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A Control-Theory Model for Human Decision-Making * 

WILLIAM H. LEVISON 

Bolt Beranek and Newman Inc. 

The optimal-control model for pilot-vehicle systems has been extended to handle certain 
types of human decision tasks. The model for decision-making incorporates the observation 
noise, optimal estimation, and prediction concepts that form the basis of the model for control 
behavior. Experiments are described for the following task situations: (1) single decision tasks, 
(2) two decision tasks, and (3) simultaneous manual control and decision tasks. Using fixed 
values for model parameters, we can predict single-task and two-task decision performance 
scores to within an accuracy of 10 percent. The experiment on simultaneous control and 
decision indicates the presence of task interference in this situation, but the results are not 
adequate to allow a conclusive test of the predictive capability of the model. 

INTRODUCTION 

Considerable effort has been devoted to under- 
standing how a pilot controls his aircraft, and 
reasonably accurate models for the pilot as a 
feedback controller have been developed. Con- 
tinuous control, however, is but one of the func- 
tions required of the pilot; he must also make 
various decisions during the course of a flight. 
As flight-control systems become more sophisti- 
cated, monitoring and decision-making tasks will 
play an increasingly important role in the pilot's 
management of the aircraft. 

This paper summarizes a theoretical and experi- 
mental study recently conducted for NASA- 
Ames Research Center, to develop a model for 
human decision-making. In order to provide a 
common model structure for both decision- 
making and continuous control, the model for 
decision-making is based on the existing optimal- 
control model for pilot/vehicle systems developed 
by Bolt Beranek and Newman Inc. The optimal- 
control model contains the concepts of observa- 
tion noise, optimal prediction, and optimal 
estimation that can be applied to certain types of 
decision problems. In  addition, the existing pilot/ 
vehicle model is able to account for interference 

* This work was performed for NASA-Ames Research 
Center under contract NAS2-5884. 

among tasks performed in parallel. The model 
developed in this study is intended to apply to 
situations in which the human bases his decision 
on his estimate of the state of a linear plant. 

Considerations of space limit us to a presenta- 
tion of only the highlights of this study. Addi- 
tional details are given in reference 1. The reader 
is directed to references 2 and 3 for a description 
of the pilot/vehicle model and to references 4 and 
5 for the development and validation of the model 
for task interference. 

DESCRIPTION OF THE DECISION TASK 

The following three constraints were imposed 
on the selection of an experimental decision task: 
(1) the task should be compatible with the exist- 
ing theoretical structure for optimal control and 
estimation, (2) the correctness or incorrectness of 
the subject's response should be unambiguous, 
and (3) the experimental task should bear some 
resemblance to a decision task encountered in 
flight situations. In  addition, we desired to relate 
this work to  a concurrent study of aircraft 
approach and landing conducted both a t  NASA- 
Ames Research Center (ref. 6) and Bolt Beranek 
and Newman Inc. (ref. 7). Accordingly, we 
designed and used the following decision task, 
which was intended as an idealization of the 
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pilot’s task of deciding whether or not he is 
within the “landing window.” 

The subject was presented with an oscilloscopic 
representation of a noisy glide-slope indicator 
along with two reference indicators showing the 
“target,” or region of acceptable glide-slope error. 
The subject’s task was to keep his response 
button depressed whenever he thought the true 
error was within the target area. I n  order to test 
the model for task interference, we provided two 
such decision tasks simultaneously in some of the 
experimental trials. In  the two-task situation, 
two noisy indicators were presented on the same 
display and the subject manipulated two response 
buttons. The two “error” signals were linearly 
independent and were in no way affected by the 
subject’s response. The display format for the 
two-task situation is shown in figure 1. 

The quantity displayed to the pilot was con- 
structed as the summation of a “signal’) plus a 
“noise” waveform. Thus, 

=s( t )  +no) (1) 

where y d ( t )  was displayed to the subject, s( t )  was 
a low-frequency random waveform that we de- 
fined as the “signal” (say, glide-slope error), and 
n(t) was a random waveform of higher frequency 
that we defined as “instrument noise.” 

Both s( t )  and n(t) were generated by simulated 
Gaussian white noise processes. Signal shaping 
was accomplished primarily by second-order 
Butterworth filters. The “bandwidth” of s(t)  was 
fixed at 0.5 rad/sec,* arid the input amplitude 
was adjusted so that s ( t )  would be within the 
target area half the time during the course of an 

*For semantic convenience, we refer to the critical 
frequency of the Butterworth filter as the “bandwidth” 
of the filter output. 
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FIGURE 1.-Display format. 
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experimental trial. The bandwidth of n(t) was 
sufficiently greater than that of s(t)  to enable the 
subject to distinguish between the noise and 
signal components of the displayed variable y&(t). 
Noise power and bandwidth were experimental 
variables. The white noise forcing functions driv- 
ing the signal and noise filters were linearly 
uncorrelated. 

A MODEL FOR THE 
DECISION SITUATION 

A block diagram of this decision situation is 
shown in figure 2. The portion of the model 
relating to the human’s response is denoted by 
the dotted line. This model is identical to the 
optimal-control model for continuous tracking 
except that optimal control activity is replaced 
by optimal decision behavior. 

The equations of motion of the system (i.e., 
‘(system dynamics”) are assumed linear and are 
expressed in state-vector notation, with the state 
vector denoted as g(t). The quantities displayed 
to the subject are denoted by the vector y(t)  
which is generated by a linear operation on the 
state vector. The human’s inherent limitations 
are represented by an equivalent perceptual time 
delay r and an observation noise process vy(t). 

The observation noise process vy(t) is intended 
to account for the various sources of human 
randomness (or “internal noise”). The vector 
e,(t) contains white Gaussian noise terms which 
account for the noise processes associated with 
the perception of indicator displacement and 
indicator velocity. These noise processes are as- 
sumed to be linearly independent of each other 
and of input driving noises. Furthermore, we 
assume that the power density level of each noise 
term is praportional to the variance of the corre- 
sponding perceptual variable. The constant of 
proportionality is termed the “noise/signal 
ratio”. This treatment of human randomness is 
parallel to our treatment of human controller 
remnant (refs. 8 through 10). 

The human’s estimation strategy is represented 
in the model by khe operations of optimal predic- 
tion and optimal (Kalman) filtering, the joint 
output of which is $(t), the best estimate of the 
state of the system. The optimal predictor and 
estimator may be used to predict the variances 
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DISTURBANCES 
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(or rms levels) of the best estimate of the state 
vector and of the estimation error. These quanti- 
ties are needed in order to predict the human’s 
average decision performance. 

Since yd(t) is the summation of linearly filtered 
white noise processes, this signal, by definition, 
is a sample function of a Gauss-Markov process 
(ref. 11). This type of random process has the 
following properties which justify our assump- 
tions of optimal estimation and prediction: 

(1) The current “state” of the process contains 
all the useful information about the process. Thus, 
for most practical purposes, the entire past 
history of y( t )  is “summarized” by the current 
value of the state vector, ~ ( t ) .  

(2) The best estimate of the state vector is 
given by a Kalman filter cascaded with an 
optimal predictor which operates on the noisy 
input variable yp( t )  (ref. 11). This filter is linear 
and time-invariant, and the difference between 
the instantaneous value of the state vector and 
the best estimate of it is a time-stationary random 
process. (This difference, or “estimation error”, 
has a variance which is denoted by crez.) The 
estimate of the state vector, $(t), is “best” in the 
sense that it is the minimum-variance as well as 
the maximum-likelihood estimate (ref. 12). 

(3) The pair @(t),g,) constitutes a sufficient 
statistic to test hypotheses about a(t)  based on 
the noisy data yp( t ) .  This is so because all the 

relevant information that can be extracted from 
yp ( t )  is contained jointly in :(t) and _a, (ref. 12). 

The model that we have described thus far is 
a model for the human’s monitoring behavior. 
That is, this model will allow us to predict the 
way in which the human will process the noisy 
information that is available to him. In  order to  
predict decision behavior, the model for monitor- 
ing must be coupled with a rule for generating 
the appropriate decision response. 

The optimal decision element of our model is 
based on Bayesian decision theory (refs. 13 and 
14). I n  general, the human’s decision strategy 
will depend on the probabilities of the various 
correct and incorrect decision situations that can 
occur and on the “utility” (or “cost”) associated 
with each possible situation. Since space does not 
permit a generalized analysis, we shall consider 
only the specific decision situation explored in 
this study. 

Our subjects were instructed to minimize the 
“decision error,” which was defined as the frac- 
tion of time during an experimental trial during 
which the subject’s response was incorrect. Two 
types of decision error were possible: the “false 
alarm” (indicating that the signal s( t  ) was within 
the target area when, in fact, it was outside), 
and the “miss” (the reverse type of decision 
error). Equal weighting was given to the two 
types of decision error; that is, the total decision 
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error score consisted of the sum of the two com- 
ponent error scores. For this situation the sub- 
ject’s decision rule was quite straightforward; 
namely, he was to respond “in” whenever his 
best estimate of s ( t )  was within the target bound- 
aries. (The optimal strategy is somewhat less 
trivial when the two types of decision error are 
not equally costly. See reference 1 for a more 
general analysis of the decision problem.) 

PREDICTED DECISION PERFORMANCE 

The model described above was used to predict 
the human’s average decision error score for the 
experimental situations that were explored. The 
analysis procedure consisted of three steps: (1) 
problem specification, (2) computation of the 
variances of the best estimate ( ~ $ 2 )  and the esti- 
mation error (uae2) for the signal s ( t ) * ,  and (3) 
prediction of the decision error. The problem was 
specified in terms of the state vector g, the display 
vector y, the time delay and noise/signal ratio 
which represented the human’s limitations, and 
the performance requirements (Le., minimization 
of decision error as defined above). The model for 
optimal estimation was implemented on a digital 
computer, and predictions were obtained for ut2 
and uas2. 

The sum of the probabilities of the two types 
of decision error was used as a prediction of the 
decision error score. Thus, 

Predicted decision error 

where P ( H l , h o )  is the joint probability of the 
subject deciding “in” and the signal being “out.” 
Each of these probabilities was formulated as a 
joint gaussian distribution of the best estimate 
S ( t )  and the estimation error s e ( t ) .  Numerical 
techniques were used to compute average decision 
error scores, using numerical values for ue and 
use yielded by the previous step in the analysis 
procedure. Details of the computational pro- 
cedure are given in reference 1. 

Two experimental variables were considered: 
the bandwidth of the simulated instrument noise, 
and the ratio u~~/u,~.  The time-delay parameter 
of the model was fixed a t  0.2 see-a value that is 

*The problem was formulated such that s ( t )  was 

=P(H1,ho) fP(H0,hl)  (2) 

treated as one element of the state vector &). 

typical of the effective delays inferred from 
studies of manual control behavior. The noise/ 
signal parameter of the pilot model served as a 
variable of the analysis procedure. 

Predicted decision error is shown as a function 
of noise/signal ratio in figure 3. Curves are shown 
for each of the single-task conditions that were 
investigated experimentally. The filter bandwidth 
for the noise process n(t)  and the ratio of signal 
power to  noise power is given for each of the 
conditions in the legend accompanying the figure. 
For the most part, the theoretical curves behave 
as one would expect. Predicted decision error 
increases as the simulated instrument noise power 
increases and as the human’s internal noise 
level increases. Noise bandwidth, on the other 
hand, is shown to have little effect on decision 
performance. 

Using the model for task interference that has 
been developed and validated for multivariable 
control situations (refs. 4 and 5 ) ,  we can predict 
the increase in decision performance that will 
occur when a multiplicity of decision tasks are 
to be performed. Task interference is assumed to 
manifest itself as an increase in the human’s 
internal noise/signal ratio according to the fol- 
lowing relationship : 

Pi(M) = PJfi (3) 

where Pi(M) is the noise/signal ratio associated 
with the ith component task when a total of M 
tasks are performed, Po, is the ratio corresponding 
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FIGURE 3.-Effect of noise/signal ratio on predicted 
decision error (signal bandwidth = 0.5 rad/sec.) 
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to single-task performance of the ith subtask, and 
fi denotes the fraction of attention to that task 
in the multitask situation. In  other words, we 
assume that the noise/signal ratio varies inversely 
with attention. 

We further assume that the subject has a fixed 
amount of information-processing capability (or 
attention) that is allocated optimally among the 
various subtasks. The notion of fixed capacity 
is represented by the following mathematical 
cons train t : 

M M  

(4) 

The following steps are required to predict the 
human’s decision performance in a multiple-task 
decision situation. First, we define a total per- 
formance measure that is to be minimized (say, a 
weighted sum of the decision errors associated 
with the component decision tasks). We then 
obtain theoretical curves relating decision error 
to the noise/signal parameter of the model. 
Finally, using a suitable iteration technique, we 
find the noise/signal ratios associated with each 
task which minimize the total performance mea- 
sure, subject to the constraint of equation (4). 
We thus obtain predictions of total-task per- 
formance, performance on the component tasks, 
and the allocation of attention among the tasks 
as defined by equation (3). This analytical pro- 
cedure may also be used to predict performance 
when decision and control tasks are performed 
concurrently, provided a measure of total-task 
performance can be defined. 

THE EXPERIMENTAL PROGRAM 

An experimental program was undertaken to 
test the validity of the model for decision-making 
presented above and to provide further tests of 
our model for task interference. The following 
task situations were explored: (1) single decision 
tasks, (2) multiple decision tasks, and (3) simul- 
taneous manual control and decision-making. In  
this section of the paper we briefly describe these 
experiments and present the principal experi- 
mental results. Discussion of results appears in 
the subsequent section. 
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Single Decision Tasks 

This experiment was conducted to determine 
the effects of changes in task parameters on deci- 
sion error and on inferred noise/signal ratios. 
The four decision tasks identified in figure 3 were 
explored. Our primary objective was to deter- 
mine the extent to  which decision performance on 
all tasks could be accounted for with fixed values 
for time delay and noise/signal ratio. 

Four undergraduate engineering students 
served as the subjects for this experiment. The 
subjects were provided with six training trials on 
each of the four decision tasks.* Following train- 
ing, three “data” trials of 4 min duration each 
were conducted per task per subject. The order 
of presentation of tasks was counterbalanced 
among subjects. 

The average decision error was taken as the 
primary performance measure for each of the 
four tasks. The standard deviation of the average 
score was estimated and was defined as 

r N  1 1 1 2  

. I /c\ 
4.  

Standard deviation -1 
where DEi is the average score of the ith subject 
for a particular task, D E  is the average score for 
all subjects on that task, and N is the number of 
subjects (in this case, four). A mean noise/signal 
ratio was inferred for each task by reference 
to the appropriate theoretical curve. Standard 
deviations were estimated for the noise/signal 
ratio as follows. Ratios were found which corre- 
sponded to the mean decision error plus (and 
minus) one standard deviation; the absolute 
value of the difference between these noise ratios, 
divided by two, was taken as the approximate 
standard deviation. 

Figure 4 shows the effects of task parameters 
on predicted and measured average decision per- 
formance. Predictions were obtained with nomi- 
nal values of 0.2 sec and -20 dB assigned to the 

* For the most part, the subjects appeared to reach a 
stable level of performance on a given decision task after 
six training runs. Considerably more training was 
provided in the following two experiments to assure 
stable levels of performance in the two-task decision 
and simultaneous decision and tracking situations. 
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FIGURE 4.-Effect of task parameters on predicted and 
measured decision error (four subjects, three trials/ 
subject). 

time delay and noise/signal ratio parameters of 
the model. 

For the most part, predicted and measured 
scores were in very good agreement. For tasks 
A, B, and C,  the measured decision error score 
varied by less than one standard deviation 
from the theoretical prediction. The decrease in 
“instrument noise” bandwidth from 8 to 4 rad/sec 
did not appreciably affect decision performance. 
(We had predicted that this would be the case if 
the human’s noise/signal ratio were -20 dB.) 
The only notable discrepancy between theory and 
experiment occurred for the most difficult task 
(task 0); in this case, the measured score was 
about 11 percent greater than the predicted deci- 
sion error. A t-test performed on the subject 
means revealed that this difference, while small 
in absolute terms, was significant at the 0.05 
criterion level. 

Decision error versus inferred noise/signal ratio 
is shown graphically for tasks A, C, and D in 
figure 5. Rectangular boxes about each datum 
point indicate i- 1 standard deviation of both the 
error score and the noise/signal ratio. (The results 
of task B are not shown in this figure since they 
almost coincide with the results of task C.)  This 
figure shows that the noise/signal ratio increases 
almost linearly with decision performance, rang- 
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FIGURE 5.-Decision error scores and inferred noise/ 
signal ratios for three tasks (four subjects, three trials/ 
subject; dashed lines indicate theoretical relationships). 

ing from -20.0 dB for task A to -15.6 dBfor 
task D. Since the ratios inferred for tasks A, B, 
and C lie within one standard deviation of one 
another, we cannot ascribe any statistical signifi- 
cance to these differences. The noise/signal ratios 
associated with tasks A and D, however, differ by 
about two standard deviations; this difference is 
too large to dismiss simply as experimental varia- 
bility. Factors which might account for the 
apparent variation of noise/signal ratio with task 
parameters are discussed later in this paper. 

Multiple Decision Tasks 

This experiment was performed to validate our 
model for task interference in a decision-making 
context. Decision error scores were obtained for 
tasks performed singly and two at  a time, and 
the difference between the two-task and one-task 
scores was tested against the difference predicted 
by the model. 

The subjects were provided with two decision 
tasks of the type identified as task A in figure 3. 
The statistics of the left- and right-hand tasks 
were nominally identical, but the two display 
variables were linearly uncorrelated. When two 
tasks were performed concurrently, the subjects 
were instructed to minimize the sum of the deci- 
sion errors associated with each component task. 
Each subject performed four data sessions con- 
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sisting of the following three-task situations: (1) 
a single task for the left-hand, (2) a single task 
for the right-hand, and (3) left- and right-hand 
tasks together. 

Average decision error score was 0.110 for the 
one-task situation and 0.130 for the two-task 
situation. The difference between these scores 
was found by a t-test to be significant at the 0.001 
level. 

If our model for interference is valid in this 
decision context, then the average increment in 
decision score should correspond to a doubling of 
the subject’s noise/signal ratio. (That is, the 
subject devotes an average of half his attention 
to each task.) In  order to obtain a theoretical 
prediction for the two-task decision error, we 
refer to the theoretical curve relating decision 
error to noise/signal ratio. From this curve we 
associate a noise/signal ratio of -20.8 dB with 
the average one-task score of 0.110. Taking this 
point as a reference, we derive the curve shown in 
figure 6 which relates the predicted increment in 
decision error to increments in noise/signal ratio 
(alternatively, to decrements in “attention”). 

The increments in decision error and inferred 
noise/signal ratio that we obtained experimen- 
tally are shown in figure 6 for comparison with 
the theoretical curve. The range of decision error 
and noise/signal ratio corresponding to f 1 esti- 
mated standard deviation are also indicated. The 
increase of 0.020 in decision errors score that we 
measured corresponds to an increment of 3.3 dB 
in the inferred noise/signal ratio. This increase is 
within one standard deviation of the 3 dB incre- 
ment predicted by our model for task interference. 
Similarly, the assumption of a 3 dB increment in 
noise/signal ratio leads to a predicted increase in 
error score of 0.018. A t-test of the average two- 
task, one-task difference scores shows that this 
prediction is not significantly different from the 
measured increase of 0.020. On the basis of this 
very good agreement between theory and experi- 
ment, we conclude tentatively that our model for 
task interference is applicable to the type of 
decision task explored in this study. 

Simultaneous Control and Decision-Making 

The third and final experiment was conducted 
to determine the extent to which the model would 
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FIGURE 6.-Effect of attention on decision error score, 
task A (four subjects, three trials/subject). 

account for interference between a decision task 
and a continuous control task performed con- 
currently. The decision task employed in this 
experiment was of type A as described above; the 
tracking task was a conventional K/s  (i.e., veloc- 
ity control) compensatory tracking task of the 
type used in previous studies (refs. 5 and 8 
through 10). The display format shown in figure 1 
was used, with the decision variable displayed on 
the left and the tracking error displayed on the 
right. The experimental procedure was similar to 
that employed in the previous experiment. 

The subjects’ instructions were to minimize 
decision error (DE) when performing the decision 
task alone, to minimize mean-squared tracking 
error (ce2) when performing the tracking task 
alone, and to minimize a weighted sum of decision 
and tracking errors when performing the two 
tasks concurrently. The total performance mea- 
sure for the two-task situation was J =‘ue2+3*DE. 
This combination of decision and tracking errors 
was selected on the basis of pre-experimental 
analysis in an attempt to have decision and track- 
ing performance scores contribute roughly equally 
to the total score. 

Each subject yielded higher (worse) perfor- 
mance scores in the two-task situation than in the 
one-task situation. This was true not only for the 
total performance measure but also for the com- 
ponent scores as well. The magnitude of these 
differences, however, varied widely from subject- 
to-subject. The fractional increase in total score 
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ranged from about 5 percent for one subject to 
about 45 percent for another subject. For reasons 
which are detailed in reference 1, the data from 
these two subjects were considered unreliable and 
were not subjected to further analysis. The re- 
maining two subjects exhibited an increase of 
about 15 percent in total score; these results were 
used to test the model for interference. 

The procedure for testing the model for inter- 
ference was similar to that used in the preceding 
experiment. Theoretical curves of decision error 
versus noise/signal ratio and mean-squared track- 
ing error versus noise/signal ratio were used to 
determine the noise/signal ratios that corre- 
sponded to single-task performance. Additional 
parameters of the model for manual control 
(time-delay, motor noise ratio, and lag time 
constant) were chosen partly on the basis of 
previous experience and partly to provide a good 
match to the mean-squared error-rate and con- 
trol scores. Using the rules set forth in equations 
(3) and (4), we then obtained theoretical curves 
for total- and component-task performance as a 
function of attention. 

Figure 7 shows the predicted two-task per- 
formance scores for combined decision and track- 
ing for two subjects. Total performance, tracking 
error, and weighted decision error scores are 
shown as a function of the fraction of attention 
paid to the tracking task. We see from this figure 
that optimal performance (Le., minimum total 
score) for each subject corresponds to a nearly 
equal division of attention to the decision and 
tracking tasks. We note, however, that total score 
is relatively insensitive to attention in the vicinity 
of this theoretical optimum. 

Superimposed on the theoretical curves in 
figure 7 are the theoretical two-task performance 
scores which correspond to no interference and 
to full interference. Also shown are the two-task 
scores that were obtained experimentally. The 
“no interference” theoretical scores are simply 
the scores obtained in the one-task experiments. 
(The no-interference total score is the weighted 
sum of the one-task tracking and decision error 
scores.) The “full interference” scores are the ones 
predicted by our model for task interference. 
These scores are obtained from the theoretical 
curves of figure 7 for a 50 percent allocation of 
attention to the tracking task, (which is the 

allocation of attention that yields the lowest 
predicted total score). 

Both subjects achieved two-task total scores 
that fell between the theoretical scores associated 
with no interference and with full interference. 
Thus, the mutual interference between the track- 
ing and decision tasks was not as severe as that 
predicted by the model. 

Since we have reliable results from only two 
subjects, we cannot claim with a high degree of 
assurance that our model for interference either 
does or does not apply to the combined decision 
and control situation. There is little question that 
interference does occur: all four subjects yielded 
higher total and component scores in the two-task 
situation. The degree of interference remains in 
question. Accordingly, we must conclude at this 
stage that the model which we have proposed for 
combined decision-making and control shows 
promise, and that a conclusive set of experiments 
remains to be conducted. 

DISCUSSION OF RESULTS 

Experimental results agreed very closely with 
predicted performance scores in situations in- 
volving decision-making only. Using fixed values 
for human time delay and noise/signal ratio, we 
were able to predict both one-task and two-task 
decision error scores to within an accuracy of 
about 10 percent. Agreement was less good for 
the simultaneous decision and control situation, 
with prediction errors on the order of 15 percent. 

Although the differences between theory and 
experiment are relatively small, they cannot be 
attributed entirely to “experimental variability.” 
We consider briefly certain methodological prob- 
lems associated with the decision task that may 
account for some of these differences, and we 
suggest refinements which might improve the 
predictive accuracy of the model. 

Methodological Considerations 

Perhaps the most serious drawback of the deci- 
sion task which we explored-at least with respect 
to testing our model-was the relative insensi- 
tivity of decision error to the human’s noise/ 
signal ratio. This insensitivity may be largely 
responsible for the wide range of noise/signal 
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FIGURE ?'.-Effect of division of attention on decision, 
tracking, and total performance scores. 

ratios needed to match all single-task decision 
scores perfectly (fig. 5) .  

We have found in previous studies of manual 
control that, subjects will operate at an unusually 
low noise/signal level if, by so doing, they can 
substantially reduce their mean-squared tracking 
error scores (ref. 5) .  By the same token, we would 
expect subjects to operate at higher than usual 
levels of noise/signal ratio if task performance is 
particularly insensitive to noise/signal. From 
figure 3 we observe that a doubling of the noise/ 
signal ratio from -20 dB to - 17 dB theoretically 
produces only about a 5 percent increase in the 
decision error for task D. The same increase in 
noise/signal ratio accounts for a 17 percent 
increase in score for decision task A and a 44 
percent increase in mean-squared error for the 
tracking task considered in this study. Thus, it is 
entirely possible that the subjects were insuffi- 
ciently motivated to maintain a -20 dB noise/ 
signal ratio when performing task D. 

We suspect that the inability to obtain reliable, 
conclusive data in the experiment on simul- 
taneous decision and control was also due, in part, 

to a relative insensitivity of performance score to 
noise/signal ratio. Note that we can predict the 
total-task performance score to within 15 percent 
with either the full-interference or no-interference 
concept incorporated into the model. In  order to 
obtain a more conclusive set of results, a decision 
task should be explored which is more sensitive to 
pilot parameters. 

The subjects may have encountered difficulty 
in learning the strategies appropriate to the 
various decision tasks because of inadequate 
knowledge of results during the training period. 
The only knowledge of performance given to the 
subject was the decision error score that was given 
him at the end of each trial. Thus, if a subject 
were to try various estimation strategies during 
the course of a single trial, he would not know 
which strategy was best. Various methods of 
presenting relatively instantaneous knowledge of 
performance were considered, but these ideas 
were rejected because of the high probability 
that the subject would learn to respond to the 
performance indicator and not t o  the signal on 
the primary display. To some extent, then, the 
relatively large noise/signal ratio inferred for 
decision task D may reflect an inappropriate 
estimation strategy on the part of the subject. 

Refinements to the Model 

The first problem discussed above suggests one 
obvious refinement to the model; namely, that 
the sensitivity of performance to noise/signal 
ratio be taken into account. The rules for selecting 
observation noise levels might be modified to 
show the noise/signal ratio as an explicit function 
of this sensitivity. There is enough experimental 
evidence to indicate that this is a reasonable idea, 
although further study would be needed in order 
to determine with any degree of precision what 
this function should be. A model refinement of 
this sort would improve the predictive accuracy 
of models for manual control as well as for 
decision-making. 

Another possible model refinement is to con- 
sider the power density level of the observation 
noise as a time-varying quantity which scales 
with the instantaneous magnitude of the observed 
signal. Such a treatment would be consistent 
with our assumption that human randomness 
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stems from underlying multiplicative noise 
sources (ref. 1). 

The treatment of observation noise as a time- 
stationary process is a mathematical convenience 
that has apparently worked very well for model- 
ling manual control behavior, but one which 
might introduce non-negligible modelling error 
in the decision situation. Note that the relation 
between the magnitude of the estimation error 
and the instantaneous value of the “signal” s ( t )  
determines the effect that a given amount of 
estimation error has on decision performance. 
For example, if the signal is two target widths 
beyond the target boundary, the subject will 
make the correct decision even if the error in his 
estimate of the signal position is relatively large. 
On the other hand, relatively small estimation 
errors may cause an incorrect decision if the 
signal is very close to one of the target boundaries. 
A more accurate modelling procedure would take 
account of the relation between the instantaneous 
signal value and the variance of the accompanying 
estimation error. 
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