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The Weber-Davis model of the solar wind is generaiized to include the effects of latitude. 
The principal assumptions of high electrical conductivity, rotational symmetry, the 
polytropic relation between pressure and density, and a flow-alined field in a system 
rotating with the sun, are retained. An approximate solution to the resulting equations 
for spherical boundary conditions at the base of the corona indicates a small component 
of latitudinal flow toward the solar poles at large distances from the sun as a result of 
latitudinal magnetic forces. 

ABSTRACT 

The purpose of this paper is to demonstrate that even 
with spherically symmetric boundary conditions at the 
base of the corona, the magnetic field introduces a small 
latitude effect in the solar wind that should be 
measurably significant at large distances. As motivation 
for a more general development it is useful to consider 
the magnetic forces predicted by the spiral field 
approximation of Parker [ 19581. The magnetic force 
per unit mass for this model is 

where Bo and po are reference values for the magnetic 
field and density. The total force per unit mass is then 
given by the negative gradient of the sum of the thermal 
energy per unit mass, the gravitational energy per unit 
mass, and the magnetic energy per unit mass (eq. (1)). 
The thermal term is assumed to be falling adiabatically 
toward zero at large distances, and the gravitational term 
is decreasing toward zero; however, for spherical 
boundary conditions on Bo and po, the magnetic term 
depends upon sin2e and does not decrease explicitly 
with r. This suggests that changes in momentum at large 
distances may be dominated by the magnetic field. 
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The magnetic torque per unit mass for this model is 
then 

r = rX(dV/dt) = -(Bo2/4np0) sin 6 cos 6 $ (2) 

which acts to drive the plasma toward the poles, 
producing a nonzero component of the 6 component of 
velocity Ve. For infinite electrical conductivity, the 
presence of a finite component of V6 implies a finite 
component of Be through the process of convection. 
The assumed field is therefore inconsistent with respect 
to latitude and requires a more general treatment. It 
should be noted that the magnetic stress given by this 
model results because of the component of the 
magnetic field. Since this winding of the field is due to 
solar rotation, the effect demonstrated here may be 
expected to persist in a more general treatment. 

The approach to be described here is identical with 
that of Weber and Davis [1967] except that the 
equations are generalized to include the effects of 
latitude through the development of the normal 
component of momentum. We begin with the 
steady-state flow equations subject to the following 
assumptions: (1) neglect viscosity, (2) isotropic thermal 
conductivity, (3) infinite electrical conductivity, 
(4) equal electron and proton temperatures, and 
(5) energy equation may be replaced by the polytropic 
law. We further assume rotational symmetry and that 
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the magnetic field and flow velocity are parallel in a 
reference system rotating with the sun. A flowalined 
field may be generally represented by 

B =KPU (3) 

where U = V-wsr sin 8 $ is the flow velocity in the 
rotating system, V is the flow velocity in a fixed system 
of reference, p is the mass density, and os is the solar 
rotation rate. The condition V. B = 0, combined with 
the equation of continuity, requires K to be a streamline 
constant. The physical meaning of K is obtained by 
noting that the quantity K ~ ~ / ~ I T  must be unity at the 
AlfvCn point, or K *  = 4n /p~ where p~ is the density at 
the AlfvCn point. 

With rotational symmetry the 4 component of the 
momentum equation may be directly integrated to 
obtain VG as a function of r, 8, and p ,  which when 
combined with the magnetic field as a function of 
velocity and density (eq. (3) ) ,  reduces the problem to 
one of two-dimensional flow in the r8 plane. Given 
boundary conditions, the unknowns at a general point r, 
8 are p ,  Vr, and V8, which are determined by the 
equation of continuity, the parallel component of 
momentum (Bernoulli's equation), and the normal 
component of momentum. The problem is complicated 
by the presence of three critical surfaces corresponding 
to the fast, slow, and AlfvCn modes of propagation in 
the medium. 

A particular streamline will be designated by 
specifying its coordinate 8, at the base of the corona, 
which is constant along the streamline. There are six 
required boundary values that must be specified or 
determined as functions of Bo at the coronal base: 
To(B0), P ~ ~ , ) .  vro(80), veo(eo/, K(eo), and the total @ 
component of angular momentum along the streamline 
L(8,). The requirement that the velocity components be 
finite at the three critical surfaces supplies three of the 
required boundary conditions for Ve,, K, and L .  
Further, if Bo(8,) is specified, then Vro may be 
determined through equation ( 3 ) .  Hence, we chose to 
specify T,(B,), pde,), and B,(8,), the magnitude of 
the total magnetic field at the coronal base. 

W e  find that the best way to cope with the critical 
surfaces is to integrate the equations along a streamline 
until the critical point is encountered and then to vary a 
boundary condition until the streamline that passes 
through is determined. Because of the differential form 
of the equations, integration along a streamline is 
possible only if the previous neighboring streamline is 
known. Hence, to start the integration, the polar limit of 
the equations is required. However, the equations at 

the pole are not closed and an assumption is necessary to 
obtain the polar limit. A complete solution to the 
problem is possible through a process of iteration over the 
entire set of streamlines; however, techniques we have 
been able to devise thus far are too costly. 

As a first approximation to the solution, we chose to 
close the equations with the assumption 

Ve/Vr = -(r[df(r)/dr] /f(r)) sin 8 cos 8 (4) 

which integrates to 

tan 8, = ffr) tan 8 (5) 

Equation (4) is the lowest order 8 dependence for which 
Ve is zero at both the equator and the pole. The radial 
function f(r) specifies the shape of the streamlines. 
Radial flow in the r 8 plane is given by f(r) = 1 and 
df(r)/dr = 0. The function f(r) is determined by integra- 
tion of the limit of the normal component of momentum 
along the polar stream line. In the polar limit we have 

ae,/ae = f(r) (7) 

The results of equations (4) and (5) and the polar 
integration of ffr) for two sets of constant temperature, 
density, and magnetic field at the coronal base are 
presented in tables 1 through 4 and figure 1. Figure 1 
shows the radial dependence of Ve along a streamline 
for the two sets of boundary conditions; tables 1 and 2 
tabulate the resulting values at 1 AU, and tables 3 and 4 
tabulate the corresponding critical surfaces. 

The function ffr) obtained at the pole is not overly 
sensitive to reasonable changes in the assumed model to 
close the equations for constant boundary conditions. 
The general shape of the curve results from the physics 
of the problem and is maintained. Since Ve for 8, = 10" 
may be obtained directly from the polar solution 
through equation (6),  this curve should be in close 
agreement with an exact solution. The curves for 
8, > lo", however, are contingent upon how well the 
assumption contained in equation (4) approximates the 
normal component of momentum at lower latitudes. 

The results presented here indicate a modest 
latitudinal flow toward the poles due to magnetic 
stresses, which persist out to very large distances from 
the sun for spherical boundary conditions at the corona. 
Associated with this flow is a 8 component of the 
magnetic field. The radial flow parameters are not 
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Figure 1. Latitudinal flow velocity for two sets of constant boundary conditions at the 
coronal base, ro = l.OX10' cm. Curves for Bo =SO", 60", 70" and SO" are nearly 
identical with the displayed curves for 40°, 30", 20" and IO", respectively, and are not 
shown. 
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Table 1.  
[Constant coronal boundary conditions: To = 2X106 OK, No = 3X106 particles/cm3, Bo = 1 gauss] 

Predicted values at 1 AU 

4 

- 
eo Y 

deg - 
10 

20 

30 

40 

50 

60 

70 

80 - 

BdBr 

9.88 

19.78 

29.70 

39.65 

49.65 

59.69 

69.77 

79.88 

8*, 
deg 

10 

20 

30 

40 

50 

60 

70 

80 

Velocity, kI: 

Ve 

e, 
deg 

9.48 

19.01 

28.66 

38.46 

48.44 

58.62 

68.98 

79.45 

- 
Vr 

403 

403 

403 

403 

403 

403 

404 

404 

- 

_. 

ic field, IOq5 gauss 
B@/Br 

-0.28 

-0.54 

-0.72 

-0.83 

-0.83 

-0 .’? 3 

-0.55 

-0.29 

Density, Temperature, 
protons/cm3 “K 

sec - 
$ - 

0.19 

0.37 

0.53 

0.68 

0.8 1 

0.9 1 

0.98 

1.03 

- 
3.57 

3.57 

3.56 

3.55 

3.54 

3.53 

3.52 

3.51 

-7.06~ 1 o - ~  

-1.80~ 10-3 

-2.05~ 10-3 

-2.06~ 10-3 

-1.33X lo-’ 

- 1.82X 1 0-3 

-1.35X lov3 
-7.22~ 10-4 

gauss 

BQIBr 

-0.19 

-0.38 

-0.55 

-0.7 1 

-0.85 

-0.96 

-1.04 

-1.09 

Density, 
protons/cm3 

13.6 

13.6 

13.6 

13.5 

13.5 

13.5 

13.5 

13.5 

remperature 
“K 

3.16X 10 

3.16X 10 ’ 
3.16X 10 ’ 
3.16X I O  ’ 
3.16X10’ 

3.15X105 

3.15X10’ 

3.15X10’ 

Table 2. 
[Constant coronal boundary conditions: To = 2X106 OK, No = 1X106 particles/crn3, Bo = 1.5 gauss] 

Predicted values at 1 AU 

Velc - 
vr - 
402 

402 

403 

403 

403 

404 

404 

404 - 

-2.37 

-4.50 

-6.1 5 

-7.13 

-7.27 

-6.51 

-4.81 

-2.64 
__ 

‘sec - 
v@ 

0.60 

1.16 

1.64 

2.05 

2.34 

2.56 

2.69 

2.78 - 

- Magn 
Br 

6.75 

6.70 

6.64 

6.56 

6.47 

6.39 

6.32 

6.27 

- 

- 

W B ,  

-5 .89~ 10-3 

-1.1 2x 1 r 2  

-1.53X 

-1.77X10-2 

-1.80X 

-1.61X1r2 

-1.19X10a2 

-6.54X 1cr3 

-0.1 8 

-0.36 

-0.53 

-0.69 

-0.83 

-0.94 

- 1.03 

- 1.09 

5.85 

5.83 

5.80 

5.75 

5.71 

5.66 

5.62 

5.59 

3 -28x1 0’ 

3.28X10’ 

3.28X10’ 

3.27X 10’ 

3.27X 10’ 

3.27X10’ 

3.26X 1 O5 

3.26X10’ 
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Table 3. Oitical surfaces Table 4. eitical surfaces 

No = 3X106 particles/cm3,Bo = 1 gauss] 
[Constant coronal boundary conditions: To = 2X106 O K ,  [Constant coronal boundary conditions: To = 2X106 O K ,  

No = 1X106 particles/cm3,Bo = 1.5 gauss] 

$0, 

deg 

10 

20 

30 

40 

50 

60 

70 

- 

$0 3 

deg 
- 
10 

20 

30 

40 

50 

60 

70 

80 - 

Slot 
‘S, 

solar 
radii 

4.015 

4.013 

4.011 

4.008 

4.003 

4.001 

3.999 

Slow mode - 
‘S7 

solar 
radi 

1.01 2 

4.01 1 

4.010 

4.008 

4.006 

4.004 

4.003 

1.002 

- 

- 

Bs, 
deg 

9.997 

19.994 

29.992 

39.991 

49.991 

59.992 

69.994 

79.997 

AlfVC 
‘A, 

solar 
radii 

15.233 

15.226 

15.21 1 

15.194 

15.174 

15.159 

15.144 

15.136 

mode 
7 

deg 

9.979 

19.961 

29.947 

39.940 

49.940 

59.947 

69.96 1 

79.979 

rf> 
solar 
radii 

15.239 

15.236 

15.233 

15.230 

15.226 

15.224 

15.221 

15.220 

Fast mode 
O f ,  
deg 

9.979 

19.961 

29.947 

39.940 

49.940 

59.947 

69.961 

79.9791 180 13.997 

significantly different from the Parker or Weber-Davis 
models for latitudinal flow velocities up to about 
10 kmlsec. 
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node 
Bs. 

deg 

9.997 

19.994 

29.992 

39.991 

49.99 1 

59.992 

69.994 

79.997 

Alfvkn mode 
‘A 2 

solar 
radii 

36.043 

35.93 1 

35.773 

35.578 

35.354 

35.178 

35.020 

34.93 1 

$A 7 

deg 

9.895 

19.803 

29.736 

39.701 

49.703 

59.740 

69.805 

79.896 

Fast mode 
rf> 

solar 
radii 

36.067 

36.027 

35.977 

35.914 

35.827 

35.781 

35.73 1 

35.703 

T 
deg 

9.895 

19.803 

29.734 

39.698 

49.698 

59.734 

69.803 

79.895 
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