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INTRODUCTION

This manuscript was prepared for the National Aeronautics and Space

Administration to aid the Office of Medical Research and Operations in estab

lishing standards for current limiting devices for biomedical sensors, such

that the safety and comfort of the wearers will be insured while signal quality

is not unduly compromised.

Specific information was requested in four major areas:

1. What are the human threshold levels for sensation, pain, muscular

contraction and ventricular fibrillation when exposed to direct

current and 60 Hz and 400 Hz alternating currents?

2. What variations might be expected in the above thresholds with

different electrode placements?

3. What are the above thresholds when a current is passed from the

head and/or hands through an electrode positioned on the chest?

4. What is the effect on the thresholds of such variables as elec

trode size, skin temperature, heart phase and other physiologic

states?

The information contained in this manuscript represents an effort to answer

these questions based on an extensive literature review of appropriate research

reports over many years duration. In addition, a section is devoted to examining

in some detail the passive electrical properties of cells and tissues. It is felt
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that such information may prove useful in future, more advanced designs of

biomedical instrumentation systems.

Special acknowledgement is in order for the assistance of several persons.

The suggestions from Dr. H. V. Ellingson of The Ohio State University, Depart

ment of Preventive Medicine, and from Doctors J. F. Tomashefski and J. F. Foster

of the Battelle Memorial Institute as to which information should be included

and their suggestions as to the format and preparation of the final manuscript

were invaluable.

Ruth M. Linebaugh, of the Battelle Memorial Institute, was of great assist

ance in conducting the literature search. The careful attention to detail by

the typists, Ruth Chalfant and Marsha Rayburn, was most helpful.

iii



TABLE OF CONTENTS

1. PHYSIOLOGICAL AND PATHOLOGICAL RESPONSES OF THE HUMAN
WHEN EXPOSED TO ELECTRICITY

The Threshold for the Perception of Electricity••••

The Threshold for Pain Produced by Electric Current ••

The Threshold for the Induction of Muscular Contraction
by Electric Shock • • • • . • . . • . • •

The Threshold for Ventricular Fibrillation •

Other Effects of Electricity on Humans • •

II. THE PASSIVE ELECTRICAL PROPERTIES OF BIOLOGICAL MATERIAL:
ELECTRICAL RESISTANCE AND IMPEDANCE

Electrical Resistance of Cells and Tissues • •

Electrical Impedance of Cells and Tissues ••

Impedance Measurements of Various Organs of the Body •

1

12

28

39

51

59

65

67

III. S~RY. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 103

IV. REFERENCES. • . • • • . • • • • • . . • . • • • . . • • • . . • • . . . 107

iv



PHYSIOLOGICAL AND PATHOLOGICAL RESPONSES OF THE HUMAN WHEN EXPOSED TO ELECTRICITY

The Threshold for the Perception of Electricity

When one considers the application of electricity to the surface of the body -

be this through a "true" electrode positioned to detect a biopotential but which

offers a path for extrinsic electrical energy to reach the body, or be it an

Iie l ec trode" of a bare wire touching the skin - it is apparent that the initial

perception of current flow will arise from stimulation of cutaneous receptors

immediately under the electrodes, since this is the region of greatest current

density3l. Thus the first physiological response to electric current can be meas-

ured as the threshold of perception, or as worded slightly differently by Conrad,

et al., minimal response occurs in human tissue when the potential across the

tissue reaches a certain threshold valuelO •

Dalziel and Mansfield have determined the threshold of perception of the

hand20 • Studies were accomplished on 115 males whose hands were moistened with a

saturated salt solution. The subjects either grasped or simply touched a copper

wire through which the current was provided and the investigators noted that

testing by these two different methods compared well. Using a direct current,

the mean threshold for perception was 5.2 mA, with a median of 5.0 mA and a range

from 2.1 mA to 12.6 mAo With alternating current at 60 Hz, the threshold mean

was 1.072 mA, with a median of 1.05 mA and a range from 0.44 mA to 1.92 mAo In

attempting to correlate the currents required for perception with different

physical characteristics, inconclusive results were found when the subjects were
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grouped according to build or complexion. However, a suggestion was noted that

an age differential exists, with older subjects requiring slightly more current

to perceive the stimulus.

Based on the above and related studies, Dalziel and Mansfield made the fol-

1 · b t" 20oW1ng 0 serva 10ns • The predominant sensation produced by gradually increasing

direct current is warmth in the palm of the hand or wrist. With alternating current,

the sensation at less than 10K Hz is tingling at the area adjacent to the contact

point except at very low frequencies, when the muscles tend to follow alternations

of the current wave. From 10K to lOOK Hz the sensations produced are similar to

those at the lower frequencies but less intense and perceived over a larger area

around the contact point. From lOOK to 200K Hz, the sensation becomes one only

of heating and this probably applies to frequencies greater than 200K Hz. Further,

it was observed that the current required for perception increases with increasing

frequency and between about lK and lOOK Hz, the current is nearly proportional

to the frequency. In later discussing this same problem, Dalziel made several

additional obersvations15 • Except at point contracts, the current required to

produce a sensation increases with the area in contact with normal skin; however,

this area effect is fairly small. Secondly, the crest of the wave form - not

the effective or average value of the AC wave - is responsible for the sensation.

Thirdly, the threshold for women is approximately two-thirds that for men.

A study somewhat similar to that of Dalziel au4 Map~f!~ld's was performed by

Carter and Coulter7• In this study, the rlfleshy" parts of the thumb and index

finger wef~ each placed on one square centimeter brass electrodes. Sixty males

and 47 females were tested. Results obtained from subjects with calloused or
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scarred fingers or from subjects who had ''wet'' or "sweaty" hands were excluded.

Table 1 gives the results for direct current thresholds as well as the skin

resistance at these thresholds.

Table 1: Threshold for Perception of Direct Current-59 Subjects*

Ages #ss Mean Threshold mA/cm2

17-24 13 .252
25-35 21 .304
36-45 11 .360
46-55 8 .346
56-65 4 .331
66-75 2 .157

Mean Resistance Kohms

72.720
116.660
111. 360
105.710

92.500
110.000

Average 59 yrs.

*From Carter and Coulter7

.291 101.000

Table 2 gives similar data by the same investigators for alternating current at

several different frequencies.

Table 2: Threshold for Perception of Alternating Current-mA/cm2*

Age 100 Hz 500 Hz 1000 Hz 2000 Hz 6000 Hz 15000 Hz 35000 Hz 48000 Hz

17-24 .204 .290 .373 .542 1.380 3.300 7.80 12.00

25-35 .184 .284 .401 .658 1.388 2.907 6.63 11.35

36-45 .226 .338 .469 .679 1.539 3.205 8.33 12.43

46-55 .237 .404 .563 .828 1.934 3.800 9.01 13.89

56-65 .260 .375 .550 .884 1.800 3.590 11.0 15.90

66-75 .387 .550 .750 1.2 2.37 5.0 15.0 21.25

*From Carter and Coulter7
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Carter and Coulter continued their studies and investigated the effects of

variation in electrode size on perception thresholds 7. In these studies electrodes

were placed on the medial and lateral aspects of the distal upper arm with the

skin having previously been moistened with normal saline. Table 3 gives the

results as noted with direct currents on 15 subjects aged 20-50 years and Table 4

gives the results from studies with alternating current.

Table 3: Effect of Electrode Size on
Perception of Direct Current*

Electrode Avg. Threshold Avg. Threshold Resistance
Diameter Area-In2 Area-Cm2 rnA per Cm2-rnA Kohms

5/8" .31 2.0 .261 1.30 47.5

1. 0" 0.79 5.1 .475 0.94 28.2

2 1/4" 3.9 25.2 .801 0.032 14.0

*From Carter and Coulter7

Table 4: Effect of Electrode Size on
Perception of Alternating Current*

Electrode
Diameter 200 Hz 500 Hz 1000 Hz 2000 Hz 6000 Hz 10000 Hz 15000 Hz 35000 Hz 48000 Hz

5/8"

1.0"

2 1/4"

.26

.44

.87

.43

.69

1.39

.67

1.08

2.04

.98

1.42

2.92

1. 81

2.82

5.01

2.58

1.1

7.98

3.65

5.27

11.65

8.50

13.2

26.30

11.05

17.8

34.30

*From Carter and Coulter7

These investigators concluded that for alternating current, as the frequencies

increase, the threshold increases, provided that the electrode location, size

and same degree of electrode pressure on the skin exist.



are perceptible.

and Wood20 ,3l,65.
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Geddes, et al., recently performed a study to evaluate the threshold of

sensation for eight human subjects using sinusoidal currents over a frequency

range of 10 to 3,000 Hz3l . Two electrode configurations were used: the first

consisted of a pair of trans-thoracic electrodes, similar to the arrangement

commonly used for impedance pneumography. The second configuration was a neck

abdomen arrangement. Their results are shown in Figure 1. With either electrode

configuration low frequency currents (in the 20 to 50 Hz range) of less than 1 rnA

This figure is in agreement with the data of Dalziel, Thompson

Again, as in studies previously mentioned in this paper, it was

demonstrated that as the frequency is increased, more current is required for

perception, and that above 100 Hz the current for sensation rises sharply with

increasing frequency.

A study was performed by Green to determine the threshold for sensation for

electric shock under 12 conditions34 . The independent variables were as follows:

three "types" of electrical flow - constant current, constant voltage, constant

power; three electrode sizes - 0.075",0.15",0 .. 3" diameter. Nine separate

conditions were thus examined in this manner. The additional three conditions were

added by using electrode jelly in combination with the 0.15" diameter electrodes.

The results of this study are shown graphically in Figure 2. All tests were made

using a rectangular DC stimulus of one second duration to the ball of the thumb

and the index finger of the left hand. The investigator made the observation

that the threshold for dry electrodes in terms of power, was approximately 50 mW

regardless of the area of contact33 . It was also noted that the current threshold

increased as the electrode size increased while the voltage threshold fell as the

electrode size increased. In addition, he observed that the threshold did not

increase as the skin temperature was lowered34 .
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Figure 2* Page 7
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Anodal pulses were delivered through a constant current
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Six subjects with the first and second fingers of one hand immersed in saline

11solution were studied by Conrad, et ale • A rectangular wave form was applied and

simultaneous measurements of voltage, current and skin resistance were made. They

noted that a steady state resistance was not reached until 15 to 40 minutes after

the fingers were immersed, at which point the average skin resistance for the

six subjects was 7.1 Kohms. The simultaneous voltage measurements demonstrated

considerable capacitance effect in the skin. The investigators summated their

findings graphically (Figure 3), relating the time-intensity values for current

impulses required to produce minimal responses in human fingers.

Brown, et al., examined the varying temporal parameters involved in the

threshold of stimulation on hairy areas of the body using DC pulses of 1, 4 and

8 pulses per train5 . Using 0.5 msec and 1.0 msec trains, it was noted that both

as the number of pulses per train increased, and at the longer train duration, the

threshold for sensation decreased slightly. (See Figure 4.) In addition, they

noted that with progressive experimental sessions, the subjects' threshold for

sensation increased. (Figure 5.)

Gibson measured touch thresholds in two experiments as a function of (1)

the number of brief electric pulses, from 1 to 20 and (2) the rate of pulse

repetition, 10-25 pulses per second, on eight body regions, including hairy and

h '1 t' 32a~r ess ~ssues •

stimulator and were 0.5 msec duration at half-peak.

Touch thresholds were found to be a decreasing hyperbolic function of the

number of pulses in a stimulus train, indicating nearly linear integration of

current pulses at different rates. In addition, touch thresholds were found to

be nearly the same on hairy and non-hairy skin areas. In the report of the study,

no report was given of the actual current flows required to produce a threshold

response.
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Thompson investigated the perception thresholds for 60 Hz AC of 70 adult

b · t 61su Jec s . Each subject's left hand was immersed in a weak saline solution.

The subject's right hand made contact with the appropriate end of the circuit

in four different methods: (1) tapping a metallic surface with the tip of

the forefinger, (2) pinching a metallic surface between the thumb and forefinger,

(3) grasping a 1" diameter metal rod with the hand, (4) immersing the hand in

salt water. The results of the study are shown in Table 5.

Table 5: Threshold Values (rnA) for perception of 60 Hz AC*

28 WomenType of Contact

Tap
Pinch
Grip
Immersion

*From Thompson6l

0.27
0.59
0.84
0.88

Max.

0.40
1.20
1.40
1. 80

42 Men

Min. Avg. Max. Min.

0.20 0.40 0.80 0.20
0.20 0.87 2.40 0.25
0.50 1.19 3.00 0.28
0.80 1.39 3.00 0.44

Avg. for All

0.35
0.76
1.05
1.19

These findings are compatible with Dalziel's observation previously referred to:

that with increased contact area, the current required to produce sensation increases.

The Threshold for Pain Produced by Electric Current

Pain is a subjective matter, "known to us by experience and described by

illustration.,,52 No objective criteria exist for measuring the actual experience

of pain. Hall has said, "Pain may be studied as a sensation in one experiment,

as a perception and as involving attitudes in another and as related to emotional

behavior in a third.,,52 Thus, although the pain threshold of a given individual

in response to a given stimulus may be rather constant, it does not hold that this

same stimulus may produce a similar response in another person. It must therefore
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be recognized that for any true evaluation of a pain threshold, any individual

must be his own control. Further, any study measuring pain thresholds must be

considered with the subjective nature of "pain" in mind.

It is thus apparent that no ideal "pain threshold" level can be determined

which is generally applicable. Rather it is necessary to postulate a range of

stimuli which may be expected to produce pain under a given set of circumstances.

A number of the following mentioned studies, while performed quite well in and

of themselves, give some idea as to the problem of variability in this area.

Using a 2 rom diameter stainless steel stimulating elec~rode and a conduction

medium of electrode paste, Notermans performed a rather extensive study measuring

pain thresholds 52 The subjects were instructed to report as soon as they experienced

a painful sensation. Figure 6 demonstrates the pain thresholds for different

frequencies and different impulse durations. It was observed that when frequencies

less that 10 Hz were used, the sensations were first described by all subjects as

tapping or pulsating rather than painful. As the stimulating current was increased,

the sensations became more painful and were described as unpleasant, but not

perceived as a "pricking" sensation. Between approxim~tely 30-200 Hz a fairly

reliable threshold measurement associated with a "pin-prick" sensation was not felt.

Figure 6 also demonstrates that as the duration of the current is increased,

the threshold for pain sensation falls at all frequencies.

A study was then performed to evaluate further the effect of impulse

duration upon pain threshold. This study was carried out using a constant

frequency (50 Hz) where it has previously been determined that a rather constant

"pin-prick" sensation of pain could be measured. The results of the investigation

are shown in Figure 7. It was observed that with impulse durations of 0.1 msec
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Figure 6*
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or less, the subjects perceived "vibratory" sensations but could not exactly

describe a constant "pain" sensation. Figure 7 demonstrates that thresholds

established with an impulse duration of 5 msec give nearly the same values as

those measured with impulses of longer durations.

Using a frequency of 50 Hz and an impulse duration of 5 msec, both derived

from preceding phases of the study, the effect of the number of pulses within the

5 msec impulse period upon the pain threshold was measured. These results are

shown in Figure 8. At less than 10 pulses per 5 msec, no reliable constant pain

thresholds could be measured. However, above 20 pulses, the threshold value

did not alter significantly.

To estimate the reliability of pain thresholds, 12 individuals were studied,

using a fixed electrode and a gradual increase of the stimulating current.

Every measurement was repeated 40 times with a minimal interval of 20 seconds. The

results are shown in Table 6.

gave nearly similar results.

The same procedure using 20 pulses per impulse

Continuing his study, Notermans measured pain thresholds in 64 subjects over

multiple body sites. On every dermatome, the threshold was measured at three

different places at distances of 2 cm from one another. These results are shown

in Figure 9. It was noted that the pain threshold is nearly uniform over the entire

body, with most individuals showing the lowest values in the face and neck. Further,

it was observed that the measured pain threshold values varied from one person to

another over a range of nearly ± 50% from the mean value. The pain threshold was

always lower than 1 mA, and it appeared that the mean pain threshold was about 0.5

mAo Variations in the pain threshold between corresponding places on the left and

right sides of the body of the same individual were never more than 0.1 mA with a

mean threshold of 0.55 mAo
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Table 6:
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Variation in Pain Thresholds on the Dorsal Surface of the Middle Finger
of 12 Subjects*

Mean pain Highest and
threshold lowest thresh- Number Range

Subject value in old measured of in
(age in years) rnA in rnA pulses rnA

Male
32 years 0.43 0.40-0.45 40 0.05
34 years 0.39 0.35-0.40 40 0.05
30 years 0.50 0.48-0.54 40 0.06
35 years 0.45 0.42-0.50 40 0.08
37 years 0.40 0.38-0.43 40 0.05
27 years 0.50 0.48-0.55 40 0.07

Female
20 years 0.42 0.39-0.45 40 0.06
21 years 0.60 0.50-0.65 40 0.15
22 years 0.65 0.60-0.70 40 0.10
27 years 0.42 0.40-0.45 40 0.05
27 years 0.48 0.45-0.52 40 0.07
22 years 0.55 0.50-0.58 40 0.08

*From Notermans 52

Ten individuals were studied to determine the possibility of alterations in

pain thresholds during a day; significant diurnal variation was not found. These

same individuals were evaluated daily over the course of four months and again

it was concluded that in the course of time, little variation in pain thresholds

occurs in the same individual.

Pain thresholds were measured on ten control individuals with and without

distraction and/or pain sensation elsewhere. When the individual was distracted

by being required to inflate a blood pressure cuff placed around a bar to 300 rom Hg,

consistently higher thresholds were measured. When the cuff was placed around the

subject's own arm and inflated by an assistant to 300 rom Hg (thus inducing pain

remote from the site of electrical stimulus) a 40-50% increase was seen in the

pain threshold.
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Notermans performed additional studies to determine the effect of skin

temperature on pain thresholds, as measured on the distal phalanx of the middle

finger. These results are shown in Figure 10 and indicate that the influence of

skin temperature on the pain threshold is minimal. Only with a drop of 100e did

the threshold increase by about 30% of the original value and at l60 e the increase

was about 50%.

In comparing his findings with those of other investigators, Notermans makes

several observations. First, he points out that while many investigators agree

with his negative findings as to diurnal variation, that others have suggested that

the pain threshold may be higher in the evening than in the morning. Secondly,

he notes that many studies have suggested that the pain threshold for women is

lower than that for men, while his study did not demonstrate this finding.

Nonetheless, a later study by Notermans and Tophoff was performed to investigate

the sex difference in pain threshold53 . Although males were found to have a

greater pain tolerance threshold than females (i.e., they could tolerate a

painful stimulus longer, Figure 11) no sex difference was found in the threshold

of pain perception. (Figure 12.)

An example of findings on sex difference is demonstrated by the study of

Plutchik and Bender54 . Twenty college students were tested, with electrodes of

1 cm diameter placed on the digital pads of the first and fourth fingers of the

right hand. No electrode paste was used. The subjects were subjected to stimulations

by 5 second impulse trains of 1, 3, 6, 10, and 15 pulses per second with each

pulse lasting 50 msec. The results of the study are shown in Figure 13. The

different responses of males as opposed to females are clearly shown. Further,
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it is shown that as the amount of energy reaching the skin is increased (i.e.,

more pulses) the threshold falls, suggesting an integrated response of the

skin to the stimulus.

This agrees with the findings of Gibson who reports that the pain threshold

is a decreasing hyperbolic function of the number of pulses in a stimulus train,

and that, in general, the threshold for hairy tissue is higher than that for

hairless32 . Gibson also points out that with repeated testing the pain threshold

is raised considerably in hairy tissue, while pain threshold on hairless tissue

does not show this elevation32 •

This difference in pain threshold for hairy and hairless tissue is demonstrated

by the findings of Brown, et al., as shown in Figure 14, and it is also shown that

across experimental sessions, the threshold increases5. It should be noted,

however, that the actual levels of current are higher than those previously

mentioned, and are, in general, considerably higher than the levels usually

mentioned in the literature.

More generally accepted levels for threshold pain are those suggested by

Lee based upon data from Kouwenhoven and Milnor, Dalziel, and Morse28 He

suggests a range of three to ten rnA as annoying or painful. This range is in

agreement with the data of Farmer which show an average current of 8.0 rnA as

the painful level for 42 men being tested with 60 Hz current and is also in agreement

with Hackman and Glascow, who suggest 9.0 rnA as a level for moderate pain with

27 35
60 Hz current ' . At the other end of this range, Davidson and McDougall found

an average level of 3.37 rnA when studying the responses of 65 female subjects

ranging in age from 17 to 49 years22 .
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A study performed by Blitz, et al., suggested that the pain perception level

may be affected by vibration4. The results of this study are shown in Table 7.

It should be noted, however, that only the mean voltage at the thresholds for

sensation, for pain and for the "quit point" were recorded and that data on

actual current flows are not available.

Table 7: Mean Voltage at Perception, Moderate Pain, Quit Point*

Threshold
Moderate Pain
Quit

*From Blitz, et al. 4

Vibrating

76.43
124.89
177.09

Non-Vibrating

69.56
118.89
175.64

l

.001

.001
N. S.

An interesting study measuring the pain threshold of the teeth to electrical

stimuli was done by Mumford50. The investigation was performed to measure the

pain perception through normal young teeth. The results of the study are shown

in Table 8. It was demonstrated that as the duration of the stimulus increased

from 0-3 msec the threshold decreased. From 3 to 1000 msec no further decrease

in the threshold was noted. Further, the subjects exhibited an "adaptation" to the

painful stimulus such that the current could be increased. The average time

required for this adaptation was 11.6 sec. It was also demonstrated that as the

electrode area was increased (from the 9.5 mm2 used for the baseline studies)

the threshold value was also increased. In addition, with an increased frequency,

the threshold also increased. These latter two findings are similar to the

responses seen with electrical stimulation of the skin, as previously noted in

this paper.
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Table 8: Pain Perception Through Teeth*

Upper Teeth Lower Teeth

Mean Pain Mean Pain
iF Threshold ).lamps S. D. iF Threshold ,pamps S.D.

Central Incisors 40 6.4 2.53 20 5.6 2.36

Lateral Incisors 40 6.3 2.50 20 7.0 2.31

Canines 40 8.9 2.96 20 8.3 3.24

1st Premolar 20 7.5 3.37 20 8.8 3.48

2nd Premolar 20 7.9 3.35 20 8.7 3.01

st 10 14.0 4.95 6 10.1 3.331 Molar

2nd Molar 9 13.8 3.99 12 11.8 2.68

50*From Mumford

The Threshold for the Induction of Muscular Contraction by Electric Shock

To this point we have discussed amounts of electricity which, when applied

to man, are not dangerous. As the amount of current is increased, however, a point

is reached where involuntary muscle spasm is produced. If the "electrodes" are in

contact with the hands, then it is not possible to free oneself from the electricity,

since voluntary muscle activity is no longer possible. The maximum current at

which an electrode can be released by voluntary muscular control has been called

the "let-go" current by Dalziel, et al. 18 .

The let-go current was determined by Dalziel, et al., on 120 individuals for

frequencies ranging from 5 to 10,000 Hz IS. Direct current was also investigated.

Table 9 demonstrates the results obtained using 60 Hz alternating current, while

Table 10 shows the results for direct current. A summary of the statistical data

for all frequencies studied is shown in Table 11, with derived current versus

frequency curves shown graphically in Figure 15.
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Figure 15*
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In addition to the data presented in the tables, several observations were

made by the investigators .. First, it was noted (using #6 copper wire and brass

rods of 1/2, 3/4 and 1" diameter with a stimulating current of 60 Hz) that the

let-go current is independent of electrode size. Secondly, in testing the effects

of different wave forms, the let-go current was dependent upon the crest value

of the current and not on the rms value.

Following these initial studies, Dalziel, et a1., expanded their studies on

the effects of frequency on let-go currents 2l . A total of 134 males and 28

females were evaluated. Based upon the findings the following conclusions were

drawn:

1. A reasonably safe electric current for normal healthy adults is the let-go

current which 99 1/2% of a large group can release by using muscles directly

affected by that current.

2. The reasonably safe 60 cycle current for normal healthy adult men is about

9 rnA; for adult women about 6 rnA.

3. The corresponding data for direct current are 62 rnA for men and 41 rnA for

women.

4. Let-go currents are affected by frequency. (See Figure 16.)

Dalziel's figures are compatible with those of Thompson's who, some years

prior to Dalziel's work, reported let-go currents of 5.15 rnA for women and 8.35 rnA

for men at 60 Hz AC61 .

Still further studies were made by Dalziel to evaluate the effect of wave

form on let-go currents12 . He observed that mean let-go current values obtained
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Figure 16*
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from tests made with various wave shapes follow the same curve if the crest value

of the AC component is plotted on one axis versus the DC component on the other.

Two conditions must be met in order to have the experimental data fallon the

same curve. First, the reference axis for measurement of the alternating component

must be the average value or the direct component and second, the peak or crest

value of the alternating component must be measured in the direction of the maximum

total current. Curves derived in this manner are illustrated in Figure 17.

Figure 18 illustrates the reasonably safe current curves for sine wave currents.

It is noted that human tolerance increases slowly at first and then quite rapidly

for frequencies below 15 cycles or above 100 cycles. The relative discomfort

curve on the same figure is arranged so that the discomfort is 100% for 60 cycles.

It is noted that although a subject's Jet-go current increases considerably at the

very low frequencies, his muscles follow the current variations and the sensations,

presumably caused by the peaks of the current wave, are more painful than those

experienced on the 60 cycle tests. At very high frequencies, sensations of heat

rather than pain predominate. Thus, we again meet the problem of attempting to define

"pain". As Dalziel suggests, the curve can only be taken to show in a general

way the discomfort or the relative danger of a given current as a function of

frequency.

Of considerable interest is the observation that after a current by which a

man has been "frozen" to a conductor is interrupted, the man may be temporarily

"paralyzed". This problem was studied by Dalziel16 • Thirty-two men, ages 18-50

years, were "frozen" to a #8 copper wire by 60 Hz AC, 2 to 4 mA in excess of their

let-go thresholds. It was found that 3 of the 32 men had a time delay of 0.4 sec

in releasing the wire after the current had been stopped. Dalziel suggested that

it is possible that the "let-go time delay" might be longer for higher 60 Hz

currents and for short impulses of 100 or more mAo
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Figure 17*
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Figure 18*
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The Threshold for Ventricular Fibrillation

Ventricular fibrillation is a condition of completely asynchronous contraction

and relaxation of the myocardial fibers of the ventricle. This random activity

is not suitable for maintenance of cardiac output. Although there are many

different etiologies for ventricular fibrillation, it is well known that an

appropriate electrical stimulus may be such a causative agent.

The observation that electric current results in muscular contraction has

been known since the time of Galvani. Animal studies performed at the end of the

last century by Prevost and Battelli indicated that 200 Hz AC produced ventricular

fibrillation with a tenth of the amplitude required at 2000 Hz 55 • Early in the

thirties, Kouwenhoven and his associates began rather intensive studies on the

effects of electricity on the heart. In studying the current flowing· through the

heart'with an electric shock, Kouwenhoven, et al. observed in dogs that if the

current pathway was parallel to the body axis, 9 to 10% of the total current flowed

through the heart39 . If, however, the current was transverse to the body axis, only

3% of the current flowed through the heart. The suggestion was made that in the

human, the most dangerous path for electrical current was from the right hand to

the foot.

Further studies were performed on dogs by Kouwenhoven, et al. to determine

the effects of different electrical frequencies on the heart40 . Studies were

performed with both interrupted direct current and alternating current. The

animals' chests were opened, electrodes placed directly on the heart and the minimum

currents for a given frequency as well as the type of currents required to produce

ventricular fibrillation were measured. Several observations were made. First,

with interrupted direct current, the heart most readily fibrillated with currents
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with the frequency of interruption near 60 times per second. As the frequency of

interruption was increased from zero, the musculature of the heart became more

responsive, responding most readily to shocks from 40 to 100 interruptions per

second. At frequencies of interruption greater than 100 per second, the heart

became less responsive and a greater current was required to produce ventricular

fibrillation.

With alternating current, little difference in the reaction of the heart was

seen to shocks from 25 to 60 Hz. The derived values for fibrillation currents

for both AC and interrupted DC are shown in Table 12.

Table 12: Values for Fibrillating Currents (mA)*

Frequency (Hz)

25

40

60

Interrupted DC Alternating Current

Mean Max. Effective Max.

0.52 1.04 0.81 1.14

0.35 1. 70 0.71 1.00

0.31 0.62 0.75 1.06

*From Kouwenhoven, et a1. 40

One of the most extensive early studies on the effects of electric shock

h h h f d b F · 1 26 A b f . fon t e eart was t at per orme y err1S, et a.. num er 0 spec1es 0

animals were included in the tests to establish the trend of effects with variation

in physiological and morphological factors; however, most of the experiments were

upon animals comparable in body weight and heart rate and weight to man.

Seven different species of animals were studied for measurements of threshold

currents for ventricular fibrillation25 . Standard reference conditions included

the use of a 60 Hz AC of three seconds duration with the electrodes on the right
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foreleg and left hindleg, thus being somewhat analogous to many human accidental

electrocutions.

Based upon these detailed investigations a number of observations were

made:

1. Current rather than voltage is the proper criterion of shock instensity.

2. The stimulating effect of current through the heart can derange its actions

causing ventricular fibrillation without damage to cardiac tissues but

resulting in death unless fibrillation is arrested.

3. The current just below the threshold for ventricular fibrillation is the'

maximum to which man can safely be subjected. Based on animals comparable

in size to man, this maximum current is about 0.1 A for a duration of one

second or more if the current pathway is between an arm and a leg.

4. The threshold current for fibrillation is affected by a number of variables.

The species and size of the animal is important. The threshold current

increases roughly with both body weight and heart weight. (See Figure 19

from Geddes, et al.) Approximately similar threshold currents are found

for currents from the arm to leg, across the chest, from the chest to the

arm and from the head to the leg. Somewhat higher currents should be

expected for pathways from arm to arm. (This is explained by Kouw~nhoven's

study, previously mentioned39 .) For current pathways from one leg to the

other, the proportion of current reaching the heart is so small that fibril

lation is not likely to occur even at currents as high as 15 A or more.

The threshold current alters with frequency. (This is shown well in

graph form from a recent study by Geddes, et al., see Figure 20.) For shocks
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of 1 sec or more in duration, the 25 Hz threshold current is about 25%

higher than the 60 Hz value. For shock durations of less than 1 sec, this

relation probably does not hold, all thresholds being expected to approach

one another. For short shocks, the time of occurrence in relations to the

heart cycle is important. The heart is the most sensitive for fibrillation

to shocks occurring during the partial refractory phase of its cycle, which

is about 20% of the whole and which occurs simultaneously with the T-wave of

the electrocardiogram. With shocks of about 0.1 sec or less duration, it is

practically impossible to produce ventricular fibrillation unless such shocks

occur during this sensitive phase of the cardiac cycle. The middle of the

refractory phase is more sensitive than its beginning or end.

The duration of the current is also important. The threshold current

varies inversely with shock duration, but not uniformly, being most sensi

tive to change as the duration approaches the duration of one heart beat.

(See Figure 21.) Within this sensitive phase of the heart cycle, the thres

hold fibrillating current for shock durations of 0.1 sec or less is ten

times the threshold for durations of 1 sec or more. Shocks one-third of

more of the heart cycle in duration may cause ventricular fibrillation even

though they would not extend into the sensitive phase of the cycle if the

heart continued its normal beat after the initiation of the shock. This is

probably due to the induction of a premature heart beat which brings about a

premature sensitive phase prior to the end of the shock.

5. Successive shocks have no cumulative effect on the susceptibility of the

heart to fibrillation.

6. Susceptibility of the heart to fibrillation by short shocks increases with

currents up to several times the threshold, then decreases, becoming very
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small at currents of the order of 25 A through the body in the vicinity

of the heart. However, other serious injury may be expected for such

currents.

7. Fibrillation produced by electric shock will, in most cases, be arrested by

a subsequent electric shock of high intensity and short duration through

the heart.

8. The results indicate on the whole, that sinusoidal currents in excess of

100 rnA at 60 Hz from hand to foot will be dangerous for shock durations of

three seconds or more for man.

Further studies evaluating the effects of electric shock during the vulnerable

period of the heart cycle were done by Wiggers and Wegria64 . Brief induction or

condenser shocks were applied to normal hearts of old or young dogs by stigmatic

electrodes. Fibrillation was produced only when the shocks fell during the vulnerable

period. It was noted by these investigators that alternating current is more

dangerous than direct current since effective variations of current strength fall

during the vulnerable period (especially with 60 Hz) while these variations

occur only during the closing and opening of the circuit with direct current.

Ten years after Ferris' et al., original paper was published, (previously

mentioned in this paper) a further analysis of their data was performed by

Dalzie126 ,13. In this analysis, Dalziel concerned himself with threshold currents

likely to produce ventricular fibrillation in 1/2% of a large group of normal men.

(Thus an analysis similar to that for "let-go" currents.) The formula derived was

as follows:

I (1/2%) = l65/~, where T = time of current flow in seconds and assuming a

"standard" 70 Kg man. (A defense with more complete statistical analysis of

this formula is presented by Dalziel in a later paper.)17
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Figure 2:::>*
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Further analysis in the same paper suggested that the ratio of fibrillating current

for direct current to alternating current is about 5 to 1. However, the author

points out that this conclusion is drawn from limited data. Similarly, data

derived from some of the author's own earlier studies, and analyzed in this paper,

suggest that for capacitor discharges a reasonably safe value for man is 45

mi11icou1ombs. Dalziel pointed out in a still later paper that the hazard from

short shocks is believed to exist because of the energy contained in the discharge,

while the crest of the initial current, the quantity in the pulse and the shock

duration are related quantities of secondary importance14 .

Very recently, a still more comprehensive analysis using Dalziel's technique

was performed by Dalziel and Lee19• In addition to the data included in the

original analyses, data was included from the studies of Kouwenhoven, et a1.,

Kise1ev and Lee41 ,19,46. It was pointed out that shocks administered to hundreds

of animals indicate that the minimum commercial frequency electric current causing

ventricular fibrillation is proportional to body weight and inversely proportional

to the square root of the shock duration. Thus, assuming a 50 Kg human, the

equation, I = l16/~ represents the 1/2% maximum non-fibrillating current line

while the equation I = 185/~ represents the 1/2% minimum fibrillating current

line.

Using Dalziel and Lee's analysis, the actual figures for fibrillating currents

for a 50 Kg human become 67 rnA as the 1/2% maximum non-fibrillating current and

107 rnA as the 1/2% minimum fibrillating current.

The authors point out that these equations are drawn from information about

the effects of shocks of less than 5 sec duration. It is suggested that from 5

seconds to 20 or 30 seconds, the threshold may remain fairly steady, dropping
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only slightly, while for longer periods, hypoxia may exert an influence and lower

the threshold even further.

Confirmation of this idea may be furnished in part by the investigations of

Sugimoto, et a1., who noted that if an accelerating ventricular tachycardia that

is produced by 60 Hz stimulation is of sufficient duration (e.g., 5 or 6 beats),

the ventricular fibrillation threshold is reduced progressively after each premature

ventricular response, thus making it possible to induce ventricular fibrillation

with a very weak current59.

To this point, we have discussed only the levels of electric current which

will produce ventricular fibrillation when the current is applied to the body

surface. There are, however, circumstances where electric current may reach the

heart directly, as for example, through a dye-filled catheter passed through a

vein into the right atrium. Thus, it is important to consider those currents which

might be expected to produce ventricular fibrillation when the current is applied

directly to the heart.

Weinberg, et a1., performed such a study on dogs 62 • Catheters were passed into

various heart chambers and measurements taken. It was found that with a catheter

in each ventricle, currents as low as 35)UA and a voltage as low as 0.06 V could

induce ventricular fibrillation. In those situations where a single intracardiac

catheter was in place and a current flowed between the catheter and a metal plate

(or electrode) on the chest, an average fibrillating current of 170pA was measured

with an average voltage of 0.2 V and an average resistance between electrodes

of 920 ohms.

Similar studies were performed by Whalen, et a1. on humans at the time of

open heart surgery on cardio-pu1monary bypass, under moderate hypothermia (30-34°C)
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and with light anesthesia63 • Six patients were tested with electrodes 2.5 cm

diameter and four patients with electrodes 0.25 cm diameter. In each case, the

electrodes were placed on the apex of the left ventricle and the outflow tract

of the right ventricle. Sixty Hz AC was used for the studies. The results

are shown in Table 13.

Table 13: Variation in Threshold for Ventricular
Fibrillation as Related to Electrpde Size*

Electrode Diameter

2.5 cm

0.25 cm

1/=

6

4

Mean Current
To Produce Fibrillation

3366 ,uamp

583 ).lamp

Mean Voltage

0.85 V

0.01 V

Mean Resistance

252.n

1732 n

*From Whalen, et al. 39

The authors stated that the probable reason for the lower threshold with the

small electrodes could be explained by the greater current density, while the

greater impedance was due to the smaller cross-sectional area. The former point

receives support in a study by Furman, et al. 29 . Although Furman and his

associates' study was not to measure thresholds for ventricular fibrillation, but

rather, to measure 'the threshold currents for stimulation of the heart by an

implanted artificial pacemaker, he found also that as the electrode diameter

increased, the current necessary for stimulation increased. This was felt to be

explained by the lesser current density using larger electrodes. The summary of

results of the study are shown in Table 14. Thus, Hopps has pointed out that these

studies indicate that 60 Hz shocks are 500 to 5000 times more dangerous when

delivered directly to the heart rather than to the body surface36 .
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Finally, Geddes and his associates have pointed out yet another effect of

electric current on the heart, albeit indirect31 . When a current is pas3ed through

the thorax, stimulation of intrathoracic nerves may be expected. The wast well

known example of this is with phrenic nerve stimulation, which produces tetanic

contraction of the diaphragm and thus prevents respiration. However, stimulation of

the vagus nerves was not reported until this study. Using metal band neck-abdomen

electrodes and then transthoracic plate electrodes, current at several frequencies

was increased until vagal slowing of the heart was observed. The results are

shown in Figure 22. Proof that slowing of the heart was caused by stimulation of

the vagus nerves was verified by the administration of atropine, which abolished

the electrical effect.

Other Effects of Electricity on Humans

This section is not and cannot be all inclusive, since references abound which

discuss the effect of electricity on virtually every human organ or function. An

attempt has thus been made to include only a few of the most important or

interesting studies - particularly the effect of electricity on the central

nervous system. This latter emphasis is important since the placement of electrodes

upon the head for purposes of biomedical monitoring opens the possibility of an

electric current passing through the brain.

A study was performed by Kouwenhoven and Langworthy to investigate this

problem42 . Electrodes were placed on the skull and the base of the tail of the

test animal (rats). Sixty Hz AC and DC at 110, 220, 500 and 1000 volts for varying

time periods were used. Several conclusicns were drawn, Injuries were not noted

to be directly proportional to the amount of current; rather, the initial voltage,

the duration of contact and the size of the animal were important. It was noted

that when an electric current pa~s through the brain a temporary physiological
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block is produced in the respiratory center and spontaneous breathing ceases

for a time. If no serious injury occurred to the heart, adequate artificial

respiration gave time for recovery of the medullary center and normal breathing

resumed spontaneously. Severe shocks produced central nervous system changes

incompatible with life and immediate death in all cases was due to respiratory

failure. Delayed death was due to hemorrhage within the brain.

A later study was designed by the same investigators to explore the problem

of brain damage when the current did not pass through the brain43 . If the main

current path did not include the brain, spinal cord or nerves required for respiration,

most experimental animals breathed at once and were active within a few minutes. It

was observed that the chances for recovery of the animals were best when the brain

did not lie directly in the current pathway.

The persistance of respiratory arrest when a current has passed through the

brain has also been discussed by Lee45 . He relates the account of W. Watson,

who recorded an experiment by Benjamin Franklin, performed in 1751: "In this

'A pullet struck dead in like manner (viz., by "the electric shock" being directed

through its head) being recovered by repeatedly blowing into its lungs, when set

down on the floor, ran headlong against the wall. '" Lee notes, however, that recent

experimental work indicates that permanent respiratory arrest is unlikely in

accidental shocks which pass from one upper limb to another limb unless the currents

are sufficiently great to cause gross burning, and, further, that in electro

convulsive therapy a current of several hundred rnA is passed transversely through

the brain and only very rarely causes respiratory arrest. Thus, it is implied that

a longitudinal pathway of the current (i.e., through the brainstem) is required

to produce respiratory arrest.
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Alexander pointed out certain secondary effects of electric shock on

the central nervous system 2 . These are effects which occur secondarily to circulatory

dysfunction and include cerebral edema, perivascular hemorrhage, etc. It should

be kept in mind, however, that these do not appear to be caused primarily by the

electric current.

Aita has agreed with this interpretation in pointing out that the likely

causes of permanent neurologic sequelae seen following accidental electroshock

are, in general, due to hypoxia and heat damage and notes that most electrical

neurologic injuries are expressed immediately" 1 •

However, Farrell and Starr have recently compiled a classification of the

various neurological syndromes secondary to electrical injuries and have proposed

a mechanism of delayed damage24 • The classifications are as follows:

1. Cerebral Syndromes - delayed vascular occlusion due to intimal damage from
the initial shock or primary basal ganglia damage.

2. Spinal Syndromes - intimal damage with delayed vascular occlusion or primary
damage.

3. Radicular and Peripheral Nerve Syndromes - most typically secondary to burns
but can be due to vascular occlusion
or primary damage.

The authors point out that acute damage to various CNS structures may be

expected because of the tissue heating effect. However, it is noted that such

injury represents an acute problem and does not necessarily explain delayed

injury. They thus postulate the following mechanism. Electric current may act

like ionizing radiation, in that it alters biologically active proteins but does

not kill the cell. These proteins then undergo conformational changes secondary

to changes in weak chemical bonds. This interpretation is compatible with the

fact that blood vessels are most prominently affected by ionizing radiation and
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electrical injury since within the central nervous system, vascular endothelial

cells are elements that most frequently divide. Thus, if secondary to either of

the electromagnetic stimuli these cells die or become manifestly abnormal after

mitosis a potential region for thrombosis occurs with a resultant alteration

in blood flow.

The production of brain lesions with electric currents applied through

implanted electrodes was studied by Rowland, et al. 56 . Using the cat as the

experimental animal, pulsed and continuous unidirectional current was applied to

the brain. It was observed that if the total quantitity of electricity (mi11i

coulombs) was constant, wide variations in time of current flow, pulse form,

amperage and voltage do not influence the volume of tissue alteration and such

changes which do occur are found to be independent of heating. In studies with

bidirectional flow (alternating current) the size of the lesions was dependent

upon first, the number of microcoulombs per pulse in excess of a threshold value

for damage (determined as 20 to 25 microcoulombs) and, secondly, the number of

such pulses in the applied train. The lesions were found to be independent of time

(pulse duration), frequency, amperage or voltage.

Lamb, et a1. performed a study to investigate the problem of electrical

thrombosis of blood vessels44 . In vitro coagulation of dog whole blood and in vivo

thrombosis of blood vessels by means of an electrical current were found to be

voltage dependent phenomena. The critical potential difference below which they

did not occur appeared to be 2.0 V. With in vitro studies, whole blood was found

not to deposit as a coagulum on a positive electrode even when the amount of

charge allowed to flow was greater than that which caused coagulation at higher

voltages. In vivo electrical thrombosis was found to have similar voltage dependence

in studies with femoral vein pairs of dogs. Those exposed to 2.5 V thrombosed,



Page 56

whereas those at 2.0 V did not, even through the current and the total time it

flowed were the same in each instance. The authors suggest that a transmural

potential charge is not the initiating factor in the normal process of thrombosis,

but that this does not preclude an involvement of the charge in the subsequent

course of thrombus formation. Rather, it is believed that the accumulation of

platelets or ions at an injury site may be affected by a charge.

Long has raised a number of interesting points in his review and experimental

studies on the production of cataracts by electrical energy48 He noted that such

cataracts typically developed onlf if one of the contacts was near the eye. Further,

it was observed that the time of onset of the cataract was variable, from immediately

to greater than one year after the shock, but generally occurring within two to

six months. Long's own studies were performed with AC at 60 Hz and SO V and DC with

the same total power. A much greater local effect was noted for direct current with

vascular corneal opacities common. Measurements of intraocular temperature revealed

no increase during the electrical shocks. Cataracts produced by the electric

current were believed to be due to changes in the capsular permeability of the lens.

The author points out that the findings are exactly like those with X-irradiation

except that X-ray produces changes on the posterior horizontal suture while

electric energy produces changes on the anterior suture. This finding may lend

support to the suggestions of Farrell and Starr, previously noted24 .

In the discussion of the effects of electricity on the brain, we have already

mentioned the problem of primary respiratory arrest. Further comment is appropriate

on the effects of electricity on respiration.

If a current is applied through the thorax and is of sufficient strength,

tetanic contraction of the chest musculature may occur, thereby stopping respiratory

exchange. Lee has suggested that this occurs when about 20 to 30 rnA pass
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through the chest45 . Thus, asphyxial death with cyanosis may occur, respiration

having been arrested while circulation continues. It is pointed out, however,

that it may not be possible at autopsy to determine that this has happened, since

the usual petechial hemorrhages occurring with obstructive asphyxia are not seen.

These would not be expected, since the anoxic capillaries are not subjected to

the strong subatmospheric intrapleural pressures developed with attempted

inspiration during obstructive asphyxia. Many years prior to this study, an astute

observation was made by Conrad and Haggard, who noted that, in general, shocks fatal

in a short time were due to cardiac effects, while those requiring a longer time

were secondary to respiratory failure 9 .

In contrast to this purely muscular arrest of respiration, electricity may

produce a true respiratory block, as previously mentioned. Angelis, et al. have

studied the effects of direct current on respiration3. DC electric shocks were

applied along the forelimb to forelimb pathway in rabbits. The effects on

respiration were found to depend on the current value. With currents up to 50 mA,

no respiratory effects were noted. From 50 mA to 180 rnA there was arrest of

respiration during the early part of the shock. With a current from 180 mA to

350 mA respiration was arrested throughout the shock with spontaneous resumption

immediately afterwards. With a current from 350 mA and higher (to a maximum of

1.8 A) respiration was arrested throughout the shock with a delay before spontaneous

resumption of respiration.

A similar study was performed by Lee, et al. to evaluate the effects of

alternating current47 . Fifty Hz AC of sufficient strength was ~ssed through

the forelimbs of rabbits such that there was a delay between the cessation of the

shock and resumption of spontaneous respiration. The relation of this delay to

the duration of shock and the current magnitude were examined independently and

in terms of two physical concepts - the product of shock duration and current
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magnitude ("charge equivalent") and a quantity proportional to the energy input.

The influence of the shock duration apparently exceeded that of the current.

Further, delay was strongly associated with both "charge equivalent" and energy

input. When temporary circulatory arrest due to ventricular fibrillation occurred,

an additional mechanism appeared to operate. Although protracted, the delay showed

similar association with the shock duration and current magnitude. It was also

observed that the interval between spontaneous defibrillation and the resumption

of respiration showed a strong association with shock duration. The restarting

of respiration appeared to depend upon circulation. It was suggested then when the

circulation restarts, after a period of ventricular fibrillation, blood-borne

inhibitory substances, which accumulated during the period of circulatory arrest,

may affect the respiratory center.



Page 59

THE PASSIVE ELECTRICAL PROPERTIES OF BIOLOGICAL MATERIAL: ELECTRICAL RESISTANCE
AND IMPEDANCE

The mammalian body may be described electrically as a complex suspension of

electrolytes and proteins in fluid, with many discontinuities created by various

types of membranes, generating potentials and potential differences among

different cells, tissues or organs as a normal function of maintaining what

might appropriately be called the "spark of life". Thus, when one considers

the action of extrinsic electric energy on the body, the final analysis must include

integration of the body's intrinsic currents.

Nevertheless, in the presence of small currents various body structures may

be analyzed in terms of their passive electrical phenomena, acting, in essence,

as combinations of resistors and capacitors.

Electrical Resistance of Cells and Tissues

Electrical resistance may be defined as opposition by a conductor to the

passage of an electrical current. Conversely, conductance may be defined as the

capacity for conducting or the ability to convey. Electrical conductance can be

represented as the reciprocal of resistance; i.e., Conductance = l/Resistance.

When a steady direct current is passed through tissue, the tissue offers

resistance to its passage. Perhaps the most electrically simple forms of "tissue"

in the body are represented by the various electrolytic solutions - plasma, urine,

bile, etc. - to which, in general, can be applied the principles of the conduction

of electricity by electrolytic solutions. An excellent review of this area is

given by Stacy, et al.; this can be summarized briefly as follows 58 .

As the concentration of salts in a solution increases, the conductance

increases since more of the ions in the solution become available for migration
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to the electrodes at which the external voltage is applied. Conductance is

defined on the basis of the number of charged particles per unit volume of the

solution and can be expressed in several ways. Equivalent conductance is the

conductance of a solution containing 1 gram equivalent of the electrolyte and

separating the electrodes by a distance of 1 cm. Molecular conductance is the

conductance of a solution containing 1 gram molecular weight of the electrolyte

and separating the electrodes by a distance of 1 cm. The specific conductance,

K, is the conductance of a solution without regard to the concentration of the

electrolyte. Thus, stronger electrolytes may be expected to have a relatively

higher specific conductance than a weak electrolyte.

The point may be illustrated by the following. If a potential difference (E)

exists between two electrodes in· an electrolytic solution all charges (q) in the

solution will experience a force (f = qE) causing them to move along the field

lines of force. The charged particles in the solution can be considered as being

accelerated to a terminal velocity virtually immediately, following which they

will drift at a terminal velocity proportional to the force. Specifically, the

terminal velocity is equal to the product of the force (f) and the mobility (u),

the latter defined as the velocity of the particle when unit force is acting upon

it. (Terminal Velocity = fu). The total current (i) flowing through the electrolyte

is then equal to the number of charges (N) times their velocity or i = Nfu.

Ordinarily, the number of charges, positive and negative, will be equal to twice

the number of dissociated atoms, and the anion and cation will have different

mobilities, u and u. If the number of dissociated molecules in a solution of
a c

concentration (c) is indicated by8C, then the current flow can be represented by:

Equation 1: i = qE&C(ua + uc)
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The conductivity of the solution is defined as the ratio of current to potential

difference; potential difference (V) is related to the field by E = V/d where d is

the distance between electrodes or, more specifically, the length of the line of

force. If the electrodes are close together so that d is much smaller than the

plate size, the lines of force are, on the average, just d in length. For such

a case, the conductance of the cell is:

Equation 2: t ==~ (ua + uc)

The conductivity, rho, of the solution in the cell would be the conductance per

unit area normal to the direction of current flow, for unit distance of plate

separation, or:

Equation 3: ,p = q8C (u + u )a c

It is obvious, of course, that the body is composed of more than electrolyte

solutions. Thus it is necessary to consider the problem of tissue electrical

resistance. If the tissues are considered as suspensions of cells in extracellular

fluid, then the theory of electrical resistivity of suspensions enables one to

predict the resistivity of tissues with some accuracy. The behavior of a group

of cells suspended in a conducting medium follows that of suspensions of conducting

spheres in conducting media as described by Maxwel18• The Maxwell equation for this

type of system may be expressed as:

Equation 4:

r
-2 -1
r'
r
--1+2
r

r
_1_ 1=~ _r2 _

r
--1+2
r 2

when r is the resistivity of the solution, r l is the resistivity of the suspending

medium, r 2 is the resistivity of the suspended material andjPis the relative

volume occupied by the spheres.
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This theory has been extended to describe the conductance of suspensions of

d " 11" "d 58non-con uct1ng e 1PS01 s • The extension is stated as:

Equation 5:

r -1
r =

¢f
= rl---

¢-l

The term f in this equation is a shape factor amounting to 1.5 for spheres and

greater than 1.5 for structures of other shapes.

Thus, if living cells are non-conducting, Equation 5 is applicable, while

if they are non-conducting, Equation 4 should be applied.

Finally, if conducting particles other than spheres suspended in a medium

are considered, Equation 4 must be modified to introduce a shape factor similar

to that used in Equation 5. Thus the statement for the resistive behavior of

suspensions of ellipsoids which are conducting becomes:

r
1

r
l

1- 1-
(1- ¢ )rl + (f+ ¢ )r

2
r r

2Equation 4a: =¢ or r l

f+
r 1

f+
r l (l+f ¢ )r1 + f (1- ¢ )r2

r r
2

The complexity increases somewhat further when one recognizes that not only are

living cells not all spherical, but that cells are not homogeneous objects. Rather

they consist of relatively non-conducting membrane surrounding a volume of electrolyte

solution which is of low resistivity. If the resistivity of cytoplasm is r
2
*, the

resistance per unit area of the membrane is r 3 and the cell radius is a, then the

r
2

in the preceding equation may be replaced as follows:
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Thus, the general expression for resistivity of cellular suspensions becomes:

Equation 7:
(l-~) r l + (f+;) (r2*+ r 3/a)

(l+f ~) r 1 + f (1- </» (r2*+r3/2)

An example of the use of these formulae is given by Cole and Curtis8 • If a

spherical cell has a cytoplasmic resistivity of 100 ohm cm., a membrane resistance

of 1000 ohms per cm2 and a radius of 10 ~ or 10-3 cm, the equivalent homogeneous

cell has a resistivity of 1.0001 ohm cm. (See Equation 4a). Under this condition,

the current flow through the cell is determined almost entirely by membrane surface

resistivity. If a suspension contains 50% by volume of these cells in an electrolyte

of resistivity of 100 ohm cm, then the suspension has a resistivity of 249.93 ohm cm.

If the cellular membranes are perfectly non-conducting,the suspension resistivity

then becomes 250 ohm cm. (See Equation 7).

Another method for measurement and interpretation of cellular characteristics

is by study of the flow of current through cell membranes when a potential difference

exists between two points on the exterior of the cell membrane. Cells most easily

studied in this manner are of a long, cylindrical configuration, such as nerve

or muscle cells. The technique of analysis is based on the conventional cable

theory.

If the assumption is made that the interior of a cell is conductive and if
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Ve is the voltage at any point on the cell's exterior, x is the distance along

the cell and Re is the resistance of the layer of electrolyte on the outer surface

of the cell per unit of length, then by Ohm's Law:

Equation 8:
tNe
Ax

where Vi is the voltage on the inner surface of the membrane and Ri is the

resistance of the cytoplasm per unit length. Variations of the currents flowing

through both the "outside" and "inside" circuits are produced by current flowing

through the membrane. Thus:

Equation 9:

where 1m is current per unit length through the membrane.

This relationship can be used to calculate the resistances of the internal

cytoplasm, the external layer of electrolyte and the membrane. However, one

must take into account the "characteristic length" of the fiber (A), which is

defined as:

Equation 10: A =~

'\j rl+r2

where rm is the membrane resistivity, rl is the resistivity of the solution in

which the fiber is immersed and r2 is the resistivity of the cytoplasm. The

equation for the resistance (R) of the cell then becomes:
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2r12 A-
s + ------=--------

(rl+r2) (K+coth s/2 A)

where s is the distance between the electrodes and K is a constant which varies

with the length of the electrode used. Cole has reported many measurements of

8resistivity of cell components. The cytoplasmic resistivity of cells varies from

30-3000 ohm cm, with most mammalian cells having a resistivity of about 300 ohm cm.

The membrane resistivity varies from 102 to 105 ohms/cm~, with most cells falling

in the 103 to 104 ohms/cm2 range.

Electrical Impedance of Cells and Tissues

To this point, we have dealt only with the concept of cells and tissues as

electrical resistances when a steady continuous current is applied to them.

Further, if all the electrical energy applied to a biologic system is converted

into heat, the system contains only resistances. However, electrical systems may,

in general, store potential energy in capacities and kinetic energy in inductances.

A thin, poorly conducting cell membrane may be expected to have "capacitance"

(i.e., to act electrically as a capacitor). (It should be noted, however, that

no recognized biologic mechanism exists in which cells or tissues act as induct-

ances.) This property of biological capacitance becomes important when one considers

the effects of other than steady current upon tissues, since in such a situation,

we are no longer dealing with only an electrical resistance, but with an "impedance"

as well. In this case, impedance may be defined as the opposition to the flow of

an alternating current which is the vector sum of ohmic resistance plus additional

resistance due to the capacitance effect of cell membranes, with the resistance

afforded by the latter being called capacitative reactance. The equation for

impedance may be expressed as follows:
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Equation 12: Z =-JR2+1/(,)2c

Where Z is the impedance, R the ohmic resistance, VJthe angular frequency of the

applied electrical stimulus and C the capacitance. Thus, the impedance is equivalent

to resistance with the application of a steady state current but includes the

addition of the reactance term, l/~C. Readers not familiar with the derivation of

this formula are referred to Stacy, et al. for an excellent explanation58 .

Tissue characteristics at low frequency are almost independent of membrane

reactance and internal resistivity since at low frequencies cells function

practically as non-conductors. At high frequencies, the membrane reactance and

resistance become nearly negligible. Tissue behavior at intermediate frequencies

is primarily a function of the membrane capacitance. Although the exact reason

for the capacitive behavior of cell membranes at intermediate frequencies is not

known, Cole has suggested that the Debye concept of dipoles may offer an explanation8

This concept states that any material having a dipole moment of its molecules can

exhibit dielectric behavior which might vary with frequency because of the time

required fOl' rotation of the dipoles in an electrostatic field. At low frequencies,

there is time for rotation of the dipoles and an equilibrium state between the

orienting effect of the applied voltage and the disorienting effect of thermal

agitation can be achieved. At intermediate frequencies, this state can be only

partially achieved and at high frequencies, there is not time for any rotation

or orientation of the dipoles.

Stacy, et al. note that measurements of the capacitance of membranes of

different cells have shown that in most cells the value is quite constant with

the characteristic value being about 1.0 microfarad per cm2 of membrane surface58 .
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Impedance Measurements of Various Organs of the Body

Although we have not yet begun the discussion of the physiological or

psychological effects of electricity when it is applied to some part of the human

body, it is obvious that when such electricity enters the body it may pass through

many different types of tissues and organs. Thus, the current delivered to the

body from some source is expressed by Ohm's Law, I = viz, if Z represents the overall

impedance of the body. The value of the impedance is identical with the sum of

. the individual impedances of each tissue or organ the current traverses. Thus,

Ztota1 = Z (skin) + Z (subcutaneous tissue) + Z (muscle) + ....Zx.

If one is to have an understanding of the response of the human to the passage

of electric current, it is thus necessary to have some knowledge of impedance

measurements for many different biological materials since impedance to any

particular current passing through the body will vary, not only with the nature

of the current, but with the pathway taken by the current as it traverses the

body. An excellent review of the studies making such measurements has been made by

Geddes and Baker and a discussion of their review fo11ows 30 •

In the mammalian species, approximately 70% of the body weight is water,

with 50% being intracellular fluid and about 20% being extracellular. The latter

includes such fluids as blood, urine, the bile, cerebrospinal fluid, etc •.

Inasmuch as all the body fluids are electrolyte solutions, they typically have

rather low resistivities and, in the absence of cellular elements, can be

expected to act electrically as resistors or, conversely, conductors. Table 15

gives resistivity figures measured in various studies for biological fluids which

are relatively cell-free. It should be noted that, in general, the conductivity

of these fluids increases as the temperature rises thus exhibiting a negative

temperature coefficient of resistivity.
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Table16 presents resistivity figures for blood. Figure 23demonstrates the

negative temperature coefficient noted for human blood. From the previous

discussion in this paper, it might be expected that resistivity of blood would

vary with its cellular content. That such a variance does exist is shown by

Figure 24 which illustrates the fact that as the cellular content of blood increases

(i.e., as the hematocrit increases) its conductivity decreases. Figure24also

illustrates that a difference in conductivity exists for flowing and stationary

blood, with the later exhibiting a higher resistance. This difference becomes

more marked as the cellular content of the blood is increased.

The resistivity values for cardiac muscles are listed in Table 17. It is

obvious that considerable differences exist among the various measurements.

The data derived by Rush may explain this variability30 In his study, resistivity

was measured parallel and transverse to the direction of the muscle fibers.

Transverse measurements were found to be about 2.2 times as great as measurements

taken parallel with the fibers. The recorded measurements for human cardiac

tissue are noted to be lower than that recorded for cardiac muscle of other

mammalian species. Since the human studies were performed on post-mortem specimens,

the lower resistivities found may fit with the view that after death, cell membranes

lose their ability to maintain their insulating properties and ionic gradients.

Multiple measurements for resistivity of skeletal muscles are tabulated in

Table 18. As is the case with measurements of cardiac muscle, the resistivity

values are found to vary with the direction of current flow; i.e., whether the

current is directed parallel ~ith or transverse to the muscle fibers. Thus the

ratio of transverse to longitudinal resistivities as based on the data in

Table18 is approximately 5 to 1.
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Figure 23*
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300 • Human Blood, 37°C., IkHz l Rosenthal, 1948}
o Canine Blood, Body Temp., 100 kHz (Kinnen, 1964)

V Canine Blood, Body Temp., I k Hz (Kaufman, 1943)
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Page 81

Since lung tissue contains varying amounts of air, it might be expected that

resistivity values would vary considerably. In vivo studies suggest that this is,

in fact, the case, with resistivity measured during maximum inspiration being

two or three times that during maximum expiration. These data are shown in

Table 19. Post-mortem studies, however, show fairly good agreement for mammalian

species at body temperature and in the low frequency region.

Table 20 shows resistivity values for the kidneys of various mammalian

species. The data suggest the possibility of a negative temperature coefficient

of resistivity.

Resistivity figures are shown for liver, spleen and pancreas in Tables

21, 22 and 23 respectively.

temperature coefficient.

conclusions can be drawn.

Data for spleen resistivity indicate a slightly negative

Liver and spleen data are rather sparse and few

Data for the resistivity of nervous tissue are shown in Table 24. As in

muscle tissue, where there are long well-defined fibers, the longitudinal and

transverse resistivities vary considerably. In different nerve tissues, ratios

of transverse to longitudinal resistivities are found to vary between 5.7 and

9.41. In addition, one would expect differences in the resistivities of white and

gray matter of the brain when the histological structural differences are considered.

Such is the case where comparisons have been made with the white matter having

a resistivity about twice that of the gray matter.

Data for fat resistivity are shown in Table 25. It should be noted that

there are no human data for the low frequency region.
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Although figures for bone resistivity are given in Table 26, Geddes and Baker

point out that such data should be viewed with reservation30 . This is so if it is

recognized that of all the tissues in the body, the resistivity values for bone

are the most variable, since bone at different locations in the body is of such

varied composition. Two examples can be given. The skull consists of two dense

poorly conducting bony tables separated by a spongy region containing blood which

is, as previously noted, a good conductor. Likewise, the long bones are poorly

conducting tubes filled with highly conducting vascularized marrow.

From the general tabulation of data on resistivities, certain reasonable

estimates can be made for the resistivities of specific human organs. These

figures are shown in Table 27. In those cases where human data are not available,

animal data are presented, and the appropriate cautions involving the extrapolation

of animal data to man should be considered.

When considering the action of electricity applied to the body it is also

of some importance to attempt to determine the resistivity of certain body segments

since this is, in fact, the manner in which the current may pass through the

body. However, caution must he used in this approach. Implied in the determination

of r-esistivity is the existence of a known current-density distribution between

the electrodes which are being used to measure the potential. In non-uniform

conductors such as a body segment, current density distribution will likely not

be uniform. Thus, slight alterations in electrode positions may result in large

changes in measured resistivity. Nonetheless, attempts to estimate these

figures do have some importance and such values are shown in Table 28.
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Kouwenhoven has suggested that the minimum value of body resistance (for

the hand to foot pathway) is about 500 ohmsZ8 . Most of this resistance is in the

extremities, where a large portion of the total cross-section is taken up by the

bones. Thus, in estimating the total resistance offered to electrical current

flow in the body, the resistance of the trunk is considered to be small compared

to that of the limbs.

Only minimal information is available on the resistivity of the teeth.

Mumford, using Ag-AgCIZ electrodes, has measured the in vitro resistivity of

enamel in 13 specimens and has found a mean value of 45 ohm cmsl . Similar

measurements for dentine, measured along the lines of the dentinal tables revealed

a value of 330 ohm em.

In the discussion of their review paper, Geddes and Baker make several

comments which are of such importance that they should be carefully considered30 .

First, most biological structures are composed of cells and hence exhibit different

properties in different directions because of cellular orientation. Secondly,

variations in biological material related to altered physiology of the mammal -

due to environmental changes or disease - may be expected to exist. The size

of the sample of tissue or organ being examined may be important and, in general,

data from small samples of tissue should be avoided, since the nature of cellular

structure will become an important factor in the resistivity measurement.

Further, when physiologically active structures are being measured, significant

resistance changes may be observed during depolarization and repolarization of

the structure.

Conspicuously absent to this point has been any mention of the electrical

resistance of the skin. The skin is unique as an organ in its role as an interface
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with the external environment. Because of this role, it is most typically through

the skin that electric energy enters the body. Certain exceptions do exist to

this situation, as with the case of implanted electrodes or in situations where

mechanical devices, such as venous catheters, have been passed through the skin

and thus potentially offer a direct pathway for the transmission of an electric

current into the body.

The resistance or impendance of the skin lies primarily in the epidermis,

where the normally dry, horny layer of stratum corneum acts as a poor conductor.

Thus, any factor affecting the epidermis may be expected to alter skin resistance.

An example of this is the variation in skin resistance noted on different parts

of one body. Resistance is normally lowest in those areas of the body where the

skin is "thin" - e.g., the axillae, the popliteal fossae, etc. - and may be only

IK to 2K ohms. It is highest in thick calloused skin areas and may be 70K to

lOOK ohms or more38.

Skin resistance is lowered by moisture, sweat gland activity or by the

application of a conducting paste between the skin and an electrode. Kouwenhoven

has pointed out that if the skin is wet, its resistance may drop to l/lOOth of

its usual value38• Thomas and Korr examined the quantitative relationship between

the number of active sweat glands and electrical resistance of the skin60 . They

noted that conductance varies approximately linearly with increasing or decreasing

numbers of active sweat glands. The conclusion was reached that each active

gland contributed a conduction pathway electrically analogous to adding a small

resistance in parallel to other sweat gland resistances. Further, small variations

in slope and intercept on rising and falling curves noted during measurements

involving increasing and decreasing sweat gland activity were felt to be related

to hydration of nonsudorific conduction pathways.
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If the structural integrity of the epidermis is altered, as by cuts, abrasions

or by burning, the skin resistivity will fall. This fact is used to advantage

when the skin is abraded prior to the application of an electrode. (See Figure 25.)

With the use of skin electrodes, both the pressure with which the electrode

is applied (see Figure 26) and the area of electrode contact with the skin affect

measurements of skin resistivity.

An example of the effect of electrode sizes on measurements of skin resistivity

is given in the study reported by Thompson61 . The study was performed on 70

subjects - 28 women and 42 men. The subject's left hand was immersed to the wrist

in a weak saline solution. Four types of electrode contacts were made with the

right hand. First, tapping a metallic surface with the tip of the forefinger; second,

pinching a metallic conductor with the thumb and forefinger; third, gripping a

long metal rod 1 inch in diameter; fourth, immersing the hand in salt water to

the wrist. Table 29 gives the results of the study. It should be noted that the

resistance is reported as average "body" resistance. Since under the conditions

of the experiment the internal body resistance would not be expected to change,

the variations reported reflect the changes in resistance at the entrance point

of the current through the skin.

Table 29: Effects of Surface of Skin-Electrode
Contact on Measurements of Skin Resistance*

Type of Contact Avg. Body Resistance (Kohms) Avg. Voltage Drop (Volts)
Women Men All Women Men All

Tap 43.7 33.4 37.5 11.5 13.2 12.5

Pinch 14.1 13.9 14.0 7.0 10.6 9.2

Grip 7.4 7.4 7.4 6.0 7.6 6.9

Immersed 1.7 1.4 1.5 1.5 3.0 2.3

*From Thompson61
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Figure 26*
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Further, it should be kept in mind that the resistance of the skin varies with the

type of current being applied. Thus, responses may vary not only between direct

current and alternating current, but with different frequencies of alternating

current as well. (Figure 25.)

It has been suggested that racial differences in skin resistance may exist.

Johnson and Corah reported findings from two separate laboratories using

different measurement techniques, different electrodes and different aged subjects37

In both studies, skin resistance was found to be greater for Negroes than for

Caucasians. The results of these studies are shown in Table 30.

Table 30: Racial Variations in Skin Resistance*
(All Resistances in Kohms)

St. Louis Study San Diego Study

Caucasian Negro Caucasian Negro

~~R ~~R Mean R Mean R
Male #65 170.75 #22 210.09 Male #16 171. #16 373.

Female #55 168.94 #32 309.93 Female #5 171. #5 373.

*From Johnson and Corah37

The authors concluded that skin color itself was not the important variable,

since the melanin is located in the basal layers. They suggested that the differences

were either because of a thicker stratum corneum in Negroes or possibly because

of differences in active eccrinesweat glands between the two races. Another study,

however, has pointed out that racial difference in skin resistance exist which are

not correlated with the amount of sweating54 .

Slyn'ko performed an investigation of the electrical conductance of the

skin during brief hYPoxia5~ Experiments conducted on rabbits using low frequency,
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low voltage alternating current showed that brief general or localized hypoxia

does not produce noticeable changes in the electrical conductance of skin which

has no sweat glands or malfunctioning ones. It was also observed that changes

in skin temperature and electrode temperature caused changes in skin conductivity

of about 2.6% per degree Centigrade.
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SUMMARY

When an electric current enters and passes through the body, the electrical

characteristics of the entrance site and of the tissues in the pathway taken by

the current must be considered~ Thus, different responses are to be expected

to direct current and alternating current as well as to different frequencies

of alternating current. Further, variations of individual responses, be these

physiological or psychological, must be expected. Within these limitations then,

general statements can be made regarding certain human responses to electrical

stimuli.

The first physiological response to an electric current can usually be

regarded as the perception of the current. For perception through the hand,

Dalziel and Mansfield suggested that with direct current, about 5 rnA is

perceptible, while a current of less than 1 rnA is perceptible with 60 Hz

alternating current
20

• Lower figures were reported by Carter and Coulter,

suggesting that for direct current, 0.2 - 0.3 rnA is perceptible and that nearly

similar levels of alternating current at 100 Hz are perceptib1e7• Using trans-

chest electrode and neck-abdomen electrode arrangements, Geddes e1 a1. found

responses to alternating current in fair agreement with those levels reported

by Da1zie1
31

•

Somewhat lower figures for direct current perception were suggested by

34
Green • (See Figure 2). Conrad et a1. have pointed out the time dependency

f d " 11o a response to 1rect current •

There is general agreement that for alternating current as the frequency

increases the threshold for perception increases. There is, however, little
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difference in responses between 60 Hz and 400 Hz. It also is generally agreed

that as the area of contact with the source of current increases, the threshold

increases.

Minimal evidence suggests that hypoxia does not significantly alter

sensation thresholds. Further, the threshold does not appear to be altered

significantly by changes in skin temperature, unless rather drastic temperature

changes occur.

The problem of defining pain has previously been discussed. Thus, it is

to be expected that studies to evaluate upain" can only suggest some range of

responses.

Using a upain prick" sensation as the subjective response to be called

painful, Notermans reported levels for alternating current quite close to

those levels previously discussed as sensation thresho1ds52 • He also observed

that as an impulse duration increased, the pain threshold fell •. Measurement

of pain thresholds by Plutchik and Bender suggested slightly higher current

levels than those reported by Notermans (approximately 1.0 rnA as opposed to

0.5 rnA) but still within the ranges previously mentioned as "sensation"

thresholds54 •

More generally accepted levels for the pain threshold are those suggested

by Lee, based upon data from Kouwenhoven and Milnor, Dalziel and Morse28 • He

suggested a range of 3 to 10 rnA as annoying or painful. This range is in

agreement with the data of Farmer
27

at one end and with the data of Davidson

22
and McDougall at the other.
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The threshold for the induction of muscular contraction by electric

current has been studied extensively by Dalziel who has defined the "let-go"

current as that current above which a man cannot voluntarily release his

contact. Defining a "reasonably safe current" as the let-go current which

99%% of a large group of subjects can release by using muscles directly affected

by that current, Dalziel established 62 rnA DC for men and 41 rnA DC for women

21
.as reasonably safe currents • Corresponding values for 60 Hz AC are 9 rnA

for men and 6 rnA for women. The values for alternating current are frequency

dependent, tending to increase as the frequency increases from 60 Hz. However,

the rate of increase with increasing frequency is slow between 60 and 500 Hz.

The nature of the study demands that most investigations of the production

of ventricular fibrillation by electric current be' performed on animals. Ferris

et al. performed extensive studies on different animal species and observed

that the threshold current to produce ventricular fibrillation was related to

h b d d h . h 26teo y an eart we~g t •

was suggested that (with 60 Hz AC, for a duration of 1 or more seconds with a

current path between an arm and a leg) a current of 100 rnA would produce

ventricular fibrillation. The threshold for ventricular fibrillation also

alters with frequency. (See Figure 20). Further, the duration of the shock

is important, since for short shocks (e.g., less than 1 sec), the shock must

occur during the sensitive phase of the heart cycle.

An extensive analysis of the problem was performed by Dalziel who derived

a formula to predict the production of ventricular fibrillation in %% of a

large group of normal men; i.e., I (%%) = l65/~, where T is the time of
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current flow in seconds and assuming a rrstandardrr 70 Kg man
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Further,

Dalziel has suggested that the ratio of fibrillating current for DC to AC is

about 5 to 1. Further discussion of the derivation of Dalziel's formula is

presented in the text of this paper. Numerous studies on the production of

ventricular fibrillation by the application of an electric current either

directly to the heart or reaching the heart through a catheter indicate that

in such cases only very small amounts of current produce fibrillation. Thus,

it has been suggested that 60 Hz shocks are 500 to 5000 times more dangerous

36
when delivered directly to the heart, rather than to the body surface •
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