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ABSTRACT

A practical way of obtaining an approximation to a three dimensional

flow is to combine several two-dimensional solutions (quasi-three-dimensional
co
to solution). This paper discusses three basic types of two-dimensional solutions
co
W (meridional, blade -^to-blade, and channel) and several ways of combining 'them.

A centrifugal impeller is analyzed as an example. All recommended methods

are based on available NASA general purpose computer programs.

INTRODUCTION

The design of blades for compressors or turbines requires analysis

methods for flow that is usually three-dimensional. Because of the difficulty

of obtaining a true three-dimensional solution, the usual approach is to

combine several two-dimensional solutions. This is often called a quasi-three-

dimensional solution. Since there are several choices of two-dimensional

surfaces, and even more ways of combining them, there are many approaches to

obtaining a quasi-three-dimensional solution. Most two-dimensional solutions

are either on a blade-to-blade surface of revolution or on the meridional

(radial-axial) plane. However, when three-dimensional effects are most impor-
\

tant, neither a blade-to-blade nor a meridional plane solution can be expected

to give good results alone. In this case, significant information can often
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"be obtained from.a solution on a passage cross-sectional surface (i.e. a sur-

face normal to the flow). This is called a channel solution.

To obtain maximum information -analytically for a three-dimensional flow,

it is obviously desirable to combine different two-dimension- solutions. This

paper discusses these techniques, with an emphasis on using a channel solution

where there are strong three-dimensional effects. Since the best technique

depends on the blade aspect ratio, solidity and other factors, analysis

procedures are suggested for several types of turbomachines. As an illustration

of a quasi-three-dimensional analysis, a six to one pressure ratio centrifugal

impeller is analyzed, using a combination of all three analysis methods.

GENERAL DESCRIPTION OF TWO-DIMENSIONAL METHODS

Generally there are three main types of two-dimensional .analysis methods.

These are the meridional plane analysis, the blade-to-blade analysis, and the

channel analysis. All three methods have been programmed for computer solu-

tion. The two-dimensional meridional plane and blade-to-blade analysis methods

have been widely used on many types of turbomachines. The channel analysis

has been used extensively in the past for axial flow turbines. However, now

the technique has been generalized and can be used on other types of turbines

and compressors.

There are four fundamental assumptions for all the methods'described here.

These assumptions are

(1) The flow is steady relative to the blade.

(2) The fluid is a perfect gas with constant Cp.

(-3) The fluid is nonviscous.

(U) The flow is absolutely irrotational.

Additional assumptions are made for each particular method.
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Meridional Plane Solution

A meridional plane solution is a flov solution on a stream surface

between the blades. The shape of this surface (see figure l) is often takeri

to be the same as the mean blade surface, and the tangential thickness is

taken to be the tangential space between blade surfaces. The solution can be

obtained either by a finite difference solution (reference l) or by using the

quasi-orthogonal method (reference 2). The quasi-orthogonal solution, using

the velocity gradient equation has been programmed for radial turbines with

radial blade elements (reference 2) and for axial or centrifugal compressors .

of fairly general blade shape (reference 3). The quasi-orthogonal solution

is not limited to subsonic flow, but may be locally supersonic. The most

serious limitation of the quasi-orthogonal method is imposed by the difficulty

in obtaining convergence of the iterative procedure with high aspect ratio

blades. Presumably, this type of geometry could be analyzed by the finite-

difference stream function method. At the present time there is not believed

to be any generally available computer program of this type. Hopefully, this

type of program will be available in the near future.

Blade-To-Blade Solution

Figure (2) shows a typical blade-to-blade surface of revolution, and

figure (3) illustrates, how the normal thickness can vary. The blade-to-blade

solution can be obtained by means of a finite difference solution of the stream

function equation. Several NASA computer programs are available for this purpose.

These programs will obtain a compressible flow solution on any blade-to-

blade surface of revolution. Reference k presents a FORTRAN program (TURBLE)

which will give a solution for subsonic, compressible, nonviscous flow through
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either an axial, radial or mixed flov stator or rotor. Other programs have

been published for tandem blades (TANDEM) (reference 5), and to obtain a

detailed leading edge, or slot region solution (MAGNFY) (reference 6). A

summary of these programs with- some examples, is given in reference.(?)•

Generally, the stream function solution can be obtained only if the flow is

completely subsonic. However, by using .velocity gradient equations, it is

possible to extend a high subsonic solution to obtain a locally supersonic

(transonic) solution. This technique has also been programmed. This program,

called TSONIC, has been published (reference (8)).

A limitation of the blade-to-blade analysis is that the normal stream-

sheet thickness must be specified throughout the passage. This thickness is

determined by the three-dimensional nature of the flow, so that this thickness

cannot be determined precisely with two-dimensional solutions. However, this

thickness'can often be estimated reasonably with a channel flow solution or

with a meridional plane solution. This will be discussed further .later on.

Channel Solution

The channel solution is a solution on a surface across the channel

bounded by hub, shroud, and blade surfaces on all sides (fig. U). The solu-

tion is based on using the velocity gradient equation both from blade-to-blade

and from hub to tip. Although this solution is based on simplifying assump-

tions about how streamline curvature varies across the passage, good results

can be obtained. The method has been used successfully in axial turbine design

and analysis (ref. (9) and (10)). Recently the method has been generalized

to be used on any guided turbine passage (ref. (ll)). The solution procedure

is simple, and there are no convergence problems. Also, slightly supersonic
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flow is no particular problem. However, shocks or Prandtl-Meyer expansion

will not be indicated "by this method.

The velocity distribution can be obtained in this way for the guided

channel formed by the portion of the passage where the.orthogonal surface is

completely within the blades. The guided channel will not cover the entire

auction surface. To obtain the velocities on the uncovered portion of the

blade, the location of the stagnation streamline would have to be known.

Therefore, the channel method cannot be used to obtain velocities on the

uncovered portion of the blade. However, the blade-to-blade analysis can be

used for this problem.

In addition to the basic assumptions of steady flow of a perfect, non-

viscous gas, it is necessary to make assumptions as to how streamline curvature

varies across the passage, both blade-to-blade and hub-to-tip. The usual

assumption is that either the streamline curvature or radius of curvature

varies linearly. The curvature at the boundaries, of-course, corresponds to

the curvature of the physical surface.

USE OF TWO-DIMENSIONAL METHODS

There 'are several combinations of 2-D~analysis method's that will give-

good results. The technique to use depends on whether the. flow is radial,'•

axial, or mixed; on the blade aspect ratio, solidity, and wall curvatures;

and on hub-to-tip radius ratio. To be helpful in obtaining maximum use from

available NASA computer analysis programs, some suggested analysis procedures

are.presented below. These procedures are intended to be useful as an iterative

design procedure. The starting point for any blade design should be accurate

velocity diagrams. There are programs available for this important part of
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the blade design. For example, see ref. 12 for axial turbines, and ref. 13

for axial compressors.

Accurate results from any of the analysis methods discussed depends

on the accurate estimation of losses. There are tvo main approaches to

estimating losses. One approach is to estimate the overall loss for the entire

cross section. Such loss estimates can be obtained from performance data

correlated with parameters such as blade jet speed ratio, flow coefficient

and reaction;.e.g. ref. lU and 15. The other approach is to estimate the

boundary layer growth, and use the displacement thickness to adjust the physi-

cal boundaries. For rotating blades, centrifugal force has a significant effect

on the boundary layer, so that a 3-D boundary layer analysis becomes desirable.

Because of the difficulties with a realistic boundary layer analysis, it is

more usual to use the overall loss, expressed as a loss.in relative total

pressure. Within the blade, the loss can be assumed distributed linearly from

the blade leading edge to trailing edge.

Pure Axial Flow

For pure axial flow, the flow can be analyzed with the use of the TSONIG

program of reference 8. For the analysis problem it is necessary to make a

layout to; determine enough geometrical data to define the blade shape adequately.

Often there will be a significant radial streamline shift through the blade

row, even with constant radius hub and shroud. To allow for this effect,

velocity diagram information should be used to determine the radial shift and

change in streamsheet thickness through the blade row. The analysis may be

done at three or more sections from hub to tip to determine a complete blade

surface velocity distribution.
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While the TSONIC program is an analysis program, it Is easier in many

ways.to use it as a design program. No blade layout is necessary.in the

design problem, since the geometrical input data can be obtained without a

layout. Minimum geometrical input is recommended for blade design. The mini-

mum geometrical input consists of blade axial chord, leading- and trailing-edge

radii, stagger, and tangent angles to leading- and trailing-edge radii for

'both;suction and pressure surfaces. Usually, this information can be deter-

mined without a layout so that a satisfactory velocity distribution results;

i.e. proper diffusion is obtained and surface velocity curves for suction and

pressure surfaces close at leading and trailing edge. -In some cases it may be

necessary to specify a point on one blade surface to control a.throat dimension.

If -this procedure is followed at three or more sections from hub to tip, a

complete blade design is obtained.

After the complete analysis is obtained, the choking mass flow should be

checked for any blade that is choked, or close to it. This cannot be readily

determined from the blade-to-blade analysis, since the radial distribution of

flow becomes critical. Therefore, the channel flow analysis (CHANEL program,

ref. 11) should be used for this purpose. This will require a blade layout

to determine the lengths of blade-to-blade streamline orthogonals. It is

usually necessary to check only a few orthogonals to verify the choking' mass

flow and to see if the normal thickness used in TSONIC is correct. Any dis-

crepancy may be corrected by rerunning the TSONIC program with the necessary

corrections.

If desired, a blade designed or analyzed with the TSONIC program may have

offset coordinates calculated with respect to the true blade chord, using the

program of reference 16.
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Mixed Axial Flow With Low Aspect Ratio Blades

When there is substantial change in radius through the blade row

(either stator or rotor) it is more difficult to determine the proper normal

streamsheet thickness to use for the blade-to-blade analysis. This thickness

could be obtained from the CHANEL program, but this necessitates the layout of

the blade shape at all sections from hub-to-tip. Rather than do this at an

early stage, it would appear better to use a meridional plane analysis, such

as the quasi ̂ -orthogonal analysis of reference 2 or 3. If the aspect ratio is

not high, and wall curvatures are not too large, this will converge to a solu-

tion with meridional streamline locations. This gives sufficient information

on the normal streamsheet thickness to be able to use the blade-to-blade

TSONIC program. From this point the procedure is very similar to that for a

pure axial blade.

It should be cautioned that the layout procedure to determine input

information for the CHANEL program can become difficult if there is a large

deviation of the flow from the axial direction combined with substantial hub

or tip wall curvature. In this case the blade-to-blade surface is not develop-

able and cannot be laid out on a flat surface with correct angles arid linear

measurements. There are several ways that a nondevelopable blade-to-blade

surface of revolution can be laid out. However, these layouts are distorted,

so that corrections must be made to determine orthogonal directions; also,

distance measurements from the layout may require a graphical integration

procedure. Although these.calculations could, be done with a computer program

requiring no layouts such a program is not available at present.



Mixed Axial Flow With High Aspect Ratio Blades

The problem becomes more difficult when there is a high aspect ratio,

combined with substantial radius change. It is desirable to start with a

meridional plane solution, but the Q.O. program of ref. 2 or 3 most likely

would not converge. A finite difference solution in the meridional plane

(ref. l) would be desirable, but such a program is not generally available

at present. The only alternative is to work between the TSONIC program and

the CHANEL program. This may be difficult, since there may be very little •

or no guided channel. Ultimately, you may be reduced to guesswork.

Mixed Radial Flow Compressor or Turbine

The most difficult analysis problem is the mixed radial flow compressor

or turbine, because the flow is highly three dimensional with strong secondary

flows. However, a rough analysis is possible using the quasi-orthogonal-

meridional plane solution (references 2 and 3). The blade-to-blade analysis

(reference 6) can be used then, if desired. The quasi-orthogonal meridional

solution provides information of limited accuracy because the blade-to-bla"de

variation of velocity is not considered in satisfying continuity. The channel-

analysis is useful for this purpose since both the blade-to-blade.and the

hub to tip variation in velocity is considered. Especially if-there is any

possibility of choking, the channel analysis should be used. The limitation

in the accuracy of predicting choking mass flow is controlled by the accuracy

with which boundary layer displacement thickness can be estimated. It -is

possible, of course, that the boundary layer may be separated, so that this

is a difficult problem. Reference 17 presents a theory on separated flow in

centrifugal compressors, with suggestions on analysis procedures.
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An example 6 to 1 pressure, ratio centrifugal compressor will be analyzed

to show thfe results which can be obtained.

CENTRIFUGAL IMPELLER ANALYSIS

One of the areas where flow analysis is difficult is in a centrifugal

impeller. The flow is highly three dimensional, since the flow changes from

axial to radial in a short distance. To obtain a high pressure ratio it is

also necessary to have high blade loading and transonic velocities with a

high tip speed. For optimum efficiency it is also necessary to have backswept

blades. The resulting design is difficult to analyze. To illustrate this

type of problem and show what results can be obtained, a backswept centrifugal

impeller with a 6 to 1 pressure ratio is discussed here. This example is

taken from reference 3. Figure 5 shows the meridional profile and figure 6

showa the mean camber line for the blade at the hub and shroud. This blade

was designed so that the contours of constant 9 in the meridional plane are

straight lines.

The hub and shroud blade surface velocities which were obtained from the

QUAC program of reference 3 are shown in figure 7° Only the mean velocities

are obtained by the: meridional analysis. From the mean velocities, the blade

loading is approximated by Stanitz' method (reference 18). Stanitz' method

is based on the assumption of linear variation-of velocity from blade-to-blade

with absolutely irrotational flow.

A blade-to-blade analysis at hub and shroud was made using the TSONIC

program of reference 8. The results of this analysis is also shown in

figure 7. Several problems arise in using the TSONIC program here, First,

the exit flow angle must be specified as input to the TSONIC program. Because
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of slip the exit flow angle will deviate substantially from .the blade exit

angle. The exit flow angle for this example was estimated using a slip factor

calculated by Viesner's method, reference 19. Second, at the shroud, velocities

for the inlet portion of the blade become fully supersonic (not just transonic).

Therefore, the TSONIC program did not obtain the proper solution for the first

part of the blade at the shroudo This is the reason why the velocity distribu-

tion from TSONIC is incomplete on figure T(b). Finally, the velocities obtained

by TSONIC depend strongly on the normal stream sheet thickness. This is not

known accurately, but is only approximated from the meridional plane solution.

Since the inlet is nearly choked it is critical to get the right meridional

streamline spacing-.

For these reasons it was better to get the blade loading and final

velocities by using the CHANEL program within the guided portion of the blades.

Because of the complex geometry it was required to make detailed layouts of

the blade at the hub, mean and tip to determine blade-to-blade streamline

normal lengths. The meridional normal lengths were obtained from the

meridional profile, figure 5. The blade-to-blade and hub-to-shroud normal

lengths together determine the blade passage flow area.

Also.required as input for the CHANEL program was the hub and shroud wall

curvatures, and the blade surface curvatures. The hub and shroud wall curva-

tures were obtained as part of the QUAC program output. The blade surface

curvatures were obtained from the output of the TSONIC program, interpolating

as necessary. These curvatures help determine the blade loading and the

variation of velocities from hub to tip.

The results of the CHANEL program analysis are shown in figure 7• It •
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will be noted that the blade loading increases right up to the end of the

passage. This is not realistic, since in a radial impeller there is slip

near the tip, resulting in a reduced loading at the last portion of the "blade.

This reduced loading is not easily predicted by the CHANEL program. However,

qualitative results can be obtained by referring to the TSONIG output shown

in figure 7. Here, by using the proper outlet flow angle as input, the blade

loading is predicted to fall rapidly near the trailing edge. The fact that

the loading tends to zero at the trailing edge is an indication that the

correct exit flow angle was used.

Since the CHANEL program considers variation in both hub-to-shroud and

blade-to-blade directions simultaneously, it is considered to be closest to a

theoretical three-dimensional solution. The TSONIC program shows qualitatively

the rapid unloading of-the blade near the exit. Overall, there is a fair

agreement between the three methods as to the general behavior of the flow,

but with fairly large differences in some areas. These differences occur

because of the three dimensional nature of the flow and are indicative of the

uncertainty of the analysis of three dimensional flow by two dimensional methods

CONCLUDING REMARKS

Three types of two-dimensional analysis methods have been described.

The proper use of these methods will give useful information on flows which

are not two-dimensional. Particularly useful for three dimensional flows is

the channel method which gives very good results in a well-guided channel,

even with strong three-dimensional flow, if losses can be estimated reasonably.

In other cases, proper combinations of two-dimensional solutions can be.very

helpful in the absence of a true three dimensional analysis computer program.



13

Because of the complexity of the solution procedures for any of the

two-dimensional methods, it is not practicable for each blade designer to

write his own computer program for each method. Hence, the methods proposed

for actual use is limited to those for which a general purpose computer

program is available.
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