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SUMMARY

A study of the static stability and control problem areas of winged

reentry vehicles capable of maximum lift-drag ratios of about 2 at hyper-

sonic speeds has been made. Throughout the Mach number and angle-of-

attack ranges of the tests, it appears that the center-of-gravity loca-

tion will be a compromise between operation at maximum lift-drag ratio

at subsonic speeds and at maximum lift at hypersonic speeds, where the

aerodynamic center is significantly aft of its location at subsonic

speeds. At maximum lift at hypersonic speeds, combinations of nose and

flap deflections will trim the vehicle with reasonable longitudinal

stability, and the static directional stability may be increased by use

of wing-tip-fin roll-out. At hypersonic speeds_ care must be exercised

to tailor the forward portions of the vehicle in order to avoid longi-

tudinal and directional instability in the low-angle-of-attack range;

at low angles of attack the longitudinal control effectiveness is very

low and auxiliary control devices may be required.

INTRODUCTION

A study has been made of several static longitudinal, directional,

and lateral stability and control problems associated with winged reentry

vehicles capable of maximum lift-drag ratios of about 2 at hypersonic

speeds. This study was carried out at speeds from subsonic to a Mach

number of 18 and in the angle-of-attack range from 0° to that for maxi-

mum lift (near 55o). Several problem areas are discussed herein along

with possible solutions.
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SYMBOLS

lift coefficient,
Lift

%SW_G

rolling-moment coefficient,
Rolling moment

pitching-moment coefficient,
Pitching moment

q_SWING_

normal-force coefficient,
Normal force

q_SWING

yawlng-moment coefficient,
Yawing moment

effective dihedral parameter,
8Cz
--, per deg

3p

static directional stability parameter,
8Cn
_, per deg

fin contribution to static directional stability

parameter, per deg

static longitudinal stability parameter

wing span, in.

mean aerodynamic chord, in.

lift-drag ratio

Mach number

L
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0

4
0

(Pr/P_) - 1

(Pi/P )- 1
real-gas pressure parameter, ratio of real-gas to ideal-

gas pressure coefficients
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Subscripts:

MAX

t

r

i

static pressure

dynamic pressure, lb/sq in.

flap planform area, sq in.

single fin area, sq in.

nose planformarea, sq in.

total wing planform area, sq in.

angle of attack, deg

angle of sideslip, deg

nose-panel-deflectlon angle, deg

flap-panel-deflection angle, deg

fin roll-out angle referenced from the vertical plane

maximum

trim

free-stream conditions

real-gas conditions

ideal-gas conditions
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.DISCUSSION

Longitudinal Stability and Control

Angles of attack for maximum L/D or less.- The stability of sev-

eral wings and winged vehicles is presented in figure 1 for an angle

of attack of lO° which is approximately that for maximum L/D. The

aerodynamic-center location relative to the mean aerodynamic chord is

plotted against Mach number. These results are from references 1 to 5

and unpublished results from Boeing Airplane Co. In the lower portion
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of the figure are presented results from tests of simple, symmetrical
delta wings; these results show that there is a large rearward shift in
aerodynamic center in the transonic speed range. At Machnumbersabove
about l, the aerodynamic center is located close to 50-percent mean
aerodynamic chordwhich is the centroid of area. However, for the four
reentry vehicles shown, which have bodies and fins in combination with
wings of unsymmetrical airfoil section, large aerodynamic-center shifts
are exhibited throughout the transonic and supersonic speed ranges. At
hypersonic speeds the aerodynamic-center location is ahead of the 50-
percent meanaerodynamic chord and is invariant with Machnumber. Addi-
tional tests have been madefor two of the configurations reported in
reference i in the air nozzle (M_ = 9.6) and the helium nozzles (M_ _ lO
and 18) of the Langley ll-inch hypersonic tunnel by Charles L. Ladson;
whereas at a Machnumbernear 18, results are also available from AEDC
Hotshot 1 using air (ref. 2). It can be seen that there is little
effect of the variation in fluid properties upon the stability of the
vehicles tested. Furthermore, for these vehicles, the results for
M = 6.8 and 9.6 are representative of the results for higher Machnum-
bers. It is obvious that from a stability consideration for these
vehicles, the results for the delta wings should not be dependedupon.
In general, the variation in the aerodynamic-center location with Mach
number is similar for the four reentry vehicles. In addition, the trend
in center-of-pressure location is quite similar to the aerodynamic-center
shifts shownin this figure, and the problem of providing sufficient con-
trol to trim the vehicle even at low lift coefficients through the
supersonic-speed range is evident. At angles of attack higher than that
of lO° shownin figure 1 and at hypersonic speeds, the aerodynamic center
and center of pressure moverearward, and, generally speaking, the center-
of-gravity location would involve a compromisebetween the high-angle-
of-attack trim at hypersonic speeds and the low-angle-of-attack stability
at subsonic speeds. From considerations for subsonic speeds, a center-
of-gravity location at 42-percent meanaerodynamic chord appears reason-
able and will be used for the remainder of this presentation.

At angles of attack lower than that of i0 ° shownin figure i, the
shape of the forward portions of the vehicle and the wing airfoil sec-
tion have a marked influence on the stability. Examplesof this are
presented in figure 2, in which for a Machnumberof 9.6, the pitching
momentis plotted against normal force for two of the vehicles of fig-
ure I for flap deflections of 0° and -i0 ° for the upper vehicle and
for 0° for the lower. In the higher angle-of-attack range, the upper
vehicle in stable and flap effectiveness is high. However, as the angle
of attack is reduced below that for (L/D)MAX the large variations in
the downloads on the fuselage nose and airfoil section with _ resulted
in marked instability. Furthermore, the flap effectiveness is very low.
Modification of the fuselage nose from the triangular cross section of
the upper vehicle to a higher fineness-ratio, "D" cross section of the
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lower vehicle along with a reduction in the airfoil thickness was suffi-

cient to alleviate the longitudinal instability; however, although the

results are not presented herein, the problem of low flap effectiveness

is still prevalent. Other results not reported herein show that for

flap deflections up to -45 ° , the flap effectiveness is still quite low

for flaps with an area approximately i0 percent of the wing area. Con-

sequently, larger flaps or auxiliary devices or both appear to be in

order. It should be noted for figure 2, as was pointed out for figure i,

that the body, and to some degree the fins, influence strongly the lon-

gitudinal characteristics inthe low angle-of-attack range and wing-

alone data are not indicative of the complete-vehicle characteristics.

Angles of attack near maximum lift.- At the angles of attack greater

than about 25o, the effects of components on top of the wing are essen-

tially nonexistent, and insofar as the vehicle characteristics are con-

cerned, the complete vehicle may be simulated by a simple wing alone.

In order to examine the high angle-of-attack trim problem at hypersonic

speeds, an investigation was undertaken with a 70 ° swept, flat-plate

delta wing at M_ = 6.7; the pltchlng-moment coefficients of this wing

about the 42-percent mean aerodynamic chord are plotted in figure 3

against angle of attack for flap deflections of 0O, -lO °, and -20 °. The

test-point symbols denote the measured results, and the lines denote the

results from computationswhich utilized the correlation of measured delta-

wing data at angles of attack in excess of leading-edge-shock detachment.

(See ref. 6.) For the wing with the undeflected flap, the large negative

pitching moments in the maximum-lift range which must be trimmed out are

evident; consequently, a relatively large flap is in order. For the

results presented herein the flap area was 19 percent of the wing area.

The use of flap deflection at these angles of attack provides sizable

increments in pitching moments, and as expected, the effects of flap

deflection are destabilizing. The computations underestimate somewhat

both the pitching-moment increments and the destabilizingeffects of

negative flap deflection in the range of CL,MA X. Larger negative flap

deflections will provide trim in the maximum-lift range but with a

further decrease in the stability. The longitudinal stability may be

increased somewhat by the use of nose deflection as shown in figure 4,

in which the results show the increase in stability throughout the angle-

of-attack range along with the increments in pitching moment which are

smaller at the higher angles of attack. The computations overestimated

the moment increments and underestimated the stability increase near

maximum lift.

From a stability and control standpoint, it appears feasible to

consider the combined use of nose and flap deflection to provide trim

with stability at angles of attack near maximum lift. In figure 5 are

summarized some of the high-angle-of-attack trim characteristics of the

70 ° swept wing at M_ = 6.7. The computed results, shown as solid lines,



366

are presented as the trim stability parameter (3Cm/SCN)t plotted
against the trim angle of attack cut for nose deflections of 0°, 5° ,
and l0 °. Along each line of constant nose deflection, the flap deflec-
tion angle varies from a small negative value to -40° . The dashed lines
are the computedcontours of constant trim lift coefficient. For these
trim conditions, an increase in nose deflection angle increased the
vehicle stability as was noted previously for the untrimmed case (fig. 4).
By use of combined nose and flap deflections, it is possible to provide
trim with stability at maximumlift (fig. 5). The maximumvalue of trim
CL is 0.62 based on total planform area including flaps. If the center
of gravity could be located more rearward, trim CL could obviously be
increased. However, such a rearward shift in center of gravity would
not necessarily reduce the overall stability inasmuchas less desta-
bilizing negative flap deflections would be needed to trim. Experimental
trim results, shownin figure 5 by the test-point symbols, have been
Obtained for several combinations of nose and flap deflections (ref. 6).
Arrows from each test-point symbol connect the experimental point with
its comparative computedpoint. In general, good agreement exists
between the experimental and computedresults except that the computa-
tions yield slightly higher stability. The highest measured trim lift
coefficient obtained throughout this experimental investigation was 0.63
while the highest value of lift coefficient measuredfor the undeflected,
untrimmed delta wing was 0.72. Of major interest also are the trim
characteristics at higher Machnumbers, and in figure 6 are summarized
the results of computations for a Machnumberof 18 for the same70°
swept delta wing utilizing the computational method of reference 6 for
ideal-gas conditions. These computedresults are similar to those at
M_ = 6.7 (fig. 5) except that the value of maximumtrim lift is slightly
lower. Included for comparison is the computedvalue of maximumtrim
lift for a vehicle with a wing loading of 25 lb/sq ft at an altitude of
242,000 feet where the real-gas effects have been approximated as
follows:

The method of reference 6 for computing longitudinal stability for
ideal-gas conditions was extended to the approximate real-gas conditions
by the use of references 7 and 8. For the two-dimensional case of ref-
erence 7 up to shock detachment and for the normal-shock case of refer-
ence 8, a variation with flow deflection angle was obtained for the

parameter (Pr/P_) - 1 for the case of a Mach number of 18 and an alti-

(pi/pD- 1
tude of 242,000 feet (1956 ARDC model atmosphere). At the various panel

flow-deflection angles, the individual Ideal-gas panel pressure coeffi-

cients previously obtained were multiplied by this real-gas pressure

parameter and the product is the approximate real-gas pressure coefficient.
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These approximate real-gas effects did not alter the value of the

maximum trim lift appreciably as compared with the ideal-gas value

although the angle of attack at which it occurred was significantly

higher and the control geometry required was slightly altered.

It should be emphasized that while effects of variation in nose

deflection have been discussed herein, a reentry vehicle would utilize
a fixed nose. Care must be exercised in the selection of such a nose

with regard to exceeding the temperature limitation on this deflected

area and with regard to the reduction in stability produced by the nose

at angles of attack near (L/D)MA x or lower. Past experience (ref. 9)

indicates that about 5° of nose deflection in combination with a small

negative flap deflection will trim a similar vehicle at angles of attack

in the range of (L/D)MA x with essentially no performance penalty and

with reasonable longitudinal stability. The results presented herein

(figs. 5 and 6) indicate that these angles of nose deflection may be

used in combination with large negative flap deflections to provide trim

with stability at maximum lift.

Directional and Lateral Stability

Basic stability derivatives.- With regard to directional and lateral

stability, results from tests of two vehicles (from ref. 1 and unpublished

results from Boeing Airplane Co.) are presented in figure 7 for an angle

of attack approximately that for (L/D)MA x. The static Cn8 and CZ8

(body axes) are presented as functions of Mach number. For both vehicles

the decay in Cn_ with Mach number increase due to the reduction in tip-"

fin effectiveness is evident. For this type of vehicle, the positive

value of C_6 can be removed by a small amount of dihedral of the lower

wing surface. Angle of attack also has an appreciable influence on

directional and lateral stability as seen in figure 8. At low angles

of attack the static Cn6 increased with _ as a result of the reduc-

tion in the destablizing influence of the fuselage nose. At higher

angles of attack, the effectiveness of the tip fins falls off and static

directional instability results. However, for these vehicles with

highly swept wings, C_ becomes large negatively and may offset the

directional instability for the dynamic case.

Method to improve static Cns.- If it is desirable to have positive

values of static Cn6 at these high angles of attack, one method of

improving static Cn6 is the use of fin roll-out (fig. 9). The fin
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roll-out angle _ is that angle between the plane of the fin and the
vertical. The use of roll-out causes the maximum deflection angle of

the flow relative to the fin to occur at higher angles of attack; thus,

the initiation of On8 decay is delayed to a higher angle of attack.

It is seen that in this angle-of-attack range, fin roll-out may be used

to nullify the familiar Cn_ decay shown for _ = 0° and to produce

an invariant or an increasing Cn8 contribution of the fins with

increase. Of course, with fin roll-out there is an input to the pitching

moment of the vehicle, and an increment in negative flap deflection ASf

is necessary to overcome this pitching-moment input and to retrim the

vehicle as shown by the dashed curves. In this regard the longitudinal

trim limit at which the flaps become streamwlse and lose their effective-

ness is shown by the cross-hatched boundary in this figure. From con-

sideration of cross-control effects due to rudder deflection, roll-out

should be limited to small amounts, probably about lO ° or 15 °. Also

roll-out of this magnitude would require only about 2° additional nega-

tive flap deflection to retrim the vehicle at hypersonic speeds and

would improve the longitudinal stability at subsonic speeds by about

2-percent meanaerodynamic chord.
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CONCLUDING R/_4ABKS

In conclusion, several aspects and problems of major importance to

the stability and control of winged reentry vehicles have been discussed

along with possible solutions for the problem areas. Although the magni-

tudes of the problems for specific vehicles would undoubtedly be altered

from those contained within this generalized discussion, the principles

behind which these solutions were reached should be applicable.
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TABLE I.- AXISIq_4ETRIC STAGNATION-POINT HEAT-TRANSFER PARAMETER

Solution

Sibulkin

Beckwith

Fay and Riddell

Kemp, Rose, and Detra

Cohen and Beckwith

Reference

3O

31

2O

32

Gas

Incompressible

Perfect compressible

Equilibrium dissociated air

Equilibrium dissociated air

Equilibrium dissociated air

Transport properties

Constant

Sutherland

Sutherland

Sutherland

Hansen, ref. 18

Npr

m

Constant 0.763 0.5

Constant .76 .4

Constant .76 .4

Constant .793 .438

Variable, Hansen, ref. 18 .767 .45

TABLE II.- YAWED-INFINITE-CYLINDER STAGNATION-LINE LAMINAR HEAT TRANSFER

k_

O

I
Solution Reference

Squire 35

Beckwith 31

Kemp, Rose, and Detra a 52

Cohenand Beckwlth

Gas

Incompressible

Perfect compressible

Equilibriumdissociated air

Equilibrium dissoclated air

.i

Transport properties

Npr

Constant

Sutherland

Sutherland

Hansen, ref. 18!

Constant

Constant

Constant

Variable, Hansen, ref. 18

aSolutions for zero yaw only.

A

1o.57o

1.577

•576

.594

m

0.5

.44

•438

.5

I
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HIGH-ANGLE-OF-ATTACK LONGITUDINAL TRIM CHARACTERISTICS
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MACH NUMBER EFFECT ON DIRECTIONAL AND LATERAL STABILITY
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EFFECTS OF FIN ROLLOUT ON DIRECTIONAL STABILITY
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