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ABSTRACT

Scale model tests were conducted to evaluate the effectiveness of
aerogrids and punched plates in producing flat velocity profiles downstream
of short diffusers as would be used between the compressor and combustor of
advanced aircraft engines.

The diffuser had an area ratio of 4.17 and a length~to-inlet-
height ratio of 2.07. The aerogrids tested were plates containing 1123
contoured venturis in parallel with geometric blockages of 83, 74, and 61
percent, respectively. The punched plates contained 1123 sharp-edged
orifices with blockages of 58 and 30 percent.

The results show that aerogrids, with higher effective blockage
for the same pressure loss, are more effective flow-smoothing devices than
the punched plates. Also, the overall pressure loss decreases and the exit
velocity profile becomes flatter as either type of grid is moved closer to
the diffuser exit plane.

vi
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SUMMARY

Tests of 1/3-linear-scale models were conducted to evaluate the
effectiveness of aerogrids and punched plates in producing stable, rela-
tively flat velocity profiles downstream of a very short diffuser located
between the compressor and the annular combustor of a large turbofan engine
for supersonic aircraft. The aerogrids tested were plates containing 1123
contoured venturis in parallel, The punched plates contained 1123 sharp~-
edged orifices sized to give the same total pressure losses as corresponding
aerogrids. The objective was to produce acceptable exit flow profiles
while holding the overall length (full-scale) and overall total-pressure
loss for the diffuser plus the grid to 6 inches (15.2 cm) and 3 percent at
an inlet Mach number of 0.3, respectively. The test variables were diffuser
entrance Mach number and Reynolds number (to bracket the aircraft cruise
condition and the most severe engine relight condition at altitude), grid
blockage (percent of diffuser exit area), grid spacing from the diffuser
exit plane, and simulated circumferential and radial flow distortions at
the diffuser entrance.

The diffuser tested had an area ratio of 4.17, a length-to-inlet-
height ratio of 2.07, and a constant-pressure-gradient, diverging contour of
3-inch (7.62-cm) length followed by a l-inch (2.54-cm) length of constant-
angle expansion to the full annular area of the combustor. The three aero-
grids tested had geometric blockage of 83, 74, and 61 percent. The two
punched plates tested had geometric blockages of 58 and 30 percent and were
designed to have the same total pressure losses as the first two aerogrids
(83 and 74 percent blockage, respectively) at a diffuser inlet Mach number
of 0.3.

The results show that the aerogrids, with higher effective block-
age for the same pressure loss, are more efficient flow~smoothing devices

than the punched plates. The overall pressure loss of diffuser plus grid
decreases, and the exit velocity profile becomes flatter as either type of
grid is moved closer to the diffuser exit plane. Only the aerogrid of 83
percent blockage effectively smoothed the circumferential distortion created
at the diffuser inlet by a 64 percent solid, 10 degree sector screen. How=
ever, the aerogrid of 74 percent blockage effectively smoothed the radial
(hub- and tip-peaked) inlet flow distortions with a total pressure loss of

3 percent at an inlet Mach number of 0.3.

INTRODUCTION

The experimental work described in this report was sponsored by
the Airbreathing Engines Division of the NASA Lewis Research Center where
research is being conducted on a full-scale turbojet diffuser and combustor.
The objective of this NASA effort is to develop a diffuser~combustor combin-
ation with minimum length; a stable, reasonably flat combustor entrance
velocity profile; minimum pressure loss; high combustion efficiency; and an
optimum combustor exit temperature profile for maximum turbine performance.
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A portion of this effort has been concentrated on the development of the
diffuser alone, and NASA/LeRC and its contractors have investigated a va-
riety of approaches to diffuser design utilizing the inlet and outlet di-
mensions dictated by the overall engine design (references 1-16).

In a turbojet with an axial compressor, the diffuser designer is
faced with an entrance flow that is highly turbulent, with a minimum bound-
ary layer and strong radial and circumferential velocity gradients that are
unsteady in nature. Similar diffuser entrance conditions have been en-
countered with ramjet engine combustion chambers used in supersonic guided
missiles. One device that has been used successfully to prevent flow sepa-
ration in a minimum-length diffuser section in ramjets is an "aerodynamic
grid," which is a plate containing hundreds of small venturis in parallel,
arranged as close together as practical in a hexagonal pattern. Such a de-
vice, located between the diffuser and the combustor, was first used on the
engines for the Bomarc missile, and a patent was issued to the Boeing Com-
pany (reference 16). This technique has since been applied to the engines
for the Triton and Long Range Typhon missiles developed by the Applied
Physics Laboratory of The Johns Hopkins University and to several APL/JHU
exploratory and advanced development propulsion programs. The basic ob-~
jective of the work reported here was to apply this design knowledge on
aerodynamic grids to the design of annular turbojet diffusers of minimum
length.

Many other approaches for shortening diffusers have been investi-
gated in the past. The general problem is that the diffuser performance de-~
creases as the angle of divergence increases, and unacceptably high pressure
losses and regions of flow separation have often resulted. Considerable re-
search has been done using active techniques such as boundary layer suction
(references 1,5,6,7,8) and static devices such as vanes, airfoils, and vor-
tex generators (references 2,3,4,7,9,10,11) to improve the performance of a
short diffuser by recovering a higher percentage of the kinetic energy of
the flow and reducing the region of flow separation. In diffusers for wind
tunnels, wire screens and/or honeycomb structures are used to reduce turbu-
lence and smooth velocity profiles entering the test section. Round-wire
screens and sharp~edge-element screens or plates have also been investigated
(references 12,13,14,15) as low~loss flow-smoothing devices.

For any grid-type device, including the aforementioned aerogrids
of interest here, the principle employed is to size the grid holes to pro-
duce a given average subsonic throat velocity for a given average upstream
flow condition; if, in any local area, the velocity of the flow impinging
on the grid substantially exceeds the average upstream condition, the ori-
fices in that local region will choke the flow and cause a redistribution of
flow over the remaining area of the grid. Since the contoured, venturi-type
holes in an aerogrid can be designed for a higher average throat velocity
for a given pressure drop, this flow-smoothing action becomes more effective
than with simple punched plates or screens.
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The main objective of the present research effort was to compare
the effects of grid blockage (geometric percent solidity in grid throat
plane), spacing from diffuser exit plane to grid face, and circumferential
and radial (hub- and tip-peaked) distortions in velocity profiles at the dif-
fuser inlet. A second objective was to obtain comparative performance data
with simple punched plates.

SYMBOLS

A flow area
AR diffuser area ratio = A,/A,
M Macﬂ number
)3 static pressure
PT total pressure
q dynamic pressure = (y/2) x PM?
R radius from engine centerline
S solidity = 100 (4&; - A )/A;, percent

grid
\'/ Velocity

P, - P,

1 diffuser effectiveness = o (L - 17280 (For incompressible flow)
v specific heat ratio

Superscript

arithmetic average

Subscripts

o stilling chamber

diffuser entrance

2 diffuser exit (dump)

upstream of aerogrid or punched plate
downstream of aerogrid or punched plate

downstream of exit pitot rakes
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air

average
centerline
diffuser

inner

local conditions
maximum

outer, or open
total conditions

throat conditions

DESIGN OF DIFFUSER, AEROGRIDS, AND PUNCHED PLATES

Diffuser Design

The critical conditions for designing the diffuser are: 1) the

cruise condition, because the pressure loss during cruise must be held to
a minimum in the interest of fuel economy, and 2) the most severe condition
at which relight might be required, because any flow-smoothing device must
not choke (overall) at this condition and thereby further reduce combustor

pressure,

For the present study the cruise and relight conditions were de-

fined as shown in the upper part of Table I.
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TABLE I -~

FOR ANNULAR DIFFUSER

DESIGN CONDITIONS AND DIMENSIONS

Design conditions, diffuser entrance

For Cruise

For Relight

Airflow, w_:
a

Total temperature, T °F (°C)

T s
(o]

Total pressure, PTl’ psia (N/m?)

Full-scale, 1lb/s (kg/s)
Model-scale, 1b/s (kg/s)

110 (50)
12.2 (5.56)

1200 (648)

90 (6.2 x 10°)

16.5 (7.5)
1.83 (0.833)

100 (37.8)

6 (4.14 x 10%)

Mach number, M, 0.305 0.434
1/3-Scale Simulated
Dimensions and geometric ratios Model Full Scale

Diffuser entrance radii and area:
R, , to inner wall, in. (cm)
R, to outer wall, in. (cm)

1
R = (R, +R_)/2, in. (cm)
avg, i, 04

A,, flow area, in.?® (cm?)

19
Diffuser exit radii and area:
Rig’ to inner wall, in. (cm)

R, to exit wall, in. (cm)

avga= (Rie+ Roa)/Z, in. (cm)

A,, flow area, in.? (cm?)

Diffuser lengths:

b s total inc. grid, in. (cm)
max

divergent section, in. (cm)

Entrance height/length ratio,

(Ril- Roi)/zd

Exit/entrance area ratio, Ay/A,

4,667 (11.85)
5.313 (13.50)
4,990 (12.67)

20.24 (130.6)

3.803 (9.66)
6.428 (16.33)
5.116 (12.99)

84.49 (545.1)

1.333 (3.39)
2.000 (5.08)

2.07

4.17

14,00 (35.56)
15.94 (40.48)
14.97 (38.02)

182.5 (1177)

11.41 (28.98)
19.28 (48.97)
15.35 (38.98)

759.3 (4990)

4,00 (10.16)
6.00 (15.24)

2.07

4.17
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The engine size of interest was one having an annular combustor
of approximately 40-inch (102-cm) OD, with a flow area of approximately 5.3
feet® (0.5 m®), preceded by a short annular diffuser with approximately a
4:1 area ratio (exit to inlet) and a length below the 6.6=inch (16.8~cm)
length already being used for this engine size. It was decided that the
combined length of a new, shorter diffuser and a flow=-smoothing grid should
not exceed 6 inches (15.2 cm), and that use of 1/3-linear-scale models
(having 1/9 the full-scale cross-sectional areas) would provide satisfac-
tory aerodynamic simulations and would permit adequate instrumentation.
The model dimensions selected, and the corresponding full-scale dimensions,
are given in the lower part of Table I.

Various diffuser designs were considered, and it was decided,
based on unreported test data and experience from the Long Range Typhon ram-
jet work mentioned in the Introduction, to devote 3 in. (7.6 cm) of the 4-in.
(10.2=cm) diffuser length zd to constant-pressure-gradient contours. The

last inch (2.5 cm) then would use constant divergence angles to reach the
exit radii of the annulus. The contours selected are shown in figures 1
and 2. The features of this design may be stated further as follows:

1) The cruise condition (Table I) is the reference condition.

2) The constant-pressure-gradient section diffuses the flow
(theoretically) from Mach 0.3 to Mach 0.2. It has an equivalent conical
half-angle of 8.9 degrees.

3) The downstream divergent section, called the dump section,
provides adequate radial flow area forward of the grid to ensure unre-
stricted flow to the outer holes of the aerogrid or punched plate. Provi-
sions were made for testing the grids at two grid-face locations, 0.10 in.
(0.25 cm) and 0.25 in. (0.63 cm) downstream from the diffuser exit plane.

Aerogrid Design
Three aerogrids, designated A, B, and C (see figures 3 through 5)

were designed in sequence as testing proceeded. The design of aerogrid A
was established as follows.

Previous experience with aerogrids indicated that, for good flow
distribution with minimum pressure loss, the venturi throat Mach number
should be near 0.6 at the design condition. However, for the present appli-
cation, a compromise was needed between the relight condition (which would
choke first because of the lower pressure and lower Reynolds number) and
the cruise condition. The Typhon ramjet aerogrid, which had venturis of
0.221-inch (0.56~cm) throat diameter showed a sharp drop in pressure re-
covery when the throat Reynolds number fell below 30,000, To be conserva-
tive, it was decided that aerogrid A should be designed to avoid (by a
small margin) choking at a throat Reynolds number of 50,000 at the relight
condition.
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The desired grid thickness (venturi length) was 1.75 in. (4.44
cm) or less, and a well-shaped venturi has a length/throat-diameter ratio
near 4 (see figure 6). Parametric calculations for designs in this vicin-
ity indicated that a design which just choked at the relight condition
would have a throat Mach number of 0.52 at the cruise condition. A slight
back-off from these values (by an arbitrary 6% increase in throat size) led
to the full-scale parameters listed in Table II for aerogrid A.

TABLE ITI - FULL-SCALE DESIGN PARAMETERS FOR AEROGRID A

Throat Mach number at the relight condition = 0,76

Throat Mach number at the cruise condition = 0.48

Hole throat diameter = 0,383 in.(0,97 cm)
Number of holes = 1123

Total throat area = 129.4 in® (840 cm®)

The design of aerogrid B was based on the results obtained from
aerogrid A. The target total pressure loss for the diffuser plus aerogrid
configuration was 3% at M, = 0.3. Test data (Run 4) showed that for aero-
grid A the total pressure loss for diffuser plus aerogrid was 5.3% (i.e.,

Pr = Pr .
__%____i = 0.053) at M, = 0.3, which corresponded to M_ = 0.48. Calcula-

T

1
tions at these conditions showed a divergence loss from the venturis,
p - p . . i = on = 0. §
(PT:3 PT4 /qt, of 0.167. Since |q/Py ) 138 at M, 48, and
this yields the following estimated total pressure loss across aerogrid A:

Pr," PT4)/PTt°‘ /qt X (q/PT

By difference the estimated loss for the diffuser was 0.053 - 0.023 = 0.03,
or 3%.

=~ P
ts Tt’

= 0.167 x 0.138 = 0.023.

P - P
TS T4 t

Since the overall total pressure loss of 5.3% for aerogrid A was
unacceptably high, aerogrid B was designed to have a grid throat Mach num-
ber of 0.3, such that (q/PT) = 0.059. Using the same estimate for diver-

t

gence loss (0.167) as was used for aerogrid A, the estimated total pressure
loss across aerogrid B was (0.167) (0.059) = 0.0098, or less than half that

for aerogrid A. The corresponding throat diameter for aerogrid B was 0.155
in. (0.393 cm), or 1,125 times that of aerogrid A. Figure 6 specified the

venturi contours for aerogrids A and B.
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Aerogrid C (Figure 5) was designed
pressure loss and flatten the parabolic exit
The central core holes were kept at
eter specified for grid B, but the inner and

grid B.

to reduce further the total
velocity profile exhibited by
the 0,155 in. (0.393 cm) diam~-
outer holes were enlarged to

0.240-in. (0.609-cm) diameter, so that the flow would spread more to the

inner and outer holes.

Table III summarizes the design specifications for the three 1/3-

scale aerogrid models.

SPECIFICATIONS FOR 1/3-SCALE AEROGRID MODELS

TABLE IIIL

Each has 1123 holes and is 0.487 in.(1.237 cm) thick

Throat area, At(1123 venturis),

in.® (cm®)
Ay = A

Percent blockage, x 100

14.34 (92.5)

83

21.6 (139.4)

74

Parameter Aerogrid A Aerogrid B Aerogrid C
Throat diameter, in.(cm) 0.1277¢0.324) | 0.155(0.394) | 0-135(0.394)%

0.250(0.610)b

33.32 (215.0)

61

Aa

8 For 460 central core holes (midway in annulus)

b For 663 inner and outer holes (total, a + b = 1123 holes)

Punched Plate Design

Punched plates A and B (Figures 7 and 8, respectively) were de-
signed to have the same total pressure losses as aerogrids A and B, respec-

tively, at M, = 0.3. The number of holes (1123) and hole pattern were kept
the same as those of the aerogrids. The theory developed in reference 15
for low-velocity flow through sharp-edged orifices was used. For punched
plate A, the loss coefficient, (PTS- PT4)/q3, was calculated as follows:

At M, = 0.3, M; = 0.072, and q/PT = 0,0036. To match the 2.3% total pres=-
3
sure loss of aerogrid A,
B~ B 5o 8
( Ta, T, T, T, . 1 = 0.023 = 6.5
- TP 0.0036
q P .
3 Ts q/PT .

This loss coefficient corresponds (per ref. 15) to a blockage of 58% yield-
ing a hole diameter of 0.200 inch (0.508 cm) for punched plate A.
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In a like manner, punched plate B was designed to match the total
pressure loss of 0.98% at M, = 0.3 for aerogrid B. The loss coefficient was
computed to be 0.86, which required a blockage of 30% and a hole diameter of
0.259 inch (0.657 cm).

No punched plate C was designed because the test results for aero-
grid C showed no improvement over aerogrid B, leaving no reason to fabricate
a third punched plate.

TEST APPARATUS AND INSTRUMENTATION

Flow System
Figure 9 shows the overall experimental setup. Air is supplied to

the connected pipe test rig at pressures from 1200 to 125 psia (8.3 x 10® to
0.9 x 10® N/m®) and at ambient temperatures from remotely located air stor-
age tanks. The airflow to the model is controlled by a choked ASME long-
radius nozzle. The range of test Reynolds numbers is controlled by schedul-
ing various airflow rates. At each airflow, the pressure level in the model
is varied by restricting the model exit in order to obtain the desired range
of inlet Mach numbers (0.15 to 0.45). With a choked nozzle upstream of the
model controlling the inlet airflow rate, choked ASME long-radius nozzles at
the exit provide an accurate means of controlling the pressure level in the
model at constant inlet airflow rates,

For the high airflows, 18 and 11 lb/sec (8.2 and 5.0 kg/sec), the
air discharging from the diffuser is exhausted to the atmosphere. For the
low airflows, 2 and 3 lb/sec (0.91 and 1.36 kg/sec), the exhaust is con-
nected to a steam ejector, which produces the required vacuum to ensure that
the exit nozzles are choked.

Uniform, low-velocity flow was produced in the stilling chamber
upstream of the diffuser by use of a central baffle plate immediately down-
stream of the inlet nozzle, and a 36%-open~-area screen attached to radial
support arms (resulting in a net 26 percent open flow area) at the entrance
to the stilling chamber,

The test section (approximately 7.8 feet (2.4 m) in length) is
composed of five cylindrical pipe segments which begin at the airflow nozzle
exit plane and end downstream of the aerogrid exit station. The diffuser
and aerogrid assembly is contained in a l4-inch (35.56-cm)-0D x 3/4-inch
(1.90-cm) -wall steel pipe which is held between the inlet stilling chamber
section and the diffuser exhaust section by two grooved pipe joint clamps.
In addition to several clamps, the segmented test rig is held rigidly in
aligmment by three one=-inch-diameter steel draw bars.

Distortion Elements

Two types of inlet flow distortion were used to evaluate the
ability of an aerogrid to smooth distorted flow. A circumferential distor-
tion was generated by placing a 10° sector of 367% open wire screen across
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the two inlet bellmouth sections at the 3 o'clock circumferential location.
This sector o»f screen produced a uniform, 25% lower than average, velocity
profile across the inlet annular gap at 3 o'clock while not affecting the
inlet velocity profile at either the 9 or 12 o'clock positions. It was de-
signed to be manually rotated into position and was used with both the aero-
grids and punched plates.

The second type of inlet flow distortion was a hub- or tip-peaked
radial profile generated by removing one or the other of the elliptically-
shaped bellmouth rings attached at the leading edge of the inlet annulus,
thereby forcing a slower flow into the inlet on the side from which the bell-
mouth section was removed, Both hub- and tip-peaked inlet flow distortions
were investigated. Both of these radial distortions produced velocity pro-

files with differences between maximum and minimum points of approximately
40%.

Instrumentation

The total and static pressure measurements, with the exception of
two reference pressures, were made using scanivalves and differential pres-
sure transducers. For maximum accuracy in the data, much effort was spent
in accurately establishing the pressure rise time in relation to the switch-
ing rate in the scanivalves and matching as closely as possible the differen-
tial range between the reference pressures and the sample pressures to the
ranges of commercially available differential pressure transducers.

The instrumentation list is shown in Appendix A, Table A-I. The
first column indicates station number, where appropriate, and the second
column shows equivalent full-scale axial locations relative to the diffuser
entrance (station 1), Some circumferential locations were offset slightly
from the nominal o'clock positions to avoid wake interference between up-
stream and downstream rakes.

As shown in figure 1, three total pressure rakes were used at the
diffuser inlet with probes spaced radially to provide an area-weighted aver-
age total pressure, These rakes were located 1 in. (2.54 cm) upstream from
the beginning of the diffuser entrance (station 1) and were considered to
represent total pressure at station 1. A five-probe rake was located at the
12 o'clock position circumferentially, and three-probe rakes were located
at 3 o'clock and 9 o'clock, respectively. All of these probes were connect-
ed to a 48-port scanivalve, There were eleven primary pressures and one
reference pressure, each of which was manifolded to four ports in order to
fill the 48-port capacity of the scanivalve., The other side of the scani-
valve was connected to a 15-psid (1 x 10° N/m®) differential-pressure trans-
ducer on the high-pressure side, and the reference pressure was connected to
the low-pressure side of the same transducer. Therefore, all inlet total
pressures were read as differential pressures referenced to the static pres-
sure in the vicinity of the 12 o'clock rake position at station 1.

The absolute value of the primary reference pressure (the still-
ing chamber static pressure at station O in figure 1) was measured by a

10
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0-250 psi (0-1.7 x 10° N/m®) strain-gage type pressure transducer. Each of
the scanivalve reference pressures was then determined by measuring the dif-
ferential pressure between the desired reference pressure and the primary
reference pressure and then subtracting that differential pressure from the
primary reference pressure.

The diffuser wall static pressures were connected in a like man-
ner to a scanivalve and a 15-psid (1 x 10° N/m®) differential-pressure trans-
ducer, The reference pressure for all wall static pressures was the 3
o'clock stilling chamber static pressure (which was connected to the high-
pressure side of the transducer).

The diffuser exit total pressures were measured using three total-
pressure rakes, a ten-probe rake at 12 o'clock, and five probe rakes at 3
o'clock and 9 o'clock, with the probes radially spaced so as to provide an
area-weighted average total pressure. All three exit rakes were located
axially at station 10, referenced to full scale. They were connected to a
scanivalve and a 1-psid (7 x 10° N/m®) differential pressure transducer.
For tests with no flow resistance upstream of the rakes, i.e., no aerogrid
or punched plate, a 10-psid (7 x 10* N/m®) transducer was used in place of
the l-psid (7 x 10%) unit. The reference pressure for this unit was the
outer wall static in the vicinity of the 12 o'clock rake at the same axial
location.

The stilling chamber static pressures, the airflow nozzle inlet
pressures, and the model outlet wall static pressures were measured using
strain-gage-type absolute pressure gages.

The six probes of the boundary-layer rake (also shown in figure 1)
and the adjacent wall-static probe used as the rake reference pressure were
individually connected to seven solenoid valves, all of which were manifolded
to a 6-psid (4 x 10* N/m®) differential pressure transducer. The boundary-
layer rake was positioned at 6 o'clock at station 1, the beginning of the
diffuser divergence,

The airflow nozzle inlet temperatures, the stilling chamber air
temperatures, and the model outlet air temperatures were measured with
chromel/alumel thermocouples.

Performance Parameters

The local velocity at each pitot probe position was computed by
using the measured rake pitot pressure, the measured static pressure on the
body at the rake station (thereby assuming a uniform static pressure distri-
bution across the annular sections), and a local-to-total temperature ratio
based on the Mach number calculated from the measured static-to-total pres-

sure ratio at each rake probe, Each local velocity VL was then normalized

by dividing by the arithmetic average Vavg of all velocities computed for
that rake, To illustrate the circumferential distortion produced by the 10°

11
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sector screens, however, V.'s for the 3 o'clock station (in the wake of the

L
screens) were normalized by Vavg for the 12 o'clock station.

The overall total pressure recovery of the diffuser and flow re-
sistance element was computed as the ratio of the mass-weighted total pres-
sures at the exit rake to that of the inlet rake. For diffuser-alone tests,
a single static tap at the dump station, the area at that station, and the
computed inlet mass flow, were used to determine the total pressure at the
diffuser exit.

RESULTS AND DISCUSSION

Test Variable Ranges

Twenty test runs were made at the blow-down facility of the Pro-
pulsion Research Laboratory at APL. The principal test variables, diffuser
inlet Mach number and Reynolds number, were varied over the ranges 0.15 <
M, < 0.45 and 60 x 10° < Re < 675 x 10°, respectively. Because the veloc-
ity profiles were found to be insensitive to Mach number, as illustrated in
figure 10, most of the comparisons presented hereinafter are for a diffuser
inlet Mach number of approximately 0.3.

The test matrix is shown in Appendix A, Table A-II. Two grid-face
positions were tested (refer to figure 2). The "forward position' was 0.10
in. (0.254 cm) downstream from station 2 (diffuser dump plane), and the "aft
position’ was 0.25 in. (0.635 cm) downstream from station 2.

Results for Aerodynamic Grids at the Forward Position

Aerogrid A produced a very flat but slightly inverted (higher vel-
ocities at the wall than in the core) exit velocity profile. However, as
previously noted, the overall total pressure loss at M, = 0.3 of 5.3% was
unacceptably high, therefore aerogrid B was designed and tested. The latter
was theoretically designed to have a 17 total pressure drop across the grid.
When it was tested with the diffuser, the measured overall total pressure
loss was 3% at M, = 0.3. However, due to its decreased solidity, its exit
velocity profile was parabolic =-- not as flat as the profile from grid A =--
and the peak of the profile was skewed toward the inner wall, as seen in
figure 11.

For aerogrid C, which had larger outer and inner holes than aero-
grid B as previously discussed, the exit velocity profile (figure 12) was
more peaked, and the flow separated across the outer ten percent of the an-
nular height. Therefore, this design was eliminated from further testing.

Effect of Distorted Inlet Flow

At the inlet to the diffuser, the 10° sector, wire-screen, radial
element produced a circumferential distortion of uniform 25% lower velocity

12
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across the inlet height at 3 o'clock while not affecting the inlet velocity
profile at either the 9 or 12 o'clock positions (figure 13). Figures 14
and 15 show the efficiency of aerogrids A and B (at the forward position)
in smoothing this circumferential distortion. The curves for the 3 o'clock
rake behind each aerogrid (velocities normalized to Van for the 12 o'clock

rake) show that aerogrid A effectively smoothed most of the wake generated
by the circumferential distortion element (figure 14). In contrast, the 3
o'clock rake behind aerogrid B indicated essentially zero velocity, i.e., a
region of separated flow still persisted (figure 15).

In figure 13 the inlet profiles of tip- and hub-peaked radial dis-
tortion are also shown. The minimum velocity for both of these radial dis~-
tortions is approximately 407 less than the maximum velocity. Only aerogrid
B was tested (at the forward position) with these radial distortions. Fig.
16 shows how it smoothed a tip-peaked radial distortion, which in an open
duct produced a separated flow in the innermost 607 of the annulus height.
With aerogrid B, the exit flow profile was relatively smooth and parabolic,
with flow separation only on the innermost 10% of the annulus height. Fig.
17 illustrates the smoothing achieved for a hub-peaked radial distortion; it
presents almost a mirror-image duplication of the smoothing of the tip-
peaked distortion. Figure 18 compares the regular, tip-peaked and hub-
peaked profiles downstream of aerogrid B.

Comparison of Results for Punched Plates and Aerodynamic Grids

Theoretically, punched plates A and B were designed to have the
same total pressure drops as aerogrids A and B, respectively (in the for-
ward position) at M, = 0.3 (fig. 19). The test results shown in figure 20
summarize the overall pressure loss characteristics of the aerogrids and
punched plates and compare them to the diffuser-alone pressure loss. Fig.
21 presents the same results in terms of the comparison of the diffuser=-
effectiveness T, which is defined as the ratio of the actual to the ideal
increase in static pressure of the air passing through the diffuser. It
should be noted here that the diffuser effectiveness parameter, 7|, was de-
rived for incompressible flow. The test data presented in figure 21 were
calculated using the incompressible equation. Accounting for compressibility
would increase the effectiveness from approximately one to five percent for
inlet Mach numbers of 0.15 to 0.45, respectively. In this report the ef-
fect of compressibility in the diffuser effectiveness parameter is neglected.
It would be expected, of course, that an open duct contoured over the full
available length (including the length occupied by a grid in these tests)
would have had a higher effectiveness than this shortened diffuser; however,
it would not have smoothed the flow as the grids do. At the target point
m, = 0.3) both aerogrid A and punched plate A exhibited overall total pres-
sure losses of approximately 5.3%, which exceeds the required 3% or lower
total pressure loss goal., Punched plate B and aerogrid B both have less
pressure loss than an open duct and both meet the required 3% loss at M, =
0.3.

13
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Figure 22 illustrates the typical Reynolds number effect on the
contoured venturis of an aerogrid as opposed to this effect on the simple
orifices of a punched plate. This figure bears out the design philosophy
for aerogrid A which was designed for a throat Reynolds number of 50,000,
As the throat Reynolds number drops below design, the total pressure re-
covery decreases rapidly (i.e., total pressure loss increases). By con-
trast, the punched plate shows only a very slight influence of Reynolds
number on its performance.

For corresponding total pressure losses at the target point,
figures 23 and 24 show that the punched plates were much less effective in
smoothing the flow than the corresponding aerogrids. The punched plates
were only tested in the forward position (0.10 in., 0.254 cm) to compare to
the better grid performance.

Effect of Grid Position

As previously mentioned, the aerogrids were tested at 0.10 and
0.25 inches (0.254 cm and 0.635 cm) aft of the diffuser exit plane. Fig-
ures 25a, 25b, and 26 show that the position effect (on total pressure loss
and flow smoothing) was small for aerogrid B, but results were slightly
better for the forward (0.10-in.) (0.254-cm) position. Aerogrid A, however,
showed a noticeable improvement in flow smoothing when positioned closest
to the diffuser exit plane (figure 27).

Summary Figure =~ Velocity Profiles

Figure 28 summarizes the profiles produced for aerogrids A and B
and punched plates A and B, all at the forward position, and the open duct.

SUMMARY OF RESULTS

Pressure recoveries and velocity profiles relating to the flow-
smoothing capabilities of aerodynamic grids and punched plates coupled to a
short, annular diffuser were measured in a series of test runs. The re-
sults were as follows:

1. Aerogrid B, with 747 geometric blockage, and punched plate
B, with 307 geometric blockage (487 effective blockage),
met the target overall pressure loss (diffuser plus grid)
of 37 for a diffuser inlet Mach number of 0.3.

2. For equal overall total pressure losses, the aerogrids
produced much better velocity profiles than the punched
plates.

3. Considering also the ability of aerogrid B to smooth

radially~distorted inlet flows, it clearly was the best
configuration tested.
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4. The aerogrids gave better pressure recovery and smoother
velocity profiles when placed 0.10 in. (0.254 cm) from
the exit of the short, annular diffuser than when 0.25 in.
(0.625 cm) from it.

5. Only aerogrid A was able to reduce substantially the cir-
cumferential distortion introduced by a 10° sector of
blockage screen, but aerogrid A produced too high a pres-
sure loss (5.3% for diffuser plus grid) to be of interest.
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APPENDIX A
TABLE A-I INSTRUMENTATION LIST

Equivalent | Circumferential
full~-scale location(s)
Sta- |axial loca- 0'clock
tion [tion @ position(s) Function description Instrument range
--- --- 3, 9 Airflow nozzle inlet 0-3000 psia
wall static pressure | (0-21 x 10® N/m?)
-—- --- 6, 12 Airflow nozzle inlet -50° to 100°F
temperature (228° to 311°K)
0 --- 3, 9 Stilling chamber wall | 0-250 psia
static pressure (0.17 x 10° N/m?)
0 —-- 2, 10 Stilling chamber air -50° to 100°F
temperature (228° to 311°K)
(1? -3 12, 3:20, Inlet rake wall 0-15 psid
9:20 static differential (1 x 10° N/m?)
pressure
(1)a -3 11:45 Inlet rake pressures , | 0-15 psid
probes 1 through 5 (1 x 10° N/m?)
(1)a -3 3, 9 Inlet rake pressuresb, 0-15 psid
probes 1, 3, 5 (1 x 105 N/m?)
1 0 12 Diffuser outer wall 0-15 psid
static differential (1 x 10° N/m®)
pressure
--- +1 12, 3:20, Diffuser outer wall 0-15 psid
9:20 static differential (1 x 10° N/m®)
pressure
--- +2 12, 3:20, Diffuser outer wall 0-15 psid
9:20 static differential (1 x 10° N/n®)
pressure
2 +4 12 Diffuser outer wall 0-15 psid
static differential (1 x 10° N/m?)
pressure
3 +10 12, 3:20, Diffuser outer wall 0-15 psid
9:20 static differential (1 x 10° N/m®)
pressure
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quivalent Circumterential
full-scale location(s)
Sta- | axial loca- 0'clock (
tion | tion position(s) Function description | Instrument range
4 +10 12:15 Di ffuser exig rake 0-1 psid
differential® pres- (0.7 x 10* N/nf)
sures, probes 1-10
4 +10 3, 9 Diffuser exit rake 0-1 psid
differential pres- (0.7 x 10° N/nf)
sures, probes 1, 3,
6, 8, 10
5 +24 Model outlet wall 0-250 psia
static pressure (0-1.7 x 10° N/mf)
5 +24 2, 10 Model outlet air -50 - 100 F
temperature (228° to 311°K)
1 0 6 Boundary-layer rake 0-6 psid
pressures”, probes (0.4 x 10* N/oP)
1-6
5 72 4:30 _Model exit static CEC®
pressure (outer
model wall)
0 3:20 Reference differen- 0-15 psid
tial pressure, scani | (1 x 10° N/m®)
Ref
(1)? -3 12:30 Ref. diff. press., 0-15 psid
scanivalve #1 (1 x 10° N/nf)
2 +10 11:40 Ref. diff. press., 0-15 psid
scanivalve #3 ‘(1 x 1P N/m°)
(1)a -3 12:30 Ref. diff. press., 0-6 psid
PMUX #4 0.4 x 10* N/nf)
-——- --- -—— Exhaust header 0-25 psia
static pressure (0-1.7 x 10° N/nf)

Location relative to diffuser entrance station 1; e.g., -3 is 3 in. (7.6 cm)
upstream from station 1 (but is assumed to represent station 1), or +4 is

4 in.

0-3.5 x 10° N/nf).

(10.1 cm) downstream from station 1.

High response, close-coupled transducer recorded on oscillograph, 0-500 psia

Rake differential pressure = (probe total pressure) - (wall static pressure).
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APPENDIX A
TABLE A-II ANNULAR DIFFUSER TEST MATRIX

Position Configuration Test mass flow
Run Configuration of diffuser variables 1bs/sec(kg/sec)
1 Aerogrid A 0.25 in.(0.635 cm) ---- 17, 11, 2, 3
(7.7,5,0.9,1.4)
2 Open duct -——-- -—-- 18, 11
(no resistance) (8.2, 5)
3 | Open duct a--- Radial blockage 9, 3
’ (no resistance) @ 3 o'clock (4.1, 1.4)
A Aerogrid A 0.10 in.(0.254 cm) ——- 18, 11, 2, 3
(8.2,5,0.9,1.4)
5 Aerogrid A 0.10 in. (0.254 cm) Radial blockagel| 18, 11, 2, 3
@ 3 o'clock (8.2,5,0.9,1.4)
6 Aerogrid B 0.10 in. (0.254 cm) -——- 18, 11, 2, 3
(8.2,5,0.9,1.4)
7 Aerogrid B 0.25 in. (0.635 cm) ---- 18, 11, 2, 3
(8.2,5,0.9,1.4)
8 Aerogrid B 0.10 in.(0.254 cm) Radial blockage| 18, 11, 2, 3
@ 3 o'clock (8.2,5,0.9,1.4)
9 Punched plate A| 0.10 in.(0.254 cm) —~—-- 18, 11, 2, 3
1 (8.2,5,0.9,1.4)
10 Punched plate A} 0.10 in.(0.254 cm) Radial blockage| 18, 11, 2, 3
@ 3 o'clock (8.2,5,0.9,1.4)
11 Punched plate B} 0.10 in.(0.254 cm) ---- 18, 11, 2, 3
(8.2,5,0.9,1.4)
12 Punched plate B| 0.10 in. (0.254 cm) Radial blockage| 18, 11, 2, 3
@ 3 o'clock (8.2,5,0.9,1.4)
13 Aerogrid C 0.10 in.(0.254 cm) -——- 18, 11, 2, 3
(8.2,5,0.9,1.4)
14 Aerogrid C 0.10 in.(0.254 c¢m) | Radial blockage| 18, 11, 2, 3
@ 3 o'clock (8.2,5,0.9,1.4)
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Position aft Configuration Test Mass flow
| Run | Configuration of diffuser variables 1bs/sec (kg/sec)
15 Aerogrid B 0.10 in.(0.254 cm) | Tip~peaked inlet 18, 11, 2, 3
profile (8.2,5,0.9,1.4)
16 Aerogrid B 0.25 in.(0.635 cm) | Tip-peaked inlet 18, 11, 2, 3
profile (8.2,5,0.9,1.4)
17 Aerogrid B 0.10 in.(0.254 cm) | Hub-peaked inlet 18, 11, 2, 3
profile (8.2,5,0.9,1.4)
18 Open duct - Hub-peaked inlet 18, 11, 2, 3
(no resistance) profile (8.2,5,0.9,1.4)
19 Open duct m-—- Tip-peaked inlet 18, 11, 2, 3
(no resistance) profile (8.2,5,0.9,1.4)
20 Aerogrid B 0.10 in.(0.254 cm) | 12 o'clock exit 18,11, 2, 3
moved to 0.45 in. | (8.2,5,0.9,1.4)
(1.38 cm) aft of
grid
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COORDINATES FOR 1/3 —~SCALE SUBSONIC DIFFUSER

i i A

o

0.5 1.0 15
(2.54)

STATION, in. (cm)

(5.08)

STATION Ri Ro

1 in. {cm) in, {cm) in, {cm)

! 0 0 4667 | 11854 | 5313 | 13.495

| 0.167| 0424 | 4.652 | 11.816 | 5.328 | 13533

WZ | 0.250| 0.635 | 4.643 | 11.793 | 5337 | 13556
222 0417 1.059 | 4624 | 11745 | 5356 | 13.604
3% © 0500| 1270 | 4612 | 11,714 | 5.368 | 13.635
al <~ 0667 | 1.694 | 4586 | 11.648 | 5.394 | 13.701
x = O 0833| 2116 | 4553 | 11565 | 5.427 | 13.785
W 1.000| 2540 | 4510 | 11.4556 | 5470 | 13.894
Wwea B-- —— 1033 2624 | 4503 | 11438 | 5.493 | 13952
Ser 1.067 | 2710 | 4.483 | 11.387 | 5533 | 14.054
- 1.100| 2.794 | 4453 | 11.311 | 5640 | 14.326
5T ¥ 1133 | 2878 | 4.407 | 11.194 | 5780 | 14,681
rd 1167 | 2964 | 4287 | 10889 | 5917 | 15.029
1267 | 3218 | 3887 | 9873 | 6.327 | 16.071
1300 | 3302 | 3823 | 9.710 | 6.400 | 16.266

1.333| 3.386 | 3803 | 9.660 | 6.420 | 16.307
1367 | 3472 | 3800 | 9.652 | 6427 | 16.324

DIFFUSER EXIT PLANE AT STATION 1.367 IN. (3.472 cm)

FORWARD TEST POSITION AT STATION 1.467 IN (3.726 cm)
AFT TEST POSITION 1.617 IN. {4.107 cm)

Figure 2 DIFFUSER CONTOUR AND AEROGRID (OR PUNCHED PLATE) TEST POSITIONS
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Figure 3 AEROGRID A, 17% OPEN AREA
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Figure 4 AEROGRID B, 26% OPEN AREA
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THROAT
DIAMETER:
L RADIUS 1
| {
FLAT
RADIUS 2 P
0]
2
w
-
le— HOLE SPACING —»
AEROGRID A AEROGRID B
RADIUS 1 0.0803 in. 0.06975 in.
(0.2040 cm) {0.1772 cm)
RADIUS 2 0.7989 in. 1.23075 in.
(2.0292 cm) (3.1261 cm)
THROAT DIAMETER 0.1277 in. 0.1551 in.
(0.3244 cm) {0.3939 cm)
HOLE SPACING 0.2946 in.
{0.7483 cm)
FLAT 0.0083 in.
(0.0211 cm)
LENGTH 0.4865 in.
{1.2357 cm)

Figure 8 NASA TURBOJET AEROGRID HOLE CONTOUR
(MODEL DIMENSIONS SHOWN 1/3 FULL SCALE)
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