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A VTOL TRANSLA'I'IONAL RATE CONTROL SYS!IEM STUDY 
ON A SIX-DEGREES-OF-FREEDOM MO'IXOI? SIMULATOR 

A linearized translational rate system fo r  near hover flight w a s  uptimized 

on a large motion simulator under the constraints of no disturbances and 

limited control power. Bo th  lateral and lcmgitudinal m a l e s  were Considered 

w i t h  the primary variables of investigation being control sensi t ivi ty  and 

response "stiffhess" and secondarily system damping. Yaw and height 

control characteristics were represented by an angular rate and acceleration 

system, respectively. General regions of desired sensi t ivi ty  and stiffhess 

for the longitudinal and lateral modes were determined under VFR conditions 

for both the rapid maneuver task and the s ta t ion keeping/mild maneuver 

task. 
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TV 
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W O  

a i r c ra f t  moment of i ne r t i a s  about % yb z 

slug-ft 

s t ick  feed forward gain 

pi tch and roll attitude feedback gain radkec2/rad 

pi tch and r o l l  rate feedback gain rad/sec2/rad/sec 

long. and lateral feedback gain rad/sec2/ft/sec 

cubic polyncanlal. coefficients 

b 
2 

rol l ing moment due t o  ( 

pitching mament due t o  ( 

yawing m a m a t  due t o  ( 

thrust ,  lbs 

t o w  c m t r o l  sensi t ivi ty ,  r/sec2/in 

t o t a l  velocity sensit ivity,  ft/sec/in 

l inear  veloci t ies  along x and y, ft /sec 

), r/sec 2 / ( ) 

1, r/sec2/( 

1, r/sec2/ ( 
i 

gravitation& constant, ft/sec 2 

aircraft bcdy axes 

i n e r t i a l  axis 

control input, i n  

damping r a t i o  

real axis s-plane 

imaginary axis 8-plane 

natural  frequency, l/sec 



Acronyms 

PR 

RM 

SK/MM 

SR 

TR 

P i l o t  rating 

Rapid maneuver 

SSation keeping/mild maneuver 

Saturation r a t i o  

Translational rate 



INTRODUCTION 

It has long been recognized that proper control stabilization of 

a hovering VTOL vehicle can significantly reduce the pilot compensation 

required to perform a given task. This reduced work load is a function 

of both the magnitude of the stabilization and its degree (i.e., rate 

stabilization, rate plus attitude stabilization, etc.). This is true 

since a variation in the magnitude of the stabilization influences the 

system's dynamic behavior (e.g., damping, rise time, final value, etc.) 

while a change in the degree influences the number of control integrations 

the pilot must perform himself. The work of Reference 1, which studied 

roll acceleration, r o l l  rate, and r o l l  attitude stabilized VTOL control 

systems indicated that when optimized, added degrees of stabilization 

yield improved pilot ratings or ,  alternatively reduced control power 

requirements. 

a translational rate (TR) system, a system obtained by adding translational 

rate feedback to the attitude system. 

of several studies (References 2, 3, 4, and 5); most of these involved 

simulations conducted on fixed base or  small motion simulators and were 

for specific systems. 

A natural extension to that work would be the study of 

Such systems have been the subject 

While it is true that the ultimate design of any control system 

often depends highly on the vehicle to which it is to be applied, certain 

basic handling qualities criteria or system dynamics are none-the-less 

sought. 

rate control system which achieves translationt 

the effort of this simulation was slanted. 

simulation, conducted on a large motion simulator, addressed the problem of 

It is in the area of basic system characteristics for a translational 

ugh aktitude changes, that 

That is, this more generalized 
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identifying uptimum bands of control sensi t ivi ty ,  stiffness, and damping 

for a TR system. 

one relat ing t o  termin& area VTOL transport type maneuvering and the 

other t o  precision haver or crane type maneuvering. 

The study considered two near haver VWL control tasks, 

DESCFUP!lTON OF SIMULAaON 

Aircraft  model and simulation conditions. ?his simulation, l i k e  the 

study from which it stems (Reference l), was conducted on the Ames large 

motion six-degrees-of-freedcan simulator (Figure 1). 

motion freedcan within an 18 ft. cube. 

'Ihis simulator has 

For the present simulation, the generalized rigid-body, near- 

haver equations of motion develuped i n  Reference 6 were used i n  both 

the lateral and longitudinal modes. 

by the inclusion of feedback terms t o  form the systems studied i n  this 

simulation. 

at  a satisfactory angular rate control system of sens i t iv i ty  Ns/Iz = 

.5 r/sec2/in and damping Nr/Iz = -3.5 l/sec. H e i g h t  control was considered 

t o  be decoupled from a l l  other controls and was accomplished by manual 

th ro t t l ing  of a single vector acting along tihe z b d y  axis. 

'Ihese equations were then augmented 

Throughout the simulation the y a w  characterist ics remained 

!&e controller configuration and other conditions of the simulation 

are given below. 

Conditions : 

m 
calm air (no gusts, cross-winds, or ground effects)  

Ideal system (no actuator dynamics, etc.) 

No gyroscupics or cross-coupling 

Constant control geometry 
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Controller: 

Displacement Force Gradient Breakout Force 
(in.) ( W i n )  ( W  

I 

I Roll I 54.5 I 1.5 1 1.5 

Two p i lo t s  participated i n  this study. One p i l o t  had had experience 

as a tes t  p i l o t  on a variety of VTOL a i r c ra f t  and the other had had 

extensive helicopter experience. 

and tasks and i n  most cases these were repeated. 

occasionally exposed t o  an c r p t i m a l  a t t i tude  control system ( w  = 2 r/sec, 

6 = .7, and T - .5 r/sec /in) during the simulation so  as t o  maintain 

a reference between that type system and the TI3 system. 

Each p i l o t  was given similar systems 

Also both p i lo t s  were 

2 
6 -  

System Equation Form. Ihe equation form f o r  the TR system under 

consideration was constructed by assuming rate, attitude and velocity 

feedback around the basic a i r c ra f t  as shuwn on Figure 2. 

decoupled haver equation fo r  r o l l  as given i n  Reference 6 is, 

The basic 

L s / I  6 = d a  - L /I 1 ql - LJIx vyb (18) 
X P X  

K6 Then w i t h  the addition of' s tabi l izat ion as shuwn i n  Figure 2 (toe., 

9 Y 3 I 

. 
), Equation (la) becomes 

Y 

K L I, 6 = (s2 - (4 + Lp/Ix)s (q + Lv/Ix)vyb (lb) 
6 61 Y 

For a fixed thrust  vector where t ransi t ion rates are derived via 

attitude ChWes, 8s shown belm, the relat ion of $ t o  ty is  approximated by 

1 

center 
s t ick  3 
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. . 
v vY = g si* = ga (sma~.l angles) 

Then wbst i tut ing this relat ion fo r  @ i n  Equation lb  yields 

'b 

and similarly the Equation for longitudinal motion is  

Equations 3 and 4 form monic po lynda l s  of third order w i t h  a l l  

Note that each of the coefficients of the K terms being independent. 

the polynomials incorporates one of these K terms. 

f l ex ib i l i t y  and d s o  fo r  mathematical convenience these equations were 

related t o  the standard cubic polynomial form, which i n  r o l l  becmes, 

Because of this 

and i n  pi tch becomes, 

where T i s  the control sensi t ivi ty ,  K1 and K2 are "damping" terms, and 

w 0  (the natural  frequency) i s  a measure of st iffness.  

has two t'damping" terms and thus i s  somewhat more ccmplex w i t h  regards t o  

damping, than i s  a second q e r  p O l y n a n i 4  which has only one damping term 

.g(i.e., s2 + 2.g'00s + merefore, this simulation did not treat 

K1 and % as ent i re ly  independent terms bqt rather considered cubic 

polynomial forms w i t h  knuwn "damping" characteristics. Although several 

6 
Note the cubic 

2 1. 0 

d 
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forms exis t ,  this study, which had the limited objective of showing a 

region of preference, considered only two farms. 

were the Binomial form, which exhibits a w e l l  damped transient behavior, 

and the Butterworth f orm w i t h  a medium damped behavior (Reference 7) .  

Figure 3 i l l u s t r a t e s  the  character is t ics  of these two forms. W i t h  the 

damping characterist ics res t r ic ted t o  the Dwo forms above, the primary 

variables of this simulation thus became control sensit ivity,  ( T6 

and s t i f fness  ( w  ). 

The two forms considered 

0 

The simulation was conducted en t i re ly  under 'VFR conditions and 

evaluations were m a d e  on two categories of tasks. 

was a rapid maneuver task apprupriate fo r  a l l  classes of VTOL aircraft, 

and the second category was a s ta t ion  keeping/mild maneuver task which 

would be of concern f o r  a crane or slung load uperation. 

based on the revised Cooper-Harper ra t ing scale, Figure 4, were obtained 

separately for  each category. 

'Ihe first category 

P i l o t  ratings 

I n i t i a l  System. So as t o  reduce the region requiring investigation 

i n  this simulation, the i n i t i a l  or base case '1351 system was one constructed 

from an attitude system w i t h  desirable handling quali t ies.  

by first considering an uptimized attftude system i n  r o l l  and pitch 

= 2 r/sec (Reference 1) which yields of T = .5r/sec /in, 6 = .7, and u) 

the second order equation, 

?his was done 

2 
6 

lhen by including velocity feedback and by making the substi tution fo r  $ 

established by Equation 2 (i.e., $ = sVy/g) Equation 7 b e c a e s  first 

95s = (s2 + 2.8 s + 4) @ + 
Vy Y 

d 
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and f ina l ly  

Equation 9 represents a cubic polynomial which can be approximated by either 

the binomial or Butterworth form. 

form i s ,  

For example, by l e t t i n g  w0 = 1.1 the b i n d a l  

+ 3 . 3 ~ ~  + 3.6s + 1.33) V 
T6 Y 

which, w i th  the p.raper choice of 

lhus w0 = 1.1 represents the i n i t i a l  guess for omega apd Equation 10 

the base case binomial form f o r  thissimulation. 

, roughly approximates Equation 9. 
Y 

Test Program. 

System "damping" - An assessment of desirable values of system 

"damping" was made by p i l o t  evaluations i n  which the base case 

binomial form (w0 = 1.1) was cmpared w i t h  i t s  Butterworth counter- 

part .  

This simulation cwered four phases 

1. 

This was repeated fo r  other omegas. 

2. System s t i f fness  and control sens i t iv i ty  .I Starting w i t h  the base 

case (Equation 10) a parametric search f o r  the u p t i m u m  band of w0 

(st iffness) and T (cmtrol sensi t ivi ty)  was made. The arbitrary 

minimum range control puwer limits of 1.4 r/sec 

pitch, and .4 r/sec2 i n  yaw {Reference 8) were imposed throughout this segment. 

Longitudinal and lateral dynamics were changed together and no disturbances 

were intrcduced. 

Saturation - Control saturation was monitored throughcut the simulation and 

assessments made, via p i l o t  rating, as t o  saturation tolerances fo r  this 

me of a translation rate system. 

6 
2 i n  ro l l ,  .7 r/sec2 i n  

3. 
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4. Control power - Selecting an uptimum system, determined by Par t  1, 

the control power limits i n  r o l l  were varied over a range of values 

t o  determine the level required for both the rapid manewer and s ta t ion  

keeping/mild maneuver tasks. 

RESULTS AMD DISCUSSION 

System Damging;. ?he i n i t i a l  phase of the simulation involved the can- 

parison of the base case t o  the lesser damped Butterworth form. 

ccpniparison established a preference by the p i l o t s  for the m o r e  heavily 

damped characterist ics of the b i n d a l  form. 

characterist ics of the Butterworth form caused attitude overshoots that 

were unnatural. t o  the p i lo t s  and thus resulted i n  additional p i lo t  compensation. 

'Ibis was reflected as a difference i n  the p i l o t  rating of approximately one 

point fo r  w0 = 1.1. 

other canegas w i t h  similar results. 

the binomial versus Butterworth forms are carrpared through p i l o t  rating 

fo r  the rapid maneuver task. 

focussed i n  the remainder of the program on the b i n d a l .  system. 

?his 

'Ihe somewhat m e d i u m  damped 

The canparism was repeated later i n  the simulation f o r  

?his i s  i l l u s t r a t ed  i n  Figure 5 where 

On the basis of these results attention was 

T vs u) . 6 0 
The resu l t s  of tests i n  which the stiffness ((u,) and control 

sens i t iv i t ies  (Tg) were varied are sham i n  Figure 6 and 7. 

shows data fo r  the rapid maneuver (RM) and Figure 7 the s ta t ion  keeping/mild 

Figure 6 

maneuver (SK/MM) tasks. ?hese figures represent the  average of several runs. 

The dispersion of p i l o t  ra t ing between runs f o r  the same p i l o t  was seldom 

greater than 1/2 point and between p i lo t s  saXlm greater than one point. 

One subtlety of this simulation which bears discussion i s  the q r e s e n t a t i o n  

of s t ick  sensit ivity.  

T (r/sec /in) was chosen as the primary variable. 

!Be control  sens i t iv i ty  i n  terms of angular acceleration, 

2 This representation, 6 
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of course, most directly relates the vehicle controller to the angular 

control power. However, other sensitivities such as the resulting linear 

velocity and vehicle attitude response are important characteristics in 

the pilot's evaluation of a given system. 

sensitivity to velocity sensitivity can be expressed directly as a function 

of T and the stiffness parameter as follows: 

The relationship of control 

6 

Tv(fps/in) = - @a 

Lines of constant Tv are shown on Figures 6 and 7. 

The peak attitude response is also a factor that the pilot considers 

in the evaluation of a system. 

can be only approximated mathematically. 

This response, however, is a transient, and 

For a step control input, the peak 

attitude response can be roughly approximated by 

where K2 is the coefficient of the cubic polynomial, Equation 5 or 6. 

The expression for Attpeak indicates that for the samelwo and Ta a 

Butterworth form (I(2 = 2) yields a higher bank angle transient than does 

a binomial form (& = 3) .  This is a characteristic of lower damping and 

may in part explain the preference for the binomial over the Butterworth 

response. 

A consolidation of the data on Figures 6 and 7 is given on Figure 8. 

Here the PR f 3 envelopes for both the RM and the SK/MM tasks are shown, 

with the surrounding bounds being based on pilot comments of' major 

deficiencies noted in those regions. It should be emphasized that in many 

cases there were considerable overlap of these deficiencies. 
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It can be noted f i a n  Figure 8 that the desired RM and sK/MM envelupes 

very newly coincide, 

the preference the p i lo t s  had for  slightly higher omegas when performing 

‘ihe larger  PR 5 3 bound for the S&/MM task indicates 

that task. 

could be held. 

p i l o t  commentary recorded during the simulation. 

u t i l i t y  of the higher omegas i@ s e v e r l y a s t r a i n e d  by the rapid degradation 

i n  PR of the RM task (Figure 6). 

This of course, enchanced the precision w i t h  which a position 

The preference for higher -gas is  a l so  consistent w i t h  

Hmever, the g e n e r a  

&so, as can be seen on Figure 8, the PR bounds indicate the tolerance 

fo r  lower velocity sens i t iv i t ies  the p i lo t s  had when performing the SK/MM 

task. 

5f’ps/in. 

’Ihe o p t i m u m  velocity sensi t ivi ty  for  this task was s m h e r e  around 

By contrast, higher velocity sens i t iv i t ies  were found t o  be more 

desirable fo r  the RM task. 

velocity sensi t ivi ty  fo r  this task of around 10 fps/in and were unable t o  

perform rapid maneuvers below 2 fps/in. 

Based on commentary, the p i lo t s  preferred a 

’Ihe narrow region of PR s 2.0, shmn on Figure 8, indicates a system 

w i t h  uverall q e t i m u m  characterist ics t o  be one w i t h  a s t i f fness  of around 

= 2.0 and a velocity sensi t ivi ty  of about 5 fps/in (Ts = 1.0 r/sec2/in). 
wO 

Saturation. An uverall concern of this simulation was that of saturation 

of the control moments. ‘Ihe in t e re s t  here was not i n  establishing design 

c r i t e r i a  but i n  making sane assessments, i n  terms of p i l o t  wpinion, of the 

ef fec t  of saturation on a TR system i n  an undisturbed environment. 

throughout the simulation the wcurence-o< saturation of the available 

control power was monitored. 

merefore, 
1 

.-. 

A useful measure fnr making assessments i s  provided by the system 

saturation ratio (SR) which is defined i n  Reference 1 as, 
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Maximum cormnand mment (r/S2) 
SR = Maximum control moment (r/#) 

W i t h  the control m m n t  (m control puwer) limits cited earlier it 

can be determined that many of the systems tested w e r e  significantly i n  

excess of SR = 3. 

systems w i t h  a p i l o t  rating better than 3 had a SR 2 3 i n  the longitudinal 

mode. Reference 1 indicated that for  an a t t i tude  system saturation r a t io s  

I n  fact ,  as can be seen on Figure 9 , s l l  of the 

of up t o  around 3 can not only be tolerated bu t  offer cer ta in  advantages 

i n  the wa.y of higher bank angle response and luwer control pmer requirements. 

The present simulation indicates that for a translat ional  rate system the 

level of tolerable SR appears t o  be considerably higher. This talerance 

of a higher SR is further substantiated by previous indications that added 

s tabi l izat ion tends t o  reduce the control pmer  requirements. 

On Figure 9 a region where saturation actually occurred i s  shmn. 

Systems tested abwe the shaded l i n e  resulted i n  momentary saturation of 

the control mments i n  r o l l  and/or pi tch (usually both) during some portion 

of the simulation. 

inputs of 11.2 in. or greater i n  pitch and 12.5 in ,  or greater i n  roll. 

6 
This saturation generally occurred on rapid piloted 

\ 

In 

general, the magnitude of piloted inputs i n to  rnll tended t o  be bite those 

i n  pi tch and since the control power available i n  roll w a s  a l so  twice that i n  

pi tch the onset of saturation i n  the two axis usually coincided. 

single shaded l i n e  on Figure 9 serves both pi tch and r o l l  fo r  this simqlation. 

'Ihus, the 

P i l o t  R a t i n g  VS. Control Pmer. 'Ihe last pa r t  of this simulation 

considered am qptimum TR system of w0 = 2.2 and T = 1.25 r/S2/in. for 

several runs i n  which the available control pmer  was varied. me ef fec t  

on p i l o t  rating for  a reduction i n  control pmer fo r  both theSK/MM and RM 

tasks was recorded. 

systems from Reference 1 and 9 and shuwn on Figure 10. 

6 

These results are superimposed on those for other 

This figure indicates 

d 
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that for a control power greater than .8 r/s2 the TR system is rated by the 

pilots as better than an attitude system. 

is reduced from 1.0 to about .7, the effects of control moment saturation 

indicated pilot opinions of an unacceptable level for the RM task. 

sharp degradation occurred at a saturation ratio of around 7 and greater. 

This would indicate that for a TR system under ideal conditions, a reduced 

control power can no longer be used effectively when the system saturation 

ratio is above 7. 

However, as the control power 

This 

The data for the acceleration, rate, and attitude systems on figure 10 

were taken with the saturation ratio held to one; thus it is not meaningful 

at the low control power settings to draw a comparison between those curves 

and the curve for the RM task of the translational rate system. 

data for the SK/MM task, which is less demanding on control power and thus 

did not result in saturation, can be compared. 

to be reasonably consistent. 

However, the 

Figure 10 shows this comparison 

CONCLUSIONS 

A piloted simulation study was conducted to determine the basic control 

system dynamic characteristics needed for an attitude derived translational 

rate comand system for an aircraft in near-hover flight. 

characteristics determined by this simulation are summarized below. 

The desired 

The attitude response should be well damped (the dynamic response of the 

binomial form of the TR system was found preferrable to the lesser damped 

Butterworth form). 

The optimum cubic natural frequency (0,) was 1.5 - 2.5 r/sec. 
generally favored the lower frequencies for the RM task and slightly higher 

frequencies for the SK/MM task. 

The pilots 
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. me uptimwn command sens i t iv i ty  (T ) was .6 - 1.5 r/s2/in. 

a velocity sens i t iv i ty  (depending on CU,) of frm 2 t o  20 fps/in. 

upti- velocity sens i t iv i ty  for  the RM task was 5 t o  20 fps/in and for 

the SK/MM task 2 t o  10 f'ps/in. 

W i t h  reference t o  the RM task and under ideal conditions, %he translat ional  

rate system appears t o  have lmer control puwer requirements than does 

an attitude system and tolerates  higher saturation r a t i o  systems (Bqpraximately 

SR s 7 as qeposed t o  SR d fo r  attitude systems (Reference 1)). 

lhis yields 
6 

The 

. 

d 
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