
NASA TECHNICAL NOTE NASA TN D-7068

C
COPY

NUMERICAL METHOD FOR THE SOLUTION

OF LARGE SYSTEMS OF DIFFERENTIAL
EQUATIONS OF THE BOUNDARY-LAYER TYPE

by Michael J, Green and Philip JR. Nachtsheim

Ames Research Center

Moffett Field, Calif. 94035

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • OCTOBER 1972



1. Report No.
NASA TN D-7068

2. Government Accession No.

4. Title and Subtitle

NUMERICAL METHOD FOR THE SOLUTION OF LARGE
SYSTEMS OF DIFFERENTIAL EQUATIONS OF
THE BOUNDARY-LAYER TYPE

7. Author(s)

Michael J. Green and Philip R. Nachtsheim

9. Performing Organization Name and Address

NASA-Ames Research Center
Moffett Field, CA 94035

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D. C. 20546

3. Recipient's Catalog No.

5. Report Date
October 19 72

6. Performing Organization Code

8. Performing Organization Report No.
A4544

10. Work Unit No. •

186-68-51-01

11. Contract or Grant No.

13. Type of Report and Period Covered
Technical Note

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

A numerical method for the solution of large systems of nonlinear differential equations of the boundary-layer type is
described. The method is a modification of the technique developed by Nachtsheim and Swigert for satisfying asymptotic
boundary conditions. The present method employs inverse interpolation instead of the Newton method to adjust the initial
conditions of the related initial-value problem. This eliminates the so-called perturbation equations required in
Nachtsheirn's and Swigert's application of Newton's method. The elimination of the perturbation equations not only
reduces the user's preliminary work in the application of the method, but also reduces the number of time-consuming
initial-value problems to be numerically solved at each iteration. Thus, although the rate of convergence of inverse
interpolation is in general less than that obtained by the Newton method, the total number of required initial-value
solutions may be reduced. For further ease of application, the solution of the overdetermined system for the unknown
initial conditions is obtained automatically by applying Golub's linear least-squares algorithm. The relative ease of
application of the proposed numerical method increases directly as the order of the differential-equation system increases.
Hence, the method is especially attractive for the solution of large-order systems. After the method is described, it is
applied to a fifth-order problem from boundary-layer theory.

17. Key Words (Suggested by Author(s))

Boundary-layer equations
Shooting method for solution of boundary-

value problems
Inverse Aitken interpolation
Linear least-squares solution

19. Security Classif. (of this report)
Unclassified

18. Distribution -Statement

Unclassified - Unlimited

20. Security Classif. (of this page) 21. No. of Pages 22. Price*
Unclassified 9 $3.00

* For sale by the National Technical Information Service, Springfield, Virginia 22151



SYMBOLS

/ stream function

S enthalpy

w w(x,y)=f"F(x,y)

X x that satisfies equations (7) through (11)

x x=f"(o)

Y y that satisfies equations (7) through (11)

y y = S'(o)

z z(x,y)=S'F(x,y)

|3 pressure gradient parameter

TJ measure of distance from wall

Subscripts

F evaluation at a finite value of 17

i i = 1 , 2, or 3 ; / numerical value

u partial differentiation with respect to u

v partial differentiation with respect to v

w partial differentiation with respect to w

z partial differentiation with respect to z

Superscripts

( )' differentiation with respect to 77

( ) iterated value

in
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SUMMARY

A numerical method for the solution of large systems of nonlinear differential equations of the
boundary-layer type is described. The method is a modification of the technique developed by
Nachtsheim and Swigert for satisfying asymptotic boundary conditions. The present method
employs inverse interpolation instead of the Newton method to adjust the initial conditions of the
related initial-value problem. This eliminates the so-called perturbation equations required in
Nachtsheim's and Swigert's application of Newton's method. The elimination of the perturbation
equations not only reduces the user's preliminary work in the application of the method, but also
reduces the number of time-consuming initial-value problems to be numerically solved at each
iteration. Thus, although the rate of convergence of inverse interpolation is in general less than that
obtained by the Newton method, the total number of required initial-value solutions may be
reduced. For further ease of application, the solution of the overdetermined system for the
unknown initial conditions is obtained automatically by applying Golub's linear least-squares
algorithm. The relative ease of application of the proposed numerical method increases directly as
the order of the differential-equation system increases. Hence, the method is especially attractive
for the solution of large-order systems. After the method is described, it is applied to a fifth-order
problem from boundary-layer theory.

INTRODUCTION

Many problems in boundary-layer theory are posed mathematically as nonlinear, two-point
boundary-value problems on an infinite interval. The so-called initial-value or "shooting" method,
which does not require linearization of the equations, has been successfully applied to this class of
problems. Basically, the shooting method adjusts the initial conditions so that the solution of the
related initial-value problem satisfies the required boundary conditions at the outer boundary point.

Of fundamental importance in the application of the shooting technique is the manner in
which the adjustment of the initial conditions is made. Many adjustment schemes have been
proposed (see ref. 1). In particular, Nachtsheim and Swigert (ref. 2) have developed an iterative
adjustment scheme for boundary-layer problems with asymptotic boundary conditions. In that
scheme, the differential equations are numerically integrated to some finite outer boundary point.
The initial conditions are adjusted so that the errors between the computed values and the
corresponding asymptotic values of both the functions with asymptotic boundary conditions and



their derivatives are minimized in the least-squares sense. The iterative adjustments are continued
until the solution converges within some prescribed accuracy. The precision of the solution is
continually improved by progressively extending the range of integration. In this scheme, Newton's
method is applied to the nonlinear equations. However, Newton's method requires the rate of
change of the original differential equations with respect to each of the unknown initial conditions.
Therefore, for each unknown initial condition, a concomitant differential-equation system (the
so-called perturbation equations and their associated boundary conditions) must be formally
constructed and numerically integrated simultaneously with the original differential-equation
system.

This paper describes a numerical method that modifies the Nachtsheim-Swigert adjustment
scheme so that the perturbational differential-equation systems are eliminated. The numerical
method is similar to the one proposed by Warner (ref. 3) for the finite interval. The elimination of
the perturbation equations relieves the user of the burdensome task of formally generating and
coding these equations for each problem, while simultaneously reducing the total number of
numerical integrations to be performed. For additional convenience and accuracy, the linear
least-squares solution for the unknown initial conditions is achieved using Golub's method (ref. 4)
of orthogonal transformations on the original system. So the task of finding the so-called normal
equations, and then solving these linear algebraic equations for the least-squares solution, is also
eliminated. The method is described and is applied to a specific problem in boundary-layer theory.

NUMERICAL METHOD

The method is best described by applying it to a specific problem. Consider Stewartson's
boundary-layer equations (for which Cohen and Reshotko, ref. 5, found similar solutions) with unit
Prandtl number, and with pressure gradient parameter (5 - 1/2:

1 -/'2) = 0 (1)

S"'+/S" = 0 (2)

0 , /'(o) = 0 , S(o) = SW- (3)

/' (oo) = 1 , 5(oo) = 0 (4)

where Sw characterizes a particular solution. The generalization of the method to any order
differential system follows naturally from the application to this fifth-order problem.

For notational convenience, define the unknown initial conditions by

*=/"(o) (5)

y = s'(o) (6)
To apply the shooting method, initial guesses are made for x and y. These estimates, along with
equations (1), (2), and (3), form an initial-value problem, which can be integrated by a numerical
integration algorithm (e.g., Adams-Moulton) to some specified finite value of the independent
variable TJ. Denote this outer boundary point of the finite integration range as 77^7. Further, let a
function subscripted with F denote the numerical value the function takes on when evaluated at 77^7.



Define

u(x,y)=fp(x,y)-f(°°)

w(x,y)=f'F(x,y)

The boundary-value problem of equations (1) through (4) could be solved by determining the
unknown initial conditions x and y such that

u(x,y) = 0 (7)

v(x,y) = 0 (8)

w(x,y) = 0 (9)

z(x,y) = 0 (10)

Note that equations (7) and (8) require that the dependent variables /' and S approach their
boundary values in a finite domain, whereas equations (9) and (10) give the Nachtsheim-Swigert
criteria, namely, the slopes of those variables also simultaneously approach zero. The solutions are
not unique when only /' = 1 and S = 0 are specified at a finite rip; see reference 2.

Instead of using a direct Newton iteration scheme to determine the roots x and y of the
nonlinear system, equations (7) through (10) apply the inverse Aitken interpolation technique as
generalized in reference 3. The functions u = u(x,y), v = v(x,y), w = w(x,y) and z - z(x,y~) may be
inverted to give x = x(u, v), y = y(u, v) and also x = x(w,z), y = y(w,z), provided the Jacobians of the
transformations do not vanish at any points in question. Denote the values of x and y when u, v, w,
and z are zero as X and Y, and the values of derivatives dx/du, . . . , dy/dz when x = X and y = Y
as Xu, . . . , Yz. Expand x(u,v), y(u,v) and x(w,z), y(w,z) into their corresponding Taylor series for
two variables and then truncate after linear terms to obtain:

x = X + uXu + vXv (11)

y = Y + uYu + vYv (12)

and

x=X + wXw+zXz (13)

y = Y + wY w +zY z (14)

Because each of equations (11) through (14) contains three unknowns (e.g., X, Xu, and Xv in
equation (1 1), it will be sufficient to specify three sets of initial trial values, (xl j^), (*2 ^2) and
(x3,y3). Equations (1) and (2) with conditions (3), (5), and (6) can be integrated to obtain (u1 ,v t )
and (w l ,z1) , (u2 ,v2) and (vv2,z2), and («3 ,v3) and (w3,z3). Substituting these values into equations
(11) through (14) and rearranging leads to the matrix equation
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As in reference 2, the least-squares solution is the accepted solution of this overdetermined
system of 12 equations with 10 unknowns. The usual method is not used—that is, determining the
system of so-called normal equations and then solving the resulting linear algebraic system to obtain
the least-squares solution of the overdetermined system, as in equation (15).

As a replacement, the method developed by Golub (reference 4) is used to solve the linear
least-squares problem. Golub's algorithm is based on applying orthogonal Householder transforma-
tions to the original overdetermined system. (See ref. 4 for a description of the method, as well as
an error analysis.) This approach for obtaining the linear least-squares solution is numerically more
stable than the solution via the normal equations.

Once the values X and Y are determined from the least-squares solution of equation (15), they
can be used in equations (5) and (6) along with equation (3) to again numerically integrate
equations (1) and (2) to obtain new values (ul , v l ) and (vv ^ ,z t). These values then replace the least
accurate equations in equation (15). The resulting least-squares system is then solved again to
determine the improved initial conditions, X and Y. This iterative procedure is continued until the
errors between the computed boundary values and the specified asymptotic boundary conditions
are within a prescribed tolerance, that is, until u, v, w, and z are all less than a very small prescribed
number.

NUMERICAL RESULTS

A computer program was written using the proposed technique. The program was coded in
FORTRAN IV for the time-sharing system (TSS/360) on the IBM 360/67 computer at Ames
Research Center. As a specific example, the computer solved the problem given by equations (1)
through (4) with the parameter Sw equal to -0.2.

The estimates for the unknown initial conditions (x,y) required to start the solution were (0.8,
0.1), (0.8, 0.1001), and (0.8001, 0.1). The solution converged in 11 iterations so that the absolute
error between the computed boundary conditions and the asymptotic boundary conditions was less
than 1 X 10~9. The initial conditions for the converged solution were /" = 0.86228190 and
5' = 0.1062283, which agree with the values (five decimal places) given in reference 5. The total
central processing unit (CPU) time was 6.85 seconds.



For comparison, the same problem was solved using the Nachtsheim-Swigert method. The only
modifications to the computer program were those involving adjustment of the initial conditions.
With the original guess of (0.8, 0.1) for the missing initial conditions, the computed values were
within 1 X 10~9 of their corresponding asymptotic values in seven iterations. However, the CPU
time was 9.03 seconds. The increase in computer time was caused by the integration of three
fifth-order systems at each iteration (namely, the original system and the perturbational system for
each of the two unknown initial conditions) whereas, in the proposed method, only the original
fifth-order system was integrated at each iteration.

CONCLUSIONS

For boundary-layer problems modeled by a large system of nonlinear differential equations
with asymptotic boundary conditions (e.g., multicomponent diffusion flame problems), application
of the shooting method with an adjustment scheme requiring perturbation equations is laborious if
not prohibitive. The use of an inverse interpolatory adjustment procedure, which eliminates the
perturbation equations, appears as an attractive alternative. The technique is easily programmed
since only the original differential-equation system is used. And, although ease of application is the
major advantage of this method, there may also be a savings in computer time, as was illustrated in
the example considered. The suitability of the method appears to increase as the order of the
system increases.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif. 94035, June 7, 1972
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