
,)
. . ~

i/": '. "-.
I' \"

"', " \
\1', ,

J ~ .J

OF A MU.LTIPUOCEs.s,O!fr;{

J.S. Miller, et II
Sep. 1972 474 P CSCL

098 G3/08

(/

(NASA-CR-1281601) ENGINEERING STUDY FOR
THE FUNCTIONAL DESIGN
SYSTEM Final Report
(Intermetrics, Inc.)

N73-10235j'

Unclas
45209

Reproduced by

NATlONAl TECHNICAL)
INFORMATlON SERVICE

US Department of Cammer
Springfield VA 22151 Ce ,

DD.DD .
DD
U1TERmETRICS

Final Report

ENGINEERING STUDY FOR THE

FUNCTIONAL DESIGN OF A

MULTIPROCESSOR SYSTEM

by:
~~<;

James S. Miller, Woodrow H. Vandever,
Saul F. Stanten, Arra E. Avakian, Alex L. Kosmala

September 1972

Prepared under contract NAS9-11745 by:

Intermetrics, Inc.
701 Concord Avenue
Cambridge, Massachusetts 02138

Intermetrics Technical Report #14-72

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

FOREWORD

This document is the Final Report of an engineering
study for the functional design of a multiprocessor computer
system to provide the computational capability of the Data
Management System for a Space Station. The study was spon
sored by the NASA Manned Spacecraft Center, Houston, Texas,
under Contract NAS 9-11745. It was performed by Intermetrics,
Inc., Cambridge, Massachusetts, over the period May 1971 to
August 1972, under the direction of Dr. James S. Miller and
Alex L. Kosmala. The Technical Monitor for the Manned Space
craft Center was Mr. James P. Ledet. 'f'0;[P t-k-'O\S

Publication of this report does not constitute
approval by NASA of the findings or conclusions contained
therein.

((

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ACKNOWLEDGEMENTS

The authors wish to acknowledge the strong influence
of the Burroughs B6700 computer design on the multiproces
sor architecture described in this report. In addition to
the references cited from the open literature, the Bur
roughs Corporation has generously supplied additional in
formation and consultation. We particularly thank
Mr. H. Norton Riley for his help.

Our special gratitude is extended to Miss Kester D.
Whitney for her endurance in typing the many drafts of
this report, and for drawing all the figures and flow
charts.

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1.0

2.0

TABLE OF CONTENTS

OBJECTIVES AND SUMMARY

1.1 Introduction
1.2 Multiprocessor Efficiency
1.3 System Reliability
1.4 Summary of Results

INSTRUCTION ARCHITECTURE

1

1
2
7

12

21

2.1 Design Rationale and Method for a HOLM 21
2.2 Instruction Functions 50
2.3 MP Instruction Design Factors 63
2.4 MP Instruction Architecture 88

3.0

4.0

!'

MULTIPROCESSOR OPERATING SYSTEMS

3.1 Introduction
3.2 The Process State Controller
3.3 Interrupt Handling
3.4 Memory Management
3.5 I/O Management
3.6 Timing and Synchronization
3.7 Fault Recovery Methodology

FAULT TOLERANT ASPECTS OF THE MULTIPROCESSOR

157

157
163
191
207
251
271
309

,317

4.1 General Philosophy and Requirements 317
4.2 Major Phases of Fault Tolerant Operation 319
4.3 Error Detection 323
4.4 Recovery 338

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

TABLE OF CONTENTS

(continued)

5.0 IMPLEMENTATIONAL ASPECTS

5.1 Design of Multiprocessor Components
5.2 System Performance
5.3 Laboratory Model

385

385
449
454

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1.0

OBJECTIVES AND SUMMARY

1.1 Introduction

The major requirement of this study was to generate a
functional system design of a multiprocessing computer system
capable of satisfying the computational needs of the Data Manage
ment System of a Space Station. These were specified to
include:

a) Real time control.

b) Data processing and storage.

c) Data retrieval.

d) Remote terminal servicing.

In accordance with the expected long lived nature of an opera
tional space station, the computer was required, in addition to
possessing the necessary processing capability, to be sufficiently
fault-tolerant to permit uninterrupted control of Space Station
activities, and to be easily expandable in performance and capa
bilities to provide adequate support for a planned program of
Space Station development.

The multiprocessor computer configuration appears to be
an attractive candidate for this application, since it has the
greatest potential for achieving solutions to these requirements.
However, the several attempts to realize operational MP systems
have, to date, been plagued with the problem of high executive
overhead which has prevented the actual performance from attain
ing its anticipated potential. A major objective of the study
has been to examine the cause and effect of high executive
activity in a MP system, and to investigate ways of alleviating
processing bottlenecks by judicious tradeoffs between the soft
ware and hardware implementations of critical executive func
tions.

A second major objective of the effort has been to en
sure a high degree of reliability in the operation of the MP
computer system. This objective was considered in a very broad
sense: the study was purposely not confined to just achieving

-1-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

\

a computer configuration which could provide a very high expec
tation of continued operations in the event of a hardware fail
ure. It also addressed itself to the question of the reliability
of the necessary operational software. This latter considera- .
tion prompted an early assumption that only a modern, structured
high order language (HOL) would be used in all application pro
gramming for the MP. This assumption led to the feasibility of
optimal trade offs of diagnostic and checking functior.s between
the operating system and the compiler. It also led to the major
decision to investigate the advantages of executing the state
ments of an HOL directly, rather than as the output of a com
piler tailored to a more conventional machine instruction archi
tecture. The study was required to establish a multiprocessor
computer configuration of hardware modules, which were to be
specified to the functional level, with interface definitions.
Whenever possible the use of available off-the-shelf equipment
was to be specified.

The next two sections of this chapter will present in
some detail the background and motivation for the achievement
during the course of this study of the above objectives. The
chapter closes with a brief summary of the remainder of the re
port.

1.2 Multiprocessor Efficiency

The development of executive and operating systems has
pursued two, primarily different, goals. One has been to raise
the level of the user interface: to remove the necessity for
an application programmer to become familiar with the exact
meChanization of, for example, the I/O; to enable the applica
tion programmer to specify his problem in a problem oriented
way, e.g., via a HOL, or utility routines. This line of deve
lopment has established a methodological approach to total
system design, with an orientation towards the user's needs.
The second goal has been to obtain efficiency in the use of such
system resources as, for example, I/O devices, channels, opera
ting memory, and most importantly, the processor(s). While the
gain that can be realized by allowing the competing activi-
ties in the system to mutually share the system's resources
seems very attractive, a new set of problems is introduced by
this concept.

The question of efficiency is very nebulous, since its
quantization depends heavily upon the level of computer opera
tion being examined. For example, at one extreme it is possible
to consider as a measure of efficiency the percentage of time
that the computer is "in use". At a lower level it is possible

-2-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

to consider the percentage of time that the processor, (or an
independently addressed memory module, or an I/O unit, or the
internal bus) is in actual "use". At an even lower level, it
might be the percentage of time the different logic elements
(registers, combinational circuits, or even individual gates)
are in use. With the first definition, almost any computer in
a busy, 24 hour per day facility could merit a 100% efficiency
rating. At the lowest level, any computer system would have
a low efficiency rating, since few gates are ever acting simu
lantaneously. It is at the inbetween level of definition (the
processor, memory, and bus level of the system), which is the
preserve of the operating system, that most attempts to increase
efficiency are made. The historical development of executive
systems with regard to efficiency can be viewed as the pursuit
of maximum time utilization of the elements of the network of
processors, memory, I/O and their interconnections, to realize an
overall effective increase in computational throughput.

Very early computers were in general I/O bound. The
"processor" was idle most of the time, while the I/O was exe
cuting continuously. Since most I/O devices were time inde
pendent of the processor, double bUffering techniques were
developed to allow I/O access to memory in parallel with the
processor. This then is concurrent processing; two (or more)
active elements are in "use" simultaneously. The early execu
tive systems were principally concerned with the I/O area. Not
only did it make I/O handling easier for the user, but the con
currency in the I/O area increased "efficiency".

If a job is so I/O bound that a significant fraction of
time elapses before the processor is used again, the next logi
cal development would be to allow another job to use the pro
cessor in the meantime. The concept of multiprogramming is
built upon the desire for more efficiency. Given a particular
configuration, the hope is that by the device of multiprogram
ming, more computational power can be obtained at the expense
of only a little added overhead. The two concepts of multi
plexing (i.e., the sharing of system resources), and the con
current execution by active elements, are fundamental to the
understanding of executive and operating systems. The price
of multiplexing is the overhead needed for its control. This
overhead is felt both in execution time and in memory space.

Concurrency is the basis for gain in efficiency. How
to encourage concurrency, and how to take advantage of it is
the basic problem of the multiprocessor designer. Potential
parallelism may exist at several different levels:

a) Jobs run on a computer system are generally completely
independent of each other, even if they share resources.

-3-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

b) Within a given job, there may be a structure of inde
pendent tasks, which if executed in parallel, could
improve the total throughput.

c) Within a routine most statements are independent of each
other.

d) Within a single arithmetic statement some computations
can be done in parallel.

The price to be paid at each of these levels of potential
parallelism to create concurrency are the penalties associated
with resource sharing and the synchronization of the independent
activities into a whole. The greatest potential for concurrency
is at the lower levels of parallelism, but here the overhead of
synchronization rises sharply.

These different levels of potential parallelism are of
degree rather than kind. From the execution point of view
they represent similar characteristics, differing only in the
frequency of their occurrence. Most multiprocessing systems
to date process independent jobs, or inde-
pendent parts of a job. However, just as concurrency is found
at different levels, so different computer architectures have
been implemented exploiting varying degrees of concurrency.
The CDC 6600 has several execution elements working on the same
instruction stream simultaneously, while the IBM 360/91 pipe
lines an instruction stream in order to improve efficiency.
A multi-computer configuration is generally defined as a mul
tiple processor in which each computer has its own operating
memory but shares secondary memory. Multiprocessors proper
are generally differentiated from multicomputers by the sharing
of operating memory. A multiprocessor represents a complica
tion over a single processor by the introduction of new active
elements which must have the capability of sharing all the sys
tem resources. Since memory is the outstanding contributor
to the cost of the hardware in most computer systems, much work
has been done in the area of its efficient use. The multiplex-
ing of memory for both multiprocessing and for virtual memory, to
increase the apparent size of memory, has resulted' in_.the concepts
of paging, segmentation, and the use of "cache" memories. The addi
tional processing and memory space for executive functions required
to control the multiplexing of memory have usually been offset by
the gains in throughput for a given system cost.

The use of multiprocessors has been proposed for a
number of reasons:

a) reliability and graceful degradation,

-4-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

b) modularization with the ability to incrementally add
computational power to meet an expansion of processing
requirements,

c) to achieve computational power not possible 'with one
processor.

The problem of reliability and graceful degradation is not
simply a matter of providing multiple copies of all computer
elements. The jobs which are critical can never demand more
computational power than the degraded state will allow. There
fore, the computational power of any extra processors can only
be used by non-critical jobs. The total mission program,
therefore, cannot be allowed to make full reliable use of the
potential computational power.

There are several reasons why the addition of an extra
processor does not add an extra unit of computational power:

a) Two systems, one comprised of a single processor with a unit
computation time of T, and the other of n processors
each with unit computation time of Tin, are not, in
general, of equivalent computational power. Even if
the overhead of resource allocation and synchroniza-
tion in the n processor case is ignored, the n(T/n)
processing power will be less than the single T, if ever
a situation occurs in which fewer than n processors are
executing. Once the number of processors in use has
fallen below n, some computation power has been lost,
and being measured in time, it can never be made up
again.

b) The introduction of multiple processors also introduces
a new resource which must be manipulated, namely pro
cessors. This entails the creation of a data structure
for the management of the processors, and requires time
to execute the actual allocation of this resource.
Since there is now the possibility of truly concurrent
process execution, synchronization of the various pro
cessors during allocation also becomes a time overhead.

c) When unique system data has to be accessed by concur
rent processes, the problem becomes more difficult
than in the simple mUltiprogramming case. Both the
use of Compools and of system data must be carefully
managed to prevent erroneous conditions arising from
incomplete changes in the data base. The use of the
LOCK mechanism commonly provided for this function,
creates an intentional bottleneck, and hence incurs a
loss of computation by the locked-out processor(s).

-5-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

d} with the introduction of multiple processors, conflict
over operating memory arises, resulting again in one
or more of the processors losing some computational
power. If the number of separately addressable memory
modules is held constant while the number of proces
sors increases, the conflict becomes worse than simply
additive, since queues begin to develop. Interleaving
is generally used in an attempt to minimize conflict
by randomizing memory module usage, and thus obtaining
stationary behavior. But since memory conflictc~n

be a major problem, allocation policies to separate
memory usage for the different processors are often
developed. This, of course, represents another over
head function which degrades the computation power of
the multiprocessor system as compared to a single pro
cessor.

e} The use of a "cache" memory with a single processor
has been found to yield (an apparent) fast response
from a relatively slow operating memory. In a multi
processor system, the use of a cache becomes much less
advantageous, because:

I} If a copy of shared data in the cache is updated,
the same information must be written through to
main memory because other processors must have
access to it.

2} Similarly, if shared data is written into, all
the other cache memories must'be informed of the
event in order to invalidate the old value.

3} In the single processor system a cache increases
the actual percentage of bus traffic. In a mul
tiprocessor system this increases in bus traffic
causes conflict, which again ,is subject to the
worsening effect of queues as the number of pro
cessors increases.

f} If a form,of virtual memory system is specified, a
problem occurs bet~een main and secondary storage
which is analogous to that between a cache and main
memory with regard to bus traffic. The larger the
number of procesosrs in concurrent execution, the
more often a page fault occurs and the more conflict
over secondary to main memory traffic. Also, the
policy controlling the use of main memory becomes
complicated if it is designed to minimize such con
flict. It is instructive to remember that it is the
simple and less elegant solution to a resource mana
gement problem that is usually the better, since the

-6-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

overhead for the elegant solution can easily offset
its savings.

g) The policy of interrupt handling is highlighted in
a multiprocessor environment. The question as to
which processor handles non-process oriented inter
rupts must be decided.

The above problems of a multiprocessing environment
show that the overhead involved is not in general additive,
i.e., it does not increase linearly with the number of pro
cessors. Since these are basically queing problems, when con
flict occurs it tends to increase the probability of further
conflict, and this non-linear behavior becomes more marked as
the number of processors is increased. It is very difficult
to establish, in the general case, an upper limit to the num
ber of processors which can cost effectively be justified to
achieve an increased throughput. The behavior of the elements
of a multiprocessor and the characteristics of their interactions
with each other depend very strongly on the nature of the pro
cessing load. Only a specific implementation under known con
ditions can yield this information, and this was clearly not
within the scope of the present study. Except for highly spe
cialized applications, implementations of multiprocessors to
date have not exceeded four or five processors. For the
purpose of the effort to be described in this report, a minimum
of three computational processors and one I/O processor was
chosen as the basis of the multiprocessor design.

1.3

1. 3.1

System Reliability

Introduction

The concept of system reliability involves the various
properties which combine to assure that a program may be run
with a very high degree of confidence that it will perform suc
cessfully (provided, of course, that the program itself is
error-free). The corollary must be also true: no program,
even one with errors, should be capable of disrupting others.
While the logical design of the hardware is presumed to be
error free, failures of components or connections must be
detected before damage results, and the capability to circum
vent such faults must be provided.

There are four specific areas in which the hardware/
operating system designer must pursue system reliability:

a) Elimination of errors in hardware design

-7-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

b) Elimination of errors in software

c) Detection of and recovery from hardware faults

d) Detection and containment of manifested software faults

Category a) should be self-explanatory. The programmers
of a system have a difficult enough time of it without having
to worry, for example, about the possibility that an addition
operation with certain operands may give the wrong result.
While the problem of ensuring a correct hardware design has a
fundamental resemblance to its software counterpart, it is more
limited, and lends itself well to systematic design and testing.

Because so very much software is written for a given
machine, the possibilities for error are high, and the resource
of time and money available to check software, on a per func
tion basis, is drastically lower than that for hardware. Be
cause there is currently no means to prove software to be error
free with an adequately high confidence, software difficulties
have been raised to the topmost level of importance in almost
every application of computers to problems. The fundamental
solution appears to lie not in providing better testing and
debugging aids, but rather in the improvement of languages and
programming techniques to make the occurrence errors much
less likely, and to make the detection of the remainder more
inevi table.

In the design resulting from this study, the problem has
been attacked by providing an environment in which high-order
language is the only means of programming; the use of "smart"
compilers is then tantamount to a tireless validation proces
sor. Only the limitations in thoroughness of the compilers
themselves, which can be incrementally improved during their
life times, allow flaws to remain undetected. By supporting
comprehensive validation with hardware capabilities provided
explicitly for the purpose, 'the system efficiency has been
kept high, even with the extra functional workload imposed.

The detection of hardware failures cannot reasonably
be placed into any other domain than that of the hardware it
self. First, because of the variety of ways in which a single
failure can manifest itself and second, because of the logical
difficulty of using the suspect operations of the machine it
self for diagnosis. The current design relies heavily on the
provision of hardware dedicated expressly to concurrent error
detection. Viewing the problem in terms of Dijkstra's concepts
of structured programming, the hierarchy of abstract machines
is distorted if, at the bottom level, the hardware itself
cannot be relied upon to obtain repeatable results. Thus, the

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

hardware-level abstraction has been regarded as yielding,only
two outcomes for each operation: the correct result, or an
error indication. This is not to say that the recovery problem
is insignificant, but at least the problem can be constrained
into a relationship between the hardware and a bounded recovery
software package; this is a vast improvement over the situation
where each application program must operate in fear (or ignor
ance) of the bad things which may happen to it, and is required
to provide such survival aids as it can.

The fourth area of design for reliability, detection and
containment of manifested software faults, arises only when pre
vious prevention attempts have failed. Yet this problem will
inevitably remain a key focus for system designers, because the
consequences of such faults remain so severe, even though their
likelihood has been decreased by application of the previously
described concepts. Again, this is where the combination of
special hardware features and a high order language implementa
tion can be of great value. It is the route chosen for this
multiprocessor design, and some of the consequences are sum
marized below.

1. 3.2 Software Faults and Reliability

In this section, the key types of software faults are
reviewed, and the system design features incorporated to counter
them are described.

1.3.2.1 Bounds Violations: Attempts of processes to read or
write inappropriate locations in their address spaces have long
been a source of serious operational problems. Although some
high-level languages, such as FORTRAN, tacitly or expressly
foster such a programming style, it is well within the grasp
of high-level language implementations to limit this behavior.
The bounds violations which may occur include:

a) invalid array indexing (index value does not select a
member of the named array)

b) addressing program code instead of data, and vice
versa

c) addressing a value not described by the name-component
of the address

d) erroneous program branches (entry at other than entry
points, indexed branches with bad index, etc.)

e) I/O operations which read or write beyond the correct
area of memory.

-8-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The adoption of addressing via descriptors provides
the means for efficient validation of indexing which comple
ments the name validation performed by the compilers. Thus,
the validity of accesses to named operands is checked at
compile-time: that a selected part of an operand array is truly
a subset of that array is ensured at execution time. The
explicit manipulation of indexing registers by programs whose
intention is not stated, and whose validity cannot therefore be
checked, is completely avoided.

1.3.2.2 Operand Checking: The variety of applications per
formed in a computer of any size dictates that, for efficiency,
a number of different data types be supported in the hardware.
Although often implemented via software, it is desirable to
perform certain conversions between data types automatically.
If data types are inadvertently mixed, and if no detection-aid
is provided, invalid results may arise with no notification of
any kind. In the current system, both of these key capabilities
have been implemented in the hardware: automatic data-type
conversion, and signalling of inappropriate operands. This is
achieved by:

a) making different data-types have maximum familial re
semblence

b) including type-identification with operands

c) converting to single type, where possible, when operands
are brought to the stack prior to their participation in
arithmetic or logical operations.

While additional storage is required to denote operand
types, offsetting economies result from the elimination of ex
plicit conversion instructions, and the instruction repertoire
is simplified by the elimination of varieties of instructions
required to operate on varieties of data.

A different kind of data verification is performed
by software: validation of Compool versions. When a program
is compiled, its use of one or more Compools is signified by
directives in the source program. To prevent the logical chaos
which would result if the program in execution believed the
Compool structure to be different from that of the version
actually provided at execution time, a unique identifier is
associated with each revision of a Compool (and with every other
named segment or file as well). A program compiled with a Com
pool contains the id of the version utilized; when run-time
binding is performed between the physical Compool then present
and the requesting process, the version id is compared with
that of the present Compool, and an error is signalled if there
is disagreement.

-9-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

By these means, the desired relations between types and
templates may be explicitly enforced. This problem is thereby
removed from the province of management. While it is clearly
possible to achieve correct results via management practices
alone, the effort required and the consequences of failure can
be circumvented by the outlined method.

1.3.2.3 Process Execution: Software may be incapable of pro
ducing correct results if scheduled or executed under inappro
priate conditions. For instance, if a process is designed to
be performed once per second, but is executed more or less
often, its behavior may be unpredictable. Hence the system
design must reflect the importance of imposing space and time
budgets upon application software, and fulfilling the "con
tractual commitment" of making the budgeted amount available
even if errant processes are present.

The fundamental basis which has been adopted for sche
duling is priority. Three general categories are recognized:
of highest priority are the processes with real-time response
requirements and responsibilities; next are relatively short
execution-time processes related more loosely to real-time; and
finally, data-reduction and information management processes
of longer duration~ having almost no timing constraints. It is
anticipated that the high-priority real-time processes will
represent a small fraction of the computational load, so that
priority alone suffices to signify their urgency; if they
formed a larger fraction, interference among these processes
could be a significant factor.

At the next level, execution-times are longer, but
bounded. The lowest group has the least urgency, and tends
to contain processes with extended execution requirements.
The fulfillment of budget commitments is tailored to these
three levels; at the top, response is paramount, requiring
rigid enforcement of time-limits in order that inter-process
interference does not exceed expectation for any reason. Such
enforcement is provided through the use of a process timer
which is part of each processor. Used as an alarm Clock, this
timer may be set to the budgeted value .when a process is as
signed a processor, thereby signalling a violation if the
value runs out before the process terminates. This device
may also be used for time-slicing and accounting.

The management of storage among competing processes in
the current MP design is accomplished through a simple, general
purpose algorithm which implements virtual memory address space
by variable-size segment multiplexing. Primitive calls to
executive procedures enable segments needed by processes with real
time response constraints to be loaded into operating memory

-10-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 .

in advance of their need, to avoid fetch-delays. Language re
strictions normally prevent processes from using storage in
excess of predictable amounts. Protection against violations
in this area can be implemented in the operating system if
it proves necessary, although it presently does not seem to
be.

In both storage and execution-time budgeting, it is
clearly the responsibility of the managers of the software to
recognize the need of avoiding overloads, and to budget accor
dingly. No load-leveling functions are deliberately specified
in the current operating system design, since there is no
reason to believe that an algorithm can successfully adjudicate
load-clashes resulting from mis-management. While the system
does include watch-dog timing of such estimatable durations as
the maximum time to execute one instruction and the time
interval over which a process may inhibit interrupts, system
participation in the higher-level issues is inappropriate.
Only the tools for measuring and enforcement are provided.

At this point, the issue of "graceful degradation" must
be raised: one reason for adopting the multiprocessor organi
zation is because it can continue operation at a reduced per
formance level when a processor fails. The successful utiliza
tion of this property requires more than hardware and OS error
recovery procedures; as indicated in the previous section, the
application workload must be designed to function satisfac
torily under the reduced-performance conditions which may be
experienced. Flexibility in scheduling must be provided; the
rescheduling interval for a repetitive process must be cal
culated as a function of the number of processors, or the frac
tion of initial capacity surviving. Otherwise, the inter
process load clash referred to above is likely to result from
excessive demands on a partially-functioning system. The
management of dynamic memory multiplexing adapts itself
exceedingly well to incremental loss of memory capacity. Be
cause the memory management algorith~, under any conditions,
is a mechanization of the principle of keeping the most ac
tive segments in M2, loss of memory just tends to expel seg
ments somewhat sooner. While this can lead to thrashing if
overload is allowed, comparison of process storage estimates
with available capacity permits this condition to be sensed,
and relieved.

1.3.2.4 The Role of the Compiler: In addition to its primary
function of providing a source language in which programs may
be easily and lucidly expressed, the compiler plays a key .
part in the strategy for system dependability. First of all,
it forces certain programming conventions to be observed des
pite forgetfulness or contrary motivation from the programmer.

-11-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

It achieves this since the compiler designer may dictate pre
cisely how every operation in the source language is to be
mapped into the executable instruction level. Wherever it is
deemed desirable, additional code can be inserted into the ob
ject program, or system-routines may be called, to implement
checks of almost arbitrary variety. Because system managers
can be assured that certain checks are inexorably performed,
the associated problems dealing with undetected violations
are eliminated.

Not only is compiler-enforced checking beneficial to
security, but it has the added property that the OS/compiler
combination is always in effect: thus, checks which have been
performed at compile-time can be avoided at run-time, for in
creased efficiency.

Another aspect of high-order language programming is
that the compilers, and not the hardware, can be used to grant
selective access to files and even instructions in the machine.
Thus, the current system does not have a class of instructions
known as "priviledged"; instead, source programs are simply
denied the use of the language features that employ them.
For example, since it would be undesirable for an application
program to execute the instruction which assigns a processor
to another process, the compiler would never produce such an
instruction for an application program. The compiler is thus seen to
insure that permissible operations are performed only under specified
constraints, and that non-permissible operations are not performed
at all.

1.4 Summary of Report

.The remainder of this report has been organized into
four chapters, covering the Instruction Architecture, Operating
System Design, Fault Tolerant Design, and Hardware Implementa
tion Aspects. Before embarking on brief synopses of these
chapters, we present an overview of the basic multiprocessor
configuration that was chosen as the subject of development for
this study, and provide definitions of some of the more common
terms used throughout the report.

1. 4.1 Choice of Multiprocessor Configuration

The choice of a basic MP configuration for development
to the level of a functional specification was influenced by
a number of factors. Perhaps the most obvious initial deci
sions to be made in any MP design concern the number and char
acter of the processors.

-12-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

1.4.1.1 Number of Processors: In order to provide a maximum
degree of fault tolerance at the least cost of redundant hard
ware, it was decided to keep the amount of non-redundant spe
cial purpose processing hardware to a minimum. As a conse
quence the MP was specified to consist of a number of identi
cal, interchangeable processing elements which would execute
the major processing workload, and a single, more specialized
processor to handle I/O processing and a number of other uni
que functions. These functions include interrupt handling,
interprocessor communication control, and the central timer.
The executive was specified to be non-dedicated (to any given
processor), and its functions are performed by any of
the processors. The choice of which processor is made on
the basis of status (e.g., by having completed its current
assignment), or by reason of its greatest interruptability as
determined by the priority of its current process.

The maximum number of processors that the chosen MP should
consist of was left somewhat undetermined. It transpired that
at the level of design required of this study this information
was not of importance: at no stage in the design were deci-
sions made on the basis of "so many" processors. The generality
of an n-processor system was always maintained. A value for
"n" must eventually be selected in order to proceed to an im
plementational level, and this value will then place an upper
limit on the degree of expandability. The discussions of Chap
ters 4 and 5 concerning the hardware aspects of design required
the number of processors in the configuration to be established
in order to demonstrate certain design principles. For this
reason a basic MP configuration was chosen to consist of three
processors plus one I/O controller. This configuration was
chosen, since it represents the simplest which possesses com
pletely all the characteristics (and problems) of the n-proces
sor case. The two processor system which has received the
greatest amount of development and operational experience of
all configurations, represents a degenerate form of multipro
cessor: while certainly exhibiting true concurrency of pro
cesses, nevertheless the dual processor allows certain simpli
fications of executive functions to be made because of the
binary number of active elements in the system.

1.4.1.2 Internal Bus: The next most obvious aspect of a multi
processor configuration is the type of network interconnecting
the various modular elements. An initial study of multiproces
sor systems [1] had led to a proposal for a single multiplexed
data path as the internal bus. The apparent advantages of a
single bus were: an easy expandability for adding more ele
ments to the system (e.g., processors, memories, etc.) without
major electrical re-design, and as an adjunct in combatting

-13-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

conflict among the concurrent processes over access to the
systems' resources, by allowing only one communication at a
time. It was proposed to alleviate the performance required of
the bus by lowering the density of data traffic with the
use of cache memories local to each processor. Further examin
ation of this proposal showed the cache to be not effective in
lowering bus traffic [2]. Furthermore, it was estimated that
the behavior of a cache system when executing a HOL instruction
stream of much lower anticipated addressing locality than a
conventional architecture, would render the cache of even less
value to the MP.

The choice of bus was narrowed to either the cross
bar switch, or the dedicated bus with multiple ports into the
elements of the system. From an implementational point of
view, these two were shown to be of equivalent complexity and
parts count. The latter was chosen for its marginal advantage
over a cross-bar switch in providing for failure recovery.
These factors are fully discussed in Chapters 4 and 5.

1.4.1.3 Role of Secondary Storage: The MP design has been im
pacted, in both the hardware and software, by the strong effect
exerted by the choice of secondary storage technology. The
very concept of a memory system hierarchy stems from the in
ability of anyone known technology to meet the speed and
capacity requirements of a high-performance computer within
the physical constraints of size, weight, and power consump
tion imposed by a Space Station environment. The management
of information transfer between the levels of the hierarchy
constitutes a major activity in the multiprocessor, and care
ful design is necessary to prevent this function from domina
ting the computational resources of the computer. The current
design has, in response to the requirement for feasible imple
mentation with off-the-shelf equipment, chosen to specify the
established rotating magnetic drum or disk as the secondary
storage medium. Accordingly, the MP system has been designed
to accomodate the significant access delays experienced with
this kind of device, delays which have historically been the
motivation for the concept of multiprogramming, as discussed
in Section 1.3.2. Multiprogramming of the individual proces
sors has been adopted as a consequence of this decision, and
this has been another cause of executive inefficiency due to
the overhead associated with task switching. The adoption
of a technology such as the experimental solid state, ferro
acoustic, block oriented memory [3] may obviate the
necessity for multiprogramming as an expedient to higher
throughput, because of its inherent faster access response.
However, this and other technologies were eliminated due to
commercial unavailability.

-14-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1.4.1.4 MP Configuration: The resulting multiprocessor confi
guration which was adopted as a basis for the work reported in
the next four chapters is illustrated in Figure 1. The memory
terminology in the figure is used throughout the report, and is
defined as follows:

a) Ml: Local memory, dedicated to, and only for use by
a processor. This is a general term and refers
to all aspects of buffer, scratchpad, control
and associative memory, required by a processing
element. The contents of any Ml storage cell
are available only to the processor of which Ml
is an intimate component. Only in case of re
covery after a P and/or Ml failure are these con
tents made available to another processor. In
this MP design Ml is not, strictly, a member of
the memory hierarchy.

b) M2: Operating memory (main memory, or, in popular
terms, "core"). Since the discussions in this
report are fairly independent of memory techno
logy the terms M2 and M3 were coined in order to
refer unambiguously to the specific hierarchical
levels they represent. M2 consists of several
individual memory modules, all of which are acces
sible to all processors, including the I/O con
troller. Each access takes place via a data path
dedicated to each processing element, through a
port in each M2 module. The basic MP configura
tion, therefore, requires four ports per M2 module,
which, as described in Chapter 4, are actually
dually redundant to allow fault recovery. Each
module is fourway interleaved, for purposes of
speed, access conflict resolution, and fault re
covery.

c) M3: Secondary storage (backup or Mass Memory). In
this design M3 was not quite technology-independent,
as explained above. Being a conventional drum or
disk, it was decided to interface this level of
the memory hierarchy with the rest of the computer
system in the more conventional manner, via an
I/O channel. The use of M3 to implement the concept
of virtual memory then places the heaviest require
ment on the design of the I/O controller and the
I/O executive routines, as described in Chapter 3.

As mentioned earlier, several unique functions are gath
ered together into one, unique module, which is (for convenience)
termed the I/O controller (IOC). All interfaces to the outside

-15-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

P
IM

l
,

'
I

I
I
-

-
-

-
-

-

M
2

-

! I i • I "

M
2

M
2

I
'
I
I

I
I
I

-
-
-
-
-

I
'H

-I
I
J
-
+

+
-
-
-
-
-

P
IM

I

O
p

e
ra

ti
n

g
M

em
or

y

P
ro

c
e
ss

in
g

E
le

m
e
n

t

.-
--

.
P

IM
I

IP
C

B
.
~

I J

M
3

S
e
c
o

n
d

a
ry

S
to

ra
g

e
Q

o--
cs-

o

1/
0

C
on

tro
l,

-'

-II
In

te
rr

up
t

ha
nd

-
-

'--
~
-
-

le
r,

TI
M

ER
In

te
rn

al
Bu

s
,
,
-
~
~
.
.
.
.
.
.
.
.
.
-
-
~

r
;
-

-
l

i
~
.

I

I
Q

PE
R

A
-

I
Bu

s
TO

RJ
I

CO
NT

RO
L

I
CO

NS
OL

UN
liT

I
P

rl
nt

-
I

er
I

Ca
rd

i
I

Re
ad

er
'

D
a
ta

B
u

s
L

_-
1

I I-
-'

0
'\ I

L
ab

F
a
c
il

it
y

E
ig

u
re

1
:

M
U

L
T

IP
R

O
C

E
SS

O
R

B
A

S
IC

C
O

N
FI

G
U

R
A

T
IO

N

world are handled via the lOCi the current design can accommo
date a minimal laboratory set of peripherals, a high speed
avionics data bus, and the secondary storage device M3.

Communication between the processing elements of the MP
system (the pIS and IOC) is handled by a separate interproces
sor communication bus (IPCB), for reasons developed in Chapter 5.

(It should be emphasized that the basic configuration
of Figure 1 does not indicate the levels of redundancy specified
for fault detection and/or recovery. For these details, refer
to Chapter 4.)

1. 4.2 Summary of Report

The remainder of this report consists of four chapters
whose contents are now briefly summarized.

Chapter 2 - Instruction Architecture

The rationale and design methodology for the proposed
HOL instruction set are detailed. The inherent advantages
of the' use of HOL's at the application program level are ex
tended when the machine instruction design complements the HaL.
The suitability of a sequentially ordered HOL to the single
instruction, single data stream type of processor, and its in
herent compactness of expression is stressed. The ability of
a HOL to recognize higher level data types results in elimina
tion of type conversion overhead, and allows easy application
of dynamic checking for the validity of operator and operand.
The various functions of an instruction set are categorized
into Data Management (addressing, arithmetic manipulation,
logical operations, data field manipulations, name operations) ,
Flow Control, and System Functions (register manipulation,
stack control, the mUltiprocessor environment, interrupts and
I/O). The specific requirements of the proposed MP architec
ture are addressed: data types and widths, the size of address
fields and stack depths are established. Finally, the complete
instruction set is defined and described.

Chapter 3 - Multiprocessor Executive Design

The basic data structures recognized by the executive
are first defined. Then follows a description of the Process
State Controller concerning the allowable states and transitions
of processes, the activities which influence them, and the exe
cutive procedures which are invoked by those activities. This
is followed by a description of the interrupt structure, a
categorization of the interrupt conditions, and the proposed
techniques of interrupt response selection. A large proportion

-17-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

of Chapter 3 is devoted to the subject of Memory Management.
The technique of M2 multiplexing with variable size blocks
is described. M2 space is administered as "available" or
"in-use", and "in-use" space is further divided into "resi
dent" and "transient". The procedures designed to release,
find and make M2 space are described. The response to the
absent segment trap, and the special interface with the I/O
routines for segment transfers are described. Next follow
two sections which explain the handling of names and named en
tities: the topics covered are name scope, file directories
and the Compool structure. Then the functions of I/O are sum
marized, with details of the data structures and control pro
cedures required to manage the three types of I/O interfaces
to the outside world, namely the avionics data bus, the lab
oratory peripherals, and the disk (or drum). Next is a sec
tion describing timing, synchronization and the handling of
events. The chapter closes by describing the role of the exe
cutive in providing system recovery after the detection of a
failure in a major element of the system (i.e., processor,
memory or I/O controller).

Chapter 4: Fault Tolerant Aspects of the Multiprocessor

This chapter contains the assumptions, philosophy and
the proposed techniques for fault detection and recovery, from
a hardware implementational aspect. The basic goal is the in
stantaneous detection and containment of errors at the source,
by hardware, followed by a more leisurely recovery process
under the control of the operating system. Basically, this
chapter proposes dual redundancy with comparison for the de
tection of errors within a processor, address and word parity
with write verification for error detection in the memory, and
triple modular redundancy for the critical elements of the
single I/O controller. Techniques for the redundant storage
of variable data in M2 to enable system recovery in the event
of memory failure are described.

Chapter 5: Implementational Aspects

This chapter discusses the implementational aspects of
many of the functional level decisions that were described in
chapters 2 through 4. The internal structure of a processing
element is described with special regard to the mechanization
of the instruction set, the handling of the process stacks,
and the interprocessor communication bus. The internal struc
ture of an M2 module is described, including interleaving,
data redundancy, timing, and probability for access conflict.
Some assessment of overall system performance is given. Finally

-18-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

the problems of an actual implementation of the MP design are
reviewed. Several available computer components are evaluated,
and a compromise MP configuration utilizing building blocks
from the Burroughs Aerospace Multiprocessor (D-machine) is
described.

-19-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

References for Chapter 1

1) Miller, J.S., et. al., "Multiprocesosr Computer System
Study", Contract NAS9-9763, NASA/Intermetrics, Inc.,
March 1970.

2) Miller, J.S., "Probability Model for Memory Conflict",
Internal Memo #06-71, Contract NAS9-ll745, NASA/Inter
metrics, Inc., September 1971.

3) Kosmala, A.L., et. al., "Engineering Study for a Mass
Memory System", Contract NAS9-9763, NASA/Intermetrics,
Inc., August 1970.

-20-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

2.0

INSTRUCTION ARCHITECTURE

This chapter is composed of four sections. The first
three present the rationale and design methodology for an instruc
tion set oriented Loward executing more directly the statements
of higher order, problem-oriented programming languages. The
fourth presents a proposed set of instructions and data structures
for the subject multiprocessor.

2.1 Design Rationale and Method for a HOLM

The design of an instruction architecture for a higher
order language machine (HOLM) takes several steps which are
logically separable. Each of these steps will be discussed
in turn.

2.1.1 Desire for a HOL

The consideration of a HOLM presupposes the desirabi
lity of requiring programmers to write in a higher order language
(HOL). There is a standard set of arguments in favor of HOLs,
particularly for large systems projects and applications [1-3].
These include:

a) Ease of communcation

1) The program becomes self-documentin~whichreduces
the need for separate documentation at different
levels of management (e.g., mission description,
analytical equations, program description).

2) The ability to communicate allows the analyst who
develops the equations to program them. This avoids
the inter-personnel misunderstandings inherent be
tween groups of people of differing disciplines.

3) In any large project, a turnover of personnel must
be assumed, and maintainability becomes paramount.
Not only must different people be able to maintain
the program, but they must also be able to easily
redesign whole sections as necessary.

-21-

INTfRMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

b) The HOL is chosen because it is oriented to the problem
being solved, resulting in:

1) Fewer errors due to conceptual difficulties and the
interaction of different ways of stating a problem.

2) Shortened programming time.

c) The programmer becomes less concerned with the follow
ing common machine features and problems:

1) Scaling and precision.

2) Base register allocations.

3) General register considerations.

4) Initialization problems, particularly in loops.

d)

2.1.2

The time required to learn the language and the experience
required of the programmers is minimized. Transferabi
lity, ease of debugging, ease of checkout due to problem
oriented modularity and separation from hardware pro
blems are all improved.

Desire to Execute the HOL Efficiently

Efficiency in a computer is measured in terms of time
and space. The time of execution or the memory space needed
in executing a HOL must not exceed that of the equivalent ma
chine oriented language machine.

There are two different aspects to be considered: com
pile time and run time. Given a particular machine and a set
of user programs, it is the compiler designer who decides to
what degree the compiler should try to optimize the user's code
for either space or time. Of course, the optimization of run
time would cause a corresponding increase in compiler time and
compiler memory space.

If, however, we consider two different machines, a HOLM
and a MOLM, then the job of compilation on the HOLM is equiva
lent to assembling on the MOLM. The difference between the
compiler and any other user program becomes negligible since the
problem of optimizing the translation from HOL to MOL is elimi
nated (Figure 2.1-1). We therefore need concern ourselves more
with how to save space and time in execution than with the com
pilation process.

-22-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

HOL

Algorithm

---._-

Translate

HOL -) MOL

MOL

MOL

HOLM MOLM

.--

Answer

Figure 2.1-1: Translation Steps from Problem to Machine

-23-

,r':iH::r',,1t:Tf,ll~S INCORPORATED· 380 GREEN STREET· CAMBR'IDGE, MASSACHUSETTS 02139· (617) 86(j-lo:jl,j

st('r"qn
Unit

l__
Figure 2.1-2: SISD Organization

Instruction
stream

storc}]c
Unit

Instruction
Decode
Unit

'----r

Data ~ ExeCU,lion__stre~___ Unit

I I __I

· •· ,
• •

Data
I

Executi~Stream Unit,-- -----
N N

Examples of SIMD: ILLIAC IV
Goodyear Array Processor
Bell LDb .PEPE

Figure 2.1-3: SIMD Organ~zation

-24-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRiDGE, MASSACHUSETTS 02138 • (617) 661-1840

Most studies which compare a HOL and MOL require the
HOL to be translated into the MOL for execution. This, of
course, leads to the inefficient coding for the HOL and there
fore increases its memory space and execution time over program
ming in the MOL directly. However, having postulated the ex
ecution of the HOL without this translation, the method of
time and space comparison must be made between two different
machines: a MOLM and a HOLM. These must be programmed with
the same algorithm (program) in their respective languages.
Unfortunately, this type of comparison has not been made on a
large scale, and it is not clear, given the current set of
machines in existence with their different timings, memory
resources, and other variables, that it could be made meaning
fully.

2.1. 3 Machine Constraints

Current general computers perform basically a single
instruction stream execution of a single data stream (SISD) [5].
Other forms of computers, such as single instruction stream
execution of multiple data streams (SIMD) have been developed.
These SIMD include the ILLIAC IV, the Goodyear Associative
processor and the Bell Laboratories PEPE [6-8]. SIMD is ori
ented towards a particular type of problem (e.g., radar signal
processing) that is not commonly found in most scientific or
commercial applications.

In SISD types of machines various hardware mechanisms
have been implemented with some form of local reorganization
to obtain instruction execution overlap [9]. These methods
are limited in their scope by the presence of branching. Such
optimization by the hardware is independent of the form of
language, and can be considered whenever instructions possess
ing potential parallelism are presented in a sequential manner.
If one were to postulate a certain degree and type of paral
elism, then of course, the instructions generated could be
optimized before hardware execution. This is in fact done in
Sugimoto's PL/I direct processor [10], where parallelism is
flagged by the compiler. The hardware then is easily able to
take advantage of the inherent parallelism. (Executing beyond
a conditional branch is of course limited by the sophistication
of the hardware. It is not a static parallelism, but a dyna
mic, time varying one.)

This leads us to consider a processor that would be
able to execute HOL arithmetic statements in parallel. Given
an arithmetic statement such as:

A = (B+C)M + 38 D;

-25-

INrERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

it would be able to execute it as a tree structure, as shown
in Figure 2.1-4. The actual implementation of such a machine
would be, of course, complicated and in general building com
plicated hardware to take advantage of this would not be cost
effective. Examples can be constructed which sequentially
take time N to execute, yet in parallel would take only log2N*.
These are not very common in practice.

If an execution unit were distributive, as in the CDC
6600 [27], then the possibility of executing in parallel be
comes more attractive. If the parallelism is across statement
borders, the limited parallelism mentioned above is of course
increased. Chen [28,29] has proposed even crossing program
boundaries to obtain parallelism.

When we talk of sequential machines we should note that
not only is the execution of a single stream implied, but also
a particular ordering is given to the instructions. Different
orderings can be conceived. It is usually implicit when speak
ing of instruction ordering to treat it, as in English, symbo
lically from left to right, from the top to the bottom of a
page, and physically from the low to the high numbered loca
tions of core (e.g. f when non-branching, this ordering is real
ized simply by incrementing the program counter by one) •

Given that a SISD machine must execute its instruc
tions sequentially, the question arises as to what then is the
best form in which to present the instruction stream for ex
ecutionby the HOLM.

Verbally, the answer is simply to say that the best
form is to have each piece of information present as it is
needed to be executed, and not to have any more information
than is necessary.

In practice this means changing the form of a paren
thetical language (which HOLs, patterned after English, us
ua11yare) into Polish notation; i.e., parenthesis-free nota
tion. Each of the operands (as many as necessary) is attached
to the nearest operator (in a right to left manner) which then
operates on the operand(s) and reduces the result to a new
operand. Execution of a Polish string takes place from right
to 1e~t. However, since most Indo-European languages read
from left to right, compiler designers usually talk of reverse
Polish notation, which is the mirror image of Polish notation,
but gives the convenience of left to right execution. Figure

* Consider the branches of a tree with each lobe doubling -- hence, n
steps implies 2n operands = N. This implies parallel time of n or
log2N.

-26-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

A = (B + C) M + 38 Dj

step 0 Istep 1

1~~
Step 2

Step 3

Step 4

The execution of this statement has an inherent
depth of five steps, assuming each operation
which can be done in parallel, is done in
parallel.

Figure 2.1-4: Example of Statement Structure

-27-

!>.r:I;r,~l : i~ICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1b~()

2.1-5 shows our tree example in Polish notation. (Hamblin [30]
has a full discussion of various Polish forms and implications).

Our use of reverse Polish notation to meet the needs
of sequential execution, will be called sequential execution
form (SEF) in order to avoid confusion with the use of the
term "Polish notation" elsewhere.

In order to put a parenthetical HOL (hereafter it will
be assumed any HOL discussed is of parenthetical form) into
SEF, it is necessary to re-order the parenthetical input. This
reordering of a parenthetical language to a SEF is called par
sing. This is the work of the first phase of any compiler. (In
parsing a HOL the method of the re-ordering is important. The
parse must be able to match the execution tree of Figure 2.1-4
in order to generate code which interprets the SEF correctly.)
In summary, current ordered sequential machines require the
parsing of a HOL to a SEF.

2.1.4 Semantic Conciseness of the HOL

In this section the meanings and semantics of the SEF
operators and operands shall be considered. What does the SEF
consist of? How is it possible to save on execution time and
memory space of a HOL program?

A simple answer is that if the HOL has been designed
as a problem oriented language, then it is descriptive of the
"work" to be done. Each statement in the HOL and each syntac
tical part (except for noise words such as TO of GO TO) of a
statement has a meaning in relation to the "work" being done.
(The mapping of each syntactical particle into a series of in
structions is called the "semantics" in a compiler.) Hence,
each statement and/or syntactical unit has precisely the func
tional meaning that the programmer intended it to have. We
will now consider a few of them in detail.

a} Matrix, Vector Operations

If the language contains matrix and vector types, and
if it allows standard linear operations such as inner and outer
products, cross-products, transposes, etc., then each operation
is considered as an entity, and not as if each data type were
an "array" of scalars. For example, a matrix transpose changes
all non-diagonal elements and must be done in effective "parallel".
If it were done sequentially, without temporaries, the operation
could not be done, since some element would have a new value
before its old value has been read.

-28-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Parenthetical Notation:

A = (B + C) M + 38 D;

Polish notation (read right to left)

= A + x 38 D x M + B C

Reverse polish notation (for the convenience
of English language speakers)

C B+ M x D 38 x + A =

Execution of reverse polish:

step a D 38 x + A =

step 1 =

Step 2 + A =

Step 3 -2)A =

Step 4 A =

Step 5 R
5

Figure 2.1-5: Conversion of Notations

-29-

::'!;"i l::i~;,;S INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139· (617) 86d-lt.l!!

Analogously an integer type is an integer, and may not
be considered a collection of bits that can be manipulated in
dividually.

In general, the semantical particle is the "tightest"
unit of information describing the "work" being done (see
Figure 2.1-6). It is the most global form of information as
presented by the programmer. Any transformation into another
language (e.g., MOL) will lose the global context, which in
general, is not recoverable.

The semantical particle contains the smallest number
of logical operands and operators. This follows from the pro
blem orientation of the HOL ~nd from its globalness, because
it is the language in which the problem solution was program
med. If the HOL is problem oriented enough, we see that its
semantical units form an upper bound on the number of logical
units needed to describe the "work" and hence, under a reasonable
mapping to bit space, an upper bound for memory allocation.
Identically, it forms the upper bound for execution time since
it contains exactly the necessary global information needed
for execution.

b) FORTRAN DO loops and HAL DO FORs

The DO FOR statement is an operation that can be con
sidered to contain six operands: the iteration variable, ini
tial value, increment, limit operand, and the loop start and
finish address. It should be considered as a whole, containing
all the information needed for its execution.

Knuth [12] in his empirical study of FORTRAN programs
has found that statically 39% of the DOs contain only one state
ment and 18.5% involve only two statements. These statistics
suggest that it is worthwhile to consider how FORTRAN DO loops
are used.

1) Array processing: The manipulation of vectors
matrices in FORTRAN makes necessary the use of
DO loops. Many languages such as HAL overcome this
by having vectors and matrices as arithmetic types.
HAL and APL both allow array processing on a state
ment level for arbitrary arrays of the various data
types. For HAL and APL it would seem that the num
ber of DO loops necessary for array processing
has been minimized if not completely eliminated.
This is the result of their containing more global
information [13, p. 292] than FORTRAN, since for
arrays, HAL and APL are closely related to the
"work" .

-30-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Assume Vectors of length 3

Number of Number of
Logical Logical
Operators Operands

HAL

X = y·Z 2 3

FORTRAN

X = 0.0

DO 1 J = 1,3

1 X = X + Y (J) * Z (J) 5 9

BAL

LA Rl,3

SR R2,R2

SER ROO,RDO

Loop LE RD2,Y(R2)

ME R02,Z(R2)

AER ROO ,R02

LA R2 ,4 (R2)

BCT Rl,Loop

STE ROO ,X 9 21

Figure 2.1-6: Examples of Semantical Conciseness

-31-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

2) Table Searching: A very common use of DO loops is
to place information into a table and then by using
an index of the location in the table, to obtain
information in associated tables. For example,
storing information into an array under a person's
name and then using the relative address of its
table location as the index into the associated
information tables. This is an example of ineffi
ciency within the HaL itself; the HaL has not been
able to specify concisely what it is that it wishes
to do.

with the advent of content addressable memories,
a linear search whose time would have been directly
proportional to the number of table entries, can now
be done in a constant time [14]. DO loops are
written to perform linear, binary (logarithmic) or
exponential searches on a table with or without
hash coding. This use of a DO loop is a function
which is not "work" oriented and should be descri
bed in the HaL; the programmer should not have to
worry about the type of search to be done but only
that a search is being done. An example of the
type of syntax that could be added to a HaL is given
in Figure 2.1-7.

3) Anything else: In general, this could be classified
as an in-depth re-iterative arithmetic calculation
which would not fall into the array pattern. This,
in our sense, is the proper use of DO loops, since
it cannot in general be abstracted to a higher level
of meaning.

c) Indexing and Subarraying

Data type considerations also lead to HaL concepts not
generally expressed in a MOL. Operands have a "type" such as
integer, bit, character, or scalar. If a fixed point scalar is
considered, then "scaling" becomes a further "type" attribute.
with all arithmetic types, consideration of precision becomes
important. With arrays of operands, the attributes of rank
and dimension are introduced. Usually compilers generate machine
code which takes into consideration ail of this information.
Since the HaL instructions are not oriented to these considera
tions, especially when protection is involved, inefficiency
in code generation develops. In order to make sure an index
does not exceed array length, inefficient, continually executed
code must be produced for this test. Type attributes become
fixed into the generated MOL code.

-32-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

PLACE value INTO table SAVE INDEX IN variable

The "value" is placed into the array "table" with its entry
index stored into the "variable". If the table overflows
the "variable" could be set to some unattainable value such
as zero.

FIND value IN table SAVE INDEX IN variable

This could be used to locate a given "value" in a "table".
As above, if the "value" is not present the index could be
set to some unattainable value.

Figure 2.1-7: Example of HOL Syntax

I I
~th]-A-dd-r-e-s-s-'I

1'-20 bitst-20 hits;1

Data
Descriptor

Program
Descriptor

Figure 2.1-8:

P Presence Dit, • 0 ~ Interrupt to fetch

C Copy Bit, = 1 points to "main" descriptor

I Indexed Bit, • 0 ~ not yet indexed

R Read-only Bit, • 1 ~ interrupt if try to write

o Double Precision, • 1 -+ double precision

Basic Descriptor words for Burroughs B6500

-33-

INiERMETRICSINCORPORATED·701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Several forms of "descriptor" have been developed to
help solve these inefficiencies and to allow attributes to be
come dynamic. Descriptors range from simply insuring that an
array's index does not exceed the array dimension, as in early
Burroughs machines [15], to specifying "type", each rank's di
mension, and initialization information as in the SPLM [17],
Sugimoto's PL/I direct processor [18], and a Russian
machine [31].

Besides having arithmetic precision implicitly handled
in the code generated by a compiler, it is possible to have
it done dynamically. For example, the SYMBOL machine [19,30]
maintains arithmetic precision on a dynamic basis to a maximum
limit specified in a LIMIT register, which is under programmer
control. It also has an empirical mode which is only as accu
rate as the maximum length of the operands involved.

There are many problems of indexing. One is to make
sure that the index does not exceed the array dimension. This
can be accomplished by including the array dimension in the
descriptor (see Figures 2.1-8, 2.1-9, 2.1-10), which value can
be considered an operand of an indexed array. It is present
when access to the array occurs and the necessary protection
test can be accomplished as part of the indexing instruction.
A second problem of indexing is the mapping of multiple sub
scripts into an array. APLM [16] accomplishes this adroitly
by considering the mapping as a polynomial with the indices
as the arguments (Figure 2.1-9). This leads to both an effi
cient execution of the process of multiple indexing as a single
instruction and the necessary array limit testing.

HAL presents a third problem in indexing since it has
the ability to make sub-arrays. HAL must have some mechanism
to denote sub-arrays; that is, to specify a collection of vari
ables which do not necessarily have a single contiguous storage
location but are a series of contiguous blocks whose location
and sizes are a function of the rank and dimensions of the ini
tial array. This problem can be solved by a generalization of
Abrams' APLM polynomial mapping, which would not only map into
an array, but would give for each rank, starting element address,
last element address, and spacing between elements for each
rank.

In summary, three semantic areas have been shown in
which current MOLs fail to effectively interpret the desires
of a problem oriented HOL:

a) Vector and Matrix operations

b) DO loops

c) Data attributes including indexing and precision main
tenance.

-34-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

"Although arrays are stored in the memory,
M, of the machine, scalars are not. They appear only
in the machine registers, in particular the value
stack, and as immediate operands in a code string.
An array is divided into two parts. The first is the
value array which is a row-major order linearization
of the elements of the array. The second part is
a descriptor array (DA) for an array, which contains
the rank, dimension, and storage mapping function
for the array."

@ARR
+01
+02
+03
+04

RC=2
VB=VARR

RANK=2
R(1)=003
R(2)=002

LEN==05
AB=OOO

D(1)=02
D(2}==OI

LEN = Length of array

VB = array base address

AB = constant used in polynomial mapping

RANK: = rank of the array

R(I) : = dimension of rank I

D(I) : = value used in polynomial mapping

"The DA contains the coefficients of the
storage mapping polynomial, DEL (labelled D(I) here).
Recall that for an array ARR, the element ARR[;/L]
is located at

VBASE + ABASE ++/DEL x (L-IORG);

This formula is the storage mapping function for any array."

Figure 2.1-9: Descriptor for Abrams' APLM

-35-

~r: i.H!/tfHICS INCORPORATED· 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (517) 858- 1 ():;U

'l'he following descriptor examples are shown as they appear in the program
string and the effect of their execution in the stacks: "

a) Example 1

SPL Text: ~-_.:._------ ITEM A INTEGER -----------

J[PLM Code: ----------------

Al-"'TER EXECUTION:

Entry for A: . Unltia!iz.ed value space I

Index Stack

b) Example 2

Variable Stack

SPL Text: ---~---- ITEM" B FLOATING 43 R = 3.14153

AFTER EXECUTION:

I:ntry for B:

.......

Inde~ Stack

c) Example 3

SPL Text: --------ARRAY C (10 I 20 I 30) INTEGER 40 R

,"
SPLM Code: ---- A //:; L 40 D 400 D

~Binary
~ER EXEGUTION: . . ~~~~~ng .

EntI}' for C: rl-:"MJ~liIm:lii:raoo~Q'QQoI.Y?O

Index Stack / .

(240 I 000 bit long space for values)

Figure 2.1-10: Descriptor for Keeler's SPLM

-36-
INTlHMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

In examining these, it is seen that one feature which is de
sirable but not included in the current HOLs would be a table
lookup statement. This can be considered as a failure of the
HOL, and not its implementation.

Other HOL statements m~stalso be similarly considered.
These include the generation of flow control in IF's and DO
CASEs (FORTRAN computed GO TO's). From a HOL viewpoint, the
difference between data types as seen in a MOL is not neces
sarily clear (integer, scalar, bit) and as shall be seen, type
conversion is one of the major MOL overheads.

2.1. 5 Logical Construction for Execution

This section considers what is meant by executing the
HOL's semantic particles on a machine in Sequential Execution
Form.

Lawson's paper [21] considers five logically equivalent
instruction streams. These are instruction streams with three
operands, two operands, one operand, an implicit operand, and
finally a tree-structure where each operator node points to its
operand nodes. While it should be noted that the interpreta
tion of these operands in Lawson's paper take on a very parti
cular meaning where it would be possible to interpret them
differently, they are truly representative. For example, con
sider the two operand case:

"There is no explicit indication of where to store
the result of an arithmetic operation. This is
handled by placing the results in an operand push
down stack(s) for temporary values, which will be
illustrated in this section. The use of a value
stored in the operand push-down stack is simply
denoted in the instruction stream by the presence
of a T I

• This could actually be represented in
the ,instruction stream by a zero value or some
nonaddress value."

The two operand case could have been interpreted differently.
For example, always store the result into the indicated loca
tion of the first operand and use the top of a stack (or
single accumulator) along with the second operand as the ar
guments of the operator.

Figure 2.1-11 shows an arithmetic statement
X = A * B/(C + D), written in each of these five forms. Law
son analyzes these results with four considerations:

-37-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

x - A • BICc + IJ) ~'.t p-+A, p-+B, p-+To

+, P -+ C, P -+ D, P-+ 1'1

I, p -+ To, P-+ 1'1, P-+ To

:ii:', P -+ X, P -+ To, null.

THE TUREE-AIJIJRESS INSTRUCTION STREAM

X == A • B/(C.' + D) ~

P, P-A
., P -+ B

P, P-C

+, p-. P
I, 1'"

=, P-+X.

TilE ONE-AJ>J>ltESS INs'rRucTION STltEl~M

X = A • BICC + D) :::)

X .. A • RICC + D) ~

; ., p -+ A, P-+ 13

+"p-+C, p-+D

I, 1", 1"

-, p-+X, 1".

TilE Two-ADDRESS INSTRl:CTION STREAM

x = .,1 • B/(C + D) :::)

p'-+X, p-+A, p-+B,., p-+C, p-+D, +, 1,-·

TilE I'UI.ISII-NuTATION INST!tCCTIUN STltEA:\f

°1 . OPERATOR OR OPERAND

p-aZ LEFT POINTER

P- Cl 3 RIGHT POINTER

..,.
P'-X °3 I

NULL p- Cl 4
NULL P-Cl 7

°4 * °7 +
P-Cl!I P-CIA

P- Cl6 P- Cl 9

/ \ / ~
p.. A a6 p-B Cle p"C Cl9 p" 0
NULL NULL NULL NULL
NULL NULL NULL NULL

A PI{QGRA~.TREE AS AN 'NSTRUCTION STREAM

Figure 2.1-11: Various Forms of Instruction Streams

-38-

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

a} Conciseness is defined to be the number of instruction
elements required to represent the instruction streams.

Polish {Implicit} 9 x 1 = 9

One-address 12 x 2 = 24

Two-address 12 x 3 = 36

Three-address 16 x 4 = 48

Program-tree 27 x 3 = 81

b} Complexity of interpretation is a measure of both the
instruction incrementing size and the number of instruc-
tion units directly examined.

He orders the forms in increasing complexity as
follows for this attribute:

three-address, one-address,

two-address, Polish, program-tree.

c} Dynamic capability is defined to be a measure of the
capability 'inherent in the machine and its instruc
tion stream for coping with recursive and reentrant
programs.

This is found only in the Polish and program-tree
forms since they are the only ones which do not depend
on any absolute address but only use push-down stacks
or pointers.

d} Flexibility is defined to be the ability to easily man
ipulate the instruction stream form in order to change
the order or to delete parts. This is extremely valu
able for code optimization. Only the program tree form
of instruction stream has this property.

Each of these types of instruction stream is logically
equivalent. Each of them is capable of doing exactly the same
job: they execute the HOL statement X = A*B/{C+D}. Many
papers in discussing a HOLM emphasize arithmetic expressions
and their execution without considering other features of the
HOL. Having considered DO loops as an operator with six op
erands lends an insight into arithmetic statements which is
usually overlooked. Arithmetic statements of the form:

-39-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

A+B+C

when translated into reverse Polish look like:

AB+C+ or ABC++

yet they could be considered:

ABC+(3)

where +(3) is a triadic operator [18]. It was previously
stated that the semantic particle was the most global infor
mation available -- but of course, as in table searches, this
is true only to the degree that the HOL reflects the "work".
The addition of three operands is truly one event, even if the
notation makes it appear as two dyadic operations. Similarly,
n-array operators could be made explicit.

These results indicate that of all the logically equi
valent forms, the Polish notation is the most desirable for
execution efficiency (it is the most concise and logically
non-redundant) and also enjoys dynamic capabilities which are
easily implemented by a machine.

This Polish form which is desired for execution may
not be the form which is desired as the intermediate language
of a compiler. The program tree form helps with optimization
since each operator node points to its operands and therefore
allows easy manipulation [21]. With the Polish form it is
difficult to recognize the operator's relation to its operands
if these operands are intermediate results; therefore it is
difficult to use the Polish form during optimization.

HOL program control statements, such as DO's, IF's,
and GO TO's, can be imbedded into the execution sequence of the
HOL instructions. This is normally done in ordered sequential
machines. It is also possible to consider that these are
"control" functions on the normal instruction stream and
therefore are to be executed as a separate set of information.
This is what Sugimoto's PL/I machine does.

2.1. 6 Mapping into Physical Space

The final step in designing a HOLM is the process of
mapping the logically constructed semantic particles into real

-40-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

bits, and to fully design the flow within the hardware. This
mapping into bits must realize the space compactness that the
logical conciseness would indicate.

In considering the physical mapping, the static and
dynamic behaviors of instruction sets become important. The
most complete statistic of a HOL (FORTRAN) to be found is the
one by Knuth [12]. Quite a few published papers exist on MOL
statistics [24,33,36-38]. The comparison of a HOLM and a
MOLM execution of the same problem* simply does not exist in
any meaningful way. The reason is simply that HOLMs do not
exist in any abundance and therefore the number of variables
is too great to allow intelligent comparison.

Figure 2.1-12 is indicative of MOL statistics. It shows
the MOL instructions of the IBM 360 generated as the output
of a program written in the HOL of XPL. It is interesting to
note that there were 8352 L (loads) and 3074 LH (load half
words), yet there was only one LPR (load positive register)
and one 01 (OR immediate) and none of quite a few instructions.
These statistics are, of course, biased in that they do not
show the distributions of a normal assembly language program
mer, but are the output of a compiler. Also the addressing
scheme used in XPL is a very particular one, not general, and
hence influences the instruction statistics. Instructions
used for maintaining addresses play a major role in the IBM
360.

Yet Figure 2.1-12 does show several interesting facts
in common with most MOL statistics:

a) The number of SLL (Shift left logical) instructions
is high due to the need to adjust indexing register
to appropriate byte boundaries depending on the size
of the operand (double word, word, half word, byte).

b) The number of loads is enormous for two reasons:

1) The addressing scheme for XPL demands a load of an
address constant before a branch can occur (in the
general case), and

2) Due to the IBM 360 having 16 general registers
and the desire to stay within them in order to "save
execution time", the registers must be manipulated;
in particular, they must be loaded from memory.

* This should not be confused with the execution of a given problem
written in a HaL, where the HaL has been then translated to a MOL.

-41-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

INSTRUCTION FREQUENCIES:

BALR 81 BAL 1084
BCTR 3 BC 3143
BCR 299 LH 3094
LPR I ST 2457
LTR 55 N 363
LCR 33 0 43
NR 102 X 51
OR 165 L 8352
XR 8 C 837
LR 100 A 427
CR 360 S 252
AR 2194 M 8
SR 2132 D 17
MR 7 AL 2
DR 2 SL 5
ALR 15 SRL 117
SLR II SLL 546
STH 1600 SRA 8
LA 1511 SRDA 18.
STC 950 STM 79
IC 1254 TM 54
EX II DI I

lM 80

HAL PASS 1, SOURCE.77
28 April 1971

Figure 2.1-12: MOL Instruction Frequency

-42-

c} The absence of BXLE {Branch on index low or equal}
and BXH {Branch on index high} instructions which are
very powerful looping instructions. Although BXH and BXLE
are "powerful" instructions for looping, the overhead
for their use, both in system demands for registers,
and in a MOL programmer beinq able to be set them up,
is generally too high.

d} The large number of AR (add register) instructions
comes about through the particular indexing scheme
XPL used. This scheme insures that one register is
needed per HOL operand.

e} As in any machine, many common functions are not
necessarily thought of when instruction sets are
designed. Byte manlpulation in a general register,
requires a SR (substract register) before an IC {in
sert character}. Similarly LH (load half-word) is not
logical, but propagates its sign which many times has
to be "anded" off.·

Church [24] states {see Figure 2.l-l3}:

"In instruction occurrence we found arith
metic 8.3 percent and jumps 12 percent. What
are we doing with the rest of the commands?
Obviously, we need the "Data Moves" function,
but do flow charts call for anything near 40
percent? And what of the transfers? My flow
charts do not call for anything near 23 per
cent of the problem to be involved in trans
ferring. "

His solutions to the problems that he proposes deal with
a) excessive editing, arid b} fixed length instructions. Ex
cessive editing is felt in both the boundary problem {causing
shifting} and in the overhead of loading and storing registers.
All of this overhead is only used to please the computer; it
is completely unrelated to solving the problems. Church re
commends addressing the bit level, ignoring all address bound
aries in order to lessen excessive editing.

This could be expanded to avoid any type conversions.
By having integers as unnormalized floating point variables,
the overhead of conversions both in speed and concern with over/
under flow is removed {e.g., Burroughs floating point [39,
p.2-l0]}.

Variable length commands also allow space compactifi
cation. This "variable length" can be realized in several
fashions.

-43-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

WUUfo,1to_1\I ",cenl To~1

Atllhm.lllt: U 1.146

Oat. ~O"" SU 5,')1

LoI" U J7J

$bife. U)n

rlal\lr.n D.9).)OS

Jumps no 1,6"

I/O 0.1 "
MiiC'llbnco\ll 10.1 ...10

I).'"

TABLE I-Instruction Occurrcnce by Instruction Clu~'l

11Utrw:1iotLJ ",,,,nl Toul PrOSlsnl MaNto. Jrhyi.,;.atioll Pto·;uo Track Corr~:'t.on Pt~;.n",

ArilhD'.cUc ID.S \00.206 \11 n.no I1,6S'

DatAMO"CS)1.4)6....S '.0" 21.211 162.lU

"'"'" ... 14_ " UIO ID.llS

SII"h J.] 12.641 I 1.490 II.ISI

TranJ., IU 1S6..l19 '.In 11,601 DU\6

S...,. 11.1 .".m 1,191 1.6'1 ISUIO

I/O 0.1 lOS 91 106 0

..~nancoUl 4.6 ...)S1 410 ',110)9."1

'ou' 1000 96)•• " 1._131 1I,l101 111.601

TABLE II-Instruction EXCC;ltioll hy Instruction Cl!1.s.,;

From Church [24]

Figure 2.1-13: Examples of Instruction Execution
Frequency

-44-

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-184CJ

a) Variable length operands depending on their addres
sing properties. (e.g., relative addressing, local
addressing with reference to an implied stack, or
system wide addressing)

b) Variable number of operands (e.g., A+B+C considered
as CBA+(3))

c) Variable length operation codes depending on fre
quency of use (static and/or dynamic frequency) .

Church presents several benchmarks showing the saving
on the Litton computers involving these concepts. There is a
dramatic saving in a number of instructions, memory size, and
in the actual execution time.

The experience of branching and jumping was even higher
on the Apollo Guidance Computer. It was considered to be in
volved in one out of every five instructions [32, p 154; 33].

The importance of branching frequency in the design of
large systems should be emphasized. If a paging environment
is to be efficient, it is necessary that instruction sequences
be executed within a page and without branching to another
page. This points out that not only the branching frequency,
but also the distribution of the branching distances is impor
tant. Burnett [34] has shown how harmful branching is to the
expected locality of such paged systems. The physical length
of a HOL instruction sequence mayor may not exceed that of
the physical length of an equivalent MOL instruction sequence;
however, the HOL sequence certainly does not introduce any
branching except that which is called for in the HOL proce
dure. It is an open question if the HOL sequence would have
more or less locality, but the total system execution in either
case would be better than that of the MOLM since the HOLM is
semantically compact.

The basic problem behind all MOL statistics is that
the MOL is simply not oriented towards the problem being
solved, but is concerned about the "machine" and its needs.

Even with a small rise towards problem orientation,
there can be considerable savings. A small program [26] was
written for the AGC in both the AGC basic language and in its
interpretive language. The MOL program took 250 words while
the interpreter took 85 words. Admittedly, it was a biased
program which was not MOL oriented. But this is precisely
the point: the problems to be solved are HOL oriented, not
MOL oriented.

-45-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The statistics of a HOL (FORTRAN) indicate some other
interesting facts ([12] and Figure 2.1-14).

Assignment statements were 51% of the executable
statements statically and 67% dynamically. Sixty-eight per
cent of these static assignment statements were of the form
A=B. Twelve and a" half percent of the assignment statements
were of the form A=A op a, that is, removing the A=B forms,
about 35% were A=A op a. Furthermore, 40% of the additions
were of the form of A=A+l.

These statistics would suggest that there should be
feedback to the logical design from the consideration of
"real" programs.

Even though it was previously maintained that the best
information possible was given by the user, this can be bet
tered since the HOL is never completely oriented towards pro
blems. (This is why theorems are proved: a theorem provides
a handy summation of arguments and results which can be applied
to problems without reverting back to the basics.) If Polish
form were used, A=B would be implemented as BA= where Band
the address of A would be "stacked" before the operator = was
examined. Due to the common occurence of A=B it might be more
efficient to have an: =AB, where the discovery of the operator
"=" indicates that it will use the two operands immediately
following. Similarly, it might seem reasonable to have spe
cific unary operators to increment and decrement. Polish form
would demand that A+l be put into the form Al+, but due to its
common occurrence, it could save space and execution time to
have: A incr. (Similarly, of course, depending on cost con
siderations and frequency of occurrence, 2*X, X/2, etc.)

DO loops are just as interesting (Figure 2.1-15).
Ninety-five percent of the DO loop statements have the default
increment of 1. Thirty-seven percent of all DO loops enclose
only one statement. Fifty-three and a half percent of all DO
loops are imbedded only to a depth of 1.

Kerner's FORTRAN machine [11] generated DO loop in
structions as shown in Figure 2.1-15. Knuth's statistics
suggest that only three bits may be necessary (less than eight
word distant) instead of such a big "Last Address" field.

Indices also generate expected, but interesting, sta
tistics. In the 166,599 appearances of variables, Knuth
found:

-46-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

!able 1. Dlltrlbution ot ItatMent tlPel.

Lockheed stantoN
Niiiii'er Percent· !fuIIIber Percent.

"'1118Jl111ent 764'5 41 4869 51
IF 27967 " 14.5- 616" 8.5·· .
00'l'0 24942 13 m 8
CAlL 15125 8 ' "9 4
CONTINUE 9165 5 ~9

,
WRrrE 7795 4 508 5
FORMAT 7685 4 ,80 4
DO 7476 4 457 5
DATA 4468 2 28 .,
RETURN ,6'9 2 186 2
DOO;NSIOl'f ,492 2 141 1.5
CCl-lMON 2908 1.5 26' ,
END 2565 1 121 1
BUFFER 2501 1 0 0
SUBROUTIlfE 2001 1 9' 1
RJ:."I!Ml 1724 1 6
f~UIVALnlCE 1382 .7 ll, 1
lliDf'ILE 765 .4 2
INTEGER 657 .' ,4 .'READ 586 .~ 92 1
ENCODE 58' .' 0
DU:ODE 557 ., 0
ffimr ,45 .2 5
ElrrRY 279 .1 15 .2
STOP 190 .1 II .1
LOOICAL 170 .1 9 .1
REAL 147 .1 ,
!DENT 106 .1 0
DOOBLE ,

~- 99 1
OVERLAY 82 0
PAUSE 57 6 .1
ASSIGN 57 4
RIt«:H 52 5 .1
EXTERNAL 2' 1
DlPLICr.r 0 16 1·5
COf.lPLEX 6 0
NAl<IELIST 5 0
DLOCKDAT... 1 2
nnw 0 0
()I.ITPJT 0 0
CO!-lMEllT 52924 (28) 1090 (ll~
COlfl'llillATIOft' l3709 (7) 6,6 (7

• Percent ot tot&! IIUIIIber ot It.tllllelltl uclu41Jls Call1elltl and cont1JNaUon
'carda.

- The conatruction 'IF () atatenent' count. a. an IF a. well al •
8tatenent, 80 the total 18 more than 100".

'l'able 2. Di8trlbution ot executable Itatement••

.... lignment
IF
GO TO
DO
CAlL
WRITE
CONTIJlUE
RETURN
READ
STOP

Static, ' (percent)

51
10

9
9
5
5
4..
2
1

Knuth

Dynamic

67
II
9,,
1
7,
o
o

Figure 2.1-14: Statistics of FORTRAN Usage

-47-

INHT~METRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868- ~ 2;1(;

58.0% were unindexed

30.5% had one index

9.8% had two indices

1.0% had three indices

0.2% had four indices

The percentage of unindexed and single indexed vari
ables indicate how importan,t it is, in order to save space,
to have variable length descriptors dependent on the size of
the array's rank.

These Fortran statistics allow good quantitative judge
ments on qualitatively held feelings. But each HOL is dif
ferent and its statistics will undoubtedly vary significantly.
Due to the fact that HAL is able to directly perform linear
algebra (vector and matrix operations) the usage of subscripts
with these operations will be less than in FORTRAN. Similarly
simple array processing is directly handled in HAL; this too
will lessen the use of subscripts. These two effects also
lessen the number of DO FOR's needed in a HAL program.

On the other hand, subscripts
BIT and CHARACTER string extractions.
appearance of subscripts. Therefore,
optimal bit mapping for HAL cannot be
Knuth's FORTRAN statistics.

-48-

are used in HAL for both
This will add to the

it is apparent that an
quantitatively done from

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

. . .',. , ., . " " \' ~ .' " ,

The 79" DO loop. vere 1\lrther invellt1gatect. to 4ete!lll1fte their leqth

and depth ot Deatin's; about 95(~t 'tti~"Do .tatellente uaed the derault

increment ot 1. Moat DO loops vere quite ahort, 1nvol.v1ns onl,y OIle or

two atatellleDt.:

Leneth 1 2 ., 4 5 > 5

NllJIlber ~46 1467 756 576 104, 104,

Percent '9 18·5 9.5 7 l} J3

The depth ot DO neat1ns va. aUbject to con.iderable variatlWI the to1.1.cJw1Ds

total. vere obtained:

Depth 1 2 , 4 5 >5

NUlllber 4211 185' 1194 4'7 118 :u!O

Perceut 5'.5 . 2' 15 5.5 1·5 1·5

Knuth

DO

J 2 1 1

la 1 a~ ..,

M
l = index start value of 1 or 2

M2 = end of loop value less than 32

8 1
~,> use Ml and/or M2 or address that

follows to get value

M3 = increment value of 1, 0 -? address
follows to get value

Last Address ..;. relative address, 0 -)
end address follows.

Kerner, et ale

Figure 2.1-15: FORTRAN DO Loop Statistics

-49-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

2.2 Instruction Functions

In any form of instruction architecture there are cer
tain categories of functions that are essential to the operation
of the computer, although within each category the particular
instructions maYivary both in form and meaning. In order to
gain both an insight and an appreciation into the variability of
design within each category, a comparison of'several standard
machines with different instruction architectures is given.

2.2.1 Data Management

The ultimate goal of any algorithmic process is compu
tation upon a data base. The description of a problem involves
the explicit operations that must be performed qn the data
which represents the quantized parameters of the problem. These
manipulations usually take the following forms:

a) Addressing the data base. Current general machines
such as the IBM 360 and Univac 1108 address operands
either explicitly, in the "operand" field of an operator
instruction, or use a "load" instruction which obtains
the desired operand and then holds it in one of a small
group of registers. This enables the manipulation of
the data without further main memory references.

The Burroughs B6500, which is a Polish-oriented
machine, in effect does the same thing. But instead
of allowing explicit operand addresses with each opera
tor, operators implicitly reference the top of a push
down stack for the necessary operand. In order to
place explicit operands into the stack, an instruction is
used which indicates whether the program string entity
is an operand. But since all operands are indicated
in this way, only two bits are used to indicate the
"load stack" operation. Figure 2.2-1 illustrates and
defines the meaning of these two bits.

When a manipulated value is to be placed into an
operand location, a general machine uses a "store"
instruction with an address operand field. In the
B6500 the address for a "store" operation is supplied
from the stack. It is interesting to note that not
all Polish machines operate in this fashion. Some use
an explicit address field with the store operator [40].
Regarded from a Polish string point of view, the store
operator has become an infix operator whose (second)
operand immediately follows. This has the advantage

-50-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

o entity is an "operand"
a

1 entity is any other "operator"

If a = 0, then

o place value of "operand" on top of stack
b

1 place address of "operand" on top of stack

In order for the machine to discover what kind of "entity" is
being processed, there must be a unique bit representation. The
B6500 uses the first bit of each program string "entity" to be a
meta-operator indicating if the "entity" is an "operator" or an
"operand" .

Figure 2.2-1: Burroughs Operand Identification

-51-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

of not requiring the intermediate stacking of an
address into the pushdown stack. It also eliminates
the need for two bits for a Polish "operand load"
operator.

The advantage of a pushdown stack in addressing
is realized in two ways:

1) A savings in memory utilization, since addresses
become implicit. Although this does not neces
sarily save the length of the instruction string
when all operands are reflected with an explicit
data definition, it does save the need for tempor
ary entities.

2) A savings resulting from the fact that the push
down stack reflects the dynamic characteristics of
the algorithms. A general register scheme reflects
only the static knowledge of a compiler, which is
of necessity, faulty. It is interesting to note
that Stone [41] proposed "A Pipeline Pushdown
Stack Computer" which in effect reassigns the general
registers statically assigned by a compiler to a
dynamic set during execution.

b) Arithmetic Manipulation: Most general machines recog
nize two classes of arithmetic data: integers and
floating point. Often the floating point can be spe
cified in two different precisions, and similarly the
integers can be of different sizes. (For example, the
IBM 360 recognizes single and double precision float
ing points, and full and .half word sized integers.) A
standard set of operations can be performed on these
arithmetic entities: addition~ subtraction, multipli
cation, division, negate operand. Other operations
are sometimes incorporated such as: absolute, "SGN"
function, exponential, maximum, and minimum; and cur
rently various matrix and vector operations are being
considered to be implemented along with general array
operations [40,48].

In instruction architecture design there is a
continual tradeoff as to the amount of information
which is provided by the "operators", and that which is
provided by the "operand". Descriptors can be con
sidered either as part of the operator (a "sub-opera
tor"), or as the operand which is being acted upon [49].
The descriptor then becomes the primary focus for the
tradeoff as to whether the operator or the data should
indicate where the "explicit" data information is to
be found.

-52-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Descriptors (see Figure 2.2-2) can be thought of as
op-code modifiers indicating, for example, that an
addition is to be of scalar, array, or matrix types.
One could also consider a descriptor to be the actual
data object being manipulated by the operator. The
descriptor then becomes a mapping from the logical do
main into the reality of the physical machine, which
is built with linearly addressed storage.

The IBM 360 has entirely different sets of instruc
tions for processing integers, floating point and deci
mal variables. Similarly, the size of the integer in
volved or the precision of the floating point is explicit
in the operator (for example, multiply can take any
of the following forms: M, MR, MH, MD, MDR, ME, MER,
MP, MXR, MXD, MXDR.) The B6500 design on the other hand
offers generalized arithmetic operations, but inter
estingly enough retains the explicit MULX (multiply
extended) instruction to change single precision op
erands into a double precision result. For integer
operands the B6500 also possesses the operator, IDIV
and RDIV, which give the integer or fractional result
of an integer division. The generality comes about
because of two different properties of the B6500:

1) Integers are a subset of floating point. There
is thus no need for explicit type conversion be
tween the two.

2) The descriptor contains the precision of the data.
One bit of the descriptor indicates if the data is
single or double precision.

In addition to this information in the descriptor,
every memory cell within the B6500 contains a three
bit tag field which indicates what kind of entity it
contains (e.g., descriptor, operand, program control
word, indirect reference word, etc.). This tag field
also indicates if the operand is single or double pre
cision, which enables the appropriate pushdown stack
operation to be automatically performed.

This generality can be carried farther with an
identical operator, for array processing. That is, if
the descriptor indicates that the operand is an array,
the operation can be done on each element of the array
(e.g., array addition, element by element).

c) Logical Operators. Binary operations occur in several
entirely different ways. Operators involving binary

-53-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Vl • V2

Instructd.on Descriptor Value Field

• V2 (i)

I
Vl I

I 3 Memory Locations
~Vector3 I

elements I VI(l), Vl(2),Vl(3)
DOT

I
Vl I

~ V2 I
V2

I 3 Memory Locations
Vector 3

V2 (1), V2 (2), V2 (3)elements I

r----------,
I
I

I
I
I
I
I
I
I
L J

Conception:r------- ------- -, r-- - - -----,
Lopera~or ~ __ SUb-opera~r...1--_

0
~. oat:. __ .-J

3
l: Vl (i)

i=1

r-----------j
I
I
I
I
I
I
I
I
I
I

L J

• V2

I

I Vl
• 3 Memory Locations

~Vector3 Vl(l), VI(2), VI(3)
DOT I elements

I
VI I
V2 ..~ V2

3 Memory Locations

I
Vector 3 V2(1), V2(2), V2(3)
elements

Conception:

~o~e~;t;;r-~-.----0'IDat;- - - - - - Physi~l Imple-;entatio-;;lL---- ...J

Vl

Figure 2.2-2: Two Concepts of Descriptors

-54-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

data usually are some subset of the standard: and, or,
not, exclusive or, equivalence.

Closely connected to these are those operations
which, instead of working on a word, affect an individual
bit. These include the B6500 bit set and reset instruc
tions.

Once the binary form of data is recognized, a whole
set of instructions is usually formulated to take ad
vantage of this knowledge and its relationship to the
computer's architecture. These include the standard
logical shift, algebraic shift, cycle, and field iso
late instructions.

Only explicit knowledge of the bit construction
of the manipulated data makes these instructions use
ful in themselves. An algebraic shift is indeed a
multiply or divide, positive or negative, by factors
of two. When writing in a HOL such as HAL, bit string
manipulations are carried out with respect to a logi
cal entity regardless of the true physical implementa
tion. To extract a series of bits from binary variables
in HAL one merely subscripts and does not rely (or
care) about physical implementation. Realistically
the best compromise is probably to be found in those
instructions which are able to extract binary fields
from within a word but which do not depend upon alge
braic characteristics. Keeler's SPLM [17] relies
totally upon descriptor knowledge in order to manipu
late binary fields; this is, of course, an extreme.

The final use for binary information is found in
conditional information. These include the six dyadic
relations: less than, greater than, less than or equal,
greater than or equal, equal, not equal; and various
monadic functions such as: positive, negative, zero.
As with arithmetic manipulations, information can be
embedded either in the operator or the operand. In
the IBM 360, the compare instructions are: C, CR,
CH, CL, CLR, CLI, CP, CD, CDR, CE, CER. These enable
comparisons of: character strings, integers (alge
braically), integers (logically), decimal, single pre
cision floating point, double precision floating point.

The B6500 has no need for explicit integer or
floating point comparisons, since integers are a subset
of floating point. It does, however, implement a spe
cial "equal" to provide the logical equal in a bit by
bit fashion in addition to algebraic equals. Charac
ter information is treated separately, and has its
own set of instructions.

-55-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

It is interesting to consider that these compari
sons result in a truth function with a value of "true"
or "false". Most implementations have identified
true with one, and false with zero. This facilitates
the'logical operations "and", "or", etc., as commonly
defined, and usually leads to the equivalence of "true"
and the integer "one". This is mere convention, and
should not be implied as an absolute identity.

d} Data "Field" Manipulation. The existence of different
"types" of data structures implies the need for conver
sion and manipulation. It is not necessary to differen
tiate arithmetic data from character data. These could
conceivably be the same. Character data is used for
communication between the outside world and the com
puter system. The I/O of a system which has a human
interface must be intelligible to the human. In order
to provide enough symbols for a ready comprehension,
4, 6, or 8 bits are used to encode a character. When
numeric problems are scheduled, this form of encoding
is extremely wasteful and leads to an "internal"
numeric form for the computer. When great range in
value is called for, floating point forms are generally
considered.

Because algorithms commonly involve integer com
putation, and because integer computation in the past
was faster and took less memory, separate integer
types are normally defined. "State" information
(e.g., true and false) requires binary representations
to be introduced.

Very few machine implementations contain a com
plete set of operators for conversion from each type to
the other. The IBM 360 has been considered inadequate
because it has basically only CVB (convert to binary)
and CVD (convert to decimal) instruction, although
there are further instructions for character to charac
ter conversion (PACK, UNPK, EDIT, EDMK, TR, TRT).

Besides conversions between types, there is need
for conversions of varying forms within a type. For
example, creating single precision form double preci
sion, either by rounding or truncating. On the B6500
since integer is a subset of floating point, one needs
an "integerize" operator.

If the types of data in the machine are limited
to character, floating point, integer and bit, then
a complete repertoire of conversions would be provided
by: character to scalar, scalar to character, scalar
to integer, bit to integer. This limited set would
suffice because

-56-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1) integer is a subset of scalar

2) there exists an explicit rule for mapping bit
to integer

3) integers can be considered as bit strings.

The SPLM [17] allows automatic type conversion in
the process of assignment. The types of the respective
operands are, of course, kept in the descriptor.

If a machine is built for much character string
handling, then explcit operators for performing these
functions (e.g., concatenate and substring) become
important. The B6500 descriptor cannot encode the op
erand as a "character string". This information is
explicit in the use of an operator. Here is a good
example of a tradeoff between using bit information
in the descriptor to encode "type", or to allowing the
operator to be the indicator. Since the overlap of
"operators" between arithmetic type and character type
is small, there is little ambiguity in what is to be
done. What ambiguity 'does exist is resolved by se
parate operators. The gain is a reduction in the
size of the descriptor field and the only real loss
is less protection against the misuse of an operator.

e) Name Operations. Inherent in the manipulation of data
values is the process of indexing, of choosing an element
of an array. This is one of the prime reasons for the
existence of integer arithmetic in algorithms. Most
general machines accomplish the process of selecting
an element of an array by use of "index" registers.
This in turn leads to the necessity for explicit opera
tions for the sole purpose of manipulating the index
registers (one must load, store, possibly increment or
decrement, test, or jump with respect to them). The
allocation of index registers raises the same problem
as that of the allocation of general registers: the
static allocation at compile time, in general, does
not correspond to optimal usage at execution time.
With Polish-oriented machines, the indexing of arrays
is usually done off the pushdown stack, as are the other
operations. The IBM 360 general registers are regarded
equivalently as index registers and accumulators for
reasons of implementational convenience; besides, the
corresponding computations do notdemahd a differentia
tion. The use of the stack for indexing can be an
explicit one index-rank instruction at a time, as in
the B6500, or a completely automatic process initiated
when an operand is stacked, as in the SPLM.

- -57-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Sub-arrays can be handled implicitly by the "opera
tor", or if an infrequent occurrence, more properly
by an explicit combination of element operators and
automatic loop control.

If arrays are to be handled explicitly, common
"small" entities such as 3-vector and.3x3-matrices would
probably be the only choice. The temporary storaqe
for arrays (even in stacKs) becomes a new problem
since, if the top part of the stack is implemented
in "fast" registers, it would be unwise to force the
bottom of the stack into slow core, only to bring it
back again after a short array calculation. These
cases indicate that separate vector and matrix stacks
could be potentially useful [40].

2.2.2 Flow Control

Of importance in writing algorithms for a computer is
the specification of the dynamic flow control through the al
gorithms. Computers became more than adding machines when they
developed the ability to take' alternative courses of action
dependent on the dynamic state of a variable. From a machine
point of view this change of sequence can take the simple form
of a conditional branch. From a HOL point of view it is em
bodied in the basic notions:

a) alternate choice: IF .•. THEN ...ELSE; DO CASE;

b) iteration: DO loop; DO WHILE;

c) modularization: GO TO; CALL; function; RETURN; EXIT;

General machines ~end to reflect alternate choices with
conditional branches, iterations with some form of indexing op
eration and test~ng (since one of its main uses is for array
processing), and modularization with branch and link type in
structions.

Conditional branches do correspond rather directly
with IF ... THEN ... ELSE and indexed branches with DO CASE. The
trouble with branch and link in general machines is that it
does not have any effect upon the environment of the algorithm.
Depending upon the addressing structure of the machine, a new
address environment must be put into effect with each subrou
tine. Similarly, current values of the operand registers must
be saved or protected. The B6500, corresponding closer to a
HOLM, does save current values via its stack (since it is a
pushdown stack) and does the necessary housekeeping in order

-58-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

to set up the desired address environment for the subroutine
called. It must be realized that if the "operator" does not
set up the environment, it still must be set. Since modular
ization is a feature of an HOL (subroutines, procedures, pro
grams) this is done quite often, and should therefore be done
efficiently.

Just as entering subroutines requires the saving of
registers and the setting of the environment, returning re
quires resetting the environment and registers to previous
usage. Depending on the HOL being designed, there may be
the need for either an abnormal exit or transfers to a label or
procedure which has been passed as parameter. These, of
course, involve careful housekeeping in order to ensure the
proper environment and the resetting of and purging of registers.

DO loops owe their occurrence to several different fac
tors as was seen above. Assuming the HOL is semantically able
to reflect array processing, it becomes necessary for the HOLM
to implement array operations. If implemented explicitly (al
though array processing, in the general sense, is not likely
to be common), array operations become relatively simple since
no explicit iteration variable is to be found; instead only
a current value, increment value and final value. DO loops in
the general case not only depend upon these three values, but
also contain an iteration variable which can be changed within
the iteration. The increment and final value could also be
expressions which must, in general, be recalculated since they
could also have changed within the iteration. This reasoning
leads to the conclusion that except in the very simple loop
case (which is the most frequent [12]), the statement sequence:
expression calculation, test, conditional branch, (statement
code), absolute branch, will probably be the most general and
optimal sequence of instructions. It is of course possible
to maintain loop information in special registers. The IBM 360
BXLE, BXH instructions are particularly designed for loop con
trol, but are seldom found in actual use since they make large
demands on the resources of the general registers.

The B6500 has a special instruction for those cases
of simple loops, and the Keeler SPLM uses an INCR operator
especially designed to perform and test for the increment
at the end of a loop.

2.2.3 System Functions

The need for special instructions for manipulating
the registers or data paths, and for easing the implementation

-59-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

of algorithms depends upon the instruction set. There is also
a need for instructions which reflect the network architecture
of the system, the paths of interconnections and communications.
Multiprocessors introduce new instruction needs because pro
cessors become a multiple resource, and, of course, there
is the need to communicate between the computer system and the
outside world (I/O instructions) .

a) Instruction architecture needs. On the instruction
level the IBM 360 has such simple needs as an NOP;
Load PSW to set the "control "information"; ISK and
SSK to set the memory protection information; and SVC
to implement operating systems function.

The B6500 besides having similar executive functions
contains explicit instructions to handle the instruc
tion architecture. In order to facilitate the use of
the pushdown stack there are instructions which mani
pulate it: PUSH, DLET, EXCH, DUPL, RSUP, RSDN. (In
a similar vein, the IBM 360 does load register, LR.)
Since the B6500 associates tag bits with memory cells,
it must be able to manipulate these as an entity;
hence, such instructions as STAG (store tag bits) and
RTAG (read tag bits). On the other hand, storage
protection is performed as a descriptor function.

The actual frequency of use of stack manipulation
instructions depends on the compiler, both from an
algorithm point of view and the compiler writer's con
venience.

For example, consider:

A(I+l) = B(I+l)

When a subscript is repeated within a statement, the
statement can be optimized by only having the subscript
calculated once. With a stack mechanism there is no
need to create a temporary to store the results but
rather it is possible to

1) duplicate the subscript value before indexing,
so that a value is available as the next index
ing value, and

2) exchange the top two positions of the stack if it
occurs in the wrong order.

-60-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

For example, a B6500 sequence could look like:

ONE

VALC I

ADD

DUP

NAMC B

NXLV

XCH

NAMC A

INDX

STOD

put a literal one into the stack

put the value of I into the stack

add, leaving result on top of stack

duplicate the top of the stack

place address of B in top of stack

load value of B(I+l) in top of stack

exchange this value with previously dup
licated 1+1 value

load address of A

index this address with 1+1

store value B(I+l) into A(I+l)

b) Network Architecture Needs. The system must be able
to control its interaction with the outside world. This
includes such instructions as HALT, IDLE and the
enabling/disabling and masking of the interrupt system.
As long as asynchronous events are allowed to occur
and timing is important, interrupts will be present.
The particular nature of the system will depend upon
the critical nature of the required processing time, and
the degree of asynchronous complexity.

c) Multiprocessor Environment. In a multiprocessor envi
ronment the "system" may not be identified with the
"processor". Instead the processors become a commodity
to be allocated along with the other resources (I/O
channels and devices, memory, time). In order to
identify how the system is functioning, it is neces
sary that the processor be able to interrupt another
processor (anyone but himself). These functions are
represented in the B6500 as the WHOI and the HEYU
instructions, and in the RCA 215 as the "Load CPU
Identity" and "Interrupt CPU" instructions.

Depending upon the design of the executive, and
the network available, a set of system configuration
instructions could be mandatory.

-61-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

d)

2.2.4

There must be the equivalent of a Test and Set
instruction to make sure only one process may use spe
cific data or program at a given time, when this is
logically necessary.

I/O Instructions. I/O is dependent on the device for
which the interface exists. If I/O is carried out
asynchronously with respect to a processor, then a
process requires simply to start, test and halt the
device with an instruction to test the channel if it is
a separate unit. The particular information needed
to control a device is then given in memory and these
instructions are designed for the particular device and
are executed by that device once it is "started". The
IBM 360 also includes read and write direct instruc-
tions. .

Conclusion

In the above analysis the instructions have ignored
any particular function which would be useful to the execu
tive. These instructions would in particular have to do with
the data manipulations which are carried out by an operating
system. These data structures are involved with resource
allocation, and, in particular, include queues (FIFO), push
aown stacks (LIFO) and linked lists. However, to take advan
tage of these data structures, it would be necessary for the
operating systems to be written in a language in which they are
semantically recognizable.. An algebraic language does not
contain queues, stacks or linked lists, and it would be impos
sible for the compiler to create such a semantic unit out of
user code which did not explicitly indicate their existence. A
DO loop is a DO loop, and it is impossible to discover that it
is really a table search.

The extremes of descriptor usage can be seen in com
paring the IBM 360, B6500, and the SPLM. The 360, as has
been seen, has all type and precision information explicit
in the operator. The SPLM learns everything from the descrip
tor. When an assignment operator occurs, all type, precision,
rounding, truncating, conversion then take place. The B6500
is mid-way between. Arithmetic type versus character type in
formation is explicit in the operator, while precision is
found in the descriptor.

One further complication occurs in considering in
struction sets. If the processor has a large degree of
parallelism, and is capable of obtaining information from
memory asynchronously to its use of its arithmetic and logical

-62-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

unit, then there are possible advantages to having more infor
mation in the descriptor. If an operator does not contain all
the information needed to transform the operands, then the
descriptor must be consulted. If this must be done sequentially
with the operator indicated transformation, the operator
syllable would become the bottleneck in the program string
execution, while the "load (address) of operand" would become
a single immediate operation. That is, memory would not have
to be consulted, since the information would be in the program
string itself. If the descriptor is of variable length (e.g.,
SPLM) this would, in general, mean that even the descriptor
would not be found in the stack. The stack would contain only
an indirect pointer to the descriptor, which would reside in
some other location of memory. Since processors (due to memory
costs) tend to be "memory bound" the interaction of separate
descriptor fetches to memory must be carefully weighed against
the gain in generality of the operators and the reduction in
program string length, or a mechanism to circumvent the extra
fetch must be implemented.

2.3 MP Instruction Design Factors

It has been decided that the design of the instruction
set of the MP computer should be tailored to a "higher order
language". This not only simplifies the implementation of the
system software and removes large classes of potential errors,
but it also reduces the amount of memory needed for operation.
The reduction in the number of bits needed for the storage of
a program in a HOLM versus a MOLM is due to several comple
mentary factors. These include the use of descriptors, implicit
addressing of the stack, dynamic two dimensional addressing,
minimization of different data types, and semantic conciseness
of the operations.

2.3.1 Polish String Compactness

"Polish" machines require fewer bits in the program
string than do standard machines. There are at least five
separable reasons for this phenomenon. In the following it is
convenient to consider the Burroughs B6500 and the IBM 360 as
representatives of two possible extremes of instruction ar
chitectures.

a) Two Dimensional Addressing (Static and Dynamic)

Both the B6500 and IBM 360 have two dimensional
addressing and exhibit a savings over the first and
second generations. In order to process large com
putational jobs a large amount of addressable space

-63-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

is needed~ With a second generation machine such as
the 7090 all of this space (and hence the limit of the
memory size) must be addressable In this case then,
it was necessary to use 15 bits in every operand ad
dress. The IBM 360 and B6500 both have two dimensional
addressing. The IBM 360 uses a 12 bit displacement which
is to be added to one of fifteen base registers. This
allows for a full 24 bit addressing (of bytes) scheme.
Here 24 bits of address space has been compressed into
16 bits of information. The B6500 scheme uses only
14 bits wi th its operands, where the "base" (display)
registers contain only the number of bits
needed to indicate the current lexical level (it)
(i. e., ii = 1 implies 13 bi tdisplacement, ii = 2
implies 12 bit d~splacement) and the B6500 displace
ments refer to "words". Since program segments in the
B6500 are described via a "descriptor", the actual
size of memory which could be addressed is only limited
by the numbers of bits so used in the descriptor. In
point of fact, Burroughs uses a 20 bit word address
field in the descriptor.

It is easy to see that if the memory of a
computing system is large compared to the modular size
of "programs" (or perhaps even procedures and routines) ,
program string savings are to be found by using a two
dimensional address. .

There is a great difference, however, between the
IBM 360's and B6500's two dimensional addressing
schemes. The IBM 360 base registers are assigned
"statically" at compile time, and it is up to the
compiler to try and optimize base register usage. This
optimization is minimal· if only one base register is
needed within a segment. This becomes difficult in
large segments since the dynamic characteristics of the
segment modularization must be considered.

The static two dimensional addressing of the IBM
360 has several aspects:

1) By using 4 bits everywhere for base registers the
displacement range is reduced, since seldom are
that many registers required.

2) If a program is "one big" segment, then several base
registers are needed and segment boundaries must be
carefully watched.

-64-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

3) If the base registers are set upon entering and
upon returning to each module then i) there must
be code to do this in the program string, and
ii) name scope problems arise when variables in
a previous level are to be addressed, since their
base registers are in general no longer properly
set.

The B6500 optimizes upon the two dimensional address
idea by

1) using only the number of bits necessary for the
current lexical level to indicate the number of
bits for the "base" register. This leaves the
rest of the bits for displacement. (There is also
the fortuitous circumstance experienced by all,
that the more "inner" a subroutine the hsmaller"
it is, i.e., less displacement is needed to fully
address it.) .

2) The base registers point to the beginning of each
dynamic module, hence allowing the displacement
to reach its most extreme logical dynamic range.

3) Since the usage of the "base" (display) register
is unique and well defined, (versus general, e.g.,
base register/accumulator/index register) the in
tialization and resetting of them can be accom
plished automatically, requires no explicit code
in the program string, but does maintain the cur
rent dynamic name scope.

b) Implicit Addressing

It is interesting to note that in one sense most
computers are Polish machines. That is, they all ex
ecute their instructions in the "sequential" form as
presented to them by the output of a compiler.

A = B + C;

on the B6500 versus the IBM 360:

B6500

VALC C

VALC B

360

L RO , A

A RO , B

-65-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

C), (add B to this value) and
In effect it is the only se
(ie., ADD before STORE) for

ADD ST RO, C

NAMC A

STOD

In each case: (fetch
(store value into A) .
quential form possible
this expression.

However, when temporary locations become neces
sary a .difference appears in the code, although the
total effect, must of course, remain the same. Con
sider A = (B + C) * (D + E) i

B6500
VALC C

VALC B

ADD

VALC E

VALC D

ADD

MULT

NAMC A

STOD

360
L RO, C

A RO, B

ST RO, .TEMP

L RO, E

A RO, D

M RO, TEMP

ST RO, A

Assuming that there are only a few (in our case ex
actly one) accumulators being used, during the expres~

sion evaluation it becomes necessary to create a tem
porary.

The creation of a temporary indicates an increase
in the program size for two reasons.

1) In general, the use of temporaries is a static
decision and hence cannot behave better than the
dynamic usage of the stack, therefore, in general,
one needs more "temporary storage" locations than
stack storage.

-66-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

2} More importantly, in the IBM 360 type of machine,
every instruction has an operand, therefore the
temporary requires an address which in turn takes
space. The B6500 uses implicit addressing; the
needed number of operands coming from the appro
priate number of locations on top of the stack.

When temporaries are needed, most often (at least
much of the time) an implicit address scheme allows for
the savings of "temporary" operand addresses.

c} Descriptors

As was seen above, descriptors can be considered
either as sub-operators or as the ideal data structure
which is being manipulated. When considered in the
first manner, it is seen that the descriptor saves
on the program string length since "fewer" operators
need be specified since the "sub" part of the operator
is found in the descriptor of the data structure.
For example, the IBM 360 has for "add":

AR, A, AH, ALR, AL, AP, ADR, AD,

AER, AE, AWR, AW, AUR, AU, AXR,

while the B6500 has simply "ADD". This of course re
quires fewer opcodes, and in turn fewer numbers of bits
to represent the nece~sary operators.

When the descriptor is regarded as the "data struc
ture", it exhibits at least two virtues. One is that
by being "semantically concise" (further discussed be
low) it places into one location the complicated des
cription of the data structure, which thereby need
not be repeated in multiple references in the program.
The other is the observation that the number of enti
ties which are manipulated by a program are few. The
reason that a large addressing space is normally nec
essary is that if the machine does not have descriptors,
then each "memory cell" of the data structure must be
directly addressable. The example of an array of 100
scalars on the IBM 360 is in fact 100 memory locations.
On the B6500 it is one entity: a descriptor, which
indicates the dimensions of 100 and where it is to be
found in physical core. This very important phenome
non reduces the addressing requirement of a program

-67-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

string, since the full physical memory address need
only appear in the descriptor. The descriptor be
comes one of the "few" entities which must be addres
sed, and hence only a small address field is needed
in the program string proper.

d) Type Differences

Descriptors allow any information which can be
"bottlenecked" to be plac~d in the descriptor once,
instead of having the information repeated through
out the program string.

In addition to character data (for I/O) and an
internal arithmetic form, most machines have other in
ternal forms. The difference between the "character"
and "internal arithmetic" comes largely from the sav
ings yielded by compactly storing and manipulating
them in the internal form. The various internal
forms come from precision considerations and also
from speed considerations (integer arithmetic versus
floating point) •

Types can be optimized by:

1) Making one a proper subset of another (e.g., in
teger is a subset of single precision floating
point on the B6500) the difference between the op
erators disappears (except for an explicit opera
tor to recover the proper subset; such as INTEGE-
RIZE). .

2) The need for multiple forms of the same operator
disappears (e.g., IC, LH, L, LD, LE).

1) The need for explicit type conversion operations
is reduced. The program string can be further
minimized by providing an explicit operator for
each type conversion when needed (e.g., scalar to
character, while integer to scalar would be im
plicit by the integer definition as a subset of
scalar) .

e) Semantic Conciseness

Probably the most significant impact resulting
from the use of semantically compact operator$ is the
decrease in program string length. When the operators
correspond to the operations in the problem being
executed, a minimal amount of translation is needed
and hence the minimum amount of expansion in the pro
gram string.

-68-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

When a procedure indicates a vector cross product,
it means a "vector cross product", not some strange
manipulation upon six scalars resulting in three scalar
results. This form of semantic compactness is rare to
find, perhaps currently only in those machines designed
to execute APL.

The Kerner and Gellman machine is "semantically
concise" in the execution of FORTRAN since its opera
tors are those that FORTRAN indicates. It is also
interesting to note that this machine does not have
"two dimensional addressing", "implied addressing",
"descriptors", or "type optimization", yet it is a
semantically concise FORTRAN machine.

The Burroughs B6500 is similarly an "ALGOL" machine.
But it does have the other program string size-saving
features, and is semantically concise with regard to
"ALGOL" •

But neither of these machines are necessarily
"semantically concise" with respect to a linear alge
bra problem, since their respective languages (FORTRAN
and ALGOL) are not. Of course the IBM 360 is seman
tically concise only to "BAL" which is merely a tau
tology. In fact, then, the IBM 360 is not semantically
concise to any real "problem oriented language".

Besides being semantically concise with respect
to the operations expressed in a problem, the opera
tors can be "semantically concise" in the way in which
they are constructed. Branching occurs locally within
a program under execution and not with respect to all
of physical memory. The IBM 360, as most machines,
allows the branch address to be any address of physical
memory. The B6500 uses relative addressing (that is,
relative to the program under execution). This of
course reduces the address space necessary, since it
corresponds to the dynamic space involved at execution
time.

Along the same lines of reasoning is the question
of indexing. As has been discussed elsewhere two of
the main reasons for indexing are array processing
(e.g., linear algebra) and table searches. If the
problem oriented language has such operations, and
the machine is semantically concise, such indexing
need no longer be explicit. Single references of data
via indexing, can be accomplished through the descrip
tor, with or without descriptor modification.

-69-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

In the IBM 360 each memory reference instruction
generally carries 4 bits of indexing information.
The B6500 indexes only when needed, and since a stack
is used (hence implicit addressing) only an 8 bit op
erator is needed (which can also load the resultant
indicated entity). Assuming that not every memory
reference is indexed (the indices themselves must be
fetched from memory) the use of indices only when
needed (and semantically concise operations make the
need less) will minimize the program string length.

The use of short literals also compactifies the
program string since the constants used are usually
small integral values. Recognition of this fact
allows for their representations in the amount of space
needed and not the amount for the worst (largest) case
possible.

There are then at least five different aspects
to the conciseness of "Polish" machine program strings
which contrast with the more conventional machine:

1) Dynamic two dimensional addressing

2) Implicit addressing of operands

3) Descriptors

4) Type optimization

5) Semantic conciseness.

Each of these could be implemented separately or in
combination and with varying degrees of usage.

2.3.2 Information Bit Width: Data and Descriptors

The basic flow of information can be considered as the
gathering of the necessary operand information into the pro
cessor "pushdown stack", followed by an operation upon those
operands, leaving the result in the stack.

In the laboratory model design there is the need to be
compatible with current industry peripherals in regards to data
size. This forces the basic data structure of the instruction
architecture to be built upon multiples of the standard eight
bit byte. Further consideration of the needed accuracy of
arithmetic computations, and of the size of addressable memory
within the descriptor leads to the question what multiple of
the basic byte the data word should be formed.

-70-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

2.3.2.1 Arithmetic Precision: The binary basis of computer de
sign has predicated data structure sizes as multiples of the
base 2. The most efficient addressing, with regard to book
keeping is when the number of entities manipulated is a power
of two. The eight bit byte has become the basic industry unit
of memory. As an example, when the IBM large computers deve
loped from the second generation 7094 to the third generation
360, the arithmetic types switched from 36 bits to 32 bits.

If one postulates the use of 32 bit single precision
floating point, the decision must be made as to how many bits
are used for the mantissa and how many for the characteristic.

The most accurate input precision needed with guidance
and navigation is one part in a million. In these extremely
rare cases, 10 6 ~ 220 implies at least 20 bits of mantissa.
Most digital to analog input has a maximum of one part in a
thousand or 10 3 ~ 210 i.e., between eight and twelve bits of
information.

A standard way of breaking a 32 bit floating point word
is shown in Figure 2.3-la. (For the present, the actual loca
tion of the bits within a word is not important, but the num
ber of bits used for the various purposes is. In fact, since
arithmetic types are truly "internal" forms, this exact map
ping of bits is a decision for optimal usage of the hardware.)
The precision of 6.9 digits is just acceptable and the range
of 10 ±38.4 is usually acceptable. When double precision is
used, the second word again can be divided between mantissa
and characteristic. There are two different reasons to make
a double precision data form. One is to increase the precision
of the calculation, and the other is to allow an increase in
the range. By solely adopting either, the other remains a
potential problem. Figure 2.3-lb shows the increase in range
and precision by going to double precision. The precision is
nO~61~.l dig~ts while t~e cha7acteris~ic.has been increased to
10- •. Slnce the ar1thmet1c form 1S 1nternal, the second
word's characteristic has been concatenated to form the higher
part of the joint characteristic, while the second word's man
tissa has been concatenated as the low part of the joint man
tissa. This has been done in order to make the single precision
value a subset of the double precision. Similarly it has been
assumed that the radix point of the single precision word is
to the right of its mantissa when the characteristic is zero.
This was done under the normal HOL convention of minimizing
data types by making the "integer" form a subset of the single
precision floating point.

-71-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

S
to

ra
g

e
F

o
rm

a
t

S
ta

c
k

F
o

rm
a
t

b
in

a
ry

p
o

in
t

m
a
n

ti
ss

a
si

g
n

2
3

I a •
m

a
n

ti
ss

a

, 11 ,

m
a
n

ti
ss

a
si

g
n

2
8

(z
e
ro

s)

2
3

'7

'?

e
x

p
o

n
e
n

t

e
x

p
o

n
e
n

t

11 I I
I

1'
1'

3
,.

e
x

p
o

n
e
n

t
si

g
n

e
x

p
o

n
e
n

t
si

g
n

v
al

u
e'

ta
g

II
,

~
~

I
i
i
i
i
i

I -..
J

t-
,) I

e~
po

ne
nt

_
'
~

m
a
n

ti
ss

a
S
1
~

=
u

s
e

.
~

.
IH

1
0

1
2

0
I

3
1

:

s
ig

n

S
to

ra
g

e
F

o
rm

a
t

e
~
n
e
n
t

e-;J
J,.

V
m

a
n

ti
ss

a
s
i
~

s1
g

n
v

a
lu

I
t

i
a
g

,
I

:
'
I

1
11

1
S

ta
c
k

1·
1:

1
0

I
5

I'
F

o
rm

a
t

1
,

I
I

!

e
x

p
o

n
e
n

t
'

m
a
n

ti
ss

a
bi

~a
ry

p
o

in
t

F
ig

u
re

2
.3

-1
:

M
ap

p
in

g
o

f
S

in
g

le
-

an
d

D
o

u
b

le
P

re
c
is

io
n

F
lo

a
ti

n
g

P
o

in
t

D
a
ta

F
ro

m
S

to
ra

g
e

to
S

ta
c
k

In this scheme operators either refer implicitly to
the stack or to control information. The actual moving of
information into the stack is indicated by (several) operand
meta-operators. These meta-operators must be able to address
the "values" which are to be manipulated. In modern block
oriented languages the "name scopes" of a routine follow the
static embedding of the routine at compile times. The only
other values which can be manipulated by the routines are those
that are passed as formal parameters. This block oriented name
scope property allows for dynamic two-dimensional addressing,
where the lexical level of the routine, plus an'indicator as
to which entity at that lexical level is being referred to,
uniquely identifies the variable in question. HOLs which
contain COMMONS or COMPOOLS pose a further addressing problem
since COMPOOLS are at the outermost level of name scope, yet
if they are "named" COMPOOLS, this name would be a third di
mension of addressing. The special problems of COMPOOL addres
sing in the MP instruction architecture will be discussed
later, in section 3.4.9.

In actual execution it has been seldom found that more
than eight lexical levels are reached, and hence growth poten
tial to 16 or 32 levels seems more than adequate. Since the
basic data building block is the byte these (however many)
meta-operators must consist of some multiple of bytes. Statis
tically the operand fetches are in great preponderence in the
system and outnumber all other operators, except literals or
immediate information. Since at least two bits are needed to
indicate the operand meta-operator (to distinguish value from
name), if they were packed into one byte, then at most six
bits could be used for the "address" of the entity. This com
prises only 64 possible addressable entities and is too small to
be truly useful, since the "lexical level" of the entity must
also be specified. (If one were to argue that one byte meta
operators could be used, at least for current lexical level
entities, then one more bit would be needed to differ-
entiate them from the general meta-operands which would still
be needed. The number of entities which then could be indi
cated would be at most 32.)

The two dimensions of the address refer to the current
stack at the appropriate lexical level, and the entity offset.
This type of addressing does not place any real restrictions
upon the architecture of the machine, but only limits the
number of individual entities which are locally addressable
in any given routine. However, the number is large, at least
10 bits, implying over 1000 addressable entities.

Besides the operand meta-operators, addresses appear
in the course of program execution, either through formal

-73-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

parameter usage or in a descriptor (of data or a program seg
ment). If a quantity is a formal parameter, then it is defined
and exists within the routines which called the current routine.
It, therefore, has a stack entry location and an associated
two dimensional address. Unfortunately, it might not be in
the current static (compile time) name scope, and care must
be taken to indicate which environment it is in. If the "name"
is a descriptor, then it points to where the value field is
to be found. Since the MP is to support a dynamic memory mana
gement policy, the descriptor must have a large enough address
field to contain the address of any M2 or M3 location. This
then partially predicates the bit lengths of a descriptor without
considering its other functions. M3 is to be about one million
words and M2 is considered to be one hundred thousand words.

M3: 106 ~ 220 implies 20 bits

M2: 105 ~ 216 • 7 implies 17 bits

If every word of M3 is to be addressed, the 20 bits for the M3
address must be provided along with one extra bit to distinguish
M2 and M3 addresses. If the M3 were block oriented of at least
eight words, then the 17 bits for the M2 address (plus one to
distinguish the M2 from the M3 address) would be sUfficient.

The remaining problem to be considered is: how does
the execution distinguish between operations, names, and values?
Since the operators are indeed the program stream, and flow
through the program is either normally implicit (or explicit
when branching or transferring to another program module), the
only real problem is to distinquish names fFom values. Operand
values along with descriptors are entities which are addressed
by the operand two dimensional address. The question arlses as
how to distinguish the "values" of the operands, from the "name"
of the descriptor. One possible answer would be to force all
operands to have a descriptor: this is in fact what Keeler's
SPLM postulates. The other solution, which is commonly found,
is to include "tag" bits on all entities. These "tag" bits
are used primarily to distinguish "value" from "name". (Bur
roughs B6500 also distinguishes "single" precision from "double"
precision in order to facilitate the transfer of operands from
the hardware part of the stack into the M2 memory part of the
stack.) The solution of "tag" bits on all operands is thought
to be expensive since all data must have them, even though they
do have the virtue of maintaining the integrity of the diff
erence between "name" and "value".

There are two logically different "names". One is
created as a formal parameter which is analogous to the pronoun

-74-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

"he", and the other gives a description of a complex data struc
ture, which is a proper name such as "John". The formal para
meter name refers to an entity which is not known to a routine
at compile time. While tag bits could have been bypassed in
the differentiation of "value" and "descriptor" by means of
separate operators for each, the use of formal parameters means
that a descriptor and value must somehow be differentiated.

The question of the differentiation of name from value,
besides being a necessity in the case of formal parameter pas
sage, is also involved with the policy of segment management
within a dynamic environment where there is the desire to pre
vent long chains of indirection during execution.

When a formal parameter linkage is created, if the in
struction simply created an "indirect" reference to another
two-dimensional address within its name scope, then this could
in turn be a formal parameter, and so on. Hence when the value
was to be fetched, this indirect linkage chain would have to be
followed each time. It is obviously desirable to have at most
one level of indirection. (The value itself can not be passed
since the value might change during execution, either directly
or via side effects.) The presence of a descriptor is in it
self a level of indirection to the values, but if it is passed
as a formal parameter then multiple copies of the same descrip
tor begin to appear, which is very detrimental to dynamic memory
management. (If a segment is to be removed from core, all.des
criptors referring to it must be found and updated.) Therefore,
assuming one level of indirection for formal parameters, how can
this indirection indicate whether it points to a value or a
descriptor name?

In most HOL machines a given instruction indicates
with an "indirect" bit that the entity referred to is to be
indirection to the desired value. In some cases the entity
referred to, if indirect, can in turn indicate that what it
refers to should be further indirected. Our case of the dif
ferentiation of "names" and "values" is somewhat different in
that the entity itself indicates if it is a "value" or a "name"
and hence if the value is to be found elsewhere. The primary
advantage of having the entity indicate whether it is a name
or value is that the program code then is identical for either
case.

Consider that the internal specification of arithmetic
types is the concern of only the machine, and the user communi
cates via character strings through the limited interface called
the I/O. It can be seen that for execution purposes, to an
operator the information is either in the stack or available
through a descriptor. The entry of information into the stack
is via the operand meta-operators. The form that the information

-75-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

takes within the stack is truly independent of how it appears
in the rest of M2 or M3.

In order to avoid all data having a tag bit(s), the MP
instruction architecture proposes a solution which has several
interesting ramifications. This is to maintain all information
within the execution part of the stack in double precision.
By considering all execution stack entries as 64 bit quantities,
64 bits are made available for either the value or for any
necessary tag bits. A floating point entry in the stack is to
be a 63 double precision floating point quantity with one bit
of tag information. This bit is to indicate that this is a
"value" versus a "name".

Single precision has now become a proper subset of double
precision. All execution takes place as if it indeed was double
precision. This has the added advantage of greater precision
in expression calculations. Usually it is only in intermediate
calculations that one finds extreme ranges in a variable. (For
example, a term such as ~/r3 in celestial navigation has a
great range, while the final result has a much smaller exponent.)
The greatest loss of significance in calculation is to be found
when subtraction takes place between variables having similar
initial values. By usinq double precision operands, more signi
ficance is available in intermediate calculations. Finally,
a major source of error normally introduced into calculations
when the number being represented is either transcendental, or
does not have a finite base 2 representation (such as e or .1,
respectively) is minimized. The calculation is correspondingly
enhanced with more precision.

The main objection to this approach of maintaining
double precision within the execution part of the stack is
both in ~he cost and the time needed to continually perform
double precision calculations (versus single precision floating
point and/or integer). The benefit to be gained from uniform
ity in arithmetic data types, along with enhanced precision in
calculation, is thought to outweigh the extra cost of a 63 bit
floating point ALU that is capable of performing within the
specified time constraints.

2.3.2.2 Descriptors: The potential power of descriptor usage
has already been discussed rather fully. From an implementa
tion point of view the main cons taint is the size of the des
criptor and the need for the descriptor to handle linear arrays.
In order to handle linear arrays the descriptor must be able
to address any secondary storage (M3) location in which the array
may be stored. Similarly, it must provide bounds checking.

-76-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

a) Bounds Checking and Structure Mapping

Arrays of one rank are often manipulated by the
changing of the length of the array, either by changing
the memory starting address or by modifying the allow
able length. In the MP design, however, the memory
management has been taken into consideration. It has
been decided not to allow more than one descriptor to
actually point to a segment in M2 or M3. Any other
descriptors which wish to point to the segment must
instead be COpy descriptors, and point to the main
(Mom) descriptor. This means that array partitioning
cannot be manipulated by changing the M2 address; rather
the descriptor must have an explicit field to indicate
the array offset starting point. This tradeoff between
reference usage (the extra level of indirection imposed
by memory management with exactly one descriptor per
segment) was made because of the possible gains to be
made in reducing memory management overhead by the use
of a content addressable memory to offset the execution
penalty of the extra level of logical indirection.

b) When multirank arrays appear, it becomes necessary to
maintain knowledge of the spacing between the elements
of each rank, since the multirank array is physically
st~red into a single rank linear array memory. This
added complication has been attacked in several ways,
none of which is satisfactory from all viewpoints
(Figure 2.3- 2) .

1) Burroughs has selected to provide descriptors of
but a single rank. If multirank entities are en
countered then the higher ranks are implemented by
a descriptor of descriptors, each of which describe
a rank. This is unsatisfactory in at least two
ways. Consider a three rank entity of dimensions
10 x 10 x 10. There is one descriptor for the
whole entity which points to 10 descriptors each
of which in turn points to 10 descriptors or a
total of III descriptors for the 1000 element array.
In order to get the first element from the lowest
rank for each of the higher ranks involves inor
dinate overhead in code and time. If the lower
ranks are generated dynamically the savings found
in space are paid for in the considerable extra
time needed for their dynamic creation.

2) At the other extreme the descriptor provides the
mapping information for each rank. This is indeed
what both Keeler's "paper" SPL [17] and Abrams'

-77-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Figure 2.3-2: Representation of Mu1tirank Arrays

DESCR A

1

1) DESCR A

10

DESCR A{n,-,-)

100

DESCR A{n,m,-)

•
•
•

1000

VALUE A{m,n,p)

DESCR A

2)

DESCR A

Dimensions of
each rank

~.... A

o 0 0 0 10 10 10

1000
VALUE A o

-78-
1000

VALUE A

"paper" APL [16] machines do (though in detail
differently). The difficulty with this is, of
course, that either each descriptor is pro-
vided with the ability to handle the most extreme
case allowable and hence the general (normal,
small) user pays continually, or else there is a
scheme for variations in the descriptor size. If
the descriptors are chained, then this can either
be done by pointers, if non-contiguous, or by an
escape indicating more of the descriptor follows.
Davis and Zucker [51] have proposed one method
in which each rank points to the next. The dis
advantage of this appears most readily in the
problem of the parameter passage since now a vari
able length quantity must be handled, and hence can
only be referred to indirectly. (It might be
pointed out that when multirank information is being
processed, any of these hardware aided schemes
provide great savings over the general software
approach of brute force.)

3) A third method would be not to modify the descrip
tor of the array, but to carry along with it a
separate entity which would correspond to the map
ping within the descriptor array of the virtual
multiranked data. This is similar to the above
linked descriptor approach, but allows for ease
of redefinition of what the arrays look like, along
with an easier hardware implementation. The details
as to whether the mapping quantities are to be
kept as spacings between each rank, or whether each
lower rank should appear as a proper subset of the
higher is not entirely clear.

4) Currently, the approach which is most favored is
a compromise. It is necessary, if the HOLM is going
to allow complex data structures, that descriptors
of descriptors be permitted. This allows for the
structuring of information within the HOL, of com
bining data types and in effect creating data types
not forseen by the HOLM, or even the HOL. Multi
rank information is handled by a special rank des
criptor describing each succeeding rank. An MP
instruction will handle these entities automatically
when it is possible to index them down to a single
element. The more general case is provided for by
explicit operators.

-79-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

From the arithmetic point of view another design tack
would have been to try and use 48 bit floating point numbers.
This improves the precision while allowing an increase in range
to an acceptable limit. However, the precision is not enough
for all calculations and hence some form of double precision
is still necessary (Figure 2.3-3).

2.3.2.3 Addressing Scheme: Computation is concerned with the
manipulation of data. This manipulation has three different
components: the operations to be performed (operators), the
indicators of those things which are to be manipulated (names
or address), and the data which is actually manipulated (values).
These three entities: operations, names, and values are merged
into bit patterns in the general von Neumann type of computer,
even though a higher order language implicitly differentiates
them. The operations themselves are of two forms: they either
manipulate data or control the flow through the program.

It was seen above that a HOLM saves on memory by

a) implicitly addressing a stack

b) having a dynamic two dimensional address mechanism that
corresponds to the logical program module.

If one considers the addressing needs of each of the above
three entities, the restrictions on word size will be seen.
Since the basic unit of data available in the proposed MP is
the eight bit byte, the smallest separable particle that can
be called an "operator" will then be assumed to be of this
"byte" size. Operations either manipulate "values" via the
stack, or they refer to program control information. If they
refer to the stack, then their addressing is "implicit", in that
operands needed by the operator are taken from a number of posi
tions near the top of the stack. If the operator is referring
to control information, it can either change the program se
quence within a given program module, or transfer to another
program module. If the operator is transferring control within
the same program module (branching), all of the module is known
at compile time, and a simple self relative branch can occur.
The actual size of a branch operator is constrained to be a
multiple of the byte. When transferring to another module,
if a return is ±ndicated, the stack already contains the infor
mation as to how the current module can be entered, thus en
abling the return. When another module is called the process
of locating it in a dynamic environment predicates a call to
an address which has a descriptor of the described program seg
ment. This will bring the module into memory if necessary.

-80-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

r: n

1... n__..."jll.osi_:_n_l... 4_6_-_n 1
"'--..... v..... J'

characteristic
'-....-----.v~-----.",."

mantissa

n = 9

n = 8

characteristic base 10 =
±153.6

characteristic base 10 =
±76.8

mantissa = 11.1 digits

mantissa = .11.4 digits

Figure 2.3-3: 48 Bit Single Precision Floating Point

-81-

2.3.3 Hardware Stack Depth

One other main design criterion has highly influenced
the MP instruction architecture. This is the consideration
as to how deep the "hardware" part of the stack mechanism
should be.

No matter how the final data flow between machine re
gisters is implemented, it is extremely advantageous to post
pone placing an operand upon the stack until it is absolutely
necessary. Consider the HOL expressions:

A = B + C;

The best Polish form from a stack depth point of view would
be:

CB + A =

and hence a "normal Polish machine" implementation would be

load value of C

load value of B

add

load address of A

assign

If the flow in the stack is considered it is seen to be

C

C B
~

+

ADDR(A)
B+C

A =

If the stack were implemented with only one hardware register
at the top of the stack, then every time the depth was over
one, an entity would have to be pushed into memory, consuming
a memory cycle. (This argument is valid for any small finite
depth for the hardware part of the pushdown stack.) In looking

-82-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

at the action upon the stack in the above example, it is seen
that both "B" and "ADDR (A) " are only present until the opera
tor (which immediately follows) is acted upon.

It would be possible to make this explicit in the program
string by using the standard Polish postfix operators with a
combination of infix operators. For example, the code could be
rewritten as:

B (+C) . (=A)

and then the stack action would be:

B B+C

B (+C) (=A)

On the other hand, postfix operators can not disappear completely.
Consider

HOL:

Polish:

Combination:

A = (B+C) + (D+E)

BC + DE ++ A =

B(+C) D(+E) + (=A)

The stacks in the polish and combination forms would look like:

Polish:

(B+C) +
(D+E)

B C + D E + + A

Combination:

(B+C)+
(D+E) Lt ...J

B (+C) D (+E)

-83-

+ (=A)

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Instead of "pushing" into memory implicitly four times, this
occurs with the combination only once. The reason for this
phenomenon of course is that most dyadic operators ignore their
two input variables once the single resultant value is calcu
lated. Hence the presence of the second operand on top of the
stack is only until the next "entity" is decoded (the operator).

This understanding suggested a number of different
approaches.

a) Since most data manipulations come about because of
dyadic operators in which one operand is extremely
temporary, the two top registers of the stack must
be hardware for speed and should be considered logi
cally as only one entry of the stack as far as "push
up" is concerned.

b) The need for explicit infix operators can be circum
vented if a "load value" or "load address" meta-operator
does not complete its action of placing the memory fetch
into the stack until the next "entity" is examined to
see if the data is to be immediately used. If it is
to be used as input for the operator there is (in
general) no need to transfer the memory fetched data
to the stack and hence chance the undesired possibility
of a "push" upon the stack and, therefore, cause an ex
tra memory write (i.e., to take the low hardware stack
register and continue it into the memory part of the
stack). If the "entity" does not use the value or
address obtained, (e.g., it may be another "load value"
or "load address") then the machine would need the
ability to simultaneously place the operand at the top
of the stack, possibly causing a memory write.

c) Although the above "look ahead" mechanism is concept
ually the easiest to implement, since it leaves the
Polish string intact, it might be desirable to actually
implement the infix operators in the program string it
self. This would save on possible hardware complexity.
As was shown in the second example, the presence of
infix operators does not remove the necessity for
identical operators in postfix form. This stems from
the fact that intermediate calculations take place
upon quantities which are not explicitly addressed,
but rather occur as the required number of stack en
tries. (On a non-stack machine where all addresses
are explicit, temporaries must be created for inter
mediate results.) One form of implementation then
would be to save a bit in all operators which could
be both postfix and infix, to indicate if the operand(s)
are implicit in the stack or that one operand immediately
follows in the program string. For example:

-84-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

+ operator: +

1+

o I:

I I:

use two stack entries for operands

use top of stack and operand

In order to save memory cycles in the switch between the
bottom of the "hardware" stack and the part of the stack in main
memory, it is necessary to consider carefully the appropriate
depth of the hardware stack.

The pushdown stack is in reality being used for several
conceptually different purposes. Control information (proce
dure and/or program linkage and state information), parameter
passing (make passed parameters addressable in the current en
vironment), local data definitions (address storage for currently
defined data), and expression evaluation are all embedded into
one stack. Since all computation is done in a sequential
manner this embedding of four different phenomena is natural.

Just as it is advantageous not to stack the second
operand of a dyadic operator, it is desirable not to push into
and read from memory too often, but rather to stay in the
"hardware" part of the stack.

In examining the four different uses for the stack as
indicated above, it is seen that the most dynamic usage is the
expression evaluation. The life time of a value of an expres
sion during evaluation is not very long compared to control
information. (This, in general, follows from the fact that the
expression is "within" the routine.)

If the "hardware" part of the stack is long enough to
contain some significant percentage of all expression evalua
tions, then these calculations could be done without the extra
memory cycles needed to push the stack into memory and, there
fore, a significant gain in processing time should be expected.
An optimal depth of the hardware stack would have to be obtained
by an analysis of representative programs. Although this optimal
value is not known, it is certainly greater than the two found
in most Polish machines, but probably less than ten.

The policy of "pushing" into memory is relatively easy.
It is obvious that a "push" must take place when the hardware
part of the stack overflows. It is also obvious that the hardware
part must be put into main memory if the "stack" is switched
as when changing programs. (Note that even though this might
entail a multiple store to "clear" the hardware stack, it is no
worse than if there were fewer hardware stack registers since the

-85-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

entries would then have been put into main memory pre-
viously.) However, the policy of "pushing up" must be decided.
One of the reasons for increasing the hardware stack size ~as

to prevent expression evaluation from writing into memory too
often. If, however, every time an empty hardware register
appears, it is automatically filled from the memory part of the
stack, the hardware stack registers would continually be over
flowing. The solution to the problem is in noting the parallel
between the short lifetime (temporary-"ness") of stack usage for
expression evaluation. This is indeed parallel to the above
discussion on the use of infix operators. That is, if stacking
was held off until it could be seen if the operator immediately
used the operand, an extraneous memory write could be avoided.
Similarly, if the depth of the hardware stack is considered
just as a "single top of the stack register", but with an indepth
look ahead, then it is seen that the policy of "push up" is just
as if there were but one hardware register at the top of the
stack. Therefore, a "push" into memory occurs only if the depth
of "look ahead" is exceeded. (Or, of course, if the stack
base is changed while changing programs.) A "push up" occurs
only if the "top of stack" (i.e., all the hardware stack) is
empty. (Or, perhaps, if there is a resetting when returning
from another program or routine, or there is a call for "n"
operands.)

Considered from this point of view the need for an ex
plicit "look ahead" for the stack of a dyadic operator is not
needed, but rather the "top of stack" operation merely consists
of two hardware registers: one to be consistent for the use
as a one depth "look ahead".

Considering the hardware part of the stack in this
manner, it is seen that since it is in reality a look ahead
mechanism and provides a method for removing the timing dif
ferences between postfix and infix operators, it can be used
also to remove the difference between most dynamic and static
instructions of multiple operands. For example, in order to
set a bit in a variable, the difference of code between dyna
mic and static execution would normally be the difference in
operators in order to be efficient.

HI = I

LOAD VALUE B

LOAD VALUE I

BIT SET

B
3

= 1

LOAD VALUE B

BIT SET 3

-86-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

If the hardware stack is simply an operand temporary
store, then the second example above during execution, is equi
valent to:

LOAD VALUE B

LITERAL 3

BIT SET

The MP instruction architecture, in general, is careful
not to differentiate operators with dynamic operands from those
with static operands which can be specified by literals. This
has the advantage of reducing the number of operators which
then need be implemented.

-87-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

2.4 MP Instruction Architecture

The MP instruction architecture will be described in
three sections. The first discusses the control structures
of the architecture, its addressing mechanism and the usage of
a stack. The second section describes the data structures
defined for the MP instruction architecture. These include
the various data types, the descriptors and other ancillary
special words. The third section describes the actual set of
MP instructions.

2.4.1 Control Structures

The addressing and data flow within the MP instruction
architecture reflects the assumed Polish nature of the program
code and its execution. The various forms of addresing found
within the MP and their relationship to stack usage are now
described.

2.4.1.1 Addressing. There are four types of addressing
which appear in the execution of programs within the MP
architecture. These are: addressing relative to the instruction
location, lexical level and displacement (~~,d) of an operand,
stack number and offset (SNO) of an operand relative to the
system environment, and finally a physical M2 or M3 address.

a) The first form of addressing, relative to the current
instruction, is used for both control flow within a
program segment and for literals within a program
segment. This form of addressing allows compactifi
cation of the program code since not all of M2 or M3
memory need be addressed, but rather only a relatively
small amount of information for the short distance
involved need be provided. Figure 2.4-1 shows an
example of this addressing form.

b) The second form of addressing, lexical level-displace
ment, is used to address operands corresponding to
name scope rules within the implemented higher order
language. In languages with a name scope property
modeled after ALGOL, each procedure is defined by
a block of code. Within this block of code local
variables are definable. Besides these local variables,
variables which are defined within blocks which contain
the procedure are also able to be referenced. Hence,
at any given procedure level there is a linear sequence

-88-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

IF A = B THEN C = A-I ELSE C = A;

Byte Length

GET A 2

GET B 2

EQUL 1

LTS4 9 (= else·- then) 1

JOF 1

then: GET A 2

LTS4 1 1

SUB 1

ADR C 2

STD 1

LTS4 5 (= end - else) 1

JMP 1

else: GET A 2

ADR C 2

STD 1

end:

Figure 2.4-la: Relative Addressing

-89-

Ju
m

p
9

B
y

te
s

-
:
.
-
-
-
-
~

ST
D

,
A

D
R

C
."

) ~

I

G
ET

A
I I

5

T
S

4
I

JM
P

ST
D

I
A

D
R

C
I I I

1

L
T

S
4

I
SU

B
G

ET
A

I I I
9

E
Q

U
L

IL
T

S
41

JO
F

I

G
ET

B
I I I

I ,
G

E
T

A
I ,

Ju
m

p
5

B
y

te
s

I \D o I

F
ig

u
re

2
.4

-l
b

:
B

ra
n

c
h

in
g

R
e
la

ti
v

e
to

In
s
tr

u
c
ti

o
n

of addressable variables: local variables, variables
in the next procedure level containing the local level,
.•. to the outermost global level. Each procedure is
therefore given a lexical level corresponding to how
global it is. If a procedure level is of lexical
level n, then it is contained in lexical level n-l,
and contains procedures of lexical level n+l.
Figure 2.4-2 shows an example.

The lexical level-displacement form of addressing
therefore consists of two parts, one specifying the
lexical level where the operand is found, and the
other a displacement relative to this lexical level
to identify the particular entity. This form of
addressing appears within the MP instruction architec
ture only in the operand meta-operators as compiled
into the program segment. Upon execution of an operand
meta-operator, this form of address is changed into
the stack number-offset form of address relative to
the system's dynamic environment. This converted address
is then either used in locating the variable concerned,
or is placed directly into the stack in the form of
an address word (ADW). In order to obtain the maximum
range of addressing possible using the lexical level
displacement form of addressing, the operand meta
operator address is interpreted differently depending
upon the current lexical level during execution.
Figure 2.4-3 shows the interpretation of these addresses.

c} The third form of addressing is used to maintain the
addressability of objects within the system's dynamic
environment. This form of addressing makes use of a
stack number and an offset from the base of the stack.
This avoids having to change physical M2 addresses
when segments are either moved or removed. The stack
numbers are dynamically assigned by the system during
the execution of a process. Addressing information
within the dynamic environment, other than in a Mom
descriptor, is maintained in this stack number-offset
form (Figure 2.4-4).

The stack number-offset address form is 20 bits long.
The first 8 bits are used to indicate the stack number
and the remaining 12 bits contain the offset from the
base of the stack. In order to implement descriptors
of descriptors (e.g. to construct complex data entities
such as STRUCTURES in PL/I or HAL) one form of the
stack number-offset addressing has been implemented for

-91-

c.;
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Figure 2.4-2: Example of Lexical Level Definitions

A: Procedure

B: Procedure

Ie. Procedure

END;

END;

0: Procedure

f"E7 Procedure

~;

END;

END;

A: lexical level 2

B: lexical level 3

c: lexical
level 4

0: lexical level 3

E: lexical
level.

Addressing
containment of
procedur. by
definitional
level in name
scope languages

statements within E may address variables in E or D or A: lexical levels 4 or
3 or 2. statements within C may aqdress variables in C or B or A: lexical
levels 4 or 3 or 2. -92-

xx indicates which of the four operand meta-operators this is

a ••• a The 13 bits "a" are interpreted as the lexical level dis
placement addresses in the following manner:

Current
Lexical Lexi.cal Level Displacement
Level

0-1 a 12 all a O

2-3 a 12a ll a lO a O

4-7 a12allalO a 9 a O

a-15 a 12 ... a 9 aa a 9

Figure 2.4-3: Lexical Level Displacement Addressing

-93-

ADW tM A

Wi thin R,R,. • 5 execution of
ADR A I 1100 l--=lr"lrl":"O=-0r-l":"0o:r":o:":'o-"":lO~O~OOJ

will create an ADR word in the stack

as indicated

.........!bUJL.....4-----------"'1 'IIi R;R, • 5

Within R,R, = 3 execution of

ADW

PTR

ADRA

will create

a. indicated

11101 11000 I 0000 10000 I
an ADR word in the stack

"A"
REW

lMSW
.-..:.;::.;,~'-----------""1...--

Declare A Scalar

-------------_-1.. Base of Stack <1M)

Lexical level-displacement addressing depends upon the R,~. of the compiled
procedure. Stack number-offset addressing is invariant within the

system.

Figure 2.4-4: Stack Number Of- fset Addressing
-94-

self relative addressing. When the stack number is
zero, the offset field is considered to be a signed
integer with eleven bits of numeric value. This off
set field is then used as a relative pointer address
with respect to its own location.

I~GEN__~
SN = stack Number
o Offset

When this form of descriptor pointer field is referenced,
it is changed to the equivalent stack number - offset
value for usage.

d) The fourth form of addressing found within the MP
instruction architecture is a physical M2 or M3
address. In order to implement a well balanced memory
management system, these physical addresses have been
restricted solely to Mom descriptors. There is exactly
one Mom descriptor for any segment of code or data.

If a segment is within M2, the presence bit (P) of the
relevant Mom descriptor is set to 1. The M2/M3 address
field then contains an M2 address. If the segment is
within M3, the presence bit is set to 0 and the M2/M3
address field then contains an M3 address. (Figure
2.4-5). The M2/M3 address field is 20 bits in length
and hence can address one mega-unit. As envisioned
within the MP design, the address field will address
32-bit units.

Figure 2.4-6 shows the addressing of an array element
by a Copy descriptor. Since the Mom descriptor may not
be modified, the index field of a Copy descriptor
representing the element is added to the M2 address
field of the Mom descriptor to obtain the element's
physical address.

2.4.1.2 Stack Usage. The MP instruction architecture has
been designed for Polish string, stack oriented execution.
The stack in the MP design is used for control information,

-95-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 '

type M P M2/M3 Address

M3

M2

M =Mom. descriptor

P = presence bit M2 address

M3 address

Figure 2.4-5: Presence Indication

-96-

AR

AR address
~~;';;;"'....L-:.:.;:.::.:....~..a;;.~---&";;;;;';;';;';;'~_.L-_-------tTo start

of
M2 array

Figure 2.4-6: Addressing via a Copy Descriptor

-97-

formal parameter passage and variable definition, besides
being an execution stack. The addressing of information
was seen above to have been implemented within the framework
of contemporary block oriented languages with name scopes in
conjunction with the usage of the stack.

a) When a process is executing it must have access to the
dynamic environment of its variables. But it must also
have access to its procedures and systems routines
(both utilities and explicit executive functions). The

MP architecture implements these needs within the
name scope framework of addressing. The system routines
have the most global name scope and are permanently
assigned to lexical level zero. System information
then permanently becomes defined and primitive to the
whole MP system by means of the addressing of lexical
level zero with the appropriate displacement for a given
primitive. These displacement values need only be
known to the HOL compiler since all code must be
generated by the compiler. If for any reason there
were to be a redefinition of system wide primitives,
addresses (i.e., changes in displacement) of all proce
dures would then be affected and might have to be
recompiled. However, this would not occur in a working
environment where the system has been defined and imple
mented.

In order to address the various code segments within a
compiled program, a dictionary of the various separate
segments is generated by the compiler. This is then
addressed by use of lexical level one, and a given code
segment is referenced by an appropriate displacement with
respect to lexical level one.

The outermost level of data definition therefore begins
on lexical level two. Procedures are compiled on the
outermost level as lexical level two while each succeed
ing block containment is compiled on the succeeding
lexical level. The MP architecture has provided for
16 lexical levels: lexical level 0 to 15.

b) Control Information

Upon entry to a procedure, it is necessary to save:

1) the return procedure linkage

2) the return environment

-98-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

3) the current name scope information.

Figure 2.4-7 shows an example of how this linkage
information is contained within the stack in the MP
design.

It is seen from this figure that the three necessary
links are maintained in the two control words: the
MSW and the REW. The STACKLINK PTR of the MSW points
back in each case to the previous MSW. The ~t LINK PTR
of the MSW points back to the previous lexical level
within the current name scope of the executing procedure.
The SEGMENT PTR of the REW in each case points to the
program segment of the procedure which is to be returned
to. A detailed description of the MSW and REW special
words is given in the section on special words (Section
2.4.2). .

c) Formal Parameter and Variable Definition

Formal parameters are addressed within a procedure by
use of the procedure's current lexical level, in
conjunction with an appropriate displacement. Variables,
by definition, can only be addressed if they are within
t~e name scope of the procedure referencing them. In
this case they are addressed by use of their lexical
level of definition and an appropriate displacement.
Figure 2.4-8 shows an example of this mechanism.

d) Expression Evaluation

The stack is also used for the evaluation of expressions.
Operators (in the general case) obtain the number of
operands they need from locations at the top of the
stack; in turn the operator leaves the resultant value
as the top of stack. Figure 2.4-9 gives an example of
operator execution and its interaction with the stack.

-99-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

Figure 2.4-7a: Code Example

PROCEDURE A

CALL B:

PROCEDURE B:

CALL C:

PROCEDURE C:

CALL D:

END

END:

PROCEDURE D:

CALL E:

PROCEDURE E:

I:iERE

END:

END:

END:

The control information linkages within the stack are
shown in the figure when control is at the statement
"here".

-100-

u, = 4

5U1, = 3

$/,$/, = 4.

Executing Procedure "E"

E
. " -

REW -
MSW' I - \

D

REW -
I

,
MSW -

\
PROG M2/M3 "D"

PROG M2/M3 "C"

C - PROG M2/M3 liB"
REW' I

~rT

PROG M2/M3 "A"M$W, I, -
1\

B
Program Segment Diction

~REW -
I Q,$/" = 1

MSW',' -
\

A

REW J
MSW I

Figure 2.4-7b
Control in Stack

Execution Stack

-101-

ary

PROCEDURE A (ARG1, ARG2);

Declare ARG1 Scalar;

Declare ARG2 Array (5),

Declare VAR1 Scalar;

Declare VAR2 Array (3);

END·
I

o

ADW

ADW

REW

VAll2 Descriptor

value of VAR1

PTR to ARG2

PTR to ARG1

Ju, ,3

Q,Q, ,2

Q,Q,,1

Q,Q"O

lexical· level dis
placement address

MSW.

Process Stack

•••

Q,Q, = current lexical level

Figure 2.4-8: Parameter Passage

.... 102-

HOL Statement

A = B + C

MP Instructions

GET B

GET C

ADD

ADR A

STD

B

C

B B + C

Address A

B + C

GET B GET C ADD ADRA STD

Result of Instruction Execution

Figure 2.4-9

-103-

2.4.2 Data Structures

The data structures of the MP instruction architec
ture contain arithmetic and character values, descriptors
and special control words. The MP instruction architecture
has been based upon an information width of 64 bits within
the stack mechanism. Since the MP instructions are Polish
operators with implied operands, they operate upon operands
which are located within the stack. The use of an information
width of 64 bits has made mandatory a reasonable compromise
between a fully tagged architecture [52,53] with tag bits
being associated with each memory word, and an un tagged archi
tecture with operand distinctions being made solely by impli
cation of the operator.

Within the stack, values are distinguished from both
descriptors and special words by use of a single bit. This
bit is the value/name bit and allows the use of a maximum
of 63 bits for value information within the stack. When the
value/name bit does not indicate a value, the next bit then
distinguishes descriptors from the special words. The
succeeding three bit fields in both descriptors and special
words provides a further differentiation for their special
usages (see Figure 2.4-10).

When referring to bit positions within words in the
MP architecture, bit 63 is the most significant and bit 0
is the least signifiqant bit position.

2.4.2.1 Descriptors. Descriptors are used primarily for
the purpose of addressing arrays. These arrays may be of the
various arithmetic forms, of character strings, of program
segments, or of an unspecified type which must be explicitly
manipulated by the instruction stream.

The use of descriptors allows the compactification
of the addressing of entities within the instruction stream;
they aid in the dynamic management of memory; they are able
to specify detailed information about arrays .which permits
their usage to be dynamically. verified (e.g. bounds checking);
and they prevent the repetition of redundant information
(precision, array length) from appearing within the instruction
stream.

a) Mom Descriptors

The usage of descriptors within the MP is
intimately related to the memory management and fault

-104-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

63 0Gl ��.:::.v.l::a!.;!l~u~e;;..I_I 1

rnl.. II~n~am~e;:.I_I _

Bit·63 o indicates quantity is a value

1 indicates quantity is a descriptor of special word

63 61 58 0
~~ II.:;d:.;;e~s;:.;c::.;r:;,;l;:;.·p~t;,;,;:o;;:;r~" 1

rm:!E]1.. II.::s~p;.:;e;;,;;c;:.;i:;.:a;:;l=_w.;.:::o;;:;r~d:..II ,

Bits 63 & 62 10 indicates a descriptor

11 indicates a special word

Bits 61,60~59 ID identify particular descriptor or special
word

Figure 2.4-10: Descriptor Identification

-105-

tolerance design. For any segment, either a program
segment or a data segment, there is to be but one descrip
tor which contains a physical M2/M3 address. This
descriptor is called the Mom descriptor and it must be
referenced whenever data which it describes is to be
referenced. This restriction allows for the relocation
or the removal of any segment in M2 or M3 with the
change affecting only the Mom descriptor M2/M3 address
field.

There are seven types of descriptors. Four of
them are arithmetic. These four are the:

1) AR63 descriptors used to indicate arrays of the
63 bit double precision floating point values,

2) AR32 descriptor used to indicate arrays of the
32 bit single precision floating point values,

3) AR16 descriptors used to indicate arrays of the
signed 15 bit integers,

4) AR8 descriptor used to indicate arrays of signed
7 bit integers.

The CHAR descriptor is used to describe arrays
of the eight bit character type. The PROG descriptor
is used to indicate segments of code which are only
to be executed. The GEN descriptor is used to indicate
segments of untyped data. This form of segment must
be explicitly manipulated by the instruction stream
since type information, and hence the possibility of
verification, is lacking. This descriptor is used in
particular for system functions where there is a mixture
of information types written within the array, (e.g.,
a process stack itself is a segment and must be
described by a GEN descriptor~

Finally, descriptors must also be used to provide
multirank information about the array indicated by the
Mom. If an array is of rank one, then implied within
the Mom descriptor is the fact that the first element
of the array begins with an offset of zero from the
M2/M3 address; the total number of elements is given by
the length field; the spacing between each element is
implied by the type of the descriptor (Figure 2.4-11).
However, in the general multirank case, this information
is not implicit and must be separately provided.

-106-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~
L

e
n

g
th

IM
2/

M
3

A
d

d
re

ss
~o

m

5
1

1
1

2
1

8

A
rr

a
y

C
ff

se

1
2

L
im

it

1
2

F
ig

u
re

2
.4

-1
1

:

M
OM

PT
R

2
0

D
e
s
c
ri

p
to

rs

M
OM

PT
R

=
S

ta
c
k

n
u

m
b

er
-

o
ff

s
e
t

o
f

a
s
s
o

c
ia

te
d

m
om

d
e
s
c
ri

p
to

r

P
=

P
re

se
n

c
e

b
it

:
e
it

h
e
r

M
2

o
r

M
3

a
d

d
re

ss

R
=

R
e
fe

r
b

it
:

se
g

m
e
n

t
h

a
s

b
e
e
n

re
fe

rr
e
d

to
e
it

h
e
r

b
y

re
a
d

in
g

o
r

w
ri

ti
n

g
in

to
i
t

5
1

II
I

2
II

I
2

1
2

1
2

2
0

C
C

h
an

g
ed

b
it

:
S

eg
m

en
t

h
a
s

b
e
e
n

w
ri

tt
e
n

in
to

I o -..
.l I

T
y

p
e

M A D

D
a
ta

T
y

p
e

F
o

rm
:

A
R

8:
e
ig

h
t

b
it

a
ri

th
m

e
ti

c
a
rr

a
y

A
R

16
:

s
ix

te
e
n

b
it

a
ri

th
m

e
ti

c
a
rr

a
y

A
R

32
:

32
b

it
s
in

g
le

p
re

c
is

io
n

fl
o

a
ti

n
g

p
o

in
t

a
rr

a
y

A
R

63
:

6
3

b
it

d
o

u
b

le
p
r
e
c
~
s
~
o
n

fl
o

a
ti

n
g

p
o

in
t

a
rr

a
y

C
H

A
R

:
c
h

a
ra

c
te

r
a
rr

a
y

PR
O

G
:

c
o

d
e

se
g

m
e
n

t

G
E

N
:

u
n

ty
p

e
d

d
e
s
c
ri

p
to

r

C
o

p
y

D
e
s
c
ri

p
to

r
(u

se
s

s
ta

c
k

n
u

m
b

e
r-

o
ff

se
t

p
o

in
te

rs
)

M
om

D
e
s
c
ri

p
to

r
(u

se
s

M
2/

M
3

a
d

d
re

ss
p

o
in

te
rs

)

R
e
a
d

/w
ri

te
a
c
c
e
ss

a
ll

o
w

e
d

fr
o

m
a
rr

a
y

R
ea

d
o

n
ly

a
ll

o
w

e
d

fr
o

m
a
rr

a
y

S
in

g
le

ra
n

k
a
rr

a
y

,
n

o
a
d

d
it

io
n

a
l

ra
n

k
in

fo
rm

a
ti

o
n

p
re

s
e
n

t
M

u
lt

ip
le

ra
n

k
a
rr

a
y

,
m

o
re

ra
n

k
in

fo
rm

a
ti

o
n

fo
ll

o
w

s

C
R

=
C

ri
ti

c
a
l

in
fo

rm
a
ti

o
n

:

0
0

:
N

o
rm

al
,

o
n

e
co

p
y

s
to

re
d

X
X

:
C

ri
ti

c
a
l,

d
u

p
li

c
a
te

c
o

p
ie

s
in

te
rl

e
a
v

e
d

1
1

:
B

o
th

c
o

p
ie

s
g

o
o

d

0
1

:
"O

n
e"

co
p

y
g

o
o

d
,

u
se

th
is

o
n

e

1
0

:
"O

th
e
r"

co
p

y
g

o
o

d
,

u
se

th
is

o
n

e

L
e
n

g
th

=
L

e
n

g
th

o
f

se
g

m
e
n

t
in

u
n

it
s

o
f

th
a
t

a
rr

a
y

ty
p

e
(
-
c
r
it

ic
a
l

d
~
t
a

se
g

m
e
n

t
tw

ic
e

a
s

lo
n

g
a
s

le
n

g
th

in
d

ic
a
te

s
)

M
2/

M
3

a
d

d
re

ss
=

P
h

y
si

c
a
l

.a
d

d
re

ss
o

f
th

e
se

g
m

e
n

t

x
=

C
o

m
p

o
o

l
b

it
s
:

0
0

:
N

o
rm

al
n

o
n

-C
o

m
p

o
o

l
1

0
:

C
o

m
p

o
o

l
u

n
re

fe
re

n
c
e
d

1
1

:
C

o
m

p
o

o
l

re
fe

re
n

c
e
d

I
=

D
e
lt

a
,

a
rr

a
y

o
ff

s
e
t,

li
m

it
fi

e
ld

s
re

fe
r

to
(s

u
b

)
a
rr

a
y

s
D

e
lt

a
=

0
;

L
im

it
=

0
;

A
rr

a
y

o
ff

s
e
t

=
s
in

g
le

e
le

m
e
n

t
in

d
e
x

D
e
lt

a
a

D
is

ta
n

c
e

b
e
tw

e
e
n

e
le

m
e
n

ts
in

th
is

ra
n

k
D

is
ta

n
c
e

in
u

n
it

s
o

f
e
le

m
e
n

ts

A
rr

a
y

o
ff

s
e
t

=
in

d
e
x

in
to

a
rr

a
y

o
f

f
ir

s
t

e
le

m
e
n

t
o

f
th

is
ra

n
k

;
In

u
n

it
s

o
f

e
le

m
e
n

ts
s
ta

rt
in

g
a
t

$

L
im

it
=

M
ax

im
um

li
m

it
fo

r
in

d
e
x

in
to

th
is

ra
n

k
in

u
n

it
s

o
f

e
le

m
e
n

ts

Figure 2.4-12 defines the multirank descriptor format
and shows an example of its use both when the data is
declared (and hence associated with a Mom descriptor)
and also when the data has been partitioned (and hence
associated with a Copy descriptor) .

When multirank arrays are to be used, the Length
field of the Mom descriptor is still used to give the
total length of the array. This implies that a separate
descriptor is then needed for each rank in the multi
rank description. The multirank bit (D) of a Copy
descriptor is used to indicate that further rank
information follows. Since a Mom descriptor must be
the final descriptor reference in a sequence describing
a multiranked entity, it needs no bit (D). In a Copy
descriptor the D bit indicates that the NEXT RNK/MOM
PTR field refers to either the next Copy descriptor,
if D is set, or else that there is no further rank
information and NEXT RANK/MOM PTR field refers to the
associated Mom descriptor.

The manipulation of the multirank information can
be handled automatically by the operators, of the MP in
standard cases. However, there are several important
points to note about multirank descriptor usage. First,
"type" must be the same in all the descriptors in the
sequence. Secondly, there should always be exactly
enough descriptive information for the number of
dimensions which currently exist. In Figure 2.4-12,
M was declared to be a matrix; i.e., rank 2. Since
the Mom descriptor does not contain rank information,
two further Copy descriptors are needed in order to
fully describe the matrix. When, as in this example,
the matrix is partitioned, it still has rank 2, and
therefore information for two dimensions must be given.
Since the Copy descriptor does contain rank information,
only one additional Copy descriptor is needed to describe
the modified matrix. Therefore, the number of descrip
tors needed for any given rank are seen to be:

-108-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~ I Next RNK/MOM PTRrt'ype 00 Dr: RNK Delta RNK Offset RNK Limit
/

5 2 1 31 8 12 12 20

Type:

D

Multi-rank information descriptor, type as in Figure 2.4-11

= Last rank information: PTR is A MOM PTR
More rank information: PTR is A NEXT RNK PTR

I = RNK Delta, RNK Offset, RNK limit fields refer to (sub) arrays
Indexed: RNK Delta = 0, RNK Limit = 0; RNK Offset = single

element index

RNK Delta = Distance between elements in this rank;
Distance in units of elements.

RNK Offset = Index into array of first element of this rank;
in units of elements starting at o.

RNK Limit = maximum limit for index into this rank in units of
elements

Example of Multi-rank Declaration and Usage

*M2 to 3, 3 to 5

AR63 °IUO~ 0 1 2 3 MOM PTR

PTR -..~AR63 00l~ 0 6 6 2 Next RNK

Declare M matrix (3,6);

AR6.3 00O~ 0 1 0 6 MOM PTR

~AR63 001~0 6 0 3 Next RNK PTR-

AR63 10 '/ CR\ ~ M2/M3 Address
~

18

Figure 2.4-12: Multirank Descriptor Format

-109-

of Morn # of Copy # of Copy
Rank Desc. Desc. Rank Desc.

0 1 0 0 1

1 1 0 1 1

2 1 2 2 2

n 1 n n n

Morn Addressed if possible Copy Created and Addressed

The access bit (A) is used to indicate that the
array elements are for either read or write usage, or
are restricted to read only. While this mechanization
is valuable for the implementation of user program
protection, it must be capable of being overridden
by a system program. During execution, any data
referred to via a Copy descriptor will have the access
privileges of the most restrictive form found in its
path to the data.

The Morn descriptor is the only object used in
execution that contains an actual reference to an M2
or M3 address. The presence bit (P) of the Morn descrip
tor indicates whether the M2/M3 address field refers to
M2 or to M3. A data descriptor which has not yet been
referenced which also has an M3 address of zero is
considered not yet to have had storage allocated for it.
Upon this first reference, Memory Management will allo
cate to it an appropriate area.

The referred-to bit (R) is used by Memory Manage
ment. Whenever an element of the segment referred
to by the Morn descriptor is referenced, this bit is set.
The changed bit (C) is similarly used to indicate that
an element within the segment has been changed; that
is, the segment has been written into. With the use
of these two bits it is possible both to discover
occurrence of use and change within the segments,
making possible an efficient yet intelligent Memory
Management policy. .

-110-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138' (617) 661-1840

D
e
s
c
ri

p
to

r
E

le
m

e
n

t
B

y
te

S
iz

e
o

f
A

d
d

re
ss

e
d

E
le

m
e
n

t

A
R

63
6

3
b

it
fl

o
a
ti

n
g

p
o

in
t

8
d

o
u

b
le

w
o

rd

A
R

32
3

2
b

it
fl

o
a
ti

n
g

p
o

in
t

4
w

o
rd

A
R

16
si

g
n

e
d

1
5

b
it

in
te

g
e
r

2
h

a
lf

w
o

rd

A
R

8
si

g
n

e
d

7
b

it
in

te
g

e
r

1
b

y
te

C
H

A
R

c
h

a
ra

c
te

r
1

b
y

te

PR
O

G
in

s
tr

u
c
ti

o
n

s
8

d
o

u
b

le
w

o
rd

I
~

G
EN

a
n

y
th

in
g

d
o

u
b

le
w

o
rd

f-
-'

8
~ I

F
ig

u
re

2
.4

-1
3

:
D

e
s
c
ri

p
to

r
T

y
p

es

One of the prime concerns of the MP architecture
is with fault tolerance. While all program segments
which reside within M2 have a duplicate copy which can
be found in M3, this is not true of the data segments.
It would be possible to provide check points so that
all variable data at the instant of the check point
were saved in M3 (in case of a failure before the next
check point). However, this is costly in execution of a
check point with M3 storage, in the recovery time, and
in the design and implementation of the procedures nec
essary to minimize the amount of M3 usage. (See Chapter
4 for a more detailed discussion.)

The MP architecture uses a different technique
to save redundant data. Whenever data is judged to
be critical (which must be so specified in the compiled
program) it will be dynamically stored in a dual
redundant form. The actual storing in this mode depends
to some degree on the width of the interleaved M2 memory
modules implemented. Figure 2.4-14 shows an example
based upon an access width of 32 bits in the M2 memories.
The data is stored into the interleaved modules, alter
nately one copy then the other until all the array has
been stored. This method of critical data storage
requires:

1) that there are at least two interleaved modules,

2) that the number of interleaved modules is even,

3) that the failure modes of each of the interleaved
modules are independent.

The CR bits of the Mom descriptor are used to
indicate critical data. If CR = 00 then the information
is non-critical and is saved in the normal fashion with
only one copy. If the data is critical, CR = 11, and
the data is stored in the dual redundant mode. If one
of the memory modules actually fail, the operating
system is able to turn off one of the CR bits, leaving
either CR = 01 or CR = 10. In either of these two cases,
the processor will then use only the single copy which
is indicated by the CR bits to be good. It is then
but a policy matter, depending on the convenience and
real time needs of the process, when to move the data
into good memory, or when to reconfigure the memory
system.

-112-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

N
o

n
-C

ri
ti

c
a
l

C
ri

ti
c
a
l

E
x

am
p

le
:

D
e
c
la

re
V

S
c
a
la

r
A

rr
a
y

(3
);

32
b

it
s
-
~

I I
3

2
b

it
s
~

It
~

i

V
(3

)
I

I W I

M
P

C
R

L
im

it

1
r-

"
A

R
3

--
2

-[
ll

lJ
;r

u
r-

"
-M

2
-a

-d
d

-r
-'

M
om

d
e
s
c
ri

p
to

r

V
(3

)

V
(2

)

V
(l

)

V
(3

)

V
(2

)
I

V
(2

)

V
(l

)
I

V
(l

)

E
x

am
p

le
:

D
e
c
la

re
C

C
h

a
ra

c
te

r
L

e
n

g
th

(5
)

;

M
2

M
P

C
R

L
im

it

I
~
h
l
~

M
om

D
e
sc

ri
p

to
r

M
2 =-

:
-
~
.
-
.
.
.
.

L
fJ

4
)

51
M

2
ad

d
r

L
im

it

0
0
I

C
R

P 11
M

M
om

d
e
s
c
ri

p
to

r

C
H

A
R

ll

F
ig

u
re

2
.4

-1
4

:
R

e
d

u
n

d
a
n

t
s
to

ra
g

e
o

f
C

r
it

ic
a
l

V
a
ri

a
b

le
s

In addition to the presence of the critical
bl.ts within any data descriptor, each process should
itself be able to be declared critical or non-critical.
If the whole process has been declared critical, then
all dynamic storage will be created critical when first
referenced and its critical bits set within the descrip
tor. This explicit declaration of a process as
critical allows for the use of a single system routine
(e.g., the SIN function) compiled in the non-critical
mode, while still guaranteeing the critical storage of
data during its execution by a critical process.

Compools in the MP architecture are bound to a
program upon being first referenced. This necessita
tes the identification of Compool descriptors (or the
descriptors of any unresolved entities) within the
stack. The X bits are used for this. When there is
no need for dynamic binding, these bits are set to 00.
When the Compool has yet to be referenced, the X bits
have a setting of 10. When the Compool reference is
resolved by the executive the bits are set to 11, and
the pointer field then directly points to the start
of the proper Compool stack.

b) Copy Descriptors

Whenever a descriptor has to be changed other than
by Memory Management; e.g., to obtain a sub-array or
to index an element of the array, a Copy descriptor
must be.made of the Mom descriptor. The initial diff
erencebetween Copy and Mom descriptors is in their
addressing field: while the Mom descriptor points
(by definition) to the M2 or M3 physical location
where its. segment is located, the Copy descriptor must
point to the Mom descriptor of which it is a copy.
The Copy descriptor's address-field is then in the
stack number-offset form and points to the Mom descriptor.

Since the Mom descriptor is truly a descriptor
of a segment and cannot be changed, any manipulation
which changes a descriptor must be performed upon a
Copy descriptor. The MP instructions have been designed
to allow a relative ease in the manipulation of arrays,
both of a single and multiple rank. In a multiranked
entity, it is necessary to maintain at least three quan
tities of particular interest to each rank. These are
the number of elements in the given rank, the offset
of where in the whole array the first element of this

-114-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

rank is located, and the spacing between each
succeeding element within the given rank. These
three quantities have been implemented in all Copy
descriptors by the LIMIT, ARRAY OFFSET, and DELTA
fields respectively. The LIMIT field length has been
chosen to be twelve bits, which corresponds to the
Mom descriptor's LENGTH field and allows for the
addressing of 4095 array elements. The ARRAY OFFSET
'field must, of course, be of the same size in order to
allow for array partitioning (sub-arrays). The DELTA
field is eight bits in length and allows for a separa
tion of 255 elements between the elements of any given
rank. This is more than sufficient for any reasonable
form of multiranked entity. If the array has' but a
single rank, then the spacing would be one element and
the DELTA field would be one. In a three-by-three
matrix, column vector elements are separated by a
spacing of three elements and therefore DELTA would be
three.

The most common array manipulation within current
HOLs is to index the array to obtain a single element.
Since all changes in descriptor information must occur
within a Copy descriptor, an index bit (I) is used to
indicate that indexing of the array has occurred.
When indexing has occurred, the ARRAY OFFSET has been
appropriately set to the index of the indicated array
element. Since further indexing or partitioning within
this rank of the array cannot occur, the LIMIT and the
DELTA fields are set to zero.

The Copy descriptor also contains the D bit, which
indicates multirank entities. If D is set then the

MOM PTR field points to the descriptor which gives the
next rank information. This rank information has
been initially obtained via the descriptor associated
with multiranked Mom descriptor. However, these descrip
tors are Copy descriptors (address fields are stack
number-offset), and can therefore be manipulated to
reflect both indexing and sub-arraying.

Copy descriptors also contain the access bit (A).
This allows copies to be more restrictive in their
access privileges than the Mom descriptor.

-115-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

2.4.2.2 Special Words. The special words used in the MP
instruction architecture are for information needed to
control the flow of program execution (see figure 2.4-15).

a) The program entry word (PEW) ind~cates the entry point
into a program segment. This allows for the possibi
lity of multiple entry points into a given program
segment. Since the lexical level-displacement form of
addressing found within a code segment is dependent
upon the lexical level of compilation and the current
name scope for proper interpretation, it is necessary
that the lexical level of the procedure to be entered
be identified. Since the offset into a program segment
is given in double words, an extra three bits are
necessary to identify the byte address within a double
word of the first operator to be executed upon entry to
a procedure. The last field in the PEW is a pointer to
the appropriate program segment to be executed. This
is given in the standard stack number-offset form.

b) The return entry word (REW) contains similar information
to the PEW. It contains a pointer to the appropriate
program segment, the double word and byte displacement
for the return entry point, and the lexical level of
execution upon return. This word, however, instead of
being statistically compiled, is dynamically created
whenever a procedure is entered to save the appropriate
linkage information with which to return.

c) The mark stack word (MSW) maintains the static and
dynamic environments of process execution. When a
procedure is called, its lexical level is placed into
the MSW and pointers are created to the previous
MSW, in order to link the dynamic environment and to
point to the previous MSW of the static name scope of
the procedure. The linkage to the "previous" MSW is
a simple matter of storing the address of the current
MSW when the new MSW is created. The static name scope
pointer is found to be that of the least name scope
which the two procedures have in common. This is the
lexical level at which the PEW for the new procedure
was known by the calling procedure. The RUPT field
is used by the software to designate interrupt response
override (see Section 3.3).

d) Information may be addressed dynamically by use of an
address word (ADW). This contains the stack number
offset form of address of the entity referred to. It

-116-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Figure 2.4~15: Special Words

IREW I !ByteG Entry Offse~segn\entPTR
1-5-_--6--.....-

3
.... 5 . 12 12 20

IIo-M_S_W-... ~~~
5 635

~~~ Link PTR

4 20

ISt~ck Link PTR I
20

IADW ~... ...__P-T-R---_I
5 1

PEW: Program Entry Control Word

~~: Lexical level of procedure to be entered
Segment PTR: Stack number-offset of program segment
Entry Offset: Double word offset within program segment to which

to transfer control
Byte: Byte identification within double word entry offset

REW: Return Entry Control Word

~~: Lexical level of procedure when control is returned
Segment PTR: Stack number-offset of return program segment
Entry Offset: Double word offset within return program segment

to which to return control
Byte: Byte identification double word return entry offset

MSW: Mark Stack Control Word

~~: Lexical level of indicated procedure
Stack Link PTR: Stack number-offset of previous MSW
~~ Link PTR: Stack number-offset of previous lexical level MSW

ADW: Address Word

A: Access Bit: either read/write or read only allowed
PTR: Address pointer in stack number-offset representation

-117-



is also possible to set the access bit (A) in an
ADW in order to make the referred-to information
read only.

2.4.2.3 Data. The MP instruction architecture recognizes
two basic forms of data: arithmetic and character.

a) Arithmetic Types

All quantities within the stack are maintained
in a 64 bit form. Four basic arithmetic types exist
within the MP architecture: a double preciston float
ing point form of 63 bits, a single precision floating
point form of 32 bits, a signed fifteen bit integer,
and a signed seven bit integer. The forms which they
take along with the transformation which occurs when
they are loaded into a stack are shown in Figure 2.4-16.

Since all quantities within the stack must be
maintained in a 64 bit form, the arithmetic types are
always maintained as 63 bit floating point quantities.
Bit 63 is used to indicate that the quantity in the
stack is a value. The other arithmetic types can only
be maintained by the use of the appropriate descriptor.

The exponent refers to the base two and is
maintained in a sign and magnitude form. The mantissa
is also of signed magnitude form and the radix point is
considered to be to the right of bit o. This form of
arithmetic allows an integer to be a proper subset of
floating point in such a way that when the exponent
is all zeros the low order bits represent an integer
in a straightforward manner. This immensely eases
literal creation and usage.

b) Character Types

All characters in the MP instruction architecture
are eight bits in length and must be addressed via a
descriptor. The actual bit form is not specified but
will vary depending upon actual implementation. For
example, the code may be either ASCII or EBCDIC. This
will depend upon the convenience of the other computer
systems with which the MP must interact. The only effect
upon the MP instruction architecture is in the character
to/from data convert instructions. This only need be
specified at implementation time depending upon the
constituent components then available.

-118-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



511011
I!~! ;1IDP. Floating
Cls mantissa B POl.nt -
,..._...._...... +- ~ .&.. stack and

1 storage

I I I, 1

I , mantissa Is, , I

I I !I I
• . I

Ie · I 1
OslO' I 0 ... 0 mantissa G
1 I · I I

SP Floating
Point 
storage

Stack

11 3 7 28 23 1

"

' jl 116 bit in-int. B teger or
_______--'- logical

15361011

1...~.....~__0 0 0 _....4.0~1 stack

1

G]8bit in
int B teger or

logical

!
l~~~_0---,--_0_'"._0---_--.J-IHStack

11 10 44 7 1

Figure 2.4-16: Arithmetic Type Formats and Mapping
to Stack

-119-



I I-
'

l\
J o I

E
x

p
o

n
e
n

t
R

an
g

e
In

te
g

e
r

P
re

c
is

io
n

B
it

s
B

a
se

1
0

B
it

s
D

iq
it

s

6
3

b
it

fl
o

a
ti

n
g

p
o

in
t

1
1

±
3

0
7

.2
5

1
1

5
.3

3
2

b
it

fl
o

a
ti

n
g

p
o

in
t

8
±

3
8

.4
2

3
6

.9

1
6

b
it

in
te

g
e
r

(i
n

c
!.

s
ig

n
)

--
0

1
5

4
.5

8
b

it
in

te
g

e
r

(i
n

c
l.

si
g

n
)

--
0

7
2

.1

In
te

g
e
rs

a
n

d
m

a
n

ti
s
s
a
s

a
re

re
p

re
s
e
n

te
d

in
si

g
n

e
d

-m
a
g

n
it

u
d

e
fo

rm

E
x

p
o

n
e
n

ts
a
re

a
ll

si
g

n
-m

a
g

n
it

u
d

e
to

th
e

b
a
se

tw
o

F
ig

u
re

2
.4

-1
7

:
A

ri
th

m
e
ti

c
T

y
p

e
P

re
c
is

io
n

a
n

d
R

an
g

e



2.4.3 Instruction Set Description

The design of the MP instruction architecture has been
based upon Polish instructions with implicit operands
This basic principle has been modified where experience and
judgement have indicated some moderation can enhance perform
ance. In the Polish string there are two basic entities to
separate within the execution sequence: operators and operands.

Operands, as implemented, take two forms: either they
refer to variables or else they refer to literals. Literals
have been implemented in a way to most compact the code accord
ing to currently known statistics of their usage, and are
found completely within the program segment itself. Variable
operands have been designated as operand meta-operators since
they are logically operands, but actually manipulate the
stack.

The operators in general obtain their operands from
the appropriate number of locations at the top of the stack.
The stack locations in the description of the operators and
operands will be called T for the top of stack, T2 for next
to top of stack, T3 for the one below T2, and so forth. The
design of the particular set of operators designated depends
on the fact that the top registers of the stack are implemented
in hardware, and that this number of locations is at least
eight (T, T2, T3 .•• T8). Unless otherwise stated, the
operand used by an operator in the following descriptions is
purged from the stack upon execution of the operator, e.g.,
the ADD operator adds together the values of T and T2, purging
both, and places the resultant value into T.

2.4.3.1 Automatic Fetch and Automatic Store. The differen
tiation between names and values is maintained within the
stack. This allows the execution of operators to perform
automatic fetching and/or automatic storing if the operand
so indicates. While it is possible for the execution of an
operator to follow a chain of addresses for an indeterminate
length, this would have very deleterious effect upon the
execution time characteristics of the MP. With the
appropriate implementation of a HOL compiler the indirection
should contain no more indirection than one ADW with a possible
following descriptor. The main cause of indirection when a
HOL is used is in the passage of formal parameters. When a
parameter in a called routine is in turn a "call by reference"
paramet~r in the calling routine, many HOLMs would implement

-121-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, M~SSACHUSETTS 02138 • (617) 661-1840



this by the generation of an extra level of indirection. In
the MP instruction set the Copy meta-operator has been explicitly
provided for this purpose. If the parameter to be passed to
a called routine is a parameter to the calling routine, then
the Copy meta-operator will pass this information, whether
value, descriptor or ADW without any extra indirection (Figure
2.4-18) .

While the automatic fetch function and the equivalent
automatic storage function are extremely useful in the imple
mentation of a HOL, it is essential that the Operating System
be able directly to manipulate any entity as an object irres
pective of its value/name function. For example, in the
overwriting of information pertinent to memory management,
and in the initialization of information which may otherwise
have extraneous tag bits in the given memory cell. To this
end the STDI and STNI operators have been provided for over
riding the automatic store feature of the architecture. These
instructions will store destructively or non-destructively
immediately to the address indicated without any further
level of indirection.

2.4.3.2 Operand Meta-Operators. There are four operand
meta-operators used for the fetching of operands, or
for creating an address pointing to them.

COpy

GET

ADR

ADRE

The lexical level-displacement address of the
operator is changed into a stack number-offset
address. The contents of the location thus
addressed is placed into T.

The lexical level-displacement address of the
operator is changed into a stack number-offset
address. The indicated value is fetched. If
the entity addressed is not of rank zero, its
descriptor is reduced to rank zero by using
stack-top entries as index values until the
rank is zero. The value is then placed into T.

The lexical level-displacement address of the
operator is changed into a stack number-offset
address. An ADW with this address is placed
into T.

The lexical level-displacement address is changed
into a stack number-offset address. If the

-122-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



A: PROCEDURE ;

DECLARE X SCALAR;

CALL B (X) ;

B: PROCEDURE (y) ;

-DECLARE Y SCALAR;

CALLC (Y);

L
PROCEDURE (Y);

DEC~:.ARE Z SCALAR;

END;

END;

Figure 2.4-l8a:

MKS
ADRY
ADR C
ENTR

Example of Code

MKS
COpy Y
ADR C
ENTR

ADW Address Y

REW

MSW

ADW Address X

REW

MSW

0 Value ftX II

REW

MSW

DECLARE Z

DECLARE Y

DECLARE X

ADW Address X

!
REW

MSW

ADW Address X

REN

~
MSW

0 Value "X"

REW

MSW

DECLARE Z

DECLARE Y

DECLARE X

Figure 2.4-l8b: Execution
Sequence for CALLC(Y)
Without COPY

-123-

Figure 2.4-l8c: Execution
Sequence for CALL C(Y)
With COpy

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



addressed entity is a descriptor, the descriptor
is fetched. The descriptor is reduced to rank
zero by using stack-top entries. The final
indexed descriptor of an element is then placed
into T.

2.4.3.3 Array Operations and Memory Operations. Current HOL
usages cannot accurately reflect the need or desire for array
operations. It is not possible to obtain probable array usage
statistics since current HOLs do not, in general, have array
operations of any significance. The MP has been provided with
several basic storage, arithm~tic, and logical operators which
can be used in array manipulation.

The main difficulty in the implementation of
array operators is the need for large temporaries, with
corresponding allocation and de-allocation requirements.
In the case ot character string manipulation, these basic
operations can be successfully handled with low overhead by
the automatic maintenance of temporaries. The method employed
is fully discussed below in the section on Data Field Manipu
lations (2.4.3.10). General array operators, such as the
addition of two arrays, are not amenable to as easy a solution,
particularly when fault tolerance must be maintained.

In order to avoid complexities in the implementation
of temporaries, all operators which work upon arrays must
necessarily indicate a receiver for the result. Therefore,
all of the store operations are able to work with arrays.
The MP dyadic arithmetic operators also have been provided
with a triadic form, where the third operand is the receiver.
Triadic operators also exist for the logical "and", "or",
and "exclusive or" operators.

The array operators may operate on various combinations
of operands. The operands may all be single valued, as is the
normal case. The operands may all be arrays, in which case
the rank and dimensions of each of the operands must match.
There may be a combination of arrayed and single element
operands. In this case, the receiver operand·must be arrayed
and either one, both, or neither of the input operands may
have the same rank and dimension.

All of the store operators (2.4.3.6) may act as array
operators. Those arithmetic and logical operators which are
allowed to be array operators are implemented by having a

-124-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



prefix syllable to the appropriate operator. These prefix
syllables are of two forms.

STT

STT3

T2 and T3 provide the operands for the
operator immediately following STT. The
result of that operation is stored into the
location indicated by T.

T and T2 provide the operands for the operator
immediately following STT3. The result of
that operation is stored into the location
indicated by T3.

Figure 2.4-30 provides a list of those operators allowed
to appear after STT or STT3. The usage of STT versus STT3
depends upon the parse algorithm and temporary usage policy
of a given HOL compiler.

Besides providing the possibility for array operations,
STT and STT3 are defined to lock out of memory the other
processors until the completion of the operation, when the
input operands have single element values. This allows the
contents of a memory location to be obtained, manipulated and
restored as an integral operation without the interference
of other processors. This is in effect a lock with a memory
operator and is extre~ely useful in a MP system.

2.4.3.4 Literals. Literals are used for loading into the
stack information which is known at compile time. This infor
mation can be either for numeric values, bit constructions
or for control flow. There are two basic forms of literals:
one loads the literal information immediately into T from the
program string, while the other has an address relative to
the operator from where the literal is to be loaded into T.

LTS4

LTSIO

LTS15

LT32

load the indicated signed four bit integer
value into T

load the indicated signed ten bit integer
value into T

load the indicated signed fifteen bit integer
value into T

load bits 0 to 31 of T with the indicated 32
bit value. Set bits 32 to 63 of T to zero.

-125-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



LT32F

LT64

LTS7M

LTLD

LTLDX

load the indicated 32 bit single precision
floating point scalar into T

load the indicated 64 bit value into T

load the indicated signed seven bit integer
values into each succeeding T. The number of
operands may be two, three, four, or five.

This instruction loads a literal from the
. program segment as.. indicated by a program
segme~t relative address. The literal address
may be either specified by a signed fifteen
bit integer operand or, if this is not present,
the value of T. The instruction must specify
if the literal to be loaded is either a signed
seven bit integer value, a signed fifteen bit
integer value, a 32 bit floating point value,
or a 64 bit quantity. This instruction can
be used for the efficient pooling of large
literals.

This instruction is similar to LTLD but allows
an index to be added to the literal load
address, and checks the index value with a
specified limit. The T and T2 (or if the
program segment literal address is found at
T, then T2 and T3 respectively) contain the
index limit and the index value respectively.
T and T2 are integerized. If T2 is greater
than zero and less than T, then T2 is to be
considered the index. If T2 is less than or
equal to zero, zero is to be considered the
index. If T2 is greater than or equal to· T,

. then T is considered the index.

The index is multiplied by the byte width
of the literal to be loaded. This value is
added to the literal address, and the speci
fied literal is then placed into T.

2.4.3.5 Name Manipulation. The MP instruction architecture
has been designed so that single operand elements may be
either fetched or addressed by the use of one of the operand
meta-operators. This is accomplished by a process of automatic
indexing (ADRE and GET). However, it is necessary to be
able to manipulate general data structures not envisioned as

-126-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



'mu1tirank arrays of one of the five basic data types, and to
be able to partition the arrays of these basic forms. There
fore, several operators have been included so that it is pos
sible to load the next entity of an address chain, index a
descriptor, and to change the array limit or offset (Figure
2.4-19).

LOAD

LDRI<

INDX

LIM

Using the address field of T place that to
which it is pointing into T. If this is
a Mom descriptor change it into a Copy
descriptor.

In order to maintain the appropriate number
of descriptors for a mu1tiranked entity, this
operator will not only load the next piece
of information, but if the current rank has
been indexed, its offset value will be com
bined with the offset value of the descrip
tor of the next rank.

1) If T contains an ADW, fetch that to
which it points. If this is an ADW or a Copy
descriptor, place it into T. If this is a
Mom descriptor place the descriptor into T
and make it into a Copy descriptor.

2) If T contains a Copy descriptor which has
been indexed, and if that which is pointed to
is a descriptor, then use the ARRAY OFFSE~

field of the indexed descriptor and add to
the ARRAY OFFSET field of the new descriptor.
Place this new descriptor into T.

3) If T contains a descriptor which has not
been indexed, and if that which is pointed
to is a descriptor, then place T into T2
and place the new descriptor into T.

T2 must indicate* a descriptor. Index this
descriptor by the integerized value in T,
set the index bit (I) of the descriptor,
and set the DELTA field and LIMIT field to O.
If the value of T exceeds the LIMIT field
this causes an index error. The modified
descriptor is placed into T.

T2 must indicate a descriptor. Change the
LIMIT field of the descriptor by the inte-

*"indicate" is used in this context to mean "contain or point to".

-127-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Example: M2 TO 3, 3 TO 5

ADR MRD Matrix M row descriptor

LDRK Load first rank information

LTS4 2 Change offset of first rank

AROF

LTS4 2 Set new rank limit

LIM

LDRK Load next rank information

LTS4 3 Change offset of this rank

AROF

LTS4 3 Set new rank limit

LIM

Figure 2.4-19: Manipulating Multiple Ranks

-128-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



AROF

gerized value of T. If the value of T exceeds
the LIMIT field, this causes an index error.
The modified descriptor is placed into T.

T2 must indicate a descriptor. The integer
ized value of T must be less than the LIMIT
field of T2. If the value field of T exceeds
the LIMIT field this causes an index error.
The integerized value of T minus 1 multiplied
by the DELTA field is added to the ARRAY
OFFSET field of T2 and placed back into the
ARRAY OFFSET field of the descriptor. The
modified descriptor is placed into T.

2.4.3.6 Store. The ability to place information into a variable
is accomplished by the store instructions. In order to imple
ment HOLs with multiple receivers two forms of stores are
provided: one has the normal stack purge effect with its operands;
the other saves the sending value and only purges the receiver
address.

Provision has been made for store instructions which
use the receiver address as the storage address, ignoring
any tag bits located there, overriding the automatic store
feature. Similarly they send the entity located in the stack,
overriding the automa~ic fetch mechanism.

STD

STN

STDI

STNI

BSR m,n

Store the value indicated by T into the
location indicated by T2.

Store the value indicated by T into the
location indicated by T2. Leave T2 value
in T. (Do not purge receiver address.)

Store the 64 bits of T2 into the location
indicated by T and override the autostore
mechanisms.

Store the 64 bits of T2 into the location
indicated by T and override the autos tore
mechanism. Place T2 into T.

Store the m low order bits of the value
indicated by T2 into the value indicated
by T starting at bit position n.

All of the Store operators may be used for array
operations.

-129-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



2.4.3.7 Arithmetic Manipulation. The MP has a basic set
of mathematical operations which correspond to those normally
needed. They act upon 63 bit double precision floating point
operands taken from the stack.

ADD

SUB

MUL

DIV

CHSN

T and T2 are added. Result is placed into T.

T is subtracted from T2. Result is placed
into T.

T and T2 are multiplied. Result is placed
into T.

T2 is divided by T. Result is placed into T.

The mantissa sign of T is changed and the new
value is placed into T.

The ADD, SUB, MUL and DIV operations may be used
with the STT and STT3 array prefix operators.

2.4.3.8 Logical Manipulations. There are three basic
classes of logical manipulations: relational operations,
logical operations, and bit manipulation

a) Relational Operators

There are usually six basic arithmetic relationals:
equal, not equal, greater than, less than or equal
(i.e., not greater than), greater than or equal, and
less than (i.e., not greater than or equal). In the
MP instruction architecture the result of a relational
operator is considered to be a boolean which has a
truth function value of true or false. This is imple
mented by placing a 1 or 0 respectively into T. This
mechanization then allows for the immediate manipulation
of the truth function value in compound relational
statements by means of the logical operators. Since
code is to be produced by a compiler, it has been felt
advantageous to implement only three of the arithmetic
relationals, and to implement both a branch on true and
on false. The compiler is then able to implement the
correct conditional or branch condition while reducing
the number of operators needed. (Even in the worst
case of a non-judicious choice of compound conditionals,
the use of the single byte logical "not" operator is no
penalty compared to the savings realized with these
operators in the general case.)

-130-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Besides the arithmetic relational operators,
a logical identity operator has been implemented for
bit patterns. Character data will be able to use the
three arithmetic operators since all character data
must be referenced via a CHAR descriptor and is there
fore easily identified. The comparison in this case
is of normal dictionary form, where the exact ordering
of the alphanumeric and special characters will depend
on the character code used.

EQUL

GREQ

LSEQ

SAME

T and T2 are compared. If they have"the
same algebraic value, a one is placed into
T, otherwise a zero is placed into T.

T2 is compared to T. If T2 is greater than
or equal to T algebraically, then a one is
placed into T, otherwise a zero is placed
into T.

T2 is compared to T. If T2 is less than or
equal to T algebraically, then a one is placed
into T, otherwise a zero is placed into T.

T and T2 are compared. If they have the
same logical bit value a one is placed into
T, otherwise a zero is placed into T.

b} Logical Operators

These operators are used to perform logic
operations upon the two top of stack entries, on
a bit-by-bit basis.

LAND

LOR

LXOR

LNOT

T and T2 are logically "and"-ed together.
The result is placed into T.

T and T2 are logically "or"-ed together.
The result is placed into T.

T and T2 are "exclusively or"-ed together.
The result is placed into T.

T is complemented on a bit-by-bit basis
and the result is placed into T.

-131-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



c) Bit Manipulation

There are three basic reasons for bit manipulation
within a word. One is to be able to set, reset, or
change a particular bit; the second is to be able to
move (shift) a field within a word; and the third is
to be able to move a bit field from one word, into
another bit field in another word.

When the hardware part of the "top of stack" is
large enough to contain multiple operands (e.g., an
8 deep hardware stack), then the difference between
prefix, postfix and infix operations becomes negligible
as far as the execution characteristics of the hardware
is concerned. As illustrated in Section 2.3.3 the
hardware part of the stack can be considered a "look
ahead" mechanism.

BSETL

BRSTL

BCHGL

BTSTL

BSET

BRST

BTRN

BLD

n

n

n

n

m,n

Set bit position n of T to 1. Place
result into T.

Reset bit position n of T to O. Place
result into T.

Complement bit position n of T. Place
:r:esult into T.

Test bit position n of T. Leave value
of T. Set condition code in status register.

Set bit position indicated by T in T2
to 1. Place result into T.

Reset bit position indicated by T in T2
to O. Place result into T.

Transfer the number of bits indicated by
T, starting at bit position indicated
by T2 from value indicated by T4 into the
value indicated by T5 starting at bit
position indicated by T3. Place result
into T.

Place m bits starting from bit position n
of the value indicated by T into T.

-132-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840



BOUT m,n Place m bits starting from bit position
n of the contents of T into the low order
bits of T.

BIN m,n Place the n low order bits of
indicated by T into the m bit
starting at position n in T2.
new value into T.

the value
positions
Place this

2.4.3.9 Flow Control. Flow control within the MP instruction
architecture has been designed to satisfy the requirements of
modern HOLs: alternate choice, modularization, and interaction
control.

a) The primary method of flow control within a computer
is the conditional branch. Branches within a given
program segment can be accomplished by relative address
ing with respect to the current operator location.

JOT

JOF

JMP

JCC m

If T2 has bit 1 set to one, add the value
of T to the instruction location counter.
In either case T and T2 are purged.

If T2 has bit 1 set to zero, add the value
of T to the instruction location counter.
In either case T and T2 are purged.

Add the value of T to the instruction
location counter.

The low order four bits (bits 3-0) of mare
associated with the value of the two-bit con
dition code. If the bit which corresponds to
the condition code value is a one, then add
the value of T to the instruction counter.

b) The modularization of programs is accomplished-by a
standard enter and return mechanism. Since formal
parameters are passed as the first entries of the
called procedure, there is of necessity a separate
instruction used to create the control words (MSW, REW)
within the stack, distinct from the actual instruction
which causes entry into the called procedure.

PRCS The process operator is used to create
a new stack and therefore a new dynamic
environment. T indicates a GEN descriptor

-133-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



MKS

ENTR

RTRN

EXIT

for the new stack. T2 indicates an
integer value to be used as the stack
number. Any values left in the hardware
part of the ~ack are pushed into the memory
portions of the old stack.

Place a MSW and REW into T2 and T
respectively.

T should indicate a PEW. Enter the
called segment via this PEW. The previous
MSW and REW in the stack now have their
linkage fields appropriately set.

Return via the current REW, reinitializing
the stack to the previous procedure level
and preserving the contents of T.

Return via the current REW, reinitializing
the stack to the previous procedure level.

c) The looping control for DO FOR statements has been
implemen~ed by the use of a single operator with
appropriate operands. The actual implementation of the
FOR operator in the laboratory model can be modified
depending upon the semantics of the loop control in the
implemented HOL. It has been assumed here that the
semantics correspond to that of the DO FOR statement
of HAL.

FOR This operator uses either four or five
operands from the stack. The number of
operands corresponds to the initial execu
tions of loop control. These two types
of execution are differentiated by requiring
T3 to be a value operand of the initial
value for the initial execution phase,
while T3 must be the address of the loop
variable for the successive execution
phases. Figure 2.4-20 and 2.4-21 show
the state of the stack upon execution of
the FOR operator, a flow chart of its
execution and an example of its usage.

d) The implementation of computed GO TO or DO CASE state
ments is provided by the use of a combination of
branch instructions and the literal load and index

-134-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



a) Syntax of FOR Statement:

DO FOR <variable> = <initial> BY <increment> TO <limit>;

b) Appearance of Stack:

i) Prior to first iteration ii) Subsequent iterations

-

0 value

0 value

1 address

0 value

T <limit>

T2 <increment>

T3 <variable>

T4 branch address
to end

0 value

0 value

0 value

1 addresE
0 value

T4 <varia~le>

T5 branch address to
END

T <limit>

T2 <increment>

T3 <initial>

e) Example of Compiled Code:

i) Simple FOR loop

DO FOR I = 0 BY 1 to 10
(code)

END;

ii) Complex FOR loop

DO FOR I = (expression i)
BY (expression j) TO

(expression k)
(code)

END;

LTSIO (number of bytes
from here to loop)

JMP
LTSIO (number of bytes

from here to loop)

LTSIO (number of· bytes
from for to end)

ADR I ---
(expression i)

loop (expression j)
. (expression k)
FOR
(code)

for

(number of bytes
from for to end)
I
o
1
10

LTSIO

ADR
LTS4
LTS4
LTS4
FOR

(code)
for

here
here JMP

end end

Figure 2.4-20: Example of FOR Instruction Execution

-135-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Yes

Initial
Execution

Set variable (T4)
to T3 value

Purge T3

+,0

<Relation> = u>u

True

finished

No

Successive
Execution

Set variable (T3)
to variable (T3)+T2

<Relation> ="<U

False

loop

Add T4 to instruc- (jump)
tion counter

Purge T, T2, T3, T4

Purge T, T2

Figure 2.4-21:

-136-

FOR Flow Chart

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



(LTLDX) instruction. Figure 2.4-22 shows an example
of a DO CASE implementation where the semantics of the
DO CASE are such that if the case variable is out of
range, the ELSE part of the statement will be executed.

2.4.3.10 Data Field Manipulation. The basic data types in the
MP instruction architecture are character, floating point
and integer. Integers are an implicit subset of floating
point. The conversion between the different precision floating
points and integers is implicit within their references through
descriptors. There is also the facility for explicit conversion
between different data types and for the recovery of data types
which are the proper subset of another type.

INTT

INTR

FRAC

T is integerized by truncation. The
result is placed into T.

T is integerized by rounding. The
result is placed into T.

The integer part of T is purged and the
fractional part is placed into T.

Arithmetic-to-character and character-to-arithmetic
conversions are standardized within the MP instruction archi
tecture. The exact details of the conversion may be varied
with a particular HOL implementation, but the basic instruction
structure is identical. The manipulation of character strings
within the MP'can be effected by sub-string (sub-arraying)
and concatenation operations.

CCAT T and T2 indica,te CHAR descriptors. The
character string indicated by T is
concatenated to that indicated by T2.
The result of the concatenation is placed
into the process string area and a descrip
tor of this concatenated string is created
and placed into T.

An examination of the definition of CCAT illustrates
the general problem of string manipulation: there must be a
temporary work area available to the processor for the mani
pulation of the temporarily created concatenated character
strings until such time as they are used and then purged.

-137-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



a) Example of DO CASE

DO CASE X;

ELSE (case out of range) ;

A: (code for case A) ;

B: (code for case B) ;

c: (code for case C) ;

END;

b) Compiled Code for above DO CASE

1) Instruction

GET
LTS4
LTLDX

JMP
else .

X
(number of entries in lit. table)
(rel. pas. of lit. table), (byte width of

lit. table)

(code for case out of range)

A

B

C

LTS4,lO(bytes to end from here)
JMP

(code for case A)

LTS4,lO (bytes to end from here)
JMP

(code for case B)

LTS4,lO(bytes to end.from here)
JMP

(code for case C)

LTS4,lO (bytes to end from here)
JMP

end

2) Table of Integers

lit. table o
(bytes from A to else)
(bytes from B to else)
(bytes from C to else)
o

Figure 2.4-22: Example of DO CASE Execution

-138-
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



There are two basic choices available for this
temporary manipulation; either the compiler can generate
temporaries statically, and hence simply provide an extra
operand for those character (or array) operators that need
temporaries, or else the allocation of the temporaries is done
dynamically by the processor. It is this latter method that
the MP instruction architecture proposes.

Figure 2.4-23 shows the initial usage of the character
string temporary work area. The current stack has within it,
at a system-wide defined displacement, a descriptor of the
character string work area. In the figure the offset relative
to the stack number is indicated as ~ (delta). Besides this
Mom CHAR descriptor, a Copy descriptor is located at ~ + 1
for use of the operators which need the temporary work area.
The character string work area is assigned as needed, alter
nating from the bottom and the top of the array. Within the
Copy descriptor "a" indicates the offset at the bottom of the
work area from which the next temporary area may be assigned.
Similarly, "b" represents the top location currently in use;
consequently the area assigned from the top end cannot exceed
this offset value. It will be noted that the first entry of
the-temporary stack is an initial Copy descriptor.

In Figure 2.4-24 the manipulation of the work area
needed in the calling of procedures is shown. When a proce
dure specifying a character temporary area is entered, the
Copy descriptor is stored into the temporary area. The ARRAY
OFFSET field of this stored descriptor is set to the ARRAY
OFFSET field of the Mom descriptor. The stored descriptor
is thereby effectively linked back to the previous stored
descriptor. The Mom descriptor then has its ARRAY OFFSET
field set to the Copy descriptor's ARRAY OFFSET field and hence
is an effective pointer to the just stored descriptor. The
Copy descriptor then has its ARRAY OFFSET field incremented
to point to the first free area after the stored descriptor.

When a monadic character operator is executed and
the oper~nd itself is not a temporary, then either end of the
temporary array area may be used for the needed temporary
storage. If the operand is a temporary, then the other end
of the temporary area provides for temporary storage.
Similarly, with dyadic operators, the only problem that could
arise is when both operands are temporaries. In this case,
since the only character dyadic operator is concatenate,
the first operand will remain with the second operand conca
tenated to it if the first operand is at the bottom.

-139-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



b

I I-
'

ol:
>o o I

C
h

a
ra

c
te

r
s
tr

in
g

"
te

m
p

o
ra

ry
'

w
o

rk
a
re

a

C
o

p
y

M
or

n

C
H

A
R

C
H

A
R

a o

b 1
·

s
ta

r
t

o
f

S
ta

c
k

F
ig

u
re

2
.4

-2
3



b
O

b
I

1
1

7
A

»
»

»
,,

,
1

7
»

J
b

n
-l

..
}
1

'
,
1

1

b
n

I
I

r-
u

rr
e
n

t
M

SW

I
~ oIl

oo ..... I

b.

an a
n

-I

a

C
h

a
ra

c
te

r
S

tr
in

g
"T

em
p

o
ra

ry
"

W
or

k
A

re
a

S
ta

rt
o

f
S

ta
c
k

F
iq

g
re

2
.4

-2
4



Otherwise, the final operand will be moved to its new loca
tion at the top, and the second operand becomes concatenated.

ITOC

STOC

CTOI

CTOS

T is integerized and then converted to
the normal character string equivalence.
It is stored in the character string tem
porary area,. the descriptor pointer to
this character string is created and placed
into T.

T is converted to the normal character
string equivalence and stored in the charac
ter string temporary area. A descriptor
pointing to this character string is created
and placed into T.

T indicates a CHAR descriptor. The indi
cated character string is converted to an
integer and is placed into T. '

T indicates a CHAR descriptor. The indi
cated character string is converted to a
scalar and is placed into T.

The standardized form of character scalar or integer
input to the character conversion instructions is as follows.

STANDARD ARITHMETIC INPUT FORM :=

~ {[+] 1 -}~ scalar ~ [E ~ [+] I -} ~ integer ~]

scalar: ={integer. [integer] I [integer] .integer}

integer: ={digit} [digit] .••

digit: = 1121314151617181910

In the above notation, the braces { } indicate that which is
contained must be present. The brackets r ] indicate that
which is contained is optional. The line I indicates an option
"or". The dots .•• indicate a repeat of the proceeding item
of any length. ~ denotes zero or more spares or blanks.

This syntax then defines the form of arithmetic charac
ter string which will be converted into the internal arith
metic form by the character conversion operators. Figure 2.4-25
gives several examples of the allowable forms.

-142-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



ST
A

N
D

A
R

D
A

R
IT

H
M

E
T

IC
IN

P
U

T
FO

R
M

:
=

15
{

[+
]
I-

}
"t

t
s
c
a
la

r
"b

[E
15

"
{

[+
]

I-
}

1
r

in
te

g
e
r

0
]

s
c
a
la

r:
=

{
in

te
g

e
r[

·i
n

te
g

e
r]

I[i
n

te
g

e
r]

·i
n

te
g

e
r}

in
te

g
e
r:

=
{

d
ig

it
}

[d
ig

it
]

••
•

d
i3

it
:

=
{

1
1

2
/3

1
4

1
5

1
6

1
7

1
8

1
9

1
0

}

I I-
'
~ w I

-
2

.3
E

1
0

2
+

.0
1

E
-

8
+

1
0

0
.3

1
2

E
5

F
ig

u
re

2
.4

-2
5

:
E

x
am

p
le

s
o

f
S

ta
n

d
a
rd

A
ri

th
m

e
ti

c
In

p
u

t
F

o
rm



The standard arithmetic output form is of two kinds
depending on whether the conversion is from an integer or
scalar.

STANDARD INTEGER OUTPUT FORM :=

{+I-} integer

The length of the character string output is that of the number
of digits needed to represent the integer plus the sign charac
ter. If the integer has value of zero the form is simply +0
or -0 depending upon sign.

STANDARD FLOATING POINT OUTPUT FORM :=

{+I-}. integer E{+I-} integer

The exponent integer always contains 3 digits with leading
zeros as necessary. The mantissa integer contains the number
of digits needed for representation, but in no case exceeds
16 digits. Figure 2.4-26 shows an example of these forms.

2.4.3.11 System Considerations. This group of instructions
meets several requirements associated with MP instruction
architecture, MP hardware implementation, MP module intercon
nections, and MP I/O communications.

a) InstruGtion Architecture Requirements

The manipulation of the stack is required to
reverse the wrong order of entries within the stack,
or to override the normal self purging feature of the
stack upon usage.

XCH

DLET

DUPL

NOP

T andT2 exchange places.

T is purged.

T is placed into both T and T2.

No operation. This is sometimes needed
as a filler for compiler convenience.

-144-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



ST
A

N
D

A
R

D
IN

T
E

G
E

R
O

U
T

PU
T

FO
R

M
:

=
{+

I-
}

in
te

g
e
r

ST
A

N
D

A
R

D
FL

O
A

T
IN

G
P

O
IN

T
O

U
T

PU
T

FO
R

M
:

=
{

+
I-

}
·i

n
te

g
e
r

E
{

+
I-

}
in

te
g

e
r

V
A

LU
E

IN
T

E
G

E
R

O
U

T
PU

T
FO

R
M

C
H

A
R

A
C

TE
R

S
T

R
IN

G
LE

N
G

TH
FL

O
A

T
IN

G
P

O
IN

T
O

U
T

PU
T

FO
R

M
C

H
A

R
A

C
TE

R
S

T
R

IN
G

LE
N

G
TH

I .... ~ (J
I I

1
0

+
1

0
3

+
.,

1
E

+
0

0
2

8

1
+

1
2

+
.1

E
+

0
0

1
8

0
+

0
2

+
.O

E
+

O
O

O
8

.0
2

3
-
-

-
-

+
.2

3
E

-0
0

1
9

-1
5

,9
8

3
-1

5
9

8
3

6
-.

1
5

9
8

3
E

+
0

0
5

1
2

-1
/3

-
-

-
-

-.
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
E

+
0

0
0

2
3

F
ig

u
re

2
.4

-2
6



b) Hardware Implementation

These instructions control the actual running
of the MP system, and allow hardware functions at a
lower level than the MP instruction architecture
to be handled.

IDLE

HALT

LDPR

STPR

A processor idles until such a time as it
is assigned a process, either directly
by the operating system, or because of
an interrupt.

A processor is brought to a non-execution
phase until it is explicitly restarted,
either by the operating system or by
operator intervention.

T indicates one of the processor hardware
register. Place the 64 bit value of the
hardware register into T.

T indicates one of the processor hardware
registers. T2 is a 64 bit quantity. Store
the 64 bit quantity in T2 into the processor
hardware register indicated by T.

c) Network Interconnections

These instructions allow communication and inter
actions among the different active modules of the MP
system. Several of these instructions are needed to
handle the concurrent execution of two or more processes
in the MP system.

STLD

LDID

IPC n

Store the value indicated by T2 into the
location indicated by T. During the same
memory cycle the contents of the memory
location indicated by T are read and
placed into T.

The unique identification of the processor
is placed into T.

Transmit over the IPCB the first n bytes
contained in the stack. This is used to
enable interprocessor communication.
This instruction can be used to communicate
all the commands necessary to the I/O and
other processors.

-146-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



O
PE

R
A

N
D

M
E

T
A

-O
PE

R
A

T
O

R
S

A
R

IT
H

M
E

T
IC

M
A

N
IP

U
L

A
T

O
R

S
FL

O
W

C
O

N
TR

O
L

A
R

R
A

Y
A

N
D

M
EM

O
RY

L
O

G
IC

A
L

M
A

N
IP

U
L

A
T

IO
N

S

F
ig

u
re

2
.4

-2
7

:
In

s
tr

u
c
ti

o
n

R
e
p

e
rt

o
ir

e

EQ
U

L
G

R
EQ

L
SE

Q
::;

A
M

E
LA

N
D

LO
R

LN
O

T
B

SE
T

L
B

R
ST

L
B

C
H

G
L

B
T

ST
L

B
SE

T
B

R
ST

B
TR

N
B

LD
B

O
U

T
B

IN
X

CH
D

L
E

T
D

U
PL

N
O

P
ID

L
E

H
A

LT
L

D
PR

S
T

P
R

ST
L

D
L

D
ID

IP
C

n

IN
T

T
IN

T
R

FR
A

C
C

C
A

T
IT

O
C

ST
O

C
C

T
O

I
C

T
O

S

JO
T

JO
F

JM
P

cr
cc

m
PR

C
S

M
K

S
E

N
T

R
R

TR
N

E
X

IT
FO

R

SY
ST

E
M

S
C

O
N

SI
D

E
R

A
T

IO
N

D
A

TA
F

IE
L

D
M

A
N

IP
U

L
A

T
IO

N

m
In

}
m

,n
m

,n~l

S
T

T
S

T
T

3

A
D

D
SU

B
M

U
L

D
IV

C
H

SN

L
T

S
4

L
T

S
IO

L
T

S
IS

L
T

32
L

T
32

F
L

T
64

L
T

S7
M

L
T

L
D

LT
LD

X

ST
D

ST
N

S
T

D
I

S
T

N
I

B
ST

m
,n

LO
A

D
LD

R
K

IN
D

X
L

IM
A

R
O

F

C
O

PY
G

ET
A

D
R

A
D

R
E

ST
O

R
E

L
IT

E
R

A
L

S

N
A

M
E

M
A

N
IP

U
L

A
T

O
R

S

I I-
'

.e:
.

-.
,J I



lO
O

p
p

p
p

p
pi

0
I

m
m

m
m

m
m

lO
O

n
n

n
n

n
n

I

lo
o

p
p

p
p

p
pi

I
0

m
m

m
m

m
m

JO
0

n
n

n
n

n
n

I

lo
o

p
0.
p

p
p

p
i2J

0
0

m
m

m
m

m
mJ

0
0

n
n

n
n

n
n

I

lo
o

p
p

p
p

P
p

i
I

I
m

m
m

m
m

m
lO

O
n

n
n

n
n

n
I

v
..

v
p

ro
v

id
e
s

c
o

d
e
s

FO
R

M

I0
0

v
v

v
v

v
v

i

O
PE

R
A

T
O

R
B

Y
TE

LE
N

G
TH

a)
A

ll
In

s
tr

u
c
ti

o
n

s
(e

x
c
e
p

t
I

th
o

s
e

b
e
lo

w
)

b
)

E
x

c
e
p

ti
o

n
a
l

In
s
tr

u
c
ti

o
n

s

B
ST

m
,n

3

B
LD

m
,n

3

B
O

U
T

m
,n

3

B
IN

m
,n

3

m
.•

•
m

b
it

fi
e
ld

le
n

g
th

I I-
'
~ C

D I

B
S

E
T

L
n

2

B
R

ST
L

n
2

B
C

H
G

L
n

2

B
T

S
T

L
n

2

n
•
.•

n
s
ta

r
ti

n
g

b
it

p
o

s
it

io
n

I
0

0
q

q
q

q
q

q
l

0
0

n
n

n
n

n
n

I

I0
0

9
9

9
9

g
91

0
I
n

n
n

n
n

n
I

I0
0

9
9

9
9

9
91

1
0

n
n

n
n

n
n

I

]
0

0
9

9
9

9
g

91
1

I
n

n
n

n
n

n
I

n
••

•
n

b
it

p
o

s
it

io
n

JC
C

m
2

10
0

r
r

r
r

r
rr

o
=

o
0

0
m

m
m

m
I

m
•
..

m
m

as
k

b
it

s
F

ig
u

re
2

.4
-2

8
:

S
ta

n
d

a
rd

O
p

e
ra

to
rs



F
ig

u
re

2
.4

-2
8

(c
o

n
ti

n
u

e
d

)

O
PE

R
A

T
O

R
B

Y
T

E
LE

N
G

TH
FO

R
M

c}
O

p
e
ra

n
d

M
e
ta

-O
p

e
ra

to
rs

C
O

py

G
ET

A
D

R

A
D

R
E

2 2 2 2

I1
0

0
a

a
a

a
a
l

a
a

a
a

a
a

a
a

I
I1

0
1

a
a

a
a

a
l

a
a

a
a

a
a

a
a

I

[
r
"
l

0
a

a
a

a
a
Ia

a
a

a
a

a
a

a
I

1
1

1
1

a
a

a
a

a
la

a
a

a
a

a
a

a
I

a
•
..

a
le

x
ic

a
l

le
v

e
l,

d
is

p
la

c
e
m

e
n

t

d}
L

it
e
ra

ls

I
L

T
S

4
1

1
0

1
0

S
x

x
x

x
i

I-
'
~

L
T

S
IO

I0
1

1
0

0
S

x
x

li
x

x
x

x
x

x
x

x
I

\0
2

I

L
T

S
IS

3
I0

1
1

0
1

0
0

01
..

·
l
x

x
x

x
x

x
x

x
i

""
,

'V
"

#
'"

2
b

y
te

s
"-

"-

L
T

32
5

I0
1

1
0

1
0

0
11

..
.

I
x

x
x

x
x

x
x

x
i

'..
.

#
'"

4
b

y
te

s
V

"
"-

'"'
,

L
T

3
2

F
5

I0
1

1
0

1
0

1
01

..
.

Ix
x

x
x

·
x

x
x

x
I

"-
--

.,
4

b
y

te
s

'V
"

L
T

64
9

I0
1

1
0

1
0

1
11

•
..

l
x

x
x

x
x

x
x

x
J

.....
...

#
'"

8
b

y
te

s
'V

"

L
T

S7
M

3
I0

1
1

0
1

1
0

01
.•

·
l
s
x

x
x

x
x

x
X

J
"""

"--
'V

"
#

'"
2

b
y

te
s

4
I0

1
1

0
1

1
0

11
..

·
l
s
x

x
x

x
x

x
X

J
"""'

----
V

"
#

'"
3

b
y

te
s

5
I0

1
1

0
1

1
1

01
..

·
l
s
x

x
x

x
x

x
X

J
.....

...
V

"
--

--
4

b
y

te
s

L
e
g

e
n

d
:

s
-

s
ig

n
b

it
x
..

.
x

-
n

u
m

e
ri

c
a
l

v
a
lu

e



F
ig

u
re

2
,4

-2
8

(c
o

n
ti

n
u

e
d

)
.

O
PE

R
A

T
O

R
B

Y
T

E
L

E
N

G
T

H

L
T

L
D

1

o
r

3

L
T

L
D

X
1

o
r

3

FO
R

M

I
O

ll
lo

o
N

N
I

.
'I

1-9
-1

.....
...1-

-.-
1~O

-ll
1N

O
N

r\
••

•
I
1
i
i
i

i
i

1.
1.

...
...

2
b

y
te

s

.
........

V
"
-
~
-
-
-
-

l
o

l
l
l
l
o

N
N

I

10
1

1
1

l
I
N

N
I

••
•
I
i
i
i
i
i

i
1.

i]
.....

...
"

~
2

b
y

te
s

I I-
'

U
1 o I

N
N

:
li

te
r
a
l

to

i
••

•
i

:
li

te
r
a
l

b
e

lo
a
d

e
d
'
-

tO
O

.
.
~

0
1

ta
b

le
a
d

d
re

s
s

1
0

1
1

s
ig

n
e
d

7
b

it
s
ig

n
e
d

1
5

b
it

32
b

it
f
I
t.

p
t.

6
4

b
it

v
a
lu

e



C
o

d
e

V
a
lu

e
O

p
e
ra

to
r,

S
4

2
I

a)
A

ri
th

m
e
ti

c
M

a
n

ip
u

la
to

rs

A
D

D
o

v
e
rf

lo
w

<
z
e
ro

>
z
e
ro

z
e
ro

SU
B

o
v

e
rf

lo
w

<
z
e
ro

>
z
e
ro

z
e
ro

M
U

L
o

v
e
rf

lo
w

<
z
e
ro

>
z
e
ro

z
e
ro

D
IV

o
v

e
rf

lo
w

<
z
e
ro

>
z
e
ro

z
e
ro

C
H

SN
-
-
-

<
z
e
ro

>
z
e
ro

z
e
ro

I
b

)
L

o
g

ic
a
l
~
a
n
i
p
u
l
a
t
o
r
s

I-
'

U
1

I-
-'

LA
N

D
--

-
a
ll

o
n

e
s

m
ix

e
d

a
ll

z
e
ro

s
I

a
ll

o
n

e
s

m
ix

e
d

a
ll

z
e
ro

s
LO

R
--

-
LN

O
T

--
-

a
ll

o
n

e
s

m
ix

e
d

a
ll

z
e
ro

s

B
SE

T
L

n
o

ld
o

n
e

o
ld

z
e
ro

n
ew

o
n

e
ne

w
z
e
ro

B
R

ST
L

n
o

ld
o

n
e

o
ld

z
e
ro

n
ew

o
n

e
ne

w
z
e
ro

B
C

H
G

L
n

o
ld

o
n

e
o

ld
z
e
ro

B
T

ST
L

n
o

ld
o

n
e

o
ld

z
e
ro

B
SE

T
o

ld
o

n
e

o
ld

z
e
ro

n
ew

o
n

e
n

ew
z
e
ro

B
R

ST
o

ld
o

n
e

o
ld

z
e
ro

n
ew

o
n

e
n

ew
z
e
ro

F
ig

u
re

2
.4

-2
9

:
C

o
n

d
it

io
n

C
o

d
e

S
e
tt

in
g



a) Array Operations

Arithmetic

ADD
SUB
MUL
DIV

Logical

LAND
LOR
LXOR

b) Example of Usage

A = B + C;

i) Normal Usage ii) STT Usage

ADRE A ADR B
GET B ADR C
GET C ADR A
ADD STT
STD ADD

i.ii) STT3 Usage

ADRA
ADRB
ADRC
STT3
ADD

Figure 2.4-30: Allowable Array Operations and Memory
Operations

-152-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



References for Chapter 2

1. Graham, R.M., "Use of Higher Level Languages for Systems
Programming", Technical Memorandum 13, Project MAC,
September 1970, AD 711 965

2. Corbato, F.J., "Sensitive Issues in the Design of
Multi-Use Systems", MAC-M-383, Project MAC, December 12,
1968.

3. Corbato, F.J., "PL/I as a Tool for System Programming",
Datamation, May 1969.

4. McFarland, C., "A Language-Oriented Computer Design",
FJCC 1970, pp. 629-640.

5. Flynn, M.J., "Very High-Speed Computing Systems",
Proceedings of the IEEE, Vol. 59, No. 12, December 1966,
pp. 1901-1909.

6. Fulmer, L.C., and Meilander, W.C., "A Modular Plated
Wire Associative Processor", GER-14727, Goodyear Aerospace
Corporation, Akron, Ohio, March 11, 1970.

7. Githens, J.A., "A Fully Parallel Computer for Radar
Data Processing", NAECON '70 Record, pp. 290-297.

8. McIntyre, D.C., "An Introduction to the Illiac IV Computer",
Datamation, April 1970.

9. Chen, T.C., "The Overlap Design of the IBM System/360
Model 92 Central Processing Unit", FJCC, Part 2, 1964.

10. Patzer, W.M. and Vandling., G.C., "Aerospace Systems
Implications of Microprogramming", in Air and Spaceborne
Computers edited by E. Keonjians,.Technivision Services,
Slough, England, April 1970.

11. Kerner, H., and Gellman, L., "Memory Reduction Through
Higher Level Language Hardware", AIAA Journal, Vol. 8,
No. 12, December 1970, pp. 2258-2264.

12. Knuth, D.E., "An Empirical Study of Fortran Programs",
Stanford University, Computer Science Department,
Report No. CS-186, 1970, AD 715 513.

-153-



13. Thurber, K.M., and Myrna, J.W., "System Design of a
Cellular APL Computer", IEEE Transactions on Computers,
Vol. C-19, No.1, April'1970.

14. Stone, H.S., "A Logic-In-Memory Computer", IEEE Trans
actions on Computers, January 1970, pp. 73-78.

15. Hauck, E.A. and Dent, B.A., "Burroughs' B6500/B7500
Stack Mechanism", SJCC, 1968.

16. Abrams, P.S., "An APL Machine", Doctoral Dissertation,
Stanford University, February 1970, AD 706 741.

17. Keeler, F.S., et al, "Computer Architecture Study",
SAMSO-TR-420, October 1970, AD 720 798. (This is the
SPL machine.)

18. Sugimoto, ~1., "PL/I, Reducer and Direct Processor",
Proceedings of 24th National Conference ACM, 1969.

19. Chesley, G.D., and Smith, W.R., "The Hardware-Implemented
High-Level Machine Language for SYMBOL", SJCC 1971.

20. Rice, R. and Smith, W.R., "SYMBOL - A Major Departure
from Classic Software Dominated von Neumann Computing
Systems", SJCC 1971.

21. Lawson, I1.W., Jr., "Programming-Language-Oriented
Instruction Streams", IEEE Transactions in Computers,
Vol. C-17, No.5, May 1968.

22. Elson, M. and Rake, S.T., "Code-Generation Techniques
for Large-Language Compilers", IBM System Journal,
Vol. 9, No.3, 1970.

23. HAL PASS 1, SOURCE. 77, Intermetrics, April 28, 1971.

24. Church, C.C., "Computer Instruction Repertoire - Time for
a Change", SJCC 1970.

25. McKeeman, W.M., "Language Directed Computer Design",
FJCC 1967.

26. Lawton, T.J., "AGC Programming Comparison", MIT/IL,
Space Guidance Memo #8, Apollo Distribution, July 5, 1962.

27. "Control Data 6600 Computer Systems Reference Manual",
Control Data Corporation, August 1963.

-154-



28. Chen, T.C., "Parallelism, Pipelining and Computer
Efficiency", Computer Design, January 1971.

29. Chen, T.C., "Unconventional Superspeed Computer
Systems", SJCC 1971.

30. Hamblin, C.L., "Translation to and from Polish Notation",
The Computer Journal, October, 1962.

31. Myamlin, A. N., and Smirnov, V.K., "Computer with Stack
Memory", in Information Processing 68, North-Holland
Publishing Company, Amsterdam, 1969.

32. "STS Data Management System Design, Task 2", MIT Draper
Laboratory, June 1970.

33. "STS Data Management System Design, Task 5", MIT Draper
Laboratory, July 1970.

34. Burnett, G.J. and Coffman, E.G., Jr., "A Study of
Interleaved Memory Systems", SJCC 1970.

35. Tucker, A.B. and Flynn, M.J., "Dynamic Microprogramming
Processor Organization and Programming", CACM, Vol. 14,
No.4, April 1971.

36. Bryan, G.E., "JOSS: 20,000 Hours at a Console - A
Statistical Summary", FJCC, 1967.

37. Freibergs, I.F., "The Dynamic Behavior of Programs",
FJCC, 1968.

38. Ashley, D.W., "A Methodology for Large Systems Performance
Prediction", Technical Report: TR 00.1773, IBM System
Development Division, Poughkeepsie Laboratory, September
10, 1968.

39. "Burroughs B6500 Information Processing Systems Refer
ence Manual", Burroughs Corporation, 1969.

40. Wersan S.J., et aI, "Architectural Study for Advanced
Guidance Computers, Part 2", February 5, 1971, AD 723 669.

41. Stone, H.S., "A Pipeline Pushdown Stack Computer",
Parallel Processor Systems, Technologies and Applications,
edited by L.C. Hobbs, et aI, Spartan Books, 1970.

-155-



42. "Burroughs B6700 Handbook Preplanning Edition",
Burroughs Corporation, 1971.

43. Vandever, W.H., "Designing a Higher Order Language
Machine", Multiprocessor Memo #05-71, Intermetrics,
19 July 1971.

44. IiUnivac Data Processing Division 1108 Multiprocessor
Systems, System Description", Univac, No date.

45. "IBM System/360 Principles of Operation", IBM Form
A22-6821-5.

46. "Introducing the RCA 215 Military Computer", RCA,·
No date.

47. "HALMAT, An Intermediate Language of the first HAL
Compiler", Intermetrics, Inc., Cambridge, Mass.,
22 October 1971, Revised.

48. Hassitt, A., et al, "Implementation of a High Level
Language Machine", 4th Annual Workshop on Microprogram
ming, University of California, Santa Cruz, California,
13-14 September 1971.

49. "Functional Design of a Multiprocessor", Monthly
Progress Report, October 1971, Contract NAS 9-11745,
Intermetrics, Inc., Cambridge, Mass., 15 November
1971.

50. Hansen, P. Brinch, "RC 4000 Computer Reference Manual",
2nd Edition, A/S Pe~necentralen, Copenhagen, June 1969.

51. Davis, R.L., and Zucker, S., "Structure of a Multi
processor Using Microprogrammable Building Blocks",
Proceedings NAECON, 1971.

52. Iliffe, J.K., "Basic Machine Principles", American
Elsevier Publishing Co., New York, N.Y., 1968.

53. Iliffe, J~X., "Elements of BLM", Rice University
Computer Project, 7 November 1968.

-156-



3.0

MULTIPROCESSOR OPERATING SYSTEM DESIGN

3.1 Introduction

This section presents the functional design of a basic
operating system for the multiprocessor which is the subject
of this study. The design has been directed toward the com-
puter hardware configuration described in Chapter 1, and makes
much use of the instruction architecture and data structures
that were proposed in Chapter 2. The operating system design
presented covers the broad spectrum of functions necessary to
provide adequate anp manageable throughput for the proposed
computer configuration. It does not just address those pro-
blems of management unique to multi- (as differentiated from
single) processors. The attitude taken throughout the design
of the operating system has been to make no assumption of
single processing, or serial processing in order to implement
an operating system feature. At all times during the evolution
of the design the presence of many, concurrent activities in
the system was an assumed likelihood, so that at no stage was a
solution to the single processor problem arrived at first and then
modified to the more general case of several processors.

3.1.1 Design Philosophy

The operating system design philosophy reflects the
emphasis on the achievement of reliab~e operation of both hard
ware and software that has already been stated in the Introduc
tion to this report. Some of the specific assumptions and deci
sions that contribute to the overall operating system design
philosophy illustrate this emphasis.

It w~s assumed that only higher order language(s) would
be used in the programming of application software. In addi-
tion to providing the well established advantages for the pro
duction of the software itself, the exclusive use of HOLs allows
secure system operation to be realized without exhaustive
runtime verification of each request for OS functions. An
intimate and well-defined interface beween OS and the compiler(s)
was assumed achievable, so that an optimal division between static
(pre-run) and dynamic (runtime) diagnosis could be made. The

-157-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840



impact of certain OS decisions on the design of a.given
compiler was not, however, a sUbject of this study although due
consideration for reasonableness and implementability of any
assumed interface was given. Another outcome of HOL assumption
was the elimination of the need for special privileged (or
supervisor) instructions and modes of operation, since any
attempted variations of OS groundrules by "non-privileged"
users become automatically screened out during the compilation
phase.

An additional assumption was that the programming
language should possess multi-tasking capabilities (like PL/I, or
HAL). The problem of maximizing the theoretical throughput
of several processors req.uires user assistance to identify
task or process parallelism; ·the exploitation of implicit
parallelism at the algorithmic or instruction level has proved
difficult, expensive, and of limited effectiveness ,(especially.
in the type of general purpose application expected in the
Space Station).

Finally, it was assumed that the language/compiler
to be used in programming tne Space Station application soft
ware would possess the facility of handling common data.pools
(Compools). The MP design provides a Compool implementation.

The traditional problems of mUltiprocessing are asso
ciated with the conflict between several simultaneous process~s

over access to certain common resources, including processors,
memory, shared data arid procedures. Although most of the~e

problems e~ist in some form in a multiprogrammed" single- ,
processor system, the additional degree of difficulty in a multi
processor environment is contributed by the actual time concur
rence of the several processes. This fact eliminates the effect
iveness of the usual device of serializing the execution of
the several processes when a common response or critical acti
vity is involved, because if any or all proc~ssors in an n
processor system are made to wait, there is an immediate and.
drastic reduction in the potential throughput. The resolution
of this conflict has been acknowleQged throughout the OS de-
sign effort, and has even received special hardware attention
in the form of the proposed associative memory incorporated
as part of each processor, to assist in the addressing of
shared data segments (see Chapter 5).

The major task that the proposed OS design tackles is
the management of operating memory (M2) multiplexing. The
decision to implement a virtual memory system was influenced
by factors of economy, ease of application programming, and
fault-tolerance. The choice of variable rather ·than fixed

-158-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



size memory blocks as the quanta to be multiplexed aggravates
the task of making virtual memory work efficiently. with
limited M2 space the preservation of the "working set" of the
current process and, of even more importance, that of other
processes, becomes the major concern for os. All this must
be accomplished without excessive consumption of overhead.

3.1. 2 Definitions

A word on the meaning of the terms used throughout this
(and other) chapters is in order. The key terms and their
assumed definition are as follows:

a) Program: This is an independently compilable section
of code containing pure procedures and/or data.

b) Procedure: A section of code to which execution control
can be passed, with or without the passage of parameters.
There are two kinds of parameters:

1) Internal, not known outside of process (see below)

2) External, known to name management and declared
in the Process Information Area (see below)

c) Segment: A contiguous block of words defined by a
descriptor, which is the unit of memory management.

d) Process: The unit of work as recognized by the opera
ting system. A process is represented by a stack.

e) Stack: Although strictly a LIFO list, the definition
of a stack is less rigorous when used to represent a
process.

f) Level: A demarcation in the addressing hierarchy.
Derived from the concept of lexicographical level in
block structured language (such as ALGOL or HAL), but
extended to provide convenient addressing by the
operating system.

Figure 3.1-1 illustrates the relationship and use of some of
these terms, and will be used as a basis for the material of
the succeeding sections of this chapter.

Each process is represented by an execution stack. The
initial hierarchical level for process execution, and therefore
the lowest numerical level for any process stack, is level 2.
Subsequent procedure nesting varies the lexical level of each

-159-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840



P
IA

P
IA

R,
R,

=
4

R.R
.

=
3

R.R
.

=
2

P
IA

345 2 1 o
P

ro
c
e
s
s
o

r
H

ar
d

w
ar

e
R

e
g

is
te

rs
va

./

~
.

P
ro

c
e
ss

E
x

e
c
u

ti
o

n
S

ta
c
k

s
(L

e
v

e
ls

2
,3

,
4

,
••

•
)

P
ro

c
e
ss

S
eg

m
en

t
D

e
s
c
ri

p
to

r
S

ta
c
k

s
(L

e
v

e
ll

)

-
-

-

"N
am

e"
C

o
m

p
o

o
l

S
ta

c
k

--

"
-
--

--
--

--
--

-/

--
-

--
-

\
• • •

S
ta

c
k

V
e
c
to

r

S
y

st
e
m

I
n

tr
in

s
i

D
e
s
c
ri

p
to

r
S

ta
c
k

(L
e
v

e
l

0)

I I-
'

0
'\ o I

F
ig

u
re

3
.1

-1
:

O
p

e
ra

ti
n

g
S

y
st

e
m

D
a
ta

S
tr

u
c
tu

re
s



process stack to 3, 4, 5, etc. The portion of a process stack
that is below level 2 contains a collection of data termed the Pro
cess Information Area (PIA) containing names, priorities,
counters, for bookeeping, etc., specific to each process (see
section 3.2). Above the PIA the stack behaves more strictly as
a LIFO list, in accordance with the conventions of the HOL.

Each process has associated with it a vector of des
criptors defining the segments containing the procedures to be
executed by the process. These descriptors are addressed as
if the vector were a stack: by stack number and offset from
the base of the stack. For convenience, this collection
of segment descriptors is termed Levell, since it
exists at a more global level than the individual processes,
and each such vector will be referred to as a stack (even though,
strictly, it is not).

At the most fundamental level there is a single collection
of basic system descriptors, variables, etc., which is termed
the Level 0 stack, again for convenience of addressing. One
descriptor at level 0 points to the stack vector, which con-
tains descriptors of all the stacks in the system including
the "pseudo-stacks" of levels 1 and o.

Each processor contains a set of hardware registers
which indicates the actual M2 addresses of the start of each
of the system levels, i.e., the base address of the correspond
ing stack. Figure 3.1-1 also shows the linkages that tie the
Compool mechanism into the system. These are discussed in
greater detail in section 3.4.9.

3.1. 3 Synopsis

The remainder of this chapter is devoted to a detailed
description of the major functions of the operating system:

Section 3.2 Process State Controller. This section defines
the states and state transitions that a process can
experience in the MP system, and defines the rules that
govern the allowable paths that a process may take.
An indication of the system initialization requirements
is also given, although these are not developed in
such detail, being somewhat implementation dependent.

Section 3.3 Interrupt Handling. This section describes
the techniques chosen to handle the effect of unex
pected events within a processor (such as traps,
failures, etc.), within the system (segment faults,

-161-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



timer interrupt, etc.), and from outside the system
(I/O complete, operator console input, etc.). A very
flexible mechanism for defining the desired response
to any of these interrupts is described, making use
of the pushdown properties of stacks.

Section 3.4 Memory Management. This presents in great
detail the implementation, by the operating system, of
the segment fault handling, space allocation, and seg
ment replacement functions associated with multiplexing
the use of M2.

Section 3.5 I/O Management. This section presents a summary
of the operating system I/O data structures and pro
cedures, with emphasis on the interface with Memory
Management.

Section 3.6 Timing and Synchronization. The problem of
interprocessor communication and synchronization and
real time operation are addressed in this section.

Section 3.7 Fault Recovery. Finally, the role of the op-
erating system in assisting the system to resume an
operational state, after the detection (by the hardware)
of a failure, is described.

-162-

INTERMETRICS <INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840



3.2

3.2.1

The Process State Controller

Introduction

The process is the unit of work in the multiprocessor
system. Each process is a sequence of actions, directed by
the instructions in programs. Each process at any moment in
time has a single locus of control, i.e., the current point
in its sequence. For a process which is running on a proces
sor, this locus of control advances as the processor executes
operators. For a process which is not running, the lQcus of
control is temporarily halted at some point. This point will
always be a location in the process state controller procedure,
since as will be seen, a process always enters this procedure
when it is about to give up its processor.

What precisely is meant by a process running on a
processor, besides that its locus of control is advancing?
The locus of control is really just the program counter, which
indicates what operator is being executed by the processor.
But the status of the program counter is insufficient to de
fine the locus, since the hardware reacts to an interrupt by
simulating a procedure call, thus unexpectedly altering the
program counter. The unexpected interrupt procedure is not in
itself a new process, even though it may decide to cause a
change to a new process. More fundamental to the definition
of a process is the stac~. The stack has been described in
greater detail in Chapter 2; it is sufficient to say here that
it contains all the changing computational and control infor
mation used by a processor executing instructions. The stack
is the impure data half of the "pure procedure/impure data" and is
necessary for recursive, reentrant, and clean programming.
It is the stack which describes the process. A running pro-
cess is one whose stack is active, i.e., being used by a
processor as its working stack. with this definition,
the processor may be executing an interrupt routine which has
nothing to do with the useful work of a process, yet that pro
cess is still a running process. Interrupt routines run para
sitically on the stack of the process running on the inter
rupted processor, because the processor must always have a
stack.

The Process State Controller is a collection of opera
ting system procedures which alter the state of processes
and cause processors to be assigned to them. Since there are
more processes than processors, and since only one processor
can be assigned to a process at any moment, each processor
is multi-programmed, i.e., switched from process to process
as processes change state. A process that is assigned to a

-163-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



processor is called a "running" process. One that is capable
of being assigned to a processor, but is not because all pro
cessors are already assigned, is called "ready". A process
which has reached a point where it temporarily cannot use a
processor is called "waiting". A running, ready, or waiting
process can be stopped by another running process. The stopped
state exists independently of the ready or waiting states;
a process can be stopped-ready or stopped-waiting_ The state
transition diagram illustrated in Figure 3.2-1 should make this
clear.

Only a running process can get to the waiting state,
i.e., a process becomes waiting only by its own action. All
transitions except 2 and 3 (refer to Figure 3.2-1 for identi
fication) can be caused only by another process. Assuming
every processor is executing a process, process state transi
tion 2 or 3 is simultaneous with another process undergoing
state transition 1. A process in the stopped and waiting state
must be both readied and resumed to become eligible for run
ning. The creation and termination of a process is not shown
on this diagram because the topic is dealt with elsewhere.

3.2.2 Process State Controller Interfaces

A process may calIon the services of the Process
State Controller through a number of entry points, depending
on the specific service. The main services are:

WAIT

READY(P)

STOP(P)

RESUME(P)

EXCHANGE

The (p) is a reference to a process, composed of two items:

a) stack number

b) process identification (processid)

The stack number immediately identifies the process
stack, and the processid guarantees that the correct process
is referenced. When a process is created, it is assigned a
stack number. When it terminates, the stack number is free

-164-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



ST
O

PP
E

D
W

A
IT

IN
G

R
U

N
N

IN
G

I t-
'

0'
1

U
1 I

S
to

p
p

e
d

@
&

W
a
it

in
g

W
a
it

in
g

-

®

G
)

.@
0

S
to

p
p

e
d

®
@

&
R

ea
d

y
R

u
n

n
in

g
R

ea
d

y
®

Q
)

F
ig

u
re

3
.2

-1
P

ro
c
e
ss

S
ta

te
T

ra
n

s
it

io
n

s



to be re-assigned to a new process. The processid, however,
is unique to each process. Each interface which is passed
P as a parameter verifies that it is a valid process refer
ence. If it is not, the interface takes no action.

The action and typical u~e of each interface is des
cribed below. The transition numbers again refer to the pro
cess state transition diagram, Figure 3.2-1.

3.2.2.1 WAIT: This procedure places the running process into
the waiting state (transition 3). Note that it requires no
argument, since only a running process may place itself into
the WAIT state. The highest priority ready process (priority
and the ready queue are detailed later) is made running (tran
sition 1). Procedure WAIT is called by the event handling
procedure WAIT(E) after the event list structure is set up. It
is also called by the timer management routine which puts a
process to sleep for a given time after it places an entry
in the timer queue. It is called when a process has requested
exclusive use of a resource already in use. Note that the
Process State Controller does not itself set up the structure
to remember to ready the process. It is the responsibility
of the higher level system routine to ensure that some process
will invoke the READY(P) interface at the proper time. The
same is true for the STOP(P) and RESUME(P) interfaces.

3.2.2.2 STOP(P): STOP(P) has no effect, other than generating
diagnostic conditions, if P refers to the process executing
the STOP(P); i.e., no process may stop itself. If P is in the
ready state, STOP(P) places it in the stopped and ready state
(transition 9). If P is in the waiting state, it is placed
into the stopped and waiting state (transition 5). If P is
running, the stopped indicator is set and the processor running
P is interrupted, causing P to execute the EXCHANGE interface
(see 3.2.2.5) which places P in the stopped and ready state
(transitions 2 and 9 together). The processor executing the
STOP(P) does not return to the calling process until P has
actually been stopped by EXCHANGE. On return from STOP(P),
P is guaranteed to be in the stopped state. In each case (p
ready, waiting, or running) the stop count for P is set to 1.
However, if P is already in the stopp~d and ready or stopped
and waiting state, the stop count is just incremented by 1.
STOP(P) can be used to correct a memory overcommitment or
thrashing condition (see section 3.4) by stopping several low
priority processes. It is used before terminating a process,
or when debugging a process to freeze its action.

-166-

INTERMETRICS.INCORPORATED • 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Figure 3.2-2: WAIT

SET PSC
,---'LOCK

YES

SET WAIT
STATE
FLAG

TO "SELECT"
SECTION OF EXCHANGE

(Figure 3.2-7)

NO

SET PSC
IJ::>cK REMOVE pIS

ENTRY FROM
READY Q

YES

NO

VERIFY THAT UNLOCK PSC
P IS A

NO LOCK
VALID
PROCESS

INTERRUPT

YES
THAT
PROCESSOR

SET STOPPED
FLAG

UNLOCK PSC
LOCK

INCREMENT
STOP
COUNT

LOOP UNTIL
pIS STACK IS
NOT ACTIVE

Figure 3.2-3: STOP(P)

-167-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.2.2.3 READY(P): If P is in the stopped and waiting state
the procedure READY places it in the stopped and ready state
(transition 7), and returns control to the executing process.
If P is in the waiting state, it is placed into the ready
state (transition 4), and its priority is tested. If piS
priority is less than or equal to that of the lowest priority
running process (call it P~), P is left in the ready state,
and placed on a queue of ready processes. If piS oriority is
greater than p~'s, it is assigned P~'s processor (transi-
tion 1) and P~ is pre-empted to the ready state (transition 2).
The pre-empted process P~ could be the one which executed the
READY. Indeed this is very probable, since a READY is often
executed by interrupt procedures, and system interrupts are
usually assigned to the processor running the lowest priority
process (see section 3.3). If the process executing the READY
is not the one to be pre-empted, READY takes the following
actions. It places P on the ready queue, interrupts the pro
cessor running Pe, then returns control to the executing pro
cess. In responce to the interrupt, the processor running Pe
executes an EXCHANGE interface (see below), which swaps P and
Pe. P becomes running (transition 1) and Pe becomes ready
(transition 2). READY is called by the SET (E) event handling
routine if a WAIT(E) or WAIT(n,El, .•. ,Em) condition is satis
fied (see section 3.6), or by the timer interrupt routine if
a time wait condition is satisfied.

3.2.2.4 RESUME(P): RESUME is very similar 'to READY. RESUME
takes no action if P is not in the stopped and waiting or
stopped and ready state. If it is, the stop count is decre
mented by 1. If the count is still positive, no further ac
tion is taken. If the count is zerOi RESUME takes the same
action as READY, substituting transition 6 for 7, and 8 for 4.
Pre-emption and transitions 1 and 2 occur as in READY.

3.2.2.5 EXCHANGE: The purpose of EXCHANGE is to swap the current
process' with the highest priority ready process (transitions 1 and
2), if that ready process has an equal or higher priority.
When a process executes an EXCHANGE becaus.e of an interrupt
from a READY or RESUME, a higher priority process has already
been placed on the ready queue. An EXCHANGE executed when there
is no ready process of equal or higher priority has no effect,
returning immediately to the process. If the EXCHANGE is ex
ecuted by a process P in response to an interrupt coming from
a processor executing a STOP(P), an indication has already
been made of the pending transition 9 so EXCHANGE causes pro-
cess P to enter the stopped and ready state (transitions 2
and 9). In this case, the highest priority ready process is
always selected for transition 1, even if it is less than the

-168-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



...,...--1---...
SET "HOLD"
INDICATOR T
PREVENT IM
MEDIATE PRO
CESSOR ALL-

__ ..Io-..lI.:wi.~I!o:j0:l:.N_...J

YES

NO VERIFY THAT P
.-__--lIS A VALID

PROCESS
REFERENCE

NO

TO ALLOCATE

(Figure 3.2-6)

UNLOCK PSC
LOCK

Figure 3.2-4 READY(P) and READY (H)

-169-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840



SET PROCESS
STATE CONTRO_----oH LLER LOCK

SET "HOLD"
INOlCA'l'OR TO
PREVENT
IMMEDIATE
PROCESSOR
ALLOCATION

YES

VERIFY THAT
....__N_O_-1 P IS ,~ VALID

PROCESS
REFERENCE

NO

DECREASE STOP
COUNT BY ONE

UNLOCK THE
PSC LOCK

NO

. TURN OFF
STOPPED
FLAG

TO ALLOCATE

( Figure 3.2-6)

Figure 3.2-5 RESUME(P) and RESUME(H)

-170-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



FROM READY I READY H I

RESUME I RESUME H

YES

NO

UNLOCK
PROCESS
STATE CONTRO
LLER LOCK

PLACE P ON
READY QUEUE
BY PRIORITY

TO "SWITCH"
SECTION OF
EXCHANGE

RUPT TO PRO
CESSOR OF LAP NO
CAUSING
"EXCHANGE"

YES

Figure 3.2-6 Common ALLOCATE Section

-171-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



NO

ALLOCATE

YES

YES REMOVE ENTRY
~AJlI--__'" FOR :':DLE

PROCESS FROM
READY QUEUE

IS PRIORITY OF CURRENT
PROCESS LESS OR EQUAL TO PRI

RITY TOP OF READY

~NO

NO

SET PSC ..
LOCK

REMOVE TOP
ENTRY FROM
READY Q

WAIT
FROM

LOAD STACK
INTO M2

COUNT +

COUNT + 1

START PROCES
TIMER AND

....__~PROCESS SOFT........_.-J

WARE INTER- .
RUPTS

UNLOCK
PSC
LOCK

SET PROCESS
>-_NO_-I IN WAIT

STATE

MOVE PROCES
SOR TO NEW
STACK

Figure 3.2-7 EXCHANGE

-172-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



priority of P. EXCHANGE can be used to time-share processes
of equal priority (see the discussion on priority and the
ready queue). EXCHANGE can also be used for pre-planned
multiprogramming for applications involving lengthy use of
the processor by high priority processes.

3.2.3 The Process State Controller Data Base

The Process State Controller is concerned with pro
cesses as objects to manipulate. The information describing
these objects is called the Process State Data Base, and in
cludes stack and process identification, process state,
priority, and ready queues. The Process State Data Base does
not include the actual process stacks. This distinction is
made so that the Process State Controller can make decisions
about processes whose stacks are not pr~sent in M2. Stacks
are relocatable objects, whereas the Process State Data Base
is permanently resident system global data. The specific items
in the data base are:

3.2.3.1 PROCESSID (Stack Number): An array indexed by stack
number containing the unique processid for each stack. The
value is non-positive if the stack is not a process (inactive
or other use). The array is used to verify that the pair
(stack number, processid) is a valid process reference.

3.2.3.2 LASTPROCESSID: An integer variable, initially zero,
which is incremented each time a process is created. The new
value becomes the processid of the new process. It is also the
count of processes created since system initialization. This
scheme provides a unique identifier for each process.

3.2.3.3 STATE (Stack Number): An array indexed by stack num
ber which contains the state of every process stack. Possible
bit assignment and state values are (numbering bits from right
to left) :

bit 1

bit 2

bit 3

o - not running
1 - running

o - not waiting
1 - waiting

o - not stopped
1 - stopped

Value State

0 ready

1 running
2 waiting

4 stopped and ready
6 stopped and waiting

-173-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.2.3.4 PRIORITY (Stack Number): An array indexed by stack
number which contains the priority of each process.

3.2.3.5 STOPCOUNT (Stack Number): An array which contains
the stop count of stopped processes. (STATE, PRIORITY and
STOPCOUNT may all be merged into a single array for efficiency)

3.2.3.6 PRIORITYOFPL: A variable indicating the priority of
the lowest priority running process, used by READY(P) and
RESUME(P) to determine if pre-emption is necessary.

3.2.3.7 PROCESSOROFPL: A variable indicating the processor
executing the lowest priority running process, used by READY(P)
and RESUME(P) when pre-emption is necessary.

3.2.3.8 PROCESS CONTROLLER LOCK: A lock set by a processor
to keep out other processors while executing the Process State
Controller. A processor which tries to enter the Process State
Controller while this lock is set must stall until it is un
locked. This guarantees integrity of the Process State Data
Base in a multiprocessor environment.

3.2.3.9 READY QUEUE (Priority Group): An array of ready queues
indexed by priority group.

3.2.3.10 QUEUELEMENTS: An array whose elements are used for
the READYQUEUE.

3.2.4 Priority and the Ready Queue

The concept of priority allows us to assign values to
processes defining their relative importance. A process with
a higher priority value is more important in some way and should
be given preference by the system. In some general purpose
operating systems the priority is often partially or completely
determined by the operating system according to the type of load
the process presents to the system (CPU, I/O and/or Memory re
quirements). Since this multiprocessing system is specified
for a space station purpose, its operating workload will be
generally more definable. Process priority can, therefore, be
pre-determined and will not be automatically altered. Even the
concept of processes changing their own priorities is not

-174-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840



considered, although if it becomes necessary a Process State
Controller interface can easily be constructed to handle such
added functions.

Priority may be used by any part of the operating
system which must choose between servicing two or more pro
cesses if other policies such as first-come, first-served
are not sufficient or desirable. The Process State Controller
uses priority to decide whether a ready process should be made
running. Given n processors and m processes in the ready or
running state, it is the responsibility of the Process State
Controller to see that the n highest priority processes are in
the running state, with the other m~n processes in the ready
state. To guarantee that m~n, the system has pre-defined n
"idle" system processes that are always ready (or running) .
These processes have the lowest possible priority, and do noth
ing but cause the processor to idle until it receives an in
terrupt. An idle process is made running only when there are
no other ready processes.

Three categories of processes have been defined accor
ding to their required response characteristics -- real-time,
interactive, and batch. These categories serve to divide the
entire range of priority values into groups. If priority is
assigned a 4-bit field with the range 0-15, four priority
groups can be established using the two high order bits as
selector:

a) 0-3, extra low (for the idle processes or distant
background work) ,

b) 4-7, batch (response time not important),

c) 8-11, interactive (response time on the order of a
second) ,

d) 12-15, real-time (response time on the order of mil
liseconds or less) .

Perhaps the most important reason for establishing
priority groups can be seen when we examine the need for a
ready queue. The ready queue is an operating system struc
ture which enables the processes in need of a processor to
be selected quickly without testing the state of every pro
cess. (A process that is readied is not placed on the ready
queue if it immediately becomes running, that is, if its
priority and the readying process's priority are such that
readied process pre-empts the readying process.) Processes
are normally placed on the ready queue in order of priority
so that the highest priority ready process is always first
in the queue, and can be selected for running with the

-175-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



minimum possible overhead. Placing a ready process in the queue
entails more overhead than its selection, however, since the
queue must be searched until the proper place is found. There
fore, to reduce this overhead, one ready queue for each priority
group is defined. The real-time ready queue is kept free of
lower priority processes, and is always checked first. If it
is empty, the next lower priority ready queue is examined. The
extra expense of checking more than one queue is spent only
when it can be afforded, increasing appropriately for decreas
ing priority groups. The overhead o~ placing a process on
the ready queue is reduced for all priority groups, since the
two high order bits of the priority immediately select the cor
rect queue. The two (or more, if desired, to increase priority
discrimination within a priority group) low-order bits deter
mine placement within the selected queue. A process is placed
behind other processes of equal priority. Hence for processes
of equal priority, the ready queue operates as a first-in, first
out (FIFO) queue. This property can be exploited in conjunc
tion with the EXCHANGE interface to effect time-sharing of equal
priority processes. An entire priority group may be time-
shared by not using or ignoring the low-order bits. The time
sharing can be voluntary and pre-planned, i.e., the process will
ingly issues an EXCHANGE at pre-determined points, or involun
tary. An example of the latter is a process which is forced
to execute the EXCHANGE through the timer interrupt routine
every time slice.

3.2.5 Process Creation and Termination

The process state transition diagram in section 3.2.1
gives no indication of how a process is established in one of
the described system states. Most processes are created dyna
mically by other processes, have a definite beginning and are
usually definitely terminated. There are a few system processes
which exist for the life of the system. These are the idle pro
cesses, which "run" when there is nothing to do, and one im
portant system master process, which will be described later.
The remainder are created and terminated as work is generated
and finished.

troller
diagram
nation.

a)

b)

c)

Additional states, transitions, and process state con
interfaces must be defined before the process state
can be enlarged to include process creation and termi-

The new states illustrated in Figure 3.2 -a are

Stack number available,

Non-process stack

Dead process stack

-176-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138· (6171



L
IM

B
O

ST
O

PP
E

D

, I
.

I
E
x
p
~
r
e

W
A

IT
IN

G
R

U
N

N
IN

G

I f-
'
~ ~

I

I
I

I

I
I

,
I

I
I

I
I

K
i!

ll
S

to
p

p
e
d

•
I

D
ea

d
&

W
a
it

in
g

I I
W

a
it

in
g

I
I

I
r

I
I I

I
I

F
re

e
K

il
l

I

I
,

I
I

I
I

~
I

I
I

N
o

n
-

F
re

e
S

ta
c
k

A
ss

li
g

n
S

to
p

p
e
d

I
I

I

P
ro

c
e
ss

N
u

m
b

er
&

I
R

ea
d

y
I

R
u

n
n

in
g

I
I

S
ta

c
k

..
..

A
v

a
il

a
b

le
R

ea
d

y
~
s
s
i
g
n

I
I

I

I
I

,

F
ig

.
3

.2
-8

C
o

m
p

le
te

S
ta

te
T

ra
n

s
it

io
n

D
ia

g
ra

m



Stack number available means that the previous use, if
any, of that stack number has ended, and the actual memory area
for the stack has been freed. The stack number is an index to an array
of descriptors termed the stack vector (see section 3.1.2). An available
stack number is one which indexes to an empty slot in the des-
criptor segment free to accept a descriptor for a new stack.
Stacks may be used for Compools and segment dictionaries as
well as processes, and since the Process State Controller data
base carries state information for every assignable stack num-
ber, the use of a stack for non-process purposes must be in-
dicated. The third state, the IIdead ll state, is one which all
terminating processes enter. A terminating process cannot be
expected to free its own stack. Therefore, the stack cleanup
and release function is handled by the system master process.
The master process takes a process from the dead state, per-
forms any necessary cleanup functions, and finally frees the
stack so the stack number will be available again. Four new
process state controller interfaces carry out the transitions.
They are ASSIGN, FREE, KILL, and EXPIRE, and the transitions
are identified in Figure 3.2-2.

3.2.5.1 ASSIGN(P, Stacksize, Stacktype): ASSIGN finds an
available stack number, obtains a memory area of the correct
size, and enters the descriptor in the stack descriptor array.
Stacktype is used to distinguish between process and non
process use, and P is set on return to contain the stack num
ber and unique processid. If Stacktype indicates a process
stack, the state on return from ASSIGN is stopped and ready.

3.2.5.2 FREE(Stack Number): FREE is the reverse of ASSIGN.
If the stack to be freed is a process stack, it must be in
the dead state or no action is taken.

3.2.5.3 KILL(P): This interface takes a process in the stopped
state and places it in the dead state. No action is taken if
P is not in the stopped state. No cleanup is performed. This
is a simple bookkeeping function designed.to isolate the irre
versible step in termination.

3.2.5.4 EXPIRE: EXPIRE is similar to KILL except that it allows
a process to place itself into the dead state. Obviously the
process must be in the running state.

-178-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.2.6 Dependent and Independent Processes

3.2.6.1 Introduction: There is more to process creation and
termination than the simplified interfaces described above.
The higher level system procedures INITIATE, SPROUT, and TER
MINATE have responsibility for the births and deaths of pro
cesses. They carry out all the detailed work, calling on
ASSIGN, KILL, and EXPIRE only at the critical transition
points. FREE is executed by the system master process after
the cleanup action on a dead process. INITIATE and SPROUT
create independent and dependent process respectively. The
difference between the two types of process is based on the
concept of owning and sharing data. System global data, in
cluding Compools (to be described in section 3.4. ) are de
fined and addressed at lexical level O. At level 1 are defined
the procedure segments, shared by processes using the same
procedures. These two levels are not owned by anyone process
exclusively~ but by the system. At level 2 and above exists
the dynamic data, distinct for each process. Dynamic data (or
its descriptor) is located in the process stack, and is there
fore owned by that process. The data exists only while the
process exists. A process can share the data owned by another
process, creating a dependency on that process. The sharing
of data owned by other processes can occur in two ways. The
following example, which is coded in a mythical (but typical)
block structured language, illustrates process dependencies:

2 ABLE: PROCEDURE:
DECLARE A:

3., BAKER: PROCEDURE;
DECLARE B;

4 CHARLIE: PROCEDURE;
DECLARE C;

5 [DONNA: PROCEDURE;
DECLARE D;

CLOSE;

SCHEDULE DONNA AS PROCESS 2;
CALL DONNA;
SCHEDULE BERYL(C) AS PROCESS 3;
CLOSE;

CALL CHARLI~

CLOSE.
t

3 [BERYL: PROCEDURE (X) ;
DECLARE X;

X = X+l
CLOSE;

CALL BAKER;
CLOSE;

-179-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



The first dependency to be described is due to a common
lexical level. Referring to Figure 3.2.9, Process 1, while ex
ecuting the procedure CHARLIE, schedules Process 2, which
starts to execute the procedure DONNA, declared at lexical
level 4 in Process 1. DONNA may reference data declared within
the containing lexical levels 2 through 4 in Process l's stack.
References to data declared at level 5 and above are local to
Process 2. The procedure DONNA, and therefore the continued
execution of Process 2, is dependent on the existence of levels
2 through 4 in Process 1.

The second type of data sharing occurs when a new pro
cess is passed a call-by-reference parameter. An illustration
of this is the scheduling of Process 3 from level 4 of Process
1, with passage of parameter C. The procedure BERYL in the
new process shares the common lexical level 2, but a reference
to the dummy parameter X is actually a reference to the passed
parameter C owned by process 1, and declared at level 4. This
level therefore is a critical level (see section 3.2.6.3) to
process 3. That is, Process 1 may not exit level 4 before
Process 3 has terminated.

A process can create more than one dependent process,
which in tUrn can create other dependent processes. Thus a
family tree structure of processes is possible, with a process
having exactly one parent (on which it is dependent), any num
ber of sibling processes with the same parent, and any number
of offspring processes (which are dependent on it). At the
root of the structure is always an independent process. An
independent process is one which owns all of the data at and
above the lexical level 2 that it references. The global data
and Compools at level 0, and the procedure segments at level 1
are owned by the system, not by any process. Independent pro
cesses are thus dependent only on the existence of the system
itself.

3.2.6.2 SPROUT and INITIATE: These similar system procedures
each have three parameters:

a) Procedure reference and parameters. This defines the
initial procedure to get control in the new process,
as well as any parameters for the procedure.

b) Process start-up variable. This is a structural vari
able which defines certain characteristics of the new
process, such as priority, stack size, total time
limit, initial time conditions, file requirements, etc.

-180-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



5

5

Declare D

4

data 3

ec1are C refere'nc
- - XMSW

Link

ec1are B

2

Process #3
Key:

MSW Link

J/,t

Mark
~Stack

~.............-4 Word

(MSW)

Process
Information

I Area

Process #1

Figure 3.2-9
Process Dependencies

-181-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



c) Process reference. This is the pair (Stack Number,
Processid) which will be passed back to the caller
of SPROUT or INITIATE so the originating process can
refer to the new process.

The first item is restricted to INITIATE. For an in
dependent process, the procedure must be defined at an outer
level. It cannot be imbedded in any other procedure, else the
new process would share data owned by another process. Any
parameters for an independent process must be passed by copied
value only to prevent dependency.

3.2.6.3 CRITICALEXIT: The above restriction, of course, does
not apply to SPROUT. The important thing for dependent pro
cesses is that the data on which they depend remain available
until they have terminated. To guarantee this, the compiler
must determine the critical level, which is the innermost lexi
cal level which defines the procedure or parameter specified
in SPROUT. The creating. process must be prevented from leaving
this level and destroying the shared data until the new process
has ended. The compiler inserts a call to the system proce
dure CRITICALEXIT just before exit from a critical level.
CRITICALEXIT when executed checks the count of processes de
pendent on that level. If it is greater than zero the process
enters the waiting state. The count is incremented by SPROUT
and decremented by the system procedure TERMINATE when a pro
cess ends. TERMINATE also issues a READY(P) when the count
reaches zero and the process is waiting for its dependents
to complete.

It is possible that the initial procedure supplied to
SPROUT is at the outermost level and potentially could have
been initiated as an independent process. In such a case,
the new process is dependent only because it was created by
SPROUT, and the critical level is the outermost level of the
creating process.

The steps SPROUT and INITIATE take to create a process
are as follows:

2.

3.

Action

Call ASSIGN to obtain a process stack

Create the procedure segment dictionary,
if necessary.

Initialize the process information area
of the stack.

-182-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Step

4.

5.

6.

Action

Force the stack to look like an in
terrupted process just before the
first instruction to be executed.

Set the priority of the process.

RESUME{P) to make the transition
from stopped-and-ready to ready.
If there is an initial time condi
tion, calIon time ma~agement to
issue the RESUME{P) at the proper
time.

Step 1) results in a process in the stopped and ready
state with undefined priority, and whose stack is bare of
structure. The structure is added in steps J) and 4). Step 2)
obtains a stack as in step 1), but for use as the segment dic
tionary. This step can be by-passed if a process using the
same procedures already exists, which is the usual situation
for dependent processes. The segment dictionary was construc
ted by the compiler and is loaded from M3. It contains the Mom
descriptors for all the code segments to be used by the process.

Step 3') sets up the process information area, a fixed
length section at the bottom of every process stack. It con
tains the status and bookkeeping information about a process,
and is accessible by both the system and the process. Some
of the expected items to be found here are:

a) Process type: independent/dependent, system/application

b) wait state type: cause of entering waiting state, e.g.,
event, time, I/O, busy resource

c) Process family links: a process reference to parent,
first offspring, previous and next siblings.

d) Parent's critical level: for a dependent process, the
critical level of its parent process

e) Interrupt response vector: a descriptor for each cate
gory of interrupt which specifies what interrupt action
is to be taken (see section 3.3 for further explanation)

f) Resource list: a bookkeeping list identifying what
resource names are assigned to this process

-183-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840



g)

h)

i)

. \
J I

Processor timer limit: amount of allocated proces
sing time left for this process

The time the process was last in the running state

Software Interrupt Queue: used to record occurrences
of software interrupts while process is not running,
so action can be taken when the process next becomes
running

Process reference of this process, the pair (Stack
Number, Processid)

Step 4) does the final stack initialization. The mark
stack word (MSW) which identifies a new lexical level and re
cords the containing lexical level (addressing environment) ,
and the return entry word (REW) which records procedure return
information are artificially entered in the stack. The result
is a stack which looks as if it had been interrupted just be
fore executing the first instruction of the first procedure.
The return entry word for the outermost level cannot specify
any procedure to which to return, since there is none. The
action taken by the exit operator when attempting to exit
through this REW is to cause an interrupt to the system TER
MINATE routine.

Step 5) simply sets the specified priority in the
Process State Co~troller Data Base. It is safe to do this
because no other process will be accessing the priority field
for the new process, even if another process has entered the
Process State Controller on another processor. The final step
depends on whether the process is to be executed immediately,
or at some later time. In the former case, a RESUME(P) is
issued, leaving the new process in the ready state. If there
is to be an initial time condition, SPROUT or INITIATE calls
on timer management routines to enter a request for a RESUME(P)
at the proper time. It then exits, leaving the new process
in the stopped and ready state.

3.2.6.4 TERMINATE: The system procedure TERMINATE is called
explicitly when a process wishes to terminate itself or an
other process, and implicitly via an interrupt when the outer
most procedure of a process is exited. TERMINATE has three
major functions:

a) It leaves the process to be terminated and all of its
dependents in the dead state via KILL(P) or EXPIRE.

-184-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



b) It decrements the count of dependent processes in the
critical level of the parent process, making it ready
if appropriate.

c) It notifies the system master process via SET DEATH
(DEATH is a global event) that one or more proces
ses have entered the dead state. It also enter all
the dead processes in a system dead queue for easy
access by the system master process, which must per
form any cleanup functions and free the stack.

The TERMINATE procedure is designed to terminate a
process and all its dependents without recursion. This makes
it safe for an offspring process to terminate a parent, which
indirectly causes self-termination. A local list is kept of
all processes being terminated, so the process and its depen
dents are all added to the dead queue at one time, and the event
DEATH is set only once.

If the executing process is being directly or indirectly
terminated, it is placed into the dead state via EXPIRE only as
the last action of TERMINATE, to allow completion of the entire
operation. Otherwise, TERMINATE returns to its caller.

3.2.6.5 The System Master Process: The master process has
three functions:

a) It interacts with the operator to respond to commands
and supply information about the state of the system.

b) It starts jobs by creating independent processes via
INITIA~E. It would do this as a response to an opera
tor command, or to any parameter in the system to
which it is sensitive.

c) It responds to the system event DEATH by performing
stack cleanup operations and finally freeing the
stack. Stack cleanup involves:

1) freeing any data segments pointed to by Mom des
criptors in the stack

2) freeing the segment dictionary and all procedure
segments if they are not in use by another pro
cess

3) freeing any system resources still allocated to
the process'

4) issuing a FREE (Stack Number) to release the stack
area and make the stack number available.

-185-

INTERMfTRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.2.7 Minimum System State

A system which functions only when a complex suppor
ting structure exists always provokes the question: how is
the supporting structure itself created? The answer is to
find the absolute minimum structure from which the system can
function sufficiently to create the full structure. The min
imum structure is then pre-defined, pre-created, and entered
into the system using only the most rudimentary abilities
of the machine. The method by which this minimum state is
loaded is an implementational detail, but the definition of
the minimum system state is properly a part of the system's
design.

Lexical level zero, the system global level, is a
permanently resident stack with the following minimal struc
ture:

a) a descriptor for the stack descriptor array

b) descriptors for all permanently resident system pro
cedures such as:

1) Segment fault handler

2) Process State Controller Data Base and procedures

3) Memory Management procedures

4) Process creation

5) System resource allocation

3.2.8 Access Control Mechanisms

3.2.8.1 Introduction: One generalized system function can
handle the following similar types of access control needed
to guarantee integrity in a multiprocessor system:

a) Locking of shared data so that it can be safely read
and modified by several simultaneous processes

b) Control over both sharable and non-sharable hardware
and software resources

c) A mutual exclusion function so that a section of code
can be bracketed with interlocking turnstyles, guaran
teeing that only one process at a time may be execu
ting it.

-186-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



These functions are all provided with the pair of
system procedures called ACQUIRE and RELEASE. The items
acquired and released are actually just names, which by com
mon, compiler-enforced agreement are associated with whatever
data, resource, or code is to be controlled.

ACQUIRE and RELEASE have a variety of options and
modes of action:

3.2.8.2 ACQUIRE(Mode, Reguest List):

a) Mode: Wait, or Nowait

Wait specifies that the calling process be placed into
the wait state until all of the items in the request
list are available. Nowait means that the calling pro
cess wishes immediate return with an error indication
if not all of the items are available.

b) Request List:

A list of the item names and the type of control de
sired for each. Each entry in the list has the fol
lowing structure:

1) Major Name: A name which assigns the item to a
category group

2) Minor Name: A name which uniquely identifies the
item within the category group

3) Type of Control: Shared, Update or Exclusive

The type shared is used if the item under control is
unmodified by its use, e.g., read-only access to shared data.
Any number of processes can ACQUIRE the same item with shared
control. The type update is used for items which are to be
modified by using a temporary copy of the data. This allows
one process to have update control while any number still have
shared control. At the end of successful computation involving
the modification of the temporary copy, the process with up
date control requests exclusive control. When exclusive con
trol is granted, the process may ~afely copy the modified tem
porary back to the original data.

Exclusive control guarantees that no other process has
any type of access to an item. This is used with items which
are changed by use, e.g., the writing of shared data, or in
the control of a non-sharable resource.

-187-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.2.8.3 RELEASE(Item List): Each entry in the Item List speci
fies an item for which acquired control is to be released. The
item is specified by its Major and Minor names. The release of
an item can result in the waking of another process waiting for
the availability of that item.

Items are designated by Major and Minor names to allow the
system to determine efficiently whether or not an item is avail
able. The system must keep a list of all items acquired, and the
major names provide a means of grouping items into categories,
and hence limiting the list searching that needs to be done. For
example:

a) A data structure potentially used and modified by a num
ber of processes is to be read by a process

ACQUIRE (WAIT, DATA, ABC, SHARED) waits until no other
process has ABC exclusiveall ref

erences
to ABC
are iso
lated to
this block

- - - }- - - references to data structure ABC

RELEASE(DATA, ABC) releases control of ABC

Note: The major name is DATA, identifying the item cate
gory. This could be any name, as long as the compiler en
sured that all programs use the same name for the same
category. The minor name, ABC, is actually the location
of ABC's Mom descriptor. The "name" is then uniquely de
termined by this bit string. If any other process is
modifying ABC, this process would wait at ACQUIRE until
the data is modified.

b) The same data structure is to be modified.

ACQUIRE (WAIT, DATA, ABC, UPDATE) waits until no other process
has update or exclusive control

TEMPABC + ABC makes copy of data to .be modified

references to ABC translated to references to TEM
PABC. Modifications are made only to TEMPABC.
ABC is left unchanged.

ACQUIRE(WAIT, DATA, ABC, EXCLUSIVE) waits until only this pro
cess has control. Any shared control by other process has been
released at this point.

ABC + TEMPABC copy is used to update original

RELEASE (DATA, ABC)

-188-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



c) A section of code must be made exclusive (one process
at a time)

ACQUIRE(WAIT, CODE, XYZ, EXCLUSIVE)

XYZ:

section of code to made exclusive

RELEASE (CODE, XYZ)

d) A non-sharable device (e.g. PRINTERA) is to be allocated to a
pr~cess

ACQUIRE (NOWAIT, DEVICE, PRINTERA)

Continue with use of device

RELEASE (DEVICE, PRINTERA)

If the device is busy a "PRINTERA IS BUSY" is generated.

3.2.9 Process Timing

There is a "watchdog" timer for each process, to keep
track of and opti.onally limit the time spent by a process in
the running state. When a process is made running, the limit
value is placed in the timer, which is a countdown device and
causes an interrupt when the count reaches zero. Whenever a
process is taken out of the running state, the value left in
the timer is used to update the current process time limit. The
occurrence of the watchdog timer interrupt can be ignored, used
to terminate the process, or cause operator notification, de
pending on the type of process.

Other types of timing provide information useful for
testing and evaluating system performance. The Process State
Controller needs the real time clock to record the time when
a process is taken out of the running state. This can give
information about the length of time a process is waiting or
stopped. It also records the time a process is placed on the
ready queue, so if necessary the delay between when it becomes
ready and when it is made running can be determined.

-189-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.2.10 A Note on Process Stack Handling

To maintain the integrity of the system the processor
executing a Process State Controller procedure must be dis
abled against asynchronous interrupts to avoid the loss of
control that would otherwise be caused by interrupt handling.
However, since it is impossible to disable the presence-bit
interrupt, any attempt to run a process whose stack has been
made not present must be avoided. The Process State Controller
calls on the memory management procedure LOADSEGMENT (See sec
tion 3.4.7.2) to insure that the stack it is about to make
running is in fact present in M2. If the stack is already pre
sent, the return from LOADSEGMENT is immediate, and the process
is made running. If LOADSEGMENT returns an indication that
the stack is not present, the Process State Controller can do
one of two things. It can

a) make the next highest priority process running, or

b) idle until the stack is made present.

The first choice involves some probability that the next
lower priority ready process could also be absent from M2.
Loading this and any further stacks when only one of them (the
one of highest priority) will eventually run, uses up M2 space.
In situations such as these it is highly likely that memory
is in short supply, so that needlessly allocating even more
could encourage thrashing (see section 3.4). A decision to
idle the processor at this point is not unwarranted, since very
shortly the right candidate for processor allocation will be
present. The wait for segment I/O to complete may be less dele
terious to overall throughput than a collapse caused by overcom
mitted memory.

The ideal solution is to have a counter in the Process
State Controller, whose limit value is a parameter which can
be adjusted during system testing and evaluation. The counter
is set·to zero when the Process State Controller first examines
the ready queue for a ready process. If the stack is not pre
sent, it is loaded into memory and the counter is incremented.
If t~e counter limit is exceeded, the processor makes one of
the ~dle processes running. If it is not exceeded, it proceeds
to select the next higher priority process. The process whose
stack is being loaded is left in the waiting state ~o it can be
made running when memory management issues the READY(P).

-190-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.3 Interrupt Handling

When a condition requiring the interruption of a proces
sor occurs, several steps must take place:

a) An eligible processor must be selected to handle the
interrupti

b)

c)

d)

3.3.1

the status of the interrupted process must be recorded,
to enable its resumption at a subsequent time;

a description of the interrupt condition must be made
available to the interrupt-handling procedurei

the interrupt-handler procedure must be selected and
entered.

Processor Selection

The rationale for selection of a processor is illumi
nated by considering the list of interrupts which can occur.
There are two major classes of interrupts, distinguished by
the scope of their effect. The first class concerns condi
tions directly related to a specific process; the second class
includes all the remaining conditions of system-wide effect~

Each class may be subdivided further according to whether the
interrupt is synchronous, i.e., a direct consequence of execu
tion of a particular instruction, or whether the interrupt is
asynchronous to the instruction sequence. In the latter case,
the condition results from some other mechanism, such as time,
completion of an I/O operation, etc.. The interrupts defined
for the current multiprocessor design are described in detail
as follows.

a) Process oriented

1) Synchronous

a) Arithmetic traps

1) DP Floating Point Overflow. The result of
an add, substract, multiply, or divide op
erator exceeds the capacity of the double
precision floating point word format; there
fore, the result cannot be expressed.

2) DP Floating Point Underflow. The result of
an add, subtract, multiply, or divide oper
ation is too small (nonzero) to be expressed
in the double precision floating point format.

-191-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3) SP Floating Point Overflow. In a single
precision store operator, the exponent
field of the word to be stored is larger
than that which can be contained in the
exponent field of a single precision word.
Thus, the result cannot be expressed.

4) SP Floating Point Underflow. In a single
precision store operation, the exponent
field cannot be expressed in a single pre
cision word format because the value is
too small (nonzero).

5) Division by Zero. The divisor in a divide
operator has a zero value. The result is
undefined.

6) Integer Overflow. In a floating-point to
integer conversion, the number of integer
bits exceeds the length of the mantissa
of the floating point word; the result
cannot be exactly expressed as an integer.

7) Conversion Fault. A character to integer
conversion operator encountered a character
other than 0 - 9.

b) Control Traps

1) Illegal Index. The integerized index of
an array was found to be less than zero or
larger than the length of the array.

2) Illegal Operation Code. The operator sel
ected by the processor represents an un
implemented operation.

3) Illegal Operand. Many types are possible;
for example, use of a value-operand in a
context where a descriptor, PEW, or other
non-value operand is required.

4) Apparent Software Fault. Two cases are
presently defined: the absent segment
trap is sensed by a processor for which
interrupts are inhibited, and interrupts
are inhibited by a processor for an ex
cessive length of time.

-192-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840



9) Illegal Address. The address generated
for an M2 operation does not correspond
to an M2 memory location.

6) Invalid Stack Number. The stack vector
entry corresponding to a specified stack
number is not assigned to a stack.

7) Invalid Stack Offset. The offset speci
fied for a stack exceeds the current
length of that stack.

8) Conformability Error. The arrayness of
the operands of an instruction are not
compatible; for example, the attempted
addition of two linear arrays of different
lengths.

2) Asynchronous

a) Stack Bounds Violation. A stack has grown in
length beyond the upper limit of the available
space for that stack, or a stack link is peeled
back below the stack marker for the link.

b) Watchdog Timer Runout (process). The processor
timer for process execution timing has reached
the limit to which it was set.

c) Watchdog Timer Runout (instruction). The pro
cessor timer which times execution of each in
struction has run out, indicating that an in
struction completion has not occurred for too
long a time.

b) System Oriented

1) Synchronous

a) Absent Segment Trap. A load or store operation
has addressed a segment not currently resident
in M2 memory.

b) Processor Error. The error control logic of a
processor has signalled a disagreement in a re
sult generated by the processor.

c) Memory Error (process). The execution of an
instruction by a processor has encountered an
M2-memory error.

-193-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



2) Asynchronous

a) I/O Completion. A requested I/O operation has
been completed without error.

b) I/O Data Error. A requested I/O operation has
been completed with a signal of data error.

c) I/O Controller Error. A fault has been signal
led by the I/O controller error detection cir
cuitry.

d) Timer. A match has occurred between the system
clock and the clock interrupt register.

e) External Signal. One of a specified set of
external signals has occurred.

f) Processor Interrupt (IPC). One processor has
directed that another processor be interrupted.

g) Memory Error (I/O). The execution of an I/O
operation by the I/O controller has encountered
an M2-memory error.

The placement of the stack bounds-violation and instruc
tion-timer runout interrupts into the asynchronous category of
process oriented interrupts should be explained. Both are, in
a sense, related to execution of an identifiable operator by a
processor. However, in the stack bounds-violation instance, the
operator involved may have been fabricated by the processor in
response to an interrupt signal; the operator thus would have
no real physical existence in a code segment. In the timer
runout case, the point or progress of execution is unpredictable,
since the signal from the timer is truly asynchronous relative
to the execution sequence. Hence, both of these interruptions
fail to fully satisfy the "synchronous" conditions, and are ex
cluded from synchronous category for this reason.

Process oriented interrupts may readily be handled by
the processor on which the related process is being executed.
The same is true of the absent-segment trap, which is specifi
cally caused on behalf of a process: however, it is listed
among the system interrupts for two reasons:

a) It is handled by a procedure which is considered to be
part of the operating system, since management of a glo
bal resource (memory) is involved.

-194-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



b) The time-duration of the anticipated response may make
it desirable, from an efficiency viewpoint, to reassign
the processor, rather than to make it idle until the
segment becomes present.

That the second of these points may be invalidated by
by use of a high-performance secondary storage device is not
particularly germane to the current discussion.

The Processor Interrupt also implies a preference for
a particular processor. The Processor Error and Memory Error
interrupts are synchronous, and seem to nave an atfinity for
the processor which was involved. However, the Processor
Error interrupt may be an indication that the processor cannot
execute instructions satisfactorily, in which case its attempt
to handle the interrupt could cause an endless loop. The Memory
Error interrupt could have arisen at the M2 stack-top during a
process's attempt to enter a procedure; if so, an attempt to
enter the Interrupt-Handler procedure will probably result in
a loop. Thus, in both cases, a processor other than the one
involved is selected.

Consequently, all system wide conditions, except the
Absent-Segment Trap and Processor Interrupt require a means for
selection of a processor. This function is provided in the I/O
controller, in accordance with an interruptibility index main
tained there for each processor. It suffices here to say that
after "disqualification" of certain processor (e.g., as just
described for the Processor Error condition), the processor
chosen has the highest probability of immediate assignment to
a process readied by the logical consequence of the interrupt.
Loosely speaking the eligible processor executing the lowest
priority process is designated.

3.3.2 Status Recording

Occasionally, the interruption of a process is not fol
lowed subsequently by its resumption. Much more frequently,
however, resumption does indeed take place, albeit at a later
time, perhaps on a different processor, and perhaps in an en
tirely different area- of memory. It is a natural consequence
of the real-time response requirements which the system must
satisfy, and the choice of an interrupt-driven priority sche
duling algorithm for assigning processors to processes, that
running processes can be temporarily suspended to allow per
formance of some urgent function. Thus it is necessary to re
cord all information essential to the restarting of the process
when the interrupt procedure is entered.

-195-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Interrupt response is treated as the involuntary entry
of a procedure. Whereas in the normal entry to a procedure
segment, the steps required to mark the stack, supply arguments
(pass parameters), note the return location, and achieve entry,
are all accomplished by operations explicit in the calling pro
cedure, these must be performed automatically by the processor
accepting an interrupt. This difference is more readily dealt
with than is the problem which results from the occurrence of
a disabling failure in a processor during the execution of an
instruction. Yet, in this case, the design philosophy of the
system dictates that the victim-process must survive. Hence,
not only must the status information be allocated sufficient
space in the execution stack area between caller and called
procedure, but each processor must maintain its essential status
record in an externally accessible memory. Thus, the processor
error-detection components need only signal the occurrence (and
type) of failure, and render the processor dormant; the task of
rescuing the victim process and continuing its execution at an
appropriate time is given to another processor.

The status which must be retained includes the instruc
tion pointer to the return location in the interrupted procedure,
an operator-dependent completion indicator, and the dynamic
status information contained in special processor registers
during execution, such as current lexical level, condition code,
interrupt mask, and current stack-top register. The instruction
completion indication mentioned above is used to specify the
degree of progress which had been made in the execution of the
operation designated by the return pointer. Normally, the indi
cation will reflect the usual circumstance of interrupts being
accepted between instructions; the operator being returned to
will thus not have been initiated. Three cases cause other be
havior:

a) Interruptions which are integral to the execution of
the operator, and require resumption rather than restart
upon return;

b) Interruptions allowed in the middle of array operations,
for enhancement of response time; .

c) Interruptions due to faults, for which resumption
rather than re-execution of the operator is logically
necessary.

In all cases, the completion indicator is treated in
conjunction with the operator at the return point as a more
specific description of the operation to be performed upon re
turn. Viewed in this way, it is loosely analogous to the frac
tional part of a number adding a more detailed description of
the value than provided by just the integer part.

-196-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



An additional item of status information is the pro
cessor timer. This register is used as a combination watchdog
and accounting tool. When a processor is assigned to a process,
the timer is loaded with a limit value, and as the process ex
ecution occurs, the timer is counted down. Should it reach zero,
the Watchdog Timer Runout interrupt is signalled; depending upon
the policy desired, this event can be used to denote an error
(process-time overrun), or to implement process time-slicing.
In any event, the process timer value must be stored in the stack
of its process when the processor is taken away, and restored
when the process is subsequently made to run again.

The preservation of the process time is complicated by
the fact that unknown and unnumbered system interrupt handlers
preempt the processor and make use of the stack of the inter
rupted process. Several philosophical approaches are reasonable:
First, the processors may be provided with two timers, one for
the application process and one for the interrupt handlers. A
bit in the PEW on entry (or REW on exit) would specify which of
these was to be incremented. A second approach would retain 
the single timer, but the interrupt handler would,be required
by convention to exchange the process's value with its own
timer load-value at the point of entry to the interrupt pro
cedure; exit would perform the inverse action. Still a third
approach resulting from pragmatic considerations, is reasonable.
A determination is made by some means for each interrupt handler:
If the execution is thereby deemed "short", the interrupted
process would be charged for the time spent in the interrupt
handler; if the time were judged "long", then a timer contents
exchange would be performed, as in the second approach.

The third method is preferred, since it is believed
equitable (the boundary between "short" and "long" can be set
to a value commensurate with the desired precision of account
ing), and only one timer is required in each processor for this
functional purpose. The saving of the timer value upon reassign
ment of a processor is left to software.

3.3.3 Interrupt Description

At the time when the stack is marked in preparation for
entry into an interrupt-handler procedure, the processor places
two words into the stack as though transmitting them as argu
ments to the called code segment. The first of these words in
dicates the nature of the condition causing the interrupt, while
the second is used to provide supplementary data. The format of
the second parameter word depends upon the interrupt condition
specified by the first parameter. For example, in the Absent Seg
ment Trap interrupt, the second parameter is the location (stack
number and offset) of the Mom descriptor for the absent segment.

-197-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.3 Interrupt-Handler Selection

Because of the wide variety of applications in which
the multiprocessor is expected to be utilized, it is desirable
to allow the largest degree of flexibility in interrupt hand
ling. It is therefore planned to implement a mechanism for
specification of interrupt responses which is quite general.
This mechanism will be made available to a system user only
through high-order language facilities authorized for his use;
consequently, without the need for hardware-imposed surveillance,
a wide range of interrupt-handling capabilities may safely be
provided. Required protection can be imposed by the compilers,
rather than by the hardware.

Each user may specify an action to be performed when an
interrupt which he is authorized to field occurs. The inter
pretation of such specifications must follow the customary
stack model for flow of control. That is, a dynamic specifica
tion of response in a given lexical level (or program block)
should override the specification for that interrupt which was
in effect at block entry. Upon exit from the block, the pre
ceding value must be restored.

Space is provided for this purpose in the base of the
stack segment for each process. (The "base" is the fixed area
below the first active data in a stack segment; it is where
the process information is stored. See Figure 3.3-1) Four des
criptors are placed there, in a fixed position relative to the
first word of the stack segment. Each of these descriptors
describes a pseudo-stack segment, referred to as an interrupt
response vector (IRV) stack. The four IRV stacks correspond
to Arithmetic Traps, Control Traps, Asynchronous Process Oriented,
and System Oriented interrupts respectively. When a process is
created, the operating system initializes each of the four
descriptors as the copy of a system Mom, which is located in
the level 0 stack.

The formats of the IRV sections correspond directly
with the interrupt categories they represent. The length of
a section is the number of distinct interrupts in that category
(viz., 7,8,3, and 10), and each word is a PEW for the interrupt~

handling procedure for that interrupt. The IRV stacks consist
of one or more groups of PEW's, each group being a section as
described above. A description of how these stacks are accessed
and manipulated will illustrate the detail of their structure.

When an interrupt is accepted by a processor, the inter
rupt category, which is part of the interrupt signal, is used to
select one of the four descriptors in the base of the process's
stack. The index number of the interrupt within that category is

-198-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



used to select an element of the interrupt response vector ad
adressed by that descriptor; the PEW found there determines the
code segment to be entered.

When a process executes a statement which specifies a
replacement of the response for a particular interrupt, (for
example, in PLII, one might write ON ZERODIVIDE ... ), a system
procedure is invoked which consults a four-bit group in the
current Mark Stack Word (MSW). The category number of the spe
cified interrupt is used to select one of these four bits; if
that bit is a zero, the current block has not specified any
overrides for interrupts in that category. In this case, two
courses of action may follow, depending upon whether the pro
cess has or has not created a local IRV stack for the category.
Assume, for now, that it has. The system procedure then makes
a copy of the top group of the appropriate IRV stack, and places
this group-copy at the top of the IRV stack. It then writes
the PEW for the newly specified response over the entry for
that interrupt in the new copy. Finally, it sets to one the bit
for the category in the MSW, and updates the descriptor for the
category in the process's stack base.

This action is illustrated in Figures 3.3-1 a) and b) .
The related information just before the execution of the over
ride statement for division by zero is shown in a), and b)
shows the conditions just after. In a), note that the appro
priate bit in the current MSW is set to zero, and that the Ari
themetic Trap category descriptor in the stack base points to
the bottom of the second IRV-group, which is then the top stack
group. After the override, b) shows the MSW bit set to 1, that
a third IRV group now occupies the top of the IRV for this
category as indicated by the descriptor in the stack base, and
that the PEW for division by zero in the newly-formed top group
of the IRV specifies the response directed by the override
statement just executed.

If the process were now to execute an override for this
category of interrupt, the response would be different, since
the bit in the MSW is currently set to one, indicating that an
IRV group already exists. Whether division by zero or other
interrupt in the same category is overridden, the action in this
case is the same: the PEW for that response is just overwrit
ten. Hence, any previous override specified in the current
block for that interrupt is not stacked, but destroyed by a
subsequent override in the same block. .

When a block is exited, the system procedure which ad
ministers stack cut-back examines the four interrupt-response
bits in the MSW. For each which is a one, the top group is
peeled from the IRV stack by updating the descriptor in the

-199-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



a)
S

ta
c
k

b
e
fo

re
re

sp
o

n
se

o
v

e
rr

id
e

PE
W

fo
r

d
iv

id
e
-b

y


z
e
ro

In
te

rr
u

p
t

R
e
sp

o
n

se
V

e
c
to

r
S

ta
c
k

PE
W

,P
E

W
,

I
N

ew
PE

W
fo

r
d

iv
id

e
-

b
y

-z
e
ro

.P
E

W
I

,P
E

W
fo

r
d

iv
id

e
-b

y
-

~
I
.
.
.
-
_
-
-
-
-
-
-
-

z
e
ro

D
e
s
c
ri

p
to

r
fo

r
A

ri
th

m
e
ti

c
T

ra
p

in
te

rr
u

p
ts

M
SW

H
SW

I ~ C
)

C
) I

b
)

S
ta

c
k

a
f
te

r P
ro

c
e
s
s

S
ta

c
k

In
te

rr
u

p
t

R
e
sp

o
n

se
V

e
c
to

r
S

ta
c
k

F
ig

u
re

3
.3

-1
:

O
v

e
rr

id
e

o
f

a
n

A
ri

th
m

e
ti

c
T

ra
p

C
a
te

g
o

ry
o

f
In

te
rr

u
p

t
R

e
sp

o
n

se
(d

iv
id

e
-b

y
-z

e
ro

)



stack base. Thus, the desired stacking action for interrupt
response is achieved. Specification of interrupt responses
in different blocks are stacked, in order of dynamic flow of
control.

The subject postponed above may now be treated; namely,
the action taken when a process specifies the interrupt re
sponse, but does not possess an IRV of its own. This condition
arises because the operating system initializes a newly-created
process with interrupt response descriptors which are copies
(specifying subarrays: see below) of a single Mom descriptor
located in the level 0 stack. This Mom descriptor defines a
combined IRV which is shared by all processes which do not
specify or have not yet specified responses to interrupts' of a
given category. The initial IRV situation for a process is
shown in Figure 3.3-2. The response PEWs for all interrupt
categories are placed into a single array as shown, since the
system responses are fixed. The use of the sub-array designa
tors in the copy descriptors allows separate access to each of
the four sections of the system IRV, using only the single Mom
descriptor. '

The above configuration is that encountered when a
process first specifies its own interrupt response. The pro
cedure invok~d to perform the function can distinguish this
case by discovering that the descriptor for the specified cate
gory is a copy-descriptor, not a Mom; it then obtains space for
a local IRV for the process, and copies the corresponding sec
tion from the system IRV to the local IRV. It then rewrites the
descriptor in the stack base, making it into a Mom for the new
segment. Further processing is similar to the case already
described. The process is reversed when stack cut-back is
performed, and the IRV is to be cut back but contains only a
single group~ th~ block-exit procedure must then release the
space occupied by the IRV, and set the descriptor back to being
a copy of the system Mom.

The amount of space required to store IRV's is deter
mined by the size of the "entry" (that is, the length of the
IRV section for that category), and the anticipated nesting
depth. The categorization of interrupts corresponds roughly
to relative frequency of override; Arithmetic Traps are most
probable, Control Traps next, and so on. In the absence of
other information, space for more entries should be provided
for an Arithmetic Trap IRV than for a Control Trap IRV, etc.
However, the language compiler may provide ad~itional infor
mation which can steer the space-allocator. For example, if,
only one override statement appears, only one IRV entry will
be needed in the absence of recursion.

-201-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



I I\
J o t\
J I

4 3 2 1

le
n

g
th

o
ff

s
e
t

f
i
e
1
~

fi
e
ld

C
o

p
y

1
0

1
8

'"
12

81
0

I
~

M
om

C
o

p
y

3
1

5

~
11

C
o

p
y

8
7

7
0

C
o

p
y

S
y

st
e
m

IR
V

(c
o

m
b

in
ed

)

F
ig

u
re

3
.3

-2
I
n

it
ia

l
C

o
n

fi
g

u
ra

ti
o

n
o

f
a

N
ew

P
ro

c
e
s
s

R
e
la

ti
v

e
to

In
te

rr
u

p
t

R
e
sp

o
n

se



A final observation deals with the implementation of a
function like the PL/I REVERT xxx, where xxx is an interrupt
condition. This statement is used to set the response to the
interrupt xxx:back to the value it had upon entry to the pre
sent lexical level. In the current system, this is easily
implemented: REVERT invokes a procedure which examines the
category-bit in the MSW. If the bit is zero, there is no local
response active for the category, and control is returned to
the caller. Otherwise, the IRV is located, and the appropriate
PEW in the top group is replaced by the contents of the PEW in
the next-to-top group (which must be accessed from the system
IRV if the process's IRV contains only one group). Similar
selection from the system IRV is performed to implement a spe
cification such as ON ZERODIVIDE SYSTEM, which directs that
"system" response to the division-by-zero interrupt be invoked.

3.3.5 Interrupt Masking

The ability to interrupt a processor in the current de
sign achieves two objectives:

a) it allows a processor to respond to conditions not an
ticipated by the process in execution, and

b) it provides rapid response to the occurrence of certain
conditions without the overhead required for high
frequency polling to determine whether the conditions
have occurred.

The first of these is necessitated by the real concur
rency of operations in a multiprocessor system. For example,
an input/output operation started by one process may complete
when some other process is in execution. Thus, while the exe
cuting process may be totally unrelated to the I/O operation
which just completed, it is often desirable to respond imme
diately to the occurrence of the condition, to initiate a sub
sequent I/O request to the device, and to.determine whether
the completion readies a high priority process for.execution.

The second objective is exemplified by the validity
testing of operands and addresses in conjunction with execu
tion of instructions by the processor; for example, the test
ing for invalid memory address or arithmetic overtlow. Such
tests are effectively performed in a parallel with the execu
tion of each instruction, making it unnecessary for processes
to provide checks (necessarily sequential, rather than parallel)
to ensure that all conditions are met for satisfactory comple
tion of the instruction.

-203-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



At times, the interruption of a process may be unde
sirable. In a few cases, the desired response to a condition is
standard, and may be directly implemented by the processor.
avoiding the overhead of entry to and exit from an interrupt-
handler procedure. The best example of this type of condition
is floating point underflow, in which the customary response is
simply to set the result to zero and continue. Examination of
the interrupt classification list, given in section 3.2, re
veals that the interrupt causes may be categorized as to whether
they do or do not represent states in which the processor may
continue to perform the instruction during which the condition oc
curred. For example, all of the arithmetic and control traps,
the stack bounds violation interrupt, the absent segment trap,
and the synchronous error indications are situations in which
the processor must take action other than that implied by the
current instruction. If the index to an array is invalid, the
processor cannot select an array element; if the operation code
is invalid, the processor cannot execute that instruction; if
a floating point overflow occurs, the result cannot be expressed
within the data format of the machine; if the stack bounds are
violated, the processor must seek an alternate path of execu
tion. In the other category are those conditions in which the
response may be postponed: timer runout, I/O completion, I/O
data error, timer signals, and so forth. Considering the first
"cul-de-sac" operations (for which an escape route must be pro
vided), it is seen that only two conditions, for which the
normal response is standard, arise with sufficient frequency to
make the specification of a standard response desirable. These
are the DP and SP floating point underflow conditions. The DP
underflow represents a case in which the exponent of the re
sult of an operation is too small to be exactly represented
within the exponent field. The SP floating point underflow oc
curs when a single precision store-operation finds that although
the double precision exponent field is adequate to contain the
exponent, the single precision store cannot be completed as
specified. In both these cases, it is almost always desired
merely to replace the result by zero, and continue normally.
Hence the processor is implemented with a 2-bit mask field
which may be set to determine whether occurrence of each under
flow condition is to cause entry to an interrupt procedure, or
conversion of the result to a zero value. At every procedure
entry, the processor stores the values of these two mask-bits
as part of the status of the calling process, and restores
the mask setting from these bits when the return is executed.

The "cul-de-sac" interrupts described above represent
conditions which could logically be anticipated in terms of the
execution of particular instructions (e.g., one knows that a
multiply operation may overflow), but for which validity check
ing is more effectively provided by concurrent operations in

-204-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



the hardware than by sequential operations in the code itself.
The asynchronous conditions such as timerrunout, I/O comple
tion, etc., are philosophically different since they cannot,
in general, be anticipated at a particular point either in the
context of a given instruction, or even by the process being
executed. Responding to these conditions via an interrupt re
presents a change in context from the process which was inter
rupted to that of the interrupt-handler, since the interrupt
handling is logically unrelated to the process which was in
terrupted. Because of the absence of a logical imperative,
delays in response to such conditions can usually be tolerated.

There are situations in which one or both of the above
objectives are not appropriate: for example, the interruption
of a process to respond to an unanticipated condition may dis
rupt a computation in a "critical section". Under other con
ditions, the overhead involved in interrupt handling may act
ually be higher than the polling overhead that would be neces
sary if the condition were not to cause an interrupt. For
these reasons, additional control of interruptibility is pro
vided in the system.

The manipulation of certain data bases must be restric
ted to one process at a time. For example, the dispatching of
queues of ready and running processes must prevent such occur
rences as the simultaneous allocation of two processors to a
single process. In a multiprocessing environment, two condi
tions must be fulfilled to handle such data bases safely and
efficiently:

a} Once a process has gained access to such a data base,
other processes must be denied access to that data
base;

b} The process must be allowed to perform its manipula
tions without its processor being pre-empted for some
other purpose.

Explicit data-locking techniques may be used to enforce
an upper bound to the number of processes granted access.How
ever, to dynamically impose a lower bound, it is necessary to
prevent the processor from being assigned to an interrupt hand
ler. This is achieved by providing an interrupt-inhibiting
capability to a process. This is a signal transmitted to the
I/O controller via the IPC bus, which specifies that the issuing
processor has become uninterruptible for those interrupts for
which the processor is selected by the I/O controller. As noted
above, these interrupts are ones whose response may be postponed
without disturbing the logical correctness of the ensuing opera
tions. Therefore, even if all processors should be in the inhi
bited state for a short time, the conditions may be adequately
handled later.

-205-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



In addition to making the processor uninterruptible,
the I/O controller initializes an inhibit-state interval timer
for that processor, with a limit value. Should no subsequent
interrupt-enable command from that processor be received be
fore runout occurs, the I/O controller will signal the processor
with the Apparent Software Fault interrupt. This mechanism
insures that no process remains in the interrupt-inhibited state
excessively, to limit the effect on interrupt response. An
appropriate value for this time limit appears to be about one
millisecond.

The use of a one millisecond time limit on inhibited
interrupts precludes the handling of Absent Segment Traps trig
gered by processes having interrupts inhibited. Consequently,
if an absent segment trap should occur when the processor is
in the interrupt inhibited state, the Apparent Software Fault
interrupt will be triggered rather than the Absent Segment Trap.

One further form of interrupt inhibiting is mentioned
to complete the treatment of this sUbject. When the multipro
cessor system workload is heavy, the frequency of Absent Seg
ment Traps can be expected to be relatively high. Conventional
processing of an Absent Segment Trap requires entry to an in
terrupt handler, initiation of an M3 operation, and placement
of the process into the wait state. Upon completion of the M3
operation, an I/O Completion interrupt is signalled. The hand
ler for this interrupt is then entered, the process waiting for
the segment is readied, another I/O operation to M3 is ini
tiated if one is queued, and the processor allocation routine is
called to see if it is appropriate to assign a processor to the
newly readied process. An alternate implementation has been
chosen to avoid, at least in most cases, the necessity for en
tering the I/O Completion interrupt handler when the segment
transfer is concluded. The details of this mechanization are
described in conjunction with I/O control in section 3.5; how
ever, it is appropriate to point out here that this is achieved
by providing a capability in the I/O controller which causes
it to make a choice of whether or not to signal I/O Completion.
Thus a dynamic decision is made as to whether the interrupt should
be suppressed or signalled, depending upon the existence of a
queue of operations waiting for the device. If the interrupt
is suppressed, the condition is made known to the system by the
setting of a bit field in a location accessible to the absent
segment trap handler. After initiating an M3 operation required
to make an absent segment present, this handler checks the com
pletion-states of M3 segment transfers previously issued. The
processes whose segments are found to have completed their trans
fers are readied; thus the need to enter the I/O Completion In
terrupt handler is avoided. This diminishes the overhead for
absent segment handling, especially under heavy load, when com
putational overhead is most detrimental to the system throughput.

-206-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.4

3.4.1

Memory Management

Introduction

It is assumed that all software written for the system
will be processed by compilers to produce code and data segments
in accordance with specifications determined by the memory mana
gement procedures. Each compiler thus produces and stores in
M3;

a) Code segments, which normally correspond to procedure
blocks in the source program, and include additional
code, supplied by the compiler, for establishing and
initializing the stack link from which the segment ex
ecutes.

b) Initialized-data-array segments contain the initiali
zation values to be applied to a qiven array when that
array is "created" and when the procedure in which the
array was declared 1S entered during execution. Unin
itialized data-arrays are created at run-time by the
absent-segment interrupt handler (see section 3.4.7.l),and
initialized and uninitialized scalars are allocated and
set by the stack-link initializing code mentioned pre
viously.

c) The segment dictionary, which contains a descriptor
for each code segment forming a part of the program to
be executed, whether it is internal, i.e., a compiled
part of the program, or an external segment to be dy
namically bound at execution time.

All references to segments occur via an access path that
includes the Mom descriptor for the segment. This special des
criptor, of which there is only one for each segment, indicates
whether the referenced segment is currently to be found in M2
memory or not. When the segment is present in M2, the Morn des
criptor contains its M2 address; if it is not in M2, the Morn
contains its M3 address (several exceptions to this are described
below). When a reference to a seqrnent occurs, the processor
checks the present/absent state by examining the "presence"
bit in the Morn. If the segment is present, the access is com
pleted; however, if it is absent, the processor signals the
Absent Segment Trap, and enters the system procedure which
handles this condition. The absent-segment-trap handler makes
the referenced segment present, after finding or creating space
for it in M2, by reading the segment from M3, if it resides
there, or making it up, under certain circumstances to be des
cribed later. If adequate M2 space is available, an area of

-207-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



appropriate size is obtained from a free area; otherwise, the
distinction between physical and virtual storage is exploited
by pre-empting space occupied by some one or more other seg
ments to make room for the one currently demanded. Thus, a
process may address logically more procedure and data segments
than may conveniently be stored simultaneously in M2. The
observed patterns of addressing of typical programs, namely,
the temporal and spatial locality which they exhibit, allows
many segments to be absent without seriously impacting the
throughput of a processor, relative to its capability given
much larger rv12.

Spatial locality [1] refers to the concept that if a
procedure accesses a logical location L at time T, then it is
likely to refer to an address in the range L - dL to L + dL
at the next opportunity. On the other hand, temporal locality
is the property that if the set {Li} of logical addresses are
referred to in the interval T - dT to T, there is a high like
lihood that addresses from this set will occur in the interval
T to T + dT. Programs are found, on the average, to have an
exploitable degree of both types of locality; hence, the opera
ting system attempts to maintain in M2 those segments which
have recently been referred to. Because the- segments which
have not recently been referred to typically will not soon be
referred to again, it is possible to achieve almost full uti
lization of the processor even when M2 space for only a frac
tion of the segments is made available, to a process. Hence,
the overall size of M2 may be smaller (or alternatively, the
number of processes may be made larger) compared with a system
in which M2 was not dynamically multiplexed.

The description of how M2 multiplexing is implemented
forms the remainder of this section.

3.4.2 Administration of M2 Space

At any instant of time, M2 is logically divided into
a number of areas, which are of three types: available, in
use, and unusable. Available areas or parts are those not
currently occupied by a segment; unusable areas are similarly
unoccupied, but are not eligible for use because of a fault
or other reason. In-use areas are classified as shown in
Figure 3.4-1. A discussion of some of the operations which are
provided to deal with memory parts will provide motivation for
the form selected for administrative data associated with mem
ory parts.

-208-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840



M
2

M
EM

O
RY

AR
EA

CL
AS

S
IF

IC
AT

IO
N

AR
EA

Av
ai

la
bl

e
Un

us
ab

le

I ~ o \D I
Re

si
de

nt
(R

ES
)

/
""

M
ov

ab
le

Un
m

ov
ab

le

In
-u

se
_.

Tr
an

si
en

t
(T

RA
)

/
~
S
l
a
C
k

St
ac

k

F
ig

u
re

3
.
~
l

C
la

s
s
if

ic
a
ti

o
n

o
f

M
3

M
em

or
y

A
re

a
s



3.4.2.1 Space Allocation

Space allocateq to a segment may be treated as "resident"
or "transient". That space which is transient is subject to
dynamic displacement from M2 in connection with the practice of
memory multiplexing; resident space is not. Because the area
available for multiplexing is reduced when resident space is
increased, the use of resident space is to be minimized. Nor
mally, it is used:

a} To improve real-time response, since the time penalty
incurred from absent segment traps can be avoided;

b} To improve the performance of the operating system,
by avoiding the delay and overhead of segment loading
for heavily used functions.

c} To avoid logical difficulties such as might arise if,
say, a segment of the Absent Segment Trap Handler
caused an absent segment trap.

d} To insure that the key (top) stack sections of ready
processes are present in M2, so that the processor
allocation procedure may assign a processor to them
without delay.

The operating system handles all requests from processes
for M2 space. Such requests most often arise from absent seg
ment traps, but other types of space-requests are defined. The
response of the as to space requests is a compromise between
maximum utilization of M2 and minimum computational overhead.
Among the phenomena which can diminish the effectiveness of a
storage-management algorithm is fragmentation. In a scheme
employing fixed-size pages, the fragmentation is "internal"[2];
it results from the fact that the unit of space allocated for
a given request is likely to be bigger than logically necessary.
For example, if a 1024-word page is fetched because a 100-word
array is needed, the extra words may not be used by the compu
tation before the page is displaced in response to a demand for
some other page. Fragmentation makes demands for other oaqes
more frequent, since the memory consumed by non-required words
reduces the remaining available space.

External fragmentation occurs only when multiplexing
with variable-sized areas. Unlike internal fragmentation,
where the lost or unnecessary area is within the allocated
memory part, the unused areas with external fragmentation
occur between in-use memory parts, whenever variable-sized
areas are obtained or released. For example, suppose an algo
rithm is used which allocates space in a 10-word memory from
the smallest area big enough, and consider the sequence Rl = 5,

-210-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



R2 = 1, F I , R3 = 2, R
4

= 3 (R1 = 5 denotes "request number one is
for 5 woras"; F l means "free 'Ehe area obtained by Rl "). The
availability of the memory (initially all free) after each re
quest is given by

~, 5

~, .!., 4

5, .!., 4

5, .!., ~, 2

1, 2 , .!., ~, 2

where the underlined digits represent in-use blocks, and the
non-underlined digits refer to free areas. The two 2-word
free areas represent fragmentation. A request R5 = 3 or 4
would not be satisfiable, since the four words of available
space are fragmented.

The above example, showing the ill effects of fragmen
tation, may also be used to demonstrate the behavior of an al
ternative space-selection strategy. The above algorithm is
called "best fit" [3], since a request is satisfied from the
area whose size is both sufficiently large and most nearly
equal to the size specified in the request. Another algorithm
is termed "first fit", since the first area whose size is ade
quate is chosen. For the sequence of requests described above,
the memory map resulting from the "first fit" strategy would
be

~, 5

~, .!., 4

5, .!., 4

~, 3, .!., 4

~, 1, .!., 4

This case has the property that all available space is left in
a single area; a request for three or four words would be granted
at this point, even though with "best fit", failure would occur.

-211-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Admittedly, cases may be constructed in which "first
fit" fails and "best fit" succeeds (e.g. , Rl = 5, R2 = 2 , F l ,
R3 = 3 gives

First Fit Best Fit

.?' 5 .?' 5

.?' ~, 3 .?' ~, 3

5, ~, 3 5, ~, 3

1, 2, ~, 3 5, ~, 3

in which requests for four or five words can be satisfied by
"best fit" but not "first fit"). Still, "best fit" has two
distinct disadvantages, although it initially might seem more
appealing: First, it requires examination of more storage
areas, on the average. Only when an exact fit is found may
the search be stopped before all available blocks have been
examined*, with "first fit", the search terminates as soon as any
adequate area is found. The second disadvantage is that a
by-product of "best fit" is the creation of a number of very
small blocks, since the difference between the sizes of the
chosen and requested blocks deliberately is minimized. In
asmuch as this increases the total number of available areas,
the search time for "best fit", already longer, may be in
creased further. To reduce the deleterious effect on the "best
fit" search, it is beneficial to maintain a list of blocks
ordered by size; the search then should be conducted from the
largest to smallest, stopping when the first block not large
enough is found; the previous block is then used. If the search
is conducted from the small end of the size range, the added
small blocks are likely to be often searched but not accepted,
thus increasing the time required to find a solution.

We have selected the first-fit algorithm for these
reasons. While this represents a design decision, it does not
imply a commitment; a laboratory model or a simulation may be
used as a test-bed to explore the alternate choices.

A second issue relative to storage fragmentation is
the differentiation of requests for resident space from those
for transient space. While the distinction between certain
operations on these types is strict, it is nevertheless true
that the distinction between their retention times in M2 is
more vague. This is simply because some resident segments
may soon be released, and some transient segments may stay
in M2 for relatively long intervals without being displaced.

* If available blocks are ordered by size, not all blocks need
be examined; however, the overhead of maintaining the order
is added.

-212-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



In the absence of empirical results, however, a design has been
selected which presumes that at least on the average, the stay
times of resident segments substantially exceed that of trans
ient segments. Consequently, it is advisable to attempt a par
titioning of memory in such a way that fragmenting of the
transient pool of space does not result from the scattered
presence of long-term resident segments.

We treat requests for resident segments as though they
had higher priority, in some sense, than transient requests,
because requests for resident space may take space from trans
ient blocks, but not vice versa. As a result, it is inappro
priate to place a fixed partition between the two memory regions.
A softer "boundary" is imposed instead, by adopting a strategy
under which requests for resident space are more likely to be
satisfied from lower M2 addresses than are transient space re
quests. This strategy, which resembles that of the B6700 opera
ting system (MCP) [4], involves a list organization and a search
procedure; these are now described.

3.4.2.2 Structure of Available-Memory Lists

Two lists of available memory parts are maintained: a
resident (RES) list and the transient (TRA) list. When a re
quest for space is received, the space allocator attempts to
satisfy the request from the list which corresponds to the type
of area requested. To reduce the chances of increasing memory
fragmentation when a request for RES space is granted, available
memory areas are added to the RES list only when they are bounded
at their low end by an equally-fragmenting block: an in-use
RES block, or an unusable block. For example, in Figure 3. 4- 2
if the in-use TRA area T

2
were to become available it would be

linked into the TRA list, and not into the RES list. This is
because if it were linked into the RES list, and the space
then was assigned as an in-use RES area, it would create a new
boundary between a TRA and RES area, and increase the degree of
fragmentation. It would become a new RES-island in a sea of
TRA areas. As another example, if in-use TRA area T3 were to
be freed, it would not be linked into the ·RES list, even though
it is adjacent to the in-use RES area R2. Although this would
encourage no new TRA/RES boundaries, it would decrease the
affinity between RES areas and the low address end of memory.
Finally, when T4 became free, the space would become linked
into both the RES and TRA lists, since it is bounded at its
lower end by an in-use RES block.

Available-memory blocks are included in the TRA list
unless both upper and lower neighboring blocks are in-use of
type RES or unusable. It is readily seen that available blocks
may be members of both lists at once.

-213-

INTERMETRICS INCORPORATED ·701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



M
2

l
J

R
1
IT1 I

T2
IT3

IR
2

IT4
IT

5
IA

7
I I\
J

I-
'
~ I

K
ey

:

L
ow

A
d

d
r
e
ss

e
s

H
ig

h
A

d
d

r
e
ss

e
s

R
In

-u
se

r
e
s
id

e
n

t
T

In
-u

se
tr

a
n

s
ie

n
t

A
A

v
a

il
a

b
le

F
ig

u
r
e

3
.4

-2
P

a
r
ti

ti
o

n
in

g
o

f
M

2



When an in-use block is released (freed), two functions
must be performed. First, if either or both adjacent blocks
are already free (available), the newly freed block is coales
ced with them. Second, the resulting free area is placed on
one or both lists, depending 'upon its neighbors. If the best
fit policy was used in space allocation, the free area would
be placed in the list in accordance with its size. Under first
fit, no such search for the correct location is logically
necessary; the block may be placed at the head or tail of the
list. However, to press RES areas towards low M2 addresses,
the available-RES-list is ordered by M2 location. Consequently,
when a block is added to the RES-list, a search may be required
For the TRA-list, the use of first-fit eliminates not one, but
two searches (one at space allocation time, and one when that
space is released) relative to the best-fit approach.

The connections of an available memory area to the
memory lists are accomplished by use of space within the block
itself. Whether a block is available or in use, an indication
of type and other characteristics are stored in the block
header area, described below. To determine the nature of a
block, the header may be examined. This examination is required,
say, when an adjacent block is freed, to determine whether the
block is available or in use, and if in use, whether RES or TRA.
Locating the header of the successor block is straightforward
when the location and size of the freed block are known. How
ever, while the last word of the predecessor block is easily
located, finding the header area is less easy, since the size
of the block is variable. Thus it is desirable to store infor
mation at the end of each block as well as at its beginning.
Various choices are available: for example, necessary charac
teristics may be stored at both ends, or the last word may
contain the size of the block or a pointer to its first word.
Exactly which of these forms is selected is relatively unim
portant; the primary issue is whether such information is pro
vided at all. The conflicting considerations to be traded
off are the lost space in the block if the information is kept,
versus the execution time penalty searching the lists to identify
the predecessor blocks. Consistent with previous design choices
which eliminated or minimized searches, we presume that loss of
space is preferable to execution overhead. In the sequel, ex
amination of predecessor areas will be discussed; it is postu
lated that this is done without the necessity of a search.

A similar line of reasoning leads to the use of both
forward and backward linking for the lists of available blocks.
This costs nothing in space, since the pointers are needed only
when the block is not in use. The cost is the maintenance of
two pointers, rather than one, for each list-entry. The saving
occurs when a block is removed from the list, and the list must

-215-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



be linked around it. Had the block been selected during a
simple search for first-fit, the predecessor-block in the search
could be remembered, obviating the need for a back pointer.
However, blocks may be selected in other ways, described be
low. In these instances, the predecessor block has not neces
sarily been examined, and a search would be required to find
it if the back pointer were not provided.

Figure 3.4-3 summarizes the administrative fields which
are maintained in available-memory blocks, without regard to
the number of words or bits which are required. Estimates
may be based on M2 memory size (the pointers are physical M2
addresses); about twenty bits would suffice for size and
pointer fields.

3.4.5 Space Administration Procedures

In this section, the procedures for obtaining and re
leasing areas of M2 storage are described.

3.4.5.1 RELEASESPACE Procedure: The memory management software
contains a procedure which is called whenever a process wishes
to free (release) a memory area. The only parameter which is
needed by this procedure is the location of the beginning of
the block. The nature of the manipulation which the release
space procedure performs dictates that no more than one process
at a time may execute the procedure; a lock is therefore pro
vided.

The RELEASESPACE procedure examines the physically pre
ceding and succeeding blocks. For each, it is determined
whether the block is available; if so, it is delinked from the
RES and/or TRA lists, the header area of the lower of the freed
block and neighbor being examined is adjusted to reflect the
combined size, and the trailer area is updated in the higher of
the two. When both neighbors have been treated, there Wlil be a
single free block, a member of neither th~ TRA nor RES lists.
The neighboring blocks of this block are examined to determine
which of the lists should contain it. This decision is direct.
Neighboring blocks must be 1) unusable, 2) in-use RES, or 3) in
use TRA. If the predecessor block is in-use TRA, the free block
is placed only upon the TRA list. Otherwise, the successor
block must be consulted: If the successor is in-use TRA, the
free block is placed onto both available-lists; otherwise, it
is added only to the RES list. This' logic is illustrated in
Figure 3. 4- 4 a), a) and c).

-216-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



/.':

Header
area

SIZE
,.

TA

FPR

BPR
' ..

FPT

BPT

..~ ... ~

Lowest address

•
•
• ....

Data or
Program
Area

Highest addres! HL Trailer area

TA represents type and attributes .
FPx is a forward pointer
BPx is a backward pointer
xxR is a pointer for the RES (resident) list
xxT is a pointer for the TRA (transient) list
HL is a header locator field (size or pointer)

Figure 3.4-3 Logical Fields Utilized in Available Memory Parts

-217-



a) New area linked into TRA list on~y

BefOreJ T _(~S'TRA)I T }
Low High

I I JAfter) T A(TRA) T

b) New area linked into TRA and RES l~sts

Befor) R _A(TRAll T J
Low High

I JAfter} I R A(RES,T~) I T I

c) New area linked into RES list on1X

Beforl GJ A(RES,TRA) ~ A(TRAll R J
Low High

After) GJ A (RES) R I !
Key: R

A
In-use RES
Available

T In-use TRA
Released
Block

Figure 3.4-4 Release of·M~ Blocks

-218-



_.
When a block is; added to the RES list, it must be

placed into the list at: 'a.·,pos.ition corresponding to its M2.
address. This may requirea. search. However, the search 1S
not required if either neighbor was ava11able and a member of
the RES-list. When this situation exists, the pointer fields
from the neighbor block are saved before the neighbor is de
linked, and are thus available to locate the nearest members
of the list. (The fact that some of the delinking and re
linking implied by the description may be avoided in the im
plementation is obvious; such "efficiencies" would complicate
the description if inci~ded, without adding to the clarity of
the ideas. These details are thus omitted.) Should both neigh
bors have been available in the RES-list, the back pointer of
the low or left neighbor and the forward pointer of the high or
right neighbor are the two useful ones.

When neither neighbor provides usable pointers, it is
necessary to search .. Two alternatives occur as search strate
gies:

a) Physically adjqcehtblocks may be examined successively
in one direction, until the first one which belongs to
the RES-list is found, or

b) the list may be searched by following the pointer link
ages.

The latter approach lends itself better to the use of
build-in search instructions in the processor, and is therefore
the one chosen. The search is stopped as soon as a block is
found whose address is on one side of the new entry, and whose
pointer contains null, or an address located on the other side
of the new entry. Linking the new block into the list involves
the ordinary pointer adjustments for doubly-linked lists: the
forward pointer of the left neighbor, the back pointer of the
right neighbor, and the two pointers of the new member are set.

A block to be added to the TRA-list is added at the
tail-end of the list, since it is not ordered. This operation
is facilitated by a pair of pointers for the list, which are
kept in a known location. One of the pair points to the first
entry in the TRA-list, while the other points to the last entry.
To add an entry at th~ tail of the list, it is necessary to
alter four locations: The new block's forward and backward
pointers, the forward pointer of the previous last block, and
finally, the second pointer of the list control pair. The new
links are established in a sequence as illustrated in Fiqure
3. 4.5. The new pointer settings are shown as dotted lines
and numbered in the order that the changes are made.

Further details of the RELEASESPACE procedure are des
cribed in subsequent sections.

-219-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Q
)

1-
--

--
.0

.....
.

B
P

N
ew

la
s
t

li
s
t

e
n

tr
y

~
-
-
-
,

~
I I I I I

I
-
-

-.
.

-L
.

~
I

I
I

L
...J

<!\
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
,

I
I

I
t

I
'-

~
I

'"'
"

I I I
o
L
~
)

-0
)-1

F
P

I

L
is

t-
c
o

n
tr

o
l

p
a
ir

I
r'

I I 1
,"

".
&

F
ir

s
t

e
n

tr
y

p
o

in
te

r
'

I
I

I
I

I
,

.,
F

P
r-

-
i

I'

L
a
s
t

e
n

tr
y

p
o

in
te

r
~

I
B

P
I I

P
re

v
io

u
s

la
s
t

I
li

s
t-

e
n

tr
y

I I I
"

.

I r-
J

r-
J o I

F
ig

u
re

3
.4

-5
L

in
k

a
g

e
o

f
a

F
re

e
B

lo
c
k

o
n

to
th

e
T

a
il

o
f

th
e

A
v

a
il

a
b

le


M
em

or
y

T
R

A
-l

is
t.

O
ri

g
in

a
l

P
o

in
te

r
V

a
lu

e
s

a
re

S
h

o
w

n
a
s

S
o

li
d

L
in

e
s.

N
ew

S
e
tt

in
g

s
a
re

D
o

tt
e
d

.



W'.~&ble

REI.r.Mjf.llPACe
0001

l"t"I,II"I, ".·~",ry ""lIo1'I,,_"l
1",'1<. n~-l"d'i. Sel'i.·J
,1'·',,'"II1'J 1',I"'.'y .nl'Y.

W\ua.able or

..,,,t t>1~1r. .~f .h. SIZJi at.
lole to '4:!'O U.t. U•• I)·I'n
\,) av,;,ld .car.:-h, 1t
ro..1l.1•

AM block (\( Ilr.e SIZE at 10(
to tdl of ':'AA I18t

,<';' t,ll"-'" lJ .......cc'"slOOI" toO
SIZE::. ~.odHy lac to point
point to III:t.·dcccsr.ol". If TRA
IllU'J-I';I"H;'~ &f, .. rch p"lntt:r
value aqrced with oriq. loe,
fI "I.f it thn ~,,!"'~ wa

tn-use or
unusable

oliVO torw.ud & back pointer.
(or JU;:S link090 in tln'TR tl"O\:!

pred"c:essor and RBPTa. oelink
(rolll RES litl

Md .ize of aueco••or to alz,
It TRIo. lIla.ka-ar"c-e at!arch ptr
contains th" location ot thl'!
auc,:fls"or. I!lOdl(y it to
ctll1teoln the ",,1_ loco

-221-

Figure 3.4-6
RELEASESPACE



3.4.5.2 FINDFREESPACE Procedure: This space allocation procedure
is called by other procedures within Memory Management. The
parameters associated with the call include the size of the re
quested area, and whether it is to be RES or TRA space. The
function of the procedure is to attempt to fulfill the request
from an available area, returning an indication of success with
the M2-address of the block allocated, or failure. As dictated
by the first-fit strategy, the appropriate list of available
memory blocks is scanned. Should a block be found whose size
is greater than or equal to the requested size, the search is
successful. If the sizes are equal, the block is delinked from
the list, and also from the other list if it is a member of
both. If the sizes differ by more than a set amount, the re
quired space is taken from the lower or higher end of the block,
according to whether the request is for RES or TRA space res
pectively. The remaining area is linked into the lists the
original block was in, which requires no searching since the ori
ginal block pointers have correct values and are even in the
right places if the request was for TRA space. In both cases,
the trailer cell must be written with correct size information.

The situation where the size difference between the re
quest and selected available block is small (less than the "set
amount" mentioned above) is given special treatment. The thres
hold for this difference has not been chosen; it is readily
altered when the system is in operation, and its tuning may
therefore be postponed until then. A lower bound on the size
difference between requested and available blocks value is
determined by the combined size of the header and trailer cells,
since a block must be at least this large to contain the admin
istrative data. At the high end, it must not exceed a value
above which the loss of the block is more harmful to system
throughput than the overhead expense of reclaiming it. This
level is related to the median request size; a size of a auar
ter of the median is suggested as a reasonable first approxima
tion.

When the size difference is between zero and the thres
hold value, the breakage block is, by implication, too small to
justify being treated normally. Accordingly, the original block
is delinked from the available-memory lists as though an exact
match had been found. The requested space is taken from the
high or low end as above; the first and last words of the re
mainder are set to indicate that the block is a "leftover". The
size is written as usual in the size cell, and the trailer cell
is set normally. As a result the leftover available block is
left stranded in memory: i.e., not linked into either available
list. While in this condition, it is incapable of being selec
ted for use; it must first be absorbed into an adjacent block
which is freed.

-222-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



FINDFREESPJlCE ("ize, type)

y

RES TAA

y

Calculate delta, the differ
ence between found-block size
and requested-block size

>lirni t

Take requested space from 10
or high end of found-block,
accorJing to request for RES
or TAA. Substitute excess
area for found block in RES

Slimit

Delink found-block from RES
or TRA lists if it was a
member

=0

Figure 3.4-7 FINDFREESPACE

Establish "left
over" block

-223-



The RELEASESPACE procedure described previously is
therefore modified so that when a neighbor of a released
block is found to be a leftover, it is coalesced as though
it were a normal available-block (except that no delinking is
necessary) .

3.4.5.3 MAKESPACE Procedure. If a block of sufficient size is
found to be available, then the free-space allocation proce
dure returns· its location. However, such a block may not be
found, so it becomes necessary to make space.

Conceptually, space could be "created" in M2 in two
ways: segments could be moved about in M2 so that fragmented
available space is coalesced, or segments could be removed
from M2, making their area available. MAKESPACE uses a combi
nation of both approaches. By examining an indicator of the recency
of-use of candidate segments, a group of one or more areas is
identified, whose total size is sufficient to satisfy the re-
quest. These segments may include a combination of in-use areas
and available areas; the recency-of-use indication helps to
select segments which have not been referred to recently by a
process. In accordance with common practice [5], a block not
referred to lately is assumed to be one not likely to be re-
ferred to soon, and thus its absence from M2 is likely not to
be noticed fora reasonable period of time.

As described elsewhere, each segment in M2 has one and
only one Mom descriptor. The Mom is the only descriptor which
contains the M2 address of its segment; other descriptors
access the segment via the Mom rather than directly •. Because
there is exactly one Mom per segment, and because all accesses
are via the Mom, the processor can be caused to set a designated
bit (the REF-bit described in section 2.4.2) in the Mom to a one
whenever an access to the segment takes place. Additionally,
the C bit (see Fig. 2.4-11) is set to one when an access occurs
for the purpose of altering the segment.

The algorithm selected for segment displacement is
based on one used by Multics [6], extended to handle variable
sized segments. In Multics, which uses fixed-size pages, a
circular list is maintained, with an entry per main-memory page
frame. When space is needed, the list is consulted, starting
at the location after the one examined last. If the usage bit
is off, the page has not been referenced since the last time
the space-finder examined the entry, and that page-frame is
selected. If the usage bit is one, it is turned off, and the
next entry is examined.

Actually, the algorithm is a special case of a more
general one; the usage bit is used in conjunction with a k-bit

-224-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



usage word. When a page frame is examined, the usage word is
right-shifted one place, and the present value of the usage
bit is placed into the vacated high-order position. Only when
the word is zero is the frame selected. The case described
above-corresponds to k = 1; use of k = 0 makes the algorithm
FIFO (first-in, first-out), and behavior with large k resem
bles least-recently-used (LRU) page selection. Because the
search must examine a number of pages proportional to k, on
the average, to find a solution, larger values of k mean lar
ger overhead expense. Only if this overhead is more than off
set by improved performance resulting from more judicious
space assignment is a choice of large k appropriate. Multics
has determined that k=l is their best choice.

The corresponding problem for variable-size multi
plexing (VSM) is more difficult, since it is not true that
a given area is as useful as any other area; multiple-areas
are frequently necessary to satisfy space requests. The same
principle, however, may be applied. The concept of a k-bit
shift register is equally valid in the VSM environment, and
choosing the best value of k would be a valuable exercise when
the system became operational. However, in subsequent discus
sion it is assumed that k = I had been chosen, and the shift
register concept is not referred to further.

Following an unsuccessful search of available areas,
physically-adjacent blocks of storage are sequentially examined.
When RES space is required, the search begins at the low end
of M2, and proceeds toward high memory. When TRA space is
needed, the search is from high to low memory, but begins at
the point where the last TRA-search left off. Hence, the
search normally begins somewhere in the middle, proceeds to
the low end, jumps to the high end, and progresses back to-
ward the middle. The searches are seen to be somewhat unsym
metrical; the motivation, as before, is to keep RES blocks
concentrated at low addresses, to reduce fragmentation. Further
it is desired that TRA-block lifetimes be independent of their
location. In neither search is any possible memory area omitted
from consideration, so that if a search for one type falls, no
benefit can be gained by attempting a search for the other type
before taking recovery action.

Each search progresses in "inchworm" fashion. When it
begins a new iteration, two pointers are set to the end of the
first block examined. If that block is "acceptable" (a term
which will be defined below), the "front" pointer is advanced
to the physically-adjacent block. If that one is also accep
table, the front pointer is advanced again. Each time a block
is acceptable, the combined size of accepted blocks is com
pared with the size required, and the search is stopped when a

-225-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



sufficient area has been accepted. When an "unacceptable"
block is encountered, the front pointer is advanced to the
next block, the rear pointer jumps forward and is also set
to this block, inch-worm style, and a new iteration is be
gun.

A block is defined to be "acceptable" in the above
context if it is either available or in-use TRA with a reset
REF-bit. Blocks which are RES or unusable are not acceptable,
nor are in-use TRA blocks with REF-bits set. These blocks
are passed by, but their REF-bits are turned off in the pro
cess; if they are not referenced before then they will be
acceptable when they are next examined.

The acceptance criteria thus are seen to include
available areas, and areas which are in-use TRA but not
recently referenced. Such TRA blocks may be displaced
from M2 if necessary; in most cases, an area exists for them
in M3. If they have been altered, they must be written to
M3; if they have not, the M3 copy is a duplicate of the M2
version, and no write to M3 is required. Depending upon the
M3 characteristics, it may improve performance if a displaced
segment is simply transferred to a new location in M2. The
subsequent discussion is based upon the assumption that such
an M2 to M2 transfer is preferred when it can be performed
readily.

We resume consideration of the behavior of the MAKE
SPACE procedure at the point where an adequately large con
tiguous group of one or more acceptable segments has been
identified. At this point, the blocks which are available
are delinked from the available-memory lists. Next, it is
necessary to handle the in-use segments either by moving them
to a new location, or if this is not easily performed, by making
them absent. For each segment, the FINDFREESPACE procedure
is called to find an available TRA-list area big enough to
contain. the segment. If successful, the transfer is performed,
and the Mom is ~ppropriately modified.

If no available space is found, the Mom descriptor is
marked absent, and the C-bit is examined to determine whether
a write to M3 has to be initiated. If so, the I/O write-request
is issued~ and the C-bit turned off. This process is re-
peated for each in-use segment, although if an available-
memory search failure occurs, the search-attempt is by-passed
for subsequent blocks of equal or greater size. Although the
multiprocessing environment appears to offer a chance that a
subsequent search would be successful, it does not, in fact,
offer this chance because of the necessity to restrict access
to the procedures which manage global resources to one process
at a time. Consequently, even if a running process had wished

-226-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Figure 3.4~8: MAKESPACE

r----- --ll"'·!!.s-< )-',...,.."'-- --.,

!:r.t h"4d lm,J wil llOilltC!ra
to Ih"! v.11uo cont"inc:d in
'fAA MWr.C!-armco Dl!'arch ple.
Get Ihntt to low OM of
'I'M 1(:'1101'1

oelink available block. 10
the .electod are. fron US
and. '!'D Ibu

In1 Ual1:r.a vri to-count to
ZDro. Initialize fr_-apaco
fallure 81&41 indicator to
infinity

Ex_ina in-us. block in
.elected er••

M.lka ID!'t .abacl'lt. Movet
block to nev area. Mark
HOM pretlcnt and udpate
"l ad.L.lroaa fiold

-227-



to release storage, it would be prevented from doing so by
the process (already executing) in the memory management pro
cedures.

When all in-use segments have been moved or marked
absent and related M3-writes have been issued, control is
returned to the caller with a value indicating the size of the
created space, and whether any writes were initiated.

3.4.6 Addenda

At this point in the discussion it is appropriate to
mention several small points which have influenced or do in
fluence the way operations are done by the MAKESPACE proce
dure.

3.4.6.1 Administrative Data in In-Use Memory Blocks: Figure 3.4
9 shows the logical entities stored in each in-use memory
block. This data includes the location of the Mom descriptor
for the segment, and an M3 address field ..When the segment
is absent, the M3 address is contained in the Mom; when pre
sent, the Mom designates the M2 location.

3.4.6.2 M3 Writes: When it is desired to write a segment to
M3, there is a possibility that no space has yet been allocated
for it in M3. This case is recognized by a special M3 address
value stored in the block, and is responded to by calling the
procedure for M3 space allocation with size and class (TRA)
as parameters. The circumstances in which this may arise in
clude data arrays, initialized or not. An initialized data
array is stored as a segment on M3 by the compiler. This seg
ment is copied into M2 when the array is "created" at execu
tion time. However, because the initialization values in M3
must be preserved for possible future use, the original M3
address may not be used as a target for M3-writing. Rather,
a new location must be obtained when the first write (if any)
to M3 is necessary. Uninitialized data-a~rays have similar
properties, except that not even an unusable M3 address exists.

3.4.6.3 Why M2-M2 Transfers of RES Blocks are Avoided: There
is no logical necessity for avoiding M2-M2 transfers of RES
in-use blocks to make space for a segment. The reason it
isn't done is pragmatic: the MAKESPACE procedure identifies
a set of blocks which is big enough to satisfy the request.
If the set includes in-use blocks, they are TRA blocks, which
means they may be moved to M3 should no hole for them be found

-228-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



SIZE
TA

M3 ADDR

MOM ADDR

•
-L.-- • ..... ~

•

HL

TA represents type and attributes

M3 ADDR is the location in M3 where this block
is to be written or fetched

MOM ADDR is the stack number and offset for
the Mom

HL is a header locator field

Figure 3.4-9 Logical Fields Utilized in In-use Memory Parts

-229-·



in M2. The same cannot be said for RES blocks; if no space
in M2 can be found, they have to be left where they are,
since the meaning of RES is that the block must stay in M2.
Thus the failure to find alternate M2 space for a RES block
would spoil the acceptability of the set of blocks which
were thought to be acceptable. Available blocks in the set,
which would have been delinked from their lists in order to
prevent their selection as a target for an M2 to M2 transfer,
would therefore have to be re-linked, and the search re
initiated at the block "following" (higher or lower, depending
on the search direction) the incubus-block.

A space-finding failure could be made less likely,
if MAKESPACE could call itself recursively in the event no
solution was found in the available-memory list. However, the
ensuing overhead might become awesome, and we propose that
such an approach be considered only if it appears capable of
solving a performance problem encountered with the implemented
system.

3.4.6.4 The "Copy" Problem: To reduce the length of the access
path to a segment, it is desirable to avoid as often as possible
the physical accesses of the level-O stack (to locate the stack
vector), the stack vector entry (to locate the appropriate
stack), and finally the Mom descriptor (to locate the segment)
when addressing a segment. For this purpose, an associative
memory is provided within each processor, with the capability
of delivering the contents of a Mom in response to the Mom's
stack number and offset. While this makes a sizable reduction
in the time required to traverse the access path, it introduces
the characteristic problems which arise when copies of any al
terable global data are made.

Specifically, when the memory management procedures
make any change in a Mom descriptor, they must insure the ab
sence of out-of-date copies by issuing a cancel instruction*
to destroy such copies. Three different Mom-changes requiring
such cancellation have been mentioned above:

a) turning the REF-bit off when a block is examined but
found to have been recently used,

b) marking the descriptor absent,

c) modifying the descriptor when the segment has been
moved.

Other cases exist in the sequei~

* The cancel instruction is a variant of the IPC operator
described in Section 2.4.3.11.

-230-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.4.6.5 Search-Pointer Invalidation: One of the four searches
for space which have been described begins at a variable phy
sical location. This is the search for TRA space by MAKESPACE
which begins where it previously left off. The two available
memory searches involve linked lists. The search for RES space
starts at the low end of M2 to deliberately encourage alloca
tion of RES space near that end. These considerations do not
apply to the search for TRA space; in fact, it is desired to
make TRA-space survival probabilities uniform over the regions
of memory where such space is allocated.

The RELEASESPACE procedure must account for the possi
bility that coalescing a freed block with a neighbor-block may
eliminate a block to which the TRA search pointer is set by
MAKESPACE. It therefore checks for this eventuality when
blocks are coalesced. If it occurs, the pointer is simply
adjusted to point to the block into which the previously pointed
at block was merged.

3.4.6.6 Stack Displacement from M2: Each process in the system
is associated uniquely with some stack. It may use other stack
sections as well, and other processes may use part of its stack,
but there is a one-to-one association between a process and its
"key" stack. While a process is running, its key stack is de
signated RES. At other times, key-stack sections may be selected
for displacement by MAKESPACE. Because stacks may contain Mom
descriptors, they represent a special case for memory management.
Since it is necessary that all Moms in a stack be absent before
the stack is displaced, the memory management routines maintain
and observe a count of "present" Moms in the PIA (process infor
mation area) of each stack. When a Mom is accessed to change
its present/absent indication, its stack number is always avail
able; hence, the present-count is readily located.

Memory management thus records the usage of a memory
area for a stack; when a segment is released or made absent or
present, the present-count is adjusted. When MAKESPACE examines
a memory part which contains a stack, the block is "accepted"
only if it is TRA and its present-count is zero. This treat
ment will tend to preserve stacks in M2 longer than other seg
ments, which .is felt to be desirable.

3.4.7 Further Memory Management Procedures

This section describes procedures involved in the hand
ling of memory segments.

-231-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.4.7.1 The Absent-Segment-Trap Handler: When an Absent Segment
Trap (AST) interrupt occurs, the ASTHANDLER procedure is called
with a parameter which specifies the location (stack number and
offset) of the absent descriptor. ASTHANDLER has three functions
to perform:

a) obtain space for the absent segment,

b) initiate the transfer of the missing segment from M3
to M2 (sometimes not necessary), and

c) inspect the list of previously-initiated segment trans
fers to see if any completions have occurred, and take
appropriate action if so.

The third of these functions might logically be performed by the
I/O-completion handler. However, in the normal case, ASTs occur
with such frequency that it is desirable to avoid the overhead
of the I/O-completion handler for every segment arrival; there
fore, the ASTHANDLER procedure issues I/O requests with a spe
cification that completion is not to cause an interrupt. To
prevent the arrival of the last segment from going unnoticed
if ASTs became very infrequent for a period of time, the I/O
controller signals I/O completion, even when suppresion was
requested, if the completed request is no~ chained to a follow
ing request. (This sequence is explained in greater detail in
section 3.5.)

The ASTHANDLER begins by establishing a lock to ensure
that it is being executed by no more than one process. Then
it examines the size of the required space. Next, it attempts
to obtain space by calling the FINDFREESPACE procedure. If
this fails, a call to the MAKESPACE procedure is executed to
obtain space at the expense of a not-recently-referred-to seg
ment. If the returned information from the MAKESPACE indicates
that no writes to M3 were initiated, or following their com
pletion if there were any, the amount of excess space granted
by MAKESPACE is calculated. The size of the excess area may
be zero, small, or not small. If it is zero, no action is re
quired. If small, the area is marked "leftover"; otherwise,
the RELEASESPACE procedure is called to link the block into the
appropriate lists. Because the RELEASESPACE will examine the
neighbors of the released block, and since the block of space
just obtained is one of them, it is necessary to store the type
information into the obtained area before this call is made.

Following the possible return of excess space, or im
mediately after space from the available list is found, AST
HANDLER may proceed directly to establish the absent segment.
At this point, there are two possibilities: the segment does

-232-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



or does not, exist on M3. Normally, it does; the other cases
correspond to data segments declared without initialization,
such as arrays and I/O buffers. When the segment is in M3, the
M3 address is obtained from the Mom, and a read request is
issued. When no initial contents are specified, the system
designer has two alternatives: either let the system provide
initialization, or make the segment present with whatever random
contents it happens to contain. We adopt the safer choice,
system initialization, since it is not possible at this time
to assume that no accessing of the initial contents will take
place. If the segment contained, for example, descriptors and
other indirect-address words, the correct performance of store
instructions would even be threatened. Hence, the ASTHANDLER
procedure initializes the segment, marks it present, and sets
the M2 address into the Mom.

When the segment to be made present resides on M3,
ASTHANDLER initiates a request for an M3 to M2 transfer, speci
fying that no completion interrupt be triggered. If the des
tination area in M2 required writes to M3 to make it available,
the read request is chained onto the last write request.

ASTHANDLER performs its third function by examining
the completion-status of previously-issued M3 transfers. Each
of these keeps a record which specifies the action to be per
formed when completion occurs. Typically, whan an arbitrary
I/O request is completed, two responses are required: first,
a pending I/O request which has been delayed by a busy device
or channel is initiated, and second, the process which issued
the now-complete request is made aware of the completion. ~n

the absent-segment case, the first of these responses occurs
without software intervention by chaining I/O requests together
in such a way that the I/O controller hardware itself initiates
the next pending request. The second response, in most instances,
is performed at the convenience of the ASTHANDLER to reduce over
head.

Thus, the table of outstanding requests is scanned; if
any completions have occurred, the table entry is marked, so
that it will not be re-interpreted; the actions specified
within it are then performed. In the case of a write to M3,
a space return call, a segment initialization, and the marking
of the segment present may be necessary, perhaps followed by
a call to the process-state controller to ready a waiting pro
cess. If the completion represents a segment arrival, the
segment must be marked present, and a process may need to be
readied.

The administrative functions could be performed by
the process being readied after it is given a processor, except

-233-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



"';'I'IIAUI'l )·'K hl\lllllhtJ")
t,I,III''''I\'
,,\\1Hla"lptu)"

Figure 3.4-10
ASTHANDLER

l':u lull)' :~h Ifk·\lIl..'q' 1\l.,na'H'n),,'I\l.
lock (HM-.lodd. :iHl t inq
fo.lunotilh;l "l"lnl.iry cnll'V

['\Ctcnnintl ni:~ of l"t.'quir(!d
space. Call find-frce
spaco procedure with typo
And tfi:.o rt~quircl.1

r- y<-(Frec space foun

?

n

Call MAKESPACE procedure
wi th type and size.

I
I

y

Initiate I/O read request.
Record "make presentn action
to be taken on completion

n es missing

r
r-------------~segment reside

on M3?

Were writes ~ n
initialized?r

y

Jwere ''writes
'~-----L initiated?

Record "return
excess space II an
'initialize seg
ment" actions to
be done when
writes comple te

Initialize seg
ment Mark Des
criptor present,
and store H2
address

y

p.ecord "return excess space"
action to b: done when
vri tea complete

Call COMPLETIONCHECK
procedure (Fig.

3.4-11)

Is segment y
hich caused AST-~----------------'l

trap prescnt?

n
RDleABe MM lock

Record II ready proccRs lt ac
tion on lORt I/O r"'luost.
RclcaBo MM-lock, Placo pro
Cl'8a into Wl'\lT state

.
~

I
Call Procoss
Stato controller

-234-



COMPLETIONCHECK

Examine
pending list
for awaited I/G

completion

n

y

Perform recorded action (mark
a descriptor present, ready a
process, return excess space,
or initialize a segment). De
lete space reserved for I/O

Figure 3.4-11 COMPLETION CHECK

-235.,..



for two considerations. First, a segment arrival may be of
interest to more than one process; if the process which first
attempted to make the segment present is of lower priority
than one of the others, delegating to it the duty of marking
the segment present may delay the resumption of the higher
priority process. Second, there are cases where no process
is readied by a segment arrival (a variant of the segment
load procedure, described below), and yet the functions must
be performed anyway.

When all completions have been processed, the AST
HANDLER exits. The nature of its exit depends upon whether
it has readied any processes, and whether its own process is
able to continue immediately. If its own process has issued
an uncompleted read or write request to M3, the ASTHANDLER
issues a WAIT calIon behalf of its process, after unlocking
its lock. If its process does not need to wait, the Process
State Controller is called to decide which process deserves
the processor; otherwise the return is directly to the pro
cess which triggered the absent-segment trap.

To ensure that no other process attempts to make a
segment which is already the subject of an M3 to M2 transfer
present, the Mom for the segment designates the condition of
"segment in transit". This i,s done by setting the M3 address
to a distinguished value, which can be recognized by the AST
HANDLER upon entrance.

3.4.7.2 LOADSEGMENT: The LOADSEGMENT procedure may be called
to make a segment present without stimulating the absent
segment trap. Two primary uses are forseen for this procedure:

a) pre-loading segments in anticipation of their use by
real-time processes (to avoid the delay of absent
segment retrieval) .

b) insuring the presence of key stack segments, to allow
the Process State Controller to assign a processor to
that process without encountering an AST.

The functioning of LOADSEGMENT closely follows that of
the ASTHANDLER, except for the fact that the LOADSEGMENT pro
cedure always returns to the caller. If requested to load a
stack, the normal segment-arrival completion is set up, ex
cept that the process to be readied is not the caller of LOAD
SEGMENT, but the process associated with the loaded stack.
When the loaded segment is not a stack, its arrival triggers
only the action of making its Mom present; no Process State
Controller call is made.

-236-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Before entering the functional sequence of ASTHANDLER,
LOADSEGMENT checks the Morn to see if the segment is present.
If so, the segment attributes are adjusted as specified by
the call, and a return to the caller is performed with an in
dication that the segment is present. Thus, a calIon the
LOADSEGMENT to make a stack RES which happens to be present
simply forces the type to RES, and returns.

3.4.7.3 CHANGESEGATTRIBUTES: The CHANGESEGATTRIBUTES proce
dure may be used to change the type and attributes as recorded
in the Morn descriptor for the segment. This procedure requires
two parameters:

a) The location of the specified Morn descriptor

b) The new type and attributes

If the segment is present, corresponding changes are
made to the segment header and trailer areas.

As presently conceived, the CHANGESEGATTRIBUTES pro
cedure will not accept requests which imply a size change for
the specified segment, if a copy exists in M2 or M3. Although
such a function is certainly implementable, this restriction
is applied because no requirement for such a generalized capa
bility has been identified, and the complexity of implementation
does not warrant its creation merely to service some abstract
need.

An important use of this procedure will be to relax the
RES status of a stack segment to TRA when the logical necessity
for retention of the stack in M2 has ceased to exist. Stacks
will therefore become subject to displacement from M2 when
they no longer contain "present" Morns. In this context, a fur
ther function was considered for the CHANGESEGATTRIBUTES pro
cedure, but rejected: namely, when called to change a stack,
from RES to TRA, to search the stack either for 1) present Morns,
or 2) present unaltered Morns, to call the RELEASESPACE proce
dure for unaltered segments, and mark them absent. For option
1), calls on a "make-segment-absent" procedure (not otherwise
needed) would be required to write altered segments back to
M3. Finally under option 1), since no present Morns would re
main, the stack segment itself could be written to M3, making
it absent.. Performing the above actions might be defended on
the basis that space in M2 would be made available expeditiously
when immediate need for a process's stack subsided (such as when
a WAIT request specifies a time for wake up a long time in the
future). However, it is not clear that this would happen often,
or that the ordinary workings of Memory Management would be

-237-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



insufficient to prevent observable performance reduction in
cases where it did occur. Hence, it has been decided to
omit such a function, and leave the decision to displace the
stack and its segments to the normal management operations.

-238-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.4.8 Name Management

3.4.8.1 Introduction

The names used in a procedure are the symbols which
identify the objects on which the procedure operates. HOLs
all use names in this manner, and all presume certain rules
of contextual interpretation which allow the same name to have
different meanings in different contexts. Stated another way,
names applied by a programmer need not be unique at the global
level, but are required to be unique only in a given context.

The name scope rules introduced by ALGOL provide an ex
cellent example of this concept. Figure 3. 4-12 illustrates
schematically several aspects of name-scope rules of the type
used in ALGOL, PL/I, HAL, etc. Under these rules, a name de
clared in a block (denoted in the figure by the long left brack
ets) is recognized throughout that block, including blocks
contained in that block, unless the name is also declared in
a contained block. In Figure 3. 4- 12 block X contains a declara
tion for A; this identifier is recognized throughout blocks X
and Y as a reference to the value of the variable declared in
block X. Block W declares A and B; the variable thereby spe
cified to be associated with the identifier "A" is completely
distinct from the variable called A in blocks X and Y. Ref
erences to A in block Z and the part of block W outside block
X refer to the variable declared in block W. The variable
B declared in block W is recognized everywhere except in block
Z, where a declaration there defines B to be "external". The
attribute "external" means that the B in the declaration is
not defined within the section of program which will be compiled
as a unit; hence, the "Call B" statement in block Z refers to
a separately compiled (i.e., external to W) procedure.

The names associated with procedure blocks are treated
as through they were declared in the block which contains the
named block. Thus, X and Z are recognized in exactly the same
contexts in which the A and B declared in block Ware recog
nized. Thus, the only names known outside block Ware the name
W itself, and the B declared to be externally defined. The
external B called in Z is likely to be the name (like W) of
a compiled unit of code.

It is readily seen that a unit of source code treated
as a separately compilable entity creates a division of con
text with respect to name recognition. Whereas the name A may
be used with no concern whatever for uses of A within other
compilable units, the names Wand B (the external B) must be

-239-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



W
:

I
D

ec
la

re
A

D
ec

la
re

B

x:
I

D
ec

la
re

A

A
re

a
W

he
re

N
am

e
Is

R
ec

o
g

n
iz

ed

-
A

--
--

B
-

-
-
-
-

-
x

-
--

--
--

z

A
-
-
-
-
-

1
-
-

Y

-
-

z:
D

ec
la

re

I
~ ןס

=0
o

o I

Y
:

t~
~l
ar
e

~
__

B
e
x

te
r
n

a
l

-
-
-
-
-
I

B _I

~
-
-
'
~
B

F
ig

u
re

3
.

4
-1

2
AL

G
O

L
-

li
k

e
na

m
e

sc
o

p
e



unique at a more global level. For example, if two different
procedures were compiled under the name B, there would be an
ambiguity as to which of them was referred to in block Z, and
additional information is required to resolve the ambiguity.
This is the area to which name management applies.

3.4.8.2 Directory Structure: Name resolution may occur at a
number of points in the life of a procedure. The discussion in
this section is directed at the management of names relative
to the M3 memory.

The objective of M3 name management is to establish the
links between identifiers and areas of storage on M3. This
is accomplished by the use of M3 directories. In conventional
computer systems, the connection between location and name is
direct. Directories are consulted with names as keys, and when
the name is found, that entry in the directory supplies the
storage address. The directory structure for the current system
follows conventional practice with respect to name storage.
Following a discussion of these characteristics, two approaches
to the retrieval of information from M3 are described.

A hierarchy of directory files constitutes the M3
directory. Each file stored on M3 has a symbolic name. Hence,
each directory file is named. At the apex of the directory
structure is the root directory. Each directory entry contains
the name of a file, which may be a directory file. No direc
tory may contain more than one entry for the same name. Con
sequently, while a name may appear in more than one directory,
the "pathname" for that name is unique. The pathname is defined
as the concatenation of the names of the directories along the
path from the root to the file name, each pair separated by a
special character, for example ".", placed between names.
Figure 3.4-13 shows a simple example of a directory tree. While
the name A appears in several directories, it may be seen that
the pathnames are all distinct: ROOT.A, ROOT.Dl.A;' ROOT.D!.
DS.A, and ROOT.DIR·A. If no file is allowed to appear in more
than one directory, the structure is truly tree-like, since
no interconnections between branches occur. Hence, pathnames
are unique, in addition to being distinct: each file has one
and only one pathname.

If all files were linked back to the directory in which
their entry appears, it would be possible to calculate the path
name of a file from knowledge of the file itself. Thus, it is
possible to use only a part of a pathname (for example, its
last component) if a directory pathname is specified impli
citly or explicitly; furthermore, it is straightforward to
define a set of search rules which may require the use of

-241-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Root

A

DIR
D1 r--

DIR

A

D1 D1

D99
~D5 r--

A· D1

D5

A

D99

Figure 3.4-13
A Directory Tree

-242-



directories closer to the root directory than the one specified.
One such search strategy might be to: 1) search for the spe
cified name in the specified directory; if not found, 2) search
directories whose entries appear in the same directory which
contains the entry for the specified directory; if not found,
then 3) search sibling directories at the next higher level,
and so on.

While the provision of facilities through which search
rules may be implemented is a responsibility of the operating
system designer, "the determination of one or more sets useful
in particular applications is postponed. The discussion there
fore passes to the "definition" aspects of the directory: that
information located with the name which enables the file to be
located in M3. This subject, in the present system, must be
considered in conjunction with fault-tolerance in M3, since
it may be necessary to move a file from one location to another
at an arbitrary time to recover from failure.

Whereas in conventional systems it is sufficient to
place the storage location of a file into the directory entry,
an alternate scheme is preferred in a fault-tolerant system de
sign. We choose to make the association from name to M3 ad
dress a two-step procedure rather than a single step. This
is achieved by providing each segment with a globally-unique
identifier of manageable size. The pathname is not usable for
two reasons: first, the pathname may be altered without affect
ing the segment itself, and second, the pathname is of variable
length and too bulky. Therefore, a name is given to a file
when it is created; this name may be obtained from the system
clock (refer to section 3.2.5.1 on timer handling). This name
corresponds one-for-one with a file. If the file is not modi
fied, the name is not changed; if the file is modified or dele
ted, the name is no longer applicable, and furthermore, will
never be used again. This proposed technique imposes a require
ment on the M3 device. This is simply that to obtain segment
j from a file whose global name is i, an I/O request is issued

which specifies only the two values i and j to the device to
locate the desired record. The subsequent response of M3 then
resembles that of a content-addressable device: the name ij
is used £y the device to locate the segment, the physical location
not being specified or revealed. With an added capability to
relocate segments, or at least to rename ,them, this form of
accessing provides for straightforward fault-tolerance in M3,
without requiring participation of the I/O software, except
perhaps for the recovery-procedure's action in copying informa
tion from a faulty area to a healthy one.

The reason that this formulation has the desired be
havior is that each file is referred to in terms of its name

-243-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



and logical structure; details of mapping from name and segment
to M3 address are left solely to the device itself. This pre
vents the following logical problem from arising. If several
processes had looked up a name in a directory, and made a copy
of the related M3 location, and then, for efficiency, simply
specified I/O operations in terms of the copied location, no
means would be available to discover which processes owned
such copies, or to advise them that the locations had been
changed or were no longer valid.

An M3 device with this capability is not known to exist
at the performance levels required in the present application,
although the facilities provided in the IBM 360 direct-access
devices for the handling of indexed data sets are quite good.
In any case, to allow for the possibility that the system may
be implemented without such a device, a work-around scheme is
also presented. This alternative scheme has as its objective
the creation of a section of an access path to a file which
1) provides the physical location of the file, and 2) which is
used in all references to the file.

The operating system implements this by requiring that
every user of a file declare his intention by calling the OS
for access permission. If this file is not already in use, the
OS marks the directory to show that it currently resides in M2,
and where, and copies (moves) the information from the direc
tory to the M2 location. For each subsequent user-request for
access to the same file the OS will note that the directory
entry is in M2, and will increment a count which records the
current number of users. For each reference to the file, the
OS will join the record (or segment) number to the copy of the
file location it keeps, and issue the I/O request accordingly.
As users indicate that they have finished with a file, the OS
diminishes the user count; when it reaches zero, the direc
tory entry is copied back to the directory in M3, and the M2
space is freed.

Should a fault occur in any record of a given in-use
file, its directory entry will specify its M2 location. The
recovery software may thus move the file, .and update the M2
copy of the file's directory entry, locking out processes from
access until the move is complete. As a result, all user pro
cesses, when allowed to continue, will refer to the file in its
new location.

3.4.8.3 Objects Named in Directories: Although it would be
possible to provide a directory entry for every segment and
record in the M3 system, simplification and overhead reduction

-244-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



occur if larger objects, on the average, are addressed in this
way. Hence, directory entries are utilized to address:

a) Directories

b) Programs

c) Compools

d) Files

Directories have already been mentioned. By "programs"
is meant the separately-compiled unit handled by a language
translator: this normally includes procedure blocks and data
arrays declared in the interior of the outer block. Compools
are discussed in the following section (3.4.9). The term "files"
refers to M3 data structures which may be accessed by a process
through explicit I/O requests. This contrasts with the seg
ments of a program, which are normally transferred between M3
and M2 under the automatic response of absent-segment traps and
Memory Management software. Thus, programs must contain a
segment which is a sub-directory for the remaining segments;
this record is used to form the level 1 stack of a process in
execution.

3.4.9 Compool Management

Many modern programming languages have the facility
of sharing named blocks of data on a global level. Since
these blocks are known on a level which is higher than that of
a process, their management must be relegated to executive
control. Within the MP system such Compools are identified by
their character names.

When a process first references an element of a Com
pool, control is automatically transferred to the executive
procedure which resolves the Compool linkage to the process.
If the named Compool already exists within the system, it will
be linked to the using process which will then resume. If
the Compool does not yet exist, it will be entered into the
current system list and then, as above, the process will be
linked. After the first reference to a particular Compool,
the linkage is established, and no further use of the exe
cutive linking function is made. When the process terminates
and space is beinq de-allocated, any references to Compools
must be deleted.

Figure 3. 4-14 shows that· a named Compool has the appear
ance of a user process's stack.

-245-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840



n name" COMPOOL:

DECLARE S SCALARJ
DECLARE V SCALAR ARRAY 3;
DECLARE T SCALAR;
DECLARE W SCALAR ARRAY 4;

•
•
•

•
•
•
•

array values

Value T

array value

Value S

User Count Value

.---+---~~·om descriptor of this stack

"name" COMPOOL
Stack

Figure 3.4~i4:·CompOol Stack Structure

-246-



Scalars (integers) are kept within the Compool stack; arrays
are indicated by descriptors within the stack. This formal
identity to normal usage allows Memory Management to treat
Compool segments in the same way as all other segments. It
would have been possible either to create all of a given Com
pool storage in one array, or in arrays of all single elements,
but this could create difficulty for Memory Management in the
creation of extremely large arrays, which in turn might exceed
addressing capabilities.

Besides the storage of the declared data, each Com
pool stack contains a back pointer (an ADW to the Mom des
criptor which contains its physical address, and a "user
count" value so that Memory Management may keep track of the
number of current users (the count is zero if the last program
using the Compool has finished). The base of the Compool stack
also contains a character string descriptor which points to
the Compool name, for the purpose of identification.

Figure 3.4-15 shows the system Compool linkages. Since
the Compool is considered to be a stack, it must have its Mom
descriptor in the system stack vector. In order to dete~mine

what Compools are currently known to the executive, the top of
the lexical level zero array is used for Copy descriptors of
the Compool stacks. A count of the number of named Compools
currently in existence is maintained in the lexical level zero
array. Therefore, whenever a Compool is referenced for the
first time this group of descriptors is searched with the "name"
character string within the actual Compool stack to discover
the presence of the new used Compool. If it is found, then
the user's Compool descriptor (figure 3.4-16) can be resolved.
If it is not found, the Compool must be brought into the system
and entered both into the stack vector and into this Compool
search array. Then the user's Compool descriptor can be resol
ved.

Figure 3.4-16 shows the state of the user's Compool
descriptor in both the not-yet-referenced, and the resolved
states. When the Compool has not yet been referenced, the
Compool descriptor has its X bits set to 10. This will cause
the system to try and resolve the Compool descriptor to point
to the relevant Compool. Before it is resolved, the Compool
descriptor's pointer field points to a character descriptor,
which in turn points to a character string giving the Compool's
identification name. After resolution, the Compool's pointer
field contains the relevant stack number-offset value pointing
directly to the named Compool. The X bits in the Compool des
criptor have therefore been changed to 11.

-247-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



• •

F
ig

u
re

3
.4

-1
5

:
C

om
po

o1
L

in
k

ag
e

V
a
ri

a
b

le
N

u
m

b
er

'

o
f

C
U

r-
tl

•
re

n
t

sy
st

em
•

C
o

m
p

o
o

ls
~

C
S

N
od

I

T
op

o
f

d
ef

in
e<

i
5U

=
0

u
sa

g
e

I IV 01=
0 co I

st
a
c
k

V
e
~
t
o
r
~

r
M

27
M

!)
P

O
J.

n
te

r

5/,
5/,

=
0

M
2/

M
"n

am
e"

C
om

po
o1

S
ta

c
k

In
d

ex
c
o

rr
e
sp

o
n

d
s

to
st

a
c
k

n
u

m
b

er

S
ta

c
k

V
e
c
to

r



a
)

U
n

re
6

0
1

v
e
d

C
o

m
p

o
o

lD
e
sc

ri
p

to
r

in
U

se
r

P
ro

g
ra

m
b}

R
e
so

lv
e
d

C
o

m
p

o
o

l
D

e
s
c
ri

p
to

r
in

U
se

r
P

ro
g

ra
m

n
la

lm
le

n
la

lm
le

C
o

m
p

o
o

l
n

am
e

id


e
n

ti
f
ic

a
ti

o
n

C
o

m
p

o
o

ld
e
s
c
ri

p
to

r
X

b
it

s

C
o

m
p

o
o

l
N

am
e

id
e
n

ti
f
ic

a
ti

o
n

b
it

s

(:1:
11'

1
I

p.
.~
1

I
~
c
o
m
p
o
o
l

d
e
s
c
ri

p
to

r

I t\
)

01:
>

\0 I

H
,

=
2

u,
=

2

U
se

r
P

ro
g

ra
m

S
ta

c
k

U
se

r
P

ro
g

ra
m

S
ta

c
k

"n
am

e"
o

m
p

o
o

l
S

ta
c
k

F
ig

u
re

3
.4

-1
6

:
R

E
so

lv
in

g
C

o
m

p
o

o
l

D
e
s
c
ri

p
to

r



Upon finishing a program/the executive decrements the
"user counter values" within the appropriate Compools. (These
are those for which the Compool descriptors in the process

,stack contained X bits set to 11.)

-250-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.5 I/O Management

The functions to be performed by the I/O management
procedures are determined: by the types of I/O devices with
which the computer is to communicate, by the nature of the inter
face between computer and device, and by the purpose of the data
transfer.

In order to be able to propose a method of I/O manage
ment, some assumptions must be made about the kinds of data
transfers expected to be made with the world outside the multi
processor. It will be assumed for the purpose of the current
design that three basic types of I/O device interface will be
serviced:

a) High speed block data transfer, as characterized by
I/O discs, drums, tapes. Once a block transfer is
initiated across such an interface, it continutes to
completion. Block sizes are in excess of hundreds of
words, and data rates are in millions of bits per second.

b) Slow speed, single data transfers, as typified by card
readers, keyboards, and printers. Such transfers are
often in less than tens of words at a time, and data
rates typically thousands rather than millions of bits
per second.

c) Short response time, high speed, short data transfers
which are characteristic of a central avionics data
bus.

Each of these types of interface will be briefly
examined in the following section. After that the information
structures required to control these device types, and details
of a set of I/O procedures will be given.

3.5.1 I/O Interface Categories

3.5.1.1 High Speed Block Transfer Interface. The dynamics of
this interface are most heavily impacted by its role in the
transfer of memory segments between M3 and the multiplexed M2,
as described in Section 3.4.

-251-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



It is also affected by the choice of M3 storage tech
nology. For reasons given in the Introduction to this report
it was decided to adopt a conventional, rotating, magnetic
device for M3, rather than one of the more advanced solid ,state
mass memory technologies that are being developed today. A
consequent decision was to interface the disk (or drum) through
the I/O controller, and to manage I/O transactions by a set of
I/O executive procedures, basically as has become standard
practice in the larger ground-based computing facilities of today.
File I/O and memory segment I/O are thus handled, with the
exception of some specific differences which are detailed
in Section.3.4.7.1, by the same executive procedures.

A fixed head drum can exhibit an average access time in
the 5 ms to 10 ms range, corresponding to rotational speeds of
6000 to 3000 rpm ~espectively. This performan~e is exp~c~ed to
be adequate in supporting the expected process1ng capab111ty
of the multiprocessor, although an accurate assessment of the
necessary M3 performance, will only be obtained by observing
the computer under near-realistic processing loads.

Once a desired file has been located on a drum-like M3, 5
the data may be transferred at rates on the order of 1 to 3 x 10
words per second. The transfer must be allowed to complete,
else a further access delay of 5 to 10 milliseconds will be
incurred. For memory segment transfers of tens to hundreds of
words, the actual transfer occupies a few milliseconds; i.e.,
an interval of the same order as access time. It will be assumed
that only one data transfer at a time can be accommodated by a
single M3 device~ This is not a fundamental restriction, but is
usually dictated by the cost of providing multiple read and
write electronics, buffers, control circuits, etc.

A high speed port into M2 can accommodate a higher data
rate than required to sustain a single M3 transfer: without
interleaving, up to 10 6 words per second; with the four~way

interleaving described in Section 5, nearly 4 x lOb words per
second are possible. An I/O controller channel servicing an M3
device of the type assumed could therefore be parallelled by
several others, if the need to provide multiple simultaneous
data transfers to high speed, block organized devices
necessary. For example, a high speed tape unit could be connected
and used simultaneously with ancM3 device, perhaps through the
same, suitably designed, channel. The description of I/O proce
dures given later in this section does not differentiate between
I/O requests to disks, drums, or tapes.

-252-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.5.1.2 Slow Speed, Unit Record Transfer Interface. This inter
face is considered separately here only because of its role in a
laboratory implementation of the multiprocessor. It serves
the basic unit record devices: card reader/punch, operator
console/keyboard, and line printer. These devices are of negli
gible importance (in terms of performance) in an operational
space station implementation (and may not even be required) ,
but become the principle I/O devices in an experimental environ
ment. From an I/O control point of view their main characteris
tics are:

a) Long delays in accessing, due to mechanical and/or
human response times, of up to fractions of a second.

b) Data lengths of only a few bytes or words, determined
by physical limitations such as punched card capacity,
keyboard encoding, printer character set, etc.

The current design will follow conventional practice,
which is to time multiplex I/O to this type of device by servic
ing all devices through a single channel and a single electrical
interface. As a reflection of the lesser importance of unit
record devices no specific I/O data structures or control
procedures will be devised to suit their particular characteris
tics. Unit record I/O will be handled by the techniques developed
to control M3 I/O, even though this may be a non-optimal approach.

3.5.1.3 Avionics Data Bus Interface. The interface between
the computer and a multiplexed central avionics data bus shares
certain characteristics with the interfaces described above,
but in addition has its own peculiar properties. Data buses
can be configured in a number of ways, with widely differing
performance, and control requirements. In order to make more
than sweeping generalizations, some specific assumption of data
bus characteristics must be made. Studies to date [7], have
shown that an initial Earth Orbital Space Station can be serviced
by a data bus which has the following typical characteristics:

Multiplexing:

Frequency:

Number of devices (stations):

Command structure:

Time division (TOM)

10 MHz

256

Command/response

These are the important control characteristics, from the point
of view of I/O communication.

-253-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Command/response implies central computer control. Bus
I/O takes place only at the behest of the computer; no device
may volunteer information. It is our opinion, however, that
although a strict C/R control policy may be shown to be quite
adequate at this stage of Space Station development, it will be
advantageous to provide a bus interrupt capability. This is
not so much to provide the devices with control authority,
but rather to accommodate bus control units (BCU) designed to
perform off-line chores such as error monitoring, detection of
unusual conditions, response to unsolicited communication from
Station subsystems, etc. These would otherwise be programmed
into the I/O software and executed with repetitive I/O requests
to the BCU, which obviously increase traffic at the interface
between I/O controller and data bus.

It is expected that bus communication between computer
and a device on the bus will consist of short blocks of data,
typically from one to 128 bytes in length. This conclusion
is based on the assumption that high speed repetitive functions,
such as the evaluation of a strapdown inertial algorithm would
be performed locally and not over the data bus by the central
computer. Data transfers of blocks of data larger than 1 to
128 bytes are usually not time critical; e.g. CRT display frame
transmission. These can be broken into smaller blocks, and
transmitted'separate1y.

A typical data bus communication will start out with a
command word from the BCU containing the address of a specific
device and an operation code. (See reference [8] for a more
detailed treatment.) The response to this is an echo of the
BCU command by the device, indicating correct receipt of the
message. Following this preamble ~o establish the communication
link there is the transfer of the data dictated by the operation
code, to or from the device. The number of bits of data required
for one complete communication depends on the data length.
Totals are shown below for a "short" message of 4 bytes and a
"long" message of 128 bytes (1 byte = 8 bits).

Number of Bytes

Control
Message Type

Conunand Echo Data Total

Short 4 4 4 12

Long 4 4 128 136

-254-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



To obtain an approximate idea of the data bus bits rates
involved in servicing all devices, it will be assumed that
80% of the 256 devices are commanded with short messages, and
20% with long:

Message Type Total Bytes Bits

Short 205 2460 2 x 10
4

Long 51 6936 5.5 x 10
4

Total 7.5 x 10
4

A complete service cycle of all devices on a maximally configured
bus thus generates 75K bits. For a 10 MHz transmission frequency
this cycle can be repeated every 7.5 milliseconds. In practice,
delays due to finite transmission speeds will increase the cycle
time. However, a 10 ms to 20 ms bus service cycle seems to be
entirely achievable. A 20 mscycle with the preponderance of
long communications assumed will generate about 300K bytes/sec
of actual data; i.e., a data.rate comparable to that of the
higher speed storage devices such as drums, disks, and tapes.
However, a data bus differs significantly in the manner in which
this data is addressed and controlled. The type of bus described
is essentially a table-driven device: in practice communication
between the computer and the avionics devices will occur as
follows:

a} Number of device interfaces will require to be
accessed for a real time data at the highest service
cycle frequency; i.e., every 10 ms to 20 ms.

b} Others will require accessing periodically, but at
lower frequencies than the maximum.

c} Some will require occasional sampling at random
intervals.

The mix of devices in each category is a function of mission
phase and/or Station operations. It is a delicate design problem
to ensure that all the highest frequency requests are completed
without exceeding the basic bus service cycle, and without
losing some of the less frequent requests. Since these constraints
are known only to the system implementor, a specific bus confi-

-255-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 ·(617) 661-1840



guration should not be assumed by the hardware (or implicitly
designed into the system software) .

3.5.2 Peripheral I/O Data Structures and Control Procedures

This section will define the basic data structures and
control procedures involved in peripheral I/O operations, as
differentiated from those associated with data bus I/O. I/O
to devices serviced by both the high speed selector-type channel
and the slower multiplexer channel are handled in a basically
similar fashion.

3.5.2.1 Basic Peri
descript10n of eac
is undertaken, the
I/O operation from
trate the process:

heral I/O Se uence. Before a more detailed
I 0 data structure and control procedure

following summary of a typical peripheral
initiation to completion is given to illus-

a) An I/O request is initiated whenever a running
process executes a READ or a WRITE statement. This
transfers control to, the executive procedure REQUESTIO.

b) REQUESTIO creates an I/O Control Block or IOCB, which
contains all pertinent information concerning the I/O
request, by calling procedure FORMIOCB.

c) The IOCBs for a particular device are formed into a
list, termed the DEVICEQ, by procedure QUEUPIO.
Entries in this list are removed when the associated
I/O operation is completed, or is for some reason
deleted before being accepted by the I/O controller.

d) A component of each IOCB in the DEVICEQ is an I/O
control word, or IOCW. This is the element that is
directly accessed by the I/O controller, and into
which it writes the status of each request (see
later sections).

e) The IOC will access IOCWs sequentially in all DEVICEQs.
At any given time there will only be one IOCW from
each DEVICEQ active within the IOC. As each IOCW is
executed the requested data is transferred to (or from)
a specified M2 location,and at the completion of
the transfer an I/O complete interrupt is normally
triggered. However, some I/O requests will indicate

-256-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



that no such interrupt is to be given. At the completion
of these the I/O controller will set an appropriate field
in the IOCW, and proceed to the next IOCW in the DEVICEQ.
When all IOCWs in a DEVICEQ have been serviced, the
IOC will issue an interrupt to indicate the DEVICEQ is
empty.

f) The "1/0 complete" and "DEVICEQ empty" interrupts cause
procedure IOFINISHD to be entered. This procedure will
do any of three things:

1) It will cause a specified process to be transferred
from the WAIT to the READY state.

2) It will set a specified Event and call the
EVENTHANDLER routine.

3) In the case of responses to absent segment requests,
IOFINISHED transfers control to the memory manage
ment procedures.

One or more of these three cases is always specified
by the initiator of an I/O request.

3.5.2.2 I/O Data Structures. It was evident from the above
brief summary of an 170 transaction sequence that the basic
element of data involved in an I/O operation is a collection
of control information called an I/O Control Block, or IOCB.
(It should be noted that in a given implementation of the I/O
data structures and control procedures, the IOCB need not take
the form of a contiguous group of uniformly organized words.
The following description of its logical components does not
necessarily, therefore, imply a physical structure.) The IOCB
may be functionally divided into the component fields illustrated
in Figure 3. S- 1.

Initiator

Action

Priority

IOCW M2

Operation

Control

Link

Figure 3.5-1 IOCB Structure

-257-
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



These fields are provided to instruct both the I/O executive
procedures, and the IOC in the execution of a given I/O request.
The first three fields contain information primarily for the
benefit of the I/O control procedures:

a) Initiator. This field identifies the initiator of the
I/O request. It mayor may not be the beneficiary
of the complete operation.

b) Action. Information in this field determines largely
how the I/O request is handled. It contains two
subfields providing direction at request time and at
completion time:

1) At request time ACTION indicates whether control
should be returned to the initiating process
immediately the request has been placed, or whether
the initiating process should be put in~o the
WAIT state until the required I/O operation has
been completed.

2) ACTION instructs the I/O procedure IOFINISHD
(which is entered whenever "I/O complete" or "DEVICEQ
empty" interrupts are signalled by the IOC, and which
scans all active requests for status) what to do
in the case of each completed I/O request:

a) Whether to place a process into the READY state.
If so, the appropriate stack number, processid
is furnished.

b) Whether to set an event, in which case the event
is identified by the stack number and offset
of its descriptor.

c) Whether the request was from the Absent
Segment Handler, in which .case Memory Management
is called with appropriate parameters (see
Section 3.4).

c) Priority. Normally requests for I/O to a given device
are placed in the order they arrive. That is, DEVICEQ's
are FIFO lists of IOCBs. However, if a more optimal
ordering is desired, it may be established by indicating
the relative priority of an I/O request in this field.

The remaining fields in the ICOB are used primarily to
control and communicate with the IOC. The following four sub-
fields are grouped and collectively termed the I/O control word (IOCW):

-258-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



a) M2. This subfield defines the space in M2 allocated
to receive the I/O data transfer, or from which I/O
output is to be taken. It consists of the actual M2
address of the beginning of the M2 space, and the size
of the space:

M2:

IAddress
Size , ..

b) Operation. This subfield defines the path of control
to the specified device location where the desired data
either resides or is to be directed. Its several compo
nent fields define channel number and command, device
number and command, and device address and size of the
physical data file to be transferred:

Operation:

Channel Device File

# I Command # I Command # I Command

c) Control. Communication between the executive I/O proce
dures and the IOC occurs in this subfield. Its various
component fields are illustrated and described below.

Control:

Active Quiet Accepted Complete Error Status

Active: The I/O request initiated by REQUESTIO,
may indeed have been completed by the IOC, but has not
yet been acknowledged by the intended recipient. This
indication is necessary because the Absent Segment Handler.
may not be capable of responding immediately to the
presence of a new segment, or it may wish to respond to
those I/O completes for which the interrupt was suppressed
(see Section 3.4 for details). When the completed I/O
operation is finally acknowledged by the intended recipient,
this field is reset, and the space occupied by the IOCB
may be overwritten by another IOCB.

-259-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Quiet: This field indicates whether I/O completion
is to be signalled by an I/O complete interrupt, or just
by setting the complete field.

Acce~ted: The IOC sets this field to indicate that it is
now ~n process of responding to the request.

Complete: The IOC sets this field at the completion of
the 170 request.

Error: If the I/O operation failed to complete without
errors, this field is set. It instructs the procedure
IOFINISHD to analyze the status field for the cause of
the failure.

Status: A field containing encoded device and channel
status and/or error conditions set by the IOC at I/O
completion.

d) Link:

Previous Next

Previous: This subfield is set by the procedure SETUPQ
to insert the current loeB into a DEVICEQ when requests
are not to be arranged as a FIFO list. It also indicates
when the current IOCB is the only one in the queue.

Next: This subfield is read by the IOC to determine where
its next IOCW should be taken from. "Next" also indicates
if there are no further IOCBs in the DEVICEQ: the IOC
interprets this as an instruction to issue the "DEVICEQ
empty" interrupt.

As stated previously, all IOCB's for a given device are linked
into a DEVICEQ by settinq the link field in the IOCW appropriately:
Figure 3.5-2 illustrates three DEVICEQs.

-260-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Figure 3.5-2 DEVICEQ Linkages

Device A

IOCBl

IOCB3

(

Link

Last

FIrst

DevIce B

FIrst

DevIce C'

IOCB2
Only

The IOC takes one IOCW from each DEVICEQ associated with a
given channel, and initiates the corresponding parallel I/O
sequences with the appropriate devices. This implies that
the IOC contains the necessary internal storage to maintain
parallel I/O processing of multiple devices. To start the IOC
at the first entry of a given DEVICEQ requires a hard-wired
command to the IOC from a processor establishing a new DEVICEQ.

3.5.2.3 I/O Control Procedures. An I/O request to the IOC is
required to specify the channel, device and file address. At
compile time this data is generally not availalbe: file declara
tions and file READ and WRITE statements are made with "local"
names assigned by the programmer. An important step that must
be taken before these statements can be executed is to associate
the local names with real file names and addresses. This is
done at process creation, and/or at READ, WRITE execution time.
Two procedures may be invoked to establish and link a file:

a) CREATEFCB: This procedure is called at process creation
time. It requires as input a list of all local file names ref
erenced by the program that will be executed by the process

-261-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



(these are supplied by the compiler as part of the program's
code stream), and the actual names of the associated files
(which must be supplied either in a form of JCL (as in OS/360) ,
by operator input, or by referring to a directory set up at
system initiation or major mission phase time}. CREATEFCB
inserts a File Control Block (FCB) into the process' PIA
for each referenced file. The FCB becomes the object of
all file references made by the process. It contains the
following fields:

LOCAL NAME

ACTUAL NAME

OPENED

FILE ADDRESS

RECORD POINTER

Figure 3. S- 3 Fi Ie Control Block

CREATEFCB writes the local and actual file names into
the appropriate fields, allocates space for the remaining parts
of the FCB, and leaves them with a null indication. Their
significance is discussed next.

b} OPENFILE: This procedure provides the link between the
actual file name and its physical location on an I/O
device. OPENFILE is performed as part of the name manage
ment function (see Section 3.4.8). OPENFILE then marks
the field "opened" appropriately, fills in the actual
file address, and zeros the Record Pointer. This last
field is set whenever a specific portion of the file is
accessed by a READ or WRITE statement, since files are
usually accessed one logical record at a time, and a
logical record does not, as a rule, coincide with the
physical record being transferred.

Provided a file is certain of being accessed it may be
desirable to open it just as soon as its FCB is created,
in order to save overhead at READ time. In this case
CREATEFCB and OPENFILE are called sequentially by the
process creation procedure (see Section 3.2. ).
However, a file will normally be opened when it is
first read so that if the program never progresses.

-262-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840



to the READ and WRITE statements, time will not be
consumed in searching directories and space establishing
links. Subsequent "READS" after the first will find
the FCB marked "opened", and will ignore the call to OPENFILE.

There are two basic I/O statements: READ and WRITE. These
are,of the form READ/WRITE (local file name, logical record number,
log1cal record length, action, return), and both invoke the major
I/O procedure:

c) REQUESTIO: This procedure references the FCB in the
process' stack to check whether the file has been
opened. If not, it calls OPENFILE. It then calls
Memory Management to allocate space of sufficient size
inM2 to accommodate the desired record. REQUESTIO now
calls FORMIOCB, which constructs the IOCB appropriate
to the I/O request (see Section 3.5.2.2). Subsequently,
procedure SETUPQ is called to insert the IOCB into the
DEVICEQ by setting the link field in the IOCW. If the
specified DEVICEQ is found to contain only completed
and/or inactive I/O requests, as signified by the control
field of the IOCW, the procedure STARTlO is called.
STARTIO is the procedure that instructs the IOC to
start executing a new sequence of I/O requests. It
accomplishes this by initiating a processor to IOC
communication over the Inter Processor Communication
bus (see Section 5.1.4). It forms the M2 address of
the first IOCW and sends it to the IOC together with an
accompanying command to interpret the IOCW as the start
of a new DEVICEQ. This done, STARTIO returns to REQUESTIO.
If SETUPQ found the current DEVICEQ to be still not
completely serviced by the IOC, it returns to REQUESTIO.
REQUESTIO now performs the final phase of I/O request
initiation. The READ (WRITE) statement indicates (via
the "action" item in its argument) how the ACTION field
of the IOCB is to be set, and REQUESTIO sets it accordingly
to inform the IOFINISHD procedure what to do at I/O
completion. REQUESTIO then, depending on the presence
of the default argument "return" in the READ (WRITE)
,statement, returns control to the initiating process.
If no "return" is indicated, REQUESTIO places the
process into the WAIT state, puts its ID into the ACTION
field of the IOCB, and passes control to the scheduler.

The IOC now reads the first IOCW of a new DEVICEQ as
instructed, marks its control field "accepted, decodes it,
and initiates its own microprogrammed sequences to accomplish
the intention of channel and device commands. The IOC main
tains the M2 address of the current IOCW so

•
-263-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



d)

that it may set the appropriate Control Fields in the
IOCW at completion- and read the II next ll subfield for the
next IOCW in sequence. If II next II indicates there is
none, the IOC issues a IIDEVICEQ emptyll interrupt, and
eliminates the current DEVICEQ from its internal
control mechanism. New requests for this device must
perform STARTIO before the IOC will acknowledge them.
At the completion of requests that do not suppress
interrupts, and at IIDEVICEQ emptyll, the IOC selects a
processor to enter the other major I/O procedure,
IOFINISHD.

IOFINISHD: This procedure identifies the IOCB corres
ponding to a given III/O complete ll interrupt from the
M2 address of the IOCW that the IOC sends as part of
the interrupt signal via the interprocessor bus.
IOFINISHD first checks whether the completion was without
errors, as indicated by a null lIerrorll field in the
IOCW. If an error is detected, IOFINISHD calls the
IOERROR procedure, which interrogates the status field
to isolate the source and type of error. Subsequent
actions depend strongly on a specific implementation,
and will not be discussed further. IOFINISHD may then
do one or both of the following:

a) Transfer the process identified in the ACTION
field of the IOCB from the WAIT state to the
READY state.

b) Set the event specified in the ACTION field, and
call the EVENT HANDLER,procedure.

Once these are accomplished, IOFINISHD declares the I/O
request terminated by setting the Active subfield of its
IOCW to inactive. This frees the space occupied by the
IOCB. IOFINISHD next removes the IOCB from the DEVICEQ
by re-linking the remaining IOCB's. Finally, IOFINISHD
calls the Absent Segment Trap Handler. This procedure
has the special capability of scanning the DEVICEQ at
any time, for completed'lIquiet ll segment transfers.
(These are identified in the ACTION field of their
corresponding IOCBs.) The ASTHANDLER indicates its
response by setting the Active field of the correspond
ing IOCWs to inactive. In the special case of a
IIDEVICEQ emptyll interrupt (which may coincide with a
regular I/O complete interrupt), IOFINISHD itself performs

-264-

INTERMETRICS INCORP0RATED • 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.5.3

a scan of the DEVICEQ to search for "quietly completed"
I/O requests that were not initiated by the
ASTHANDLER. It expedites these as instructed in
the ACTION fields, and sets their IOCWs to indicate
inactive. It is up to the initiator of such requests
to ensure adequate response to "quiet completions"
when the "DEVICEQ empty" interrupt occurs infrequently.

Data Bus I/O

Data transfers to and from the avionics data bus differ
in character ~rom those to the other, more conventional, I/O
peripherals as follows:

a)

!?)

It is expected that a significant portion of the data
will be sampled at fairly high frequencies: from 50
to 100 times per second.

Response times for the data requests are short.
Depending on the type and frequency of the bus, delays
of only tens of microseconds can be achieved. This
makes the bus look more like a slow operating memory
module than a rotating magnetic peripheral device.

c) Relatively small amounts of data are expected to be
transferred for each bus I/O request: the typical
example of Section 3.5.1 defined a range of from
1 to 128 bytes.

These characteristics can, of course, change considerably with
the degree of local processing that is done at the data bus '
device terminal. If much of the high frequency computation
is performed at the device, it is likely that the bus traffic
resulting from communications between device and control
computer will become less periodic and of longer duration
when it does occur. Such a trend would make the need to
accommodate the above capabilities a) through c) in the design
of the multiprocessor executive less essential. However, the
following discussions is based on the assumption that a)
through c) above do represent a significant proportion of data
bus I/O.

3.5.3.1 Data Bus I/O Handling. The requirements for data bus
I/O will be divided into two categories:

-265-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



a} Repetitive

b} Single requests

This is a simplification, because the kinds of I/O communication
on the bus, as pointed out in Section 3.5.1, span the gammut
from highly repetitive to once only. However, only in a specific
implementation can it be judged worthwhile to consider more than
the above two classes of bus I/O requests. Even so, it cannot
be established uniquely where the line between the two categories
may be drawn. At some frequency repetitive requests must be
deemed to be infrequent enough to quality as single events:
perhaps once a second is a reasonable frequency.

For repetitive I/O, the IOC will execute a set of requests
continuously, at a repetition rate that is specified by the
application. It will continuously update (or write out) the
contents of M2 locations specified for each request. It will
continue to do this until instructed otherwise over the IPCB.

Single requests to the bus will be handled very much
like the conventional I/O requests described in the previous
sections. The executive I/O procedures will assemble a data
bus I/O control block and inform the IOC over the IPCB of where
in M2 to pick up the single request. The IOC then makes a
temporary insertion into one of its repetitive request tables,
and, once it has been executed, removes it. The IOC signals
the completion of the single event with a hardware "I/O
complete" interrupt, as described previously. This then is the
basic policy for controlling data bus I/O operations.

3.5.3.2 Data Bus I/O Structures. A data bus I/O command word,
or DBCW, takes the form illustrated below:

Control BCU Bus DeVice M2

Status INext Op Code Address ICorranand Operand Address ISize

Control: A field similar in fashion to that
in the previous sections on peripheral I/O.
indicates the status of the current request,
where the following DBCW is to be found.

-266-

described
"Status"
and "next"

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Bus: This field specifies the device address, and
bus command (e.g., read, write, set mode, etc.).

Device: Device operand field specifying operation to
be perfor-med by specific avionics subsystem (inter
pretation known only to device).

M2: Destination field - address and length of M2 area
In which result of bus I/O is to be placed, or from
which output is to be taken.

A number of DBCW's are assembled into a table of
requests and the whole table is executed sequentially every
~T seconds, where ~T is a parameter passed to the IOC by the
initial IPC instruction to start executing the table.

Other tables correspond to groups of requests to be
serviced at different periods are also assembled. The structure
of a complete set of bus requests to be performed at predeter
minated intervals ~Tl through ~T6 is illustrated in Figure
3.5-4.

OBCWI I
OBCW2

DBCWr

Figur~ 3.5-4 Data Bus Control Table

-267-

INTE:RMETRICS INCORPORATED' lOl'CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



The basic difference between the structure of these
tables and the DEVICEQ's is that they are associated with a
given execution interval ~T, and not with a particular device.
The relationship between the ~Ts may very well (but not
necessarily) be powers of two times the basic interval for
a given "minor cycle". The largest ~T corresponds to the
period of the "major cycle" during which all requests in the
set of all tables have been executed at least once. The establish
ment of the ~Ts, and the population density of each table is a
non-trivial problem of data bus system design. It is important
not to exceed the maximum data bus duty cycle. Single data
bus I/O requests are based on the same DBCW format, but are
handled in a different manner, as described below.

3.5.3.3 Data Bus I/O Procedures. The principal task of the
executive software is to construct DBCWs and to assemble them
into tables for IOC execution. Most of this must be accomplished
at the time a process that expects to perform data bus access
is created, so that the frequent BUSREAD or BUSWRITE operation
can remain fairly straightforward. At process creation time
a Data Bus Control Block or DBCB, is established in the process'
PIA for every declared data bus access, by procedure SETUPBUS.

a) SETUPBUS: This.procedure constructs a DBCB. The
DBCB contains the following instruction fields:

DBCW

~T

Action

DBCW: This is as described in the previous section.

~T: This is the expected update cycle period.

-268-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Action: Whether the request is repetitive or single.

SETUPBUS, which is called by all procedures that
declare intention to perform bus I/O, then assembles
all DBCW's into tables corresponding to the specific
execution cycle periods, liT. It then enters a procedure
to instruct the IOC:

a) Where each table resides in M2.

b) The liT associated with each table.

c) An instruction to start servicing the table.

The IOC then proceeds to access DBCWs sequentially and
to execute them, placing the results in the specified
M2 locations. It continues to do this until instructed
to stop either

a) immediately,

b) at the end of the next minor cycle,

or

c) at the end of the next major cycle

by means of an IPC instruction. A reason for halting the
IOC may be

a) An error condition has been detected by data bus
application software.

b) A DBCW is to be changed or inserted.

c) A set of tables is to be deleted or added due to a
major mission phase change.

b) READBUS: This procedure is entered at bus access time,
via the BUSREAD(WRITE) statement. Its main function is
to check on the validity of the data, which is accessed
by reference through the corresponding DBCB in the
process' stack base. In the asynchronous access
technique here described, the "updatedness" of the data

-269-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



is not known implicitly in cases where several pieces of
data that have been separately requested are to be read
as a group. It is important, therefore, to ascertain
that all members of the group are updated during the
same ~T cycle. This is achieved by associating each
data item with an "update cycle" field. Only when all
members of a group contain the same value for this field
is the group homogeneous. For a given update table this
field can be as simple as a single bit.

-270-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.6 Timing and Synchronization

This section presents two topics that both have to do
with the real-time control aspects of the multiprocessor opera
tions: the organization and use of the central system timer
mechanism, and the synchronization of concurrent processes.

3.6.1 Timer Management

The system timer incorporates a register which contains
system time scaled in microseconds (approximately: see below)
and measured from a fixed epoch. The fifty-one mantissa bits in
the floating-point format of the machine double word can exactly
represent, to a microsecond, any instant of time over a seventy
year period.

The timer register is not modified under program con
trol except for initialization. Consequently, it can be used
as a source of numbers which are guaranteed to be unique through
out the lifetime of the system, inasmuch as accesses of its con
tents cannot occur more closely spaced than a microsecond. At
a slight increase in circuitry, accesses could be limited to a
larger minimum spacing (by delaying, when necessary, the response
to a particular form of timer-value request), thereby reducing
the field required to assure uniqueness of accessed values. For
example, if values were delivered no more often than once per
millisecond, a pattern of 38 bits from the middle of the clock
would not recur for almost nine years.

(An alternate implementation of unique-name generation
can be provided by devising a unique-name register. When acces
sed, the value from this register is delivered to the requestor,
and that value plus one is stored back in the register. No com
mand would be capable of modifying the value in any other way.
The number of bits needed to express N unique id's is obviously
10g2N if N is a power of two.)

In addition to its use as a clock and as a possible
source of unique bit-patterns carrying a time-tag, the timer is
instrumented so that it may be used to signal an interrupt at
a specified time. For this purpose, a clock interrupt register
is provided which parallels the timer, bit for bit, in its mid
dle range (refer to figure 3.6-1). Each time bit 10 of the clock
register receives a carry-in during incrementation (which happens
every millisecond), the content of the clock interrupt register
is compared with the corresponding bits of the clock register.
When a match is found, a timer interrupt is triggered, causing
invocation of the system procedure which administers usage of
the timer.

-271-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



T
h

is
p

o
s
it

io
n

is
in

c
re

m
e
n

te
d

e
v

e
ry

:

.....
...

6
9

.7
y

rs
.

--
1

2
.4

y
rs

.
1

:h
-9

-m
5

4
.3

0
4

s
1

6
.3

8
4

se
c

6
4

.0
n

s
2

5
0

1
m

s
m

s
0

.9
7

6
5

6
2

5
ll

S

B
it

p
o

s
it

io
n

m
ill

~
.~

~
IDJ

Q
I IV -..
.J

I\
,) I

C
lo

ck
r
e
g

i
s
t
e
r
/

j , I I 1 f
I

rn
Q

~C
lO
Ck

in
te

rr
u

p
t

re
g

is
te

r

F
ig

u
re

3
.6

-1
:

O
r
g
~
n
i
z
a
t
i
o
n

o
f

R
e
a
l-

ti
m

e
C

lo
c
k

R
e
g

is
te

r
an

d
C

lo
c
k

In
te

rr
u

p
t

R
e
g

is
te

r



The choice of mid-range bits to be matched is somewhat
arbitrary. On one hand, there is a desire to minimize the hard
ware; on the other, generality and precision questions arise.
The twenty-two bit span of the illustrated configuration was
chosen on the basis that: 1) timer-interrupt spacing less than
a millisecond was very likely to exceed the response capability
of the timer-handling software, and 2) it appears relatively un
likely that the earliest time awaited by any process in the
system will be farther into the future than an hour from present
time.

3.6.1.1 Timer Primitive Operations: To schedule an action to
be performed at a specified time, one of the operating system
primitives

WAIT(t)

SET(E, t)

RESET(E, t)

RESUME (processid, t)

is executed by a process· The WAIT operation places the process
into the wait state until the specified time. SET and RESET
cause the specified event E to be placed into the set or reset
state at the given time (refer to section 3.6.2 on event handling
for a description of SET and RESET actions). RESUME is used to
remove the stopped-state indication from the designated process
at a specified time.

The SET, RESET, and RESUME operators return a value con
taining a unique identification (id) associated with that execu
tion of the primitive, and a pointer to the cell created in the
timer queue area. This value (pair) can be used as the argument
of the

PURGE (value)

operation, which cancels the effect of a pending SET, RESET, or
RESUME.

3.6.1.2 Timer Management Data Structure: Pending actions to be
performed under timer control may be stored in a queue, arranged
in order by due-time. Because requests for timer-controlled
actions are not necessarily submitted in the same sequence as
their actions will be performed, a threaded or linked list struc
ture is preferred to a physically-ordered one. This queue is

-273-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) Q61-1840



stored in a data segment whose size determines the maximum number
of active requests which can be handled. An overflow segment
may be used to store the least imminent requests if the primary
area content approaches its capacity. The use of these segments
is described below in the section on implementation.

The operation of the timer-request handler is briefly
described here to motivate the introduction of an alternate data
structure. When a request is received, the request handler ob
tains space for a queue element from the queue data segment. (The
format of a queue element, called a timer control cell or tee, and
the structure of the queue are shown in Figure 3.6-2.) Next, the
pair of tee's whose due-times bracket the due-time of the new re
quest must be located. Because the physical storage locations of
the tcc's are essentially random, only the pointer field contains
information related to logical order. (Any scheme which re-
orders tee's physically when a new tee is added is rejected for
reasons of efficiency.) Thus, it is necessary to search the list
from its head (found via a pointer stored in a fixed location)
until a due-time later than the newly requested one is encountered.
If the list contains an average of p tee's, this number of acces
ses may be deemed undesirable if p is large, and an alternate
scheme is proposed which alleviates this problem. Which form of
implementation is appropriate depends almost exclusively upon the
nature of the application workload on the computer.

The alternate data structure is a group of m queues,
rather than one. If timer requests are uniformly distributed
over the finite interval spanned by the queue-group (mT; see
below), then the average search-time is reduced by a factor of
m.

The m-queue structure is a generalization of the single
queue described above. Rather than a single list-head pointer,
the alternate structure uses m such words, referred to as index
words. The value of m is chosen to be an integral power of two,
for efficiency on a binary machine.

The list of pending actions is correspondingly divi-
ded into m sections, each of which contains actions scheduled
for performance within a particular interval of time of length
T. (The value of T is measured in timer units of one milli
second each, and is also an integral power of two.) For purposes
of illustration, suppose m has the value 8, and T is 512. Then
if the current time is t and the integer part of tiT (represented
by [tiT]) is called to, figure 3.6-3 shows the time intervals re
presented by the 8 list sections, where t' = t - to' The nature
of the index array assignment strategy may be visualized by ob
serving what happens as t' grows until it exceeds T, assuming to
is held fixed. The index word, which represented the interval

-274-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840



M
os

t
im

m
in

en
t

ac
tio

n

O
ue

-ti
m

e

10 A
ct

io
n

I
I

P
oi

nt
er

~
Li

st
-h

ea
d

po
in

te
r

Ti
m

er
C

on
tro

l
~

C
el

l(
te

e)
I

.

Ti
m

er
P

rim
tti

ve
s

W
AI

T(
t)

RE
SU

M
E(

pr
oc

es
sid

,
t)

SE
T(

E
t)

RE
SE

T(
E,

t)

PU
RG

E(
va

lu
e)

•
•

•
•

M
os

td
is

ta
nt

ac
tio

n

F
ig

u
re

3
.6

-2
S

in
g

le
T

im
er

Q
u

eu
e

S
tr

u
c
tu

re



Word *

o

1

2

3

4

5

Current Interval

6T ~ t' < 7T

7T ~ t' < aT

o ~ t' < T

T ~ t' < 2T

•
•
•
•

Next Interval

same

same

aT ~ t' < 9T

same

•
•
•
•

6 I
[7 5T ~ t' < 6T same

Figure 3.6-3: m-Queue Timer Data Structure

-276-



o ~ t' < T is now no longer needed, since current time has ad
vanced to a value beyond the end of the interval; the freed
index word is therefore assigned to the first interval not re
presented: namely, 8T ~ t' < 9T. This assignment is implicit,
not explicit, in that no software or hardware operations are
required. Description of the list-operations will make this
clear.

Another illustration of the assignments for index
words is provided in figure 3.6~4. The horizontal lines represent
time; three current times are shown by the arrows. The numbers
of the index words assigned to the intervals are shown at the
tick marks denoting the beginnings of the intervals. As real
time increases and passes a tick mark, the index word assigned to
the interval just completed is implicitly reassigned to the
earliest unassigned future interval. Thus, intervals represented
by the same index word at different times begin at points which
are mT units apart in time (in the example case, 8 x 512 = 4096).
If the initial assignment of index words caused word 0 to be
associated with the interval which began at time zero, then the
word number associated with any time t may be computed from:

w = [tiT] - [[t/T]/m] m

where the notation [X] means "the largest integer not larger
than X". For the numbers chosen for illustration, this calcu
lation is merely the selection of three bits (m = 23 ) and shift
ing them right by 9 places (T = 29 ) :

9
t: I 0 0 I

10 29

Ims
I

~--------il

3

"

w: I 0 -------------------------------- 0 I xyz
48 3

Associated with each index word is a chained sub-list
of scheduled actions, ordered by due-time. A pointer field in
the index word points at the timer control cell (tcc) for the
earliest time of interest in the interval. This tcc points to
the next one, and so on· The pointer field of the last tcc in

-277-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



C
u

rr
e
n

t
T

im
e 1

T
4

..

A
)

~
I

I
I

I
I

I
I

I
I

I
I

I
I

In
d

e
x

w
o

rd
a
ss

ig
n

m
e
n

t
~

3
4

5
6

7
o

1

I tv ..
.,

]

0
0 I

B
)

C
)

I
I

I
,1

I
1

I
I

~
1

I
1

-
I

1
-

3
4

5
6

7
0

1
2

I
I
I

I
I!

I
.1

1
1

I
I

I
1

1
-

4
5

6
7

0
1

2
3

ti
m

e
~

F
ig

u
re

3
.
~
4

A
ss

ig
n

m
e
n

t
o

f
T

im
er

In
d

e
x

W
o

rd
s

to
In

te
rv

a
ls

o
f

T
im

e
(e

ig
h

t
w

o
rd

s
a
re

as
su

m
ed

)



the interval contains a null value. The formats of index words
and tcc's are shown in figure 3.6-5. Because the absolute time of
the represented interval is implicitly known (namely, the begin
ning of the interval for word w at time t is given by
([(tiT - w)/m] m + w]T) only as many bits as required to specify
the location within the interval need be retained, (T units, re
presentable by log2T bits; in the example, 9), making packing pos
sible for conservation of space.

3.6.1.3 Implementation of Timer Primitives: The implementation
of the timer primitives depends somewhat upon whether one or sev
eral timer queues are maintained; the considerations which deter
mine the choice are mentioned above. The description in this
section is couched 'in the terms of the more intricate structure,
since it is slightly subtle. However, the single-queue may be
treated as a special case of the mUlti-queue structure, with m=l
and T = 241 . Certain actions, such as calculation of the index
word number, would obviously be omitted for the single-queue
implementation.

Invocation of one of the timer primitives causes the
operating system timer-administrator procedure to be entered.
For requests other than PURGE, space ~s obtained for a timer
control cell from the timer list free space area, and the uni-
que id is obtained and stored in the tcc along with the encoded
action specification (e.g., SET-action on event E) and the due
time. The index word w is calculated ~s above, and the pointer
which it contains is followed until either the last link in the
sub-list is encountered, or the due-time of a link is found to
exceed the due-time of the present request. The pointers in the
new tcc and its logical predecessor are set to link the new tcc
into the chain at that point, so that the sub-list remains or
dered by due-time, from earliest to latest. Should the due-time
of the request have caused it to be placed at the head of the list
for the earliest interval, then it ~s necessary for the timer
procedure to set this new due-time into the clock interrupt re
gister, since the new request is for the most imminent action.
Finally, the id and a pointer to the tcc are returned to the
caller.

At this point, a special case for the multi-queue im
plementation is described. The division of time into m inter
vals, and the use of sub-lists associated with each interval,
has been chosen to reduce, by a factor of m, the average search
time required to find the correct spot in the queue for a new
request. A side-effect of this implementation is that requests
for response farther into the future than the end of the mth
interval must be specially processed. Hence, a subsidiary list
of "distant future" tcc's is kept. When the timer procedure
makes this list not empty, the timer procedure also enters a

-279-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



." ... •
E

a
rl

ie
s
t

li
n

k
in

th
is

in
te

rv
a
l

L
a
te

s
t

li
n

k

I IV C
O o I

I
~

D
u

e
-t

im
e

Id A
c
ti

o
n

P
o

in
te

r
-

T
im

e
r

c
o

n
tr

o
l

c
e
ll

(t
c
c
)

In
d

e
x

w
o

rd
i+

l

I
r

• •

o o

F
ig

.
3

.6
-5

T
im

e
r

s
u

b
-
li

s
t

s
tr

u
c
tu

re
(f

ie
ld

s
a
re

p
o

rt
ra

y
e
d

;
th

e
ir

w
id

th
s

a
re

n
o

t
im

p
li

e
d

)



Request-timed-action (due-time, action)

Estaolish timer-procedure
lock

Obtain timer control cell
tee) from timer queue data
segment. Fetch timer-queue
head pointer

y

Fetch pointer
from tee

n

Place current pointer value
into pointer field of new
tee. Place location of new
tee into pointer field of
previous tee.

n

.•.. ,

Place due-time of new tee in
to clock interrupt register

Place unique id, due-time,
and action with tee. Re
lease timer-procedure lock •

Figure 3.6-6: Timed-Action Request (Single
Queue Structure)

-281-
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840



Request-timed-action procedure (due-time, action)

Due-time already past?

Establish timer-procedure lock

___--:c .-----..,
Obtain space for timer control cell
(tecl from timer queue data segment

y n

Due-time ~ ([tiT! + mIT?

Link tce into
the "distant
future" list in
position deter
mined by due-ti

Was the "distant
future" list pre
iously empty?

n

Make up special tcc with
"distant future list
handler" action, due time
«(t/Tl + m-llT
Obtain sub-list pointer

from index word m-l

Obtain sub-list pointer
from index word number

[tiT! - [[t/T!/mlm

r---;::::======J~~
Line tee into sub-list in :

accordance with due-time i
~------.. .----.J

Was the tcc placed at7the head of the first sub- ,
list '

Release timer-procedure lock

(Return)

Was requested action WAIT?

Figure 3.6-7. Timed Action Request {m-Queue
Structure)

-282-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



I
I-- -------.J
t

Delink tcc from list1

release tcc space

I
~ .>

m

!urge timer request (id, pointer)

r-----------...L---------------- -
Establish timer procedure lock _J

Does id of tcc located via

pointer ~tch supplied id?

_l--.,y
\

--j

Release timer prodedure lock

,

Figure 3.6-8 Timer Request Purge

-283-



request in the normal list, to come due at time ([tiT] + m - l)T,
the beginning of the latest active interval. When this request
is triggered, a procedure is entered which moves those items
into position which can be linked into the normal lists. If the
IIdistant future ll list remains non-empty, the procedure resche
dules itself for (m - l)T milliseconds later.

The PURGE operation consists of examining the tcc in
dicated by the pointer part of the argument to determine if the
id in the tcc matches the id part of the argument. If not, con
trol is returned to the caller. If so, the tcc is delinked from
its list. If it occupied the head-position of the earliest sub
list, the clock interrupt register is reset to correspond to
the due-time of the new head tcc. Control is then returned to
the caller.

The operations performed when a timer interrupt occurs
are now described: The timer interrupt signifies that the due
time of the action in the head tcc has arrived; thus the timer
interrupt handler begins its activity by performing the action
specified in the head tcc. It then releases that tcc's space,
destroys its id field, and links the zeroth index word to the
subsequent tcc; next, it examines the due-time of the following
tcc; if it is also currently due, that action is performed, and
the next tcc is examined. This continues until a not-yet-due
tcc is found; its due-time is placed into the clock interrupt
register, unless the action is due farther into the future than
can be expressed within the capacity of the register (4194.304
seconds, or about seventy minutes). In this unlikely case, the
timer interrupt handler procedure make$ a dummy action become
the head of the list, and sets its due time to be 4190 seconds
earlier than the due-time of the (now) second list element, or
4190 seconds from the current time, whichever is sooner.

If any of the tcc actions performed by the interrupt
handler readied a waiting process, the interrupt handler calls
the Process State Controller; otherwise, it exits directly.

-284-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Timer-interrupt handler

Establish timer-procedure

Fetch pointer to head tcc

Perform action specified in
indicated tcc. Obliterate
its id field, record its
pointer value, delink it fro
queue, and release its space

Make up dummy
tcc; link it in
to list

Place due time of next tcc
into clock interrupt regis
ter

all Process-State Controller

Figure 3.6-9: Timer Interrupt Handler (Single Queue Structure)

-285-

c. L/
INTEtMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840



Timer-interrupt-handler

1, Establish Timer procedure lock "]

I Obtain pointer from index word 0 I
y

Perform action specified in
indicated tee. Delink it from
list, record its pointer field,
obliterate its id field, and

release its space.

i

Y
1

Pointer value· null?

)-Y n
Last sub-list?

1 < Due time of indicated YI Obtain pointe~
tee ~current time?

from ne~idindex I n

I
Make up no-op

tee due at time
([tiT] + m-l)T.

link it to index
word m-l

~:due-time into clock I
interrupt register. Release!
~ nrocedure lock

Y

C )

Any processes readied by
this interrupt?

Figure 3.6-10: Timer Interrupt Handler
(m-Queue Structure)

-286-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



3.6.2 Events

Communication between parallel operations in the multi
processor is facilitated by a data structure based on the con
cept of "occurrences" or "events", along with a set of ' primitive
operations defined around these objects.

Consider a data element called an event-cell which con
tains a field indicating the state of the event-cell, i.e.,
whether the associated event has happened or not. Strictly
speaking, the state is a two-valued variable. A second field,
the event-type, describes whether the event is a "normal" event
or a "pulsed" event. A normal event is one whose state field
retains its set (or reset) value until altered by an appropriate
primitive; a pulsed event assumes the "set" state for only a
brief interval, and then returns to the "reset" state automa
tically, without requiring explicit application of a primitive.
The usefulness of the distinction will become clear in the fol
lowing discussion.

An event-cell has a third field, which is a pointer to
a data element of a related type, called an event-control~cell

The final data-element related to event handling is the action
cell. The components of these elements (shown in figure 3.6-11)
their use is described in conjunction with the primitives asso
ciated with events.

3.6.2.1 Event-related Primitives: As mentioned, event-cells
have two states. The value of the state field may be obtained
by means of the primitive function

STATE (E)

where E is the name of the event cell. The value returned is a
boolean true or false according to whether E is set or reset,
respectively. If E is a pulsed event, STATE (E) always returns
reset.

The state of an event call may be assigned by

SET (E)

RESET (E)

These operations leave the state of a normal event SET or RESET,
respectively, regardless of the previous state. The RESET

-287-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



State (Set/reset)

Type (Normal/pulsed)

Pointer (to event-
control cell)

a) EVENT CELL

Operator pointer (to
next ecc involved in
this primitive,'or
action cell)

Event pointer (to next
ecc in event chain, or
event cell)

b) EVENT CONTROL CELL (ecc)

Count

Action type (WAIT, SET,
etc. )

Action location (stack
number, event pointer)

Operator pointer (to
first ecc in the chain
for this action)

Identification (id)

c) ACTION CELL

Figure 3.6-11 Event Data Structures

-288-



operation has no effect on a pulsed event; the SET operation
toggles the state to the SET value and back to the RESET value
immediately.

To take advantage of a system's capability for con
Current operations, it is often necessary to force synchroni
zation at particular points. One means of accomplishing this
is by use of the operating system' primitive

WAIT(E)

whose effect depends upon whether the state of E has the set
or reset value. If STATE(E) is set, WAIT(E) has no effect;
execution of the process continues normally. If STATE(E) is
reset, the process is caused to enter the wait state. It re
turns to the ready state only when some other process executes
a SET (E) , or when E becomes set by the alternate form of SET
described below. An alternate form of WAIT is also provided:

WAIT(n, EI, E2, ... , Em)

where m and n are positive integers such that I ~ n ~ m, and
the Ei are names of distinct events (i.e., no event name may
appear more than once in the list). The effect of execution
of this operation is to place the process into the wait state
unless or until any n of the m events are SET. A description
of the implementation of this primitive will provide insight
into its exact behavior.

Upon the execution of the WAIT operation, an operating
system procedure is entered. This procedure examines the states
of the members of the event list specified in the call, sequen
tially. Those that are in the RESET state are noted, and those
which are in the SET state are counted. If the set count (call
it c) reaches n, WAIT performs no further action, and control
is returned immediately to the user process, which continues ex
ecution normally. If less than n set-states are found, a chain
of (m-c) event-control cells is created: Each event-cell noted
as above (reset state) is accessed to obtain its pointer field.
For each, a new event control cell (ecc) is created, and linked
into its event chain. This is accomplished by following the
event chain from the event cell to the last ecc currently in
the list; its event pointer (or the pointer in the event cell it
self, if its list is empty) is set to point to the new ecc, and
the event pointer of the new ecc is set to point to the event
cell, completing a circular chain. The operator pointer in the

-289-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



y

WAIT (E)
ON..(E)

Call "process
simple event
expression"

Expression
atisfied now?

(ON)

Set action typ
and location
fields of actio
cell

neON)

Enter ON-unit
code-block

Place current
process into
WAIT state

Figure 3.6-12 WAIT (E) i ON(E)

-290-



Process Simple
Event Expression

y
=

eturn to caller
with indication
that event expres
sion is now
satisfied

Figure 3.6-13

n

Establish action cell. Es
tablish an ecc for event E
and thread into E-chain and
connect it to action cell.
Set action count field to I

Simple Event Handling

-291-



y

WAIT(R, EI, E2, ••• , Em)

Call "process
complex event
expression"

n

Set action type (WAIT)
and stack number into
action cell.

Place current
process into
WAIT state

Figure 3.6-14 WAIT(n,E1,E2, ... ,Em)

-292-



tion
lIs

Event
./f./Cells - ~

~ ~

i

~
j""tI ,. -

"
1\V

Event / Ac
Control Ce
Cells ;I

/ "", ~
,...... - -

~

Figure 3.6-15 Organization of Event Links

-293-



new ecc is set to point to the ecc for the next member of the
subset list of events which was found to be in the reset state.
The operation pointer of the ecc for the last such event is set
to point to the action cell created for the operation, and the
operator pointer of the action cell is set to point at the first
ecc for that operation. Thus a circular chain is created which
links all the ecc's and the action cell for reset events rela
ted to the particular operation invocation. Figure 3.6-15 illus
trates the arrangement of circular links for the case of two
events and two action cells which happen to be related via four
event control cells. The action cell contains a count-to-go
(whose initial value is n-c, where n was. specified
in the operator, and c was the number of events found in the
set state), the stack number for the process placed into the
wait state (the field for the stack number is used differently
by operators other than WAIT), and the operator pointer men
tioned previously.

The WAIT procedure now places the calling process into
the wait state, and transfers control to the processor assign
ment routine to allow a ready process to be placed into the run
ning state.

When a process executes the SET operation, an operating
system procedure is invoked. This SET procedure returns control
immediately if the specified event is already in the set state.
Otherwise, it examines the event type. If it is a normal event,
its state is assigned the set value. If it is a pulsed event,
no change is made to its state. Thus, a pulsed event is always
found in the reset state, but a SET operation on a pulsed event
always performs the subsequent processing functions; they are
performed for a normal event only if SET causes a state transi
tion. Pulsed events are thus useful in connection with repeti
tive or recurring·signals; a WAIT on a pulsed event, for example,
is always a WAIT for its next occurrence.

The SET procedure now operates upon the chain of ecc's
associated with the event. These are accessed via the pointer
in the event cell and the event pointers in the ecc's. For each
such ecc, the action cell is accessed, and .its count decremented
by one. If the resulting count value is nonzero, it is stored
back into the action cell, the ecc is released, and the next
ecc is processed. (If the operator pointer in the action cell
points to an ecc about to be released, its value is replaced
by the value of the operator pointer from that ecc.) If the
count value is zero, then enough events have been SET to cause
the designated action to be performed·. For example, if the
operator had been WAIT, the waiting process is readied. The
action cell is released, as are any ecc's belonging to the same
operator which are still attached to (other) events. These are

-294-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



fol:1'U:1

1
<:TIITe(£) • ra:T'. v

lC kl'lU'~
h' ("AI 1.-1-

~ -
IA,.. r.I"'~

event 1

J
Isrt STIITe (Po) I

ttl r.('t

l'xmn1nc rcc in chilin Cor
r. LcC'atc action cell
and decrement count loy
ono.

J
y Ie we action

ONR?

ln
Store 1 in I Release Icount field Of tho ecC
action cell

18 the action n
count ~ 01

j,
P.elcaso the
acUon cell, re

~ taining content

I =c.:
00 /Ilction.? " "lilT,

Call "schc.:dulc \. / call IlEIIDY for
ON-unit"

S,.TT 1RESET
the process

Add SET eEl ) to Add Rk:SET (£ I )

list of Buhse- to lis t o£ sub-
quent actions sequent actions

I I

Uas the last
ece for r. been n

. processed?

y I

•
Subsequent 'V

action 1"'9t em-
pty?

n J
Examine' remove cntrie!. ( Pcturn
(frorn f1rct cntt'!rcd to to calh:r
latent) one ot a time -

1

00Action-?

JlE::t:T /.1'111'>: (/,)-7 I=-:ct S~~T"; U:) ,
\. tu M ....I·:T

Figure 3.6-16: SET (E)'

-295-

INTERMETRiCS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDG~, MASSACHUSETIS 02138 • (617) 661-1840



found via the ecc operator pointer. As each ecc is released, the
event chain to which it belonged is linked around it.

When these operations have been performed for all ecc's
for the SET event, the result is that the entire ecc chain for
the event has been released (see ONR for an exception). Further
more, if any pending operations were completed by the SET, all
ecc's and the action cells for these operations have been re
leased as well, and the actions have been performed. That is,
except for subsidiary actions, such as ecc processing induced
by the effect of the complex-SET primitive described below. The
SET procedure returns control to the calling process directly,
or via the processor assignment procedure if performed-actions
readied any process. In the latter case, it may be that the
priority of one or more just-readied processes entitles them
to bump lower-priority processes from the running to the ready
state.

The remaining primitives may now be described in terms
of the above implementation. The structure of the ecc chains
for

SET(E', n, EI, E2, .•. , Em)

RESET (E', n, EI, E2, .•. , Em)

is similar to that for the complex WAIT. Only the "action" is
different; when the condition (n of m) is satisfied the set or
reset value is assigned to the event E'. If this changes the
state of E' from reset to set (which implies that the operating
system SET procedure was in control), a record is kept. When
the original call· on SET completes, the further operations are
sequentially performed before control is returned to the caller.

Two primitives are provided which can cause interruption
of a process as a result of an event becoming SET:

ON(E) <code block>

ON(n, EI, E2, .•• , Em) <code block>

Execution of the ON operator causes a structure like
that for WAIT to be established, but with an action cell which
points to a PEW for the code block. This code block, referred
to as the "ON-unit", is not executed at the time the ON is ex
ecuted; rather, it is entered at the first opportunity once the

-296-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



y

Call SET (E ' )
RESET

SET (E' n, El, E2, ••• , Em)
RESET '

Call "process
complex event
expression"

n

Set action type (SET/
RESET) and event pointer
into action cell

Figure 3.6-17 SET(E' ,n,El,E2, .•. ,Em)and
RESET(E' ,n,El,E2, ... ,Em)

-297-



Process Complex Event Expression
• • • n, E. l' E· 2 ••• , E3 •••

Ini tialize set
count to 0,
reset-list to
empty

n

Add one to
set-count

y
Examine events

n list sequential-~__~n~__~
ly. STATE (Eil

SET?

Add E~ to
reset-list

y

n

Figure 3.6-18:

Establish action cel~. Fore
each Ei in reset-list, est
ablish an ecc threaded into
list for E l and list for ac
tioD cell. Set action count
f1elc to n-setcount

Complex Event Handling

-298-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



ON(n, EI, E2, ••• , Em)

Call "process
complex event
expression"

y

Enter ON-unit
code block

Return to caller
indication
event expres
is now satis-

n

Set action type
(ON) and pointe
to code block
in action cell

Figure 3.6-19 ON(n,E1,E2, ..• ,Em)

-299-



condition is satisfied. In this context, the "first opportunity"
occurs as soon as the process which executed the ON is found to
be in the running state. Thus, if the process is running at the
time, the entry of the code block will be immediate. Otherwise,
the process must reach the running state before the entry occurs.
Specifically, the satisfaction of the condition does not ready
the process if it is in the wait or stopped state (unless, of
course, the wait condition happens to be satisfied as weln. In
any case, the execution of the ON-unit's code block occurs at
the same priority as the process to which it belongs.

Execution of ON-unit code may be interrupted by other
ON-units. If two or more ON-units are found pending at the
moment a process is returned to the running state, entry of the
oldest is initiated, followed immediately by the next oldest,
and so on, until the queue of pending ON-units is emptied and
the stack build-up has been accomplished. This action is ana
logous to that which would have occurred if the ON-units had
been triggered serially, but close together in time. This is
functionally desired, to permit handling of faults or traps
which arise during the execution of ON-unit code in a standard
fashion.

One further variation of the ON primitive is provided
to deal with repetitive events:

ONR(Ep ) <code block>

where E is the name of a pulsed event. The only difference
betweenPthe effect of ONR and ON is that ONR marks the ecc so
that its release and the action block's release are inhibited
when the event is set. The consequence of retaining these
blocks, instead of releasing them, is that the ON-unit remains
active, and will respond to subsequent SETs of the pulsed event
without explicit re-execution of an ON operation. This provides
improved efficiency when repetitive action is desired, since
the overhead of release and re-establishment is avoided.

3.6.2.3 Example of Event Mechanization: Figure 3.6-21 shows, in
abbreviated form, the structure for events El, E2, and E3 (all
of which are in the reset state) following the execution of

ON(El) <code>

SET(El, 2, E2, E3)

WAIT(l, El, E2)

-300-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



ONR(E)

y

Call "process
simple event
expression"

Set action type
(ONR) and
pointer into
action cell

n

Figure 3.6-20 ONR(E)

-301-



E

Reset

Normal

E2

Reset

Pulsed

4

E3

Reset

Normal

1

ON

ptr to code

2

SET

ptr to El

~ ... -
I , •

1

WAIT

~ Stack No.

-

I
- -, ,

I

1_ l_J
Figure 3.6-21 Event Links After Execution of:

ON(El ) <code>

SET (E l , 2 ,E2 ,E
3

)

WAIT(1,E l ,E2 )

-302-



El E2 ,
E3

Set I{eset Reset

Normal Pulsed Normal

~t

2

SET

~
- - ptr to El -

4

.

Figure 3.6-22 Event links of figure 3.6-21
after execution of:

SET(El )

-303-



If EI should be SET by some process, two consequences
would result. First, the "ON" action would be triggered, since
the count-to-go is one, and EI is connected to the action cell.
Second, the other ecc for EI would cause the waiting process
to be readied, since its count is also one and EI is part of
its action list. The E2 ecc linked to the WAIT action cell
would be released, since the action to which it is connected
was.performed. Figure 3.6-22 shows the structure of Figure 3.6~21

as modified by the SET(EI).

Suppose instead that a process had issued SET(E2). The
result is shown in Figure 3.6-23. The count for the "SET" action
cell has been reduced by one, the waiting process has been rea
died, and the EI extra ecc has been released. Note that because
E2 is a pulsed event, its state remains reset. Now suppose that
SET(E3) is subsequently performed. This completes the condition
for the "SET" cell, and therefore causes EI to be set. This,
in turn, triggers the "ON" unit, leaving the structure empty,
with EI and E3 in the set state.

3.6.2.4 Complex Event Expressions: If an action is desired as
a consequence of any n of m events, the primitives are applicable
with no elaboration.

WAIT (I, EI, E2, .•• , Em)

has the effect of waiting until the "OR" of the events happens,
while

WAIT(m, EI, E2, ..• , Em)

waits until the "ANO" happens. (Note, however, the looseness
of the interpretation of AND; because of the implementation,
there is no guarantee that all events listed will be simultaneously
in the set state when the wait ends. Rather, it is true only that
each event has been at least briefly in the set state since the
WAIT was issued; it is easy to visualize a case where a process
which tests the states of all listed events just after a WAIT on
a list will find everyone in the reset state.)

The SET primitive can be used to obtain the effect of
a WAIT which ends either when event C happens or when both A and
B happen:

-304-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



SET(X, 2, A, B)

WAIT(I, X, C)

Thus, the durmny event X is set upon the "AND" of A and B, and
the WAIT waits for the first occurrence of X or C.

3.6.2.5 Scope or Lifetime of Event Operations: For an event
primitive to be meaningful, all components in the primitive
must have an existence. For example, if a program block is
exited in which a member of an event list (or an E') is de
clared or an active ON is located, or if a WAITing process is
terminated by another process, the related event structure must
be purged. Furthermore, if the process which executed a still
active complex SET is terminated, the SET structure must be
purqed. Although more complicated strategies are easily con
structed, the additional sophistication does not seem to
justify the additional overhead.

On occasion, it is desirable to purge an event-struc
ture explicitly. This may be achieved by performing

PURGE (key)

where the key is the value which was returned as part of the ex
ecution of the ON operator, or by the complex form of SET or
RESET. It contains an id part and a pointer part. The id is uni
que, and is also stored in the action cell. The p01nter part
points to the action cell, from which the row chain of ecc's may
be entered. If the id-field of the cell indicated by the pointer
part does not match the id specified in the PURGE key, .PURGE re
turns without effect.

3.6.2.6 Connection to External Signals: Because of the real
time nature of the applications for which the multiprocessor
is intended, it is useful to provide a correspondence between
event cells and actual events manifested in signals which trig
ger the "external signal" interrupt. This interrupt is cate
gorized as system-oriented, and it is handled by the operating
system external signal interrupt procedure. This procedure is
compiled with a Compool segment which contains a declaration
for each event cell to be connected to an external signal. The
names of these cells are determined and known at the operating
system level, so they may be expected to remain reasonably
fixed. However, the Compool and the interrupt handler may readily
be modified when necessary.

-305-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



El E2 E3

Reset Reset Reset
Normal Pulsed Normal

•
1

ON

ptr to code

r ..r-______

--~
I

1
SET

Elptr to
/'~ ...

~ ..~,
..

Figure 3.6-22: Event Links of ~igure 3.6-21 After Execution
of: SET(El )

-306-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



The occurrence of an external signal interrupt will
trigger a SET operation on the appropriate event cell. Any
nUmber of processes may build event structures involving these
cells.

-307-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



n

PURGE (key)

Use pointer
field of key to
locate action
cell

Delete action cell and
chain of ecc's connected
to it. Link event
chains around deleted
ecc's

Figure 3.6-24 PURGE (key)

-308-



3.7 Fault Recovery Methodology

As indicated in the introduction to this report, the
emphasis in this multiprocessor design has been to provide
instantaneous, all-hardware error detection to prevent the
random propagation of the consequences of an error. Because
of limitations of speed and· complexity, no software is involved
in the detection of errors, and only the operating system has been
involved with the task of managing system re-·
covery. The overriding requirement that has been observed
throughout the system design is that the applications programmer
should be kept oblivious of the error detection and recovery
mechanisms. This section discusses the functions of the opera
ting system in the recovery process. Some duplication of the
more detailed descriptions to be found in Chapter 4 is made
for the sake of completeness.

The failures of four kinds of units are considered
in this section: processor, Ml, M2, and I/O controller. The
design of the system is such that the processor failures do not
incur loss of information; thus, the recovery from failure of
a processor differs from the recovery from a failure of the Ml
with which it is directly associated. Faults in M2 memory
involve information loss. Faults in the I/O controller must
be masked, since there is only a single copy of this device.

3.7.1 Recovery From Processor Failure

Processing units are comprised of two identical units
which are coupled with comparison circuitry for error detec-
tion purposes. This design has been chosen so that errors
committed by a processor are detected immediately before propa
gation occurs. The instruction execution sequence is partitioned
into two phases such that in no case does processor failure ren
der the instruction incapable of being restarted at an imme
diately preceding point. This is achieved by insuring that no
instruction phase destroys the inputs to that phase.
Therefore, the information is available, qnd it is merely
necessary that the processor correctly signal the occurrence
of an error, and that the system provide control for instruction
retry. Because retry may prove unsuccessful, it is also nec
essary to provide access to information stored in Ml, in order
that the process interrupted by the failure may be resumed on
another processor.

Upon the occurrence of an error in a processor, the
error control logic for the processor transmits a signal to
the I/O controller, by means of the IPC bus. The error

-309-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



control logic also renders the processor dormant (a condition
in which the processor ceases instruction execution and is not
responsive to interrupt' signals). The response of the I/O
controller occurs in two sequential parts. During the first
part signals are sent directly from the I/O controller to
the faulty processor requesting the processor to re-execute the
instruction phase during which the error was detected. Be
cause the inputs have been preserved, this phase may be retried
as often as desired. Only if it completes successfully will
the next phase be enabled, and not until then will inputs to the
previous phase be destroyed. The faulty processor responds '
to the request by attempting the specified execution; whether
successful or unsuccessful, it responds to the I/O controller
with a signal indicating whether the result was correct. If
the result was incorrect, the I/O controller will command another
attempt, and so on, until a predetermined number of retries
has been attempted without success, or retry succeeds. In
either case, the I/O controller prepares an interrupt command
to some other processor (the "rescuing" processor), chosen on
the basis of interruptibility index. The purpose of this in
terrupt depends partly upon the success of the retry attempt.
The fact that the error occurred, together with the outcome
of the retry attempt, are recorded regardless. If the retry
attempt was successful, it is presumed that the processor
which detected the error can continue the process it was exe
cuting at the time, i.e., the error is diagnosed as having
been temporary. The rescuing processor sends a resume command
to the faulty processor over the IPC bus, and returns to normal
operation itself.

If repeated retry attempts prove unsuccessful, the
error is classified as permanent, and the process interrupted
by the fault must be resumed on a different processor. The
rescuing processor calls the M2 space allocation routine to
obtain an area into which the contents of the faulty proces
sor's Ml memory may be unloaded. Next, it sends to the faulty
processor (in fact, to its Ml) a command to unload Ml into the
designated M2 area. This command and its address information
are sent via the IPC bus. Two forms of this command are avail
able; the form used in this case is to unload Ml with full
error detection enabled. That is, should a fault occur during
the unloading 'of Ml into M2, an appropriate error signal will
be sent, causing normal Ml-failure action to be followed.
(The second form of the unload command is described below in
connection with Ml failures.) Because the processor which
failed did not normally terminate its activity with respect
to the stack of the interrupted process, the rescuing proces
sor must manipulate the Ml information and the abandoned stack
in such a way that the abandoned stack is made normal with
respect to resumption of operation. This implies packing and

-310-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



storing of status bits, return control information, and mark
stack indicators, and fabrication of stack values for a normal
interrupt procedure entry. When this action is completed,
a call to the operating system is performed, to switch the
status of the interrupted task from the running to the ready
state. At this point, the process interrupted by the fault
is in the same condition which results from a normal interrupt,
and it may be rescheduled by the operating system in accordance
with its priority on any available processor. Before transferring
control to the dispatcher, the rescuing processor schedules a
self-test diagnostic process for the faulty processor. The
discussion of such a maintenance program is beyond the scope
of the report; however, it is noted that the initial conditions
for the operation ot this routine are 1) the faulty processor's
Ml memory requires loading, and 2) the faulty processor is in
a dormant state, and requires a special command before it will
attempt execution of instructions. Thus, it appears reasonable
to assign the seif-test package to a healthy processor, and
to allow that processor to administer the operation of the
self-test package.

The final actions of the rescuing processor are to
release the M2 area obtained to hold the Ml contents, and to
transfer control to the operating system dispatcher, to allow
the process interrupted by the fault to be assigned a proces
sor if its priority warrants. Of course, if this happens, some
other process will of necessity be switched from the running
to the ready state, since there is now one less processor avail
able in the system.

3.7.2 Recovery From Ml Memory Failure

Three independent tests are made in Ml for error detec
tion purposes: parity tests on each copy of the duplexed Ml,
and an agreement-comparison between the two copies. The various
combinations of good and bad parity with agreement and disagree
ment result in eight different possibilities for the outcome
of each comparison. Only one of these represents satisfactory
operation: the copies agree, and both have correct parity. Any
condition in which disagreement or bad parity is detected re
sults in a signal over the IPC bus generated by the error detec
tion logic in the Ml system. A 3-bit error configuration in
dicator accompanies the error signal. The I/O controller re
sponds as with processor failure: it commands a number of
retries. If this proves unsuccessful, it selects a suitable
processor, and interrupts it. The rescuing processor calls
the M2-space allocation procedure of the operating system to
obtain two areas to receive the Ml contents. The process then
uses the second form of the Ml unloading command, which spe
cifies unloading of one member of the duplexed pair into the

-311-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



designated M2 location, inhibiting transmission of an interrupt
signal in the event that a fault (parity failure) is detected
during the operation. Instead of an interrupt, a detected
fault sets a condition code in the rescuing processor, which
is examined upon completion of the unload operation. Thus, the
rescuing processor commands, sequentially, that both copies of
the contents of the failed unit are unloaded to M2 memory. From
this point, subsequent action depends upon the 3-bit error code
generated by the failure in MI. If neither copy of Ml, or both
copies of Ml, signal bad parity, it is impossible to tell whether
either copy is correct. In this unlikely event, the recovery
software is unable to continue, and appeals for assistance from
the system operator.

In the more probable failure case, the 3-bit error code
will indicate disagreement between the values, and one bad
parity. If the copy of Ml not indicating bad parity was un
loaded into M2 without indication of failure, then this copy
is loaded into the faulty Ml, and execution of a single phase
of the interrupted instruction is commanded. If unsuccessful,
the retry is repeated, without reloading Ml, a limited number
of times. Should this prove unsuccessful, the process inter
rupted by the fault must be switched to the ready state, its
stack adjusted to resemble normal operation, and the rescuing
processor exits via the operating system dispatcher as des
cribed above under processor failure. In case of success, the
M2 areas may be released, and operation can be resumed on the
original processor.

3.7.3 Recovery from M2 Failure

There are two cases of M2 fault detection: the fault
may be encountered during execution of some operation in 1) a
processor, or 2) in the I/O controller. In the first case, the
processor enters the dormant state, as in the processor-failure
case, and transmits a signal to the I/O controller via the IPC
bus. The I/O controller commands a single phase retry to de
termine whether the fault was transient. If after a limited
number of retries the result is unsuccessful, the I/O control
ler sends an interrupt signal to another processor, to obtain
assistance. Because there is a chance that the processor which
encountered the fault might have been performing those opera
tions required to enter a procedure just when the fault was
encountered, it is undesirable to select that processor to handle
the interrupt, since an attempt to respond to an interrupt may
cause recurrence of the failure. However, any processor may
be selected if the M2 fault was signalled during an operation
under control of the I/O unit.

-312-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840



Recovery from M2 failures depends upon the presence of
doubly stored information. In the case of procedure and other
read-only segments, double storage consists of a copy in M2
and a copy in M3. For critical variable information double stor
age rakes place through maintenance of two ~opies in different
M2 units. The decision as to which variable data is suffi
ciently critical to warrant mUltiple storage in M2 is partly
up to the application program, and partly under control of the
system. When the application program specifies double storage
for a given segment, that fact is recorded in the Mom descrip
tor (see section 2.4.2); the hardware then automatically per
forms the multiple stores without requiring additional code to
be provided.

Singly stored read-only and variable segments still
require double storage, however, of the following three quan
tities:

a) the length of the M2 storage area where the segment is
found,

b) the location of the Mom descriptor, and

c) the location in M3 from which the copy was obtained.

Thus, even in the event of total unit failure, it is
possible to discover the identity of the contents of that
unit from the information that survives, to locate the des
criptors for the information, and to locate the copy in M3.
The action taken with respect to memory isolation following a
failure indication depends upon the scope of the failure.
Should a group of contiguous words in a module be affected,
the recovery software constructs an unusable-memory block, also
marked non-relocatable, so that the area of memory known to
be faulty is removed from further use without disabling the
entire module. To determine which segments are located in that
area, a search of physical memory, in the order of (and by use
of) the memory links is carried out. The Mom descriptors
pointed to by those links are accessed. If the Mom descriptor
indicates a read-only segment, it will be.refreshed from M3
merely by marking its descriptor absent. If, on the other
hand, the descriptor indicates doubly stored information, an
M2 to M2 transfer can be performed to re-create two correct
copies. Finally, if slngly stored variable data is involved,
the Mom descriptor must be marked unusable by the recovery pro
cedure. This is accomplished by marking the segment absent,
and by using a pseudo M3 address designator which is inter
preted by the absent segment interrupt handler as signifying
a destroyed segment. Should one or more processes attempt to

-313-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840



make this segment present, the interrupt handler will recog
nize the situation, and terminate these processes with an appro
priate diagnostic indication.

On completing these actions, the rescuing processor
logs the fact of failure and the recovery action taken, frees
the dormant processor, and resumes operation normally.

3.7.4 Recovery from I/O Controller Failure

Since there is only one copy of the I/O controller,
errors in this device must be masked by redundancy. The re
covery operation is then done automatically in the device.
A processor is selected to be interrupted for the purpose of
logging the fault and the recovery action. Mask bits are
provided so that these interruptions can be held below a cer
tain frequency, so that the system is not too frequently
called upon to log a masked fault. Error counts may be main
tained in the I/O controller itself, because of its modular
redundancy. Further details of the IOC internal modular
redundancy are given in the next chapter.

-314-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



References for Chapter 3

I} Madnick, S.E., "An Analysis of the Page Size Anomaly",
MIT Project MAC, 13 December 1971.

2} Randell, B., "A Note on Storage Fragmentation and Pro
gram Segmentation", Comm. of ACM, Vol. 12, No.7,
July 1969.

3} Knuth, D.E., "The Art of Computer Programming", Vol. 1,
Fundamental Algorithms, Addison-Wesley Publishing Co.,
pp. 435-455.

4a} Crighton, R.P., "B6700 Core Memory Allocation", August
1971, privately obtained memorandum.

4b} Burroughs Corporation, "B6700 Master Control Program 
Information Manual", Document # 5000086, 1970.

5} Mattson, R.L., "Evaluation Techniques for Storage Hier
archies", IBM Systems Journal, Vol. 9, No.2, 1970,
pp. 78-117.

6} Corbato , F.J., "A Paging Experiment with the Multics
System", MIT Project MAC, MAC-M-384, 8 July 1968.

7} North American Rockwell/Space Division, "Modular Space
Station Phase B Extension - Information Management
Advanced Development Final Report", 31 July 1972,
Contract NAS9-9953, MSC0247l, DRL No. MSC-7-575, Line
Item 72.

8} Intermetrics, Inc., "Final Report -- Standard Interface
Definition for Avionics Data Bus Systems", May 1971,
prepared under contract NAS9-ll477.

-315-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



-316-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



PRECEDING PAGE BLANK NOT Fn,MED

4.0

FAULT TOLERANT ASPECTS OF THE MULTIPROCESSOR

This chapter deals with the problem of failure detec
tion and the recovery process which re-establishes the proces
sing activity. For the purpose of this discussion a failure
is defined as a malfunction of a system component, while an
error is the manifestation of the failure, usually detected as
bad data or incorrect control sequencing. A failure may be
categorized as either transient or permanent. A permanent
failure is defined as one which will repeatedly cause the same
error condition. A transient failure cannot be repeated con
sistently. It is presumed that if a transient failure occurs
the hardware will function properly if its "state" informa
tion is restored. "State" information includes values of all
control variables and initial data.

4.1 General Philosophy and Requirements

In order to develop a specific approach to fault tol
erance a number of requirements were generated and a philosophy
was established, against which specific design considerations
could be judged. The requirements were based upon those of the antici
pated Space Station [1,2,3], in the absence of operational re
quirements specified by the contract. The following basic
premises of error detection were adopted:

a) The system must be designed so that almost all,failures
can be detected. The desirability of detecting and
recoverying from every possible single failure is clear.
However, in practice this proves impossible. Only
with an assumption of statistically independent failures
of all components, may all failures will be detected. The
failure of any integrated circuit, the open circuiting
at any interconnection and the shorting of any circuit
or wire to a logical "1" or "0" state will be considered.
Cases in which a shorting bar is placed across a number
of circuits simultaneously is considered a violation of
the statistical independence principle. In the case of
a dual redundant subsystem electromagnetic coupling which
causes failures in both units is also a case of statisti
cally dependent failures.

Preceding page blank -317-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



b) Errors must be detected as soon as they occur. The error
should not be allowed to propagate so as to incapacitate
the system's ability to recover. A failure which causes
incorrect information to be written into M2 or improper
I/O commands to be issued could leave the system in an
unrecoverable situation. Incorrect M2 write operations
must be prevented or made to occur at such a low probab
ility so as to be practically impossible.

c) A basic assumption is that repair by replacement of the
multiprocessor communicating elements will be undertaken
after a permanent hardware failure has been detected,
the system reconfigured and the malfunctioning element
isolated. For this reason the system will be designed
to guarantee single component failure recovery. Recovery
from the single failure might leave the system in a de
graded performance mode. However after repair is accom
plished the maximum potential capability can be reestab
lished. This does not imply that the affects of the fail
ure will not be felt by the system. A number of low
priority functions may not have been executed. This loss
can never be made up, and must be a factor acknowledged
by the system designers. Future operations will, however,
eventually recover to be within specification. The fail
ure criteria for the multiprocessor will then be Fail De
grade (FD) after the first failure, and fail safe (FS)
after the second failure. If a third failure occurs
before repair is accomplished the operation of the system
cannot be guaranteed. In case of a permanent failure
the system will provide degraded performance. That is,
when all elements are in a non-failed state their total
resource will be allocated to optimizing the computer
system throughput. There will be no on-line spares. In
order to minimize the effect of the FD mode upon real time
computations all processes are allocated a priority.
After a failure high priority tasks will be guaranteed
resources to recover and resume operation in preference
over low priority or background tasks, which may therefore
be delayed or even locked out due to temporary over
commitment of resources. Real tim~ computations are con
sidered to be the highest priority processes.

d) If a component failure occurs, a second failure is as
sumed impossible during the reconfiguration process.
For comp£nent failure rates on the order of 10- 3 to 10- 4
(hours)- and reconfigurationtimes measured in milli
seconds, the probability of the second failure occuring
during reconfiguration is less than 10- 8 •

-318-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



e) Because of real time control functions the recovery time
must be deterministic, and of the order of 10 or 100
milliseconds. Recovery time is measured from the time
the error is detected to the time the highest priority
active process resumes its calculations. In order to
meet this requirement an analytical and experimental
series of tests must be developed to demonstrate that
under all processing situations the system can recover in
less than the maximum recovery time.

f) The experience of the Apollo program demonstrates that it
is essential for the applications programmer to be ignor
ant of the recovery process. The entire error detection,
isolation and recovery process must be handled by the
hardware and the operating system.

g) A false indication of a failure is not catastrophic to
system performance. At worst it can cause an internal
reconfiguration and put the system in an FD mode of
operation. Fault isolation logic will indicate a failure
in the error detection mechanism. However, if the fail
ure detecting mechanism fails in a mode which prevents
the reporting of a failure, then a serious situation can
occur. The second failure, if in an operational unit
(P, Ml, M2, I/O, bus) would not be reported and the error
condition created by this second failure could be pro
pagated. This non-indication situation must be designed
out of the equipment by appropriate application of re
dundancy techniques.

4.2 Major Phases of Fault Tolerant Operation

The choice of an effective fault tolerant design requires
an investigation of error detection mechanisms, fault isolation
logic, and recovery philosophy. These items will be discussed
in general and their application to the operating units of the
multiprocessor (P, Ml, M2, I/O, bus) will then be presented.

4.2.1 Error Detection and/or Correction

Errors due to transients and errors due to permanent
hardware failures must be considered. Transient errors are
generally not caused by hardware failure but rather by a source
of external noise. They occur for a short duration and infre
quently. It is therefore impossible to isolate the source of
the error by testing since the hardware operates satisfactorily
after the failure. Consequently, it is not necessary for
a spare unit to be switched in order to perform recovery. Only
the state of the failed unit prior to the failure

-319-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



must be restored. Any successful error detecting technique must
detect both transient and hardware failures. The following sec
tions review a number of methodologies that may be applied to
provide the error detection capability.

4.2.1.1 Periodic Diagnosis. This method relies on software to
periodically initiate test sequences and compare the results with
predetermined values. For a number of reasons it is unsatis
factory for error detection within the multiprocessor: First,
there is no guarantee that the error is detected before damage
has been caused in terms of bad write operations into M2 or in
correct I/O commands. Second, there are failure modes which can
prevent a processor from sequencing, requiring, therefore, some
form of hardware time-out. Third, the categorization of all
the possible failure modes and the execution of the tests to
interrogate the possible failures can be a significant software
effort. Fourth, there is a large probability that transient
errors won't be detected [4].

4.2.1.2 Error Detecting Codes. Coding techniques have been
studied for many years [5]. Codes may be classified as either
transmission codes or arithmetic codes. Both may be used for
error detection on the internal bus and in memory. Transmission
codes do not retain their error detection characteristics under
arithmetic operations. As a matter of fact neither transmission
nor arithmetic codes retain their characteristics under non-linear
binary operations.

There are a number of points to consider before relying
solely on coding for error and failure detection.

a) Not all component failures result in error patterns which
can be detected by a given code.

;

b) Extensive error coding imposes higher bit rates, and may
degrade performance.

c) The commonly applied parity coding. is an effective method
of detecting single bit errors, but is ineffective in
protecting against transients which affect more than a
single bit. This is the statistical independence re-'
quirement.

In the processor and memory sections these points will be ad
dressed when codes are considered.

4.2.1.3 Component Level Redundancy. This methodology applies
redundancy at the circuit or gate level. It is possible to

-320-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



design fail safe logical systems, in the sense that the system
continues satisfactory operation even if a component fails or a
single bit transient error occurs. By incorporating redundancy
as an inherent part of the initial design procedure rather than
after the design is accomplished, logic can be synthesized which
is tolerant of single component failures. The method applied
by Russo [6] and refined by Beister [7] involves utilization of
a minimum distance 3 state assignment, and is analogous to a
single error correcting Hamming code. RUsso's design for imple
menting a decimal counter came to more than eight times the amount
of hardware than for the nonredundant version. The implementation
involved AND/OR diode logic. Beister's implementation, exploit
ing the properties of threshold logic, required 3.5 times as much
logic.

These results are for the detection and recovery from
single component failures. The amount of extra hardware re
quired to achieve this capability is, indeed, disappointing.

Quadded logic [8,9] allows a number of logic gate failures
within a digital computer without disturbing its capacity to per
form the function for which it was designed. This techniques
can, in theory, increase reliability by orders of magnitude.

Another form of logic level redundancy is known as in
terwoven redundant logic [10]. with this technique, each gate
receives a number of versions of each input and forms its out
put from the redundant input information. Certain redundant
gates while performing logic can correct errors from the previous
stage in one layer of a multilayer structure. Other redundant
gates correct errors in two alternating layers.

All of the above techniques suffer from three major draw-
backs:

a) On the basis of gate count alone, the applicat~on of
component level redundancy is expensive (at least four
times the simplex version) ;

b) The large increase in the number of interconnections be
tween the redundant gates can itself produce unreliability;

c) It is very difficult to maintain statistical independence
between failures when one considers problems associated
with mechanical packaging and power supplies.

4.2.1.4 Functional Level Redundancy. Functional level error de
tection is at the level of the arithmetic unit, operating

-321-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



registers, shifter, etc. If dual functional units are synchro
nized properly then the output modes of the dual units can be
compared and errors detected. Even at this level single failures
may escape error detection; for example, a power supply transient.
However, careful engineering can anticipate these situations.

Majority voting is a technique [11,12] where each func
tional unit or system is triplicated and the output is chosen
to agree with the majority of the individual outputs from the
triplicated elements. An example of an application of majority
vote techniques is the Saturn V Computer [13]. Adaptive vote
taking [14] is a modification and extension of the majority
vote technique. This method employs more than three versions
of a functional unit output. When one unit fails, it is auto
matically switched out of the majority vote network, allowing a
greater increase in reliability over conventional majority vote
techniques.

4.2.1.5 Modular Redundancy. A question arises as to whether func
tional level redundancy with comparators at each functional in
tersection or modular redundancy (a complete duplicate P, Ml, M2,
or I/O unit), provides better error detection properties. From
a system performance point of view it is only necessary to detect
the inability of a subsystem to communicate correctly with its
environment. A duplicate module operating independently of
the first, with a comparator to detect any difference in outputs,
is just as effective in detecting errors as functional redundancy
within the module, provided that error sources are statistically
independent in the two modules. In fact, modular redundancy may
very well be more cost effective, since the total component count
will not, depending of course on the complexity of the comparator,
approach that of the functional redundancy examples in the pre
vious section.

In a sense the definition of a multiprocessor implies that
errors are to be detected at the module level and degradation in
performance is to occur when a module fails. A multiprocessor
should be capable of operating wi th less P., Ml, M2, or I/O capa
bility. It is the modularity and the degradability which are
the main reasons for investigating multiprocessors.

4.2.2 Fault Isolation

Fault isolation is the process of differentiation between
the bad and good units. In an arrangement using dual operating
units with a comparator it requires a lower level of error detec
tion. If all errors were caused by solid hardware failures, then

-322-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



software or microdiagnostics could be successful in isolating the
failures. However, because of the transient nature of many
failures, anything less than hardware fault isolation logic would
be unsatisfactory.

4.2.3 Recovery

Recovery is defined as the continuation of system opera
tion, with data integrity, within real time constraints, after
an error has occurred. If a computer system is modeled as a very
large finite state machine then the recovery process can step the
system from an illegal state (determined by the error detection
and isolation logic) to the proper legal state from which normal
processing can resume. The problem of recovery is in exactly deter
mining and restoring the proper legal state in an efficient man
ner.

The return state could be the last legal state of the
system prior to the failure. In this situation the state can
probably be determined quite precisely. Single instruction re
start is an example of returning to the last legal state. How
ever, if a more complex sequence of operations is chosen as a
restartable entity then it might become more difficult to deter
mine the exact state. In this case, an equivalent state, which
will ultimately arrive at the same final state, is chosen.

4.3 Error Detection

The following sections will present various techniques
for detecting errors within the various communicating elements
of the multiprocessor.

4.3.1 Error Detection within P

In order to gain an appreciation of the complexity of
error detection within P a number of problem areas are discussed.

4.3.1.1 Fan Out. In the process of logical design, a single
gate is often used to drive many different gates. This is called
fan out. The failure of the driving gate not only causes its
output to be incorrect, it can also propagate to the output of
all the gates to which it is attached. An example where this
problem directly affects the data content within a P element is
in data bussing.

Internal to P are a number of busses or common points
where many different data registers may be gated. The failure

-323-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



of a logic element or connection in the data bit logic usually
manifests itself as a single bit error. This type of error can
be easily detected by conventional parity techniques. However,
the failure of a control line used to gate information onto the
bus can manifest itself in a multiple error situation. In the
worst case, all the bits on the bus could be in error.

If two registers are gated onto the bus at the same
time, a logical OR between the two registers occurs. To the
author's knowledge, no mechanism exists which can, in general,
detect this situation short of a complete duplicate bus with re
dundant control lines.

In terms of coding theory if there are N information
bits a minimum of N check bits must be used to detect a burst
of N errors. This bussing example shows a situation in which
a single component failure caused a potential N bit burst error.

4.3.1.2 Arithmetic and Logic Unit (ALU). In discussing the fail
ure tolerance aspects of the ALU, one must distinguish between
the coded form of the data inputs and the actual information
which the coded form represents. The coded information may
possess redundant information which can be exploited to provide
error detection.

An ALU may be defined as having two inputs, an operation
and an output. A and B are the information inputs, C is the
information output and OP is the operation defined between A and
B:

A OP B = C,

OP is typically ADD, SUB, Logical AND, Logical OR, Exclusive OR,
MULT, DIV, etc.

Now, if F(A), F(B), and F(C) are the coded words, there
must exist an operator * such that,

F(A) * F(B) = F(C)

Also, to be useful, in error detection, the function F must con
tain enought redundant states to detect all single errors. One
may consider two types of F functions. Separate codes enable
F(A) to be the juxtaposition of A and some redundant check bits
G(A) with a check bit operation *:

-324-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



F(A) = A, G(A)

A OP B = C G(A) * G(B) = G(C)

Non-separate codes do not lend themselves to this partitioning.

Literature [15,16,17,18] exists which deals with the pro
blem of arithmetic codes, e.g., OP = ADD or SUB. Both sepa-
rate and non-separate codes exist. If OP = Logical AND or Logi
calOR, no efficient separate code exists. To be efficient, the
number of bits necessary to represent F(A), while still retaining
a single error detection capability, must be less than twice the
number of bits necessary to ~epresent A.

Peterson [19] has shown that all the arithmetic codes
provide error detection by performing a residue check on the re
sult of the arithmetic operation. Rao [20] has shown that for
a modulo(3) check upon a 25 bit word approximately 40 percent
more hardware (in terms of a NAND gate implementation) was re
quired.

One of the most efficient separate codes is where G(A)
is the parity function of A. However, the logic necessary to
compute the parity function of the sum of two numbers requires
the duplication of the carry logic of the adder. In addition
only half of the possible single component failures are detected.
In conclusion, any coding method used for error detection within
an ALU is quite complex in terms of the number of logic gates.

4.3.1.3 Encoding and Decoding. Within the logical structure of
P are areas in which bit patterns must be decoded or encoded
into different formats. The decoding mayor may not produce
mutually exclusive outputs. Th~se processes may, in m~ny instances,
allow a single component failure at the input to the combina-
tional structure to produce multiple errors on the output of the
combinational circuit.

4.3.1. 4 Contro·l Unit. The utilization of a microprogrammed con
trol memory greatly reduces the problem of control unit error
detection. Parity associated with each control word is very
effective. However, accessing the wrong control word because
of a failure in the addressing logic can cause catastrophic re
sults.

Incorrect addressing can be caused by incorrect address
decoding, which could result in the selection of the incorrect
contr91 word or the logical OR of two control words.

-325-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



4.3.1.5 Packaging and New Technology. Before recommending solu
tions to the problem of error detection a few points will be
made considering the technology with which the next generation of
systems are expected to be built.

a) The cost of a system will be a function of the number
of different types of circuit packages, and the external
connection complexity (pin count) of each package, and
be more or less independent of the complexity within a
given package.

b) The interconnections between LSI circuits must be mini
mized to achieve a high level of reliability.

c) Functions such as arithmetic units will be integrated
on one LSI chip.

An example of the cost of an error detecting code is the
case of a register to register transfer. Information transfer
from one register to another can be protected by the attachment
of a parity bit. Considering present day MSI technology, an 8
bit register is packaged on one chip. Similarly, an 8 bit parity
generator or checker is also packaged on the chip. Therefore,
the parity logic constitutes just as many circuits as the regis
ter itself. This implies twice the logic to provide for error
detection.

To obtain independent failures the error detection logic
and the processing logic must b~ packaged separately. This im
plies that they cannot be manufactured on the same LSI chip. If
error detection is accomplished at the level of the register,
or arithmetic unit, then the error detection logic will consist
of 'at least the same number of LSI packages as the functional
logic.

One may consider the use of redundant register9 with a
comparator. This would require three times the logic.

4.3.1.6 Processor Confi~uration for Error Detection. From the
discussions in the preVlOUS sections it is concluded that redun
dancy at the processor level is the most practical method of
error detection. A comparator placed across the dual P elements
provides the error indication. Some of the reasons for this
choice are listed below:

a) Periodic software self-test cannot catch all failures be
fore they propagate to multiple errors.

b) Error detecting codes cannot detect all possible errors.

-326-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



c)

d)

e)

f)

4.3.2

It will require at least twice the logic, and subsequently
at least twice the cost, to detect all possible single
component failures in P. Therefore the cost of a dual P
unit is reasonable.

The redundant processors can be packaged separately with
independent power distribution. This will more closely
meet the failure independence assumption.

Redundancy with a comparator at only one interface will
reduce the number of interconnections between the redun
dant processors.

Errors are detected before bad outputs may propagate from
the P. The comparator placed at the output of P might
allow an error to propagate within P, but no bad informa
tion leaves P.

Error Detection in Memory

The choice of error detection techniques to be applied to
memory is very dependent on the details of the memory hardware
configuration and the technology. The purpose of this discussion
is to present the failure modes which can occur in most "state
of-the-art" memory systems. Some generalized error detection
mechanisms are suggested. Details particular to certain techno
logies or configurations (such as linear select plated wire memory)
are not emphasized. Figure 4.3-1 depicts a generic memory system.
Each of the major subsystems in the memory may fail in a number
of ways. Transients may be induced at any of the indicated in
terfaces. One of the major tasks in designing an error detec
tion system is to understand the results of the various failure
modes.

4.3.2.1 Control and Timing. A failure within the control and
timing elements of the memory system can manifest itself in a,
number of ways.

a) A read. operation may be changed into a write operation,
and vice-versa. Most dangerous is the destruction of
the addressed word by an inadvertent write.

b) The memory may fail to sequence, thus preventing access
or storage operations from continuing.

A failure in the control and timing logic can be detected
by applying three principles to the design:

a) Separate the read and write control logic. This includes
the control word. A simultaneous .read and write operation

-327-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



Power
Supply

External Power Source

r
I
I
I
r

Address Lines

-------~-------

Address
Register

------~ ----I

I Address
Decoding

1
I
I
I
I
IControl

and
Timing

Memory

Memory
Buffer

Register

~~~==~~,SelectionMemory
Cells Control!

lines I
I
I
I
I
I
I
I

I
-.. - - ~ . -..- -J

r
I
I
I
I
I
I
I

I
L

Data Lines

Figure 4.3-1: Generic Memory System

-328-

or a failure to read or write is detected as a control
inconsistency. In order for a read to change to a write
a specific simultaneous double failure most occur. This
is of such low probability as to eliminate the situation
from consideration.

b) Generate an end-of-read or end-of-write operation when
the sequence has terminated.

c) Detect the nonsequencing of the timing element (a time
out error indicaiton must be generated).

These principles are illustrated in Figure 4.3-2.

4.3.2.2 Address Register and Decoding. A failure in this logic
can cause:

a) the wrong word to be read.

b) a word to be written in the wrong location.

c) a word to be written simultaneously in multiple locations.

A number of detection methods, each applicable to different memory
structures, are presented.

Method 1: Address Feedback

In a coincident current core memory a 3D selection scheme
is employed. If the results of the address decoder are tapped
at the end of the selection chain, they can be re-encoded into
the original address and compared against the address stored in
the address register. This is illustrated in Figure 4.3-3.

This technique essentially detects addressing failures in,
the decoding and selection network. If a flip flop in the ad-
dress register failed in a "stuck at 1 or 0" state this technique
would not work. Parity checks upon the address word stored in
the address register would be required to qetect the failure of
a single address bit.

For a 3D memory with N words, 2/N lines would be fed
back into the encoder. For a 2D linear select memory all N lines
would be fed back. A 1024 word memory module would require a
total of 64 feedback wires for 3D and 1024 feedback wires for 2D.

This principle has been applied in the design of the
SIRU computer developed by M.I.T. [26]

-329-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Read control line
Read

Logic
end of read
operation

--.~,... read
operat'on

+ con~rol error
........--

) Common
Timing

To
memory

J--1I------j~end 0 f
memory
operation

~ime

Out , .'~
...---,. I_------+l~Tl.me-out

, error

One shot

write
operatl.on

Write control
line

vJri te
Logic ...-----------4II---------~endof write

operation

Figure 4.3-2: Memory Timing and Control

-330-

Address Register I.... ~~ + J----i~~
• Addressing

error

•••
/

Feedback \
Address
Encoder

•••

Memory plane
(memory cells .and
selection matrix)

•••

•••

1 •• ••

Figure 4.3-3: Address Decoder Feedback

-331-

Method 2: Bit plane partitioning with self-contained address
decoding

This technique is most applicable to memory systems which
exploit the newer LSI memory chips. These memories are bit ori
ented and possess internal address decoding within each chip. For
example, a 1024-bit memory chip may contain either 1024 I-bit
words or 256 4-bit words. The former configuration best suits
our needs although the principle can be applied to the latter con
figuration.

Figure 4.3-4 illustrates a memory system consisting of
1024 x I-bit chips in which address errors occurring after the
address register are detected by simple word parity. The failure
of the address decoding and selection logic within the memory
chip can only manifest itself as an error in a single bit. This
desired result is achieved essentially by an N fold redundancy
of the addressing logic. This redundancy, however, is an inte
gral part of the integrated circuit logic and is, therefore, not
a cost factor.

The principle of bit partitioning with separate address
logic for each bit can be easily applied to magnetic memories.
However, the cost is the fabrication of N sets of addressing
logic.

If 256 x 4-bit memory units are used then the failure of
the address logic within the memory unit can result in the loss
of four consecutive bits. Simple parity won't detect this fail
ure. However, four parity bits can be employed.

Method 3: Storage of Address with Data

This method relies upon the fact that for many applica
tions an addressable entity consists of a large number of bits.
The number of bits addressed must be muc:h .larger than -the num
ber of bits needed to perform the addressing. This situation
clearly exists in the drum storage device where 512 or 1024
words comprise an addressable entity. In this case one of the
stored words will contain the physical address.

When information is read from memory the address contained
in the information will detect addressing errors. When a word is
written into memory it must be re-read to verify that it was
stored properly. However, a permanent failure in the addressing
logic could have caused the information to be written and retri
eved from the wrong area of memory. Only when the destroyed in
formation is requested will the error be detected. This is pro
bably satisfactory since the destroyed data was not required until
this time.

-332-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Address
Decoding

)

024 bit
chips

I Address
I Register
I

i

I
r
.J

Address Address
Decoding Decoding

1--- 1

• • •
Bit 1 Bi t 2 Bit N

Parity Checker
(

Error

Figure 4.3-4: Bit Partition 1024 Word Memory

-333-

Method 4: Current Summing and Address Parity

Szygenda and Flynn [21] have suggested two interesting
techniques involving error detection and recovery in a complete
memory system. The following two error detection techniques
relate to addressing failures. To protect against addressing
failures, which could possibly cause nonrecoverable multiple
data errors, two conditions are sensed:

a) More than one of the address decoder outputs becoming
active during a memory operation. This is detected with
a special current summing circuit on the address drive
lines. This circuit indicates when more than one address
line is selected at a time. See Figure 4.3-5.

b) The failure of a single bit in the address register.
This is detected by a parity indication of the address
word included in the storage of each data word. The
address parity check detects the failure during the read
check operation. If the bits of the address word are
denoted by Ai (i = 1 •.. n), then the address parity bit
Ap is given by

Ap = Al <±5 A2 Q) ••. ~ An

~ = exclusive or

A single bit ad0ressing errors in bit i causes Ai to be
complemented (Ai + AT). Since Ap is assumed to be un
affected by the error, address error detection is accom
plished by an address parity bit check.

4.3.2.3 Memory Cells. Memory systems are prone to single bit
errors due to component failures. However, electrical transients
during a write operation will usually dest~oy the word being
written.

Single bit errors are detectable by simple parity. The
solution to the generalized burst error is more complex. How
ever, if a few assumptions are made the solution becomes
more tractable.

a) Once information is stored in the memory cells, the most
common manifestation of failure will be the single bit
error.

-334-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I--i--J--'- -V

Bottom
Switches

Bottom Switch
Selection

Top Switch
Selection

., -
I -

--

• •
• - •-• 1"'\ •

""

--
-

0--

~ •

-0-----
.Q-----4

-0---;
-0---

Address Register

Top
Switches

+V

measure current here.
Failure if more than
1-1/2 units 1

memory words

measure current
here. Failure if
more than 1-1/2
units

Notes
rr--6nly one top and one bottom switch are selected at a time.

2) Each top switch and each bottom switch draw one unit of current when
they are selected and zero units when they ar~ not selected

Figure 4.3-5: Current Summing for Linear Select Addressing

-335-

b) Burst errors are caused mostly by transients during the
read or write operations.

c) A less likely cause of burst errors is the failure of a
control line which will cause the entire memory word to
go into the all "0" or all "1" state.

Two features incorporated into a memory system will en
able most of these error modes to be detected.

a) Simple parity with one parity bit per word.

b) Write verification which reads each new word after a
write operation. It is estimated that at worst a 10%
degradation in memory speed would ensue due to write
verification.

4.3.2.4 Memory Buffer Register. The Memory Buffer Register is
logically bit oriented and a failure is detected by parity.
Depending upon the technology employed, single bit errors will
be more or less independent.

If the register bits are designed into the memory bit
planes, then independence of failures is made more realistic.
However, if an 8-bit MSI register chip is employed, a failure
can make 8 bits bad and, therefore, independence is not achieved.
In this case 8 parity bits would be required. One of the major
functions of the logic designer of a fault tolerant system is
to partition his logic design so as to guarantee that the inputs
to a particular error detection mechanism possess statistically
independent failure modes.

4.3.2.5 Memory Configurations for Error Detection. The previous
discussion has dealt with memory failure and error det~ction in
general. Specific recommendations for the three levels of
memory within the multiprocessor are now presented.

4.3.2.5.1 Ml Local Memory: The following features are suggested
for Ml' error detection:

a) Bit plane partitioning with either 96 chips of 64
bits each or 48 chips of 128 bits each. The latter
requires two word parity bits to guarantee inde
pendence of failures.

b) Address parity incorporated into each word.

-336-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

c) Since each P-MI processing unit is duplexed for re
covery (this is discussed in Section 4.4), the inputs
to the two MIls are compared. So is the read/write
control line signaling.

4.3.2.5.2 M2 Operating Memory: The M2 memory will include the
following features:

a) Current summing for a double address selection

b) Address parity bits

c) Word parity bits

d) A read verification of each write operation

e) Special control error detection logic

4.3.2.5.3 M3 Mass Memory: The following error detection fea
tures are proposed for the M3 level of memory:

a) Since accesses to M3 are usually in large numbers of
words the physical M3 address can be stored along
with each block of data without increasing the stor
age overhead appreciably.

b) Word and block parity can be applied to each accessed
block.

c) Special control error detection specific to the par
ticular M3 device failure modes is advisable.

4.3.3 Error Detection within the I/O Controller

As far as error detection is concerned there is enough
non-memory like logic contained within the I/O controller so
that the discussion concerning the processing unit also applies
to the I/O controller. Therefore, as far as detection is con
cerned, the I/O controller should be dually redundant with com
parators used for error detection. The M2 interface will be the
same as for a processing unit. The IPCB is dual, although the
function of P and I/O in relationship to control of the IPCB
is quite different.

-337-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

4.3.4 Error Detection on the Internal Bus

The internal bus consists of a data transmission path
and a control structure. Parity is very effective in detecting
errors incurred in the data path, especially in addition to any
M2 parity bits contained within a word.

The failure of the bus control logic can result in either
a non-transmission of information or a transmission to an incor
rect module. A non-transmission can be effectively detected by
a hardware time out error indication. The steering to the wrong
module is detected by incorporating the M2 module number into
each transmission, whether to or from memory. The processing
unit is aware of the M2 module it is communicating with.

4.4 Recovery

This section presents an analysis of the problems asso
ciated with recovery from a failure, after it has been success
fully detected. Major emphasis is placed upon the processing
unit and the operating memory.

4.4.1 Recovery from a Processing Unit Failure

For the purpose of the following discussion a processing
unit of the multiprocessor consists of the processor, P, and the
local memory, MI. The P element includes the arithmetic, logical
and control mechanisms. The Ml contains the top of the stack, base
registers, status and other locally stored information.

4.4.1.1 AlternatiVe Recovery Technigues. Five possible recovery
techniques are described in this section. The basic differentia
ting factor is the recovery time. That is the amount qf recom
putation which must be performed in order to bring the system
back to the proper operating state. All five recovery techniques,
to be successful, must possess the following properties.

a) A restart point, constituting a valid state of operation,
must be established either by hardware or software. None
of the information needed to restart can be modified
during the execution of the restartable entity. Only
temporary information, local to the restartable entity,
may be destroyed.

b) The restartable entity must be divided into two distinct
restartable phases: Phase 1 involves input of data,

-338-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

calculation and the utilization of a temporary memory
area for storage of results. Phase 2 involves the up
dating of data in memory by means of a copy cycle from
temporary to final storage. Only after the updates
are completed and a correctness verification is per
formed will the temporary storage be released.

c) The mechanism used to generate restart points must be
absolutely independent of the applications program, so
that testing of the restart point generation mechanism
can be performed, independently of the application.

d) Whatever the recovery mechanism, it must be designed to
be reentrant. That is, it must be capable of being re
peated, from the beginning, without loss of information.
If one assumes that the processing unit is incapable of
computing properly during a transient, then a restart
attempt during a long duration transient will fail. In
some sense one may think of a long duration transient as
a permanent failure. A second failure indication during
a restart attempt should not eliminate the possibility
of a third or even fourth restart attempt after an auto
matic reconfiguration of the computing elements.

e) As a general principle the I/O controllers must be de
signed to assume an appropriate share of the recovery
process. Such functions as being able to determine
the state of an I/O device as well as the process which
last commanded the device must be incorporated into the I/O
controller.

4.4.1.1.1 Fresh Start: The concept of a system Fresh Start
assumes all information stored in memory may be des
troyed, new programs and their initial condition data
loaded in, and the system started at some fixed point.
This is a satisfactory approach for a batch prqcessing
system. The restart point is always the same, namely
the reset state of the system.

The properties discussed previously are guaranteed
as follows:

a) The restart point, namely the reset state of the pro
cessing unit, is fixed. The only information needed
for restart are the programs and certain initial
data. All other data is created during execution.

b) The two phases of operation are satisfied trivially
since all information created is considered tem
porary.

-339-

INTERMETR'ICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

c) The recovery mechanism is completely determined before
run time.

d) The mechanism of Fresh Start can clearly be re-executed
an arbitrary number of times.

e) Fresh Start implicitly assumes that all I/O can be
reset to its starting state, or can be recyc~ed with
impunity.

The real time aspects of the space station environment
make the concept of system Fresh Start impossible. Either
the applications programmer must consider the impact of
fresh starting at any arbitrary point in time, or the
system must be capable of sustaining very long recovery
times.

4.4.1.1.2 Checkpoint Restart: The recovery time may be made more
deterministic by employing a checkpoint restart mechanism.
In large computational facilities, restart points are
often established by taking complete core and register
dumps at fixed times. The time between checkpoints can
be of the order of a few minutes up to an hour. This
system dump philosophy requires time for the dump and a
backup storage device such as a tape or disc.

Real time is usually not important in a checkpoint
restart system: the average system throughput is being
safeguarded.

The recovery properties are achieved as follows:

a) Restart points are established at periodic times when
complete memory and status snapshots are taken. The
most recent snapshot is not destroyed duri~g subse
quent processing.

b) The two phases of operation basically are implemented
as follows:

1)' Phase 1 uses the information just dumped and modi
fies the M2 copy of the information during its
computational processes.

2) Phase 2 is actually the snapshot. The snapshot,
being generated during phase 2, must utilize a
different buffer area than was used for the last
snapshot. Only after the present snapshot is com
plete can the buffer area associated with the pre
vious snapshot be released.

-340-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

c) The restart point generation and recovery mechanisms
clearly are independent of the applications program.
But, the implication of a long recovery period im
pacts the systems analyst.

d) Restart may be tried an arbitrary number of times from
the last checkpoint.

e) I/O interaction problems are not solved by this tech
nique. However, 1/ 0 is a separable question.

Although well defined, checkpoint restart will not,
in practice, be able to meet a recovery time requirement
of 10 to 100 milliseconds.

The checkpointing of Ml and the status of P will re
quire less than 200 microseconds per P-Ml unit. However,
one can not in general checkpoint a processing unit with
out a simultaneous checkpoint of the entire M2 memory.
The validity of this statement becomes clear when one
realizes that the state of P-Ml can not be returned to
some time in the past and be expected to operate with
the present state of M2. The two states are, in general,
inconsistent. The major time factor is, therefore, asso
ciated with dumping M2.

If we assume 16 - 8K M2 modules and allow a snapshot
rate of one 32-bit word per microsecond, an M2 dump
would require 128 milliseconds. Thirty-two megabits
per second is a higher rate than a standard drum, disc
or tape can handle. However, let us assume for a moment
a satisfactory backup device is available. During the
dumping process of 128 milliseconds, no other execution
can take place.

If a 10% degradation factor is arbitrarily'assumed
then one can not snapshot more often than every 1.28
seconds. Using these numbers, one sees that in order to
get the system back to the state at which the failure
occurred could require 1.28 seconds of processing.

4. 4.l.l~ 3 Software Restart: The software system may be con
ceived of as a grouping of algorithms, each executed
sequentially in time. Each algorithm receives data from
its calling sequences and returns the results. In order
for an algorithm to be restartable the following informa
tion must be available:

a) The algorithm in process and the starting point ad
dress of the algorithmic code.

-341-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

b) All the information initially required by the algo
rithm.

The recovery properties are achieved as follows:

a) The restart point must be determined by the compiler
and/or the operating system dynamically during exe
cution in order for the recovery process to remain
independent of the applications programmer. Whether
this can be accomplished practically is a major
question which will be touched upon in discussion of
problem areas.

b) The two phases of operation, calculation and update,
must be inserted into the machine code by the compiler.

c) Points a) and b) imply that the compiler and the op
erating system can relieve the application program
mer of concern with the recovery process.

d) There does not seem to be a reason why a restartable
process can not be restarted a number of times.

e) Although the I/O problems are not specifically handled
by this solution it is felt that a better understand
ing of the I/O problem can be achieved because the
restartable process is a logical executable entity
and is, therefore, aware of its own I/O requirements.

In the past real time systems have relied upon software
restart as the basic recovery mechanism. Software re
start was employed in the Apollo Guidance system [25].
It was a major contributer to the magnitude and expense
of the software checkout effort. A number of problem
areas which are the basic causes of software restart com
plexity are discussed next. It should be noteq that they
exist whether the application programmer is involved or
not.

a) Problem Area 1: Data Sharing _

1)- Self Dead-Lock

When two or more processes are allowed access to
a "critical section" of code, a locking mechanism
must be provided. A "critical section" as defined
by Dijkstra [23] is a shared section of code that
may be executed by only one process at a time.

-342-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

An example of a 'critical section is the updating
of a data segment in a COMPOOL. Suppose the fol
lowing static program segment is constructed:

statement Number

1
2
3
4
5
6
7
8

Statement Function

Input
Calculate
wait till lock is not set
Set the lock
Update data (critical section)
Release the lock
Continue
End

The locking mechanisms, implemented properly,
will provide the means for controlling the proper
update of the common data when two asynchronous
processes desire access to the same critical sec
tion.

Suppose that the code described above is ex
cuting in the middle of step 5, a failure occurs,
and restart is attempted from step 1. The dynamic
execution of statement steps will proceed in the
order [1,2,3,4,5, failure, restart, 1,2,3, dead
lock]. After the restart execution the system
finds itself locked out of the critical section
because the lock was not released before the re
start was initiated.

One may, of course, invent various mechanisms
to release all locks before a restart is initiated.
This can become quite complex. One may also store
the 1.0. of the process with the lock so the lock
applies to all processes except the process which
set the lock in the first place.

2) Externally caused Deadlock

One may conceive of situations where it is
desired not to restart a particular process.
The system design specification requires that
the process that failed be terminated but other
processes continue. In this situation the term
inated process can still leave a lock set which
causes a different process to enter a deadlocked

-343-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

situation. One may consider this situation bad de
sign practice or a bad specification, but neverthe
less possible.

b) Problem Area 2: Preservation of All Starting Data

It should be clear that in order to restart an execution
sequence, its input data must not be destroyed or modified.
That is, all information that is "read" from memory during
execution must not be allowed to be written into by the
restartable sequence. This requirement gives rise to a
number of restrictions or problems that the system de
signer must face.

1) The N = N + 1 Problem

Assume the following program:

Procedure A

N = Nold
Call Procedure
Continue
step

1
2
3
4

A (with parameter N)

Calculate
N = N + 1
Calculate
Return to caller

If procedure A is made a restartable entity then a
failure during step 3 will cause the following dy
namic sequence to be executed:

1, 2, 3, failure, restart, 1, 2, 3, 4

At the end of Procedure A (step 4), N = N Id + 2.
However, the proper value at this point sRould have
been N = Nold + 1.

One may argue that the beginning of Procedure A
is not the correct restart point. This is
true. Restart should have commenced at the N = Nold
statement. However, without the application programmer
specifying the restart point it is not clear that the
compiler or dynamic execution situation has enough in
formation to determine the restart point.

Clearly many software routines may call Procedure
A. Therefore, a static determination of the restart
point is impossible.

-344-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

One could, of course, program the same logic
without using N = N + 1 as a legal statement. For
example:

N = Nold
Call Procedure

Procedure A

N = Nnew

Continue

A (with parameter N)
Calculate
Nnew = N + I
Calculate
Return to caller with

(This is a copy cycle)

answer Nnew

As far as N is concerned Procedure A is now re
startable. Restartability has been achieved by
passing the parameter N to Procedure A, having Pro
cedure A return the parameter Nnew ' and finally ex
ecuting a copy cycle N = Nnew .

2) Very Large Data Elements

The basic mechanism involved in preserving in
formation required for recovery is the use of a copy
cycle. All storage must occur in a temporary area
of memory and only the calling routine can change the
starting values; namely, perform the copy cycle.
If very large arrays are involved in a particular
calculation a practical problem might arise as far
as memory size, and copy cycle time are concerned.

3) Test and Set

The Test and Set instruction often used for enter
ing "critical section" violates the principal of not
destroying the starting information. As a ,matter of
fact, any locking mechanism does. The solution to
the locking problem presented in section 4.4.1.3.2
involves a hardware special mechanism to allow Test
and Set (or other locking instructions) to be sep
arate restartable entities. Test and Set must be ex
ecuted in two phases as discussed in Section 4.4.1.1.

c) Problem Area 3: Interacting Processes

1) Spawning a Parallel Process

Consider the following software sequence

-345-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

step
1
2
3
4

Start Input
Calculate
Schedule Procedure A
Continue

Step 3 schedules Procedure A. It is assumed that the
multiprocessor executive will handle the details of
the scheduling. Procedure A will eventually be bound
to a processing unit for execution. If a failure
occurred during step 4, a restart is assumed to begin
at step 1. Notice that Procedure A will be scheduled
every time step 3 is executed.

In this situation the schedule command actually
alters the state of the system between the initial
execution of step 1 and the step 1 execution trig
gered by the restart mechanism. Procedure A has
been scheduled more than once.

One of three machanisms must be invoked to solve
this problem.

i) Realize that step 1 is the incorrect restart
point for a failure during step 4.

ii) If step 1 is the restart point than all
schedule commands issued during the procedure
should be voided. In general, this is very
difficult since Procedure A might be in vari
ous stages of execution. It might have been
completed. This is a problem introduced by
multiprocessing.

iii) The schedule statement could be sk~pped over
during the restart attempt.

2) Forking and Joining

Quite often many processing units are employed
in' the execution of a single calculation, so as to
exploit intrinsic parallelism. An example would be
a large correlation or statistical analysis calcu
lation. In this situation the initial process has
forked into a number of parallel processes. These
processes join at various points so communication
can take place. A failure occuring during the ex
ecution of a forked process will, in general, inter
act with the other branches of the fork. The dynamic

-346-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

interactions can make it very difficult, in gen
eral, to undo certain partial results before re
start.

d) Problem Area 4: Real Time

The ability of a process to recover within a spe
cified "recovery time" is of importance. One may
argue that it would be very difficult to determine
the worst case recovery time because it is dependent
upon the process being executed at the moment of
failure detection. This is true. However, the Apollo
program employed the concept of software restart and
although the solution and testing of the solution was
complicated, real time requirements could be met. For
this reason the concept is not rejected on the basis
of real time requirements.

4.4.1.1.4 Single Instruction Restart: M.I.T. [22] has proposed
the concept of a Single Instruction Restart (SIR). The
concept was developed to make recovery from hardware fail
ures and transients transparent to the programmer. A
fundamental tenet in the SIR concept is that all errors
are detected within the instruction in which they first
occur, so there is no propagation of errors to subsequent
instructions. Each instruction is divided into two parts;
a compute phase and a store phase. During the compute
phase results are stored in a temporary buffer, and during
the store phase they are transferred to their final stor
age location. Each phase is made restartable. When an
error is detected the instruction phase in which the error
occurred can be automatically re-executed, before poten
tially erroneous data overwrites good data.

The recovery properties discussed previously are
achieved as follows:

a) Restart points are automatically determined as either
the compute phase or store pha"se of each instruction.
The use of a temporary buffer prevents the destruc
tion of restartable information.

b) The basic two phases of execution are built into the
implementation of each instruction.

c) Not only is the applications programmer not involved
in determining restart points, he is not even con
cerned with the delay due to recovery time. SIR
should impose a recovery time that will be small

-347-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

compared to the iteration rate of any real time pro
cess.

d) Clearly each instruction phase may attempt restart
any number of times.

e) Although not a solution to the I/O restart problem,
SIR does indicate the error within the instruction
execution. If I/O is handled by a separate I/O
controller then this controller could buffer the
I/O command and reject redundant commands during a
restart attempt.

The proposed solution presented in section 4.4.1.2 does
utilize a number of the SIR concepts.

4.4.1.1.5 Fault Masking -- Triple Modular Redundancy: The last
techniques to be discussed imposes the least recovery
time. In a sense it is the other extreme from Fresh
Start. TMR utilizes three identical processing units
and votes upon their outputs. The majority output is
assumed to be correct and the faulty processing unit is
masked.

TMR meets the recovery requirements in a trivial
way:

a) Restart points are not used. In a degenerate sense
the restart point is the present time. Because of
the masking effect of TMR, restart information, as
such, is not required.

b) Retry is not required and therefore the phasing and
buffering of restartable entities are not an issue.

c) TMR is completely transparent to the programmer.

d) TMR masks transients.

e) Since the voter outputs are assumed to be valid,
TMR does not result in problems associated with
I/O.

Three configurations which employ majority voting
to mask failures will now be discussed. A number of
groundrules and assumptions are used as a basis of dis
cussion.

-348-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

a} Even though three pIS and/or Ml's are used, the inter
face to M2, the interprocessor communication bus are
dual redundant and bidirectional buses, implying an
interface between different levels of redundancy.

b} The main purpose in considering majority voting is
to eliminate the need for single instruction re
start.

Figure 4.4-1 presents a number of alternative confi
gurations which employ majroity voting. Configuration 1
utilizes 3 P-Ml units and dual interfaces to M2 and to
the IPCB's. The EC logic is'used to automatically inter
pret the error signals and to reconfigure the system ac
cording to a preplanned strategy. The EC logic sets the
position of the 8's, shuts off V units, and generates
fault interrupts.

Configuration 2 differs from configuration 1 in that
3P's are used but only 2 Ml's are employed. In this con
figuration the internal error detecting ability of Ml is
utilized to aid in fault isolation. The EC unit in con
figuration 2 is more complex since it can control switch
ing of Ml and M2 inputs.

Configuration 3 is presented for completeness and
employs 2P's and 3Ml~s. When 2P's are employed voting
and switching logic on the IPCB's are not required. How
ever, 3 EC's are necessary to independently control the
3 SIS.

The following discussion will demonstration that con
figuration 1 is the only one worthy of further considera
tion.

Configuration 2 has been proposed because it initially
requires less hardware by the absence of the third Ml
module. A more detailed investigation demonstrates that
this is not so (see Figure 4.4-2). The voting and switch
ing logic is identical and independent for each bit on
an interface. In configuration 1 the V elements inter
face with M2, which is 32 bits wide. Therefore, each V
element is 32 bits wide. In configuration 2 each V ele
ment is 64 bits wide because Ml is specified to be 64
bits wide. Therefore, V and 8 elements for the M2 inter
face in configuration 2 contain twice the hardware of
configuration 1. In addition, self-error detection within
Ml exists for configuration 2, and is not necessary for
configuration 1.

-349-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 ·(617) 661-1840

F
ig

u
re

4
.4

-1
:

V
o

ti
n

g
,

C
o

n
fi

g
u

ra
ti

o
n

s

c
o

n
fi

g
u

ra
ti

o
n

I
-
-

3P
-3

M
I

IP
C

B
l

IP
C

B
2

C
o

n
fi

g
u

ra
ti

o
n

3
-
-

3M
l-

2P

MZ

EZ

IP
C

B
l

IP
C

B
2

EZ

EJ E
4

E
~ .--

--
..

M
1 I P

E
1
~

E
i
'
~

~

I IN U
1 o I

C
o

n
fi

g
u

ra
ti

o
n

2
-
-

3P
-2

M
l

IP
C

B
l

IP
C

B
2

~
••

I
•
.

O
p

e
ra

ti
o

n
a
l

m
em

or
y

C
o

m
p

ar
at

o
r

P
ro

c
e
ss

o
r

it
h

e
rr

o
r

in
d

ic
a
ti

o
n

V
o

te
r

re
c
o

n
fi

g
u

re
s

to
co

m
p

ar
at

o
r

S
w

it
ch

P
a
ri

ty
ch

ec
k

er
an

d
g

e
n

e
ra

to
r

S p
c

CEC
E

rr
o

r
c
o

n
tr

o
l

lo
g

ic

PL
eg

en
d

v M
2

E
i

M
l

L
o

ca
l

m
em

or
y

IP
C

B
i

it
h

in
te

rp
ro

c
e
s8

o
r

co
m

m
u

n
ic

at
io

n
s

b
u

s

El

M
il

....
....

...
E S

Ez

E7

M
-I!

EJ

v

E
4

E
i
'
S
~

~

E
""

--
-.

~
~

F
a
c
to

r
C

o
n

fi
g

u
ra

ti
o

n
I

C
o

n
fi

g
u

ra
ti

o
n

2

IP
C

B
in

te
rf

a
c
e
s

3
3

N
o

.
o

f
p

i
S

3
3

N
o

.
o

f
M

's
3

2
+

e
rr

o
r

d
e
t

S
iz

e
o

f
V

3
2

b
it

s
w

id
e

6
4

b
it

s
w

id
e

I w lJ
1

S
iz

e
o

f
S

3
2

b
it

s
w

id
e

6
4

b
it

s
w

id
e

I-
' I

EC
c
o

m
p

le
x

it
y

a
l
i
t
t
l
e

le
s
s

a
l
i
t
t
l
e

m
o

re

F
ig

u
re

4
.4

-2
:

C
o

n
fi

g
u

ra
ti

o
n

1
a
n

d
2

C
o

m
p

a
ri

so
n

Finally, estimates indicate that a 96 word 64 bit
wide Ml is sufficient to support the instruction set
proposed in section 2. Present day technology can
easily produce 256 bits of Ml on one integrated cir
cuit. Next year's technology will expand this to 1024
bits of Ml on one integrated circuit. The extra Ml
module in configuration 1 consists of 6144
additional bits. Clearly the size and cost of the extra
Ml module is small.

Let us look at configuration 3 for a moment. If the
C elements indicate a P failure, then it is not possible
to determine which P is at fault. It is presumed that
information in the Ml modules is valid. In order for Ml
information to be valid an error indication during an
Ml write operation must terminate the write before execu
tion. The only restart policy in this situation is to
read all the Ml information, place it in another pro
cessing unit (2P-3Ml complex), and re-execute the instruc
tion which was terminated by the error detection. This
is exactly the SIR philosophy. The next section will
show that the SIR philosophy can be implemented without
voters, and with 2P's and 2Ml's with internal error de
tection.

This discussion should demonstrate that configurations
2 and 3 only offer theoretical interest. If voting ele
ments are to be utilized then configuration 1 consisting
of three P-Ml units is the candidate.

4.4.1.2 Proposed Configuration for the Processing Unit. On the
basis of the presentations made in section 4.4.1.1, certain con
figuration possibilities can be eliminated. Fresh Start and
Checkpoint Restart are eliminated on the basis of real time re
quirements.

If software restart were to be implemented one would still
have to provide hardware error detection and the generation of a
processing unit fault interrupt. Figure 4.• 4-3 indicates the pro
cessing unit configuration required for hardware error detection
and software restart.

If software restart were practical, in light of all the
problem areas discussed, then it is assumed that enough informa
tion exists in M2 to restart the process on another processing
unit. A need would still exist for some error control (EC) hard
ware to collect the error signals and communicate to the execu
tive the failed state of the processing unit. This can be accom
plished by initiating special M2 write sequences and/or communi
cating over the IPCB's.

-352-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I w 11
1

W I

IP
C

B
l

IP
C

B
2

.Ii
M

2

E
i'

s

~
M

l
-

,,-
E

1
PC

P
T

.-
~

C
E

S

E
3

C

E
4

E
-

l
C

6

1
M

l

(
P

C
)

E
2

~
r-

-
P

E
i'

s

~
~

F
ig

u
re

4
.4

-3
:

C
o

n
fi

g
u

ra
ti

o
n

fo
r

S
o

ft
w

a
re

R
e
s
ta

rt

For a little additional hardware many of the problems
associated with software restart can be eliminated. Figure 4.4-4
presents the proposed configuration which employs SIR.

The cost of implementing any fault tolerant configura
tion requires an analysis of both the hardware and software as
pects. It should be clear that software restart involves
quite a complex set of software in order to automatically gener
ate restart points. This cost could be quite comparable to the
applications software itself. The hardware cost is not signifi
cantly less than the proposed technique employing SIR. See fig
ure 4.4-5.

On the other hand, the additional software required by
the SIR technique is not a substantial increment over the TMR
approach whereas TMR hardware costs significantly more.

The proposed configuration employing SIR is the proper
compromise between software restart with its very complex struc
ture, and TMR with its complex hardware structure.

The proposed configuration shown in Figure 4.4-4 relies
upon the following recovery philosophy.

a) Error detection is accomplished completely by hardware

b) After every instruction the complete state of the proces
sing unit is contained within MI. This means that MI
contains an image of the program counter, as well as all
the P element status which is used to communicate infor
mation across the instruction boundaries. The status
information includes, among other things, overflow, infor
mation, execution phase information, interrupt enable in
formation and the contents of any processor flipflop which
is not in the reset state after the completion of an in
struction. All the information necessary to restart is
contained in MI.

c) The comparators and error detection logic is located and
sequenced in such a manner that an. error is detected
before incorrect information is written into MI and M2.
Any failure occuring within MI which results in bad in
formation is detected during a subsequent MI read opera
tion.

d) All the error signals from both threads of the processing
unit are sent to both EC's, which in turn, generate an in
terrupt over the dual IPCB's. The EC logic also causes
the processors to stop execution of instructions.

-354-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

IP
C

B
l

E
7

IP
C

B
2

E
i'

s

M
l
~
E

5

M
2

E
3

I L
v

U
1

U
1 I

E
8

E
g

E
4

E
i'

s
i
M
l
'
~
6

E
2

F
ig

u
re

4
.4

-4
:

P
ro

p
o

se
d

C
o

n
fi

g
u

ra
ti

o
n

V
o

ti
n

g
S

IR
S

o
ft

w
a
re

(P
ro

p
o

se
d

R
e
s
ta

rt
C

o
n

fi
g

u
ra

ti
o

n
)

a)
H

ar
d

w
ar

e
A

sp
e
c
ts

N
o

.
o

f
p

iS
3

2
2

N
o

.
o

f
M

I'
s

3
2

2
N

o
.

o
f

S
iS

3
-3

2
in

p
u

t+
in

t.
2

-3
2

in
p

u
t

2
-3

2
in

p
u

t
N

o
.

o
f

C
iS

--
-

2
-
3
2
i
n
p
u
t
+
E
C
+
i
n
~
.

2
-3

2
in

p
u

t+
in

t.
N

o
.

o
f

V
's

2
-3

2
in

p
u

t+
in

t.
--

-
E"

C
C

o
m

p
le

x
it

y
6

e
rr

o
r

s
ig

n
a
ls

9
e
rr

o
r

s
ig

n
a
ls

6
e
rr

o
r

s
ig

n
a
ls

I
n

t.
In

te
rf

a
c
e

C
o

m
p

le
x

it
y

2
V

's
-3

S
's

2
C

's
2

C
's

b
)

S
o

ft
w

a
re

A
sp

e
c
ts

I W U
1

0
\ I

R
e
s
ta

rt
P

o
in

t
G

e
n

e
ra

ti
o

n
S

o
ft

w
a
re

E
x

e
c
u

ti
o

n
C

o
n

tr
o

l
to

g
u

a
ra

n
te

e
re

c
o

v
e
ry

T
ra

n
s
ie

n
t

D
e
te

rm
in

a
ti

o
n

D
e
g

ra
d

e
d

M
od

e
D

e
te

rm
in

a
ti

o
n

R
e
s
ta

rt
P

ro
c
e
d

u
re

F
a
il

u
re

R
e
p

o
rt

in
g

D
if

fi
c
u

lt
y

in
a
c
h

ie
v

in
g

in
d

e
p

e
n

d
e
n

c
e

fr
o

m
a
p

p
li

c
a
ti

o
n

s
p

ro
g

ra
m

m
e
r

h
a
rd

w
a
re

s
o

ft
w

a
re

s
o

ft
w

a
re

e
a
sy

h
a
rd

w
a
re

m
ic

ro
J?

ro
g

ra
m

s
o

ft
w

a
re

s
o

ft
w

a
re

so
ft

w
a
re

s
o

ft
w

a
re

e
a
sy

h
a
rd

w
a
re

c
o

m
p

le
x

so
ft

w
a
:e

s
o

ft
w

a
re

s
o

ft
w

a
re

so
ft

w
a
re

so
ft

w
a
re

v
e
ry

d
if

f
ic

u
lt

F
ig

u
re

4
.4

-5
:

R
e
la

ti
v

e
C

o
st

T
ra

d
e
-o

ff

e) Any other processor can respond to the interrupt. The
E5 and E6 signals (see figure 4.4-4) are sufficient to in
dlcate wnether MI or MI' contains valid information.
The interrupted processor issues a command to dump the
contents of the good MI into a fixed area of M2. During
the dumping process the comparators used for P error
detection are inhibited. In a sense, this dump is like
taking a checkpoint upon the processing unit's state.
The big difference compared with normal checkpointing is
that, due to the redundant MI and EC logic, the check
point can be taken after an error indication. Therefore,
the overhead of continuous checkpointing is avoided.

f) A determination must next be made as to whether the error
indication was caused by a transient or a permanent fail
ure. After the MI dump a command is issued to reload
both MI's from the M2 dump area. Details of how this
function is performed were given in the discussion of
system recovery following a fault indication in section
3.7.

The hardware configuration shown in Figure 4.4-4 possesses
the following properties.

a) All the elements run in a synchronized manner

b) Error indicators EI and E2 indicate errors caused by trans
mission of information from P to M2.

c) Error indicators E3 and E4 indicate errors caused by
faulty P element which manifest themselves as inconsis
tent address or data information being transmitted to
MI or M2.

d) Failures caused within MI are detected internal to MI
and are indicated by E5 and E6. E5 and E6 also are used
to provide fault isolation and indicate which MI contains
valid information.

e) The EC logic receives all the error indications, controls
the MI dump and signals the fault interrupt

f) Comparators across the IPCB's are used to indicate incon
sistent interprocessor communication

g) Finally signal E9 compares the action of the EC. It is
possible for an EC to fail in such a mode so as not to
perform the MI dump function as required. When this
occurs the system functions properly. Only when a P or
MI fails is the EC required to execute properly. In this

-357-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

case E9 indicates inconsistent EC action. This is a case
of a double failure. Recovery is not required in this
low probability situation. E9 is just used to generate
a fault interrupt. If P or Ml fails, EC fails and E9
fails to function properly, a triple failure exists and
no guarantee is made as to system performance.

h) A failure in an S element will ultimately result in an
E3 or E4 error indication.

4.4.1.3 Technical Aspects of the Proposed Configuration. The fol
lowing discussion attempts to provide solutions to various tech
nical questions which might arise in implementing the proposed
recovery scheme.

4.4.1.3.1 What is a restartable instruction? In order to design
a processing unit so that SIR can be employed a number of
groundrules must be applied during the design implementa
tion of each instruction.

Each instruction must be partitioned into two phases.
During phase 1 the instruction is fetched, data is read,
computations are made, and results are stored in a tem
porary buffer area. In the proposed design this buffer
area is contained within MI. The buffer area contains in
formation to be written into both Ml and M2.

During phase 2 the buffered information is copied into
its final destination in Ml and M2. The contents of the
buffer area are not destroyed until all the copy cycles
are completed and verified. Each phase is designed to
be separately restartable. Figure 4.4-6 schematically
represents the execution of a generic restartable in
struction.

If a failure indicatiJn occurs during phase 1 then
the old copy of the program counter indicates which in
struction was being executed. None of the information
needed to execute the instruction has changed, so phase
1 can be re-initiated. If a failure occurs in the middle
of phase 2, then, even though some information might
have been copied, the information temporarily buffered
in Ml is still valid, and a complete re-initialization of
phase 2 will be indicated.

Interrupt testing can either occur at the end of phase
2 or at the beginning of phase 1. It is assumed that all

-358-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

P
h

a
se

1
.
i
~

P
h

a
se

2
1

S
e
t

P
h

a
se

1
In

d
ic

a
ti

o
n

R
ea

d
C

a
lc

u
la

te
S

to
re

in
T

em
p

.
B

u
ff

e
r

a
re

a

S
e
t

P
h

a
se

2
In

d
ic

a
ti

o
n

C
o

p
y

M
l

-+
M

l
M

l
-+

M
2

In
te

rr
u

p
t

o
r

g
o

to
n

ew
in

s
tr

u
c
ti

o
n

fe
tc

h

I W U
1

\0 I

fo
r

a
fa

il
u

re
r
e
s
ta

r
t

a
t

b
e
g

in
n

in
g

o
f

p
h

a
se

1
fo

r
a

fa
il

u
re

r
e
s
ta

r
t

a
t

b
e
g

in
n

in
g

o
f

p
h

a
se

2

/
-

F
ig

u
re

4
.4

-6
:

A
G

e
n

e
ri

c
R

e
s
ta

rt
a
b

le
In

s
tr

u
c
ti

o
n

interrupt conditions are caught in latches, so that the
interrupt test is just a matter of reading these latches,
and determining whether to fetch the next instruction
in the instruction stream or to enter the interrupt control
microroutine.The interrupt control microroutine is
designed to be restartable and incorporates the concepts of
a double phase operation with a buffer area. That is, the
interrupt control microroutine can be considered to be a
restartable instruction ..

4.4.1.3.2 Locking: How does the proposed scheme resolve the pro
blem of locking of shared data and the possibility of
either self or external deadlock? These problems were
described in section 4.4.1.1.3.

Two options for implementing a restartable-non
deadlocking-lock instruction are given below.

a) Option 1 -- Let M2 Execute It

This technique allows the addressed M2 module
to do the physical execution of the lock instruction,
upon receipt of a command. Basically the M2 module
would be executing a read-modify-write instruction.
The execution sequence proceeds as follows:

p

1) Instruction Fetch

2) Generate M2 address,
command, value, and
send to M2

3) Wait for M2 response

7) Input value from M2 and
put on top of stack
for testing

8) Copy cyc le

-360-

M2

4) Read M2 location, put
old value in M2 buffer.
write new value into M2.

5) Send value extracted
from M2 back to the P
unit

6) The P unit which is wait
ing will respond

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

This instruction implemented with M2 proces
sing presents a problem in restartability.

If the processor fails during step 7 restart
can not begin at step 1 since M2 information has
already been changed. One would have to implement
a double buffer technique with a copy cycle within
M2 itself. However, if this is resolved then the
instruction must be designed with three separate
restartable sections. Phase 1 would consist of
steps 1 and 2. Phase 2 would consist of step 3
(M2 step 4,5,6, with an M2 copy cycle) and step 7.
Finally, phase 3 would be step 8.

Recall that we are not considering M2 failures
in our discussion. However, in the final configu
ration, areas of M2 which can be modified will be
dual redundant and hardware error detection will
exist. If an M2 module fails during its phase
of execution then the redundant module is assumed
to be reliable.

During the M2 execution phase no other proces
sing unit can access the memory module. The addres
sed module will be in a "busy" state.

If a failure occurs during execution of this
lock instruction then quite possibly the lock will
remain on the data (and module) until after the re
covery process. It is anticipated that this wait
will not exceed 10 - 100 milliseconds~

b) Option 2 -- Let the processing unit do it

This implementation does not employ a read-modify
write option for M2. It does however introduce
four M2 primitive commands. The commands are

1) Read M2 -- This is a normal read

2) Write M2 -- This is a normal write

3) Read M2 and lock This command performs a
normal read and locks the selected module so
as to prevent access by all processors ex
cept the one that locked it.

4) Write and Unlock -- This command performs a
normal write and releases any module lock.

-361-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

The lock created by command 3 is very temporary
in nature. It will be released after execution of
the instruction. It is required to prevent another
process from accessing the module.

The sequence for the execution is as follows:

P

1) Instruction Fetch

2) Generate M2 address,
read and lock command,
and send to M2

3) Wait for M2 response

7) Processor reads in word,
modifi.es it, puts it on
top of stack and generates
a wri te command with the
modified word

8) Copy cycle for Ml and M2
writes

9) Issue unlock command
during last write
operation

M2

4) M2 performs a read

5) Sends word to P

6) After P accepts word
it locks module

When a failure occurs during phase 1 (steps 1-7)
the EC must perform a special function. It must
signal the M2 module to release the lock which was
set in step 6. This allows the instruction to be
restarted at step 1 and eliminates the possibility
of a self-deadlock.

Unlike option 1 a failure releases the lock and
temporary external deadlock, possible during the
recovery time, is impossible.

It is felt that option 2 is the superior imple
mentation for a lock instruction, since the SIR im
plementation is more consistent.

-362-

INTERMETRICS !NCORPORATED • 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

4.4.1.3.3 Real Time: It should be possible after a detailed
design to generate a worst case estimate of the maximum
recovery time for the highest priority process. At
present Ml is, at most, 96 words of 64 bits each. If
M2 can accept 32 bits per microsecond then the dumping
of Ml into M2 would require 192 microseconds. The re
storation of the dumped data into another Ml would also
require 192 microseconds. The software required to
determine when to restart should not exceed five milli
seconds. Therefore, a high priority process should be
able to recover in less than 10 milliseconds.

4.4.1.3.4 Initiating a Restart: Since the initiation of a
restart, from a permanent failure, has been forced to
be the same as a return from an interrupt, the steps
to be followed include:

a} Restoration of Ml and Ml~

b) Take status from Ml and place in SRI and SR2

c) Reconstitute the base registers, program counter,
and stack control words.

d) Clear the contents of the CAM by making all the
locations vacant. (The contents of the CAM are built
up dynamically during execution. They are not
needed for restart.)

e) Execute the next instruction fetch and continue
processing.

4.4.2 Recovery from M2 Failures

This section addresses the problem of recovery from an
M2 failure. The mechanisms to be employed in detecting M2 errors
were presented in section 4.3.2. After error detection by M2
and the S interfaces of the processing units certain actions
must take place in order to provide a satisfactory recovery sit
uation. The following discussion is divided into three parts.
The first deals with the action required for the various failure
modes. The second presents various alternative configurations
which could be employed to achieve recovery from an M2 failure.
The third part presents a more detailed investigation of the
proposed recovery technique.

-363-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

4.4.2.1 Modes of M2 Failures. The various failure mechanisms
presented in section 4.3.2 create errors which can be segre
gated according to the action which must occur in order to re
cover from the failure.

Type 1. The type 1 error is the result of a transient
during a memory operation which does not create incorrect memory
state information. After the transient has subsided a re-execu
tion of the particular memory command will produce satisfactory
results. No damage to the hardware has occurred, and the contents
of all the memory cells (the state of the memory) is valid. An
example of a type 1 error is electromagnetic noise coupling into
a memory sense amplifier or even into a write drive line. A re
read or re-write will correct the error.

Type 2. The type 2 error results from a failure which
causes incorrect memory state information. The hardware still
performs satisfactorily but the memory state is altered. Ex-
act information concerning the cause of the error is either un
available or has been destroyed. An example of such an error
is an electrical transient in the addressing structure during a
write command. Information is written into an incorrect loca
tion. However, after the transient it is impossible to determine
which location has been destroyed except by doing a complete
memory search, and even that may not be entirely successful.

Recovery from type 2 transients requires back up infor
mation stored in a physically different device. The state of
the memory module which suffered the error could be restored,
or the back up information could be used directly.

Type 3. The type 3 error results from a permanent hard
ware failure. The contents of memory cannot be accessed suc
cessfully. Backup information must be used and the bad memory
module configured off line and repaired. The system must then
enter a degrade~ mode of operation.

4.4.2.2 Alternative M2 Recovery Configurations. This section
will describe briefly a number of different configurations,
which provide failure recovery within M2. As a general principle
recovery from a memory failure requires the redundant storage
of information, which may either be contained in M2 or M3. The
different configurations to be discussed differ basically in the
back up media, and the complexity and overhead involved in anti
cipation of recovery from an M2 failure.

1) Configuration 1 -- Completely Dual M2 Complexes

This configuration assumes that the entire grouping
of M2 modules possess a redundant image, denoted by M2~

-364-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

See Figure 4.4-7a. As discussed previously, each pro
cessing unit consists of dual pIS with a redundant in
ternal bus interface. Configuration 1 allows. each half
of the dual P to communicate simultaneously with inde
pendent redundant M2 modules. Recovery is accomplished
by just using the correct M2 module after the faulty
module is isolated. Recovery is very quick, almost in
stantaneous. The main drawback to this configuration
is that twice as much M2 is required.

None of the existing mechanisms of the virtual
memory system are exploited. All programs and data
possess redundant copies in M2. In addition, the virtual
memory system possesses copies in M3. The initial impre
ssion of this configuration is that of hardware overkill.
Namely, it is possible to achieve the same goal with a
less expensive system.

2) Configuration 2 -- M3 Backup

This configuration utilizes M3 as the location of
all backup information. Periodically, the system is
stopped and M2 is dumped. After the dump, all modifica
tions to M2, (write operations) are entered into a
synchronizing buffer and finally stored in M3 (See fig
ure 4.4-7b.

Recovery is a matter of reloading the M2 dump from
M3 and re-executing all the recorded write operations.

Although the hardware is less costly there is over
head in terms of M2 dumping and storing of all write
operations into M3. Dumping of M2 could require 100 ms.
The restoration of M2 after a failure would require the
spare M2 module to be switched in and the failed module
to be switched out. The reload would require 100 ms
plus the execution of all the write commands since the
time of the snap shot.

3) Configuration 3 -- Duplex Addressing

This scheme allows both M2 and M3 to be used as
backup media. M3 is used to backup most program seg
ments. M2 is used as the backup for data and possibly
certain critical program segments. Program and Data
Segments can be stored anywhere in M2. When space is
assigned to a data segment two "holes" must be found in

-365-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Figure 4.4-7: M2 Recovery Configuration

a) Configuration 1 -- Completely Redundant M2 Module
M2 M2 ' M.2 M2 ' M2 M2 '

p

p

p

p

p

p

b) Configuration 2 -- M3 Backup

2M2 M2 ... M M2
P

P

P

P

P

P

M3 write
buffer

M3 backup

-366-

Fiqure 4.4-7 (conrinued)

c) Configuration 3 -- Duplexed Addressing
M2 Module M2 Module M2 Module

0
p 10

I \
P I \
P

I \
P

... I
P

I \P
I \

P

IM3 backed up prog. .
M2 backed up \

seg. descriptor data descriptor

pOlnter 1 pOlnter 1 pOlnter 2

M2 Module type b
Redundant Pair
~~Type a

2 Modules ·0 0
Program segment-~

P

P

P

P

P

P

d) Configurat,ion 4-
Redundant & Simplexed
M

Redundant data
segments

-367-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

F
ig

u
re

4
.4

-7
(c

o
n

ti
n

u
e
d

)
e)

C
o

n
fi

g
u

ra
ti

o
n

5
--

In
te

rl
e
a
v

e
d

M
em

or
y

U
n

it
s

M
2

M
od

ul
e

M
2

M
od

ul
e

I W 0'
1

0
0 I

..

0
D

D
D

•
•

•
D

D
D

D
IP

~:
t
I

I
I,

I
I

I
I

r-
:-

-

P P
'
-
-
-
~

P P

- - P P -
4-

W
ay

In
te

rl
e
a
v

e
d

M
2

M
od

ul
e

f.1
2-

U
ni

t
1

M
2

-
U

n
it

2
M

2
-

U
n

it
3

N
2

-
U

n
it

4
A

d
d

re
ss

1
A

d
d

re
ss

'.
2

A
d

d
re

ss
3

A
d

d
re

ss
4

5
6

7
8

9
•

1
0

1
1

12

e
tc

.
e
tc

.
e
tc

.
e
tc

.

1
I

1
I

1
J

I
I

1
1

T

M
2

P
o

rt
1

M
2

P
o

rt
2

I
I

M2. These holes can be anywhere in different modules.
The data segment descriptor will then contain two
pointers. One to the data storage location and one
to the redundant copy. Programs redundantly stored
would also contain two pointers. The majority of pro
gram segments, however, will be backed up on M3 and
would only require a single pointer (see figure 4.4-7c).

All the addressing modes of the system would, in
general, require two addresses. These include descrip
tor addressing, indirect addressing, stack addressing
through base registers, as well as the various stack
control address mechanisms.

Redundant writes into independent modules of M2
back up segments is accomplished automatically via the
dual redundant processing unit bus links. Recovery of
M3 backed up information requires making the segment
not present. The memory management routine which handles
segment faults will automatically reload the M3 segments
when required on demand.

The above description is clearly, very cursory. How
ever, it serves to show that allowing the redundant M2
copy to be located arbitrarily in M2 does entail over
head in dual address generation. Memory management is
also made more complex.

4) Configuration 4 -- Redundant M2 Data Modules -- Simplex
M2 Program Modules

This scheme is a more constrained version of Confi
guration 3. The M2 modules will be separated into two
operational types. Module type (a) will contain non
critical simplex program segments which are backed up
in M3 only. The nature of the segment can be specified
in the segment descriptor.

Module type (b) will contain the more critical data
segments and some critical program. segments (e.g., the absent
segment fault handler) which require redundant storage in
M2. The back up will occur in an adjacent M2 module.
Only M2 backed-up segments can be placed in a type (b)
module. (See figure 4.4-7d.) The address of the redun-
dant copy is implicit because it is fixed relative to
the prime copy's address. The role of M2 modules can
be changed by special privileged instructions. However,
this can only occur during system initialization time.
Statistics can be kept as to the number of type (a)
module segment faults, and the number of type (b) module
segment faults.

-369-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Recovery is very similar to Configuration 3. How
ever, memory management is not made more complex and
the redundant M2 addressing is handled automatically
by the hardware. The major penalty of this approach
over Configuration 3 is the pre-assignment of memory
module types at initialization time, with the possi
bility of some wasted M2 space.

5) Configuration 5 -- Interleaved M2 Memory Modules

This configuration defines an M2 module as four M2
units which are interleaved on the low order address
bits. (See figure 4.4-7e.)

Information segments may either be stored in a
simplex a duplex mode. The mode is specified within
the descriptor. Most program code would be stored
simplexed and interleaved across the four memory units.
Most data segments would be stored duplexed. In the
duplexed storage mode address i and address i + 1 con
tain identical information. That is, two adjacent
memory units contain identical copies of the redundant
words.

The two memory ports connect to the redundant P
interfaces. Communication with any M2 unit occurs
through either port. This is under control of the
command issued from the processing units.

Recovery is similar to configurations 3 and 4.
The advantage of this scheme over configuration 4 is
that the physical memory modules need not be assigned
to either simplex or redundant storage a priori. This
is done dynamically, without incurring any overhead.
More efficient use is made of the available memory
space. Low criticality data need not be stored redun
dantly. It is merely reconstituted by recomputation or
by re-reading from M3 or tape. In case of a failure
the data would be made not present. and fetched again
from M3.

4.4.2.3 Proposed Configuration. The previous section presented
five possible approaches to M2 recovery. Figure 4.4-8 presents
a summary of various trade-off factors which resulted in the
further investigation of Configuration 5 and its final choice.
Configuration 5 is actually a compromise between hardware and
software complexity, overhead, recovery time, flexibility, and
reliability. The following discussion will present various
aspects of the chosen design.

-370-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

C
o

n
fi

g
u

ra
ti

o
n

1
-

C
o

m
p

le
te

M
2

re
d

u
n

d
a
n

c
y

C
o

n
fi

g
u

ra
ti

o
n

2
-

M
3

b
a
c
k

u
p

C
o

n
fi

g
u

ra
ti

o
n

3
-

D
u

p
le

x
e
d

A
d

d
re

ss
in

g
C

o
n

fi
g

u
ra

ti
o

n
4

-
R

e
d

u
n

d
a
n

t
a
n

d
S

im
p

le
x

e
d

M
2

M
o

d
u

le
s

C
o

n
fi

g
u

ra
ti

o
n

5
-

In
te

rl
e
a
v

e
d

M
em

or
y

U
n

it
s

(c
h

o
se

n
c
o

n
fi

g
u

ra
ti

o
n

)

C
o

n
fi

g
u

ra
ti

o
n

N
u

m
b

er
1

2
3

4
5

H
a
rd

w
a
re

c
o

m
p

le
x

it
y

4
1

2
2

2

S
o

ft
w

a
re

c
o

m
p

le
x

it
y

1
3

4
2

2

I W
O

v
e
rh

e
a
d

1
4

4
2

2
-..

.J
I-

' I

G
e
n

e
ra

li
ty

/F
le

x
ib

il
it

y
B

a
la

n
c
e

M
2/

M
3

b
a
c
k

u
p

4
4

1
]

1

R
e
li

a
b

il
it

y
4

1
2

3
2

R
a
ti

n
g

1
b

e
s
t

2
g

o
o

d
3

f
a
ir

4
w

o
rs

t

F
ig

u
re

4
.4

-8
:

M
2

C
o

n
fi

g
u

ra
ti

o
n

T
ra

d
e
-O

ff

4.4.2.3.1 Philosophy Behind the Configuration Choice: The
following factors affect the choice of the M2 recovery
philosophy.

1) The difference between read only information (pro
gram segments) and read-write information (data
segments) is exploited. Read-write information
requires a constant update of a redundant copy.
Read-only information does not, and therefore can
reside on the slower, more economical M3. Read
write information requires a redundant copy in M2
to minimize the overhead involved in updating.

2) If an M2 module which contained program segments
failed, it is desirable to exploit the virtual
memory mechanism already implemented within the sys
tem to aid in the recovery process. All program
segments can be considered to reside in M3. They
are brought into M2, on demand, for execution. If
the program segments contained within the failed
module were, as the result of the failure, made
"not present", then the M3 to M2 transfer mechanisms
will allocate space and transfer the required seg
ments automatically. The "not present" segment in
dication is contained within the program segment
descriptor. Descriptors are considered to be data
and are in turn stored redundantly.

3) It is desirable to allow the system to degrade after
an M2 failure. Although thrashing may become more
probable, this is considered acceptable.

4) The hardware error detection mechanisms are suffi
cient for isolation, and to indicate the action to
be initiated by the software.

5) Consistent with the processing unit failure recovery
philosophy, the application programmer is not invol
ved with M2 recovery. Hardware and the operating
system control the entire process.

6) Recovery time is in the 10-100 millisecond range,
for the high priority real time tasks.

4.4.2.3.2 Features of the Proposed Configuration: The pro
posed configuration possesses the following properties:

1) There are four interleaved memory modules. Each
memory module consists of four 8K by 34 bit memory

-372-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

units. The four units are interleaved on the lower
order address bits. The 34 bits per word include
32 information bits, one word parity bit, and one
address parity bit.

2) Each M2 module possess a unique identification. The
ID will be fixed and unique for each M2 module.
Access to the ID (and module selection via the ID)
will be limited to special operating system proce
dures.

3) Each M2 module reponds when it is addressed by a
specific module address. This module address is
changeable, since the ID and module address are not
the same: The ID is fixed and the module address is
variable. The selectability of the M2 module address
eliminates the possibility of voids in the address
space.

4) There are 2 bus links from each processing unit.
Each link interfaces with one of the two M2 module
ports. Part of each command issued to M2 from P
will be an indication of which port to use for trans
mitting the accessed data.

4.4.2.3.3 M2 Access Primitives: In order to support M2 fault
tolerance a number of basic M2 primitive commands are
required.

a) Read Single Simplexed -- This command, or sequence
of operations, is used to read information from one
M2 unit. In this situation the M2 unit will place
one word of information on both bus links of the
requesting processing unit. The S unit (see figure
4.4-9a) will check data and address_parity, provide
a time out indication, and receive the various error
indications from the M2 module.

b) Read Single Redundant -- This command is used to
read M2 information (program or data) stored redun
dantly in two adjacent M2 units. Both M2 ports
operate independently; they accept commands and
generate responses on different bus links. The
bus link (see figure 4.4-9a) is specified within
the command field issued by P.

c) Write Redundant and Verify -- When updating infor
mation in M2 a simultaneous redundant write operation

-373-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

F
ig

u
re

4
.4

-9
:

M
2

P
ri

m
it

iv
e

O
p

e
ra

ti
o

n
s

I w -..
J
~ I

a
)

R
ea

d
an

d
W

ri
te

S
in

g
le

S
im

p
le

x
e
d

M
2

M
o

d
u

le

M
2

p
o

rt
p p

o

c)
R

ea
d

an
d

W
ri

te
D

o
u

b
le

S
im

p
le

x
e
d

CJ
-:_

.
M

2
M

o
d

u
le

M
2

u
."

li
t

b
)

R
ea

d
an

d
w

ri
te

S
in

g
le

R
ed

u
n

d
an

t

M
2

M
o

d
u

le

M
2

U
n

it

d
)

R
ea

d
an

d
W

ri
te

D
o

u
b

le
R

ed
u

n
d

an
t

M
2

M
o

d
u

le

M
2

u
n

it

p p

p p

is used (see figure 4.4-9b). Part of a normal write
operation is to echo-check the information back to
the S unit for comparison. This is performed in
dependently through the dual M2 ports and dual S
interfaces.

The write and verify operation requires two M2
cycles for each word written. However, the system
performance degradation is much less than a factor
of two since most of the M2 to processor operations
are expected to be Read and not Write operations. In
a more conventional architecture, such as the IBM
360, if every instruction were a store instruction,
only half of the M2 operations would be write, since
one needs the instruction read cycle before the
memory write cycle. If every instruction pair were
Load and Store, then only 25% of the M2 operations
would be writes. If one considers the stack-oriented
instruction set proposed for the multiprocessor, one
concludes that a 10% estimate for the number of write
operations would be a realistic worst case. That
is 10% of the M2 operations require two cycles,
while 90% only require one cycle.

d) write Single Simplexed and Verify -- In those situa
tions for which recovery is not mandatory, variable
information may be written in a simplex mode. The
command is issued over both bus links but only one
M2 unit is modified (see figure 4.l4a). Error de
tection still requires a verification cycle similar
to command c. \

e) Read Double Simplexed -- This command allows two
32 bit words to be accessed from the interleaved M2
units as part of the same command. The information
is transmitted over the bus links 32 bits at a time.
This command is very useful when a double precision
number (64 bits) is required from M2.The 64 bit
access would only require 100 ps more time than a
32 bit access due to the interleaving of the M2 units
(see figure 4.4-9c).

f) Write Double Simplexed and Verify -- This command is
the same as command d except that two different words
are stored in adjacent M2 units.

g) Read Double Redundant -- This command allows a two
word access from redundant storage (see figure 4.4-9d).

-375-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Each M2 port accesses its own data from the redundant
copies stored in consecutive M2 addresses.

h) write Double Redundant and Verify -- This command
allows the redundant storage and verification,
through echo~heck, of a 64 bit double word. This
command is used when the M2 part of the stack over
flows and 64 bits must be pushed into M2.

4.4.3 Recovery from an I/O Unit Failure

Major emphasis of this multiprocessor contract has been
placed upon the processing unit and the operational memory, M2.
This is due, in part, to the lack of definition of I/O require
ments in the contract. The I/O interfaces assumed for the purpose
of operating system design were detailed in section 3.5, and the
operating system recovery philosophy for I/O was briefly outlined
in section 3.7.

4.4.3.1 I/O Recovery Problem Areas. The interaction between soft
ware and the 170 system presents problems which are similar to
those of communicating internal processes. A number of these are
delineated below:

a) I/O Locks

When a software process requires access to an I/O device,
the device may require to be locked to the process. That
is, no other process can access the selected device until
the I/O request is finished. Problems of deadlock exist
when the initiating process fails. These are no different
from those encountered in the use of "critical sections"
of code~

b) Interaction between the Process and I/O

A situation analogous to spawning_a parallel process
exists when a process initiates an I/O command-requiring
an "I/O complete" interrupt. A restart could cause a
repetition of the I/O request, with a subsequent double
access and double interrupt response. The I/O design
must anticipate this situation or circumvent it.

c) I/O is like a Write Command

In a sense an I/O operation is like a write command. That
is, it changes the state of the system. In case of a

-376-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

failure during the I/O command all the information re
quired to restart the I/O command must be retained.
That is, the I/O command as well as the I/O data must
be completely double buffered, so that a restart can
be initiated.

d) Cancelling I/O

There is, however, one major aspect of I/O which is dif
ferent from a normal memory write command. While a
Memory Segment is being updated it is locked out from
other users. A failure during this update may leave the
segment in question in an indeterminate state.

The entire segment must be rewritten. The updating
information was destroyed. In the case of I/O the re
issuing of an I/O command may not be satisfactory. For
example, if a process had issued a command to a tape
unit to "Skip to next file mark" just before a failure
occurred, the restart procedure would cause the "skip
to next file mark" command to be issued again. This
situation is similar to the N = N + I problem discussed
earlier. In certain cases it is desirable to abort an
I/O command in the event of a failure. The I/O control
ler must be capable of being reset to its previous
state. This is, in general, not a trivial task.

4.4.3.2 I/O Configuration organized for Recovery. Two options
will be considered to provide a recoverable configuration.

a) Dual I/O Units

If two or more I/O units are required for system opera
tion then the recovery aspects of the I/O can be made
very similar to those of a processing unit. Each of
the I/O units would be configured like a processing
unit with an M2 interface, a special interface to the
Processors via dual redundant IPCB's, an M3 interface
and a multiplexer interface (probably a data bus) to
the outside world. SIR would be employed.

b) Triple Modular Redundancy (TMR)

Since only a single I/O unit is proposed to meet the
performance requirements, a triple redundant I/O unit
with voting logic is a candidate. Transients are com
pletely masked in this configuration. If a permanent
failure occurs then the voting elements can be recon
figured to comparators and the bad I/O unit taken off
line for repair. Two options are available as far as
recovery from a failure in the I/O unit.

-377-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • ,(617) 661-1840

The details of the specific I/O configuration depends
upon the nature of the I/O devices and the communication and
synchronization between the devices and the I/O controller.

Figure 4.4-10 shows the proposed redundant I/O configura
tion. The basic structure incorporates a TMR central I/O con
trol, and a level of peripheral interface redundancy consistent
with the device redundancy. The characteristics of the configura
tion are presented below.

a) The triple redundant I/O hard core contains
control, timers and the interrupt control.
in this critical area will allow the system
ning without propagating the error.

the central
A failure
to keep run-

b) In order to interface the TMR section with other dual
redundant interfaces voters and switches are provided.
The S elements, which are controlled by their associated
I/O elements, are used to select which of the dual re
dundant interfaces to receive. The V elements vote upon
the triple redundant I/O outputs and produce dual redun
dant outputs. The voters will automatically reconfigure
to comparators and switch out a faulty I/O where required.

c) The IPCB, M2, M3, and data bus are all postulated to be
dual redundant. For this reason their interfaces are
shown to be dual and they interface to the I/O via the
SIS and V's. The multiplexer channel which contains
peripherals necessary to operate the lab model is only
shown as a simplex subsystem, with a corresponding
single interface.

d) It is assumed that all the peripheral devices attached
to the data buses and the M3 cotnroller possess charac
teristics which will aid in the recovery process. These
characteristics include:

1) hardware to aid in fault isolation between dual re
dundant threads

2) sufficient buffering so that aborted commands can
not hang up a subsystem

3) the ability to be reset and to indicate upon request
the status of the I/O device

e) Certain problems caused by locking of processes to I/O
devices must be resolved by the operating system. This
requires the capability to selectively delete the IOCB
created by a process which is cancelled (either purposely

-378-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

Figure 4.4-10: Redundant I/O Configuration

To Internal B s

r--
I

-- -,
TMR Hard Core

To --1 IPCI]'

IPC~--.l
I IPCI I......~--

I

I

l>--
S-I/O-

.. -
~

~

S-I/O
• -

~I
~ I

S-I/O ~
I

Simplex

Channel 3

~ Channel 1 ~

@11-_C_h_a_n_n_e_1_1_r-L _

Channel 2

•

I
I
I
I

I
____ .J

Channel 2

•

MPX

Dual Redundant Data Bus
LC'('jl'lld:

-379-

H2I
llIlCU
IPCD
IPCI
I/O

v
S

M2 Interface
Data Bus Control Unit
InterProccssor. Communication Rus
IntcrProcessor Conununic"tioll Interface
I/O contains central control, interrupt

control, timers
Voter
Switch

or as the result of a failure) from the appropriate
DEVICEQ, and to relieve the M2 space allocated as the
I/O buffer area (refer to section 3.5.2).

One of the main motivations for a triple redundant
I/O central core is to reduce this problem as far as
I/O failures are concerned. A failure within the
central TMR IOC cannot propagate past the voters.
However, a voter or channel failure can cause a tem
porary suspension of I/O or a re-issuing of an I/O
command and the associated problem of releasing any
I/O locks.

4.4.4 Recovery from an M3 Failure

In a sense the discussion concerning M2 recovery is
applicable to M3 recovery. M3-M4 interaction is analagous to
M2-M3 interaction. A few basic parameters are different, how
ever.

M3 is required to provide in the order of 10 6 words of storage.
This is small enough to be placed upon a single drum like de
vice. M2 consists of many identical modules while M3 consists
of only one.

M3 is probably 100 to 1000 times cheaper per bit than
M2. For this reason a completely dual redundant M3 configura
tion with independent error detection is a very practical method
of providing backup in case of an M3 failure.

4.4.4.1 Average M3 Access Time. If we assume that M3 is a drum
like device, then a question arises as to what is the average
access time when two drums are employed in a completely redun
dant configuration.

All write operations will take place onto both drums in
the identical track and sector. Reads will occur from that drum
which provides the quickest access. If itis assumed that both
drums are not synchronized and that the data transfer time can
be ignored compared to the drum latency time, then a number of
interesting facts can be deduced:

a) The average read access time

TR = P
'3

where P is the period of rotation of the drum.

-380-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

b) The average write access time

TW = 2p
""3

c) On the assumption that there will be at least twice as
many read operations as write operations, the average
access time will be

TA = 2 TR + TW = 4P
3 "9

which is slightly less than the average access time of
a single drum, which is P/2. Therefore no degradation
in performance occurs by using dual redundant drums.

-381-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (6.17) 661"1840

References for Chapter 4

1) Space Division, North American Rockwell, "Modular Space
Station Phase B Extension", Preliminary System Design,
Volume IV Subsystems Analysis, January 1972, NASA
Contract NAS9-9953, MSC 02471, DRL # MSC T575, Line
Item 68.

2) Intermetrics, Inc., Task Report SA-IOl, "Central Proces
sor Operational Analysis", WBS 94010-2, September 1971,
prepared for NAR/SD.

3) Intermetrics, Inc., Task Report SA-I02, "Central Proces
sor Memory Organization and Internal Bus Design", WBS
94010-4, December 1971, prepared for NAR/SD.

4) Ball, M., and F. Hardie, "Effects and Detection of In
termittent Failures in Digital Systems", FJCC 1969,
pp. 329-335.

5) Lin, Shu, "An Introduction to Error-Correcting Codes",
Prentice-Hall, Inc., New Jersey, 1970.

6) Russo, R.L., "Synthesis of Error Tolerant Counters
Using Minimum Distance Three State Assignments", IEEE
Trans. E.C., Vol, EC14, June 1965.

7) Beister, J.C., "On the Implementation of Failure Tolerant
Counters l

', IEEE Trans, E.C., September 1968.

8) J. G. Tryon, 'Quadded Logic", in Redundancy Techniques for
Computing Systems, R.H. Wilcox and W.C. Mann (eds.), Spar
tan Books, washington, D.C. 1962.

9) Jensen, P.A., "Quadded Nor Logic", IEEE Trans. on Reliab
ility, September 1963.

10) Pierce, W.H., "Interwoven Redundant Logic", Journal of
the Franklin Institute, Vol. 277, No.1, January 1964.

11) von Neumann, J., "Probabilistic Logic and the Synthesis
of Reliable Organisms from Unreliable Components", In
Annals of Mathematic Studies, Princeton, N.J., No. 34,
pp. 43-98, 1956.

-382-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

l2} Lyons and Vanderkulk, "The Ose of Triple Modular Redun
dancy to Improve Computer ~e liabili ty", IBM· Journal of
Research and Development, 6, No. 2, pp. 200-209·,
April 1962.

l3} Dickson, Jackson, Randa, "Saturn V Launch Vehicle Digital
Computer and Data Adapter", AFIPS Conference Proceedings,
Vol. 26, FJCC, pp. 501-516, 1964.

14) Mann, W.C., "Restorative Processes for Redundant Compu
ting Systems", In Redundancy Techniques for Computing
Systems, R.H. Wilcox, and W.C. Mann (eds.), Spartan
Books, Washington, D. C. , 1962.

l5} Garner, .H.L., "Generalized Parity Checking", IRE Trans
actions on Elect. Comp., September 1958.

16) Brown, D.T., "Error Detecting and Correcting Binary Codes
for Arithmetic Operations", IRE Transactions on Elect.
Comp., September 1960.

l7} Garner, H.L., "Error Codes for Arithmetic Operations",
IEEE Transactions on Elect. Comp., Vol. EC15, No.5,
October 1966.

l8} Mandelbaum, D., "Arithmetic Codes with Large Distance",
IEEE Transactions on Information Theory, Vol. IT13,
No.2, April 1967.

19} Peterson, W.W., Error Correcting Codes, New York, Wiley,
1961.

20} Rao, T.R.N., "Error Checking Logic for Arithmetic Type
Operations of a Processor", Proc. First Annual Princeton
Conference on Information Sciences and Systems, 1961.

21} Szygenda, S.A., Flynn, M.J., "Coding Techniques for
Failure Recovery in a Distributive Modular Memory Organ
ization", SJCC, 1971, pp. 459-466.

22} MIT, "STS Software Development", 7 July 1970, NAS9-4065.

23}

24 }

Dijkstra, E.W., "Solution of a Problem in Concurrent Pro
gramming Control", Communications of the ACM, Vol. 8,
No.9, September 1965, p. 569.

Haberman, A.N., "Synchronization of Communicating Process",
Communications of the ACM, Vol. 15, No.3, March 1972,
pp. 171-176.

-383-

INTERMETRICS INCORPORATED ··701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840

25) Copps, E .M. , Jr., "Recovery From Transient Failures of
the Apollo Guidance Computer", AIAA Guidance, Control
and Flight Dynamics Conference, Paper #68-932, August
1968.

26) Crisp, R., Intermetrics, Inc., (private communication).

-384-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

5.0

IMPLEMENTATIONAL APSECTS

This chapter presents the hardware aspects of the pro
posed multiprocessor. The first section presents a discussion
of the implementation of the various multiprocessor elements.
The purpose of this discussion is to demonstrate the feasibility
of implementing the functional design presented in the foregoing
chapters. It is not intended to be a complete or detailed de
sign. The second section presents an analysis of performance
as well as a proposal for the laboratory model.

5.1 Design of Multiprocessor Components

The implementation of the major elements of the multi
processor are presented. These include the Processing Unit,
Internal Bus, InterProcessor Communications Bus, I/O unit,
Operating Memory, and the Mass Memory.

5.1.1 Processing Unit Implementation

Based upon the instruction set and philosophy described
previously, this section will present certain details of an
implementation of the processing unit.

5.1.1.1 Functional Elements of the Processing Unit: Figure 5.1-1
indicates the nine basic elements of the processing unit. A
specific interconnection between these elements is intentionally
left vague to indicate that the system designer may implement
various degrees of parallelism as performance requirements dic
tate. As far as this discussion is concerned, it is only nec
essary to assume that all the elements can communicate with
each other. The processor, P, is considered to contain all the
interconnected elements of Figure 5.1-1 excluding the local
memory, Ml.

Figures 5.1-2 through 5.1-9 depict each element of Fig
ure 5.1-1 in more detail. Each of these hardware elements is
described in the following paragraphs.

-385-

INTERMETRICS INCORPORATEd"· 701 CONCORD AVEN"UE • CAMBRIDGE, MASSACHUSETTS 02138 • (617)" 661-1840

BMAN

To
______~ M2 Interface

Bus

CAM

To I/O andothe~----~

processing units

AU - Arithmetic Unit
BMAN - Bit Manipulator
CU - Control Unit
IPCI - InterProcessor Communication Interface
S - Status
M2I - Operating Memory (M2) Interface
Ml - Local Memory
CAM - Content Addressable Memory
Timer- Instruction and Process Timers

Fi~;,xe 5.1-1: Processing Unit Block Diagram

-386-

Only the logic involved in instruction execution is
described. The error control logic, EC, the switch elements,
S, etc., discussed in the fault tolerance section are not em
phasized here, since they would tend to obscure the discussion
of instruction implementation.

5.1.1.1.1 Arithmetic Unit (AU). The AU provides the facility
for both executing floating point arithmetic and the
limited length integer arithmetic required for detailed
execution of an instruction. In this second category
are such microsteps as add one to the program counter.

The double precision floating point number pos
sesses a mantissa of 51 bits plus sign and an exponent
of 10 bits plus sign. The adder, therefore, is split
into a 51 bit fractional section and 10 bit exponent
section.

Two input and one output buffer registers are pro
vided. These registers may be used or bypassed depend
ing upon th~ details of the microprogram used in the
execution of a particular MP instruction. Only two
commands can be executed by the AU. These are ADD and
SUBTRACT. Logical operations are executed in the BMAN
unit.

Quite often tests are required as to whether the
result of an arithmetic operation is positive, negative,
zero, overflow or underflow of mantissa or exponent.
These conditions detected in the AU are sent to the
status register for storage and subsequent testing.

The entire 63 bit add operation including the load
ing of SUMR can be accomplished in 100 ns.

5.1.1.1.2 Bit Manipulation Unit (BMAN). The BMAN consists of
two sequentially executed functions of shifting and
masking. The shift control register (SCR) controls the
number of shift positions as well as the type of shift.
A shift from 1 to 64 positions can be accomplished in
a single processor cycle of 100 ns. The format and
types of shifts are indicated below.

Shift Control Register,

I 3 bits
type of shift

-387-

6 bits I
:It of shifts

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

63 63

--'fo
tatus
gist.er

SumR

J A Reg I Load - B Reg
I

,Allow carry

J Add
10 51 SubI

0 o Sign bit mantissat . I ZeroSign b~t

I Detectorexponent
:

I
Re

Load SUH Reg -~63

i- 63 + and -
Sum indication

Load

Adder!
Subtracter

Figure 5.1-2: Arithmetic Unit (AU)

64

J----- Bypass shifter

.....--- Bypass masker

64

Load, And! ------+1
Or,Toggle BMAN

BMANR

Figure" 5.1-3: Bit Manipulation (BMAN)

-388-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Type of Shift

000 shift left and fill in MSB with ep

001 shift right and fill in LSB with ep

010 shift left and fill in MSB with 1

all shift right and fill in LSB with 1

100 shift left cycle

101 shift right cycle

Often the SCR contents must be ignored since no
shift is desired. For this reason a BYPASS SHIFTER
control signal is provided.

The masker which basically consists of an AND
gate per bit is controlled by a 64 bit mask control
register (MCR). The output of the shifter and the MCR
are ANDed to form the BMAN output. A BYPASS control
is also provided. In addition a BMAN output buffer
register is provided (BMANR). The register may be
loaded, ANDed into, Inclusive ORed into, or Exclusive
ORed into. The combination of shifter, masker and
BMANR provides a powerful tool for not only executing
the bit manipulation instructions, but also for extract
ing and inserting fields during detailed micro sequences.

The entire operation of shift, mask, and load BMANR
can be accomplished in 100 ns.

5.1.1.1.3 Local Memory (Ml). Ml consists of storage elements,
an address register (MlAR) and a buffer register (MlBR)
The contents of Ml are enumerated in Figure 5.1-4. A
description of Ml cannot be undertaken without indica
ting its relationship to the fault tolerance aspect
of the multiprocessor. A common bi-directional commu
nications link is used to interface the Processor, P,
with Ml and M2. Parity generation and checking logic
(PG/C) is attached to this bus. Also the comparator,
C, interconnecting the two halves of the processing
unit is shown. At most 96 words and parity is required.
This is 6144 plus parity bits. An Ml access including
loading MlAR, reading Ml, loading MlBR and checking
parity can be accomplished in 100 ns.

-389-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

MIAR

Ml
Storage

PG/C = parity generator
and checker

From CAM

MIBR

-
1

PGjC

64 bits

~-~ error
error 4

To M2

Memory interface bus of second half of processing unit

Contents

Ml portion of stack
16 - Base Registers (2jword)
Status words
Ml temporary write area
Descriptor cache accessed thru CAM
Instruction and Process counter images
Other temporary storage

Total

rigure 5.1-4: Local Memory Ml

-390-

of 64 bit words

8
8
2

32
32

1
13

96

5.1.1.1.4 Content Addressable Memory (CAM). The CAM is used to
provide a fast translation between the Stack Number and
Offset (SNO) representation of an address and the actual
physical M2 address. Figure 5.1-5 presents a block dia
gram and the format of the word contained within the CAM.

The CAM can operate in two distinct modes. In mode
1, data can be read or written through normal addres
sing. The CAM functions as a normal RAM with the ad
dress being placed in CAMAR and data being input or
output to the CAMBR. The second mode of operation is
an association of equality. A simultaneous comparison
of all 32 internally stored CAM words is performed with
the comparison data under control of the mask. The
mask allows an equivalence association upon only the
fields indicated by the mask. The result of an asso
ciation is an indication of one or more Ml addresses
that correspond to the correct association.

State of the art MSI technology produces associa
tive memory circuits which can be configured into a
CAM which possesses a cycle time of less than 100 ns.

5.1.1.1.5 Control Unit (CU). The control mechanism for the
processing unit employs the concept of microprogramming.
MO storage contains the control words which are used
to activate the various control signals. Control
signals are generated from three sources:

a) Directly from the MO buffer register (MOBRl)

b) From a combination of status conditions and condi
tional control elements in MOBRI. The control
signal decision matrix is stored in the conditional
control memory (CCM).

c) Finally the micro control field can point to larger
literal control fields or words (such as masks for
BMAN) which are fetched from the literal ROM, LR.

Microsequencing is initiated by an instruction code
which is placed into instruction register byte 0,
IRO. This instruction code is decoded into an MO ad
dress in the Address Decoder ROM (ADR). The resulting
address is stored in MOAR and MO is read. The two MO
buffer registers MOBR2 and MOBRI as weil as the tem
porary MO address register, TMOAR, are used to provide
microinstruction look-ahead.

-391-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

To M1AR

r

er

01 Read
Associate

~

CAMAR CAM Address Regist

,
- CAMVXT ~

32 - 22 bit ~ Contr-
. words Write

-..

J~ -
"

CAMBR CAM Buffer Registe

"

Mask

Comparis
Data

CAM WORD FORMAT

20 bits 1 bit 1 bit

Stack Number and Occupied Bit Not Eligible
Offset (SNO) (OB) bit (NEB)

Figure 5.1-5: Content Addressable Memory (CAM)

-392-

Instruction Register
8 bytes

I I
J

I
t

I r
i I J

Address
Decoder

ROM (ADR)

From CCM
From MOBRl

seq~~nceI
Control

~

IRO IRl

r

IR2 IR3 IR4 IRS IR6 IR7

TMOAR

t
+1

MOAR

MO
storage

~--~ MO subroutine
control stack
4-8 levels
deep

/

MOBR2

look ahead, Status Reg Conditions

1.... MOBRl

To ADR""'--....__---v-~--__.J'

Control Lines

t
LR

~onditional

..------------<t---------:~ I Control
t I Memory

Literal (CCM)
ROM I

....--'-~ To ADR t

Figure 5.l-6~ Control Unit

-393-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

As the instruction set is implemented one finds
that the concept of a micro code subroutine is quite
useful in minimizing the size of MO. For this reason
an MO subroutine control stack is used to provide tem
porary storage of return information from MO subroutines.
At the beginning and end of every instruction the MO
control stack is empty. It is used only during the exe
cution of the various micro-subroutines. The use of
micro-subroutines will become clearer in the discussion
of instruction sequencing.

Besides employing subroutines, unconditional and con
ditional branch addresses can be obtained from MOBRI
and the conditional control memory. These address in
dications, in general, are steered through the ADR.

5.1.1.1.6 Status. Two status registers are employed in the
processing unit. Sixty four bits were not sufficient
to represent all the states required. The contents of
the two status registers SRI and SR2 is determined on
the basis of the probability of a status condition
changing. SRI contains the most frequently changed
conditions and SR2 contains the more static conditions.
Both SRI and SR2 have images in Ml so that in case of
failure the processor status can be restored.

Figure 5.1-7 presents a listing of the various status
conditions which have been isolated. The entire state
of a Processor at the beginning and end of an instruc
tion is contained in SRI and SR2. By possessing an
image in Ml, it is possible to re-establish the pro
cessor state for recovery purposes.

5.1.1.1.7 InterProcessor Communications Interface (IPCI). The
InterProcessor Communications Bus (IPCB) provides a
number of features which allow the processing units and
I/O unit to communicate. The specific commands that
are issued over the IPCB is discussed in section 5.1.4.

The IPCB is conceived to be time multiplexed with
an 8 bit wide data path. Timing control is exercized
by the I/O unit.

The IPCI in each processing unit contains a 4 byte
shift register buffer so that it can possess a degree
of asynchronous operation with the rest of the proces
sing unit (see Figure 5.1-8). A processing unit or I/O
unit issues a communication command by placing an

-394-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

S
ta

tu
s

R
e
g

is
te

r
1

(S
R

I)
S

ta
tu

s
R

e
g

is
te

r
2

(S
R

2)

F
u

n
c
ti

o
n

#
o

f
b

it
s

F
u

n
c
ti

o
n

#
o

f
b

it
s

P
ro

g
ra

m
C

o
u

n
te

r
-

PC
1

8
M

2
S

ta
c
k

L
im

it
-

M
2S

L
1

8

S
y

ll
a
b

le
C

o
u

n
te

r
-S

C
2

M
2

B
o

tt
o

m
o

f
S

ta
c
k

-
M

2B
O

S
1

8

In
s
tr

u
c
ti

o
n

P
h

a
se

-
~

1
In

te
rr

u
p

t
a
n

d
T

ra
p

In
fo

rm
a
ti

o
n

(p
a
rt

ia
ll

y
e
n

c
o

d
e
d

)
2

8
L

e
x

ic
a
l

L
e
v

e
l

-
~
~

4

M
l

T
o

p
o

f
S

ta
c
k

-
M

IT
O

S
3

M
l

S
ta

c
k

L
im

it
-

M
IS

L
3

I w
M

2
T

o
p

o
f

S
ta

c
k

-
M

2T
O

S
1

8
\.

0
U

1 I
M

l
S

ta
c
k

E
m

p
ty

1

A
ll

o
w

In
te

rr
u

p
t

1

In
te

rr
u

p
t

In
d

ic
a
ti

o
n

1

C
o

n
d

it
io

n
C

o
d

es
(+

,-
,z

e
ro

,
e
tc

)
8

In
te

rP
ro

c
e
s
s
o

r
C

o
m

m
u

n
ic

a
ti

o
n

P
e
n

d
in

g
1

O
th

e
rs

3 -
TO

TA
L

64
TO

TA
L

64

F
ig

u
re

5
.1

-7
:

s
ta

tu
s

Figure 5.1-8: InterProcessor Communications

Interprocessor Communication BUS (IPCB)

~4 shift----~..

I/O

Address
Decode

P-M
1

IPCB

..

I
J

P-M
1

4 Byte buffer

Command
Decode

,
I
I

I

J j
Control

Unit

-396-

To M .
1

CAM
Status (Interrupt indication)

IPC pending
etc.

addressing byte upon the IPCB at a given time slot.
The addressing byte processes the following format:

~

4 bits
Processor or
I/O address

~

4 bits
Number of bytes
to follow

This addressing word is generated by firmware and
can select one of the processors or I/O. One parti
cular address indicates that all the processors are
to be interrupted. Up to 16 bytes of information may
follow the initial addressing word. These bytes are
the top of stack word or the first two top of stack
words, as needed.

5.1.1.1.8 M2 Interface - M2I. M2I contains no storage or
buffer registers. Any that are required are assumed
to be in M2 and dedicated to a P-Ml processing unit.

On read operations P generates an address, control
word, and waits for an M2 response. It then checks
for correct parity in PC to determine the possibility
of an M2 error.

For write commands, which are executed only during
phase 2 copy cycles (¢2) P will generate address and
control information for M2, transmit it and immediately
transmit the data to be written. It will then wait, for
an M2 response which provides a complete echo check on
the data from the memory cells. M2I will then compare
the echoed word with the word to be written. Any dis
crepancy indicates a transmission 9r M2 error. All
this action is under CU control.

-397-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

mission

ge
M2....--

buffer and stora

P-Ml unit L~
Address and control -

~~
(PC)

vlrite data T
'.

2 -©
,

error Read data iecho, _.' ..,.-..._._ ... ,/ trans
--l.-
PC

.J-.

M

C = compares echo check of M2 write operation
M2 = operating memory
PG parity generator
PC parity checker

Figure, 5.1-9: M2 Interface

An M2 read operation including internal bus delay
can be accomplished in 1 microsecond. This time includes
a 100 nsec addressing time, 800 nsec M2 cycle time
and another 100 ns to transmit the read data back to
P. A write will require 1.9 ~sec. This includes 100 ns
for address and command transmission, a data transmis
sion of 100 ns, an M2 write of 800 ns, an M2 read of
800 ns and a subsequent transmission back to P for, .
echo-check of 100 ns.

The implications of the echo check on writes is
discussed in the fault tolerance section.

5.1.1.1.9 Timers. Each processor contains two timers; an
instruction timer and a process timer.

a) Instruction Timer: The instruction timer is used
to insure that no MP instruction is able to enter
into an infinite loop, and thus cause the lock up
of a processing unit. Depending upon the micro
step implementation, this might be possible for
certain array type instructions. An indefinite
degree of indirect addressing is another possible
example. In either case an error exists with the

-398-

INTERMETRICS iNCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

possibility of both halves of the processing unit
entering into a loop of indefinite execution time.

The instruction timer will cause a trap if a
MP instruction executes for an excessive time.
Whenever a new MP instruction is executed the maxi
mum MP instruction time limit is reloaded into the
instruction counter and decremented automatically
at a 1 ~sec per pulse rate. If the timer reaches
zero an instruction timer overrun trap will occur.

The contents of the instruction timer need
not be saved in the case of failure. If a failure
occurs, the instruction timer's contents will be
re-established when the instruction retry is ini
tiated.

A 24 bit timer would allow an instruction to
take up to 16 seconds to execute. This is more
than adequate.

b) Process Timer: The process timer is used to det
ermine the amount of time a process has been in
the running state. It is loaded with a value re
presenting the maximum amount of processor execu
tion time to be allowed. If a process is placed
into a waiting state due to an I/O request, or an
interrupt, its process counter is stored in the
process stack so that it can be used when the
process resumes on a processor.

If the process counter decrements to zero,
then a process counter overrun trap is generated.

A process counter of 32 bits will allow a pro
cess to execute for 4000 seconds with a 1 ~sec de
crementation period.

Both the 24 bit instruction counter and the
32 bit process counter are separate counters ex
ternal to MI. Periodically, (e.g., every M2
cycle), the counters are gated by each half of
the processing unit to the comparators so that
failure detection can occur. If the counters are
consistent then they are written into a fixed lo
cation in Ml so that in case of a failure this
old value (not more than a few microseconds old)
can be used for recovery. By updating Ml with

-399-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

counter information during an M2 cycle, the pro
cessing unit is not degraded due to extra Ml
cycles, since the processor would be idle during
an M2 read or write operation.

5.1.1.2 Instruction Execution: The functional elements des
cribed in section 5.1.1.1 are quite conventional. It is the
manipulation of these elements by means of the micro sequence
which enable the instruction set to be implemented. The dis
cussion to follow indicates the basic sequences which must be
followed to execute various micro subroutines and instructions.
In practice a number of these may be executed in parallel in
a single micro instruction. It would not be instructive at
this time to define the micro word format, or indicate the
parallelism involved. The main purpose is to indicate the se
quencing involved and thus demonstrate the practicality of
implementing the instruction set.

5.1.1.2.1 Generic Instruction Execution. Figure 5.1-10 depicts
the sequential flow of a generalized instruction. In
cluded in this description are indications of various
micro subroutines, the two phases of a restartable in
struction, as well as interrupt and trap interfaces
to the normal instruction flow.

The first action is to test the interprocessor com
munication indicator (IPC bit). If it is set, then the
indicated command will be executed. After this execu
tion control is returned and a test is made of the in
terrupt indicator bit. If an interrupt is present a
micro-subroutine is called to enter the interrupt rou
tine. If no interrupt is present the next instruction,
indicated by the program counter and syllable counter
in SRI, is fetched. The instruction is executed using
an Ml temporary storage area for Ml and M2 write opera
tions. During the execution of an instruction various
trap indications may be generated.. Type 1 traps cause
an entrance to a software routine. Type 2 traps, set
an indicator bit and continue with the instruction
execution.

An example of a type 1 trap is a segment fault,
or an inconsistant or illegal descriptor. Processing
can not continue. After executing the given trap rou
tine, the original instruction will be re-executed.

-400-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

GENERIC INSTRUCTION EXECUTION

Execute
IPC Command

No

Instruction fetch*

Execute instruction
using MI temporary
area

Yes Interrupt·
Enter

Software
Routine

cj>l exit*

Normal ep2

opy yc e

{

Set cj>1 SRI
cj>2 exit*

(SRI) MISRI

Yes

cj>l
cj>2

MISRI
MISR2

SRI
SR2

*

L>---_..,oftware1-----4
Routine

Type 2 trap
Set indicator in
SR2 to generate
interru t

Legend

phase I indication
phase 2 indication
MI image of SRI
MI image of SR2
status register I
status register 2
indicates micro subroutine

Figure 5.1-10: Generic Instruction Execution

-401-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

An example of a type 2 trap is overflow or divide
by zero. In these cases an indication in SR2 is set
and the instruction processing continues. At the be
ginning of the subsequent normal ~l cycle these condi
tions will be tested and an interrupt linkage established
if the trap was allowed by the trap mask in SR2.

The last step of ~l processing is called the ~l

exit sequence. ~2 indication is set into SRI and SRI
is written into its image area in MI. The normal ~2

involves a copy cycle whereby Ml and M2 locations are
updated from the Ml temporary storage area. ~2 exit
involves setting ~l into SRI and writing SRI into MlSRl.

If SR2 was changed during normal ~l an Ml write of
SR2 into MlSR2 would be executed through the Ml tem
porary storage area. Only the update of SRI into MlSRl
need not utilize the Ml temporary buffer area.

5.1.1.2.2 Some Micro Subroutines and Sequences. To gain more
insight into the instruction execution a number of
illustrative micro subroutines and sequences are pre
sented.

Many of the flow charts, to be presented, possess
execution time indications. Little effort has been
expended in trying to exploit any parallelism contained
within the logic to increase speed. The purpose of
the time indications is to give the reader a "ball-park"
estimate of what one might expect in implementing the
proposed instruction set.

Similarly the flow charts are meant only to be
illustrative and not necessarily complete. A design
worked out in fine detail would not serve our purpose
of demonstrating the implementability of the proposed
functional design.

5.1.1.2.2.1 Interrupt Enter: This routine is entered when the
~l indication is set. (See Figure 5.1-11) Like any other
instruction the Interrupt Enter subroutine is composed
of a ~l and ~2. During ~l the stack is marked by the
placement of a special MSW on the top of stack and the
stack is PUSHed. PUSH is described in section
5.1.1.2.2.3. Next, SR2 and SRI are pushed into the
stack. Finally new status is set up for the linkage to
the interrupt service routine.

-402-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Interrupt <PI

<PI is set from Normal <PI

1

Legend

Change PC to SNO

Representation for relative addressing

Calculate offset 6 = M2TOS - M2BOS

Store stack no and offset in MSW

Generate remainder of interrpt MSW ~ MlBR

Push*

Reset interrupt indicator

(SR2) ~ MlBR

Push*

(SRI) ~ MlBR

Push*

Fetch the appropriate interrupt response descriptor,
depending upon interrupt category from base of local
stack

Set status INT serv routine address ~ SR (PC and SC)

LL indication + SRI

MSW
MlBR
PC
LL
SNO

*

- Mark Stack Word
- Ml Buffer Register
- Program Counter
- Lexical Level
- Stack N~ and Offset
- indicates micro-subroutine

Figure 5.1-11: Interrupt Enter Micro Subroutine

-403-

SRI is entered into MlSRl during ¢l exit. SR2
is entered into MlSR2 during the normal copy cycle.
The ¢l exit routine always is followed by Normal ¢2
as indicated.

After the interrupt service routine is executed
a RTRN instruction is executed, which reestablishes
the processor's internal status.

5.1.1.2.2.2 Instruction Fetch: The actions to be followed
by the Instruction Fetch micro subroutine are indica
ted in Figure 5.1-12. All instructions are either of
a one or two syllable categorization. A LTS4 is
clearly one syllable. LTSIO is a two syllable in
struction. LTS15, 32 and 64 are categorized as one
syllable instructions followed by 2, 4 or 8 byte
literal data fields.

Two registers control the sequencing of the in
struction fetch. The syllable pointer (Sp) indicates
the number of bytes contained in the instruction. The
syllable counter (SC) indicates the byte position
within the 8 byte M2 instruction fetch at which the
instruction starts.

Upon entrance into the instruction fetch sequence
the SC is updated to point to the beginning of the
next instruction. If SC ~ 8 then the next instruction
is not in IR and must be fetched from M2. In this
case the program counter (PC) is incremented and used
as an address for an M2 read double (8 bytes) opera
tion. The word received from M2 is loaded into IR
byte positions 0 thru 7 (IRO,1,2,3,4,5,6,7).

If the first byte of the instruction is in IR,
it is shifted into IR byte position O. The instruc
tion is then decoded. A one syllable instruction
causes 1 ~ SP and the instruction execution phase is
entered. If the instruction is two syllables then a
determination must be made as to whether the second
syllable is in IRI or must be fetched from M2. If
it is fetched from M2, the four byte M2 word is loaded
into IRl,2,3,4, 2 ~ SP, 4 ~ SC, and the instruction
execution phase is entered.

5.1.1.2.2.3 PUSH: The PUSH micro subroutine, whose flow
chart appears in Figure 5.1-13-, involves .both the Ml
and M2 portion of the stack. Figure 5.1-14 depicts
these two portions.

-404-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Status is in SRl + SR2
SP - syllablc pointcr • number of bytcs of instruction
se - location of first byte of instruction in 8 byte instruction fetch
IR - instruction r~qistcr

IRi - ith bytc position of IR
Instruction Fetch

1
sc • sc + SP (SOns)

110

(lOOns)8 ·SP bitsShift IR left
(l00 nsl
(l.I\lsec)

(IOOns)
(2 words I

o + SC
PC + 1 + PC, M2 addres~

Initiate M2 rcad double
Wait for M~ PC + 1 + PC

M2+IRO,l,2,3,4,5,6,7 I
L-------t-~

{Get
instruction
word from M2

(SOns)

(l00 ns)

NO

Time • 400 ns - 1500 ns

(SOns) 1 + SP
Execute
Instruction

PC + 1 + PC, M2 address (100ft4
Read M2 single
Wait for M2, 4 + SC
K2 + IRl,2,3.4 (l~sec)

2 + SP 4.r---------~

Execute
Instruction

Figure 5.1-12: Instruction Fetch

-405-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS.02138 • (617) 661-1840

1
Data in HlnR

No

Set up H2 write

(H2TOS) + H2 address
(H1SL) + H2 data

(SOns)
(SOns)

Set H2 stack overflow
bit in status word (SOns) Store in Ml temp buffer area (2 64

bit words) (200ns)

Go to type 1 trap
(lOOns)

Set up Ml write

(M1TOS) + Hl address
(KIBR) + Ml data

(50na)
(SOns)

Legend

KIBR m M1 Buffer Register
H1TOS • M1 Top of Stack
M1SL • H1 Stack Limit
M2TOS • M2 Top of Stack
M2SL • M2 Stack Limit

Time •.400ns ~ 900ns

Figure 5.1-13:

-406-

PUSH

·Store in Hl temp buffer area (2 64
bit words) 200ns)

(50ne)

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Ml portion of stack is contained in Ml locations 0 through 7
MlSL points to bottom of Ml portion of stack
MlTOS points to first empty location on top of stack
M2TOS points to the first empty location in M2
M2SL indicates the maximum limit of M2 stack
M2BOS points to the oldest location in the M2 part of the stack

Ml Part of Stack
Full

Full

MlSL ----~:T"f

Ml Stack Overflow

•
•
•

M2TOS~-----
M2BOS --------------

Full

M2SL

M2 Part of Stack

MlTOS

Figure 5.1-14:

-407-

The Stack

INTERMETRICS INCORPORATED', 701 CONCORD AVENUE • CAMBRIDGE; MASSACHUSETTS 02138 • (617) 661-1840

The Ml portion of the stack can be pictured as a
wraparound shift register. The oldest data is pointed
to by MISL. The first empty location is pointed to
by MITOS. Whenever MITOS = MlSL, namely the Ml por
tion of the stack overflows, the contents of (MlSL)
is moved into M2 location indication by M2TOS. If
M2TOS ever equals M2SL then the M2 part of the stack
has overflowed and a trap is generated. The stack
overflow trap routine could then, depending upon con
ditions, allocate more storage for stack use and change
M2SL.

The data to be entered into MITOS is contained in
MIBR. Upon entrance to the routine MITOS is compared
with MISL to see if the Ml portion of the stack has
overflowed. If it has not an Ml write is set up. The
Ml address is MITOS and the data is contained in MIBR.
This write is executed into the Ml temporary buffer
area for the subsequent copy cycle during ¢2. Finally
MITOS is incremented, modul08, before the exit ¢l cycle.

If Ml stack overflows a determination is made as
to whether the M2 part of the stack will overflow.
If so a trap is entered. If not an M2 write is set up
in the Ml temporary buffer area. The M2 address is
(M2TOS) and the data is pointed to by (MlSL). MISL
and M2TOS are incremented, followed by the Ml write set
up.

5.1.1.2.2.4 POP: The POP micro subroutine is shown in Figure
5.1-15. If the Ml part of stack is empty then an Ml
stack underflow exists and a 64 bit read from M2 must
be initiated with an M2 address of (M2TOS)-2. The M2
words are placed into MIBR. On the other hand, if
the Ml stack is not empty, the contents of ((MlTOS)-l)
is read and placed into MIBR.

If the Ml part of the stack becomes empty the con
dition is set into SRI for input into the next POP
sequence. Every PUSH sequence will reset this empty
condition.

5.1.1.2.2.5 Effective Address Generation (EA) (Lexical Level
Offset Addressing): When ever an operand-meta-operator
is encountered an effective address (EA) must be cal
culated. The format of this class of instruction is:

-408-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

N
o

F
ig

u
re

'S
o

l-
IS

:
PO

P

S
e
t

M
I

s
ta

c
k

em
p

ty
c
o

n
d

it
io

n
in

to
S

R
I

Y
es

(M
IT

O
S)

-
I

~
M

IT
O

S
,

M
IA

R
(S

O
n

s)
R

ea
d

M
I

d
a
ta

~
M

IB
R

X
IO

O
ns

)
i

s
ta

c
k

O
K

N
o

n
s)

Y
es

ITi
m

e
=

3
0

0
n

o
-

1
2

5
0

n
o
I

E
x

it
cll

l

(l
O

O
n

s)
(M

2T
O

S)
-

2
~

M
2T

O
S,

M
2

a
d

d
re

ss

{
R

ea
d

M
2

d
o

u
b

le
w

o
rd

(l
.l

lJ
s
)

W
a
it

M
2

~
M

IB
R

S
ta

c
k

u
n

d
e
rf

lo
w

Z -
l m :D ~ m -
l

::0 0 en z 0 0 :D \J 0 :D » -
l m 0 0
,

0
.

0 0 z '0 0 ::0 0 » <
I

m Z
~

C
0

m
\0

0
I

0 » ~ O
J

::0 0 G> fT1 ~ » en en » 0 I C en m -
l

-
l en 0 rv
.

w O
J

0 0
)
.

.....
,

(J
)

(J
)

.....
.

I
.

O
J
~ 0

of bits

contents

I 2

op code

byte 1

5

A2

8

Al

byte 2

The address couple A21 IAI forms a 13 bit field l a12'
all' ala' ... , ao which is interpreted as follows:

a) The lexical level indicator, 11, is the key to the
interpretation of A21 IAI. The first step is to
find the positive integer m where:

b) Form field 1 where

Field 1 = a 12 , .•. , a 13- m

(50ns)

(50ns)

c) Fetch from Ml the base register specified by
field 1. Denote this base register by BRrn (lOOns)

d) BRrn is in SNO representation. The absolute M2
location must be determined by fetching it thru
the CAM. See section 5.1.1.2.2.7 for details.

e) Next field 2 is formed

Fl'eld 2 = a a12-m' Il-m'·· • (Sans)

f) Finally the effective address (EA) is formed where

EA = (BRrn) + Field 2 (lOOns)

This addition only occurs to the offset portion
of (BRm)

g) Total execution time:

-410-

350ns

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

5.1.1.2.2.6 Stack Fetch: When information is required from
any location except the top of stack, a stack fetch
micro subroutine must be executed. A top. of stack
fetch is accomplished by the POP routine. Figure
5.1-16 shows the sequencing of the stack fetch micro
subroutine.

The main test to be performed is to determine
whether the information to be fetched is in the Ml
or M2 part of the stack. This is accomplished by the
calculation of the displacement DISP. Information
is then read from either Ml or M2 and placed in the
MIBR.

5.1.1.2.2.7 Ml Temporary Storage, Exit ¢l and Normal ¢2: The
following format is used in placing information into
the Ml temporary buffer:

Word 1
1 18 4

I MI/M2 Bi t I_A_d_d_r....;.e_s_s---L__C,,-o_n_t_r_o_l_

O-Ml 7 bit Ml address
I-M2 18 bit M2 address

41
Not used

Word 2 I 32 or 64 bit Data

First word Second word if required

The first bit indicates whether the write is to take
place into Ml or M2. This bit also indicates how to
interpret the 18 bit address field. Ml write operations
are always 64 bits wide. M2 write operations may be
either single (32 bits) or double words (64 bits) and
can require simplexed or redundant storage. This in
formation is contained within the control field of
word 1.

One might comment as to the number of unused bits
in this format and suspect an inefficient utilization
of Ml space. However, realize that the Ml temporary
buffer is small and its contents are very dynamic.
Packing the words would introduce a large overhead of
execution time to assemble and disassemble the packed
format.

-411-

INTERMETRICS INCORPORATED ·701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

F
ig

u
re

5
.1

-1
6

:

EA
=

e
ff

e
c
ti

v
e

a
d

d
re

ss
M

2T
O

S
is

s
to

re
d

in
s
ta

tu
s

a
s

a
n

a
b

s
o

lu
te

M
2

lo
c
a
ti

o
n

N
o

In
fo

rm
a
ti

o
n

is
in

M
l

p
o

rt
io

n
o

f
s
ta

c
k

.
-

M
IS

L
-2

D
IS

P
+

M
IA

R
(S

O
n

s)
R

ea
d

M
l

:l
O

O
n

s)

T
im

e
=

5
0

0
n

s
-

4
5

0
0

n
s

s
ta

c
k

F
e
tc

h

E
x

it
$

1

P
la

c
e

w
o

rd
in

M
lB

R

(l
.l

ll
s
e
c
)

(2
5

0
-3

2
5

0
)

(1
0

0
n

s)

EA
+

M
2

a
d

d
re

ss
R

ea
d

M
2

d
o

u
b

le
W

a
it

Y
es

M
2T

O
S

-
EA

+
D

IS
P

G
e
t

EA
in

SN
O

re
p

re
s
e
n

ta

ti
o

n
(M

2
a
c
c
e
s
s

th
ru

C

L
eg

en
d

In
fo

rm
a
ti

o
n

is
in

M
2

p
o

rt
io

n
o

f
s
ta

c
k

Z --
l m :D ~ m --
l

:D (
)

(f
) z (
) 0 :D -0 0 :D }> --
l

,m
0 . -.

..
j

0 (
) 0 z (
) 0 :D 0 }> <

I
m Z

~
C

I-
'

m
N

.
I

(
)

}> ~ IJ
l

:D 0 (j
) m ~ }> (f
)

(f
)

}> (
) I C (f
) m --
l

--
l

(f
)

0 I\
) w CO . m::
!

0> 0> , co ... <
:)

Figure 5.1-17 shows the complete normal ~2 sequence
including the copy cycle and the lead in sequence of
exit ~l. This represents more detail than was indi
cated in Figure 5.1-2. Although not indicated previously
the temporary storage counter, TSC, is incremented
every time an Ml or M2 write operation is entered into
the Ml temporary buffer area. TSC is used to control
the number of copy cycles. If TSC = 0 then the copy
cycle is over, the phase indication is changed to ~l

and MlSRl is updated.

The exit ~l and normal ~2 micro sequences are used
by every instruction, as well as the interrupt and trap
enter and exit sequences.

5.1.1.2.2.8 M2 Access through the CAM: The CAM was introduced
into the processor design in order to save a number of
levels of indirection in fetching a descriptor. When
a descriptor is desired the SNO is used as the key for
an associative search through the CAM. If an associa
tion is found, the address obtained from the CAM is
used to fetch the descriptor from the descriptor cache
in MI.

If there is no association, two parallel functions
must be performed. The desired descriptor is fetched
from M2 by indirection through the stack vector. Sim
ultaneously space is found in the descriptor cache
for the new descriptor, and a CAM entry is associated
with it.

If there is a vacant (not occupied) location, it
is used. A vacant location is found by an association
on OB = O. Any vacant location can be used. If, on
the other hand, all the locations in the descriptor
cache are occupied (all OBIs = 1), then a modified LRU
algorithm is used to displace one of the entries.

The CAM control counter (CC) is used to cycle
through the CAM. If the location to which CC points
contains a NAB = 0 then this location is used for
storage of the descriptor. If, however, the NAB = 1,
it is set equal to 0, cc is incremented and the search
continues. The maximum search time for this alqorithm
is 32 iterations of 200 ns each which is 6.4 ~sec.

However, this is the worst case situation. A more
typical number would probably be 3.2 ~sec which is
about the same time required for fetching the descrip
tor through the stack vector.

-413-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,I

Exit IjIl

Normal 1j12

Copy cycle cover

Normal Ijll

SOns

lOOns

Set 1jl2 -+ SRl

(SR1) .. M1SRl

Read (LOC) -+ M1BR

(SO ns)

(100 ns)

(lOOns)

Legend

Yes
M2 write

M2 address and control -+ M2
M2 data -+ M2
M2 write single or double
Wait
LOC+2-+LOC
TSC - ;2 -+ TSC

Ml write

l,911sec
to

2,lllsec

SO ns
SO ns

Read (LOC) + 1 .. MlAR (lOOns)

Ml write (00 ns)
LOC + 2 -+ LOC (SO ns)

-T-SC---:-2-+_TS_C --I (50 ns)

TSC = temporary storage count~r

M1TBA = location in Hl of beginning of temporary buffer area
(2.150)

Time = 200 ns + (2.350 x number of M2 .wr1tes + 450 x number of Hl writes

Figure 5.1-17: Exit ¢1 and Normal ¢2

-414-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-18~O

CAM Format
Not

stack No and offset OCcupied Available

20 bits [bitg
SNO OB NAB

present SNO to r.~M - Mask out OB and NAB(SOns)
~----------r-----------:---~

Send associated add
Yes ress to HI and fetch

>-=-=-=-~descriptor
Set NAB = 1
END 100 ns

Get desired descripto
from M2 by normal in
direction thru the
stack vector

Present OB=4>
to CAM. Mask (50ns)
out SNO and
NAB

lOOns

END

Send address of indi
cated location to

> __Y_e_s "'! MlAR. ' Set OBcc=NAB=
1
location found

END

After location is
found store fetched
descriptor in loc of
Ml. Generate and
store CAM word

Read CAM
location CC (lOOns)

Yes

Time 250ns - 3.25\1s

Legend

OB - occupied bit
NAB - not available bit

CC - CAM control counter

Figure 5.1-18: M2 Access Thru CAM

-415-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 021.38 • (617) 661-1840

5.1.1.2.3 Instruction Execution Flow Charts. The micro sub
routines, presented in section 5.1.1.2.2 are used as
building blocks for the execution of instructions.
Not all the useful subroutines were presented. This
is a matter of detailed design. Similarly only some
typical instruction flows are presented in this sec
tion. However a sufficient diversity of examples is
presented to give the reader a flavor of the detailed
design, and to demonstrate the practicalitx of
implementing the instruction set. The deflnition of
the instructions has previously been presented in
Chapter 2. Detailed explanations of these flow charts
are not necessary.

The execution time estimates are based upon the
micro subroutines presented previously. The wide
dispersion in execution times occurs because infor
mation needed for execution can be found in Ml or M2.
If all information is read or written into Ml then the
minimum time will occur. When all information is read
or written into M2 then the maximum time situation
will occur. In a sense the maximum times would repre
sent an implementation where Ml is too small or non
existent.

-416-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~ Instruction

Effective Address Generation (EA)
M2 access thru CAM
Stack Fetch
Push
Exit <PI

350
250

(300
(400
(650 -

3250
1150)

900)
3000)

LTS4

Figure 5.1-19: COpy

BSET

POP to get bit number + SCR
Read 00 ... 1 from LR
LR + shifter + BMANR
POP to get operand;
MIBR + ORed into BMANR (This sets bit)
BMANR + MIBR
Push
Exit <PI

F~gure 5.1-20: BSET

L9511S - 8.3511S

(300 - 1250)
50
50

(300 - 1250)
(100)

50
(400 - 900) :
(650)

1.911S - 3.81'S

LIT c 5 bit fi~ld in IRO,l
Conwrt LIT to DPFP + ~I1DR

Push
Exit ~l

DPFP - Double Precision Floating Point

Figure 5.1-21: LTS4

-417-

200
400 - 900
650 - 3000

Total l.250~s - 4.l~s

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

LTS15 - This is considered a 1 syllable instruction

PC + 1 ~ PC, M2 address 100
Read M2 single 1000
Wait [SC-4 .. SC)

No

Yes

M2 ~ IR2, 3, 4, 5

No SC = 3

M2 ~ IRl, 2, 3, 4 (100)

(100)

Legend

SC = syllable counter
DPFP = Double Precision Floating

Point

LIT = IRl, 2
Convert to DPFP .. ~lBR

PUSH
Shift IR left 2 bytes
SC + 2 ~ SC
Exit ~l

(200)
(400 - 900)
(100)
(50)
(650 - 3000)

Figure 5.1-22:

-418-

Total 1.450~s - 5.55~s

LTS15

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ADR

Effective Address Generation

Format ADW with read/write access

Place in MIBR

PUSH

cjll exit

(350)

(200)

50

400-900

650=-3000

/. Total 1.650 - 4.5 l.l sec

, Figure 5.1-23: ADR

-419-

Create ADW
And Place

In
M1BR

Yes

ADRE

E A Generation

Stack Fetch

Yes

Yes ~I I I
~'...., _F_e_t_c_h_T__hr_U_A_D_W__---

Perform Any
Required Indexing

l ~1
!

PUSH

!
exit ~1

Figure 5.1-24 ADRE

-420-

Place
Value In

M1BR

YES

GET

1
E A Generation

Stack Fetch

NO

YES

Perform Any
Required Indexing

Fetch Value Thru
Indexed Descriptor

And Place In
M1BR

PUSH

exit <Pl

Fetch Thru ADW

Error
Type 1
Trap

Figure 5.1-25 GET

-421-

Floating Point Add Instruction

!
POP (300 .. 1250)

I

>-""!lo"- type 1 trap

M1BR .. A Reg.
POP

(SO)
(300 - 1250)

(SO)
400 - ~OO

620 - 3000

ESUM - 1 .. ESUM

ESUM + 1 .. ESUM
Yes

Shift CB right
S places

(200)

(50)

No>.c...:._--.-_s .. S ------------,

'10 E = exponenttype 1 trap
C = fraction
A = A register
B B register

SUM SUM register
(SO)

EA - EB .. S (l00)

EB .. ESUM

Shift CA right
S places

Automatic thru carry/borrow
mechanism in AU and split
adder

Total. 2300 - 5.150 ~s

Figure 5.1-26: Floating Point ADD

-422-

St~ck Organization

Initial ('yeln Each f,uhs<'Cjucnt eycl"

LV
IV
IN IT
LVlI
811

Limit Vl\luc
Incl:cmcnt vr.luc
Initial \'I\lu(>
Loop vnriablo address
Branch nddn'ss

LV
IV
LVA
BA

Get LV
Get IV
Get LVA

POP .. 1lM1INR
POP .. lIREG
POP .. lIDSUMR

>-~£e~~nitial cycle
SUMR .. BREG

(LVA)=LPV..
Loop value

Fetch LPV from (LVA)
1-12 read cycle and place
it into BREG

POP .. ADSUMR

Save LVA
IV

LPV + IV

LPV+IV - LV

POP
C, SC + BlI ..

PC, SC

exit ~I

Store (ADSUMR) in temporary HI location
(AREG)

ADD .. ADSUM .. AREG
BMANR" BREG
SUB .. ADSUMR

p.ead LVlI fro~ MI tempor
ary location. Store
ARES) .. LVA. M2 write
cycle LVA" MIBR
l'U511

exit 4>1

Figure 5.1-27: FOR Instruction

-423-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

BTRN explanation:

Stack organization

MlT05 ;) N number of bits to be
transferred

55 starting position of
sender

5R starting position of
receiver

5 sender

R receiver

SS I-DS-I

leave alone
'--...._--y-...---""

N bits

SR

N bits

leave alone

'--...._--...y-..._--,/
R word

S vwrd

DS = differential shift

Figure 5.1-28: BTRN

-424-

Get N

N bits
(BMANR) =f"Il':l: 00 ... a

Get SS

Get SR

Calculate DS

Set up MCR and SCR

POP ~ SCR fill with lIs, shift right

Read "10 •.. 0" from LR

LR ~ shifter, shift ~ BMANR

POP

MIBR ~ A Reg

POP

MIBR ~ B Reg

SUB ~ ADSUM

BMANR ~ shifter ~ MeR

Set cycle left shift into SCR B Reg ~ SCR,
count...Rl>i ts

(MCR) = ££ 1111 0000
SR

bits B Reg -+ BMANR ADSUM ~ SCR

A Reg -+ shifter -+ masker ~ OR into BMANR

BMANR ~ MIBR

PUSH

Exit CPl

Figure 5.1-29: BTRN Sequence

-425-

5.1.2 Internal Bus and Operating Memory Implementation

The internal bus provides the interconnection between
the pIS and I/O's with the operating memory M2 modules. The
structure of the internal bus is intimately connected with the
manner in which the M2 modules are to be utilized. For this
reason both topics will be covered in this single section.

5.1.2.1 An M2 Module: The fault tolerant discussion concern
ing M2 failure recovery introduced the concept of two
interleaved M2 units to provide redundant storage in consecu
tive addresses within different M2 units (see section 4.4.2).
The processor implementation discussion (Section 5.1.1) indica
tes that double words (64 bits) are often accessed from M2. A
redundant write of a double word would require four M2 accesses.
Since this is a common occurrence the four accesses should be
executed almost simultaneously for performance maximization.

This leads us to define an M2 module as consisting of
four M2 units, which are interleaved on the lower order address
bits (see figure 5.1-30). The entire M2 system then consists
of four M2 mdoules. Each module contains four 8K interleaved
units 02K words of memor0. The entire M2 system possesses
l28K of memory.

5.1.2.2 Internal Bus Design Goals: The interface to the in
ternal bus and the internal bus structure is a trade off be
tween performance and hardware. The following design goals
are suggested:

a) The one way delay between a P and M2 unit, including
the pIS M2 interface, bus delay, and the internal bus
interface of M2 should be less than lOOns. A 10 MHz
bit rate on a wire is well within the present state
of the art technology.

b) The internal bus should not degrade system perfor
mance. This means that if a P element desires access
to an M2 unit that is not being cycled, the internal
bus should not introduce contention.

5.1.2.3 Processor and I/O Impact: The fault tolerant discus
sion indicates the necessity for each processing and I/O unit
to be internally dual with two separate links to the internal
bus. ,For a three dual processing unit, dual M2 interfaced
I/O system, which is our nominal design, a total of eight
communicating elements can possibly be interfaced to each M2

-426-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

M
2U

l
M

2U
2

M
2U

3
M

2U
4

,

W
or

d
1

W
or

d
2

W
or

d
3

W
o

rd
·4

8K
3

4
-b

it
"l

o
rd

5
W

or
d

6
W

o
rd

7
W

or
d

8
m

em
o

ry
u

n
it

W
or

d
9

W
or

d
1

0
W

or
d

1
1

W
or

d
1

2
e
tc

.
e
tc

.
e
tc

.
e
tc

•

)

IN
T

E
R

FA
C

E
TO

IN
T

E
R

N
A

L
B

U
S

~
\

~
~

Z --
l

rn :::D ~ m --
l

:::D (
) en z (
) 0 ::0 "'U 0 :::D » --
l m 0
,

0 (
) 0 z (
) 0 ::0 0 » <

I
m Z

~
C

I\
J

m
-..

.J I
(
) » ~ CD ~ 0 (j
) m ~ » en en » (
) I C en m --
l

--
l en 0 .N W (X
l . §
, - 0

>
0> I CP .I:>

-
0

M
2U

i
=

M
2

m
o

d
u

le
U

n
it

i

M
2

M
O

D
U

LE

IN
T

E
R

N
A

L
B

U
S

i
=

1
,2

,3
,4

F
iq

u
re

5
.1

-3
0

:
M

2
M

o
d

u
le

In
te

rl
e
a
v

in
g

module. An expanded system would require two additional inter
faces per processing unit. It is exactly the control of these
interfaces which provides the speed/cost (hardware) tradeoff
of the internal bus and memory interface design.

5.1.2.4 How Many Interfaces to an M2 Module: At least two
interfaces or ports to each M2 module must exist to provide
the redundant interface to each P unit. This would allow a
maximum of only two simultaneous accesses. In some sense four
ports into each four way interleaved M2 module is sufficient
to sustain the four possible simultaneous c0nversations. If
four port M2 modules were employed two possible internal bus
configurations, shown in Figure 5.1-31 would be possible.

Each M2 access initiated by a P or I/O uses two ports
simultaneously. For this reason both configurations show the
redundant P or I/O horizontal busses attached to different ports
of the M2 modules (vertical bus links).

In configuration 1 a processor pair can access an M2
module only through one pair of ports. If these ports are
being used by another processor pair then bus contention arises
even though the two requesting units are addressing different
M2 units. Configuration 2 eliminates this cause of bus conten
tion by allowing a processor pair to access an M2 module through
either pair of ports. Even this configuration presents the pos
sibility of bus contention under the condition that two different
processor pairs are accessing the same M2 unit and therefore the
four ports are occupied. Another processor or I/O could not
access a different M2 unit within the same M2 module. This
source of bus contention is only eliminated by utilizing eight
ports in each M2 module. This is depicted in Figure 5.1-32.

Although the eight port configuration seems initially
to make each M2 module more complex, it completely eliminates
any switches in the internal bus. The interna~ bus structure
has degenerated into just an interconnection matrix consisting
of wiring and no circuits. The switches have actually been
incorporated i~to each M2 module. Figure 5.1-33 indicates the
components of an eight port four way interleaved M2 module.

In the past the hardware designer had to be concerned
about the complexity of the cross bar switch and the memory ports.
Present day MSI and LSI technology, however, tend to reduce
this concern due to the regular structure of the switch elements
and ports. Each intersection of the switch must switch 34 hori
zontal inputs to the vertical bus. All of these switches are
identical. (Burroughs in their Interpreter-based aerospace mul
tiprocessor have actually built cross bar switch elements using

-428-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

a) Configuration 1

M2
modules

r-
p

p---r-
p

p---r--
p

p

;:::::
I/O

2t'J.qura l.on

ules

r-
p

p-r--
p

p--p

p---~
I/C

-

M2
mod

b) CQnf'

Figure 5.1-31: Four Port M2 Module Internal Bus Configurations

. -429-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

M
2

M
o

d
u

le
M

2
M

o
d

u
le

M
2

M
o

d
u

le
M

2
M

o
d

u
le

~

p P
.

-
-

- - P p
.

"
"
'-

- - p' p
. - r
-

-
_

.p
.

I/
O

~

Z -
i m JJ s: m -
i

JJ a U> z (
) a :D "'U a JJ » -
i m 0 · '"'-l a ~ (
) a z (
) a JJ 0 » <

J
m Z

~
C

(.
oJ

m
0

·
J

(
) » s: CX
l

JJ 0 G
) m s: » U> U> » (
) I C U> m -
i

-
i

U> a r\
)
~ w (
» · m ~ .::
!

0> 0> ~ , ~ (
»
~ a

F
ig

u
re

5
.1

-3
2

:
E

ig
h

t
P

o
rt

M
2

M
o

d
u

le
s

a
n

d
D

e
d

ic
a
te

d
In

te
rn

a
l

B
u

se
s

W
or

d
1

W
or

d
2

W
or

d
3

W
or

d
4

5
6

7
8

e
tc

.
e
tc

.
e
tc

.
e
tc

.

.

"'
-

#
'"

V
'

4
x

8
e
le

m
e
n

t
c
ro

ss
b

a
r

m
a
tr

ix
sw

it
c
h

ex
p

an
d

ab
le

to
4

x
16

-
~

,...
.,

,...
...,

,..
....

....
....

....
...
_....

- -

E
ig

h
t

P
o

rt
F

o
u

r
W

ay
In

te
rl

e
a
v

e
d

M
2

M
o

d
u

le

Z -
i m :0 ~ m -
i

:0 0 en z (
) 0 :0 '"'0 0 :0 » -
i m 0 . -..
.l

0 (
) 0 z (
) 0 :0 0 » <

I
m z

~
C

W
m

I-
'

.
I

(
) » ~ II
I

:0 0 G
) m ~ » en en » (
) I C en m -
i

-
i en 0 I\
.) W co . O
i -..
.l - 0) 0> I co ~ 0

M
2U

1

....
.

V
~

8
in

p
u

t
p

o
rt

s,
ea

ch
d

e
d

ic
a
te

d
to

a
P

e
le

m
e
n

t

F
ig

u
re

5
.1

-3
3

:

M
2U

2
M

2U
3

M
2U

4

LSI technology). The memory ports also form identical regular
structures, in that they contain only one or two 34 bit buffer
registers for interface synchronization.

Figure 5.1-34 presents a tradeoff between the three con
figurations. For configurations 1 and 2 the four ports must
be switched, internal to the M2 module, to the four M2 units.
This switching involves a 4 x 4 cross bar swtich. Figure 5.1-34
indicates the total number of crossbar switch modes both inter
nal and external to the M2 modules as well as an indication of the
external wiring complexity. Configuration 3 possess the best
performance (zero bus contention) at a cost of more complex
wiring. Whether this is a real factor or not is a function
of the packaging of the entire multiprocessor system. For the
post-1980 time frame with anticipated packaging technology,
all the communicating elements of the multiprocessor could
probably be packaged in a single desk sized unit. The inter
connections between the pIS and M2 modules would probably not
be wires at all, but just an interconnecting multilayered
signal board. The low complexity of the M2 module ports of
configuration 3 over configuration 1 tends to cancel the effect
of the difference in crossbar mode switches.

On balance configuration 3, employing 8 input four way
interleaved M2 modules is proposed.

5.1.2.5 M2 Commands and Execution Times: Each request generated
by a p or 170 and sent to an M2 module possesses a four bit
field which is depicted below.

Memory Command Bits

Read 0
Write = 1

Single = 0
Double 1

Simplex = 0
Redundant = 1

Unlock 0
Lock = 1

with this command word a total of 16 different memory
commands are possible. For example a 0110 command reads four
consecutively ,stored words, one from each M2 unit, and leaves
the M2 module in the unlocked state. The four words consist
of two double length words (64 bits) redundantly stored.

The major cycle time of an M2 unit was chosen to be
800 ns. Faster units were not specified because of the sub
stantial power increase. One of the major points of this mul
tiprocessor design study was to achieve performance through
architectural innovations rather than. pushing the state of the
art in component technology. An 800 ns aerospace memory unit
is clearly very reasonable for a post-1980 space station.

-432-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

1

Configuration

2 3

Total number of crossbar
switch modes 96 128 128

External M2 interfaces to
M2 modules (wiring com- 16 16 32
plexity)

Contention due to internal
bus high medium zero

M2 post complexity high high low

Figure 5.1-34: Memory Port Trade Off Matrix

-433-

Considering an internal bus transfer time of 100 ns
and an echo check on all write operations, the following exe
cution times for the memory commands can be deduced:

Command Function Time

00<1><1>* read single 1.0 llsec

01<1><1> read double 1.1 llsec

10<1><1> write single 1.9 llsec

11<1><1> write double 2.1 llsec

5.1.2.6 Memory Conflict: The selected M2 module configuration
allows a number of memory commands to be executed simultaneously
out of different M2 units. Conflict between the two commands
will only take place if both commands require access to the
same internal memory unit simultaneously. Figure 5.1-35 illus
trates a case where two processing units command an M2 modu~e

to execute a read double redundant command. The two commands
arrive simultaneously at the four ports. Both processors
require one cycle of each of the M2 units. If Processor 1 is
the first to be serviced, as is illustrated, processor 2 is
only delayed for 1 memory cycle (800 ns) before its command
execution is started.

Memory conflict only occurs when there is contention
for a memory unit. A model to calculate the effect of memory
conflict can be generated under the following conditions:

a) Memory requests are uniformly distributed across the
address space and no correlation exists between one
memory access and the next. This assumption can be
questioned since both program and data do possess
locality. Also quite a few double word requests will
be made. However, using this assumption, an order of
magnitude estimate may be made.

b) Each processor makes a request to memory with pro
bability Pro Pr is the ratio of the time spent acces
sing M2 divided by the total processing time of the
processor. If the M2 cycle time is very slow compared
to the processor cycle time then Pr tends toward 1.
However, if many processing unit cycles are used be
tween each M2 cycle then Pr tends to be less than 1.

* <I> = don't care conditions -- either simplex or redundant, lock or unlock.

-434-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Z -
l m ::I
J
~ m -
\ ::I
J 0 en Z (
) a ::I
J

"'U a ::I
J » -
l m 0 · -...j a
.

(
) a z (
) a JJ 0 » <

I
m z

~
c

w
m

U
1

·
I

(
) » ~ O
J
~ 0 C

i) m ~ » en en » (
) :r: c en m

.
-
l --
t en a I\
J
.

W (X
) · en
.

-.
..

j

0> 0>
.

I
.

(X
)
~ a

P
ro

c
.l

R
eq

u
es

t
o

n
P

o
rt

s
1

an
d

2

M
2U

l
c
y

c
le

M
2U

2
c
y

c
le

M
2U

3
c
y

c
le

M
2U

4
c
y

c
le

P
ro

c
2

R
eq

u
es

t
o

n
P

o
rt

s
3

.a
nd

4

P
o

rt
1

o
u

tp
u

t

P
o

rt
2

o
u

tp
u

t

P
o

rt
3

o
u

tp
u

t

P
o

rt
4

o
u

tp
u

t

-I
1-

1
0

0
n

s

_
_

_n
_ 80

0
n

s
80

0
n

s
__

__
__

__
_I

55
U

55
1

_

_
_

_
_

I
}f

U
;5

1
_

-
f

tr
10

0
n

s
("

_
_

_
_

.-1
'

J5
u

S
f

1-
...

-
89

9
n

s

_
_

_
_

_
1

:»
U

55
L

-

~
~
d
e
l
a
y

d
u

e
to

c
o

n
fl

ic
t

I
8

0
0

n
s

I
I

,
I

__
__

__
__

__
_r

--u
--,

55: I I
I

5S
1

~
20

0
n

s
~

I

-
-
-
-
-
-
-
-
-
-
-
-
-
J

r
-
u

-
-
-
l
-

-
-
-
-
-
-
-
-
-
-
-
l
I
l
.
J

l
_

F
ig

u
re

5
.1

-3
5

:
M

2
M

o
d

u
le

T
im

in
g

Pr is a measure of the time allocation between M2 and P.
The higher order language instruction set employing Ml
tends to create intervals in which the processor is
busy and the memory is idle. Therefore, Pr should be
less than 1. An evaluation of execution times indicates
that a Pr of 3/4 can be achieved with our instruction
set; a 1 ~sec memory and bus delay, and a 50 - 100 ns
processor cycle.

c) There are M memory units which can be accessed inde
pendently and simultaneously.

d) There are a total of R processing units and I/O units
which can issue requests to the memory unit.

The probability that a given processing unit will re
quest access to any specific unit is PriM.

What is the effect of memory contention? The result
is to produce an effective M2 cycle time, .t2 ff' which is
larger than the individual M2 unit cycle tim~ e2 = 800 ns.
The effective M2 cycle time is defined to be the time interval
from the inital request for an M2 access to the final com
pletion of the M2 command. It includes the delays due to memory
contention. As far as our analysis is concerned all memory
commands whether read or write are assumed to require the
same time. The difference between memory access and cycle time
is ignored. The purpose is to present an order of magnitude
estimate of the effect of memory contention and not obscure
the result with second order effects.

Given a processor is requesting access to a particular
M2 unit, the probability that none of the R-l other processors
are requesting access to the same M2 unit is

= (1 - pr)R-l
M

The probability that one of the R-l other processors are re
questing access to the particular M2 unit is

-436-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

In general the probability that i out of the R-l other proces
sors are requesting access to the particular M2 units is

If there is no contention the M2 access time is t 2
If one other processor requires access then the worst case
access time is 2t2-

In general the worst case access time encountered when
there are i other processors in contention for a given M2 unit
is (1 + i)t2 -

The effective worst case access time averaged over
all contention possibilities is therefore

R-l
L (1 + i) t 2 P i =

i=O

R-l
t 2 L

i=O

Since Pi is a binomial distribution

Therefore

R-l
L Pi = 1

i=O
and

R-l
Lip. =

i=O 1
(R-l) Pr

M

For the nominal system assuming Pr = 1, R = 4, M = 16,
t 2eff = (1_188)t 2 - That is M2 seems about 18.8% slower due to
memory contention.

For the higher order language oriented instruction
set utilizing Ml for temporary storage a value of Pr = 3/4 is
reasonable. Figure 5.1~36 shows t2eff for various values of M,
Rand Pro

-437-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

t
2

e
ff

t2

t
2

e
ff

t
2

=
1

+
R

-1
P

r
2M

1
.

2
5

1
.·

2
Q "

~
1

.3
.5

w IX
) I

1
.
1
~

1
~
.
O
f
r
·

1
~ 1

2
3

4
5

6
7

'"
8

9
R

F
ig

u
re

5
.1

-3
6

:
t

2
e
ff

a
s

a
F

u
n

c
ti

o
n

o
f

R
,

P
r,

a
n

d
M

5.1. 3 I/O Unit Implementation

Figure 5.1-37 depicts a block diagram of the I/O unit
which consists of the eight basic elements described below.

5.1.3.1 Central Control (CC): The central control unit provides
the decoding of the I/O operations, for the initiation and
synchronization of commands, and for data transfers between
the units. The CC contains an arithmetic unit and the logic
required to perform conditional decisions. The sequences
issued by CC are stored in a micro control memory and are
initiated via commands from the various interfaces.

5.1.3.2 InterProcessor Communications Interface (IPCI): The
IPCI corresponds to the similar element in the processor, but
contains additional logic for the control of the IPCB. The
IPCI receives and sends commands to the processors. These
commands will be discussed in section 5.1.4 dealing with the
IPCB. A four byte buffer is contained within IPCI in order
to provide synchronization.

5.1.3.3 Interrupt Priority: This element is used to store the
priorities of the processes currently being executed on each
of the processors. The inhibit or allow state of interrupts
for each processor is also contained in this element.

When an interrupt signal is to be sent, the most in
terruptible processor is determined on the basis of information
contained within the interrupt priority storage. The sequence
of execution for this determination is under CC control.

5.1.3.4 Timer: The timer consists of two counters. A 51 bit
counter which contains absolute time and a 22 bit counter which
is used to generate an interrupt at a specific time. Each
counter may be written into or read from by a command over the
IPCB. The operation of this timer has been explained in Chap
ter 3.

5.1.3.5 Channell: Channell of the I/O unit is used to commu
nicate with devices which must operate in a burst mode. Discs
and tapes fit into this category of devices. Once a data trans
fer is initiated on this channel, it cannot be interrupted or
multiplexed due to the high bit transfer rate. M3, the mass
memory, and file or archival storage are shown attached to
this channel.

-439-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

~ ---------..----
Timer

- ----'-------------

~--~t---~ttM
2

1
To
M2

IPCB

I

I
I
I

-

I
P
C
I

Interrupt
Priority

Central
Control

, "...-- ,,,

I
I

, /

""I I'

I ""/

/' ------- --

Channel
1

P E
e q
r u
i i
p P
h m
e e
r n
a t

-- 1

IPCI - Inter Processor Communication Interface
IPCB - Inter Processor Communication Bus
M2 1 - M2 Interface
BCU - Bus Control Unit
DB - Data Bus for Avionics Subsystem
MPX - Multiplexor

- Data Path
---- - Control Path

Figure 5.1-37: I/O Unit Block Diagram

-440-

5.1.3.6 Channel 2: Channel 2 is used to control the Data Bus
Control Unit which in turn drives the devices of the avionics
subsystem. Contained in local storage within channel 2 is a
table of commands which drive the Data Bus in a periodic fash
ion. This local storage may be addressed and written into in
order to change the Data Bus sequences, or it may be read from
to determine the state of the sequencing.

Once channel 2 has been initiated by an I/O command
fetched from M2 by the CC, it will proceed to operate in an
asynchronous fashion, transfering information between M2 and
the various devices of the avionics subsystem.

5.1.3.7 Channel 3: Channel 3 is used for the slow peripheral
devices such as card readers, printers, keyboards, control
panel, slow speed short record cassetts tapes, and any other
devices which may be required for operation and testing of the
system.

All the devices attached to channel 3 can be multi
plexed on a four byte basis. This imposes a requirement for
a certain degree of bUffering at each device attached to the
channel 3 multiplexer. In addition, the channel itself must
possess a limited degree of local storage to buffer device
commands, data, and information to aid in forming the M2 ad
dress.

5.1.3.8 M2 Interface, M2!. The M21 can transfer information
between M2 and the other elements of the I/O controller.
The priority as to which I/O interface has access when conten
tion exists is fixed.

priority 1 (highest) Channell: The devices which
operate in the burst mode must be serviced at a rate consistent
with their data rate. M3 can possess a data rate of up
to 10 MBPS p which is three to six times less than the M2 data
rate. However, channell devices cannot sustain a large delay
between a request for an M2 transfer and the final servicing
of the request since the addressed' record is usually not fuily
buffered and M2 and the auxilliary device must be synchronized
during a data transfer.

Priority 2 Channel 2: The devices which are driven
by tables in the local memory of channel 2 present to M2 a
data rate three to six times less than that of channell.
Yet if too much delay is introduced in each M2 transfer the
minor and major cycle times might be exceeded.

-441-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Priority 3 Central Control: When the CC receives a
command over the IPCB it often has to fetch an I/O control word
from M2. While this fetch can be delayed a reasonable amount
of time, queueing of too many IPC commands before execution
must be avoided.

Priority 4 Channel 3: The devices attached to channel
3 are all slow speed and involve only a few bytes per trans
action. A delay of ten to even one hundred M2 cycles will
not appreciably affect the performance of these devices.

Priority 5 (lowest):
and timer elements. of the I/O
ficant extent, these elements
ority category.

Since the interrupt priority
unit do not use M2 to a signi
are placed into the lowest pri-

5.1.3.9 I/O Unit Operational Functions: Throughout the dis
cussion in the various chapters a number of requirements have
been placed upon the I/O unit. This section will summarize
these requirements by presenting a deliniation of the various
commands which the I/O unit must execute. These commands .are
categorized according to which of the elements of the I/O unit
is involved.

a) Interrupt Control Commands for Each Processor:

Set Priority
Allow Interrupts
Inhibit Interrupts

b) General Interrupt Functions:

Determine the most interruptible Processor
Generate the interrupt command word and transmit over

the IPCB
Format the Interrupt Descriptor

c) Channell Commands and Functions:

Initiate data transfer to device
Initiate data transfer from device
Stop or Reset Channel
Test channel (channel status transfer)
Stop or Reset Device
Test device (device status transfer)
Commands associated with specialized devices such as:

Read sector clock for drum
Rewind tape
Skip next tape file
Skip next record
etc •••

-442-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

M2 address generation
Interrupt generation

d) Channel 2 Commands and Functions:

Write MI}
Read MI Each table entity is to be addressable
Execute command table continuosuly
Execute command table for one major cycle
Stop execution at end of major cycle
Stop execution immediately
Test channel (status transfer)
Test devices on data bus (status transfer)
M2 address generation
Interrupt generation

e) Channel 3 Commands and Functions:

Read device
Write device
Test channel
Test device
Stop or reset device
Stop or reset channel
M2 address generation
Interrupt generation

f) IPCI Functions:

Decode I/O address
Control the transfer of information across IPCB

g) CC Functions:

Decode IPC command and initiate the appropriate
micro-sequence

Read I/O descriptor from M2
Control all the attached channels and functional elements

h) Timer Commands and Functions:

Set absolute time register
Read absolute time register
Set time interrupt register
Read time interrupt register
Inhibit interrupt from time interrupt register
Allow interrupt from time interrupt register
Generate timer interrupt

... 443-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

5.1.4 InterProcessor Communications Bus (IPCB): The IPCB does
not have any severe time constraints placed upon it and for
this reason an eight bit wide time multiplexed communicating link
interfacing all the communicating elements (P's and I/O) is
proposed. If the IPCB is not busy then a communicating element
shall be guaranteed access to the bus within 1 ~sec. When
access is granted, each command or response byte shall be trans
mitted within 1/4 ~sec period.

Once the initial addressing byte has been placed upon
the IPCB communication is established and the IPCB becomes dedi
cated to transferring the indicated number of bytes at 1/4 ~sec

per byte. Thus an eight byte trapsmission would require 2 ~secs

for completion. The time period in which the receiving element
decodes its address is sufficient to determine the identity
of the sending element.

A wide variety of communications take place over the
IPCB. These are:

a) Cancel SNO: This command sends a stack number and off
set (SNO) address to all other processors. The receiv
ing processor looks into its CAM to see if the given SNO
address is present. If it is, the CAM entry is made va
cant and the processor returns an acknowledge signal.
The cancel SNO command requires the initial IPCB command
byte to be followed by three more bytes specifying the
given SNO address. This command is executed by the
receiving processor(s) and normally requires a 500 ns
pause during MP instruction execution.

b) Dump Ml: This command causes the receiving processor
to dump the state of Ml into a given M2 area. Whether
the prime or backup Ml is to be dumped is indicated in
the command.

The command requires a three byte transmission
after the initial address byte in order to specify
the M2 address for the Ml dump. Part of the second
byte is used to indicate the status of the error de
tection logic during the dump and also which of the
duplicate Ml's is involved.

c) Load Ml: This command causes the given area of M2 to
be loaded into the selected MI. This load Ml command
is similar to unload MI. Part of the second byte will
indicate whether both Ml's or which Ml of the processing
unit pair is to be loaded.

-444-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

d) I/O Commands: An I/O command is sent from a P unit to
an I/O unit. After the addressing byte, three bytes
are transferred to the I/O controller. These bytes
address an I/O descriptor. The I/O unit fetches this
descriptor from M2, interprets its command bits and
executes the appropriate I/O command.

e) Processor interrupt: The I/O unit determines which
process can be interrupted. The interrupt is then
directed from the I/O unit to the appropriate P unit.
The initial addressing byte is followed by an inter
rupt descriptor which is placed on top of the inter
rupted process's stack by the receiving processor.

Interrupts may also be directed to a particular P
from another P. However, all inter-P interrupts must
be sent through the I/O unit in order that the inhibit
interrupt condition may be tested and the interrupt
appropriately queued when necessary.

f) Inhibit/Allow Interrupts: When a processor inhibits
interrupts, an indication is sent to the I/O unit as
well as being retained within the processor's own
status word. Only one byte follows the initial address
byte. This second byte is used to indicate whether
the interrupts are to be allowed or inhibited.

g) Process Priority (Interruptibility Index): Since the
process priority is used in determining processor in
terruptibility, the I/O unit must receive this command
to indicate the priority of an executing process when
it is initially assigned to a processor. Only one byte
is required to indicate the priority based upon priority
values of 1 to 16.

h) Response: Important long transmissions required a re
sponse, so that the sending element can be informed
about the successful receipt of the message. This is
a necessary feature for fault tolerance.

i) Processor and Memory Failure: These commands are gen
erated by a P and directed to the I/O unit. They indi
cate a failure, and provide the I/O unit with the error
bits associated with the failure. This command requires
two bytes following the address byte.

j) Instruction Retry: When this command is issued to a
processor, the phase of the instruction which was being
executed at the time of failure is reexecuted.

-445-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

k) Timer Control: The timer element of the I/O unit act
ually contains two distinct counters. One is a 51 bit
counter which is incremented at a once per 1 ~sec

rate. This counter provides an indication of absolute
time for the system, and is also a source of unique
values for (time) tagging (see section 3.6). The other
is a register which is compared with the middle 21 bits
of the 51 bit counter. When an equality occurs, an in
terrupt is generated. Both counters in the timer may be
addressed separately for reading and for loading of new
or updated values.

5.1.5 Mass Memory (M3) Implementation

This presentation discusses M3 from several points of
view: requirements, technology and design issues.

5.1.5.1 Functional Requirements: The mass memory services two
major functions for the space station.

a) Memory Multiplexing. As the repository for most pro
gram and some data segments, the M3 functions as an
extension of the operating memory, M2. A segment is
the basic unit of memory multiplexing and consists
of a logical program unit or data unit which may vary
in size from a few words to many thousands of words.
The M3 address within a descriptor specifies the
starting address of the relevant segment. Issues con
cerning the physical allocation of space to segments
is discussed in section 5.1.5.3.

b) File Storage. The mass memory also serves the function
of temporary storage for active files. A file can be
addressed by name through an I/O command. However, its
program or data cannot be used until it is broken down
into segments. Files should reside on M3 while being
used, but after they are updated and become inactive,
the files may be moved to archival longtime storage.

Files may be dynamically created and destroyed.
For example, a file may be created on M3 to serve as
the repository for information to be sent to a printer.
After the printer (via the I/O) empties the contents
of the file, the file would be destroyed and the phy
sical M3 space it occupied can be recovered for other
uses.

-446-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Another example of file .creation is the recording
of experimental data for future processing. As data
is accumulated it is stored in a file on M3. When the
experiment is over, the file may be moved to tape and
at some future time the experimental data may. be pro
cessed.

5.1.5.2 Technological Aspects: Mass memories, with a capacity
in excess of 10 6 words, have been constructed from discs, drums,
tapes and even large core storage. Proposals have been made
to construct mass memories utilizing plated wire technology,
MOS integrated circuit technology and the new magnetic bubble
technology.

The characteristics of these technologies differ
significantly in terms of latency time and data transfer rates.
A plated wire or MOS M3 can be categorized by little, if any,
latency of the order of hundreds of microseconds, and a data
transfer rate of .5 to 2 MBPS. Drums and fixed head discs often
possess latency times of five to tens of milliseconds and a
higher transfer rate of 2 - 10 MBPS. Tapes generally have even
a longer latency time which is dependent upon the location of
the desired data on the tape.

The choice of which M3 technology to employ has
large interaction with the memory management design. One of
the major design decisions made at the beginning of the contract
was to assume that M3 was to be implemented with a head per
track drum or disk like device. The discussion of memory mana
gement was oriented in this direction. The reasons for this de
sign decision were:

a) The laboratory model of the space station multiproces
sor, will most assuredly utilized a disc or drum for
M3. Wi thin the 1972 to 1975 .time period solid state
mass memories present both a technological risk fac
tor as well as a large cost factor.

b) It seems reasonable that at least·early space stations,
circa.1980, will require technology which has been
proved by 1975. A conservative point of view would in
dicate that one should not rely upon a plated wire or a
solid state mass memory technological breakthrough
within the next three years.

In order to place some constraints on M3, the following
characteristics are proposed:

-447-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

a) Head/track disc or drum with electronic switching of
tracks. There will not be any mechanical parts except
for the drive motor.

b) A storage capacity in excess of 10 6 words. The M3
address in the descriptor contains 20 bits which can
address 220 or 10 6 different entities. When M3 is
used in memory management the addressable entity is a
segment. If one assumes an average of 2 6 = 32 words
per segment then the address field of the descriptor
can possibly access 32xl06 words on disc.

c) The disc latency time is of the order of 5 - 10 milli
seconds. The bit transfer rate is of the order of
5 - 10 MBPS.

d) Tracks can be electronically switched in 10 - 20 ~secs.

5.1.5.3 Design Issues: This section will discuss some of the
design problems which must be resolved during the detailed
design and implementation phases of the multiprocessor project.

a) Physical M3 Storage Allocation. A question arises as
to whether fixed size blocks or variable sized records
should be used on the disc. There are reasons for and
against the choice of either approaches:

1) Since the unit of memory management is a variable
sized segment it would seem that variable sized
blocks should be stored on the M3 device. Vari
able sized records are used by IBM on many of their
disc file devices. Records are separated by re
cord·gaps, as on a tape, and record identification
are contained within the record. The record gaps
and control information stored with each record
tend to reduce the utilization efficiency of the
storage medium.

2) with regard to M3 memory management, variable sized
records create more software problems than do fixed
sized blocks. M3 management includes the alloca
tion and deletion and compaction of M3 space. Vari
able sized records can create an external fragmen
tation problem on M3 similar to that which occurs
on M2.

3) If fixed sized blocks are employed then the map
ping of variable sized segments into fixed sized
blocks becomes a problem. If a segment is smaller

-448-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

than a block, internal fragmentation becomes an issue.
If a segment is larger than a block then one must
consider issues such as whether to link many blocks
together to form a segment, and whether they should
be contiguous or be placed randomly.

b} M3 Request Optimization. When M3 is a disk or drum
and a queue exists for M3 requests there is an optimum
ordering in which the requests' can be serviced to mini
mize the average access time. If a first come first
served (FCFS) algorithm is used for disc access then
the average access time increases as the disc queue length
increases. On the other hand, if a shortest search time
first (SSTF) algorithm is employed then most of the
disc requests can be serviced in a single M3 rotation.
This can significantly decrease the average disc access
time when the disc queue contains a larger number of
entries.

For devices with very high latency times such as
moveable arm discs the SSTF algorithm could possi~ly

prevent certain M3 accesses from being executed be
cause new accesses arise continuously with shorter
search time. An M3 constructed of plated wire techno
logy would possess a random access addressing scheme
with each access requiring the same time. In this case
all choices would be equally optimal and hence an FCFS
algorithm would be most satisfactory. It is seen that
as latency time decreases, the necessity for disc op
timization also decreases.

5.2 System Performance

This section will examine the impact of a number of de
sign areas upon the multiprocessor's internal performance.
The design areas to be considered are:

, a} Processor Design. This includes the overall effect
of MI 'and the higher order language oriented instruc
tion set.

b} Fault Tolerance. The restartable instruction design
and redundant writes with echo checks tend to reduce
performance as compared to a non-fault tolerant design.

-449-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

c) Internal Bus. The necessity for a generalized
switching arrangement between processing units and M2
units introduces a delay to each memory cycle which
reduces performance.

d) Memory contention. The effect of memory contention
yields an apparent increased M2 cycle time.

The following definitions will be used in the analysis.
For the purpose of this analysis an I/O unit is considered a
processing unit.

nl = number of processing unit cycles per unit time
for a single processing unit

n2 = number of M2 cycles per unit time associated
with a single processing unit

tl = processing unit cycle time

t 2 = M2 unit cycle time

t 2eff = effective M2 cycle time as seen by a proces
sing unit. This is measured from the initial
M2 request to the completion of the command.

U = useful work per unit time for a processing unit.
This is defined as the total number of processing
unit cycles plus the number of M2 cycles initia
ted by the processing unit. Usually processor
work is defined in terms of the number of instruc
tions per second. For a conventional 360 type ar
chitecture an instruction usually corresponds to
two M2 cycles.

In a sense the internal processor cycles should
also be considered useful work; e.g., indexing which
does not require an M2 access because it might use
an internal register is a very useful function.
Our multiprocessor makes very large use of its
internal MI storage and these cycles are just as
"Useful" as M2 cycles.

R = number of processing units

M = number of M2 memory units

Pr = probability of a processor making an M2 request

-450-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

From these definitions, it follows that:

Pr = n2 t 2eff = n2t2eff
nlt l + n2 t 2eff

5.2.1 Performance and the Processor Design

The above definitions yield the following formulation:

u = 1 - Pr +
t l

Pr
t 2eff .

The effect of the higher order language oriented in
struction set tends to keep the processor busier than a conven
tional instruction set. This is reflected in the parameter Pro
Semantic conciseness decreases the memory size needed for in
struction storage which implies that fewer M2 accesses are re
quried as compared to processing unit cycles and therefore Pr
tends to decrease. If the effect of Pr on t2eff is ignored
then Figure 5.2-1 shows U versus Pr for various ·values of t l and
t2eff· t 2 and t 2eff are assumed to be equivalent for purposes
of this graph. .

In general the smaller the value of Pr the greater the
performance.

•

5.2.2 Effect of Fault Tolerance

The implementation of restartable instructions tends to
increase the number of processor cycles, nl. We can discount
these extra Ml cycles used to buffer Ml and M2 writes and to
perform the copy cycle by defining an effective t l , t leff as
follows.

Every time a Ml write operation is desired it is first
written into the Ml temporary buffer area. It is subsequently
copied into its final location. the entire temporary storage
and copy including data and address cycles consists of five Ml
cycles instead of one. However, the majority of Ml cycles are
reads instead of writes. The exact ratio is difficult to de
termine without a representative instruction mix.

-451-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1G
-6 U

F
ig

u
re

5.
2-

1:
""

U
se

fu
.1

W
or

k
as

a
F

u
n

c
ti

o
n

o
f

P
r,

t
l

,
t2

u
=

1
-

P
r

+
P

r
tl

n

• .. V
1

N I

1
0 9 8 7 6 5 4 3 2 1

.9
o

.2
.3

.4
.5

.6
.7

.8
1

P
r

.-
-H

ig
h

o
rd

e
r

la
n

g
u

ag
e

in
s
tr

u
c
ti

o
n

s
e
t

c
o

n
v

e
n

ti
o

n
a
l..

....
.

M
ac

h
in

e

The following issues are involved in determining the
ratio of Ml read to write operations.

a) The Ml part of the stack has an equal number of read
and write operations. One can appreciate this by
realizing that whatever is pushed (written) into the
stack must ultimately be popped (read) from the stack.

b) The base register used for lexical level offset ad
dressing tends to produce more reads than writes.
Base registers are set up (written into) when a pro
cess is put into the running state or returned from
an interrupt. Once set up they tend to be read only
information.

c) The Descriptor Cache also tends to produce more read than
write operations. A write operation occurs whenever a
descriptor not contained in the cache is accessed. The
most recently used 32 descriptors contained in the
cache are read from Ml when SNO translation to abso-
lute M2 address is used. Descriptors are modified
(written into) whenever the status of the described seg-
ment changes.

d) Status register images tend to be write-only information.
They are read whenever a process is initially set up or
upon return from a fault condition.

The effective Ml cycle time can be expressed as

t leff = (1 - pw)t l + pw(5tl) = (1 + 4 pw)t l

where pw = Percent of Ml Write operations.

If pw' = 25% then the effective tl cycle time is doubled.
If pw = 50%, that is an equal number of read and write op
erations, then tleff = 3tl .

This effect is not quite as severe as it initially
seems, because all processing unit cycles do not require
Ml accesses. A processing unit cycle might just involve a
register transfer.

The second effect of fault tolerance is the echo
check of all write operations into M2. This makes a single
word write require 1.9 ~sec instead of 1 ~sec~ A read
still requires 1 ~sec. If M2 writes only constitute 10%

-453-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

of all M2 accesses then the effective M2 cycle time can be
calculated as:

t 2eff = .9(1) + .1(1.9) ~sec = 1.09 ~sec

This indicates that M2 seems 9% slower due to fault
tolerant actions.

5.2.3 Effect of the Internal Bus

The introduction of the internal bus adds delay be
tween the P and M2 units. A M2 unit has an 800 ns cycle time.
Addressing and data transfer add an additional 200 ns to each
M2 cycle. A single P and single M2 unit configuration without
any Ml would have a useful work factor of 1.25 x 10 6 units.
The internal bus reduces this to 10 6 units. However, this is
one of the costs one must endure for the flexibility of the
multiprocessor configuration.

5.2.4 The Effect of Memory Contention

Memory contention manifests itself as an effectively
slower M2 cycle time. This was derived previously as

= t 2 [1 + (R-l)Pr]
M

Substitution of this value into the equation for U we find

U = 1 - Pr +
t l

Pr
t 2 [1 + (R-l)Pr]

M

Figure 5.2-2 shows U as a function of R. We ignore the fact
that as R increases and t 2eff increases, Pr will tend to get
closer to 1. Therefore if a single P system has a Pr of 3/4,
for a multiple P system Pr will approach one.
Therefore the upper and lower curves are to be considered to
be assymptotes for small and larger R.

5.3 Laboratory Model

One of the
laboratory system.
tion in this area,
established.

requirements of this contract is to define a
In order to arrive at a specific recommenda

the basic purpose of the laboratory system was

-454-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840

t2
::

l1
1s

ec
M

=
1

6

8

t2
::

lJ
,J

se
c

7
6

.....
"

u
==

l-
p

r
+

p
r

-r
r-

t2
[1

+
(
R
-
1
)
p
~

2n

P
r

::
1

.....

P
r

::
3

/4
M

==
16

5

.....
..

p
o

ss
ib

le
A

c
tu

a
l

C
u

rv
e

.....
.

.
..

.....
.

.....
..

".
....

.

.l
'\.

ls
ec

4,
..

"
.....

3
2

F
ig

u
re

5
.2

-2
:

U
a
s

a
F

u
n

c
ti

o
n

o
f

R

l
.R

1
or
-
-
~
'

I 11

1
.5 1
.0 0
.5

2
.0

2
.5

3
.0

10
6 U

Z -
t m :D ~ ~ :D 0 (J

) z C1 0 :D \
) 0 :D ~ m 0 . -..

A o
·

.....
.

C1 0 Z C1 0 :D 0 »
I

< m
~

z
U

1
C

U
1

m
I

. (
) » ~ O
J

:D (5 G> m ~ » (J
)

(J
) » C1 x c en m ::::l (J
)

0 N
.
~ . a;

.
~ m

.
I

.
CD ~ 0

The main function of the laboratory system is to pro
vide a learning tool. The system will be used to verify and
modify the design concepts presented in the body of this re
port. For this reason flexibility of the proposed structure
from both a hardware and software point of view was emphasized.
This report presents concepts, most of which are to be imple
mented by software and firmware. For this reason the labora
tory model should try to minimize the degree of hardware
development.

It is clear that no existing system possesses all the
characteristics of the proposed multiprocessor design. Many
of the features will have to be simulated by firmware, and
software in order to provide a realistic model.

The ultimate purpose of the multiprocessor is to sup
port the operational, experimental and data management functions
of a future space station. Design is an iterative process:
The laboratory model will provide the means for observing bot
tlenecks in the design, and generating new design proposals for
further testing. The main functions of the laboratory model
are thus: design, test, and modify.

5.3.1 Features of the Laboratory Model

There are a number of desirable features which can be
incorporated into the laboratory model which will aid in verify
ing the design concepts:

a) The processing unit should be microprogrammable. This
will provide for implementation of the proposed instruc
tion set along with the flexibility for change. Micro
programming will also allow the full testing of re
startable instructions.

b) Floating point arithmetic must be employed. Micropro
gramming provides for its implementation.

c) The word length within the processing unit should be
64 bits. However, a 16 or 32 bit processor could be uti
lized by trading off time for word width.

d) The M2 memory modules should possess an information
width of 32 bits. The internal bus should provide a
mechanism for accumulating 32 bit words into 64 bit
double words.

e) The local Ml memory should be 96 words by 64 bits, with
an associated 32 x 22 bit CAM.

-456-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

f) The structure of the system should be flexible enough
to be efficient in implementing the needed descriptor
mechanisms. .

g) It would be desirable to run the system in real time.
However, without the specific proposed equipment,
it is realized that a simulation must degrade perfor
mance. In order to determine the system bottlenecks
generated by the dynamic execution of a complex soft
ware, the system should run in a "proportional real
time". The relation of execution time of the various
instructions should be in the proper ratio even if arti
ficial delays are required.

h) Both the hardware and software system should employ
,performance measuring mechanisms so as to make the job
of evaluating different system features efficient.

i) Two specific types of I/O equipment should be able to
be employed. The first category includes those faci
lities required to operate the laboratory model and
record performance data. This includes tape equipment,
possible card equipment, terminals, consoles, etc.
The second category includes those equipments required
in the space station environment: a data bus with its
associated avionics equipment or simulators attached.
Much of the equipment in both categories is similar,
such as a mass memory.

Flexibility in the I/O structure of the proposed
laboratory model is of major importance. The separate
I/O unit of the design tends to isolate the I/O from
the processing unit and therefore maximizes flexibility
of the I/O interface.

5.3.2 Uses of the Laboratory Model

The laboratory model will provide a vehicle to determine
the appropriateness of various algorithms suggested in this re-
port. Many questions concerning the exact performance of the pro
posed mechanizations are unresolvable·without an actual implementation.

Some of the measurements to be made and questions to be
resolved by the lab model include:

5.3.2.1 Operating Memory (M2):

a) How does M2 access conflict vary with the number of M2
modules?

-457-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1·840

b) How does system performance change as the degree of
interleaving within the M2 units is varied?

c) How is system performance affected by a change in M2
cycle time?

d) What is the proper relative size between M2 and M3?
How small can M2 be made before thrashing occurs?

e) How much overhead is consumed by memory management?

5.3.2.2 Processing Unit (P and Ml):

a) Measure the instruction frequency.

b) Determine the processor utilization factor (1 - Pr)
by measuring the relative number of Ml and M2 cycles.

c) How much work does each processor perform? This mea
surement should be made for a varying number o~ P and
M2 elements.

d) How is system performance affected as the size of the
CAM varied? What is the minimum sized CAM that can be
utilized without a significant performance degradation?

5.3.2.3 Programming:

a) Demonstrate the ease of using a HOLM for applications
versus just a HOL.

b) Determine the effectiveness of the instruction set
for implementing compilers and the operating system.

c) How efficient is the compiled code in terms of M2
space utilization?

5.3.2.4 Fault Tolerance:

a) Verify the restartable instruction design.

b) Verify the logical consistency of the recovery techni
ques.

c) Measure the relative recovery times.

-458-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

5.3.2.5 Communications:

a} Measure the amount of traffic on the IPCB. Both aver
age and peak bit rate, as well as the number of mess
ages per second.,

b} Measure the average bit rate on the internal bus.

c} How much traffic does the I/O contribute to the in
ternal bus.

5.3.2.6 I/O:

a} How is system performance affected .by placing the I/O
command tables for each channel in local MI memory
associated with the I/O controller as opposed to M2?

b} What is the effect of the "Quiet Interrupt" concept?
Is system performance increased?

c} How sensitive is system performance to a change in the
interruptibility algorithm? Could a random processor
be chosen to service system level interrupts? Is an
algorithm based upon more than the process' static
priority required?

d} What is the duty cycle of the I/O controller? Is it
saturated or is it idle most of the time?

5.3.3 Off the Shelf Equipment

The major ,elements of the multiprocessor are the pro
cessing unit (p), local memory (MI), operating memory (M2),
input/output unit (I/O) and mass memory (M3). The internal
bus and I/O bus interconnect these elements and create the
structure for the computer architecture.

Our study of off the shelf hardware started with an
investigation of different manufacturers of hardware elements.
Three major elements which required special attention were P,
I/O and the internal bus. The memory elements could be imple
mented by a large number. of suppliers.

A number of promising machines were investigated for
possible use as the processing unit. Any machine which could
not be microprogrammed was eliminated because of the lack of
flexibility. Processing elements that were investigated in
cluded: INTERDATA 80, QM-I, META-4, and the Burroughs D-Machine.

-459-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

A brief description of the characteristics of these machines is
presented below.

a) INTERDATA Model 80 (Interdata Inc.)

The Interdata Model 80 is a high speed micropro
grammed control processor which operates from a 60 ns
control memory. The processing word width is essen
tially 16 bits. The model 80 possesses 16 general pur
pose registers which can be used as index registers
or accumulators. Memory is available in 16K byte MaS
modules with a cycle time of .25 ~sec.

The 16 registers and its standard instruction set
makes it look very similar to a 360 type architecture.
However, a writeable control store is available to
generate a specialized instruction set.

The memory bank controller allows two ports into
memory. One port is dedicated to the processor while
the other provides high speed direct memory access (DMA).

The Interdata 80 possesses many shortcomings as
far as the laboratory model is concerned.

1) 16 bit words will create a slow system when 32 or
64 bit accesses are required. However, the high
speed (250 ns) MaS memory tends to negate this cri
ticism. This short length is typical of many other
minicomputers that one might consider for use as
the processing unit of the laboratory model.

2) The 16 general registers are not sufficient to im
plement an Ml of the size needed, and therefore
main memory must be used.

3) The memory interface is not designed for multipro
cessor applications when more than two processing
units are required.

b) Meta-4 (Digital Scientific Corporation)

The Meta-4 processing unit consists of data regis
ters, data processing logic, microprogrammed control
utilizing a changeable ROM, and an integrated circuit
scratchpad memory. Data Registers are 16 bits wide
and up to 32 may be employed. In addition up to 256
words of 16 bits each of high speed scratchpad is avail
able with an 80 ns cycle time. This would serve well
to simulate the MI.

460-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Memory modules may possess up to four ports thus
allowing a three processor/one I/O unit configuration
to be employed. If four memory units were contained
within each module, the simultaneous access through
these four ports would require four memory controllers.

As compared to an Interdata 80, the Meta-4 is sup
erior in the ability to create a multiprocessor with
local Ml storage. Its major drawbacks are:

I} The 16 bit word would create a slow emulation of
the proposed multiprocessor.

2} The control store is a ROM and is therefore not
writeable. However the user may substitute dif
ferent ROM boards to create instruction changes.
The creation of the ROM board is a simple matter
of peeling off metalic strips from a program
board. This can be done in any laboratory.

3} Expansion beyond four ports into memory would be
very difficult.

c) QM-l (Nano Data Corporation)

The QM-l offers an exceptional degree of flexi
bility in a processor unit. Control is
effected by double level emulation with a micro-control
store driving a nano-control store. The micro memory
is a writeable control store. The data width is 18
bits. One of the major features of the machine is the
variety within the memory hierarchy. This includes
main memory up to 5l2K bytes of 750 ns core, a local
store of thirty-two 18 bit registers, external register
consisting of thirty-two 10 bit registers, control
store of up to 32K 18 bit words, apd a nano store up
to lK 360 bit wide. This hierarchy of storage with the
extremely wide nano memory, and potentially large
degree of processing parallelism would certainly prove
quite satisfactory for implementing the proposed instruc
tion set.

Unfortunately there are two important shortcomings
to the machine:

I} The word length is fixed to 18 bits.

2} The structure of the memory interface is not ami
able to a multiprocessor configuration.

-461-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 ·,(617) 661-1840
. " I'

d) D-Machine (Burroughs Corporation)

The Burroughs D-machine is an unusually modular
and flexible architectural design, which is capable
of application to a wide variety of problem areas. In
its basic multiprocessor configuration, it consists
of three major building blocks: interpreters, switch
interlock, and memories. The interpreter is a micro
programmed processor and is used to perform both arith
metic/logical computation and I/O device control. The
switch interlock is the communication network which
links interpreters, operating memory, and I/O devices.

The D-machine interpreter is constructed from
five functional parts: memory control unit (MCU),
control unit (CU), logic unit (LU), microprogram memory
(MPM), and nanomemory (NM). (See Figure 5.3-1) The
word length of the interpreter depends only upon the
logic unit, which is modular in 8-bit blocks, from 16
bits to 64 bits. The use of microprogramming enables
the control logic to be quite regular in structure,
resulting in economy of manufacturing. Additionally,
different microprograms may be used with the same hard
ware to implement different instruction sets for dif
ferent applications. Furthermore, if a read-write rather
than read-only MPM is attached, the system can reload
its MPM dynamically to run programs written in different
machine languages at different times.

To save storage, the microprogram structure of the
interpreter has been divided into two logical sections:
micro and nano. The, control of functional operations
within the interpreter is dictated by the contents of
a location in nanomemory. Each of the 56 bits corres
ponds to a control line for the elements of the LU, CU,
and MCU. A given nanoword is selected under control
of a microword which specifies the nanoword's address
in nanomemory. As a result, nanowords may be referred
to by many microwordsi hence, the bit saving.

The switch interlock (SWI) is a communication net
work which connects the interpreters, operating mem
ories, and devices, The basic configuration is designed
for four interpreters, eight memories, and eight de
vices. Hardware expansion beyond this is possible since
the switch interlock is designed to be expandable. Be
cause of the lesser logical complexity of the operations
in the SWI per clock cycle compared with the interpre
ter, the SWI may be run at a higher rate than the inter
preter. This permits introduction of a degree of

-462-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~icroprogrm ...
Memory Nanomemory External conditions

From SWI..
••

Control •
IUnit I

f+-

I'
Memory
Control Logical
Unit Unit I--.

I--

Addresses to SWI To other interpreter To SWI

Figure 5.3-1: Interpreter Block Diagram

-463-

serialization which reduces the number of required
parallel paths, diminishing complexity. Consequently,
the building block of the SWI is a single bit wide.
These may be combined to the degree necessary for high
throughput.

The SWI can interconnect interpreters to one of
two types of ports, either a memory port or a device
port. Memory ports are charact~rized by the fact that
an interpreter cannot be locked to a memory module for
more than one memory cycle. Device ports allow a de
vice to be locked to an interpreter for as long as
desired. Devices can only be locked to one interpreter
at a time while interpreters may be locked to many
devices.

Burroughs is producing both a commercial and a mil
itary version of the interpreter-based system. The
commercial version is being used for disk controllers
and for other applications not yet announced. The
military configuration is funded. by the Avionics Lab
at Wright-Patterson AFB and consists of a five-inter
preter system.

Microprograms have been written which enable the
machine to run D825 programs and B300 programs. A
demonstration of these and of dynamic switching between
them is in current operation at Burroughs', Paoli, Penn
sylvania location. A full operating system for multi
processor configurations is expected to be operational
soon.

The major shortcoming of the D-machine is the fact
that there is little local storage associated with an
interpreter. However, Burroughs has assured that an
Ml unit can be attached to a device port, which will
serve the function.

e} Other Minicomputers

The majority of minicomputers are not satisfactory
as the processing unit of the multiprocessor for one
or more of the following reasons:

a} They are not microprogrammable with a writeable
control store. This is a required feature in order
to implement the HaL-oriented instruction set in a
laboratory environment where the means for modifi
cation is necessary for development.

-464-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

b) The word length is too short being 8, 16, or 24 bits in
length, and therefore requiring a multiple memory access
for 32 or 64 bit fetches. This would tend to slow the
system performance.

c) The memories are not structured to be able to accept a
variable number of inputs from the different P and I/O
units. That is, they were not designed to be elements
of a multiprocessor.

Realizing that. the purpose of the laboratory model is to
test concepts, in the total system design, it is apparent that the
hardware development effort should be minimized. The Burroughs
D-machine in contradistinction to the other candidates is more
than just a processing unit. The D-machine also provides, be
sides its interpreters, M2 memory modules and I/O device ports
all of which are interconnected through a switch interlock to
allow a multiprocessor configuration. The choice of the D-machine
is therefore to be preferred for the laboratory model since no
other equipment could match its flexibility and minimize the hard
ware development cycle to the same degree.

5.3.4 Configuration utilizing the D-Machine

Figure 5.3-2 shows the proposed laboratory model em
ploying interpreters (I), a sWltch interlock (SWI), M2 modules,
an M3 unit, a space station oriented peripheral interface, and
an I/O equipment interface for controlling the laboratory model.

Three interpreters are to be used for the three pro-
cessors while the fourth interpreter will be dedicated to be
the I/O unit. The fifth interpreter will gather detailed op
erating statistics of the lab model and will control the com
mercial peripherals. By separating the statistics gathering func
tion of the laboratory model from the operating aspects of the space
station multiprocessor, it is thought that more realistic ex
perimental situations may be generated.

Associated with each I is an MI-CAM combination at
tached to a device port of the switch interlock. A device
port is utilized in order that the MI-CAM can be permanently
dedicated to a particular I. Another device port interface
contains a data bus control unit (DBCU). All of the space
station peripheral equipments can be attached to this data bus.
It would also be possible to have the actions of the special
ized experiment simulated by another interpreter.

-465-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE, CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I
I

..
I

~
,,

I

{
C

<
<

~.
,.

,. "
.

"
.

..
"

C
T

I I

I ~
I

0
'\ I

I I

M
2

M
2

M
2

C
A

M
C

A
M

I
t

M
1

M
1

C
A

M I M
1

M
3,

D
a
ta

b
u

s
I

l>
se

u

C
o

m
m

er
ci

al
P

e
ri

p
h

e
ra

l
E

q
u

ip
m

e
n

t
I

M
PX

"-
_

v
¢

1
'"

M
em

or
y

P
o

rt
s

u
p

to
1

6
M

2
m

o
d

u
le

s

--
--

--
--

-.
,-

--
-"

,.
.-

....
..

'V
""

D
e
v

ic
e

P
o

rt
s

F
ig

u
re

5
.3

-2
:

P
ro

p
o

se
d

L
a
b

o
ra

to
ry

M
o

d
el

Since M2-M3 management is a critical high speed function,
the M3 unit (disk) is given an independent device port. Finally
all the commercial peripheral equipment such as card readers,
printers, terminals, and magnetic tape are attached to another
distinct device port through a multiplexer (MPX). It is anti
cipated that one interpreter interfaced through a peripheral
multiplexer can handle all the equipment needed to start, stop,
dump and monitor the multiprocessor system. Provisions should
be made to vary the number of M2 modules from 1 to 16 in order
to measure the effect of memory contention upon performance,

5.3.5 How to Use the Laboratory Model

This section will describe how various features of the
proposed multiprocessor may be implemented on the D-machine.

5.3.5.1 M2 Interleaving and Addressing: The proposed design
specifies that four M2 units should be interleaved on their
lower order address bits. The addressable M2 entity is a 32
bit word. Both single and double words may be requested in a
single M2 command.

One may conceive of requiring the SWI and
specialized hardware to provide these functions. However, this
would be a permanent change. A better alternative would be
to allow the microprogram to generate the address appropriately.
Since the interpreter must, in any case, generate the M2 ad
dress under micro-control, the interleaved mapping could be
accomplished at this level with a microsequence. This tech
nique allows the degree of interleaving. and the details of the
memory commands to become a parameter which may be varied to
study and improve system performance.

5.3.5.2 Local Memory and the CAM: The CAM and Ml are not
standard components of the D-machine. It is proposed to design,
build and interface three of these units through device ports
of the SWI. Present day technology allows 16 bits of associative
memory to be purchased in one circuit chip. Our design speci
fies 640 bits. An important parameter to be measured will be
system performance as a function of the number of words in the
associative memory. The amount of CAM to use is conveniently
a parameter which the microprograms could control.

The Ml storage can be purchased with from 64 to 1024
bits on a single circuit chip. Since the requirements indicate
6144 bits for each Ml unit, technology is of no problem in this
area.

-467-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

By constructing a specific MI-CAM combination tailored
to our needs, it is anticipated that this emulated system will
be able to perform without much degradation.

5.3.5.3 Fault Tolerance: It is realized that error detection
is very specific to the particular hardware elements employed.
A verification of the error detecting mechanisms discussed in
this report cannot be realistically attempted with a simulation
model. However, many of the principles of recovery from pro
cessor, MI and M2 failure may be verified by simulating
the error conditions through an interrupt.

The fault tolerant processing unit design specified in
chapter 4 requires two processors and two MI-CAM units to be
configured into one unit. This unit will provide the error
detection mechanisms and part of the recovery mechanism. In
order to simulate this design with D-machine components, two
processors with their dedicated MI-CAM can be made to execute
the same code. The question is whether they can be synchronized
sufficiently to enable a restartable instruction to be inter
rupted by an error signal. Synchronization may be obtained by
either hardware or firmware. A cornmon clock may be used for
two interpreters and their associated MI-CAM units. While this
is not a difficult task, it is a hardware modification. Alter
natively the firmware can synchronize the interpreters by testing
global condition bits which may be set into all interpreters.
The testing of these conditions at fixed times within the micro
program will enable a faster interpreter to stall and the slower
one to catch up. While this type of synchronization costs time,
it is flexible, and real time is of secondary importance as com
pared to the verification of the recovery principles.

The micro-control will allow instructions to be designed
as restartable with a compute and a copy phase. The time dif
ferential between the restartable version of the instruction
and the non-restartable version will also be an informative
measurement.

The redundant storage in M2, and the 32 or 64 bit accesses
will be under micro-control, and therefore the M2 access width·
can be varied to determine its effect upon system performance.

5.3.5.4 The Laboratory Model and Real Time: The D-machine was
chosen to implement the laboratory model because it was felt
that it provided an architecture which was closest to the pro
posed multiprocessor. For this reason it is hoped that a rea
sonable measurement of the MP's potential real time performance
may be made. A number of factors will tend to make the lab
model slower than the proposed design.

-468-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840,

a) The Ml-CAM combination is removed from the interpreter.
It therefore will run slower than the proposed Ml-CAM.
A 64 bit access including address generation is rea
sonable in 200 ns instead of 100 ns.

b) The interpreter is not as powerful a computation de
vice as the proposed processor. For this reason many
of the hardware features of the proposed processor
must be emulated through firmware. This will of course
slow down. the system performance.

c) The necessity to control memory interleaving in, and
simulate the primitive memory commands with an inter
preter instead of in the M2 module proper, will increase
the apparent M2 cycle time.

When all these factors are considered it is reasonable
to estimate that a performance degradation by factors of two
to eight might be obtained in the laboratory model. This is
really quite satisfactory when one considers that a software sim
ulator can run 100 to 10,000 times slower than real time.

-469- .

INTERMETRICS INCORPORATED· 701 CONCORD-AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

