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PREFACE

Since the problem of two bodies is the only problem in astrodynam-

ics with a known solution for aribtrary initial conditions, it has been used

in an approximate solution to the restricted problem of three bodies in the

form of patched conic orbits. Since the development of the patched conic

technique, several methods of approximating the solution to the restricted

problem of three bodies have been presented, but none of them utilize full

knowledge of the known integrals for the exact motion. It is believed that

a method that uses knowledge of the known functions of the motion and is

conceptually simple would be quite useful for studies of future space missions.

This study presents a method of calculating trajectories for the

restricted problem of three bodies using conic motion that is frequently

corrected in position and velocity. The correction in position and velocity

is calculated using knowledge of the existing integrals or slowly-varying

functions of the motion. This method is easily described. Assume that the

trajectory has just been corrected. The motion to the next correction point

and the correction there will be described. The independent variable is the

magnitude of the radius vector. A change in the independent variable Ar

is chosen and the trajectory is conically advanced through the interval Ar

Since the value of the function of the motion evaluated on the conic trajec-

tory is not the same as the value predicted for the exact motion, position

and velocity corrections are applied to the conic trajectory so that the

value of the function will be the same as the predicted value. The process

is repeated until the terminal conditions are reached.

The results of this method are compared with numerically integrated

trajectories. This method is qualitatively compared with other methods of

ii



solution for the restricted problem of three bodies.
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ABSTRACT

This report presents a method of calculating trajectories for the

restricted problem of three bodies which utilizes conic propagation of the

state vector with frequent correction of position and velocity by means of

a constant or slowly-varying function. This fast and accurate method of cal-

culating trajectories has been applied to the planar circular restricted

problem of three bodies, the planar elliptic restricted problem of three

bodies, and the ephemeral restricted problem of three bodies. Two methods

(the "refined" method and the "straight-forward" method) of determining the

direction of the position correction (n c) are presented for the circular

restricted problem and the elliptic restricted problem of three bodies. Only

the "straight-forward" method is used with the ephemeral restricted problem

of three bodies. The Earth, the Moon and a space vehicle comprise the res-

tricted three body model that is used. Earth-to-Moon trajectories with per-

ilune altitudes varying from 59 to 4551 nautical miles are calculated and

compared at perilune with numerically integrated and patched conic trajec-

tories. The results, as compared to the numerically integrated trajectories,

are within 0.2% in position and velocity vector magnitude (relative to the

Moon) for the "straight-forward" and the "refined" choices of the position

correction direction (nc)

A detailed discussion of the two methods of choosing n is pre-
c

sented. A qualitative comparison between this method and other methods of

calculating trajectories for the restricted problem of three bodies is also

presented.
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NOMENCLATURE

The following list presents all significant symbols and abbrevia-

tions used in the main body of the text. Each symbol is accompanied by a

brief description and the number of the equation where the symbol is intro-

duced.

Vectors:

0
A vector (A = r- used in Equation (2.36)

a average perturbing acceleration (2.33a)

B vector used in Equation (2.37)

[er unit vectors relative to the space vehicle (3.7)

e

e j unit vectors describing primary two relative to primary one

le (2.13)

h angular momentum of massless particle (2.18)

n unit vector in position correction direction (2.29)c

n unit vector in the velocity correction direction (2.23)
R

R position vector of primary one relative to CM (2.3)

2

R2/1 position vector of primary two relative to primary one

r position vector of massless particle relative to CM (2.1)

rl position vector of massless particle relative to primary one

(2.1)

x



~r2 position vector of massless particle relative to primary two

(2.1)

AR change of position vector (7.2)

AV change of velocity vector (7.1)

6r position vector correction (2.28)

6r velocity vector correction (2.28)

W angular velocity of primaries about CM (2.10)

eccentric anomaly of primary two relative to primary one (4.2)

eccentricity of primary two relative to primary one (4.2)

angular velocity of primary two relative to primary one (4.3)

universal gravitational constant in Section (3.4)

Jacobi function (2.16)

rate of change of Jacobi function (2.17)

J evaluated on the conic trajectory (2.27)

dimensional mass of primary one (2.2)

dimensional mass of primary two (2.2)

R1 projection

restricted

R
2

projection

magnitude

magnitude

magnitude

of r1 onto the Earth-Moon plane for the ephemeral

problem of three bodies

of r2 onto the Earth-Moon plane (5.7)

Ir| (2.1)

Ir' 1(2.1)

Ir2l (2.1)

xi

Scalars:

E2/1

e2/1

f2/1

G

J

J
c

m1

r



r initial value of r (2.25)
o

rf final value of r (2.25)

Ar increment in r (2.25)

Ar initial increment in Ar (2.25)
o

Arf final increment in Ar (2.25)

At increment in time (t2 - t) (2.26a)2 1 l 22a

6t time correction (2.30)

6r magnitude 168r (2.29)

6;r magnitude, 16rl (2.29)

(a angle from e to e [Figure (3.2
x r

. (i = 1,2) angular velocity of r.
11

a

CT

mass ratio-parameter (2.2)

variable = ± 1 (3.11)

angle between e and n
r c

(3.7)

W magnitude 1|1

Subscripts:

f

i

o

p

x

y

z

indicates final value

indicates 1 or 2

indicates initial value

indicates perturbing acceleration direction

referenced to

referenced to

referenced to

x direction

y direction

z direction

xii
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Miscellaneous Symbols:

d
( ) indicates ()

dt

( ) indicates ( ) within the rotating coordinate system

Abbreviations: Numbers to the side represent Sections where they first appear.

CM center of mass (2.2)

er Earth radii (3.i4)

fps feet/second (3.4)

hr hour (3.4)

min minute

n. mi nautical mile (3.4)

rad radians (Table 1)

sec second (3.4)
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CHAPTER 1

INTRODUCTION

1.1 General Background

Since the problem of two bodies is the only problem in astrodynamics

with a known solution for arbitrary initial conditions, it has been used ex-

tensively as a model of the problem of planet-orbiting satellites. The solu-

tion to the problem of two bodies is also a good approximation to the motion

of the planets relative to the sun. However, it is not a good approximation

for Earth-Moon or interplanetary trajectories, because it cannot include mul-

tiple force centers. This led to the use of the restricted* problem of three

bodies as a mathematical model for Earth-Moon trajectories and successive

portions of interplanetary trajectories.

1.2 Restricted Problem of Three Bodies

The restricted problem of three bodies in this study is the motion

of a massless particle (space vehicle) in the vicinity of two massive primar-

ies (see Figure 1.1). The'unit base vectors e and e are in the plane
x Y

MASSLESS
PA'R I C L E

rlf: e 
G) `

Figure 1.1

PRI MARY
2

L PRIMARY 1

Diagram for the Restricted Problem of Three Bodies

*Restricted in the sense that the mass of the third body is small enough that
it does not affect the motion of the two primaries.

1



2

containing the motion of the two primaries relative to the center of mass

(CM) and e is the unit vector perpendicular to that plane.
z

1.2.1 Planar Circular Restricted Problem of Three Bodies

The circular restricted problem of three bodies is the configuration

where the two primaries are in circular orbits about the CM and the motion of

the particle is in the plane of motion of the two primaries.

1.2.2 Planar Elliptic Restricted Problem of Three Bodies

The elliptic restricted problem of three bodies is the system where

the two primaries are in elliptic orbits relative to the CM. The motion of

the particle is again in the plane of the motion of the two primaries.

1.2.3 Ephemeral Restricted Problem of Three Bodies

The ephemeral restricted problem of three bodies is the three-dimen-

sional motion of the massless particle, where the position and velocities of

the primaries (the Earth and the Moon) are obtained from available ephemeris

information. Such ephemeris information is available in readily accessible

form for computer use on the JPL ephemeris tape[ .

For arbitrary initial conditions there are no known analytic solu-

tions to any of the above mentioned problems. Since the restricted problem

of three bodies is a representative mathematical model of the Earth-Moon space

vehicle system and of successive parts of interplanetary trajectories, it is

desirable to have a fast, accurate solution from the standpoint of guidance

and trajectory analyses. This solution can be used to determine parameter

sensitivity and guidance sensitivity for several trajectories with little

*Numbers appearing in the text as superscripts indicate references listed in
the Bibliography.
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computer time expense. To perform a similar analysis using a numerical inte-

gration technique would be very expensive in terms of computer time.

1.3 Approximate Solutions

The patched conic, introduced by Egorov[ 7 ] in 1958, was one of the

first approximate solutions to the restricted problem of three bodies. The

patched conic for the restricted problem of three bodies consists of two

conic segments, the conic of a particle about primary one without the pertur-

bations of primary two and the conic of the same particle about primary two

without primary one perturbations, which are joined at a point in space to

produce the composite trajectory. The joining point in space is taken to lie

on the surface of a nearly spherical surface, centered at primary two, which

is called the Mean Surface of Influence and is discussed in Ref. [81 (see

Figure 1.2).

Mean Surface of Influence

Hyperbolic
segment

Rmry Elptic segmt relatlvePrimary 1 ,El.iptic segmcnt to Primary 
relatiIe to
Pr'inarl I

Figure 1.2 Patched Conic Geometry for Primary 1 to Primary 2 Trajectories

2'
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Some of the disadvantages of the patched-conic are:

1. it produces large errors for trajectories that have long transit

times,

2. it is sensitive to the choice of the magnitude of the mean sur-

face of influence, and

3. it has no means of including the effect of the perturbing body.

Its advantages are:

1. it is very fast computationally

2. it provides reasonable velocity requirements if the initial and

final position vectors are given.

The method of matched asymptotic expansions[
1 1

'
1 2

'
1 3

] is another

method of approximating the trajectory of a particle in the presence of two

primaries. The initial difficulty of the matched asymptotic expansion is

the algebra and computer program check out required to obtain suitable re-

sults. Until later refinements were applied to the method[ 4 ] , the computer

time required to obtain a solution is almost as large as the time required to

obtain a numerically integrated trajectory.

During the period of time from 1963 to 1966 much work was done at

NASA and TRW Systems to improve the patched-conic by applying a velocity cor-

[27,28]
rection at the patch point[ . The velocity correction being calculated

from knowledge of the "Jacobian Function" for the restricted problem of three

bodies. This method was an improvement to the patched conic, but was not suf-

ficient for all cases.

During the period of time from 1967 to 1969 the Hybrid Patched-Conic

Technique was developed by Escobal, et al. [9] At first appearance it seemed

that the Hybrid Patched Conic Technique was accurate and fast enough to meet

the needs of NASA and industry at the time. The disadvantages to the Hybrid
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Patched Conic Technique are that i-l: requires a patched conic solution for a

reference trajectory, and its accuracy is limited if the perilune altitude

is large (e.g., greater than 3000 n.mi.).

In 1969 this investigation was initiated using knowledge of the

"Jacobian Condition" and the "angular Momentum condition" to make corrections

at several points along the trajectory to see if this would not produce a

quickly-calculated trajectory that was sufficiently accurate, as compared to

a numerically integrated solution. It was later determined that the angular

momentum correction was not accurate enough to help improve the accuracy.

After the present investigation was initiated, it was learned that

several individuals at TRW Systems at Houston were working on the same type

of problems but with quite different approaches. They developed the multi-

conic method[ 4 ] and the pseudo-conic method[ 3 1] .

The multi-conic method uses two-body motion as the basic propaga-

tion technique. Gravitational effects are accounted for by assuming that

each perturbing body causes independent two-body motion. The effects are

then summed along the trajectory. The procedure does involve a retracing

step and using a zero gravity step. Thus, the method is more. complicated

than the "Jacobian" correction method presented here.

The pseudo-conic method also uses conic motion as method of propa-

gation, but it continues on past the mean surface of influence along a tra-

jectory that is regarded as a pseudostate. Then it propagates from the mean

surface of influence to the desired final time. The pseudo-conic does reduce

the patched conic error considerably, but it does not seem to be as accurate

as the multi-conic method.

An "integral hypersurface" technique[ l
1 5 '1 6

' 1 7 ] has been used by

Nacozy[ 17]Nacozy to constrain the numerically integrated solution to remain on the
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integral surfaces. A similar technique has been used iteratively by Miller[15]

in a gravitational n-body integration to control the usual ten first integrals

[16]
of motion. Miller also used the first ten integrals of the equations of

motion as controls for nibody integration. In a comparison of a corrected

solution of the system with a similar, uncorrected solution, he finds that

the two solutions diverge from each other - indicating the instability of the

gravitational system. Aarseth used a similar integral surfaces technique

to correct the integrals, the positions, and the velocities of the computed

solution to account for the removal of escaping bodies from the system.

1.4 Motivation

The motivation for the approach taken here is that proper use of

the knowledge obtained from the "Jacobian" Function could produce results that

are a significant improvement over the results obtained from a patched conic

trajectory with much less computer time than is required for numerical inte-

gration[
2 4

].

The first step was to apply the theory to the planar circular res-

[231
tricted problem of three bodies. Since the Jacobian Function is a constant

for the circular restricted problem of three bodies, it was felt that it would

be best to apply the theory to the circular restricted problem of three bodies

before proceeding to the elliptic and ephemeral restricted problem of three

bodies. The description of the method and the necessary equations are de-

rived in Chapter 2. The application to and the results obtained from the cir-

cular restricted problem of three bodies are presented in Chapter 3. Next,

the elliptic restricted problem of three bodies is treated and the results

presented in Chapter 4. Last, the ephemeral restricted problem of three bodies

application and results are presented in Chapter 5. A detailed discussion of
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the choice of the position vector correction direction (n ) and the velocity

vector correction direction .(n ) is presented in Chapter 6. The summary

and conclusions are presented in Chapter 7.

A qualitative comparison of the patched conic, the hybrid patched

conic technique, the matched asymptotic expansion technique, the multi-conic,

and the pseudo-conic is also presented in Chapter 7.
and the pseudo-conic is also presented in Chapter 7.



CHAPTER 2

DESCRIPTION OF METHOD

2.1 Assumptions

If the effects of the gravitational fields of the sun and other

planets are neglected, the system containing the Earth, the Moon, and a space

vehicle can be approximated as a three-body system (see Figure 2.1).

VEHICLE

Z

EARTH

Y

X

Figure 2.1 Configuration of the Earth, the Moon, and the Space Vehicle.

This can be modeled, as in Figure 2.2, as the restricted problem of

three bodies. The restriction is that the space vehicle (or the massless

particle) does not affect the motion of the two primaries. The masses of the

two primaries are assumed to be spherically symmetric and homogeneous in

concentric layers.

8

/ MOON

·I
I



MASSLESS
PARTICLE• A~~~~~f

Figure 2.2

I _R. R2 PRIMARYR 2 2
- PRIMARY I

Diagram for the Restricted Three-Body Problem (R3BP).

The problem will be formulated in a vectoral notation that can be

used for both two- and three-dimensional problems. For the ephemeral res-

tricted problem of three bodies the position and velocities of the primaries

[61(the Earth and the Moon) are obtained from the JPL ephemeris tape

2.2 Development of the General Equations of Motion

The non-dimensional equation of motion for the massless particle is

rl r
r + (1 - ) + 3 = 0

rl r 2

(2.1)

(see Figure 2.2) where v , the mass ratio-parameter, is

(2.2)
m2

(ml + m 2
)

and m1 and m2 are the dimensional masses of the two primaries.

r = acceleration of the massless particle relative to the center

of mass (CM).

r = position vector of the massless particle relative to the CM.

I/

9

t ex
e 0 g
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rl = position vector of the massless particle relative to primary

one.

r2 = position vector of the massless particle relative to primary

two.

Therefore,

= r - R
1

= r - R

= -R2/1

= (1 - R2 e 2/1

=R2 - R1 = ex R2/1

= r - R2

= r - R
2

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

2/1

R1 =1

R22

The equations

tively,

Position vector of Primary two relative to Primary one.

Position vector of Primary one relative to the CM.

Position vector of Primary two relative to the CM.

of motion relative to primary one and primary two are, respec-

r
1

+ (1 - 11) - 113 + = 
1 3+ = 0

r2 R2/1

and

r2 2/1
r 2 + (1 - i) 3= 0

r2 2/1

The velocity r and acceleration r can be written as

where

(2.8)

(2.9)

R1

R2

R2/1



* o

r = r +o x r

0·.0 0 *

r = r + w x ( x r) + 2w x r + w x r

d
r = -- ()

dt

E dr/dt with e , e
x y

e fixed.
z

In the cartesian coordinate system indicated by the rotating, unit base vec-

e , e
Y z

r = xe + -yey + zez
x yey ~~z

0

r = xe + ye
x y

+ ze
z

w = angular velocity of primaries about the

= we
z

The Jacobian function for the restricted problem of
[3,29]

derivative are

11 -
J = 2-r *r -- (w xr) ( x r) - (1

2

(2.15)

three bodies and its

- i)/r 
1

- /r2 (2.16)

and

J = - · h + p(1 - p)R2 / 1 ' 
2rl 32

h = angular momentum of the massless
particle relative to the CM.

= orr r_ 0

= r x r = r x r + r2 - r( · r)

where

11

(2.10)

(2.11)

0

r

tors ex 

(2.12a)

(2.12b)

(2.13)

(2.14)

CM.

where

(2.17)

(2.18)

I
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This assumes that no other forces are acting on the system and

. R2
R + 2/13 0 (2.19)

R2/1

which implies that

2
X = we = (R2/1 R2/1)/R2/1 (2.20)

For the case of the circular restricted problem of three bodies

it is clear that
0

w 0 and R O (2.21)
2/1

This then leads to the well known Jacobian integral for the circular res-

tricted problem of three bodies (see pp. 16 of Ref. 29). That is,

o o
1 - 1 -(2.22)

J = r ) · (w x r) - (1 -P)/r1 - i/r2 Const. (2.22)
2 2 1 2

Further details of each of these equations (2.1-2.22) will be dis-

cussed as necessary in the remaining Chapters.

It is desirable at this point to discuss the method of application.

2.3 Method of Calculation of Trajectories

Due to its computational simplicity, conic motion has been chosen

to be the method of trajectory advancement. The force center is the primary

on the same side of the surface of influence as the massless particle (the

surface of influence is defined on p. 148 ff of Ref. 8) and the independent

variable is the magnitude of the position vector from the force center.

This choice of independent variable eliminates the need for iteration involv-

ing Kepler's equation.

After the trajectory has been conically advanced over the desired

position vector magnitude interval, a correction to the position and velocity

I
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is calculated using the Jacobian function, which is constant or slowly-vary-

ing for the exact motion. Slowly-varying functions [Equation (2.17)] must be

integrated over the propagation interval.

In the application of this method to the restricted problem of three

bodies one scalar (Jacobian) function is involved in the correction procedure.

This function is used to correct one velocity vector component and one posi-

tion vector component. The direction of the velocity component is the approx-

imate direction of the time-averaged perturbing acceleration. The position

component's direction is different and is discussed in Chapter 6.

The direction of the perturbing acceleration is obtained from Equa-

tions (2.8) and (2.9). For motion relative to primary one the unit vector in

the direction of the average perturbing acceleration

-3 - 3
- (R2/1/R2/1 + r2/ 2

= (2.23)

1 2/1 2/1 2 2(

where indicates the absolute value. For motion relative to pri-

mary two this is

3 +r/r
-R2/1/R2/1 + 2./r

n - 1 (2.24)

- R2/1 /R2/1 + r/r1

Further details of the correction direction procedure will be given

as necessary in the appropriate sections.

Assume that the trajectory has just been corrected. The motion to

the next correction point and the correction there will be described.

The interval of propagation Ar is chosen to vary linearly with r

and is calculated by means of the equation.
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Ar = Ar + (Arf - Ar )(r - ro)/(rf r) (2.25)

Where r and Ar are initial values and rf and Arf are final values.

The state vector is conically propagated to a new state vector at r + Ar

Due to the choice of independent variable, no iterations are necessary and

this is a straightforward procedure.

At the new conically-advanced state, a "conic" Jacobian function

and its derivative J and J are calculated. The approximate values of
c c

J and J at the newly advanced state are predicted using trapezoidal inte-

gration. That is,

J2 = J1 + 0.5(J1 + J2 )At (2.26)

where J2 is the predicted value of J at r + Ar , J1 and J1 are the

values of J and J evaluated at the previous r , and

At = t2 t (2.26a)

where t1 is the time associated with the trajectory at r and t2 is the

time associated with the trajectory at r + Ar . The derivative J2 is J

evaluated on the conic trajectory at t2 . Then J - 2 Since the exact

motion is not conic

J c J (2.27)

At this point, correct both velocity and position vectors.

r + r + 6r ; r + r + 6r (2.28)

and

6r = n 6r ; 6r = n 6r (2.29)
p c

The unit vector n indicates the direction of the velocity correction while
P
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n indicates the position vector correction direction. These are discussed

in Chapter 6.

Note that, since the time correction

't 0 (2.30)

the following equations are true:

6r = 6r = r2 ; 1r = 6
1

= 2 (2.31)

The equation for determining 6r and 6r is

1 0 0 0 0 10 0 -

(r + 'r) (r + 6Sr) - r r - [x (r t 'r)]
q 2 2

* [w x (r + 6r)] + ( x r) ( x r) - (1 - P)/(r
1

+ 6r
1
) (2.32)

+ (1 - W)/r1 - p/(r 2 + 6r 2 ) + p/r2 = J - J

Since two scalar quantities are being corrected by means of one scalar func-

tion, a relationship between dr and 6r is needed. If a is the average

perturbing acceleration,

6r = aAt (2.33a)

1 2 1
'r = a(t) = (6r)(At) (2.33b)

where At is the time interval corresponding to Ar and is evaluated from

Kepler's equation. Ignore the difference between n and n (see Chapter
p c

6) and use

6r = 2 (6r)(At) (2.34)2

Equation (2.32) is linearized with respect to dr and 6r . The

resulting expressions for 6r and 6r are
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J -J

dr = [ - (2.35a)
[(np A) + - (n )(At)]

p 2 c

(J - J )at
·6r = 1 (2.35b)

[(np * A) + (nc * B)(At)]
p 2 C

0

with A r (2.36)

2 -2 3 3
B E {(w x r) - Ew - ( n)] + (1 - )r/r + Pr2/r2} (2.37)

After the corrections 6r and 6r are made to the trajectory, the

process is repeated until the desired stopping condition (perilune) is sat-

isfied.

The method is applied to the circular restricted problem of three

bodies, the elliptic restricted problem of three bodies and the ephemeral res-

tricted problem of three bodies in Chapters 3, 4, and 5. The appropriate as-

sumptions and modified equations will be presented in the appropriate chapters.



CHAPTER 3

CIRCULAR RESTRICTED PROBLEM OF THREE BODIES

For the planar circular restricted problem of three bodies, the

motion of the massless particle takes place in the plane of motion of the

two primaries and the primaries are each in circular orbits about their

center of mass. This leads to the following reduced equations.

3.1 Equations for the Circular Restricted Problem of Three Bodies

The equation of motion is the same as Equation (2.1), and

~~eR = e R; 1 and = 0 (3.1)2/1 ex 2/1 y 2/1 2/1

which implies that

1
=-Iex R2 = (1 - P)e (3.2)

The out-of-plane component z = O , and

= e , = 0 (3.3)
z

The Jacobian function, J , [Equation (2.16)] remains the same, but the time

rate of change of the Jacobian function, J [Equation (2.17)], is zero.

The direction of the perturbing acceleration becomes

3
- (e + r2/r

2
)

n = (3.4)
P | ex + r2/r2 

for motion relative to primary one. For motion relative to primary two, the

direction of the perturbing acceleration is

17
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-
- (-e + r/rx 1 1

n 31 (3.5)
P --e + rl/r3

The interval of propagation for the independent variable ri

(i = 1,2) is the same as Equation (2.25). Since the Jacobian function

is a constant, the trapezoidal integration [Equation (2.26)] is not used.

The linearized equations for 6r and 6r are the same as Equations (2.35a),

and (2.35b).with the exception that

- 3 - 3/r
3.2 Velocitz x r - + ( - /r1orrection Direction n (3.6)

3.2 V elocity Correction Direction of the per-

The velocity is corrected in the time-averaged direction of the independper-

turbing acceleration over the propagation interval. Since the independent

variable is not time but is the position vector magnitude, this direction is

approximated.

Figure 3.1 shows the variation of mean anomaly with the position

vector magnitude for elliptic and hyperbolic conic orbits. Since the change

in mean anomaly M is proportional to the change in time, these curves can

be used to approximately determine the fraction of Ar corresponding to

At/2

Except near perifocus, the slopes of the curves shown in Figure

3.1 increase with increasing r . However, this increase is less for hyper-

bolic orbits than for elliptic orbits (see Figure 3.1). The average direc-

tion of the perturbing acceleration is approximated by choosing the positions

of the non-primary force center and the massless particle to the following:

on the Earth side of the mean surface of influence, their positions at the

correction point are used; on the Moon side, the position of the Earth 2At/3
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before the correction point and the position of the massless body 2Ar/3

before the correction point are used.

ELLIPTIC
ORBITS

M
iT

5

0.5

-I.0 0

HYPERBOLIC
ORBITS

1 5 10

(r/a- I)
e

Figure 3.1 The Variation of Mean Anomaly and Position Vector Magnitude

3.3 Position Correction Direction n
c

Two ways of calculating n have been used. The first method uses

the polar coordinates referenced to e which are used to describe r ,x

rl , r2 and r2 (see Figure 3.2). In terms of the base vectors asso-

ciated with these coordinate systems, the expression for n is

n = er cos ~ + ea sin f

c Ur ar

~ea ~

a 2
CLI -

1 2
Figure 3.2 Polar Coordinate Systems

(3.7)

M
ir

(I + r/a)
e

II I
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where 4 is an angle measured positive counter-clock-wise from

method of choosing n is called the "refined method", because

varied to give accurate results [see Table 1]. The variation of

perilune altitude is shown in Figure 3.3.

-40

-50

,--N

-70

e . This
r

4 can be

4 with

1000 2000 3000

PERILUNE. ALTITUDE ( N. MI.)

Figure 3.3 The Variation of 4 With Perilune Altitude for the
Circular Restricted Problem of Three Bodies

3.4 Numerical Results for "Refined" Choice of n
c

In the non-dimensional system, the reference quantities are the

following:

reference mass

reference length

reference time

= sum of the dimensional masses of the two pri-
maries

= dimensional distance between the two primaries
[60.2684 Earth radii (er) for the circular
restricted problem of three bodies

= [(ref. length)3/G(ref. mass)]
1
/ 2

= 104.21989489 hrs for the circular restricted
problem of three bodies

I i_

-60
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where G is the universal gravitational constant. The reference length was

chosen as the average distance between the Earth and the Moon and the total

mass of the Earth and the Moon. The masses of the Earth and Moon produced a

mass-ratio parameter [Equation (2.2)] of p = .012150446995297

The only fixed initial condition is

rl = .0173014 ( = 147 n. mi altitude) (3.8)

The initial value of the angle al (see Figure 3.2) and the velocity com-

ponents rl and r181 are varied in order to attain different perilune

altitudes. On the Earth side of the mean surface of influence

Ar = .4977476 ( = 30 er )
o

Arf = .01659244 ( = 1.0 er) (3.9)

r = .0173014 ( = 147 n. mi)
o

(rf varies as the trajectory changes).

For the Moon side of the mean surface of influence,

Ar = -.01659244 ( = -1.0 er)
0

Arf = -.03318488 ( = -2.0 er)

(3.10)
r = .1659244 ( = 10.0 er)
0

rf = .00481180 ( = .29 er)

The values of r2 a2 ' r202 and time at perilune are compared with the

integrated results, obtained with a Fehlberg ] Runge-Kutta RK 7(8), and

with the patched-conic values. All runs were made on the CDC 6600 digital

computer at the Computation Center of The University of Texas at Austin.

Execution times for this method are 0.32 seconds per run compared
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to 2.0 seconds for the integrated trajectory and 0.12 seconds for the patched

conic method.



Table I. Numerical Results at P'erilune for "Refined" Choice of

for the C(ircular Restricted Problem of Three Bodies

A. 73n. mi perilune altitude (p = -47.164°)

1) Integrated results

r 2

.0048727

a2 (rad)

.00476

r282

-2.47678

2) "Jacobi" method

Difference between

(2) and (1)

3) Patched Conic Method

Difference between

(3) and (1)

.0048760

.066%

(.67n. mi)

.0057996

19.0%

(192.37n. mi)

.00903

.00427

(.2450)

.03138

.02662

(1.527° )

-2.47603

+ .031%

(+2.55fps)

-2.28714

+7.656%

(+637.5fps)

B. 501n. mi perilune altitude (~ = -50.658)

1) Integrated

2) "Jacobi"

Difference

3) Patched Conic

Difference

.0069359

.0069360

.001%

(.0175n. mi)

.00839063

20.97%

(302n. mi)

.000155

.000292

.000137

(.0080° )

.032806

.03566

(2.0420° )

-2.12414

-2.12400

+ .006%

(+ .459fps)

-1.95088

+8.156%

(t582fps)

C. 1009n. mi perilune altitude (¢ =

1) Integrated

2) "Jacobi"

Difference

3) Patched Conic

Difference

.0093806

.0093802

-.005%

(-.0919n. mi)

.01048787

11.80%

(229.8n. mi)

-51.4870 )

r2e2

.0000007 -1.872641

-.0019233

-.00193

(-.111 )

-.006722

-.006730

(-.3860° )

-1.872487

+ .008%

(+.52fps)

-1.764465

+5.78%

(+363.6fps)

23

n
c

time (hr)

68.703

68.641

-.062

69.773

1.069

73.182

73.119

-.063

74.425

1.244

77.165

77.107

-.058

78.701

1.535



D. 2000n. mi perilunie altitude (4

1) Integrated

2) "Jacobi"

Difference

3) Patched Conic

Difference

r 2

.01415734

.01416068

.021%

(.608n. mi)

.01608699

13.63%

(400.5n. mi)

= -63.039)

a2 (rad)

.0000012

.0011052

.0011039

(.0630° )

-. 000542

-.00054340

(-.0310)

r2e2

-1.592244

-1.591828

+ .026%

(+1.40fps)

-1.489750

+6.437%

(+344.5fps)

E. 2995n. mi perilune altitude (q = -63.395)

1) Integrated

2) "Jacobi"

Difference

3) Patched Conic

Difference

.0189500

.0189542

.022%

(.833n. mi)

.0261182

8.77%

(344.9n. mi)

.0000002

-. 0011399

-.0011401

(-.0650)

-. 0294720

-. 0294721

(-1.690° )

-1.431530

-1.431254

+ .0193%

(+ .929fps)

-1.347823

+5.85%

(+281.4fps)

2'?

time (hr)

83.116

83.007

-.108

84.881

1.766

1.766

87.755

87.654

-. 101

89.894

2.140
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3.5 Numerical Results for the "straight-forward" Choice of.n
c

For the "straight-forward" choice of n is
c

n = n (3.11)
c p

where a = +1 for the Earth side of the mean surface of influence, and

a = -1 for the Moon 4ide of the mean surface of influence. This choice

of n will be discussed in Chapter 6. The only other difference between
c

the two choices of n is that on the Moon side of the surface of influ-
c

ence the position of primary one is At before the correction point instead

2
of 2 At and the position of the massless particle is Ar instead of

3

Ar . This. is due to the fact that for the Earth side of the mean surface

of influence the direction of the perturbing acceleration n [Equation
P

(3.4)] is almost in the direction of the perturbing body. But for the Moon

side of the mean surface of influence, the direction of the perturbing ac-

celeration n [Equation (3.5)] leads the perturbing body by a significant
P

amount. Therefore, it is more reasonable to use the position of the pri-

2
mary one at At instead of 2 At before the correction point.

3

The numerical results for the straight-forward choice of n are
c

presented in Table 2. As shown in Table 2 the errors between the "straight-

forward" choice of nc and the integrated results are all less than 10 n. mi

and 10 fps. Execution times for the choice of n are about the same as for
c

the "refined" choice of n Therefore, it would seem logical to use the

"straight forward" choice of n as it does not change with perilune altitude.
c
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Table 2. Numerical Results at Perilune for thle

For the Circular Restricted Problem

A. 73n. mi Perilune altitude

1) Integrated

.0048727

.0048727

2 (rad)

.004760

"Straight-Forward" Choice of nr
C

of Three Bodcies

r22

-2.47678

Time (hr)

68.703

2) "Jacobi"

Difference

3) Patched Conic

Difference

.0048615

-.231%

(-2.33n.mi)

.00579909

19.0%

(192.26n. mi)

.004150

-.000615

(-.3520)

.031340

.026577

(1.5370° )

-2.47902

.091%

(7.54fps)

-2.28722

-7.65%

(637.2fps)

B. 501n. mi perilune altitude

1) Integrated .0069359

2) "Jacobi"

Difference

3) Patched Conic

Difference

.00693658

.0092%

(.133n. mi)

.0083900

20.95%

(301.6n. mi)

.000668

.000514

(.0290° )

.03272

.032566

(1.8660° )

-2.12396

- .0086%

(-.612fps)

-1.95101

-8.15%

(-581. 9fps)

C. 1009n. mi perilune altitude

1) Integrated .0093806

2) "Jacobi"

Difference

3) Patched Conic

Difference

.0094122

.337%

(6.56n. mi)

.0111126

18.46%

(359.5n. mi)

.0009836

.0009829

(.0290)

.0221121

.022105

(1.2680)

-1.870040

- .139%

(-8.74fps)

-1.73254

-7.481%

(-470.9fps)

68.635

-.068

69. 773

1.069

.000155 -2.12414 73.182

73.108

-.073

74.425

1.244

.0000007 -1. 872641 77.165

77.102

-.0638

78.604

1.439



D. 2000n. mi perilune altitude

1) Integrated

2) "Jacobi"

Difference

3) Patched Conic

Difference

r 2

.0141573

.0141342

-.163%
(-4.80n. mi)
.0161907

14.4%

(422.1n. mi)

a2 (rad)

.0000001

-.0010344

-.0010349
(.0590° )
.0028447

.0028441

(.163° )

r262

-1.592244

-1.592638

.025%
(1.32fps)
-1.487178

-6.599%

(-353.2fps)

E. 2995n. mi perilune dl:itude

1) Integrated .0189500

2) "Jacobi" .0189249

Difference -.132%

(-5.19n. mi)

3) Patched Conic .0210521

Difference 11.09%

(436.3n. mi)

.0000002

-.0010122

-.0010124

(-.058° )

-.0147625

-.0147627

(-.8450)

-1.431530

-1.431878

.024%

(.1.167fps)

-1.343576

-6.144%

(-295.6fps)

27

Time (hr)

83.116

83.050

-.066

84.867

1.752

87.755

87.771

-.043

89.782

2.027



CHAPTER 4

ELLIPTIC RESTRICTED PROBLEM OF THREE BODIES

For the planar elliptic restricted problem of three bodies the

motion is still in the (ex ,ey )-plane. The only difference between the

models for the circular restricted problem of three bodies and the ellip-

tic restricted problem of three bodies is that the primaries are each in

elliptic orbits about the CM. The choice of the eccentricity of the ellip-

tic orbits is .0549, which is the average eccentricity of the Moon with

respect to the Earth . The inclusion of the eccentricity of the primar-

ies leads to the following equations.

4.1 Equations for the Elliptic Restricted Problem of Three Bodies

The equations of motion is the same as Equation (2.1), and

R2/1 2/lex 2/1 2/lex 2/1ey (4.1)

R 1- e cos E sin E /R (42)R2i = 1 -2/1 Ce2/ 1 2/ 1 = e2/ in 2/1 (4.2)2/1

where e2/1 = the eccentricity of primary 2 relative to primary 1

= .0549

E21 = the eccentric anomaly of primary 2 relative to primary 1,
2/1 =

which is obtained from solution of Kepler's Equation

0 <E <2Tr
- 2/1 -

w = angular rate of primary 2 relative to primary 1

f (l-e 2 1/2 2
2/121 /R2/1 (4.3)

R1 = -pR2/i ex ; R2 = (1 - )R2/lex (4.4)

w = we i = we (4.5)

28
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where

-2R2/1 R2/1
~ = 2/1k ~ =~ ~-2w - (4.6)

2/1 R/1 2/1 f 2/1

The Jacobian function J [Equation (2.16)] remains the same, but

the time rate of change of the Jacobian function, J , [Equation (2.17)]

becomes

0 r- 

J = -· h + (l - )R2/1 * | 3 - (4.7)

where

- -2
h = x r = r x r + wr (4.8)

The term r(W r) = 0 since w is perpendicular to r for the planar

model. The direction of the perturbing acceleration becomes

- 2 3
-(ex/R2/1 +r2/r2)

n = 2/1 (4.9)
- 2 - 3

eX/R±2/1 +r2/r 2

for motion relative to primary 1. For motion relative to primary 2, the di-

rection of the perturbing acceleration is

2 - 3
_ (- ex/R2/1 + rl/r1 )

=2 1 (4.10)

- e /R2/
1
+rl/r 1

The interval of motion for r is the same as Equation (2.25). Since the

Jacobian function is not constant (J X 0) the trapezoidal integration

[Equation (2.26)] is used to predict the proper value for the Jacobian

function at the end of the interval of motion. The linearized equations

for 6r and 6r are the same as Equations (2.35a) and (2.35b) except that
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2-
B {(~ x r) - W r + (1 - )

The velocity and position correction directions

Sections (3.2) and (3.3). The variation of $

altitude for the "refined" choice of n shown
c

-40

O
03
LU

-19

- 50

-70

r1 r2

3 + 3
r1 r2

(4.11)

are the same as described in

[Equation (3.7)] with perilune

in Figure 4.1

1000 2000 3000

PERILUNE ALTITUDE (N. MI.)

Figure 4.1 The Variation of O With Perilune Altitude for the
Elliptic Restricted Problem of Three Bodies

For the "straight-forward" method n was calculated as presented in Equa-

tion (3.11).

4.2 Numerical Results for "Refined" and "Straight-Forward" Choice of n

The non-dimensional quantities for the elliptic restricted problem

of three bodies are the same as those described in Section (3.4) with the

exception that the reference length is the dimensional semi-major axis of
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primary 2 relative to primary 1 ( = 60.2684 er). The remaining initial con-

ditions are as presented in Section (3.8).

The values of r,2 a2 r2 62 and time at perilune for the

"refined" and "straight-forward" methods are compared with the numerically

integrated results and with the patched conic and are presented in Table 3.

Execution times for this problem are of the same order of magni-

tude as for the circular restricted problem of three bodies. That is, the

Jacobian method takes about 0.3 seconds as compared with 2.0 seconds for

the integrated trajectory and 0.13 seconds for the patched conic method.
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Table 3. Numerical Results at Perilune For

Jacobi - 1 "Refined" Choice of n
c

and

Jacobi - 2 - "Straight-Forward" Choice of n
c

A. 59.2n. mi Perilune Altitude

1) Integrated Results

r 2

.00480695

a2 (rad)

-.15507493

2) Jacobi - 1(% = 52.20)
Difference between
(1) and (2)

3) Jacobi - 2
Difference between
(a) and (3)

4) Patched Conic
Difference between
(1) and (4)

.00480630
-.013%
(-.134n. mi)

.00480564

.028%
(-.275n. mi)

.00527354
9.71%

(96.85n. mi)

-.15516424
-.000089
(-.005o)

-.15456276
.00050095

(.0290)

-.15991492
-.00483401
(.277° )

-2.463483
.006%

(.525fps)

-2.461228
(- .097%)
(-8.08fps)

-2.340174
5.01%

(451.01fps)

B. 780.5n. mi Perilune Altitude

1) Integrated

2) Jacobi - 1(4 = -49.8° )

Difference

3) Jacobi - 2
Difference

4) Patched Conic
Difference

.00828199

.00828722

.063%
(1.085n. mi)

.00828288

.011%
( .184n. mi)

.00876841
5.87%
(100.96n. mi)

-.00361027

-.00746075
-.00385048
(-.2220)

.00589730

.00870000
(.5000)

-.02646631
-.02285604
(1.3100)

-1.9844195

-1.9845066
- .004%

(- .293fps)

-1.9846983
- .014%

(- .937fps)

-1.8997533
4.27%

(284.59fps)

r262

-2.463639

time (hr)

69.084

68.985
- .099

69.006
-.078

70.458
1.374

69.951

69.846
-.105

69.829
-.122

71.458
1.507
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C. 1293.3n. mi Perilune Altitude

a2 (rad) r262 time (hr)

1) Integrated .01075232 .06710700 -1.8047416

2) Jacobi - 1($

Difference

3) Jacobi - 2
Difference

4) Patched Conic
Difference

= -58.0° ) .01075021
-.020%
(-.438n. mi)

.01071372
(-.359%)
(-8.01n. mi)

.01144598
6.45%
(143.98n. mi)

.07082385

.00371684
(.212° )

.07030673

.003199731
(.183° )

.04941106
-.01769594

(-.995%)

-1.804806
- .004%

(- .219fps)

-1.8069572
.122%

( 7.45cps)

-1.7204624
4.67%
(283.29fps)

D. 1726.9n. mi Perilune Altitude

1) Integrated .01284166 .11309066 -1.6982265

2) Jacobi - 1($ = -57.9° )

Difference

3) Jacobi - 2
Difference

4) Patched Conic
Difference

.01284165
-.ooo000%

(-.001n. mi)

.01283529
-.050%

(-1.32n. mi)

.01371698
6.82%
(181.68n. mi)

.11658178

.00349172
(.2000)

.12227265

.00918228
(.5260)

.09959157
-.01349849
(-.773° )

-1.6983320
- .006%
(.355fps)

-1.6984975
- .016

(- .9llfps)

-1.6148834
4.91%

(280.15fps)

E. 3000.3n. mi Perilune Altitude

1) Integrated

2) Jacobi - 1($ = -55.80)
Difference

3) Jacobi - 2
Difference

4) Patched Conic
Difference

.01897652

.01897642

.o016%
(.648n. mi)

.01901113

.182%
(7.19n. mi)

.02022279
6.57%
(258.68n. mi)

.20480733

.20418418
-.00062315
(-.0360)

.21273488

.00792754
(.0460° )

.19094782
-.01385952

(-.795° )

-1.5023960

-1.5023960
.020%

(1.03fps)

-1.4997524
.176%

(8.89fps)

-1.4176655
5.64%

(284.81fps)

70.518

70.407
-.111

70.406
-.112

72.039
1.521

70.978

70.846
-.132

70.859
-.119

72.509
1.531

72.271

72.135
-.136

72.161
-.110

73.945
1.674
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For the "refined" method the errors between the Jacobian method

and the numerically integrated results are less than 1.1 n. mi and 1.1 fps.

For the "straight-forward" method the errors at perilune are all less than

10 n. mi and 10 fps.



CHAPTER 5

EPHEMERAL RESTRICTED PROBLEM OF THREE BODIES

For the ephemeral restricted problem of three bodies the motion

of the massless particle is not constrained to be planar and motion of the

primaries is not two-body motion about the center of mass. The position and

velocity of the primaries are taken from the JPL ephemeris tape[ 6 ] at each

point of interest. This leads to the following equations.

5.1 Equations for the Ephemeral Restricted Problem of Three Bodies

The non-dimensional equation of motion for the massless particle

is the same as Equation (2.1), and

R2/1 R2/lex 2/1 2/ex 
+

R2/ 2/1 e (5.1)

where R2/1 and R2/1 are taken from the ephemeris tape. The angular velo-

city and acceleration of the primaries relative to the CM is determined by

R= xe R2/1
w= 2we 2/1 z 2 (5.2)

2/1

R2/1 2/1 _ 2/1 z we f2/le (R x R (5.3)
z 2 z ~R2 3 2/1 2/1)

2/1 2/1

Since the acceleration R2 /1 is not given, and is not easily calculated, it

is assumed that at each instant in time that

R2/1
R2/1 3 (5.4)thrfe 3

R2/1

therefore,

35



36

= -2w /1 (5.5)
R2/1

The out-of-plane components, z and z , are not necessarily zero for the

ephemeral restricted problem of three bodies.

The Jacobian function J and the time rate of change of the

Jacobian function J remain the same as Equation (2.16) and (2.17) respec-

tively. The direction of the perturbing acceleration for motion relative

to primary one and primary two remains the same as Equations (2.23) and

(2.24) respectively.

The interval of motion for the independent variable r is the

same as Equation (2.25). The estimate value of the Jacobian function, J ,

at the end of an interval of motion is predicted using Equation (2.26). The

linearized equations for 6r and 6r are the same as Equations (2.35a) and

(2.35b), where A and B are defined in Equations (2.36) and (2.37).

For the circular and elliptic restricted problems of three bodies

the results were presented for a "refined" choice of nc , and for a "straight-
c

forward" choice of nc . Since the results for the "straight-forward" choice

of n were quite satisfactory, it was decided to only present the results
c

for the "straight-forward" choice of n for the ephemeral restricted prob-
c

lem of three bodies.

5.2 Velocity Correction Direction n
P

The velocity is corrected in the time-averaged direction of the

perturbing acceleration over the propagation interval. Since the independent

variable is not time but is the position vector magnitude, this direction is

approximated by choosing the positions of the non-primary force center and

the massless particle to be the following: on the Earth side of the mean
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surface of influence, their positions at the correction are used; on the Moon

side, the position of the Earth At before the correction point and the pos-

ition of the massless body Ar before the correction point are used. The

unit vector n is the direction from the massless body in the direction of,
p

the perturbing acceleration. The reason for this choice of positions of the

bodies for computing n rather than the choice used in Section (3.2) is not
P

entirely obvious. For motion relative to primary one the direction of the

perturbing acceleration is in the approximate direction of the perturbing

body. Thus, it is logical to use the position of the massless particle and

perturbing body at the time and position of the correction. For motion rela-

tive to primary two the direction of the perturbing acceleration leads the

direction of the perturbing body. This coupled with the "straight-forward"'

choice of n lead to the choice of the position of massless particle and
c

perturbing body described above.

5.3 Position Correction Direction n
c

For the ephemeral restricted problem of three bodies only one choice

of n has been used. This is the "straight-forward" choice as described
c

in Section (3.5). One advantage to this choice of n is that it is not de-
c

pendent upon the perilune altitude. An explanation of the reason the "straight-

forward" choice of n works is presented in Chapter 6.
c

5.4 Numerical Results for the Ephemeral Restricted Problem of Three Bodies

For the ephemeral restricted problem of three bodies the non-dimen-

sionalizing reference quantities are the following:

reference mass = sum of dimensional masses of the two primaries

reference length = semi-major axis of primary two relative to·
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primary one at the epoch time (April 11, 1970,

21h 53mi n 48.966se
c
)

= 59.6789353907 er

reference time = [(ref. length)3/G(ref. mass)]l/2

= 102.694503141307 hrs

[61
The mass of the Earth and Moon taken from the ephemeris tape produced a

mass ratio parameter [Equation (2.2)] of = .01215052064981

The only fixed initial condition is

r1 = .01754507908 ( = 162.10n. mi altitude)

The remaining four initial conditions are varied to attain different peri-

lune altitudes. The coordinate system used for the ephemeral restricted

problem of three bodies is a cylindrical system measured from the instantan-

eous Earth-Moon plane and from the Earth-Moon line. See Figure 5.1.



I VEH IC LE

MOON

EARTH

Q u ATOR

INSTA NTA NEOUS

OF THE MOON

ORBIT

Figure 5.1 Cylindrical Coordinates Used in the
Ephemeral Restricted Problem of Three Bodies
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T'te following equations are true for tile cylinidrical coordinate system.

r R e .ze 5.7)
rl = RleR + zle 11 1

r 1 R1 Re lele + zle (5.8)

where R
1

should not be confused with R1 measured from the CM to primary

one. On the Earth side of the mean surface of influence

Ar = .4977476 ( = 30 er)
0

Arf = .01659244 ( = 1.0 er)

r = .017545079 ( = 162.1n. mi)
0

(rf varies as the trajectory changes).

For the Moon side of the mean surface of influence the values of

Ar , Arf , r and rf are the same as those presented in Section (3.4).

The values of a2 ' R62, r21 and Jr2[ and time at perilune

are compared with the numerically integrated results obtained with the RK7(8)

and with the patched conic and are presented in Table 4. The values for R2

z2 , and z
2

are not presented but compare well with the integrated results.

Execution times for this method are 0.47 seconds per run compared

to 7.0 seconds for the integrated trajectory and 0.22 seconds for the patched

conic method. The reason for the significant increase in execution time for

the Jacobi method and the numerical integration is the extra time required

to call the ephemeris tape at each step. The patched conic method only has

to call the ephemeris tape three times per case.
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Using the "straight-forward" choice of n for the ephemeral restricted
c

problem of three bodies, it is shown in Table 4 that Jacobi-2 correction

method maintains the position and velocity errors to within 11 n. mi and

11 fps.



CHAPTER 6

DISCUSSION OF-CHOICE OF CORRECTION DIRIECTION

The choice of the velocity correction direction n is straight-
P

forward and does not need much explanation. But, the "refined" choice, and

the '!straight-forward" choice of n should be discussed in greater detail.
c

To do this a little background historv is in order.

6.1 Background History

When the Jacobian correction method was first conceived, it was be-

lieved that if the velocity were corrected back to the proper value often

enough there would be no need for a position correction. This method was

first applied to the circular restricted problem of three bodies and, with

only one scalar function, it was thought that only one quantity could be cor-

rected. The results of the Jacobian correction method evaluated at the term-

inal point were a 10% to 20% improvement over the patched conic method. These

results were compared at the point in the trajectory where the force center

was changed from primary one to primary two. At this patch point the Jacobian

method appeared to be much superior to the patched conic. However, the results

deteriorated rapidly from the patch point in toward primary two. It was then

realized that all the position errors that had been neglected along the tra-

jectory transformed into a velocity error after switching to primary two as

the force center. This position and velocity error at the mean surface of in-

fluence then propagated into large errors in both position and velocity at the

terminal point.

6.2 Logical Steps That Led to the Choice of n
c

This resulted in the approximation that
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6r = aAt (6.1)

where a is defined in Equation (2.33). Then,

1 2 1
6r = a(At) = 2 6rAt (6.2)2 2

At this point, it was not clear whether n would be equal to n or not.
c p

By ignoring the difference between n and n then,
c p

6r = rt (6.3)
2

which is the relationship necessary to obtain two quantities from one scalar

function (the Jacobian function). The corrections Sr and 6r [Equations

(2.35a) and (2.35b)] were easily determined from the linearized form of

Equation (2.32).

Since a relationship between n and n was not apparent, it
c p

was decided to vary the direction of n through 3600. This led to the
c

relationship that

n = e cos ~ + e sin c (6.4)
c r a

as described in Section (3.3). From this assumption the results presented

in Table 1 were generated. It was observed that, for motion relative to pri-

mary one, the angle between np and n was always within + 100 of zero
p c

and, for motion relative to primary two, the angle between n and n was
p c

very close to ± 180° . This seemed peculiar until the equations for n
P

[Equation (2.23) and (2.24)] were analyzed. From Equation (2.23)

3 3
(R2/1 /2/1 2 /r2

= 3 3 (6.5)

1R2/1/R2/1 2/1 r 21

in the interval as rl goes from .5 - .9 and r
2

goes from .6 + .2 it
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is clear that

n (. 6)
TP2

where

R 1.0 (6.7)2/1

From Equation (2.24)

3 3
- (- 2/1/R2/1+ r/r )

n 3 (6.8)

2 /- /R 2 / 1/ r/r

In the interval as rl goes from .8 + 1.02 and r2 goes from .2 + .02

then

np f (6.9)

P rl[

but n points in front of primary one for all corrections.

It then seemed obvious to correct the posi-ion vector in the direc-

tion of n going from primary one to the mean surface of influence and, for
P

the motion from the mean surface of influence into primary two, in the oppo-

site direction to n

+n on primary one side

= (6.10)
-c n on primary two side

The numerical results for the "straight-forward" choice of n

presented in Table 2 validated this choice of n as being a good one.

When the same choice of n was applied to the elliptic restricted

problem of three bodies and the ephemeral restricted problem of three bodies,

the results were within acceptable limits [Tables 3 and 4] and provided

further evidence in favor of the "straight-forward" choice.



CHAPTER 7

COMPARISONS, CONCLUSIONS, AND RECOMMENDATIONS

7.1 Summary

An approximate solution to the restricted problem of three bodies

has been presented in the previous chapters. The theory of the Jacobian cor-

rection method has been developed and the method has been applied to the

circular, the elliptic, and the ephemeral restricted problems of three bodies

with good results. Two methods of determining the position vector correc-

tion direction (n ) have been presented. The numerical results for both
c

choices of n have been presented for the circular and elliptic problems.
c

Only the "straight-forward" choice of n was used for the ephemeral res-

tricted problem of three bodies. The results have indicated that the "straight-

forward" choice of n is more desirable, because it is independent of the
c

perilune altitude. A qualitative comparison of methods and conclusions and

recommendations are presented in this chapter.

7.2 Comparison of Methods

The purpose of this research has been to develop a method of gen-

erating approximate Earth-Moon or interplanetary trajectories using knowledge

of functions which are constant or slowly-varying for the exact motion. This

method is compared with the qualitative characteristics of each of the exist-

ing methods.

A comparison with the hybrid patched conic technique[ ] shows that

the hybrid patched conic technique requires a patched conic trajectory as a

reference trajectory. That is, a complete patched conic trajectory must be

computed before the hybrid patched conic technique can be applied to the

48
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trajectory. Although the Jacobian method use frequently corrected conic

motion, a complete patched conic trajectory does not have to be calculated

before the Jacobian method can be applied. The hybrid patched conic tech-

nique forms a curve fit to the perturbative accelerations, which is then

analytically integrated to form corrections to the conic state vector. This

technique works well for low perilune trajectories, but due to the nature of

the curve fit breaks down for high perilune trajectories[ 4 . The Jacobian

method gives good results for trajectories that have various perilune alti-

tudes (see Tables 1, 2, 3, and 4).

The multi-conic technique[ 4 ] has the capability of including Earth

oblateness terms plus the effect of any number of gravitational bodies. A

simplified computational algorithm for the multi-conic as applied to the

restricted problem of three bodies:

1. Advance conically in geocentric space from t to t + At

2. Calculate the average perturbing acceleration due to the

geocentric motion of the moon.

3. Modify the state vectors at the end of step 1 by

AV = aht (7.1)

1- 2
AR = 1 aAt (7.2)2

where a = average perturbing acceleration

4. Convert the corrected geocentric state to a selenocentric state

which is then projected back in time along the straight line

defined by the velocity vector an amount At . This is the

trajectory in a "no gravity field".

5. The state is then advanced along a Moon-centered conic an
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amount At from the "no gravity" state. The final vector

transformed to geocentric coordinates defines the new Earth-

centered conic.

6. The process is repeated using the new Earth-centered conic as

the starting point.

The Jacobian method consists of a conically advanced state that is

frequently corrected which is less complicated than the multi-conic. How-

ever, other perturbing bodies and Earth-oblateness terms have been incor-

porated into the multi-conic method. Neither have been used in the Jacobian

method.

[311The pseudo-conic or the overlapped conic technique considers

only the effects of the two primaries in the equation of motion and these

only within a certain distance of the Moon (a "pseudo-sphere of about 24 er

is defined). Farther from the Moon only pure Earth conic motion is used.

The overlapped conic technique actually takes less computer time than the

patched conic method and the Jacobian technique requires about 2 to 3 times

as much computational time as the patched conic. However, the overlapped

conic technique corrects only approximately 80% of the errors from the

patched conic method.

A qualitative comparison between the Jacobian correction method

and the matched asymptotic expansion technique[ 1 1 '2' l3' 14 ] indicates that

the matched asymptotic expansion technique is an analytical approximation to

the restricted problem of three bodies, and the Jacobian method is a numerical

approximation. The Jacobian method is much easier to formulate and program

than the matched asymptotic expansion technique.

7.3 Conclusions

The investigation described in the previous chapters has been con-

cerned with developing a method of numerically predicting, as a function of
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time , tihe posit;ion and veloc:lity o,'F r-a ::lace vei.[icle -n T the restri:cted problem

of three bodies utilizing knowledge of- the constant or slowly-varying func-

tions of the motion. It has been desirable for the method to be computa-

tionally fast and accurate as compared to numerical integrated trajectories

and the patched conic trajectories. Numerical results indicate that the

method provides a significant improvement over existing methods in the area

of simplicity and is much more accurate than -the patched conic method.

Based on the results presented previously in this report, the fol-

lowing conclusions can be drawn:

1. The procedure for implementing the Jacobian correction method

is very simple and straight-forward.

2. The numerical results of the Jacobian correction method are a

significant improvement over the patched conic and are accurate

as compared to numerical integration.

3. The numerical results of the Jacobian method do not deterio-

rate for high perilune altitudes.

4. The method of handling the slowly-varying Jacobian function

for the elliptic and ephemeral restricted problems is adequate

for all cases presented.

5. The Jacobian correction method is sufficiently accurate to cal-

culate trajectories with various perilune altitudes in the

restricted problem of three bodies.

6. The "straight-forward" choice of n , as presented in Chapters

4, 5, and 6, yields sufficiently accurate results and does not

depend upon the perilune altitude.

7. The Jacobian correction method is computationally simple (and,

therefore, fast) because it does not require a reference
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trajectory, is not iterative, and needs no retracing.

7.4 Recommendations for Future Study

It is believed that further study in the following areas would be

useful:

1. Implementation of oblateness effects when in the near vicinity

of the primaries. It is recommended that the method developed

by Penzo be used as the method of incorporating the oblate-

ness effects.

2. Other perturbing bodies could be included. Thi.s would add

terms to J , if the value of J at the correction point

could predict accurately enough, a procedure similar to the

one presented in this report could be used.

3. Extending the method to free-return and interplanetary trajec-

tories would also be quite useful.

4. It also would be useful to compare the method presented by

Nacozy[
1
7 ] with this method to see how similar the correction

directions are.
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