP'

and the above definition shows us that
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I = P

A general performance index of the form

J = ,f[x(tf),tf] + %o[x(to),to] +

tf

t L(x,u, t)dt

t
o

may be written as

J = J(-) + J(+)

where J(-) and J(+ ) are defined by

= 0o[x(to),t0 ] +

= *f[x(tf),tf] +

I
tf

t

L(x,u, t)dt

(2.63)
L(x,u,t)dt.

The adjoint variables are equal to [BR-1]

XT(t) = (t) and AT(t) = - x(t) (2.641

Let us make the assumption that the conditional probability distrib-

ution of x(t) given measurements Z(tf), is given by*

p(x) = Ae -J (X) (2.65,'

where A is independent of x.

This is not strictly true
terion for the trajectory
probability distribution,

since
X(t)

x(t).

J is the maximum a posteriori cri-
and not a criterion for the marginal

-19-
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J(-)(t)
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*
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The information matrix for x(t), given measurements Z(tf), may then

be expressed as a function of the performance index (2.55) by

I (tltf) = E 

x=x

aJ

x(tf,)

(2.66)

(2.67)
aJ(-)(tf ) 
aXJ(t(t ) 
ax(tf)

we have

I (tf) s I (tftt ) = -E m .

The sensitivity matrix 3a(t)

E ax(t)wo-point-boundary-value problem

is specified by the linear matrix two-point-boundary-value problem

X = ([ ] - M)X - GQGTA,

A = (-N - v R E )X - [zfA

X(tf) = I

A(to) = -p X(to)

(2.68)

(2.69)

A 6x(t)
ax(tf)~XTt and A(t) A E F(t)

= E 7A(tt) 

T T T
the ith row of M = A (m i/x), where mi = ith row of GQG , and the

T ' ' T ~ - T
ith row of N = (n/~x), where n. = ith row of [(6f/x)] . Once

the TPBVP of (2.56) is solved, the coefficients in (2.69) may be evaluated.

D.1 Linear System

As an example, consider the linear system and measurements specified

by

-20-
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where

X(t) (2.70)



x = Fx
(2.71)

Z = Hx + v

with the performance index

J [X(to)-xo]TP-1 [x(to)-x] + I (z-Hx)TR-l(z )dt . 2.72)

0

The vector TPBVP for x and A is

= Fx \(to) -P-1 [x(t
o
) x ]

o 0 0 0

= -FTA + H R-(z-Hx), (t) = , (2.73)
f

and the matrix TPBVP is then

X = FX, X(tf) = I

(2.74)

A = -FTA - HTR -HX, A(t ) = -P X(t)

and the information matrix is

Ix(tf) = -A(tf) . (2.75)

Now let us verify that this answer agrees with what the Kalman filter

would give: Let

fxx xA

be the transition matrix for

F 0
_HTR

-

1H -FT

so that

X(t ) = oxx(toltf)X(t2f) (2.76a)
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A(tf) = 4½x(tfto ) X(t o ) + Ak(tfto) A(to ) .

Making the substitutions

= I and A(to) = -PO1X(to )

A(tf) = [*xO(tf to ) - ( tf, to)P 1] xx(to, tf)

Differentiating

= [-HTR 'H xx(tfI to)
- FT (tft ) + F o(tfo t )Po-1

+ [IA(tf,t ) - (tf, t o)Pol] xx(to, tf)(-)F

and simplifying

^ A(tf) = -HTR-1H - FT A(tf) - A(tf)F

we find that
-1I satisfies the equation for P in the

x
Kalman filter:

I = -I F - FTI
x x x

+ HTR-1 H I (t
o
) = p-1

x o o
(2.80)

For this simple example, a direct* derivation of J is easier;

readily leading to

Ix(t ) = 2 J
x~f x2 (tf)

t f

toT P- (t(t)H R0HX(t)dt
0

and only the first equation in (2.74) is needed. Differentiating, we have

By "direct" we mean that the performance index is differentiated directly
without employing the adjoint variables.
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X(tf)

we have

(2.77)

^ A(tf)

(2.7.8)

X xx(tItf)

(2.79)

(2.81)



to); I (t x) ='to)P X ( xT(t )H TR HX(tf)

f XTHTR 1HX + XTHTR HXdt. (2.82)

0

If we make the substitutions

X(t>) a (e ) ext F = -X(t)F

and (2.83)

X(tf) = I

we obtain (2.80).

E. NONLINEAR STOCHASTIC CONTROL

If we assume that R and P given by (2.37), (2.45), or (2.57) repre-

sent a set of sufficient statistics for p(x,tJZ), and z - h(x,u,t) is

approximately white with intensity R, then we can form the stochastic

Hamilton-Jacobi-Bellman equation. This makes the problem nearly impossi-

ble to solve. If we cannot make assumptions such as this there is no

known "exact" method of solving the nonlinear stochastic control problem.

The performance index for the nonlinear problem may also include

weights upon the moments of the cost as well as just the mean of the cost:

J = %lEC + a2E(C - C) + .. anE(C -_ )n + ... (2.84)

In practice, this performance index could be expanded to second order as

is done in the second-order filter.
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Chapter III

STRUCTURE DETERMINATION

A. INTRODUCTION

Recall from Chapter I that the first task of mathematical modelling

is the determination of the system structure. In many applications, the

order and structure of the differential equations may be derived from

physical principles. Such is the case in deriving the equations of motion

of an airplane.

In more complex systems such as biological or economic processes, the

underlying processes are not well known. In such cases, an approximate

model of the system may be obtained by assuming a given order or other

structural information about the system and fitting data to it.

Let us assume that the structural information about the system may

be specified by a set of model numbers. An example of a model number,

other than the order of the system n, the number of inputs p, and

the number of outputs m, would be the order r of the minimal annihi-

lation polynomial.* A possible method of determining the structure of a

system is the following:

(1) Assume a given value for the model numbers (for example,
assume a first order system).

(2) Perform the other two tasks of mathematical modelling under
this assumption, namely (a) choosing an input and measuring
the corresponding output, and (b) identifying the parameters
of the assumed structure from input-output records.

A polynomial is an annihilation polynomial if it equals O when the
F matrix is substituted for the independent variable. The Hamilton-
Cayley theorem tells us that the nth order polynomial of the character-
istic equation is an annihilation polynomial. However, there may be
other polynomials of lower order that are also annihilation polynomials.
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;3) Increase the values of the model numbers (for example, increase
the order by one) until a structure criterion is met. Two
possible structure criteria are: (a) the residuals (differ-
ence between the measured output and model output) are "close"
to being white. Such a criterion has been used by Mehra [ME-1];
(b) There is no significant reduction in the identification
criterion. A significance test for the reduction is given in
Astrom and Eykhoff [AS-1]. The latter criterion appears to
be the more decisive [SP-1] but requires an identification at
one higher value of the model numbers than the former criterion.

The next section discusses useful results from realization theory

that may be applied to constructing canonical forms. It also discusses

the construction of canonical forms with four model numbers (m, n,

p, and r) and compares the canonical forms of Denery and Spain.

B. REALIZATION THEORY*

Realization theory for deterministic systems is concerned with

specifying the internal description of a system (i.e., specifying its

differential equations) from a known external description of a system (as

expressed by its impulse response matrix or transfer function matrix). For

the deterministic system

x = Fx + Gu

(3.1)
y = Hx

with zero initial conditions, the output is given by

t

y(t) = | H*(t,¶)G u(r)d¶ (3.4)

o

or in the frequency domain, by

y(s) = H(sI - E) 1Gu(s) . (3. )

This section based on Kalman [KAIrl].
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As far as any input-output relationships are concerned (with zero

initial conditions), the descriptions in (3.4) and (3.5) are equiva-

lent to the description in (3.3). However, the specification of

'(F, G, H) from either (3.4) or (3.5) is not unique. Before proceeding

with the main results of realization theory for linear time invariant

systems, two definitions and one theorem are in order.

1. Definition 1:

(F, G, H) is strictly algebraically equivalent to (F, G, H) if

and only if there exists a non-singular constant matrix T, such that

_- -1
F = TFT

G = TG (3.6)

H = HT

2. Definition 2:

(F, G, H) is a minimal realization if there is no other realization

(F, G, H) with an F of order smaller than the order of F.

3. Canonical Structure Theorem

The state vector may be transformed into four mutually exclusive

parts (see Fig. 3.1):

Part A: controllable but unobservable;

Part B: controllable and observable;

Part C: uncontrollable and unobservable;

Part D: uncontrollable and observable;

so that F, G, and H take the canonical forms
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FIG. 3.1. DIAGRAM OF CANONICAL STRUCTURE THEOREM
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0 0 FDD

O HD

From the above theorem it

a general system is given

Result 1:

Result 2:

Result 3:

is easy to see that the transfer function for

by H (sI - F ) G so that we have:

Only the controllable and observable portion of a
system can be identified. We must not be too con-
fident that we "know" a system from a description of its
input and output. There may be other important parts
of the system that we know nothing about.

Conversely, we have,

A realization is minimal if and only if it is controll-
able and observable. We may generate a realization that
contains parts A, B, C, and D. However, a minimal reali-
zation consists of only part B of the above nonminimal
realization.

Finally, we have,
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LO

G =

GA

GB

0

0
o

Lo

(3.7)

H = [O HB

Any two minimal realizations (of a time invariant system)
are strictly algebraically equivalent. Algorithms for
finding a minimal realization are given by Gilbert [GI-1],
Kalman [KAL-1], Ho and Kalman [HO-1], and Silverman
[sI-1].
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There are at least three main criticisms of the realization theory

approach to mathematical modelling: (1) The transfer function (or impulse

response) matrix has to be determined before it can be applied. Why

not identify F, G, and H directly from measurements of the inputs and

outputs without first calculating the transfer function matrix? (2) It

is assumed that the transfer function (or impulse response) matrix is given

exactly; whereas with these external descriptions, the parameters in F,

G, and H may be very sensitive to small errors in the transfer function (or

impulse response) matrix. (3) One may be led to believe that an impulse

or sine input is the "proper" input to use.

C. MINIMAL PARAMETER SET

In parameter identification the number of independent parameters q,

needed to describe a system, is of great interest. If a realization is

of minimal order, any desired canonical form can be used to enumerate

the number of independent parameters. The information matrix provides a

means of verifying the identifiability of a set of parameters. The

independence of a set of parameters in the information matrix is equivalent

to the identifiability of the parameters. If the information matrix for

a set of parameters is singular for any input, then we do not have a

canonical form.

By knowing the order n, number of inputs p, number of outputs

m, and part of the structure of a system, Denery [DE-2] constructs a

canonical form involving n(m + p) parameters. The structural information

needed consists of the first n linearly independent rows of the observa-

bility matrix. If we do not know the first n linearly independent rows,

then we must examine each possibility for a given value of n.

For systems with an annihilation polynomial of degree r (but of un-

known order n ) r), Spain [SP-1] constructs a canonical form involving

r(mp + 1) parameters. If F has an annihilating polynomial of degree

less than n, then F is similar to a quasidiagonal matrix that has two

or more Jordan blocks with the same eigenvalue. It would then seem to be

a special case for a physical system to have r < n. Thus, Spain's number

of parameters is much larger (for multi-input multi-output systems) than

Denery's, except for special cases. However, Spain does not assume any

structural information and would not have to investigate a large number of

cases for each value of r.
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Any square matrix with multiple eigenvalues is similar to a quasi-

diagonal matrix where each diagonal matrix is a Jordan matrix. The

possibility of multiple eigenvalues suggests that this form gives us a

form with the minimum number of parameters. It is instructive to cal-

culate the number of parameters needed to describe a quasidiagonal canonical

form for the model numbers (m, n, p, r). The results are shown in

Table 3;1 for n = 1, 2, 3. For n 2 4, the number of cases increases greatly;

for example, for n = 4, there are 14 different cases and for n = 5

there are 29 different cases. For each case, the number of parameters

is less than or equal to that given by Denery or Spain. (Since each of

these cases assumes more about the system.) A method of calculating the

results shown in Table 3.1 is illustrated in the following example: Find

the number of parameters needed to describe a second order system with

two inputs and two outputs. There are three different cases:

Case 1: Distinct eigenvalues. See Fig. 3.2a, (r = 2). As far as

input-output relationships are concerned, we could make the following

replacements:

gll gll hll h 11 I

g12 - g12 h22 h2
1 /hl

-21 g21 h 1 1 h1 2 h12/h22

g22 g22 h22 2222 22 1.

For this case there are eight parameters: X1, X2, gll, g1 2' g21'

g2 2, h 12 , h2 1 . The information matrix for these eight parameters is
nonsingular.

Case 2: Jordan form. See Fig. 3.2b, (r = 2). In this case we make

the following replacements:
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Table 3.1

The minimal number of parameters, q, of
form for the model numbers (m, n, p, r).
shown for n = 1, 2, 3. For each case, q
versus m and p.

a canonical
Cases are
is shown

Order and Case F Matrix q vs. m and p
I I I I A~~~~~~~~~~

Lx]

XI1 X

0 X2

0o

1

X 

0 X

m = number of outputs
n = order of system
p = number of inputs
r = order of minmal annihi-

lation polynomial

1 2 3 4 5

\m1I 2 3 4

1 4 6 810

2 6 8 10 12

3 8 10 12 14

4 10 12 14 16

m 1 2 3 4

1 4 6 8 10

2 6 8 10 12

3 8 10 12 14

4 10 12 14 16

m 1 2 3 4

32 5 7 9

3n 79 -11J

4 9 11 13
Contd.

Not Observable

Not Controllable \\-\

-31-

pNn= 1
Case 1
r = 1

n = 2
Case 1
r = 2

n = 2
Case 2
r = 2

n = 2
Case 3
r = 1

1 2 3 4



Table 3.1 (Contd)

Order and Case F Matrix q vs. m and p

n= 3
Case 1
r = 3

n = 1, Case 1 E

In = 2, Case 1 J

n=3
Case 2
r=3

[ n = 1, Case 1

In = 2, Case 2 i

n= 3
Case 3
r = 3

n= 3
Case 4
r = 2

n = 1, Case 1 I

[n = 2, Case 3 .

O 0

X2 0

0 3

0 0

X2 1 

0 X

1 0

X 1

o X

0 0

X20

0 X2 J

2 3 4 _

1 6 9 12 15

2 9 12 15 18

3 12 15 18 21

4 15 18 21 24

1 2 3 4

1 6 9 12 15

2 9 12 15 18

3 12 15 18 21

4 15 18 21 24

m 12 3 4

1 6 9 12 15

2 9 12 15 18

3 12 15 18 21

4 15 18 21 24

m 1 234

2 9 12 15

3 12 15 18

4 151821

0

[1

0

0

X1

0O

0

X

l O

Contd.
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Table 3.1 (Contd)
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Order and Case F Matrix q vs. m and p

4 R 14 17 20

n= 3 _ 0 m1 2 3 4
Case 6 1
r=1 12 0

0 3 1013

4 13 16

O O X~~~~~~~~ 4 ' 1



Fig. 3.2a

Schematic diagrams for an example in deter-
mining the minimum number of parameters of a
canonical form. The example was a second
order system with two inputs and two outputs.
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1g1 - gll hll hll 1 , 1

g12 g12 h h21 21 h 11/h

g21 g21 h11 12 ll12/h 11

-22 g2 2 h1g h2 2 h22/h 11

In this case we cannot normalize with respect to h22 due to the extra

coupling; however, both eigenvalues are the same so that eight parameters

are still all that is necessary; namely, X, gll, g
1 2
, g2 1, h 1

2 ,

h 2
1 , h 2

2 '

Case 3: Two (1 X 1) Jordan blocks have the same eigenvalue. See

Fig. 3.2c, (r = 1). From the results of Case 1, we know that seven

parameters are sufficiently general; but perhaps they are not all iden-

tifiable. From Fig. 3.2c, we see that as far as the paths from ul to z

are concerned, we cannot tell from measurements of the input and output

whether we took path gl l - 1 or g1 2 - h
1 2. We may eliminate one

path by setting hl2 = 0 (if it is not needed by some other connection).

In going from u
2

to z
2
' we reach a similar conclusion about h

2 1. In

going from u1 to z2, we have to keep either g
1
2 f 0 or h21 f 0; let

us choose g
1
2 A 0 and h2 1 = O. From u2 to Zl we reach a similar con-

clusion about setting h1 2 = O. We thus have the possible form shown in

Fig. 3.2d, with five parameters: X, gll1 g
1 2
, g2 1, g

2 2
. The informa-

tion matrix for seven parameters can be shown to be singular for any

input. This is a consequence of the linear dependence of the sensitivity

equations when X1 = X
2
. For the set of five parameters, the information

matrix is nonsingular.

Although the results in this example were derived assuming that the

eigenvalues were real, we would get the same number of parameters since

for each complex eigenvalue, its conjugate is also an eigenvalue. Note
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Up s -x 1 1

s -X

Fig. 3.2c

z
s - X

Figs.- X 1~--- z 2

Fig. 3.2d

Schematic diagrams for an example in deter-
mining the minimum number of parameters of a
canonical form. The example was a second
order system with two inputs and two outputs.
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that for all cases for which no Jordan blocks have the same eigenvalue

(i.e., for which r = n), the number of parameters is the same as that

given by Denery's canonical form, q = n(m + p).

Future research would be useful in determining the best model numbers

for multi-input multi-output systems. Considerations should answer the

following two questions: (1) What is the minimal number of parameters,

q, needed to designate an arbitrary member of the class defined by the

model numbers? (2) As the order of the system increases, how many differ-

ent cases, c, must be examined? In general, the more model numbers we

have, the smaller q is but the larger c is. Some optimum trade-off

should be possible.
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Chapter IV

IDENTIFICATION CRITERIA

A. INTRODUCTION

Let the vector, a, represent the unknown parameters in F, G, H,

Q, and R (and the initial conditions) , and Z(t) the set of measure-

ments up to time t. The identification criteria developed in this

Chapter are based on finding the value of a at the maximum of the

a posteriori probability distribution Plz :

a = arg max P aZ .

This is a mathematically simpler approach than the conditional mean

approach summarized in Chapt. II.C. Since a is a vector of constant

parameters, we do not have the problem noted in Chapt. II.C that there

may be a difference between a maximum a posteriori criterion for the

joint probability distribution and the marginal probability distribution.

Since Bayes formula tells us that

PZ = Pa

·aIZ (4.1)
pz

the maximum a posteriori equation is

- nnpZ
a

np
a

+ = o . (4.2)

The classical maximum likelihood criterion is to choose that a for which

Pzla is a maximum. The maximum likelihood equation is then
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2nPZ a
= 0 (4.3)

a

which is the same as the maximum a posteriori criterion with no prior

knowledge of the parameters.

In the next two sections the maximum a posteriori criterion is

applied to our linear system with two idealized error sources: (1) white

gaussian measurement noise of the output, and (2) white gaussian process

noise.

B. CRITERION WITH MEASUREMENT NOISE

Without process noise and with perfect measurements of the input,

ui, the discrete system

Xi+ 1 = x1 + rui, x given (4'4)

with measurements

z. = Hx + v

where

T
Ev vj = R 5i . (4.5)

The probability density of each measurement given the unknown parameters

(including x
o
) and the sequence u. is gaussian:

zila 1 ex -(Z Hxi) R1 (Z Hxi)} * (4.6)

Since the sequence xi may be calculated deterministically, each meas-

urement is independent and we may write

N

il ()mR exp 1 - Hx ( - Hx~ZIa 1 p=- - zn Hxi)TR l~z.2 i (4.7)
i=l 2iRj
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or N

npZa = E n(2)m IR11 

(4.8)

1 T-l
2(Zi - Hxi) R1 (Z

i
- Hxi) .

Thus, maximizing Pzl with respect to a is equivalent to minimizing

the performance index

N

2 i1l [n R1, + (z. Hxi)T R1 (z - Hx.) (4.9)

with respect to a, subject to the constraint

xi+l = (x. + Pui . (4.10)

If none of the parameters in R
1

are known, then we can first minimize

with respect to the parameters in R
1

to obtain [SP-1, p. 23]

N

1= (N i - Hxi)(zi Hx)T (4.11)
1

so that minimizing the performance index, (4.9) is then equivalent to

minimizing

J = det (zi - Hxi)(zi - Hxi)T (4,12)

with respect to all unknown parameters except those in R1 . However,

if all the parameters in R
1

are already known, then minimizing (4.9)

is equivalent to minimizing

N

J - (z. - Hxi) R1 (z
i

Hx) . (4.13)

In the continuous system, Eq. 1.1, the assumption that the measure-

ment noise v is white (uncorrelated) is a useful approximation if the
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correlation times of the measurement noise are short with respect to the

dynamics of the system being measured. However, in trying to estimate

the intensity matrix R, the assumption about independent measurement

errors is invalid as the measurement interval tends to zero. This is

reflected in the fact that the limit of (4.9) does not exist. However,

we can estimate R by thinking of v as a correlated process with a

very short (but finite) correlation time. In this case an estimate of R

is given by

+T

R a 0 C(T) dT (4.14)
-T

where the correlation matrix C(T) is given by

T-T
1

C(T) T-iT v(t)vT(t + T) dt . (4.15)

The value of R is a measure of the noise characteristics of the

instrumentation, and may be obtained from measuring the instrumentation

alone, without exciting the system. For the remainder of this thesis,

R will be assumed known. With R known, we can minimize the limit of

(4.13) with R1 = R/At:

tf

J 2 (z - Hx) R ( z - Hx) dt . (4.16)

o

We are now subject to the constraint

x = Fx + Gu, x(t)= x . (4.17)

The latter performance index can also be derived by maximizing the likeli-

hood ratio [ME-2]

ZI H 1, a
L -, (4.18)

PZI H0|
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where HI represents the hypothesis that
1

z = Hx + v

and H represents the hypothesis that
0

Z = V.

The criterion developed in this section is also known as the output error

criterion [DE-2, ME-2]

C. CRITERION WITH MEASUREMENT AND PROCESS NOISE

With process noise, the discrete system (4.4) becomes

Xi+l = tXi + rUi + wi' x given . (4.19)

In calculating the correlation E(zi - zi)(z.- z.) for i . j, we

reduce the calculation to finding

,M. A - T-
. E(x. - x.)(x. - x..

i E(xi Xi)(Xi 1

Refer, for the moment, to the first equation in (4.22) where M = 0
o

since x is given. For the case without process noise Qi = 0, so

that M = 0 and the measurements are uncorrelated. However, with process
i

noise Qi f 0, so that M.i 0, and the measurements are correlated.

Since the measurements are not independent, the probability density PZl a

cannot be equated to the product of the individual probability densities.

For this reason, a Kalman filter representation is used [ME-2]. Since

it is known that the "innovations" are white and contain all the statisti-

cal information contained in the measurements [KA-1], the probability

density PZI is given by
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(4.20)I exp{- ViBi V i

X. = 0.x. + r.u
Xi+1 1 1 i

. = . + P HTR-l (z.
i 1 i i 1 1

T

Mi+l 1i i + Q i

Pi = M - MHT (H.M.HT1 i 1 1 1 1

- Hx.)
1

x given;

M = 0;

+ R.) -iH. M
1 11

(4.21)

(4.22)

and

V. = z. - Hx.

called the innovations sequence is purely random with correlation

H(x.i - x.i) + vi] [ H(x.

T

- x.) + v
J j

= (HMiH + Ri) ij.
1 13

Taking the natural logarithm of (4.19), we obtain

N

tnPZJ a = E
i=l

m ~ 1 -i) -1
2 n(2O)mIBi 2(zi -Hxi) B. (z. - Hi) .

The maximum likelihood estimate is then given by minimizing the objective

function

N

2 =nE nBi + (Z.
2=l

-Hxi) Bi (zi - Hx.)1 1~~

with respect to the vector a of unknown parameters in 4, P, H, Q1 , R1,

and x subject to the two constraint equations
o

-43-
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where

BiBij

T
= EV i Vj

(4.24)

(4.25)

(4.26)

N

= ni=l



Xi+l xi + U + [Mi - MiHT (HM HMiH+R1) i](HTR(z-H)

x = x ; (4.27)

Mi+l = L[Mi - M1HT(HM i HT
+ R 1) - HMi]J + Q M = 

If we can make the assumption'that Mi is a constant, then consider-

able simplification results. This will eliminate the second set of con-

straint equations in (4.27). This assumption will be a good one if the

test is conducted over a long time interval so that Mi is nearly con-

stant for most of the test. However, if this assumption is not valid, then

we must solve the problem as formulated above.

In the "steady state Kalman filter representation" [ME-2], we can

identify B and K instead of R
1

and Q1 where B and K are given by

B = HMH + R1, and K = MHTB and M is the solution to

M = M - MH (HMH + y i HM]h + Q1 

Note that the above equations cannot be solved uniquely for Q1. Our

problem now becomes: minimize the performance index

N

J = 2iE [lnIBI + (Z Hx)T B-l (z - Hx.) (4.28)

with respect to the parameters in 4, P, H, B, K, and xo, subject to

the constraint

xi+l= x. + Pu. + WK(z. - Hx.) . (4.29)
1 1 1 

For the continuous case we can proceed in a similar manner. If we

assume that R is known, then the identification criterion for the

steady state Kalman-Bucy filter representation is to minimize
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tf
1

J = 1 (z - Hx)TR- (z - Hx)dt
2 t

(4.30)

with respect to the unknown parameters in F, G, H, K, and x subject to

the constraint

x = Fx + Gu + K(z - Hx), x(t ) = x
0 o

As in the discrete case, if the assumptions regarding the steady state

are not valid, then we must include the covariance equation as another con-

straint.

This criterion could also be derived by employing the criterion for

the maximum likelihood estimate of a and the trajectory x(t), t o t < tf.

In this case we want to minimize

= [x(t)-xo] P [x (t ) - x ]
2 = 2 [ X0to o o

1 tf T -1
+ Lw Q w +

-to
(z - Hx)TR-1(z -

with respect to a and w(t), t ' t < tf; subject to
0 _t;sbett

x = Fx + Gu + w .

By performing the minimization first with r

Kalman-Bucy filter equations

= T -l
x = Fx + Gu + H R (z - Hx),

P = FP + PFT + Q -TR-1H HP,

espect to w(t), we obtain the

(t ) = x
o o

(4.34)

P(t ) = P
o o

and the equation for the adjoint variable
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X = (- pHTR- PH H) + HTR-(z - Hx), X(tf) 0 . (4.35)

T
If we substitute w = -QGTX and x = x - P into (4.32), and add the

differential

dt 

inside the integral and

T T
X (t ) P(t ) X(t ) - T (t ) P(t ) X(t )

outside the integral, we obtain (4.30). Our identification criterion then

is to minimize (4.30) with respect to a, subject to (4.34). The

adjoint equation (4.35) is not considered a constraint for the minimiza-

tion with respect to a since X is not in (4.30) or (4.34). Once the

maximum a posteriori estimate of a has been found, the smoothed

estimate of the trajectory using a = a is the maximum a posteriori

estimate of the trajectory.

If we assume perfect measurements of the state and derivatives of

the state are taken, then the criterion of (4.32) and (4.33) may be re-

duced to minimizing

tf

J = 1j (k - Fx - Gu)TQ- (x - Fx -Gu)dt

t

with respect to the unknowns in F and G. Since the unknown parameters

in F and G are quadratic in (4.36), estimates may be obtained in one

step. This criterion is a special case of the criterion discussed in

this section and is known as the equation-error criterion [DE-2 and ME-2].

D. CRITERION WITH PRIOR INFORMATION

To incorporate prior information, let us use the maximum a posteriori

equation and assume a prior probability distribution that is gaussian with

mean a and covariance A:
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P (2 )A1 exl{ 2(a-l) Al(a)} (4.37)
Pa2

or

nanp n - --l(a-a)TA- 1(a-a) . (4.38)
a22

The performance indices are then modified to include the additional term

1 -T -l 
(a - a) A- (a - a)

and the constraint equations remain the same.
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Chapter V

IDENTIFICATION ALGORITHMS

A. QUASILINEARIZATION*

Denery [DE-1] combines two different linearization techniques to

minimize the.output error performance index

1 tf (z - A)TR(z - ^)dt

0

(5.1)

where the system is modelled by

x = Fx + Gu, x(t ) = x
o o

(5.2)

and z is a given set of measurements. J is minimized with respect to

the unknown parameters in F. G, H, and x , subject to the constraints

in (5.2). His first linearization technique may be considered an exten-

sion of quasilinearization. Instead of modelling the system as given by

(5.2), ^z is instead modelled by

x = Fx + Gu + D(z-Hx) =. F x + Gu + Dz,
n

z = iH+L(z-Hx) = = x+Lz

(t ) = x

(5.3)

where

Denery's combined algorithm [DE-1].
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F = F - DH
N

(5.4)

HN H - LH .

This set of equations is useful only if the system (2) is in a Denery

canonical form. Now, let

G = G - GN

N (5.5)

8Xo o XNo

and define zN by

XN = FNXN + GNUl XN(to) = XNo
(5.6)

ZN = HNX N

If we guess FN, GN, HN, and XNo, the unknown parameters are now in D,

5G, L, and bx instead of F, G, H, and x . By augmenting the system
0 I

equations with the terms D(z-H^) and L(z-Hx), Denery was able to make

the unknown parameters coefficients of known functions so that we may write

z = zN + (5.7)

where a is a (q X 1) vector representing the unknown parameters in

6G, 5x , D, and L. The ith column of the matrix (6z/3a) is given by the

sensitivity equations

a X aD 6ascGu a0 t 
\(E = FN(v) + EZ+(v)u(F + , (to 

N1 ) 1 -(t) 1.

(5.8)

(v7) N(i-) + i -
bz H ~

11 1
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Notice that in this formulation, the sensitivity equations are driven by

the actual measurements z. Taking the derivative of the performance

index with respect to the unknown parameters,

t f

Z-a 
t
o

( - ) TR- (--) dt = 0

and substituting (5.7) into the result yields

Stf (z)T -l(^) It
t
o

tf

( (a] )Tl (z ZN)dt
0

so that an estimate of a is given by

A [s t ft1fdt] [s (h) r T]
a = R d )Rl d 

7a ) 7a)t a z-0

An estimate of the unknowns

ploying (5.4) and (5.5):

in F, G, H, and x 0
is then given by em-

G = GN + G

XNo 0

H = (I- H
N

F = F
N

+ DH

(5.11)

These estimates may then be used as nominal values in another iteration.

This approach was found to be convergent even for large inaccuracies

in the initial guesses of the unknown parameters. However, the estimates

given by this method are biased even if the noise is unbiased (i.e., has

zero mean value).
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After three or four iterations of using this extended quasilineariza-

tion technique, Denery suggests switching to the normal quasilineariza-

tion technique. In the method of quasilinearization, z is represented

by (5.2) but approximated by small deviations from the nominal by

= HNX
N

+ (H- HN)x + HN6x = HNxA + (H-HN)x (5.12)

where xA - xN + 8x xN is given by (5.6), and 8x is determined from
we xA = N + * N

8x = FN8x + (F-FN)x + 8Gu, 8x(t) = x
o0

so that xA is determined from

xA = FNXA + (F - FN)XN + (GN+ 8G)u, xA(to) = XNo + 6x

(5.14)

For quasilinearization, we assume that F - F
N

and H - HN are small so

that for a system in a Denery canonical form, we may write

F - F
N

= DH = D(HN + LH) - DHN

(5.15)

H - HN = LH = L(HN + LH) - LHN

where D and L are small. Now substituting these into (5.14), we have

XA = FNXA + DzN + (GN+SG)u,

= Hx A + LzN

xA(tO) = XN. + 8X

(5.16)

This equation is identical to (5.3) except that zN has replaced z. The

solution is the same as the extended method except that z
N

drives the

sensitivity equations (5.8) instead of z.

The estimates obtained using this method are unbiased but the method

often does not converge if the initial guesses of the unknown parameters

-51-

(5.13)



are far from their true values. Thus, it can be used after the first

method to obtain a combined algorithm insensitive to inaccuracies in the

initial values of the unknown parameters and yielding an unbiased estimate.

In summary, to find an estimate for F, G, H, and x with initial
o

guesses given by FN, GN, HN, and xNo:

1. Calculate a nominal trajectory

XN = FNXN + GNU' XN(to) = XNo
per
(5.6)

ZN = HNX N·

2. Calculate the sensitivity functions given by z or zN

Z(n) +(Ti)u,I (6v)(to) = 6-Ta-. )a
per
(5.8)

= HN( + ) + (n) 
i 1

3. Calculate an estimate of the unknown parameters in 5G,; Xo, D,

and L:

Aa = Ftf T= ) R- 1

o

4. Calculate estimates of

val ues in the next iteration

per
(5.10)

the parameters that can be used as nominal

G = G + N

X
0 XNo 

H = (I - L)- HN

F = F
N

+ DH
N

per
(5.11)
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The amount of computation per iteration involves n + n. q + ½q(q+l) + q

integrations over the length of the test.

Example: Identify the constant, a, in the first order system:

x = -ax + au, x(O) = 0

z = x + v

where Ev(t)v(-) = r8(t - T). Note that this example is slightly different

from our development, since the same parameter is in F and G. Augmenting

the state equation with D(z-2), we have

x = -a^ + au + D(z-x) = -(a+D)x + au + Dz

Now,
G = G- G

N
= a- a

N
= -D .

Let

6G = a so that M
= 1 and 

= 1 and - -1 .

The nominal and sensitivity equations are

XN = -aNXN + aNu,

(!~)(anx\
= -a N() + -

z

xN(o) = 0

E (o) =O .

An estimate of a is given by

a = [Stf ) d t

An updated estimate of a (which can

next iteration) is given by

Va/[ kz - xN)dt 

be used as a nominal value for the
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a = aN + .

For the second set of iterations, the only change is that xN replaces

z in the sensitivity equation.

B. PROCESS NOISE

With process noise, we can represent system Eq. (5.2) by its steady

state Kalman filter

x= Fx + Gu + K(z - Hx)

(5.17)z = H.

If we proceed as before with Denery's extension, we replace (5.17) with

x = Fx + Gu + K(z - Hx) + D(z - Ix)

(5.18)
z = H2 + L(z - Ix)

Obviously the sum K + D may be identified by Denery's extension but

K and D cannot be identified separately. However, we can identify

F, G, H, and x by the first quasilinearization technique, assuming that

K - 0 and proceed to the second technique.

Proceeding with the second quasilinearization method we approximate

z in (5.17) with

z = HNxN + (H-HN)xN + H8x = HNxA + (H-)xN (5.19)

where xA = xN + 8x, and xN and 8x' are given by

* = FNXN + GNu + KN(z-HN N)

N = HNX N

xN(to ) = XNo

(5.2,0)
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8x = FN8x + (F-FN)X + (G-GN)u + (K-KN)(z-HNxN)

(5.21)
+ KN[-(H-HN)xN - HNx], x(t

o
) = xo

so that xA is given by

XA = FNXA + 8FxN + (GN+aG)u + (IKN+K)(z-HNxN)
(5.22)

+ KN[(HN-8H)xN - HNXA], XA(to) = XNo + 8xo

For a Denery canonical form we can write

6F = F- FN = DH = D(HN+LH) DHN

(5.23)
8H = - HN = LH = L(HN+LH) LHN

Substituting and simplifying, we have

XA = (FN INHN)XA + (GN+SG)u + DzN + KNz + 5K(z-zN)

- KNLZN xA(t
o
) = XN+ x° (5.24)

Z HNXA + Lz
N

Let a represent the unknown parameters in 8G, ax o D, L, and 8K. The

sensitivity equations become

\ / ( N NH \ '/N + ZN + -u + K (z-zN) _ (5.25)

K- (Z - N)
I
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a, a5bx
A( o

(5.25)
Cont.

( - ) HN +i ZN-

Note that these sensitivity equations are driven by both z and z N. An

estimate of a is given by (5.10) where (^z/ia) is now given by (5.25)

and estimates of F, G, H, and x are given by (5.11). An estimate of

K is given by

K = K
N
+ SK . (5.26)

Example. Identify a and K for the first order system

= -ax + au + w, x(O) = 0

Z = x + v

and its steady state Kalman Filter representation

= -ax + au + K(z - x), x(0) = 0

For the first part of the algorithm, use the same algorithm as the previous

example, assuming that K = 0. For the second part, the nominal trajectory

is given by

XN = -aNN 
+

aNu + KN(Z - XN)' XN(O) = 0

where for the first iteration, KN = 0, and aN equals its identified

value from the first part of the algorithm. The approximate trajectory

is given by
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XA = -(aN + KN)xA + (aN + 8K)u + DxN + K + 5K(z - xN)

XA(O) = O

A x
A

Z wXA .

Let a= =G = -D

are

(A)

(ZE

and a2 = 8K. The sensitivity equations for I and a252 = K h estvt qaino 1 an 2

= -(a + )( )+ u-xN,

= -(+)( )+zxNA= -a +YN)(0 +z -x

axA
7-7 (o) = 0

ax
A

62 (o) = O .
2

Estimates of
a1 and a2 are given by

T

Io
( A)\dt

T

Io
T A I6xA\

0 dt
\(~CX2)

/ix~k(XA\
A A) d

o iA 2

-1

o S () (Z-XN)dt

O ( / (2 -XN)dt

IUpdated estimates for a and K are given by

a = aN+ +1

K = KN implementing this+ a2lgorithm is that the term

The only problem in implementing this algorithm is that the term

T~ (6xA),3-- d

-57-
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may be too small to allow an accurate estimate of K and the algorithm

will not converge. For xN t x, the second sensitivity equation takes

the form

x = -ax + v, x(O) = 0 ,

so that P = E(x2 ) is given by

p = -2aP + r, P(o) = O ,

or
P = 2a (1 - e2at)2a

Actually, to be consistent with our steady-state Kalman filter hypothesis

of a long test, we may set

E(x ) = --
2a

The covariance of K (assuming a is known perfectly) is given by

[ Tr 1
K 2a j

2(aN + K

T

so that no matter what the input is we must have a sufficiently long test

to estimate K.

C. GRADIENT METHODS*

Minimize the output error performance index

t

J 1 t 

f

(z - x)TR- R (z - Hx)dt
0

(5.26)

First paragraph based on Sage and Melsa [SA-2].
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subject to the constraints

x = Fx + Gu, x(t ) = x

where a' is a q' X 1 vector that denotes those unknown parameters in

F, G, and H. The lamiltonian is

= ( xT _ ) + + G) + 4 =~(z. - x) R- (z - Hx) + xT(Fx + Gu) + r · 0 ,

where

by

(5.28)

X and r are conjugate to x and a'. The adjoint equations are given

T = = (z-Hx) TR H -_ TF
= xx 

ri = =

xT(t ) 0 o

T -1 aH T/F G 
a.Ta

I I +a.-

(5.2 9)

ri(tf) = o,

i = 1, 2, ... q' .

u and z are given functions so that the Hamiltonian is not minimized with

respect to u. The gradients with respect to a' and x are given by

r(to) 
aJ

and x(O) = ax(t ) (5.30)

A steepest descent or conjugate gradient algorithm can now be implemented

as follows:

(1) Guess an initial value for a' and x ;

(2) Calculate x by integrating (per Eq. 5.27),

' = Fx + Gu, x(to) = XO

(3) Calculate the adjoint equations (per Eq. 5.29)
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= H R-(z - Hx) - F X,

T 6HT R-IzHx) T _ [ T TTG
= x -~R- (z-Hx) - Ex aFT +U GT1

i I 1]

ri(tf) =0 .

(4) Values of a' and x(O) are updated according to

new old
a, = a, - Kr(O)

(5.31)
new old KX(O)x = x --KX(O)
o o

for the steepest descent algorithm and in a conjugate direction for the

conjugate gradient algorithm. This approach .requires integrating n + n

+ q' first order differential equations over the length of the test.

Another approach is to take the derivative of J directly:

a=aold

= ) (z-Hx) R-(_) [H x + H ]dt

t-

(5.32)

(not a') represents unknowns in x as well as F, G, and H.
o

is generated by the sensitivity equation

{ax7
(Fa/

\/aX\ aF aG- F~~-j +aax+ a-

vx (to)
(5.33)6x

o0
= aa

i

i = 1, 2, ... q

-60-
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This version of

(3) and (4) are

(3'). For each

the algorithm may be implemented as above except steps

replaced by (3') and (4').

ai, calculate (Ox/~ai) and (6J/6ai) according to

= J = (Z - Hx)
T

R (- ) l[a i x + H (x- dt
1i T

0

1i)1axI/
=F /x \ aF 6G= F(a.) + x + -u,

1 1 i
vx (to )

1

ax
io
I

i = 1, 2, ... q .

(4'). Values of a are updated according to

new old K(/J )
i i 'aa.

for the steepest descent algorithm and in a conjugate

conjugate gradient algorithm. This approach requires

and will not be considered further.

With the addition of process noise, our original

valid except that (5.27) is replaced by

x = Fx + Gu + K(z - Hrx),

direction for the

more computation

algorithm remains

(t ) = x (5. 37)

and the adjoint equations, (5.29), are replaced by

X = HTR-l(z - Hx) - (F - KH)TX, X(tf) = 0

p = x vT R ((z-Hi) -

1

[AT F TTGT-Lx L + u -

ri(tf) = 0,

(5.38)

H T 6K AT aH T1+ (z-Hx) v- - x K X,

i = 1, 2, ... q' .
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Chapter VI

OPTIMAL INPUT CRITERIA

A. INTRODUCTION

If we expand one of the identification performance indices of

Chapter IV to second order in a, we have

J(a) = J(-a) + -Ja

a=a

(a-a) + (a-^a) (a-^a) + --

a=a

The minimization algorithms of Chapter V satisfy the likelihood equation

= 0 .aJ

a=-a

The matrix

a2J

a 1a
a=a

is a function of the input. If it is maximized (in some sense), then

an iterative identification algorithm will converge faster and to a more

accurate result. This is our criterion for optimizing the input.

B. THE INFORMATION MATRIX

The Fisher information matrix (Chapter II, section D) corresponding

to the probability distribution p(alZ) is defined as
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I 9 -E a
2

l 
-

2 -al = E 2 (6.3)
a ~a 2

Ea 2 Ja 2 J 

which is the expectation of the matrix above. pa denotes the prior prob-

ability distribution of a (without measurements). If the prior proba-

bility density is gaussian with covariance A, then we have

- 2aE = A1A (6.4)

The Cramer-Rao lower bound for Pa, the covariance of a, is the inverse

of the Fisher information matrix, i.e.,

var( - ai) [ '] (6.5)
ii

and

P a I - (6.6)
a a

where the equality holds if and only if [VA-1, Part I]

a - ai E Kij ) > a i = 1, 2, ... q . (6.6)

j=l J

The inverse to Fisher's information matrix represents an objective function

in u to minimize. Since it is only a lower bound to the covariance, we

should immediately ask how "good" a lower bound it is. In simulations

done by the author, it appears to be a "good" bound in that the actual

covariance is close to it. (See the simulation done in Chapt. VIII.)

There are other lower bounds that should be better: (1) the

Bhattacharyya lower bound which involves higher partial derivatives in

PaIZ' and, (2) the Barankin bound which provides the greatest lower

bound [VA-1, BH-1, BA-1]. Since these bounds involve considerably more

computation for a marginal increase in accuracy, they will not be
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considered further. Let us therefore assume that the approximation

-1

a a

is valid.

If we

respect to

given by

I..
1j

formally take the second derivative of Eq. (4.29) with

a, then the i,Jth element of the information matrix is

a2j
= E ~_ .

I j

of T

= ) H-x+ :)J R aI x+H - dt (6.9)

where

x = Fx + Gu,

3 =F \ F aG

1-a ) = + x+ 1. u,1 I I I

ax
_ (to) =a ·
1 1

The indirect method for calculating the information matrix is presented

in the next section with the criterion determined from the gradient

algorithm.

The desired accuracy in our estimate of each parameter would depend

upon the purpose of our identification. For example, if we built an

observer/controller designed according to our estimates, any deviation

from the true values would result in an increase in the performance index.

Our design may be insensitive to some of the parameters or combinations

of parameters but very sensitive to others. We may therefore weight D

appropriately in an input performance index

6 = Tr DI1
a (6.12)
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x(to)=) x (6.10)
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In general, the magnitude of D will depend upon the unknown parameters

we are trying to estimate.

-1
Instead of minimizing the trace of Ia , a number of authors

maximize the trace of I directly [AO-1, NA-1, and ME-3). This is

simpler to do since the performance index is then a quadratic function

of the sensitivity functions. The problem with maximizing the diagonal

elements of I directly is the possibility that off-diagonal elements

become large (in relation to the diagonal elements) so that the deter-
-1

minant is nearly singular. In such cases, the diagonal elements of I a

can be very large, even though the diagonal elements of I a are small.

The following simple example illustrates this danger.

Example: First order system with two unknown parameters. Find the optimal

input to identify the two parameters a and b of the first order

system

= -ax + bu, x(O) = O

z = x+ V

where

Ev(t)v(t') = r8(t - t')

and there is an amplitude constraint on the input

lul < m

The sensitivity equations are

Balt = -at- j -x 

By amplitude and time scaling, the above equations become
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= -x + = 

2 = -x2 X- x 2(O) = 0

3= -X3 + u x3 (0) = 0

where a dot now denotes differentiation with respect to T and

a ax
X1 = bm

x2 - bm \

A a /bx\

X3 m \/

T = at .

The information matrix for

o
1

I = I
r

1
r

where v1, v2, and v 3

T

b2ff

a

-4-
bm

2

a

rep:

a and b

2(a. 2dt
7a 

for a

T

so

(a)(b)dt

2 2
m 2 bm
F v 2 T- v 3a

2 2
m

- v3 -- v
a

r

a test of

T 2

o

T sec is

dt

resent the quadratures

T'
2

v1 = S x 3 dT
0

v2 =y2
0

x 2 x3 dT
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v =
3 

and T' is the length of the

covariance matrix of a and b

P = I-1

test in nondimensional times units. The

is approximated by

B -'

= r

5
a

-- m v2 2 1
bm

4
a_ v
2 3

bm

4
a

-- v

bm2 3

3
a
- v
2 2
m

2
v v - v 3

Let us choose our input criterion as the weighted trace

0 = Tr DP = Tr DP

where D and P represent the normalized weighting and covariance matrices

D = r

5
a
2 2 11
bm

4
a

bm2 12

4
a
- D2 D12
bm

3
a
2 22
m

and P =

2
VlV 2 - v3,

The optimal input is full on in one direction and then full on in the

opposite direction (bang-bang) with switch times and normalized perform-

ance index as shown in Figs. 6.1 and 6.2. The solution shown was calculated

for

D =

-67-
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Figure 6.1 shows plots of the performance index for one switch (N = 1),

through three switches ( N = 3), for tests up to 14 time constants. For

the no-switch case (N = O), the performance index Tr P asympotically

approaches eight and is not shown but is optimal for tests under 0.2

time constants. Figure 6.2 shows the switch times.

If we were to use the suggested criterion of maximizing the trace

of I, we would have

1[ (
= .1 [TS 3 2a dt

o a 
+

T 2 ) ]

0J

It is easy to see from Fig. 6.3 that the optimum input for this cri-

terion is a constant step u = + m, for any test length. Except for

very short tests, the constant input is the worst bang-bang input for

minimizing the covariance of the parameters!

(x)

s+I

BLOCK DIAGRAM OF STATE AND SENSITIVITY
FUNCTIONS.
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C. INPUT CRITERIA FROM IDENTIFICATION ALGORITHMS

Now let us look at the identification techniques of the previous

Chapter and see if they also include a clue as to an input criterion.

C-1. Quasilinearization

Refer to the summary of the quasilinearization technique in Chapter

V. During the second set of iterations, the sensitivity equations are

driven by ZN' so that the state, nominal, and sensitivity equations are

deterministic. Recall that

F = F
N
+ DH and G = GN + 8G

so that

aF 3D aH aG a8G
v = = qH + D F and vaa -

1 i 1 i i

so that when FN = F, GN = G, HN = H, and D = 0, the sensitivity

equation in the quasilinearization technique is equal to

= F(X)+ ()X +u ;i (to) =

Also, HN = (I-L)H

we have

so that (&L/&ai)H = (6H/6ai)(I-L) and when aN = a

·H ( I
1

In such a case

tf 

a = I a () R v dt

o

and its mean and covariance are given by

a= O and E T = I-

-71-
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3Si

ax

Ta-i (6.13)

(6.14)

(6.15)

(6.16)
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However, in the algorithm, we have an iterative process that is repeated

until Ca - 0. The value of aN for which this happens is the identified

value of a. The statistics of the resulting a are not easily derived.

However, we can say that the smaller I is, the closer a is to the

true value of a.

2. Gradient Algorithm

We want to shape the input u(t)

large (therefore our gradient will be

E

ax(to)

-ax

ar(to )

ax
o

so that

steeper).

ax(to)
a--

ar(t o
)

Ha

X(to) and r(t ) will be

In fact, the matrix

is the information matrix! This may be seen by referring to Chapter II.D

and letting y denotes the augmented vector

( G) and *r

its adjoint. If i.- O, then J = J (t ) so that
1 o

aJ(+)(t )
ay(t )

Therefore the information matrix of

ments up through time tf is given

I(t ltf) =

_= T(t )

the state at time t0 given measure-

by

~*( t o)

y(t) · (6.17)
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This is the information matrix

we want to identify x(to) and

we want for identification purposes since

a(to). If we let

\
r/

then we have

I(t Itf) = E
o f

x( t o)

0

ar(t
o )

0

ax(t
o)

ar( t
o
)

Pa

(6.18)

We can now illustrate how the information matrix may be calculated

using this indirect approach. The gradient method for the output error

criterion gives us the tWo-point boundary value problem

* = Fx + Gu,

= HTR-1(z - Hx) - FT ,

x(t ) = x

X(tf) = O

(6.19)
ii = xT T R- l(-Hx) - [xT + uT -j ,

ri(tf) = 0, i = 1, 2, ... q' .

The sensitivity equations for (xT XT pT)T with respect to (xT aT)T

are given by
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x- (to) = I
o

(to) = 0, i = 1,2,... q'
ax

'5'T

FT(/)= -F To - HTR-iH((x) -- (t) = ;
o

R- (z-Hx) - HTR-1

x-i (t ) = ;

= (z - Hx)TR 1

_T F /) x \

T aH
x a aH ax

_ t6 x +
~ai

G )T(1 )
'aX .

1 ) c -o

(6.21)

R-1axRMH 

ar.
2- (tf) = o ;

o

= (z - Hx) R

aF /2x \T 
-LJ ]a 3

(The trivial sensitivities

constant, and

X- a FaS`T

o

oaa
-x

o

T aHT
X a

:I

aG
x + a

i

and a
o

R-l[1 +
[aj

uT/% \
3 ,

ar.
I (t3)

imply that a(t)

- 0).
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= Fx )/(ax
x

(lJx$
r/ax ) +aF

i

and

aG
x + a. 

1

(6.20)

ax \( 0

aFT
- .

i
aiFT )

(r

aHT
+ ;i

i

=0 

equals a

(ri

X [a
I[

aH/a)x \7ia.. a- 

x +H i)]

/ari H./-x )



Taking the expectation of (6.21), we have

= - FT(/ \) - HTR-1HP ) (t ) = 0 ;o ax (;f) A0 

?T'6 \ T.-fa[H 1lax 1
= - F ) - HR x + HV j

(:-i)(tf) = 0 i:

T aH 1H/x)
- x T R- I1X a 1o

= 1, 2, ... q' ;

/aF
- 3;a,

( ·(t) = 0 i = 12 2

\i T aH x -+H ax
\ E / = - x v6 a L x + H( v )]

j ~~~i i 

r -)(tf) = o0 i, j = 1, 2, ... q' .

To find the information matrix (before the test is run), calculate x from

(6.19), the sensitivity equations from (6.20), and the mean adjoint sensi-

tivity equations from (6.22). These latter functions at t give us the
o

elements of the information matrix. This indirect method involves more

computation than the direct method illustrated in the previous section.

For the direct method, x and (0x/2ai) would have to be calculated but

then the elements of the information matrix could be calculated from quad-

ratures of the sensitivity functions. An example of the equivalence of

the direct and indirect methods of calculating the information matrix was

shown in Chapt. II.D. The example in that section may be viewed as a

parameter estimation problem for the final state x(tf).
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.3 -, 65x0 
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3. Nonlinear Filter

It might be interesting to apply one of the nonlinear filter algor-

ithms of Chapt. II.C to our problem. For this discussion, let us assume

that a represents the parameters in F and G that are known very

poorly: Paa (t ) O0; the initial state x is known quite well:
aa o 0

Pxx (t ) O; we are using a canonical form where H is known and the

intensity of the process noise Q is known. By letting (a) be the

state in the extended Kalman filter, we have

x= Fx +u + P H R z-Hx)
xx

a = P H R (z-Hx),
ax

P = FP + Fx+Gu) pT + p T +
xx xx oa xa xx

+ P ~3(Nx+8u) + Q-P HTR-1HP
xa aa xx xx

P = FP + (F+Gu P - P HTR-1H
x.a xa a aa xx xa

P = -pT HTR - 1HP 
aa xa xa

(t o ) = xo

a(t o) = a o

P (t o ) = Po (small)

Px (to) = O

Pa (t ) = A (large)

If P (to), in addition to Pxx(to): were small, then this would

yield a reasonable estimate of the state and the unknown parameters.

However, for the problem as formulated above, we cannot integrate the

covariance equations with Px (t ) 0 O and Pa (t) C , or Pl(t ) m w and

P 1 (t ) = O. (Not to mention the premise that for their derivation, the

covariances were assumed small relative to the nonlinearities.)
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Since we must have an estimate of a to design an input, we may

drop the circumflexes on F and G. Making the definitions S = P P
-i~~~~~~~ ~~xa as

and I = P the last two covariance equations become
a aa

a(F +(p+Gup -p )HTR1Ils, (t)== FS + + (P p _ p ) TR-lHS S(t ) =
xaaaxa xxxa

(6.24)

I = sTHTR-1 HS Ia(to) = A

-1 -1 T
If we assume that P 0O and note that I =P PP p >T0

xx xx xx xa aa xa
so that o < p p-1 pT < P , we may drop the last term of the first

xa aa xa xx
equation in (6.24). The ith column of S is then the sensitivity of x

with respect to ai and we have the same expression for the information

matrix as obtained by previous methods. The interesting point to note in

this approach is the interpretation of the matrix of sensitivity functions

S =P .P
xa aa

D. PROCESS NOISE

For a system with process noise, we can use the direct method of cal-

culating the information matrix since we were able to minimize (4.31) with

respect to w and obtain a Kalman filter representation of the system. For

a sufficiently long test, the identification criterion was to minimize

J 1 (z - H2)TR-l(z - HI)dt (6.25)
J ( - ~ 2

t

with respect to a, subject to the constraint

x = F^x + Gu + K(z-Hx), (t0 ) = x . (6.26)

The i jth element of the information matrix is given by
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a2jI -

ij -. -
i j

tf T

E x 
i
+ H)T R-IH + Hjx d t

o

(6.27)

where xi denotes ax/a.i and is given by
1 1

1 ^ (~~KH)5 + KK z- )X i (F ) ii)x a ( I

ax

Xi( 0 ) =- a. -

(6.28)

Since the innovation V = z - HI, is white gaussian noise with intensity

matrix R, we may rewrite the state and ith sensitivity equations as

x = Fx + Gu + KV,

= (F- KH)xi + -K u+ u v 1 i 1 ~ La, - '5 -a ) 'Fa, \Oaac a.9

7X A
The mean of the state equation x = x, and the mean

are then gven bytivity equation . = x. are then given by
1 1

Xi(t ) = x0

Xi (to) =-- .
i

of the ith sensi-

x = Fx + Gu,

ki = (F-KH)xi +
i i~~~~

The covariance matrix

p ij _ E(T

/6F _KaH aG
- K ax + a u,

1ai 

(6.30)ax
xi(to) = a °

PO = E(_-x)(x-x) pOi = E(. - x)(-x) and

are determined from

,Y
-78-
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00 00 ooT T 00P = FP +P F + KRKT P (t) = ;
0

0 Fo i oi poo/FT HT T 
+

i (FT-HTKT) +

~KT
+ T pi(t ) c=O; (6.31)

~ij ;)F )H oj ip oiFT ~H
T

= <a _ K a-)P + (F-KH)P j P K T
)

i) 

+ pij(FT-HTKT) +T v R -v P
1
i(t ) 

i 0

Performing the expectation in (6.27) we obtain

i. S t ( H T i -1/ H1J 7-aI i )
+ Tr ijHT + PjHT + Hpi HT (6.32)

aa aa
o

aH oo aHT R-1+Z-P P j dt

The positive definite covariances in the information matrix imply that

process noise may increase the accuracy of our estimate. However, we should

note that the new sensitivity equations (6.30) that act as constraint equa-

tions in our optimization, are also modified by the process noise. For a

simple example shown in the next Chapter, process noise tends to decrease

the effectiveness of the input, so that the net effect is a decrease of

estimation accuracy with process noise.
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Chapter VII

SOLUTION FOR OPTIMAL INPUTS

A. INTRODUCTION

We have seen that a reasonable criterion for judging inputs to iden-

tify q parameters in a linear system is some measure of the information

matrix of the parameters we wish to identify. To evaluate this cri-

terion, we must solve n linear system equations which drive n .q

sensitivity equations, which, in turn are used to generate 1q(q + 1)

elements of this information matrix.

Optimization of this criterion can be formulated as a calculus-of-

variations problem (Mayer formulation) to minimize E[y(tf)] = TrDI (tf)

subject to the constraints

y = f(y) + Bu, Y(to) = Yo, Jul S m (7.1)

where y represents the state, sensitivity functions, and elements of

the information matrix. The dimension of y is then (n + 1q)(q + 1).

For the general case (with process noise), the constraints in (7.1) are

given by

x = Fx + Gu, x(t o ) = x ;

ax
Xi(to ) = .,* (FKH) + F KaH )x+ aGii=(F-.KH)x. + -.- 'a

i~~~~I ( ai i)x+15a

(7.2)

i = 1,2,... q;

(7.3)

= H Hi/TR-1 (aH I(t) =A-1
i - X + Hx x , +Cij YJii = Oa i i) 'Na7 j) + C. ij 0 ) =aa aa 1J~~~~

(7.4)

i = 1 2, ... q, j = ii + 1, ... q
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where C.ij represents the second integrand in (6.32). For the case with-

out process noise, C.. and K are equal to zero.

From the linearity of u in the constraint equation (7.1),with its

absence from the performance index, and its amplitude constraint, we have,

from Pontryagin's maximum principle, that the optimal input is bang-bang

with amplitude m. All that remains is to find the switch times that

optimize the performance index.

If we let X, X. (vectors) and Xi. be adjoint variables corres-

ponding to x, xi, and Iij respectively, we can form the Hamiltonian

q

~~~~~~~~~~~q q ~~(7.5)

_jx + Hx.)R [( R x + Hx) + C ii=l j:= +c i .

The Euler-Lagrange equations for the conjugate variables are

q q q

xTF= -T - ij
*T_ _ F i-'~ai - K j=i

X x + ( H aHT (-1 aH 1
Xji x + Hx xR1 + x + Hx i = .- q

(7.6)

X(tf) = o

q
*T T , 

X.i -i F-KH) - x + Hxj

(7.7)

- xX + HxR X 0 i 1,2 qj=i R H, ki(tf) aO- i : 1f2,... q .
'5~~~~
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X..
1J

1j

= 0

= constant = i (t), =
ij f

1,2, ... q

(7.8)
j = i, i+1, ... q .

To minimize the Hamiltonian, the ith component of the input vector u

must satisfy the equation

Ui = -m sgn Si
1 1 1

where the switching functions

aH
Si .i uu.

1

Si are given by
1

q G
= XTG. + X .T 

j=l j

where G- denotes the ith column of G. In this

find an input u that satisfies (7.2) to (7.4) and

(7.10)

formulation we must

One

algorithm for this is

(1) Choose an initial switching sequence for the input;

(2) Integrate (7.2) to (7.4) forward with the given initial
conditions;

(3) Calculate the constants .ij from (7.8) and integrate
(7.6) and (7.7) backward.

(4) Calculate the switching function(s) by use of
the optimality condition, (7.9) is satisfied,
nate the algorithm, otherwise continue.

(7.10). If
then termi-

(5) Use some criterion to modify the switch sequences so that
(hopefully) the next iteration will be closer. One method
suggested by Ichikawa and Tamura [IC-l], is to locate the
minimums and maximums of the switching functions and
expand the corresponding switch intervals out from these
points. Create new switch intervals at minimums and maximums
as necessary.

(6) With the new switching sequences, go back to step (2) above.

-82-

(7.9)

(7.6) to (7.10).



An analysis of the computation required shows that we must integrate

n + q . n first order differential equations and Jq(q + 1) quadratures

forward and n + q * n equations backwards for each iteration of this

algorithm. Hence, there are (q + 1)(2n + Jq) integrations per itera-

tion. This number is independent of the number of switches.

A-1. Steady-State Sine Input

For long tests the optimal input is often a bang-bang input with

almost equal switch time intervals. In this case, a good approxima-

tion to the minimum value of the performance index and the optimum switch

times can be obtained by approximating the optimal square wave by its

first (and possibly higher order) Fourier component(s). Since we are

assuming a long test time, we may use the steady-state amplitude ratio

and phase shift calculated from the transfer function. We then have

only p angular frequencies w.i i = 1,2,... p to optimize. If two in-

put frequencies are the same, then we would also have to optimize with

respect to their phase.

B. OPTIMAL INPUT ALGORITHM

Since we know that the optimal input is bang-bang, we can optimize

with respect to the switch times, tl, t2 ... t
N

. To insure a global

minimum, the optimal value of the performance index may be plotted versus

the length of the test for N = O0 1, 2 ... . For example, see Fig. 7.5

of section 7.D where for T = 8, there is a minimum for N = O. 1, 2, 3.

The minimum for N = 2 is the global minimum. The algorithm of the

previous section could converge to any of the local minima. It could

not be used in the systematic method outlined above since it creates

and annihilates switch times as necessary.

The algorithm that seems most promising for determining the optimum

switch times is the conjugate gradient algorithm. Using this method, the

minimum of a quadratic function of N parameters is found in N itera-

tions. The first iteration involves searching in the steepest descent

direction until a minimum along that direction is found. On subsequent
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iterations, the search is made in a conjugate direction.

The implementation of this algorithm to our problem is shown in

the flow diagram of Fig. 7.1 and follows Pierre [PI-1].

The following features concerned with the one dimensional search

have been incorporated into the algorithm:

(1) If the one-dimensional search finds a minimum at a distance
greater than three times the value of the initial step size, Al
then a steepest descent search is continued;

(2) The initial Al is taken as 1/5 the initial time interval
multiplied by the number of switch times. For a set of N
iterations the same value of Al is used;

(3) For a new set of iterations, the value of Al is set equal
to 1/5 the average search distances for the previous N
iterations;

(4) A quadratic or cubic fit is used to find the minimum in the
one dimensional search.

2. One Dimensional Search

The one dimensional search algorithm is shown in Fig. 7.2. Let r

be the direction vector in the tl through t N space given by

r = Hg (7.11)

where H is a matrix given by the conjugate gradient algorithm and g

is the gradient of the performance index. A change in the kth switch

time in the -r direction is given by

rA

t = -(7.12)k R

where N

R = E Irkl
k=l

Since

rk 1

R
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READ and WRITE: ACCURACY PARAMETERS, AIRCRAFT PARAMETERS

NUMBER OF SWITCHES (N-1) AND LENGTH OF TEST
.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CALCULATE INITIAL SWITCH TIMES (D) AND INITIAL

VALUE OF ONE DIMENSIONAL SEARCH (AT).

SET ICNT = 0.
. .~~~~~~~~~~~~~~~~~~~~~~~~~~~

I CALCULATE INITIAL VALUE OF PERFORMANCE INDEX (JO)

N=1

NO

YES

CALCULATE GRADIENT OF PERFORMANCE INDEX

WITH RESPECT TO SWITCH TIMES (PJ)
.

4

CNO

YES

(Contd)

FIG. 7.1 FLOW DIAGRAM OF CONJUGATE GRADIENT
ALGORITHM
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H = I
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PERFORM ONE DIMENSIONAL SEARCH.

STORE STEP SIZE IN AOP AND

VALUE OF PERFORMANCE INDEX IN JO

K = 1

A Ttr

AOP _ AMIN ?

YES

. NO

STORE PJ IN PJOLD

CALCULATE NEW PJ

4,
I 11Pll2S SMIN ?

, NO

AOP > 3 A 1

AND ICNT = 1

AND K = 1 ?

I

WRITE JO AND

SWITCH TIMES
NO

K = K+ 1

AOA = AOA + 0.2AOP/(N-1)

AT =N YES

NO

CALCULATE NEW H MATRIX

_ l .~~~~~~~~~~~~~~~~

FIG. 7.1 (Conclusion)
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STORE D IN DOLD

CALCULATE R = - H- PJ

CALCULATE 0'(0) (PJO)
i .

'04' YES

YES

I

L



YES

I
SET A

2
= 3A

1

INCREMENT SWITCH TIMES

A 2 - A 1 IN -R DIRECTION

CALCULATE PERFORMANCE INDEX+ P

1P< JO

5
-PJO * A

NO

1
CALCULATE A

2
AND

DEC FOR QUADRATIC FIT

INCREMENT SWITCH TIMES

A
2

- A
1

IN -R DIRECTION

CALCULATE PERFORMANCE INDEX J2
.,

J2

YES

CALCULATE A3 FOR CUBIC FIT
1 3 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l

NO

YES

JO-J2-DEC

X 0 1 DE

NO
vc

NO INCREMENT SWITCH TIMES A2 - A3
j3<I3< ~IN -R DIRECTION. CALCULATE J2

YES

AOP = A3 AOP = A2

JO = J3 I JO = J2

|RETURN |E N m
FIG. 7.2 FLOW DIAGRAM OF ONE DIMENSIONAL SEARCH ALGORITHM
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INCREMENT SWITCH TIMES A3 -A 2 IN -R

DIRECTION. CALCULATE PERFORMANCE

INDEX J3



no switch time changes by more than + A,

values of the changes in switch times is

N

k=l

N

k=l,

To first-order a change in the performance

is thus

and the sum of the absolute

A
A A .
R

(7.13)

index in the -r direction

A T A5' = -(gl rl + g
2
r
2
+ g rN) = -r' g 

2r gN R . (7.14)

In the one dimensional search portion of this algorithm, we desire to

find the value of A which minimizes the performance index in the -r

direction. * may be considered a function of A with $(0) given and

T
= _ r g

R
(7.15)¢' I(0)6- 1 A)__

A=O

A step of A
1

is taken in the -r direction and the performance index

B(A1) is calculated. Since we have normalized our gradient, A1 may

be chosen as the maximum total expected change in the switch times, say,

1/5 the interval between switch times multiplied by the number of switch

times.

If we are sufficiently close to the optimum (so that a quadratic

fit is a good approximation), then o may be written in the form

2
* = a + bA + cA (7.16)

where the constants a, b, and c are given by

a = *(0)

b = ,'(0)

O(A1 ) - ,(0) - V'(O)A
1

C =
2

A1
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The minimum occurs at

-½ (O)A2

A b = 1 (7.18)2 =2c (A1) - 4(O) - '(O)A (7.18)1 1

Before using (7.18) as the next step size in the one dimensional search,

we should check to see if *(A1) is less than or only slightly greater

than (0O) + *'(O)A1 . Let us set an upper limit on A
2

of 3A
1

whenever

1 2 1
1(A1) _ *(0) + *'(O)A1 -6 '(O)A1 (7.19)

and proceed with a cubic fit. Whenever A2 is less than 3A1, the pre-

dicted decrease is

41 ['()A ]2

dec = (O) - pred 
= (A

1
) - 4(O) - '(O)A1 (7.20)

If the actual decrease O(O) - *(A2) is not close to the predicted

decrease, we should go to a cubic fit. Otherwise, the quadratic approxi-

mation is sufficient for this one dimensional search.

For a cubic fit we approximate 4 by

= a + bA + cA + dA3 (7.21)

where the constants a, b, c, and d are given by

a = ,(0)

b = ,'(0)

c = e - d- A

d = (el - e2 )/(A1 - A2) (7.22)
(7.22)
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1 1 [(A1) _ (O) - V'(O)A
1 ]

1 2 1 1

(7.22)
Cont.

2 1 [(A
2
) - (0O) - *'(O)A

2 ]

A2

The minimum occurs at

-c + c - 3bd

A3 3d (7.23)

3. Calculation of Performance Index and Gradient

To compute the performance index * for a set of switch times t

through t
N

requires integrating equations (7.2) to (7.4). The partial

derivatives of the performance index with respect to the switch times

are functions of I.ij(t
f
) and 6Iij(tf)/6tk, namely

-1 I -1
= - Tr I 't I (7.24)

k k

These are given by

ax. aI..

- n = O n = (725)
k k k

for t < t k and

t= o - = G[u(t). - u(tk)]
k t=t- t=tkI

(7.26)

t=tk t=tk
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ij
) i.j| ij | (7.26)

k Cont.

t=tk t=t+k

for t = tk. For t > tk, the partial derivatives are found by solving

(t )
k

. Fo E 

(i ) ( a a )
tk K k ) J(7.27)

Ii 6(H v x + H xi) R ( v + H )

H x + Hx jTR-f x H x j

with initial conditions at t = t k given by (7.26).

To compute the performance index involves the integration of

n + q . n first order differential equations and ½q(q + 1) quadratures.

To compute the gradient of the performance index requires integrating

( 7.27) with initial conditions given by (7.26). Since (7.27) requires

x and xi, (7.2) and (7.3) must also be integrated (unless their values

have been stored). Although this involves N (n + nq + n + nq) differ-

ential equations and Njq(q + 1) quadratures, they are not integrated

the entire length of the test. The computation involved is equivalent

to 2N(q + 1) (2n + Aq) integrations the entire length of the test.

For N > 2 this algorithm involves more computation per iteration than

the algorithm suggested in the previous section. However, it is still

used for the reason given at the beginning of this section.
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C. EXAMPLE 1: ROCKET SLED TEST*

An accelerometer is modelled by the equation

y = (1 + c)u + c2 u2 (7.28)

where y is the output of the accelerometer, and u is the accelera-

tion. In order to evaluate the constants c1 and c2, the accelerometer

is mounted on a rocket sled. The sled has a maximum acceleration

ml, and can be water-braked with a maximum deceleration m2. If we assume

that the accelerometer measurement is corrupted by white noise v, with

zero mean and spectral density r, then the measurement is given by

2
z = (1 + c1 )u + c 2u + v . (7.29)

The identification performance index becomes

T

o2

Since J is quadratic in c
1

and c2, the likelihood equation aJ/6c = 0
is linear in c1 and c2:

T

- z- (1 + Cl)U - C2 ] (-)u dt O
1c 1 2

o

T (7.31)

- z - (1 + cl)u - cu2] (-)u2 dt = 0;
2 o

or T T T

ioS u dt cl + u3 dt · c2 = (z - u)u dt, (7.32)

*
This Example suggested by Paul Kaminski [KAM-l]
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u dt 1 + udt c 2 = - u)u Cont.
I~o ' "1 T To ,o 

Estimates of cl and c 2 are given by

1 2~ 31
· = E- ' (7.33)

o2ll tS d u dt(z u)u dt

t o (7.34)

= ~x3(T) xE (T)

x (T)x (T) - x32(T)

xt) T ; u dt . (7.36)
o

be at rest at the end of the test.

The identification performance index is used to find an estimate of

the parameters, and the input performance index is a measure of the accuracy

of the identification. The measure of the covariance matrix we desire to

minimize depends upon the purpose of our identification. Since the out-

put is of the form z = (1 + ) + c2u an estimate of the acceler-

ation u is made from the following (assuming Icl << 1, and Ic2 << l/u)
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- (l+^c) + l+c1 ) + 4^c2 z ^ 2
u = Z - C - C2 Z

2c
2

(7.37)

so that u is approximated by

= u + (c -l)u +(c2 c 2 )u +vii = 1 1 2 .2
(7.38)

and the error in the corrected accelerometer output is

8U = bc
1

. u cu + + . (7.39)

If the instrument is to be used at an acceleration level, a, then we

would like to minimize the error at that acceleration so that our input

performance index is given by

[ 2 : 2
a a Ebc1

= tr

Ia3 a4 Ebe 5C
L 3 4a c1c

2
Ebc

2

= tr DP .
c (7.40)

Notice that

the unknown

for this problem, the weighting matrix D is independent of

constants. Our problem then is to minimize

a x4(T) - 2a3 x3 (T) + a x2 (T)

x2(T)x4(T ) - x2(T)x2 (T)x4 (T) - x3 (T)
(7.41)

subject to the constraints

x =u

2
X2 = u )

3
x3 = u 

4
x4 = u 

Xl ( 0) = 0 ,

x
2
(0) = 0

x
3
(0) = 0

x 4 (o) = 0O

x
l
(T) = o
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and

-m2 _ u 9 ml. (7-43)

The Hamiltonian for this problem is a quartic in u:

= Xu + 2 u2 + 3 u 3 + u 4 (7.44)

where

X =O or X. = constant, i = 1, 2, 3, 4 (7.45)

where (assuming a = 1),

X3(T) + x2(T)

2 (T)() - 2 2 = a negative number
[x2(T)x4(T ) - x3(T)]

X3 =
2x3 (T)[x2(T) + x4 (t)]

[x2 (T)x4(T) _ x3(T)] (7.46)

2 2
x2 (T) + x3(T)

4 2 2 = a negative number.
[x2 (T)x4 (T) - x

3
(T)]

If the boundary condition xl(T) = 0 is to be satisfied, then only the

four possibilities shown in Figs. 7.3a to 7.3d are possible.

The possibility of one and only one intermediate (constant) value

m is a consequence of the Hamiltonian being a quartic function of u

(and the X coefficients being constants).

The first three possibilities shown in Figs. 7.3a through 7.3c are

considered special cases of the fourth possibility. If u equals ml

for tl seconds, -m2 seconds, and mi for t seconds, then
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Fig. 7.3a: Case 1:

U

uop
t

either m
1

or -m
2

Fig. 7.3b

m
o

Case 2: u either m or mopt 0 o

u

m:
1

FIGS. 7.3a and 7.3b HAMILTO(]IAN VS CONTROL
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U

m
o

Fig.- 7.3c. Case 3: Uopt either m or -m
2opt o

x1

-m
2

mo ml

Fig. 7.3d. Case 4: uopt either ml, m or -m2

FIGS. 7.3c and 7.3d HAMILTONIAN VS CONTROL (Cont)
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The first t

T =

X 1

X =

x 2

x3 =
3

4

;wo equations in

m2
t -

1 m
I

+ m
2

m1
t = _
2 m1 + m

2

t1 + t2 + t o

mlt - m2t 2 + m t = O

2 2 2mI-t + m t + m t
mitl m22 o00

11 2 2 0 0mltl - m2t2 + mo 

m4t +m4t + m4t
1 22 00o

(7.47) imply that

m

(T - t ) -
0 ml + m 2 .

m

(T -t t+ 2 
0 m + m2 0

The above inequalities tell

The allowable region

-m
2

O

for m
0

m
o

!_ t

m2

t -s T
0 m + m

2 o

m1

t _s T .
o m

1
- m°

and t is then given by
o

S m
1

m
2

_ T for m
o m 2 t m-2 o

m
0 S t T for

m
1
m - m

1 0

0

m _ 0
o

and is shown in Fig. 7.4.

-98-

(7.47)

0

0 (7.48)

us that

(7.49)

(7.50)O 0



m1

0

m
o

m !_ m
o 1

LMAXIMUM

m
It 2 T
Io'- m2 + mn

I .t
\l ' 0

I '

t o 0m-

1 I
T

/o m
1 0

-m 2 _ _ _

/ m - m2

FG7 ALWLRG Om2 

FIG. 7.4 ALLOWABLE REGION FOR m AND t
o o
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In summary, we are required to minimize

_2(X 4 - 2 X 3 +a 4 3
T - - _2

x 2 x 4 - x 3

with respect to m
A 0m = -

m1

t
and t = o

T

where

x 2 -=tl +C
X2 t1 2 t + m2t

3 
x3 = tl-C t

3
+ mt

A 4- 4
x4 = t1 + C t2 + m t

t
- 1t =

1 T

t2- T
t = t2
2

T

(c - ct - mt)
c+lc + 1

= (1 - t + mt)
c + 1

m
A 2

C =
m1

A a
a = -

mAs a numerical example, let

As a numerical example, let

aa = -
m1

= 0.01

(i.e., the maximum acceleration from the rocket is 100 times greater

than the designed acceleration for the accelerometer). Let us look at

two particular cases:

-100-
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Case 1:
m

2
C = = 2

(i.e., the maximum braking thrust is twice the maximum rocket thrust).

Case 2:

c = 6.

For the case, c = 2, the minimum value of 0 is 0.75503 and

occurs along the three sides of the allowable region at t = 0, m = +1,

and m = -c. This means that the optimal input is u = m, for 2 T, and

u = -2m, for iT with no intermediate value of acceleration. As the

value of c is increased, a local minimum ridge forms in the region

shown in Fig. 7.4. For the case c = 6, the minimum value of 0 is

0.69127 at m = -2.7 and t = 0.2. The optimal input is then u = m1

for 0.763T, u = -6ml for 0.037T, and u = 2.7ml for 0.2T.

The foregoing Example has two interesting features: (1) the

optimal input may be designed without knowing the values of the parameters

that are to be identified, and, (2) there is the possibility of one and

only one intermediate thrust level. However, if the accelerometer is

modelled by higher order terms in (7,28), then more intermediate values

of thrust could be optimal.

D. EXAMPLE 2: A STABLE FIRST ORDER SYSTEM*

Find the optimal input to identify the parameter a in the first

order system,

= -ax + au' , x(0) = 0 . (7.53)

Z = x + v

where

Ev(t)v(t') = rS(t - t') ,

The first part of Example 2 was given in Nahi and Wallis [NA-11.
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and, the input is amplitude constrained by

lu'| _ m .

The sensitivity equation is

By amplitude and time scaling, the system,

equations become

1 = -X1 + U,

2 = -xl - x2 + u,

lul : 1

where the dot now denotes

ax (0) = 0 . (7.55)

sensitivity, and constraint

x1(0) = o

x2(0) = 0

differentiation with respect to T, and

= at

A x
x - m1 m

.a aX
x2 - m)

A usU U'
m

The information "matrix" is simply the scalar

T m )2 2

I= r a! dt=dr/ax\ 3 2r~aai 3r I x 2 dTr
a r0 0

(7.56)

(7.57)

(7.58)

and the variance is approximated by

P t I
- 1

3
a r -1

= - x (T)
m 3

(7.59)
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where
2

x3 = x2' x3(0) = 0 .

The input performance index is

= P.

The gradient of 4 with respect to the kth switch time tk, is

ar -2 x3
_ ~ = a r x

3
(T)- -(T)

k m k

ax3
(T)

k

is found by integrating (7.56) and

(a¾)\
k

(7.60)

(7.61)

(7.62)

( x\ axl

k

ax2

k

/2x2(·
ax33

k

(t k )

(t k )

= 2u(tk) ;

= 2u(tk) ; (7.63)

(t k ) = 0

from t
k

to T.

Plots of the local minimum of the performance index for N = 0 to 3

are shown in Fig. 7.5. Figure 7.6 shows a plot of the global minimum of

the performance index superimposed on a graph of the optimal switch times.

As the length of the test increases, the center switch intervals become

approximately equal.

Since the optimal input is piecewise constant (alternatively plus and

minus one), (7.56) and (7.60) can readily be integrated from tk to tk+l to
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-ak
= u - [u - xl(k)]e

= x(k)e k + [u - x (k)] Zk e
- ak

= x(k) + x 2 (k)(l - e-2(k) +
+gk +X ()ux()[ 2~(A )

22 1+ [u x(k)[-(k)][1 - e (2tk+ 1)]

+ 4 [u - xl(k)]2[1 - e k(24 + 2Ak + 1)]

- t kk42 = tk+1

An exact (square wave) analysis assuming all the intervals are equal can

be made by using (7.64); where, for steady state it can be assumed that

xl(k + 1) = -xl(k), x
2
(k + 1) = -x

2
(k) and they are negative for u = -1:

= -1 - (-1 - x )e-
10

(7.65)

x 2 0 e + (-1 - )e
-

2 ~~~10

Hence,

-A

x10 --A
I + e

x 2 0

x3(T')

2
(1 + e- )

= A x20 (1 e )+ -x 0 (-1-x1 0 )[l e 2(2A+1)]

+ 1 - (2}

-106-

give

xl(k + 1)

x2(k + 1)

x3(k + 1)

(7.64)

where

-x10

-x 2 0

(7.66)



Substituting for x 1 0
and x20 and simplifying, we have

T'
x (T') =

A(l + e )

This has a maximum of 0.213

frequency is w = 0.958.

If we had approximated

component, we would have

[1 + (1-2A)e - (+2A)e
-

2 -e 
- 3

(7.67)

T' at A = 3.28. The corresponding angular

this square wave with its first Fourier

4
u = - sin WT .

Since

x
2 s
u 2

(s + 1)

the steady state amplitude ratio M is given by

M =
1 + 21+[0

I T'

X' dT =
O'

(4)2 _lW2) c sin wT dT

E (1+W2)
2

A 0

8w2T'

2 2 
I2(1 + w )

(7.71)

This has a maximum of 0.203 T' at W = 1.

If we take the first two Fourier components of a square wave, we

have
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(7.68)

(7.69)

Thus,

x3(T') =

(7.70)



4 4
u = - sin wt + - sin 3 wT

4 = w 4 3w
=- + sin wT + sin (3wT + 0)

2 it 2 3ic1 + 9W2

l 1 1+ c

2 2
2 2 ( 4 2 9o 2

X2 = (4) X 2 sin 2T + () W2 

)3 (1 3w 
+ v -- 2 sin wT sin

i 3(l + W2)(1 +9W2

sin2 (3wT + 0)

(3wT + 0)

8w2T1 8W2T

x3(T')_= i2(1 + 2)2 
+

2(1 + 9w2)2

This has a maximum of 0.211 T' at w = 0.97. The first three Fourier

components yield a maximum of 0.212 T' at w = 0.96. Taking the first,

second, or'third Fourier components yield a very good approximation to

the exact steady state solution. The computation is much simpler. In

this case, we had to optimize with respect to only one parameter, w

E. EXAMPLE 3: A STABLE FIRST ORDER SYSTEM WITH PROCESS NOISE

Find the optimal input to identify a and K in the first order

system:

x = -ax + au' + w,

Z = X + V

x(0) = 0
(7.76)

where

Ew(t) w(t') = q6(t - t')

Ev(t) v(t') = r5(t - t')

and the input is amplituded constrained by lu'l [ m. The steady state

Kalman filter representation for this system is
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x= -ax + au'+ KV, x(0) = 0
(7.77)

V = -

where

EV(t) v(t') = rS(t - t') .

The steady state covariance is given by

2 2
P = -ar + Ma r + qr (7.78)

hence, K is given by

K = -a + a2 + q/r. (7.79)

Thus, we may identify the intensity of the process noise q by identify-

ing the steady state gain K. For no process noise q = 0 => K = 0

which was considered in the previous Example.

The identification criterion is to minimize

21 I 1 (z -r )2 dt (7.80)
0

with respect to the unknown parameters a and K, subject to the constraint

x = -(a + K)^ + au'+ Kz, x(0) = 0 . (7.81)

The first order sensitivity equations are

() == -(a + K) -x + u, (0) = 

(7.82)

I) = -(a + K) ) - x + Z (0) = TK_~~~~~~~ (0) = 0 
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The information matrix for a and K is

TT 2,·

E x
2

x dt
S E x 2 dt

I = I
r 

.T

E x2x3 dt

Xl = -axl + au + KV,

= -(a + K)x
2

- x1 + u,

X3 = -(a + K)x 3 + V,

Let x = x + 5x so that

0

-(a+K)

0

0

0

- (a+K)

-a 0

-1 -(a+K)

O 0

X1

R2

x 3

0

0

- ( a+K)

+
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where

T

so
E x3 dt

(7.83)

X1(0) = o

x (O) = 0
2

x (O) = 0 .
3

(7.84)

x1

X
2

x
3

-a

-1

0

a

1

0

U',

xl(o) = 0

R2(0) = 0

X3(0) = 0

and

(7.85)

1

2

8i3

5x
1

5 x2

8x 3

+

K

0

1

(7.86)

I T



x
1
(0) = o

8x2 (O) = O (7.86)
Contd.

8x3 (0) = 0

The expectations in the information matrix are given by

2 _2
E2 x2 + X22

E x2x3 =23 (7.87)

2 -2
3= 3 + X33

but x3 O0, and X is given by solving

X = -2a X + K2r, Xll(0) = 0

X2 = -Xll - (2a + K)X1 2 , X1 2 (0) = 0

=13 = -(2a + K)X13 + Kr, X13 (0) = 0

(7.88)

22 = -2X1 2 - 2(a + K)X2 2, X22(0) = O

23 = -X13 -2(a + K)X23 ' X23 (0) = 0

X33 = -2(a + K)X33 + r, X33(0) = 0 .

The information matrix now becomes

T 2T

2 + X 2 2 d X2 3 dt
o o1 (7.89)

I T T

so X
2 3

dt33 dt
o o
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where for long tests, the covariance elements are approximately constant,

so that

T

so

T

so

K2rT
22

d t
2a(2a + K)(a +K)

X23dt

T

o X33dt

-KrT
2(2a + K)(a + K) (7.90)

rT
2(a + K)

The lower bound of

P= r

the covariance matrix for a and K

T

0
X33 dt

5i X23 dt
0

T

0
X23 dt

X2 2 dt + 

T

o

jT

o

The optimal input to minimize the variance of a and/or K is found by

maximizing

T -2'
x2 dt

or minimizing

subject to the constraints

1

d TS ,
R dt

o
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(7.91)x2 dt
2
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x I= -a1 + au',
1 1 I

x2 -X1 - (a + K)i2 + u',

X1 (0) = 0

X2(0) = O

lu' I m .

This reduces to the case without process noise if K is set equal to

zero,

The optimal input continues to be bang-bang, but the switch times

are changed by the addition of process noise. Normalizing the constraint

equations, we have

X1 = -X1 +

x
2

= -X
1

- X 2
+ U,

X1(0) = 0

x2 () = 0 (7.94)

lul _ 1

where the dot now denotes differentiation with respect to T, and

T _ at

A X1
x = _1 m

A a _
x = - x2 m 2

A u'
u = _

m

(7.95)

a+ K
1 =

a

The problem may now be solved as in the previous Example for differ-

ent values of i. The performance index ~, is shown vs the test length

for various values of ~ in Figs. 7.7 through 7.9. As the process noise

increases, the switch intervals become shorter and the effectiveness of

the input is reduced. Figure 7.10 shows the performance index and switch

times for r = 2.

-113
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For long tests, we can show that the increased information from the

covariance term is not sufficient to compensate for the lost effective-

ness of the input (except where the deterministic input is severely con-

strained). For a long test, let us approximate the input with

4
U = - sin oT .

x
x2 s
u (s + 1)(s + 1)

(7.96)

(7.97)

the steady state amplitude ratio M is given by

M = (1 + 2)(2 + 2)
8 (1 +U ) 2 + W2 )I

(7.98)

and
x2 dT (42
2dT = (-)

T'

o

2
C 1

1 T'

(1+ W22(~2+ 22

This has a maximum of

8T'

i (1 + 1)2

at C = i .

If K is known, the covariance of a is

T

r ~ X33dto 3

[; . X2 2 dt + I x22dt . I X3 3 dt - I X2 3 dt]
0 )O j O L0

For long tests, the inverse of the covariance of a is

-118-
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(7.99)

(7.100)



1 m 8T' 12
21 8T' (7.101)

a r 2 ( + 1) 2a (2 + 1)

If we let

a 21 and m
2 m
ar a

then, [ 2 + +6 1 ( 2

1 T It (7.102)

O' 2a2 + 1 )2

A plot of this function is shown in Fig. 7.11 for different values of B.

From this figure, we can see that a little process noise usually degrades

the overall accuracy of identification. However, where the input u is

restricted to small values (I small), a larger amount of process noise can

increase accuracy.

To get an idea of a reasonable amount of process noise compared with

the deterministic input, let us assume that the process noise could be

generated through the input u, w = au, and that we constrain the

variance of u so that 3a equals the magnitude of the inequality con-

straint:

am
a aao 5 - (7.103)
w u 3

If the correlation time is A, then

22
q = 24a 2 m (7.104)

In terms of a and P this inequality becomes

22
a q 2gaa m 2~a 2

a 2 2pam = 2-a P2 (7.105)
2 2

a r 9a r 9

so that a realistic a in Fig. 7.11 is very small and would only degrade

the overall identification accuracy.
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F. EXAMPLE 4: A STABLE FIRST ORDER SYSTEM WITH
A STATE INEQUALITY CONSTRAINT

Solve the problem in section 7.D with the addition of a state con-

straint

lxI s a m . (7.106)

For a 1 this

region Ixl [ m,

trol constrained

constraint has no effect since x is always within the

for lul s m. The optimal solution is made up of con-

arcs (u' = + m) and state constrained arcs (x = + am).

The scaled equations are

X1 = -X 1 + u

2 = -x 2 - X 1 + u,

2

X3 = x2 '

uI 5u 1,

Ilx
1
i a,

The time, ta,

1 (0) = 0

x
2

(0) = 0

x3(0) = 0

0 < a <

needed to get to the state constrained arc is given

by

t = -n if u = +1
a 1 - x

(7.108)
1 -a

t = -n if u = -1
a 1 -x

Let us define the switch times as the time when the control, u goes to

+ 1. If the interval between switch times is greater than t , then we
a

follow a constrained arc for a portion of the time between switch times,

A typical input and output sequence is shown in Fig. 7.12. The problem

may be solved as before with the addition that if the kth switch time

is greater than tk_l + ta, then the control u is set equal to ± 1

from tk-1 to tk-1 + t and set equal to ± a from t + t to tk.
k-i k-l a a k-l k
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U, X 1

-1 

u

x
1

FIG. 7.12. INPUT AND OUTPUT CURVES WITH A STATE

INEQUALITY CONSTRAINT.

This problem has been solved for a = 1 and is shown in Fig. 7.13. A

comparison with Fig. 7.6 shows that the switch times are closer together

than the case without a state constraint. As before, the first and last

switch intervals are smaller than the central intervals and the central

intervals are approximately equal.

Now let us see how the steady state solution is modified by the

state inequality constraint. Recall that without a state-inequality

constraint, the steady state solution yielded a time between switches of

3.28 time units, and that the maximum deviation in x was given by

-3.28
ax1 = -3.28= 0.929 (7.109)

l+e

so that for a 2 0.929, the steady solution is already solved with

1 4.70
0.213T' T'

For a < 0.929, we must allow for a portion of each switch interval to

be on a state constrained arc.

Let us define t as the time between switches on a control con-
c

strained arc, and t the time on the state constraint. If we start

Sl n 719
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at x1(0) = -a and x2(0) = -I with u = +1, then at t we have

-t c
x(tc) a = (-a - l)e + 1

(7.110)

-tc tc
x(tc) = -e - (-a - 1)t e
2 c c

On the state constrained arc x a so that at t + t
1 s s

x
l
(t + t) = a

1 c s (7.111)
-ts

x (t + t ) = = x (t )e
2 c s 2 c

The value of t and P is then

*ct 
= -£n -

c 1 + a(
(7.112)

-t s
(1 - a)t e

c

1 - -ts
1 + 

The total increase in x3 during this time is A + A where A

is the increase of x 3 on the control constrained arc, and A is

the increase on the state constrained arc. A and A are given by
c s

ac= 2 (1 - 2 te 1 2tc-P2 (1 e-2t) + - M(--) e - e (2t + 1)
c 2 2 [i c

+ ( + 1)2[ - e ( 2 t +2 t +1) (7.113)
4 c C (7.113)

1 2 -2ts
As = -x(t )(1 - e )

s 22c

The normalized covariance is then 4' = (t + t )/(A + A )T'.

For a given value of a, this can be minimized with respect to t .
s

A plot of t, t + t and 8' T' is shown in Fig. 7.14 for a = 0.05

to 1.0. As a becomes smaller, the covariance increases and the switch

intervals become smaller.
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The interesting feature of this Example is the fact that the state

does stay on a state constraint for a portion of each cycle, and the

frequency of switching is increased.

G. EXAMPLE 5: AN UNSTABLE FIRST ORDER SYSTEM

Find the optimal input to identify the parameter a in the unstable

system

= ax + au, x(O) = O, a> 0
(7.114)

Z = + V

The sensitivity equation is

) = a() + x + u (7.115)

If the only constraint is the input amplitude constraint lul • m,

then the optimal input is u'= ±m with no switching. To maximize

T

we desire the largest possible x and u' terms driving the sensitivity

equation. If u'= ± m, then the input from u' and the input from x

are as large (in absolute values) as possible. For this Example, whenever

x is outside the region lxI < m, then the system cannot be controlled

by an input whose amplitude is constrained by I|ll s m. For this reason

we may wish to add a state variable inequality constraint

lXI a m (7.116)

where 0 < a < .
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The optimal input is made up of state constrained arcs (d' = + a m,

x = ± a m) and control constrained arcs (u' = i m when Ixi 5 a m). By

amplitude and time scaling, we have

Xl = X1 + u,

X2 = 2= 2 1 + U,

= 2
x3 = x2

Iul _ 1

x1(0) = x
1 0

x2(0) = 0

x3(0) = O

(7.117)

l xi X1 a

where the dot now denotes differentiation with respect to T, and

T = at

A X
1 m

2 - )

.=UV
m = -
m

The information "matrix" is the scalar

T 2 T'

I = ()2d =

0 0

221 2
m / 2 1 2
(-a) X2 a = 3 x3(T')

a
(7.118)

so that the variance is

3
a -1

P - 2 x3 (T') , (7.119)
m

On a control constrained arc (u = + 1), the solution to (7.117) is given

by
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x (T) = (x10 + u)eT - u1 10

x
2

(T) = x
2 0
eT + (x + u)TeT

1 2 2T
x3(T) = x3 0 + 2 X20(1 +e ) ~~~3 30 ~~~~~2 ~20 (7.120)

1 2 T
+ x20(xlo + u)[1 + e2 (2T-1)]

+ (x 2 2 + 1) - 1]

and on a state constrained arc (xl = x10), the solution to (7.117) is

given by

X1(T) = x10

T
X (T) =x e20 (7.121)
2. 20

(T) 1 2 (e 2T)
X3 () = x3 0 + x20 (1 + 

Let us now evaluate the performance index along two paths. The

first path is u = sgn x(O) until the state constraint is hit and then

to stay on the state constraint. The second path is u = -sgn x(O) until

the other state constraint is hit and then to stay on that state constraint.

Along path 1 we have

x1 () (x1 + l)eT - 1

x2(T) = (x1 0 + 1)Ter (7.122)

x3(T
) 1= 2(x + 1)[e ( 2t - 1 

x (r) = 1(x + 1) L a2 - 2T + 1)- 1],
3 4 10~~~~~~

-128-



for O _ T - T i and

xl(7) = a

1

2 ( ( 4101

1 2 2 2
+ 2(X10 + 1) ie El + e

for T 2 91, where T1 is given by

T1 = n 1+ 
1 1+ x10

Along path 2 we have

X1(T) = (x10 - 1)e + 1

x2(T) = (x10 - 1)- e

x (T) = 4 (X - 1) [e (2T2 - 2T + 1) - 1]
3 4 10

for O < T T and
2

x1 (T) = -a

x2(T) = (x10- 1)2e2 10 2

x3(r) = 4(x - 1) [e 2 (2T
2

- 2T
2

+ 1) - 1]

1 - 2 2 2 T 2 ( + e T2)
+2 10 2e

for T 2 T2, where T2 is given by
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1+¢

1 - X10

It can be verified that x3(T 1) along path 1 is greater than x 3(T)

along path 2. However, it can also be verified that [x
2
(T

2
)1 along

path 2 is greater than [x2(T2)I along path 1. This means that if

x3(T
2

) along path 2 is not greater than x3(T2) along path 1, it will be

at some later time. Let us designate T3 as the time at which X3(T 3 )

along both paths are equal. Also consider that once on a state constrained

arc (with a sufficient magnitude for x2), it is better to stay on that

arc than go to the other constraint or go off and return to that arc.

For these reasons, we can say that the optimal input is u = m sgn x
0

until the state constraint is hit and then is such as to stay on the

constrained arc, for a test whose length is less than T3
. However, for

a test whose length is greater than T 3 , the optimal input is u =

-m sgn x until the opposite constrained arc is hit and then is such as

to stay on that constrained arc. However, in both cases, the optimal

input involves going to a constrained arc and staying on the constraint.

This Example has two interesting features: (1) Since the state and

sensitivity equations are unstable, the information matrix grows much

faster than for a stable system. This means that an unstable system may

be identified more accurately than a stable system. (2) The optimal

input involves no switching.

H. EXAMPLE 6: AN UNSTABLE FIRST ORDER SYSTEM WITH TWO PARAMETERS

Find the optimal input to identify a and b of the first order

system

= ax + bu', x(0) = 0, a > 0
(7.128)

Z = X + v

with an input amplitude constraint Iu't < m. The two sensitivity equa-

tions are
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(x)

rx)rixs

and the information matrix is

= a(t) + x

= adze" + u
!

I

By amplitude and time

1 lT ( )2

r T | dt

scaling, we have

scaling, we have

Xl = X1 + u,

x2 = x 2 + X1'

x3 = x3 + u,

lul 1

T
T /) x x)

d t

| (8) dt

i~x.
o~s;I

x1(0) = 0

x2(0) = 0

x3(0) = 0

where a dot now denotes differentiation with respect to T, and

T = at

a

a2x

X2 = b3

x3 m ;a- b
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For the initial condition given, x -
3

becomes

I =
ar 6

where
2

x4 = Xl

2
5 2

x5 = x2
6 1 2'

x
1
. The information matrix

b
- x (T')
a 6

x4(T') I

x4(0) = 0

x 5(0) = 

x6(0) = O .

The covariance matrix is approximated by

2
a x

44

3
ra

m2b2

-abx6

-abx61

b2x4Jb 4 j

(7. 135)
2

x4x5 - X6

If we weigh the coefficients of variation a /a and ab/b equally, then

our performance index becomes

x4(T').+ x (T')

2
x4(T') x5 (T') - x6 (T')

Figures 7.15 through 7.17 show plots of the performance index versus

one switch time for tests of T' = 0.5, 1.0, and 3.0 time units. In each

case, one switch is better than no switches.
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Plots of the performance index versus two switch times were also

run. However, in each case the best two-switch sequence was the one-

switch case. For this reason, it is believed that the optimal input is

bang-bang with one and only one switch. This is in marked constrast with

our stable systems that involve repeated switching for long tests.

Now let us solve the problem with the first order state-inequality

constraint

bmIxl aa
a

where 0 < a< 1 

As in the previous Example (G), the optimal input is made up of

state constrained

bm
x =+ a-

a

and control constrained

u' = + m

arcs.

In mechanizing a program to calculate the performance index as a

function of the switch times, the switch times are defined as the times

when the control u goes to +1 or to -1 (not when it goes to some

intermediate value to stay on a state constraint).

Figures 7.15 through 7.17 also show plots of the performance index

for the case a = 0.9. As in the case without a state inequality con-

straint, one and only one switch is optimal. This example is quite similar

to the previous unstable system. The main difference is that to identify

two parameters, the optimal input involved one and only one switch.
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Chapter VIII

OPTIMAL INPUT FOR THE IDENTIFICATION OF THE LONGITUDINAL

DYNAMIC STABILITY DERIVATIVES

A. PROBLEM FORMULATION

The approximate longitudinal equations of motion (short-period os-

cillation) for an airplane are*

M- + M (z M (Ma Mb
q_ Ma q Mq + _ + + -

Iy ymuo y \I mu e

(8.1)
z ze

a q+ za a + z5
mu mu e

o o

where

q = pitch rate

a = angle of attack

e
elevator deflection.

Let us assume that all the parameters except

mined from wind tunnel tests. Hence, we wish

parameters

M. and M can be deter-
a q
to identify the normalized

Ma M

Pi = I and P2 - I
Y Y

from a flight test.

This form of the equations was taken from Denery [DE-1]
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For this test, let us assume that the only measurement is the pitch

rate q, which is corrupted by white gaussian noise of density R (a

scalar). Our problem is to determine the optimal input 8 for the

identification test with the constraint

1 e1 8 emax (8.2)

The identification performance index is

(z - q)2 dt (8.3)

so that the information matrix is

I =
a R

¶: ( fdt

o k1 v) k7Z
Io lo dt

(8.4)

If we approximate the covariance matrix for P1 and P2 by Ia - and

put an equal weighting on their accuracy, our input performance index

becomes

-I= Tr I (8.5)
a

In order to evaluate the information matrix, we must calculate the

two sets of sensitivity equations

Md + M /{ \

Iy \pl/

+ Z 6e'
mu e

+( + -i +q+ a 
Iymuo Iyp muYoY'~~, o

aq

a1
(0) = ;

-138-
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= mu( )
(0) = 0

apl
(8.6)
cont.

M. + M. +Mz

I P I mu I op2
y 2 3 y

q (0) = 0

ap 2

-p (o) = 0
2'P

__ (q + Zo /C ,
tE} omu2

B. NORMALIZATION

The state,

in the form:

sensitivity, and constraint equations may also be written

q = k32q + k34 + g31 e,

a = q + k54a ,

&(1) = q(l) + k 5 4 (l),

(2) = 3 2 q(2) + k 3 4 a() + qk,

&(2) = q(2) + k54 (2),

q(O) = 0

a(o) = O

q(l)(O) =

a(l)(o) =

q(2)(0) =

a2)(o) =

0

0

0

0

O

O

I el - 5emax ,

where the ith superscript denotes the sensitivity equation for Pi 

The correspondence between old and new coefficients is shown in Table

8.1. k3 2 and k34 are unknown and bg3 1
and k5 4

are known from wind

tunnel testing. By amplitude and time scaling, we can reduce the

above set of equations to the form:

-139-
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Table 8.1

RELATIONSHIP BETWEEN COEFFICIENTS IN (8.1) and (8.8).

The numerical values are those in [DE-1] for the C-8

airplane in a landing configuration. We assume that

some parameters are known or unknown from wind tunnel
testing.

M. z

I mu
y o

aze
I mu

y o

M
+Ia

y

Mbe

I

k
32

Old New Numerical Known or

Coefficients Coefficients Values Unknown

M. + M
a q
I

Y

k34

8g 3 1

za
mu

Zbe

mu
o

8g 5
1

-1.588

-0.562

-1.658

-1. 737

0.005

unknown

unknown

known (if 8g5 1 = 0)

known

assume = 0
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x1 = -ClX - C

X2 = X1 - X2 '

3 = -clX3 - c

X4 = X3 - x4

x5 = -cLX5 - c

x 6 = x5 - x 6 '

Jul : 1,

where the dot denotes

2X 2 + u ,

C2X 4 + X1 - X2 5

C2x6 + x ,

x1 (o)

x 2 (o)

x3(0)

x 4 (o)

x (o)

x6(o)

= 0

= 0

= 0

= 0

= 0

= 0

(8.9)

differentiation with respect to T = -k
5 4 t, and

x A _ -k54
x1 =

g31 emax

2

A k54x a

2

A 54 (1)

5 3 1 · 5 emax

a -k54 .~

4 6931 ·emax

2

A k5 4 (2)
= q

31 emax

3

a -k 54 a(2)
x =6 = g 5

931 emax

6
e

u 
emax

k32
C 

1 k54

-k

c2 =7--
k 54
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In terms of the normalized variables, the information matrix becomes

2 2

g31 emax
I =

a 5
Rk

5 4

5T'

Jo
x3ds 50 3x 5 dx d¶

x3x5d¶
2

I T'xd

(8.10)

where T' is the length of the test in normalized units of time. The

input performance index is then

-Rk54
O = '2 2 

93 1 emax

x
7
(T') + x8 (T')

'tt = - .2

x
7
(T')x8 (T') - x9 (T')

where

2
x 7 = x 5

2
X8 = x

3

x
9

= X3X5 

The evaluation of

(2 state equations, 4

length of the test.

x
7
(0) = 0

x 8 (O) = 0 (8.13)

x 9 (O) = 0 .

* for a given input requires nine integrations

sensitivity equations, and 3 quadratures) the

B.1 Gradient of the Performance Index

To calculate the gradient of the input performance index we must

calculate axi/6t
k for i = 1, 2, ... 9. For t < tk' we have

ax.

7 -t = 0,
k

i = 1, 2... 9.
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At t = t we have
k

ax.
1
t
k

= i -

t=tk
- xii+

t=t
k

i = 1,2,... 9

which equals zero except for i = 1 which is

ax 
kt =u(tk) - u(tk) = + 2 

(8.15)

(8.15)'

For t > tk, we must integrate a set of 15 differential equations. The

first six equations are given by (8.9) with the values they had at t = t
k

as initial conditions. The last nine equations (with initial conditions

given above) are:

x 7 = -Clx7 - c2x8

X8 = x
7
-x 8

= -x - c2x10 + X7 - x 819 210 7 8,~~~~~~~~~~~~~~~~~~~~.

= x
9 - x10

x7(tk) = + 2

x8 (tk) =

x 9 (tk) =

Xio(tk) =

=-Cx - c2x12 + X7

= x
1 1

- x12

= 2x
5

x 1 1

= 2x 3x 939

= x3 *xll + X5X
9

X15 (tk) =

where x7 through x15 designate axl/6t
k

through axg/at
k

. The gradient

of the input performance index with respect to the kth switch time is

then

-143-
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0

11

x12

x 1 3

x 1
4

xll(tk) =

X1
2
(tk) =

X13 (tk)

0

0

= 0

= 0x 1 4 (tk)

O ;

X9

10

x15



a', x1 3 (T') + x14 (T') [x7 (T') + x8 (T')]

=at ~~~~~~~2
k D D

X [x1 3(T') xT') + x7 (T')xl4(T') - 2xg(T')x1 5 (T')]

2
where D = x7(T') x (T') x- x(T')

A computer program for the optimal inputs is shown in Appendix A.

C. RESULTS

For one switch (N = 1), a plot of V' was made versus tl for

various test lengths, namely, T'= 1, 3, 5, and 10 time units. These

are plotted in Figs. 8.1a through 8.1d. For the first three cases, there

was only one central minimum. For the last case, we see two local minima,

the one on the left being the lower. Since the inverted plateau of this

latter case is quite long (and the performance therefore rather insensi-

tive to changes in the switch time), we might suspect that only one

switch is not a global minimum for T' = 10 time units.

For each of the figures 8.1a through 8.1d, there was also a local

minimum at t1 = O. This corresponds to the N = 0 case (i.e., no switches).

In general, we may say that for the N switch case, there is a local

minimum corresponding to the N-1 case. In using the algorithm developed

in the previous Chapter, our initial values of the switch times are near

the center, so that we converge to a central minimum.

A plot was made of ~' for the optimal switch times for N = 0

through N = 3 and is shown in Fig. 8.2. The lowest value of ' from

this curve and the switch times are shown in Fig.8.3. This, then, is the

solution curve. For example, if we wanted to know what the optimal input

is for a 10 sec test, we would look under T' = -k5 4 *10 = 7.37 time

units. At this test length, t = 3.00, t2 = 6.18, and ' = 61. In

other words, the optimal input is full elevator on for 4.07 sec, then

full elevator on in opposite direction for 4.31 sec, and then full elevator

on in the original direction for 1.62 secs.
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D. STEADY STATE SOLUTION

For a very long test, we can approximate the repetitive bang-bang

inputs with a sine wave. The system and sensitivity equations consist

of three second-order systems of the form

1l = -C 1X 1 - c 2 x2 + u

(8.18)

x 2 = X1 -x 2

where xl - x2 replaces u for the first set of sensitivity equations

and xl replaces u for the second set of sensitivity equations. The

transfer functions are given by

x (s)

uTW =

x2 (s)

u(s) =

s_+ 1

2
s + s(c

1
+ 1) + c

1
+ c

1

2
s + s(c + 1) + c

1
+ c

2

A block diagram for the calculation of f

input is approximated by u = 4/i sin Ot,

is shown in Fig. 8.4. If the

then for a long test

8 2 M)2
x (T1) = - TtM4( + 1)

8 TM4 w2( + 1)
x8(T') = 82 2 2

x (T) 8= T' cos e M4W(w + 1)

where M and are defined by

where M and 0 are defined by
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1

[(C 1 - )+ (C1 + 1)

(8.21)

sin 2 i+

(W + 1)

Substituting (8.20) into (8.12) and simplifying, we have

2
2= 8·22 2(8.22)

8 T'M4 w2(w + 1)(1 - cos i)
2

Substituting for M(w) and e we then have

2( 2 2)2 + w2c
1

+2 1)
2

2
I2(22 + 1)[(cl + c2 - )+ 2 (c + 1) 

,,-~~ 1='. 1~~ . ~(8.23)

8T'w (w + 1)

For cl + c
2

= 3.185 and cl + 1 = 3.15, this has a minimum of 'mi =

398/T' for w = 1.05. This corresponds to a switch time interval of 2.99

time units or 4.05 seconds. This is in agreement with the solution curve,

Fig. 8.3.

E. SIMULATION

A simulation was run using Denery's combined algorithm to identify

P1 = M/Iy and P2 = Mq/Iy from measurements of the pitch rate q. The

computer program for the simulation is shown in Appendix B.

Recall from Table 8.1 that

P1 + P2 = k 3 2

(8.24)

P1 ' k5 4 + ml = k34

so that if we can estimate k32 and k34 we can estimate P1 and P2 accord-

ing to
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A 34 - m1
P =

k54

(8.25)

2 kk32 P12 - 32 - Il

To use Denery's [DE-] combined algorithm, it is necessary to trans-

form to a canonical form where the unknowns are coefficients of the meas-

ured state q. The equations of motion take the following form:

(2) f:21 (x2 X2 (°o)/
= 0 (8.26)

q = [1 o [] (8.27)

where xl = q and

= (f 1 1

x2 = k1 q + k2ce so that

+ k
1
)q + k2Y + g

1 1
8e

k2 = 21 k1(f11 kl) q - kla + k (g21 - klgll)Se

By matching the coefficients in equations 8.28 with the first two equa-

tions in set(8.8) we have

gll = 8g3 1 (known)

k
2

= k3 4

f
11 = k32 - k 1 = k32 + k54 (8.29)

k1 = -k5 4 (known)
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f21 = k2 + kl ' k32 = k34 54 32 (8.29)

21 = kl . gll -k54 . 8g3 1 (known) cont.

If we can identify fll and f21 from Denery's algorithm, then we can

calculate k32 and k4 from32 34

32 - 11 k54
(8.30)

k34 = 2 f21 
+

k54 k32

Notice that we cannot identify all six stability derivatives (M& /Iy,

Mq/Iy, z /mu, Zbe/muo, Ma/Iy M5e/Iy) from the five coefficients

(k
32
, k3 4 89g31 , k5

4
89g

5 1
) and with a scalar measurement we cannot

identify the above five coefficients from the four canonical coefficients

(fil f21' gll, g2 1 ). Since we are only trying to identify two stability
derivatives, the scalar measurement is satisfactory.

For simulation purposes we use values for the stability derivatives

calculated from the five coefficients identified in Denery's 17-second test.

However, one other stability derivative such as M- Iy is needed or we may

make an assumption such as M. = M . The numerical values for this simu-

lation were shown in Table 8.1.

Now applying Denery's algorithm to the second-order system (8.26), we

have

fll 1

F
n = H

n
= [1 0] (8.31)

where F and H are given by
n n
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F =
n

H =
n

F - DH

(I - L)H

so that for this example

L=0, *G=0, = 0 =, 0 D, =

Estimates of fll and f21 are given by

n
f11 = f11 11

fA2 = n

21 = f21 21+ D '

The simulated measurement z, is given by z = xl + v where

X1 = fllxl + X2 + gll ' X1() = o

x2 = f2 1xl + g2 1 e 2 (0) = 

The nominal output is given by z
n
= Xnl where

(nl\ 11 Xnl + Xn2 + gll x =e 

\ Xn2! 21Xnl + ' Xn 2

The sensitivity equations for Dll and D21 are given by

1f 1 + 11 + z (or zn)

(6n2 = n PXnl'n
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(8.33)

(8.33)

(8.34)

(8.35)

(8.36)

(8.37)



fn f )n

n /xnli
2=2 +z

/Xn2

(8.38)

(or zn)

Estimates of

D 

D
_2 1_

Dll and D21 are given by

= r

ST (3x 2dt

T

0

( n1A

ii/\ ~21/

11 ( 21/

5T nx )

1aD__I)2 dt

X
r

- T

So n) dt
axnl

E ( z - z
11

50 ED~2 (z - Zn) dt

By combining the linear transformations

1

1 lk54

1
P2 k54

'54m

+ m
1

1 k32
.m ·k 54;

k3 1 0f1 1 k54\

3~~~~~~ 2 ,' ~F ~ ~ · -

k34 k54 f 234 54 1 21 ~~~- 54/
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and ( nl
21/

(I n21

\aD2 1

-1

(8.39)

and

(8.40)

(8.41)

T



we find that

A L
51 /

k54 21

The covariance in our estimates of the parameters P1 and P2 is given in

terms of the covariance of fll and f21 by

T
p = E(p- t)(p- p) ) (8.43)

-2 1
PDll +-p +pDll 'k54 PD12 2 D22

k54k54 k 54

1 1

k54 D12 2 D22

Pk54

2 PD22
k54

For a four-second test, T' = -k54- 4 - 3.00. From Fig. 8.3, we

see that for T' = 3, N = I is optimal with t{ = 2.04 and V' = 228.

In this case the normalized covariance for Dll and D21 (or fll and f21 )

is

150

-80
(8.44)

The predicted covariance for D11 and D21 is then
11 21

5
-Rk54

PD = 2 P

g31 ' emax

297 -159i
= R

L-159 156

-156-

+ (8.42)

(8.45)
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78



Substituting values in (8.45) with R = a A2t = (0.1) (0.01) = 10

into (8.43), the predicted covariance matrix for P1 and P2 is

0.0297 -0.0159

L:0.0159 0.0156

In the simulation, Denery's algorithm was applied to 20 sets of data

and the results are summarized in Table 8.2. Except as noted in the first

column, all of the tests had a bang-bang input with a switch at 2.72

sec, a standard deviation in measurements of 0.1 rad/sec, and an initial

guess of P1 and P2 of -0.60 and -0.80 respectively. The average number

of iterations for the 20 tests is shown for the equation error and the

output error portions of Denery's algorithm in columns 2 and 3. The re-

sultant covariance of the estimates is shown in columns 4 through 6.

From Table 8.2 we can make the following conclusions: (1) With an

optimal input, Denery's algorithm converges faster and to a more accurate

estimate than with a non-optimal input. (2) The predicted covariance

given by the inverse of the information matrix is very close to that cal-

culated in the simulation. (3) For large errors in the initial estimates

of the unknown parameters, the equation error portion takes more itera-

tions to converge; but, the number of output error iterations remains the

same. (4) An indication of the final accuracy in our estimates is pro-

vided by the number of iterations needed for the output error portion

of the algorithm to converge. In a sense, then, the bias from the equa-

tion error portion serves a useful purpose.

A computer listing of this simulation is shown in Appendix B.
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Chapter IX

OPTIMAL INPUTS FOR THE IDENTIFICATION OF THE LATERAL

DYNAMIC STABILITY DERIVATIVES

A. PROBLEM FORMULATION

Approximate lateral

plane are*

equations of motion for a conventional air-

B + r

I
xz

r + I P
zz

I
* xz 
p+ r

I
xx

n¢
I
zz

I
xx

YV 
mV ~?+V

nr
+ + I r

zz

r

I xx

n
+

I
zz

+ P
I
xx

nb r

p+ -- r
I r
zz

a
P + -a 6

I a
xx

= p

- r

where

P = sideslip angle

r = yaw angular velocity

p = roll angular velocity

The equations and numerical values used for these computations were
taken from Bryson and Ho [BRY-1, p. 173].
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0 = roll angle

* = yaw angle

a =
r

8 =
a

rudder deflection

aileron deflection .

We wish to identify the four dynamic stability derivatives nr n p

Xr, and Ip, assuming that the other stability derivatives and the two
control derivatives are known from wind tunnel tests. These four dynamic

stability derivatives depend upon motion of the aircraft and may be

difficult to determine from wind tunnel tests. Let us identify the

parameters in the normalized form:

n
r

P1I =zz9
zz

n

P2 I 
zz

r
P3 = I

xx
and p I

4 Ixxxx

For this example, let

yaw rate r and roll rate

gaussian noises of density

the optimal inputs 8 and
r

us assume that the only output measurements are

p, each corrupted by uncorrelated white

R (a scalar). Our problem is to determine

5 for the identification test.
a

B. INPUT CRITERION

The identification performance index is

1 T 
J = 2R I (Z1 - r)

2

+ (z
2

- p)2 dt (9.2)

so that the i,jth element of the information matrix is then

I. 
1J

T

I (r rr\ r p
(9.3)

which is a quadrature of products of the sensitivity functions. As an

input performance index, let us choose
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= Tr I-1
a

The four sets of sensitivity equations for pi,

are the same as (9.1) except that the inputs are

0

r

O

O

0

O0

P

0

0

O

O

r

0]

and

pO

o

O

o_

instead of

(9.4)

P2k P3

0

Izz r

l a
0

0O

and p4

and the "states" are the sensitivity functions

ar

1

ap
7p 

a1

ap '
and '

Pi

where i = 1, 2, 3) 4. The last equation in each set), and 6*/6pil

i = 1, 2, 3, 4 is uncoupled from the other equations and may be dropped

since there is no state constraint on i and we are not using measurements

of ,. The system equations may also be written in the form

= c 13 - r+ c2O

r = c3r cp+ + c4r + c5P + c6 r 7 a

= c8 + c9r + 10OP + C115r + Ci25a

= p

where
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C1 - mV

_g

2 V

IxzIz D
XXXX ZZ;

C 8 =
D

I I I

D C =
9

n I 
nr Ixz r

ZZ zz xx

D

p Ixz IP

I I IZZ ZZ XX

D

nb r

6 I D
zz

Ixz 85a

I I
zz xx

D

10

2C I n s

I I I I
xx xx zz

D

( I n
_ xz p
xx xxI Izz

D

Ixz _n r

I I
xx zz

C11 =
D

Q5a

c12 - I D
xx

I I
xz xz

D = 1 - I
I I

The sensitivity equations for p1) p2, p3 , and p4 are of the same form

as (9.5) with the following modifications:

n8
(1) For p1 substitute r for - 5 and set 8 = 0.

zz

(2) For p2 substitute p for - 8 and set = 0.
zz

nga
(3) For p3 substitute r for 85 and set 5 = O.

xx

(4) For p4 substitute p for - 5 and set 8 = .
xx
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Evaluating the performance index requires 30 integrations (4 state

equations, 16 sensitivity equations, and 10 information matrix quad-

ratures) over the interval from O to T.

C. GRADIENT OF THE PERFORMANCE INDEX

The partial derivative of the performance index with respect to the

kth switch time t k is given by

=Nt- -TrI Ia (9.7)
k ka (

The elements of aIa/6tk are found by integrating product terms involv-

ing xi and axi/atk, i = 1, 2, ... 20. The differential equations for

axi/ tk, i = 1, 2, ... 20 are the same as those for xi, i = 1, 2,

20, except for the elimination of the inputs 8 and 8 . They are in-
r a

tegrated forward in time from t
k

to T with initial conditions given by

ax.

C) t (t k if x il (9.8)F ~(tk) = xit -- xi (
~k t=t t=t+

Evaluating the partial derivative of the performance index with respect to

the kth switch time requires 50 integrations (20 state and sensitivity

equations, 20 equations with respect to tk, and 10 quadratures for the

elements of aI a/tk) over the interval from t
k

to T .

With more than one input, the assignment of switch times for each

individual input becomes a little more complicated. For this problem

the first input 8, has N1 switches at times tll t 2 t
1,N1

and the second input 8 has N2 switches at times t 2 1 ' t 2'

t2,N2 . There are a total of N switches at tl, t2' ... tN where

N = N1 + N
2
. Figure 9.1 shows a possible switch assignment for the case

N1 = 2, and N2 = 3. Since the individual switch times are incremented by

different amounts, this assignment can change with each iteration.
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5r

I I I

t1,0 It1, t tf

t t t It t

to tt l t2t tt t f

IIG. 9,1 POSSIiB SIC I AIGMN
t ~ ~ ~ ~ I.91PS2.0IL SWITC TIMt I. t 32.f 

l I I I

FIG. 9.1 POSSIBLE SWITCH TIME ASSIGNMENTS
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D. RESULTS

The conjugate gradient search routine for the optimal switch times

is similar to the Chapter VIII Example implemented in Appendix A.

To insure a global minimum, we proceed as before by plotting the

optimal performance index for a number of cases that depend upon the

number of switches. For the scalar input case, we had one case for N

switches. With two inputs, however, we have 2(N+l) possible cases

for N switches.

For N = O (no switches) we have two cases: N1 = O0 N2 = O:(no

switches for either input), and the two inputs either start (1) with the

same sign, or (2) with opposite signs (i.e., in-phase or out-of-phase,

P =+ 1).

For N = 1, we have the four cases: (1) =1, N
2

= O, P = +1

(one switch for input 6r, two inputs initially same sign); (2) N
1

= 1,

N
2

= O, P = -1 (one switch for input 5r, two inputs initially the opposite

sign); (3) N1 = O0 N2 = 1, P = (one switch for input 5a two inputs

initially the same sign); (4) N 1 = O N
2

= 1) P = -1 (one switch for

input 5 , two inputs different signs).

Each of these cases is an optimization problem with respect to one

parameter. Figure 9.2a to 9.2d show the performance index 4 versus the

parameter of interest for a test length of five seconds. The end values

of the performance index correspond to an N = O case. The performance

index versus the length of the test for an optimal input is shown in Fig.

9.3 for each of the six cases of N = O and N = 1. Each case is specified

by the triplet (N1, N2, P).

For N = 2 there are six possible cases, namely: o (2, 0, 1),

· (2, O, -1), (1, 1, 1), * (ly l,-1), (O, 2, 1), · (0, 2, -1).

Each of these cases involves an optimization problem with respect to

two parameters. Values of the performance index are shown on a grid of the

two parameters of interest in Figs. 9.4a to 9.4f for a five second test.

Except for the (1, 1, -1) case of Fig. 9.4d, each of these cases has its

minimum at a minimum of an N = 1 case.
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0.3 A

0.2

/0.1

I I I I ; t
11 2 3 4 ,1

Fig. 9.2a: Case 1: N 1, N 0, P = +1
1 =1N 2

0.

0.

0.1

1 2 3 4 '
Fig. 9.2b: Case 2: N1 = 1, N2 = 0, P = -1

(Cont)

FIG. 9.2 PERFORMANCE INDEX VS ONE SWITCH TIME
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0.

0.

Fig. 9.2c: Case 3: N1 = 0, N
2

= 1, P = +1

0.

0.'

0.

1 2 3 4

Fig, 9.2d: Case 4: N1 = 0, N2 = 1, P = -1
1 2 ' -

FIG. 9.2 (Cont) PERFORMANCE INDEX VS ONE SWITCH TIME
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Solution shown for

-4 1R = 104 1
sec

18aI S m = 0.1 rad

Keel 9 m = 0.1 rad

where 0 R
c 2
m

(1, 1, -1) Q
I, o'

. .(0,'.0, 1)
- (0, 0, -1)

(O- (0, 11)

- (0, 1, -1)

'-(1, 0, 1)

L, O, -1)

(2, 0, 1) - e

· · I , · I

3 4 5 6 7 8 9

sec

FIG. 9.3 PERFORMANCE INDEX VS LENGTH OF TEST
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All six cases for N = 2 were examined in a similar fashion for

test lengths of one and ten sec. For the one sec test, each case had

its minimum at an N = 1 case. For the ten sec test, each case had

its minimum at an N = 1 case except for the (2, 0, 1) case. (The

switch times for this case were 1.5 sec and 5.3 sec for the rudder, and

no switching of the aileron.)

No N = 3 cases were investigated.

Unfortunately, these solutions cause such large deviations in the

state that the linearity assumptions are violated. One method of

satisfying the linearity requirement is the addition of state inequality

constraints. For this problem this means two second-order state in-

equality constraints on 1 and O .

With state inequality constraints, the steady state (assuming a

stable system) wave shape may be somewhat irregular. A Fourier analysis

may then be tried by optimizing with respect to the relative amplitude

of higher order terms in addition to the frequency.

However, these problems are left for future research.
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Chapter X

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

A. CONCLUSIONS

Optimal input design for system identification has been investigated.

The primary conclusions are:

1. The information matrix, I, (for the parameters of a linear

dynamic system) provides a useful measure for input design.

The criterion used in this thesis was the trace of I

(which is a lower bound of the covariance of the parameters).

Minimizing this criterion appears to have some advantages over

maximizing the trace of I. In simulations where the trace
-1 -1

of I was minimized, I was a good lower bound in the

sense that it was approximately equal to the actual covariance

of the parameters.

2. An optimal input for system identification excites the system

as much as possible. With amplitude constraints on the input,

an optimal input is either full on in one direction, or full

on in the opposite direction (bang-bang inputs). The addition

of state inequality constraints can be important in practical

problems where the instrumentation and the dynamics of the

system must be maintained within their linear region. With

the addition of state inequality constraints, the optimal input

is still bang-bang but with intermediate values while on a

state constraint.

3. For long tests, the optimal switch times are often equally

spaced. In such cases, we may assume a square wave input and

optimize the performance index with respect to the fundamental
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frequency using a few terms of the Fourier series for a square

wave. With state inequality constraints, the shape of the

input pulses may require several terms in a Fourier series for

an adequate approximation.

4. The results of a simple example indicate that for reasonable

amounts of deterministic input, the overall effect of process

noise is to decrease the identification accuracy. However,

for systems with no (or very small) deterministic inputs,

process noise contributes to the identification accuracy by

providing excitation.

5. The solutions in this thesis for the optimal aircraft flight

test may be modified to insure that the instrumentation and

dynamics of the aircraft stay within their linear regions.

One method of meeting the linearity requirement is to lower

the input amplitude constraint. A design allowing full in-

puts but with switching to meet state-inequality constraints

should prove better but has not been solved.

B. RECOMMENDATIONS

The following areas are recommendations for further research.

1. The methodology developed in this thesis should be extended to

include the addition of state inequality constraints. Of immed-

iate interest would be the addition of state inequality con-

straints to the aircraft identification problem.

2. The information matrix also provides a criterion for determin-

ing the best instrumentation to use. Instead of heavily instru-

menting an aircraft or other system, it may be possible to

obtain almost as much information with far less instrumentation.

This would not only lower instrumentation costs but lower the

complexity and execution time of identification algorithms.

Identification algorithms could also be structured to process
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only those measurements that contain the most information (at

least for initial iterations). However, optimizing the best

input/instrumentation combination together would be quite

difficult.

3. As mentioned in Chapter III, more research would be useful in

determining the best model numbers (numbers that specify struc-

tural information about the system such as order or degree of

the minimal annihilation polynomial) for multi-input multi-output

systems. Considerations should answer the following two ques-

tions: (a) What is the minimum number of parameters needed to

designate an arbitrary member of the class defined by the model

numbers? (b) As the order of the system increases, how many

different cases must be examined?

4. The calculated value of the information matrix may vary with

changes in the estimated value of the parameters. Instead of

expanding the identification performance index to second order

(as in Eq. 6.1), we could expand it to third or higher order.

The third order tensor

E3J

)a3

may be viewed as the sensitivity of I with respect to the
-1

parameters. In addition to minimizing Tr I , some measure

of this term should be minimized.
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APPENDIX A

This Appendix is a computer listing of the gradient algorithm

developed in Chapter VII, which is applied to the optimal input problem

in Chapter VIII. A flow diagram of the conjugate gradient algorithm

is shown in Fig. 7.1, and a flow diagram of the one dimensional search

portion of the algorithm is shown in Fig. 7.2. Subroutine POINT cal-

culates the value of the performance index by integrating the state,

sensitivity, and elements of the information matrix, whose differential

equations are in subroutine FCT. Subroutine GRAD calculates the

partial derivatives of the performance index with respect to the switch

times, which requires integrating the equations in subroutine FCTP.

Subroutine ADAMS (not shown) was the numerical integration package used.
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C TiE OPI IMUM INPUT TO I')ENTIFY Z PARAMETLRS
C (M ALPHA DOT AND M U) IOF 1Hr' SHORT PERIOD DYNAMICS
C OF AN AIRPLANE IS A BANG-OANG, INPUT
C hITH SWITCH lIMES ULIVN bY lItIS PKUGRAM.
C TUL FINI) THE GLOBAL MINIMUM CF JPt RUN THIS PF.C;GRAM
C SEVERAL -TIMS wllTIT I)IFF'F4FNT VALUES FOR N AND PLCT
C 1li. RESULTS. ACCURALY 1S C.MoIROLLED BY SPECIrF IG
C I tAXAMI NLSMHIN
C JP = TRACE GF THE COVARIANCE OF THE TWO PARAMETERS
C =NUMbER UF SnIlCiH TI:4[ INTEkVALS
C T=L=LENGTH CF TEST
C (l)l I = I TH SWIl(.H T I.ME
C IthAX=14AXIMUM NUMBEk OF 11EHATIUNS
C AMIJ=MINIMUUI INCRE.Mi-NT TG ASSIGN 10 ShilCH TIMES
C SMIN=/:INlMUi SUM OF SQUARES OF PJ'S
C PJ=PARTIAL DER OF JP wITH RESPECT TO SWITCH TIVES
C LL=ZETA=DAMPIN(, kATIO
C hN=UNDAFPED NATERAL FREQUENCY

REAL JPtJSJO,JI Je.J3
EXTERNAL AnAMS
DIMENISION O(LOItPJ(l, tX(ElSl, i) H(10,lOT eR(lC)t

L DR( IOi G(IG)t OLD )( )PJOLD( lU),DXI L)
COMM]ON CI ,CZU
CUMMGN/S1/NX, VltV2 ,V3,DET

I FORMAT('1',35Xt'ZETA=',F6.3,' O.-MEGA N=',Fb.3,
C ' C1=:'F6b.3' C2= ',F6.3)

2 FORMAT(//' ',6OA,'N=',l4/7X,'T',TLX,'JJPP,9X
C 'D(2) THHU D(NF1)')

3 FURMAT(I ',19.3,F13.5,1OF I.1.5)
luO FURMAT(I0lQZFI'. 5I
101 ;ORMAT (2F 1u.5J
102 FURMAT(I13)

READ(5, 1)) IMAX, A} IN,SMIN
REALI (5101) ZE ,vN
READ(5, 192) NI,N2 ,N3,LLL2 L3
C l =2.* ZE: 'WN- 1 .
C2=WN WiWN-C 1
WRITE(bl) LE, tu,Ci,lL2

UDO 33 N=NItN2,N3
TN=N
WAITE (b,2) N
00)O 32 L=LI,L2,L3
T=L
OD 1)=O.O
I)O 5 I=Z,N

5 U(I)=D(I -1)+T/TN
DN+1 )=T
[=0.2*IN-I )*1 /1N
ICNT=0

C
CALL PUINI(JO)
1F IN.EQ.1) Gu lu 3J
CALL GRAU(IJ)
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6o Lt.NTINUE
ICNT= ICNT+I
K=l
AOA=J.O
OU 8 I=2tN

l.J 8 J=2tN
t( I,J I=0.0

8 IF(I.EQ,.J) H(I,J)=I.O
If (ICNT.GF.IMAX) GO TO 30

9 CUNT INUE
AI=AT
DO 10 1=2,N

10 JULD(I)=D(l)
RS=0.0
PJO=O.O
DU 12 I=2,N
it(1 }=0.0
90 II J=2,Z\j

11 R( I )=R( I) *H( I, J)*PJ l
RS=RS+AS(R( I I )

12 PJO.=PJO+R( I)*PJ I )
PJ0=-PJ/ RS

C
C ONE DIMENSIGNAL SEARCH
C

DU 13 I=2,N
13 D(I)=U(I)-RKI)*A1/RS

CALL POINT{(JL)
IF (JI.LE.)J)+.83333333'PJiO*A1) GO TO 15
AZ=-. 5 PJ O:"A IAI / ( J 1-JO-PI'J*A 1 )
U)EC=-. 5*PJO*AZ
DO 14 I=2,N

14 D(I)=D(I)-R(l)(1A2-AI)/RS
CALL POINT(J2)
I-(A.i ((Ju;-JJ-tDEC)/DEC).GE.O.1) CGO TO 17
GU 10 20

l5 AZ=3.0*A1
l)O 16 I=2,04

16 DII)=D(I)-R(I')*(A2-ALI/)RS
CALL POINT(J2!

17 E i= (J -JU-PJO04A1 ) / ( Al*AlI)
E2= ( JZ-J0-PJO0'A2) / (AZA2 
E4= (E i-EZ )/ (Al-AZ 
EJ=Si-E4*Al
IF (E3*E3-3.04PJO*E4 .LT. J.0) GO TO 20
A>= (-E 3 eS ;RIF' { E 3;'E A-3. O:P JU*EE } ) / ( '.'O 9E4 )
IF (A3.LE.O.O) Gll Tr( 20
IF (A3.GE.6.O*Ii ,A3=6.0*AI
IL) I 8 I= 2 ,N

18 J( l)=D() I-R,( ) (A3 -A2 ) /RS
CALL PClIN (J3)
If (J3.LE.J2) GO TO 22
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00 19 1=29N
l 0(1)I=D(I)-R(l)*(A2-A3)/RS

CALL POINT(J2)
20 AOP=A2

JO=J2
GO TO 23

22 CONTINUE
AOP=A3
JO=J3

23 CONTINUE
C
C ENrD OF ONE OIMENSIONAL SEARICH
C

IF (K.EQ.I .AND. A(II.LE.AMrIN) Go) r0 30
00 24 I=2,N

24 PJOL0( )=PJ(I)
CALL GRAD(PJ)
S=O.0
00 25 1=2,N

25 S=S+PJ(l)*PJ(I)
IF(S.LE.SMIN) GO TO 30
IF(AIO)PGE .3.O*AI.AND. ICNT .E. L.AND.K.EQ.l) GO TO 9
K=K+I
AOA=AOA+0.2*AOP/ N-I)
IF (K.GE.N) Ar=AOA
IF (K.GE.N) GO TO 6

C
C CALCULATE H MATRIX

U0 26 1=29N
DX I) =D:I1 )-OOLLOI )

t), 0)I i)=PJ(I I-PJOLDI)
D00 27 I=2,1F1
DR(I )=O.O
00 27 J=2,N

27 DR(I =DR(I)+H( I,J )*0(JJ
D)ML=O.O
OM2=0.0
I)U 28 I=2,N
Dmt=OMl+4OX( I ) !J;( I )

28 D2=-DM2+DGI I)I)R(1 )
DO 29 1=2 ,N
00 29 J=2,N

29i H(I,J)=H( I,J)+DX(I )*DX(J)//DJMI-DR(I )*i)R(J)/DMZ2
C

GO TO 9
30 CONT I NIJE

IN=N+ 1
WRITE (6,3) T,JOD(I),I=2, IN)

32 CONTINUE
33 CONTINUE

RETURN
END
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SUBROUTINE POINT(JP)
C VALJES OF X AT THE S.ilTCl T:4ES AND VALUE OF JP

EXTEKNAL FCT
REAL JP
JIMENSIJN DLO)J tXIL),X 15,11)XlS) ,AF( 1
CO)MMIlN CI ,C2,
COM.ION/SI/N,D,X,Vi, V2 ,V3,DEr
NN=9
D00 1 K=LNN
X(K, =O.O

1 XIlK)=O.O
DO 3 =1 ,N
U=(-L1)**( 1+1)
CALL AODAMS.(NiJ+( I ) ,J(I+1) ,XI ,XFFCT)
DO 2 J=1,NN
Xl I(J)=XFCJ)

Z X(JI+1)=XF(Ji
3 CONTINUE

Vi=X 7,N+I)
V2=X( 8 + 1)
V3=X( 9,N+1)
liT=V l*V2-V3*V 3
PI'=Vl/CET
i'1Z=-V3/DE 
P22=V/D)ET
JP=PL l+P22
RETURN
END
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SUBROUTINE GRAD(PJJ
C PARTIAL DERIVATIi-$ OF X WITH RESPECT TO: SWITCH llFCS

EXTERNAL FCTP
UIMENSION OlIJ),Xl l5,L),PJI 1)OXI( 15,XF(15)
COMMUN CLIC2,U
UOMMUN/SI/NUtX,VV2,V3,tlET

NN=15
dJ 5 J=2,N

U=(-I )**(J+1)
DO I K=1,6

1 Xl(K)=X(KtJ)
XI (7)=-2.*U
DO 2 K=8,15

2 XI(K )=O.O
I l=N-J +1
00 4 [=1,11
CALL ADAMS(NN+LDL I+J-1)0tD(+J) ,XIXFFCTP)
Il 3 K=1,NN

3 XI(K)=XF(K)
U=-U

4 (.UNTINUE
PVI=XI( 3 )
PV2=X 114)
PV3=XI( 15)
PJd(J)=-PV1*( VZo* z+V3*V3)-i'V2*(VL*V1.+V3*V3)

L +Z.*PV3*V3*(VL+VZ) )/UET**2
5 CONTINUE

RETUKN
END
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SUBRUUTINE FCT (r,X,)x)
C UIFFERENTIAL EQUATIONS FOR STATE,SENSITIVITY
C EQUATIONS AND INFORIMATIlON MATRIX

DIMENSION X(15),DX(15)
CCMMUN CL,C2,U
I!Xl 1) =-ClX(L I1-C2~X 1 2)*U
I)DX2)=X(l)-X(2)
nX(3)=-Cl:x[3)-C2*X( 14)Xl)-X(Z!
[)X(4)=X(3 )-X(4)
DX( 5)=-CLx (5 }-C2*X(6 )+X(l)
DX(6)=X(5)-X(6)
CX(7)=X(5 )*X(5)
DX(8)=X(3)*X(3)
CX(9)=X(3)JX(5)
RETURN
tND

SUBROfUTINE FCTP(TX,DX)
C DIFFERENTIAL EQU'AIONS FJR. STATESENSiFIVITY
C E(OUATII'NS, TIIEIK DERIVAfIVtS ';ITH RESPECT TO
C SITCH TIMES AN) DERIVATIVrS rfJ [INFOURMATION' MATRIX

0)lM r.NSION X( 15s) ,X 15 )
COMMON CI,C2 ,U
UXt I =-C1*X(L)-C2*X(2)+U
DX(2)=X( L)-X2 )
DX( 3) =-Ci: X( 3 )-C2eX( 4 )+X( L )-X( 2)
DA(4,=X(3)-X(4)
DA(5)=-Cl*X(5)-CZ*X(6 )+X( ')
0X(6)=X5 )-X(6)
DX(7) =-tlIXI7)-CZ*Xt(8
OX(8)=X(7)-X{ 8)
DXI9I=-CLr X(q}- C2~X( 01 )+X /I- X(Li)
DX( 10)=A (9-X(1O)
DX 11 )=-CX{I. .1)-C2:xX( t2)+X{*/)
UX(12)=X( ll)-X(12)
DXI 13)=2.*X(5)*X(Il
OX (1l4) =2.X(3I3)-X(9)
DX( I15} = X 3) :.,X( 11 + (5) 9X(9}
RETURN
I-ND
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APPENDIX B

This Appendix consists of two parts. The first part is a computer

listing of the simulation algorithm developed in Chapter VIII. The

simulation consists of applying Denery's combined algorithm to repeated

sets of simulated data and calculating the covariance of the resulting

estimates. The second part is a listing from the simulation prdgram

for the optimal input case for a set of 20 tests. Of special note are

the last three columns which (when multiplied by R = 10 ) show values

of I based upon the estimated values of the parameters. These values
a

ranged from slightly under the true covariance (shown in the last line)

to 50% over the true covariance, and indicate the sensitivity of the

information matrix with respect to errors in the estimates of the param-

eters.
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C IDENTIFICATION SIMULATICN USING THE OPTIMUM INPUT
C TO IDENTIFY M/ADOT AND M/q FROM THE SHORT PERIOD
C DYNAMICS OF AN AIRPLANE

REAL K32,K34,KN32,KN34,K54,Ml,Kl ,K2l,KRII,
C KR21,K14

DIMENSIGN U(luUO),Y(OOOXI( 50),XF( 50)1,
C ZL(OOOO),Sw(1O),ST 6,.100) ,SUM(O1)
COMMON U,Y,SWTtFL,FL ,F2FNII,FN21,Gll,G21,Z,

L K14iK54, GKll,K34,SWNN
EXTERNAL FCT1,FCT2

I FURMAT(8F10.5)
2 FKRMAT(313, iX,10O,2FIC.5)
3 FORMATi'1',30X,' IDENTIFICATION ALGORITHM',

C ' WITH OPTIMAL INPUTS'/' N=',[3,' NT=',13,
C ' IP=',13,' IX=',I10,' S=',FIO.5,' ACC=',FlO.5)

4 FORMAT(' SWITCH TIMES ARE ',10FlI.5)
5 FORMATI' K54='tFl0.5,' Gll=',FlO.5,' Gz1=',

C F10.5,' Ml=',FlO.5,'KII=',FIO.5,' K14=',FIO.5
C /' SIMULATED (ACTUAL) VALUES OF THE UNKNOWN ',
C ' CONSTANTS ARE ON TFE FIRST LINE'/' NOMINAL ',
·C 'STARTING VALUES ARE ON THE SECOND LINE'/
C ' VALUES USING DENERY"S ALGORITHM ARE ON SUB
CSEQUENT LINES')

6 FORMAT(//40X,' TEST NUMBER',13/
2'PK22' ,7X, 'P11' ,88XX, 'P12' ,8X, 'P22')

7 FORMAT(' ',14,2(2FLO.6,3F11.6))
8 FORMAT(//' K-STATISTICS CALCULATED FROM THE ABCVE '
i,13,' TESTS'/9X,'FII',7X,'F2L',7X,'PK21',7X,'PK22',
27X,'PL',8X,''P2',BX,'P X , ' 2',8X,'P22)

9 FORMAT(5X,t2(2F10.6,3F.11.6))
17 FORMAIl' ',I4,ZFlO.6,33X,2Fl3.6)

C INITIALIZATION
AM=O.O
DO 30 1=1,10

30 SUM(I)=O.0
DO 10 i=1,50

10 Xl(I)=O.O
C READ IN FULLOWING PARAMETERS
C N= NUMBER OF SwITCH TIMES +1
C NT= NUMBER OF TESTS
C IP= PRINT OPTION
C IX= RANDOM NUMBER
C S= STADOARC DEV OF MEASUREMENTS
C ACC=REQUIRED ACCURACY OF 10 ALGORITHM
C T= LENGTH OF TEST
C SW= SWITCH TIMES

READ (5,2) N,NT,IP,IX,S,ACC
WRITE(6,3) N,NT, IP,IX,S,ACC
READ(5,1) (SW(I,I=1l,N)
WRITE(6,4) (SW(I),i=L,N)
T=SW(N)
NN=N-1

C KNkjwN COiISTANTS FOR TilF C-8 AIRPLANE
G=3 2. 1
KEAD (5,1) K54p,GL,MI,Kll,K14
GZI=-K4S Gll
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kRITE(6,5) K54t11,G21 tML,KlI,K14
C SIMULATED VALUES FUR UNKNOWN CONSTANTS

READ (5,1) PL,P2
K32=PL+PZ
K34=P1lK54 +M1
Fll=K32+K54
F21=K34-K54*K32

C NUMINAL VALUES FOR UNKNOWN CONSTANTS
READ (5,1) PSI,PS2

C A CALL TO ADAMS WITH SUBROlJOINLt FCTI
C GENERATES TRUE INPUT AND OUTPUT

CALL ADAMS(5,0.0tT ,AI XF,FCTr I Pt, 
C ALGORITHM REPEATED ON NT SETS OF DATA

DO 21 K=1,NT
ICNT=O
WRITE(6,6) K
WRITE(6,17) ICNTtFIIF21,PIP2
PN1=PSI
PN2=PS2
KN32=PNI+PN2
KN34=PN1*K54+Ml
FN1 I=KN32+K54
FN21=KN34-K54*KN32
WRITE(6,17) ICNT,FNtFN 21,N PN1,PN2

C NUIIMAL RANDOM NUMBER ADDED TO MEASUREMENT
DO 11 1=1,401
A=O.O
00 50 J=1,12
IY=IX*65539
IF(IY) 55,56,56

55 [Y=IY+2147483647+1
56 YFL=IY

YFL=YFL*. 4656613E-9
IX=IY

50 A=A+YFL
V= (A-6.0)*S+AM

1I1 LI)=Y(I)+V
C IUENTIFICATION ALGORITHM

SWT=1 .O
15 ICNT=ICNT+l

IF (ICNT.GE.10) GO ro 20
C A CALL TO ADAMS WITfi FCT2 GENERATES NOMINAL OUTPUT,
C SENSITIVITY EQUAlIONS ANl) NECESSARY QUADRATURES

CALL ADAMS11,0.0,T ,XI ,XFFCT2tO,1)
W1=XF(7)
W2=XF(8)
V1=XF(9)
V=XF (10)
V3=XF (LI
DET=V *VZ-V3*V3
PK11=VI/DET
PK12=-V3/CET
PK22=V2/DET
KRI 1= ( V 4Wi-V 3*2 2) /DE T
KRZ1= (-V3*0l1+VZ*W2)/DET
FN 1=FNL+KRI 1
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FN2 1=FN21+KR2 L
KN32=FNLI-K54
KN34=FNZL+K54*KN32
PNL=(KN34-M1)/K54
PN2=KN32-PNI
P1,=PK 1+2.*PK12/K54+PK22/K54**2
P12=-PK12/K54-PK22/K54**2
PZ2=PK22/K54**2
WRITE(6,7) ICNT,FN1I ,FN2 1,PK11,PK12tPK22,PN1,PN2,

CP11,P12,P22
C If CHANGES IN ESTIMATES ARE LESS THAN ACC THEN PROCEED
C TO STEP 2 OR IF ON STEP 2 STOP

IF (ABS(KR11).LT.ACC .AND.ABS(KR21).LT.ACC) GO TO 16
GO TO 15

16 IF (SWT.LT.O.O) GO TO 20
ICNT=O
SwT=-l1O
GO TO 15

20 CONTINUE
C SIORE ESTIMATES FOR LATER ANALYSIS

ST(1,,K=FNLL
ST(2,K)=FN21
ST(3,K)=PNI
ST(4,K)=PN2
SUM(I)=SUM(1)+FNL1
SUM(2)=SUM(2 ) +FN2
SUM(6)=SUM(6)+PN1
SUM(7)=SUM(7)+PN2

21 CONTINUE
C CALCULATE THE ACTUAL MEAN AND COVARIANCE

SUM( )=SUM(1 )/NT
SUM(2)=SuP(2)/NT
SUM[6)=SUM(6)/NT
SUM(7)=SUM(7)/NT
IF(NF.EQ.1) GO TO 23
WRITE(6t8) NT
DO 22 J=1,NT
SUM(3)=SUM(3)(SSUM(L) -ST(L/,J))**2
SUM(4)=SUM(4)+ISUM( )-ST(,J))*(SUM(2)-ST(2,J) )
SUM(5)=SUM(5J+(SUA(2)-ST(2,J))**2
SUM(d)=SUM(8)+(SUiMib)-ST(3,J))**2
SUM(9)=SUM(9) (SUM(6b)-ST( JJ))*(SUM(7)-ST4,J) )
SUM(LU-J=SUM(1IOU)+(UM(7)-ST(4,J))**2

22 CONTINUE
SUM(3 )=SUM(3 )/MNT-.I)
SUM(4 )=SUM(4 )/(NT-1I)
SUM(5 )=SubM5 )/(NT-1.)
SUM(d )=SUM(8 )/(NT-L.)
SUM(9 )=SUM(9 )/INT-1.)
SUM(1O)=SUM{LU)/(NT-1.)
jWRTE(6,9) (SUM(I ) ,(==I10)

23 CUNT INUE
RETURN
END
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SUBROJUTINE FCT(Il,X,DX)
C GENERATES SIMULATED INPUT AND OUTPUT MEASUREMENTS

REAL K32tK34,KN32, KI34,K54 ,,tK ,K21,KRL , KR2 ,K14
DIMENSION X( 5O),DX( 50),U(IO0O),Y(ILOOO),Z(LOC),SW(IO)
COMMON UY,SwT ,FlI,F2.1,FNIiFN21,GLtGZ1,Z,
C KL4,K54,G-tKl K34, SWtNN
I-INT(LUU.OI*T) +1
Ut()!=0.2
DO 10 J=INN,2

10 IF(T.GE.Sh(J).AND.r.LT.SW(J+1). UIl)=-O.2
UX( I=Fll*X(1)+X(2)+GII*U(I)
[X(2)=F21*XA1) +G21*U(I)
DX(3)=XCI)
DXL4)=KII*XC4)-G*X(3)+K14*(K54*X(I)+X(2))/K34
Y( I )=X(1)
RETURN
END

SUBROUTINE FCT2(1',X,DX)
C GENERA[ES NCMINAL OUTPUT AND SENSITIVITY EQUATIOKS.
C PERFORMS QUADKATURES.

REAL K.32,K34 KN32, KN34 K54 ,MIK ,K21 KR t KR2 1,K14
DIMENSION Xi 5U),DX( 50),U(1000OYIOO)), Z(IOOC),SWI10)
COMMUN U,YSwT,FIL ,F21,FNLlFNZl,GltG2t1Z,
C K14,K54,G,KI I K34, SNN

I=INT(Ioo.0I*T) +1
DX() =FNi*X(l )L*X ( 2) +Gll*UI)
DX(2)=FN21*X(t) +G21*U([)
YD=X I)
IF (SWT.GT.U.O) YD=Z(I)
DX(3)=FNll*X(3 )+X(14 ) +.Y)
OX(4)}=FNZIX(3)
DX 5)=FNII*X(5)+X(6) 
DX(6)=FN21*X(5 )+Y
DX(7)=X(3)*(Z(I)-X(1))
DX(B)=X(5)*(i(I)-X([))
CX(9) =X( )*X( 5
UA(1U )=X(3)*X(3)
OX(IL)= X(3)*X(')

E TURN
LND
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