
N 7 3 - 11 184

NASA CONTRACTOR
REPORT

NASA CR-128997

OPTIMUM SPACEBORNE COMPUTER

SYSTEM DESIGN BY SIMULATION

By T. Williams, J. E. Weatherbee, and
D. S. Taylor

Computer Sciences Corporation
Field Service Division
Aerospace Systems Center
8300 S. Whitesburg Drive
Huntsville, Alabama 35802

September 1, 1972

CASE FILE
COPY

Prepared for

N A S A - G E O R G E C . M A R S H A L L S P A C E F L I G H T C E N T E R
Marshall Space Flight Center, Alabama 35812

TECHNICAL REPORT STANDARD TITLE PAGE
1 . NFPOKT NO.

NASA OR-128997

2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

4. TITLE AND SUBTITLE

î
Optimum Spaceborne Computer System Design
By Simulation

5. REPORT DATE

September I, 1972
6. PERFORMING ORGANIZATION CODE

7. AUTHOR (S)

Dr. T. Williams, Dr. J.jg. Waatherbee,.and Dr. D.S. Taylor
8. PERFORMING ORGANIZATION REPORT =

PERFORMING ORGANIZATION NAME AND ADDRESS

Computer Sciences Corporation
Field Services Division, Aerospace Systems Center
8300 S. Whitesburg Drive
Huntsville, Alabama 35802

10. WORK UNIT NO.

11. CONTRACT OR GRANT NO.

NAS8-21805

12. SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration
Washington, D.C. 20546

13. TYPE OF REPORT a PERIOD COVERED

Contractor Report

14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

A deterministic digital simulation model is described which models the Auto-
matically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer
system for future manned and unmanned space missions. Use of the model as a tool
in configuring a minimum computer system for a typical mission is demonstrated,
using as an application mission the proposed Reusable Shuttle Booster (RSB) stage.
While ARMMS is not a candidate for the RSB computer, this application was chosen
as a vehicle for demonstrating the simulator because of the availability of a
detailed description of the RSB data processing workload.

The configuration which is developed as a result of studies with the simulator
is optimal with respect to the efficient use of computer system resources, i.e., the
configuration derived is a minimal one. Other considerations such as increased
reliability through the use of standby spares would be taken into account in the
definition of a practical system for a given mission.

17. KEY WORDS

Configuration
Modular
Multiprocessor
Optimum
Reconfigurable
Simulation

18. DISTRIBUTION STATE

B. Hodges
Computer Systems Division
MSFC/Computation Laboratory
Unclas sified -Unlimited

19. SECURITY CLASSIF. (of this report)

Unclassified
20. SECURITY CLASSIF. (of this page)

Unclassified

21. NO. OF PAGES

37
22. PRICE

NTIS

M?FC - fmm 3292 (May 1969)

Table of Contents

Section I

Section II

Section III

Section IV

Section V

Introduction

System Description

A. ARMMS Baseline

B. Workload Description

Simulator Description

A. General Description

B. System Simulator

C. Interface Simulator

System Simulation

A. Introduction

B. Determination of Number of CPU's

C. Determination of Number of
Memory Modules

D. Multiple Instruction Fetch

E. Determination of RAM/CPE
Bus Widths

Conclusion

References

1

3

3

3

11

11

11

15

18

18

20

23

24

25

30

31

iii

ACKNOWLEDGEMENT

The authors wish to acknowledge the project monitor, Mr. B. Hodges

(S&E-COMP-C) for technical contributions and liaison work with Astrionics

Laboratory and also his helpful discussions throughout the duration of

this project.

Thanks is also due to Dr. J.B. White (S&E-ASTR-CA) for his continued

cooperation and encouragement during the course of this work.

iv

SUMMARY

A deterministic simulator is described which models the Automatically

Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer

system for future manned and unmanned space missions. Its use as a tool

to study and determine the minimum computer system configuration necessary

to satisfy the on-board computational requirements of a typical mission

is presented.

The effectiveness of a simulation model of a computer system as a

design tool depends on the accuracy and fidelity of the definition of

the specific data processing load. Hence, the simulation techniques are

described in relation to a specific spacecraft performing a specific

mission, namely the Resusable Shuttle Booster (RSB) stage which had been

considered in the early phases of the shuttle program as the first stage

of the transport from earth to low orbit.

While ARMMS is not a candidate for the RSB computer, this application

was chosen because of the availability of a detailed description of the

RSB data processing workload in which the computational requirements of

the various RSB subsystems have been identified by mission phase and are

used as parametric inputs to the deterministic model of the complete

data processing system.

This report describes how the computer system configuration is deter-

mined in order to satisfy the data processing demand of the various Shuttle

Booster subsystems. Various assumptions have been made which may be unrealistic

from the standpoint of the ARMMS presently being designed, but were used in

order to define a basic system which could be simulated and allow the capa-

bilities of the model to be demonstrated.

The configuration which is developed as a result of studies with the

simulator is optimal with respect to the efficient use of computer system

resources, i.e., the configuration derived is a minimum one, other con-

siderations such as increased reliability through standby spares would be

taken into account in the definition of a practical system for a given mission.

VI

I; INTRODUCTION

The advent of third generation computing concepts has created problems

in the selection or design of a computer to process a given workload. For

example, multiprogramming enables the computer system to process more than

one task concurrently, allowing more efficient utilization of system

resources such as central processing unit and input-output subsystems; this

concept, however, has made the selection or design of a computer system no

longer the relatively simple task it once was.

A great amount of effort has been expended on this problem of matching

a modern computer system to its data processing workload resulting in many

different approaches such as simulation, mathematical modeling, etc. (NIELSEN,

N.R., 1967), (GAVER, D.P., 1967). In order to accomplish such an optimized

match, however, detailed knowledge of both the proposed system and workload

is required.

This report presents an approach to the optimization of the Automatically

Reconfigurable Modular Multiprocessor System (ARMMS) to a well-defined data

processing workload. ARMMS is presently being designed by Astrionics

Laboratory of the Marshall Space Flight Center, Huntsville, Alabama, and is

addressing the anticipated requirements for both higher computing capacity

and reliability which may characterize spaceborne computers in the late 1970*s

to mid-1980's. ARMMS is intended to achieve both of these objectives through

a highly modular computer architecture which can be configured as a multi-

processor for maximum computing speed or as a triple modular redundant (TMR)

system with standby spares for extremely high reliability. Moreover, the

configuration will be dynamic in that it will be possible to change the con-

figuration in real time as needed by various mission phases or events.

The workload used in this study was that for the Reusable Shuttle

Booster (RSB) Stage which had been considered in the early phases of the

shuttle program as the first stage of the transport from earth to low orbit.

While the ARMMS is not intended for the RSB computer, this application was

chosen because of the availability of a detailed description (Univac Report,

1971) of the RSB data processing workload. This combination of the ARMMS

system description and the RSB workload description is used to illustrate

the optimization procedure through a method of digital simulation.

The RSB data processing workload is typical of most aerospace applica-

tions in that it consists of a number or repetitive tasks which iterate at

various rates. In the RSB application, however, many of these tasks must

operate in a high reliability, i.e., TMR, mode. Hence, the situation exists

where such a task will use three CPU's for a few milliseconds and then

release them for use by other tasks which may be required to operate in the

simplex mode, i.e., single CPU, for a further few milliseconds. These tasks

will update system data elements, which in turn will be used by other executing

program modules.

In an environment of such complexity, simulation of the system is

imperative in order to determine the values of system resources such as

number of CPU's, width of data busses, number of input/output channels, etc.

The remainder of the report describes such a simulation model together

with the results of a series of simulation runs in which various system

parameter values were established for the ARMMS system in its hypothetical

role as the on-board computer for the Reusable Shuttle Booster.

II. SYSTEM DESCRIPTION

A. ARMMS Baseline

The basic ARMMS configuration is shown in Figure 1. It consists

of a Central Processing Element (CPE) composed of a number of central pro-

cessing units (CPU's) which execute programs contained in a random access

memory (RAM) backed up by bulk storage. External subsystems communicate

with the computer via the Input/Output Element (IOE). Various data busses

interconnect the system modules, as shown in Figure 1.

The system operates under the control of a dedicated executive

module, the Block Organizer and System Scheduler (BOSS).

The number of CPU's, size of RAM, number of input/output processors

and the widths of the various data busses will be dictated by the data pro-

cessing and reliability requirements of each particular mission.

B. Workload Description

A detailed data processing workload analysis is essential in order

to perform a realistic design of the associated data processing system.

Such an analysis has been performed for the Reusable Shuttle Booster (Univac

Report, 1971) and was used to define the requirements of an on-board com-

puting system. This workload description consists of the identification of

a number of discrete mission time-phases during which specific program

modules are executed and interact with specific data elements. Each program

module is defined in terms of the amount of memory required, the number and

type of instructions executed, the input and output data rates and the pro-

gram iteration rate. The program modules interact with a number of data

elements, each of which is defined by its size, the update iteration rate,

Block
Organizer

and
System
Scheduler
(BOSS)

Bulk
Storage

I \D\JOO)

Random Access
Memory
(RAM)

Input/Output
Element
(IOE)

Central
Processing
Element

(CPE)

External
Subsystems

Figure 1. Basic System Configuration

and function, i.e., whether it is a source of or a destination for data

associated with the program modules and external subsystems.

Shuttle Booster Mission Phases

The various phases of the Shuttle Booster Stage have been identi-

fied and are shown in Figure 2. Note that this timeline refers to a

reusable booster stage which is intended to re-enter the earth's atmosphere

after each launch, then cruise and land like a conventional aircraft.

Program Module Description

A sample program module description is shown in Figure 3. The

program module described is called BIGP (Boost Iterative Guidance Program)

and is defined in terms of its total number of instructions, the number of

long and short instructions executed in a normal iteration, the required

data space, the number of times the program executes per second, the relia-

bility requirement, and the mission phases during which the program executes.

This description allows an exact allocation of memory space to be

made to each module, consisting of an instruction area and a data area. Also,

knowing the CPU execution speed, the amount of CPU time per iteration may be

found directly from the total number of instructions executed per iteration.

The reliability requirement determines whether one or three CPU's

are required each time the program executes.

Data Element Description

A data element is defined by the number of times it is used per

second, its size in bits, its sources of updated data and the program ele-

ments and/or subsystems which use its data.

0 BEGINNING OF PREIAUNCH CHECKOUT

1 START UP OF THE VEHICLE ELECTRICAL GENERATORS

2 INTERNAL ELECTRICAL POWER ACHIEVED

9 NEAR END OF PRELAUNCH CHECKOUT (GO-INERTIAL)

10 BEGINNING OF LAUNCH

11 INITIATION OF PITCHOVER

18 END OF BOOST SIGNIFICANT ATMOSPHERE

19 BEGINNING OF THRUST TERMINATION

20 BEGINNING OF COAST

30 BEGINNING OF REENTRY

32 ENTRY INTO SIGNIFICANT ATMOSPHERE

34 END OF SURVIVAL PHASE

40 BEGINNING OF CRUISE

50 BEGINNING OF LANDING

51 INITIATE LOWER LANDING GEAR

52 LANDING GEAR DOWN

60 TOUCHDOWN

61 END OF TAXI

70 FERRY TAKE OFF

71 LANDING GEAR UP

80 BEGINNING OF BOOST ABORT

81 END OF BOOST ABORT

82 PILOT INITIATION

83 PROGRAM COMPLETION

Figure 2. Shuttle Booster Mission Phases

PL,
O
R
PQ

Ed

§

PR
O

G
RA

M
 N

O -* r-N
r*̂ co co

T-4

o
W Q
H W

W 8^ i
CO CO

TO
TA

L
IN

ST
R

U
C

TI
C

SH
O

RT

IN
ST

R
U

C
TI

C
LO

N
G

IN

ST
R

U
C

TI
C

*

O t-l OO O
CM VO

H* PP EH
M M H M
PQ PQ PQ PQ

CO
N

ST
A

N
T

(2
4

-3
2

CO
N

ST
A

N
T

(1
2
-1

6
V

A
RI

A
BL

E
(2

4
-3

2
V

A
RI

A
BL

E
(1

2
-1

6

IT
ER

A
TI

O
N

S
/S

E
C

CO
u
4̂

RE
DU

ND
AN

CY

oo o
i— 1 CM

W
CO

Hi

o w
!S CO
1 1 _^4

IN
IT

IA
L

SC

H
ED

U
L]

D
ES

CH
ED

U
LI

N
G

PH

/

0)
I—I
3

I
00
O
M
PL,

E
CD

CO

BO

A number of such data elements are described in Figure 4: for

example, ABEFU (Accelerometer Bias Error Functions) and BPAYAC (Boost

Pitch and Yaw Attitude Commands) are both single source/single destination;

ABEFU being updated by the Navigational Subsystem (NAV) and used by program

module SDSU (Strapdown Start Up Program), while BPAYAC is updated by

program module BIGP (Boost Iterative Guidance Program) and is used by

the Flight Control Subsystem (PCS). Other examples are shown in Figure 4

for single source/multiple destination, multiple source/single destination

and multiple source/multiple destination elements.

Data Base Description

The above information concerning program modules and data elements

is combined into a single data base entry for each executing program. A

sample entry for BIGP is shown in Figure 5.

@ »
CO PQ

*

Q
a
H

Q PQ
PH

*

W CO
N H
M M
CO PQ

0

H W
^ E**t
PH f̂l
W PS
H
HI

"*•£ F*3

<; a
u

CO CO
Q U
CO fa

o
> PH
<; H
E2 PQ

v£> CN
r*^ co
10

vD CM
r-l

U

w <;
PQ PH<; PQ

CM vO CM PH PH H
CO r-l O fa O CO
Q Q O O O PH
co co co PQ o 5s

vO
Q
CO

CM
O\
i— (

CM
CO

PH

B

M

j.̂

35
M H

i— 1

0
Q
CO
h4
M
<J

PH
CO O

co S co
o u o
« H H

<J

S3
Pi
H

8

a
o

a,

u
CO
0)
a

M/

§

(0
•U
03
Q

0)
i-l
Q.

I
CO

3
M

ca

(U
4-1
CO
!*>
CO
J3

CO

C
O
Viu
a

eg
eg

4J

CQ
(1)

s
CO
VI
00
o
Via.
(U
Vi
ca
CO

§
Vi
u
ca

VI
cu
4J
0)

Vi

o
fa

O

I
rt

13
CO

CM

PH H

gy

S
M H

Cw
0)
CO
(0

CO

B

o.
E
CO

CO

ro

H

CO

§
Ql

1

00

CO

m

10

III. SIMULATOR DESCRIPTION

A. General Description

The simulator to be described allows the interaction of the

various program modules, data elements and external subsystems to be

analyzed. A portion of this complex interaction is shown in Figure 6,

where the basic ARMMS system of Figure 1 has had superimposed upon it

some of the interacting program modules and data elements described

above. Figure 6 shows the program module BIGP in execution at a

rate of 1344 short and 376 long instructions two times per second.

BIGP requires 707 words of instruction space and 97 words of data space.

It requires updated information from data elements INEVAP and TPTNCT

which are themselves updated at rates of 32 and 2 per second respectively.

BIGP supplies information to data element BPAYAC, which is used by the

Flight Control Subsystem (FCS).

Figure 6 represents a snapshot of an instant in time; when

BIGP finishes a particular iteration it releases its CPU for use by another

program module. Should any program module fail to iterate at its required

rate, due say to priority conflicts with other modules, the simulator will

flag the event as real time violation. It is the object of the simulation

to have all program modules and data elements executing at their predefined

rates within a minimum system under the constraint of no real time violations.

B. System Simulator

The system simulator is a program which implements the functions

described in Figure 6. Its flowchart is shown in Figure 7.

11

RANDOM ACCESS MEMORY (RAM)

BIGP
I-BANK (=707)
D-BANK (= 97)

INEVAP
(IRATE=32)

TPTNCT
(IRATE=2)

INPUT/OUTPUT
ELEMENT
(IOE)

CENTRAL PROCESSING

BIGP
SINST (=1344)
LINST (= 376)
PRATE (= 2)

EXTERNAL
SUBSYSTEM

(PCS)

BPAYAC
(ORATE=2)

Figure 6. Portion of ARMMS Baseline Data Flow Simulation

12

revious
Iteration*
omplete

Select Program
for Execution

Processor(s
vailable?

Assign Processor(s)

Update Data
' Element(s)/Subsystf

1 r

(Release A
Processor(«y

Fig«re77.- System Simulator Flowchart

13

Each program has a pre-assigned priority based upon its iteration

rate and reliability requirement. The priority assigned to each program

is given in Table 1, where a high figure implies a high priority; the

letters T and S refer to the TMR and simplex modes of operation, e.g.,

16/T describes a program which iterates at a rate of 16 times per second

in the TMR mode.

Itn. Rate /Mode

Priority

64/T

14

64/S

13

32/T

12

32/S

11

16/T

10

16/S

9

8/T

8

8/S

7

4/T

6

4/S

5

2/T

4

2/S

3

1/T

2

i/s

1

Table 1. Program Priority Scheme

From the iteration rates shown, it is obvious that each program has a dead-

line time which must be met in order to avoid a real-time violation. Hence

for no real-time violations, programs having priorities 13 or 14 must execute

every 1/64 sec., those with priorities 11 or 12 every 1/32 sec., etc.

When a program's deadline time arrives, a check £s made to see if the

previous iteration of that program is complete: if it is, the program is

entered in the CPU queue; if not, a real-time violation (RTV) flag is set.

Program modules for which the RTV flag is set are denied entry into the CPU

queue until the previous iteration is complete.

Programs are selected from the CPH queue in order of their priority,

higher priority programs having the ability to preempt executing programs

of lower priority. Execution takes place for a time determined by the

number of long and short instructions to be executed per iteration. This

execution allows data elements and/or subsystems to be supplied with

updated data.

14

After each execution iteration, the processor(s) are released

for use by other programs of lower priority which are currently resident

in the CPU queue.

C. Interface Simulator

As was stated in Section III.B, the duration of each iteration

cycle of each executing program tnoduel is determined by the number of

short and long instructions executed per iteration. Examples of short

instructions are ADD, SHIFT, JUMP; while MULTIPLY, DIVIDE are typical

long instruction types. The execution times for each instruction is

specified for the ARMMS CPE and hence,.by assuming a Gibson mix (SMITH,

J. M., 1968) for all programs, an average execution time may be determined

for both long and short instructions. Referring to Figure 1, the basic

ARMMS configuration, which represents a system having a number of CPU's

interacting with a random access memory consisting of a number of modules,

a situation can arise where more than one CPU will try to access

a given memory module. When this occurs, interference takes place with

a resultant delay in the execution of one of the conflicting programs.

In an environment such as this, therefore, it is no longer valid to deter-

mine the execution time of any given program on the basis of average

instruction execution time alone.

In order to take the effect of memory interference into account, it

was necessary to simulate the interference at the CPE/RAM interface. This

was done by means of the Interface Simulator.

The flowchart of Figure 8 illustrates the function of this

simulator: it is initialized by specifying all input parameters

such as number of CPU's, number of memory modules, data bus widths,

number of instructions fetched per access, etc.
13

f Start J

Specify All
Input

Parameters

Select I-Bank
Memory Module
and Fetch a
Predetermined

No.of 'Instructions

Is
I-Bank
Fetch
eq'd?

Is
US-Sank

Fetch
Req'd?

No

Select D-Bank
Memory Module

and Fetch
Data

Hold for
Instruction
Execution
Time

Has
imum No."

Instructions
Been Run

Figure08.- Interface Simulator Flowchart

16

The Interface Simulator operates under the assumption that there

is always a non-zero set of instructions awaiting execution by each CPU;

this represents a worst case condition. Note from Figure 8 that an instruc-

tion fetch and data fetch are not initiated for all instructions executed:

for example, an instruction'fetch is not always necessary if a multiple

instruction fetch is incorporated in the simulated CPE; similarly, a data

fetch is not required for every instruction executed, e.g., JUMP. Values

of functions defining the fetch/no fetch ratios are supplied as inputs to

the Interface Simulator. This fetch/no fetch ratio is a function of the

system, being simulated and the data fetch/no fetch ratio is a function

of the instruction mix; in the present simulation, a Gibson mix was assumed.

The Interface Simulator computes the total execution time for both

long and short instructions by simulating the execution of a large number

of instructions. This number, which is supplied to the simulator as input,

is presently set at 3000, giving a variance of less than 1 percent on the

computed times.

17

IV. SYSTEM SIMULATION

A. Introduction

This section describes how the simulation models were used to

determine values for those parameters necessary to specify the design of a

minimum computer system capable of performing the data processing for all

mission phases of the Reusable Shuttie Booster.

In the work to be described, certain system parameter values were

fixed due to constraints other than data processing throughput; in addition,

certain assumptions were made. These are:

(a) The maximum number of tasks which can process concurrently is

three. This figure was derived from consideration of the load

placed upon the executive module, BOSS.

(b) There are two one-way busses for communication from the CPE to RAM,

and another two connecting RAM to the CPE. These busses are

time shared by the three instruction streams assumed under (a);

two busses were considered necessary for the purpose of reliability.

(c) The processing speed of the CPE is fixed: This arises due to the

fact that ARMMS is an extension of the Space Ultrareliable

Modular Computer (SUMC) which is presently under development at

MSFC, and it is anticipated that a version of SUMC will be the

processor module of the ARMMS system.

(d) The RAM cycle time is assumed to be 750 n.sec: This is avail-

able using present-day passive memory technology and is close

to the memory speed proposed for ARMMS. Destructive readout is

assumed.

18

(e) There is no triplication of stored data for the TMR operation:

All memory transfers will be parity checked and the data fanned

out into three CPU's where TMR is required.

(f) A single address instruction format is assumed; in general,

one operand is fetched from RAM and the other from a bank of

general registers located in each CPU.

(g) The bus transfer time is 100 n,sec.

(h) The time taken to assign a task to a processor or pre-empt an

operating task is 100 n sec.

(i) The basic machine word length is 32 bits.

The simulation models were then used to determine:

(a) The effect of multiple instruction fetches per memory access;

(b) The number of CPU's;

(c) The number of RAM modules;

(d) The widths of the system busses.

The approach taken was to inspect the workloads for each mission phase

and select the one which appeared to place greatest demands upon the computer

system. Mission Phase 18 appeared to be the most stringent in its require-

ments and was selected as the workload on which the initial investigations

were performed. This phase was characterized by the requirement that all

tasks were required to operate in the TMR mode, constraining the system to

operate with a multiple of three CPU's.

19

B» Determination of Number of CPU's

Since the actual average long and short instruction execution times

are functions of the system configuration and the resulting memory/CPE inter-

face conflicts, a set of runs was made in which the execution times were

varied over a wide range and any real-time violations noted. Figure 9 shows

the results of such a set of runs as simulated for three CPU's; it can be

seen that, if the long instruction execution time exceeds 5 n sec for a 1n sec

short instruction execution time, or 3 psec for a 1.5 Msec short instruction

execution time, real time violations occur. The corresponding times for the

SUMC processing unit are known to be of the order of 6 and 2 fsec, respectively,

and, hence, a single TMR processor set is inadequate for the task of processing

the Mission Phase 18 workload.

Figure 10 shows a similar chart for six CPU's, i.e., two TMR sets.

It can be seen that this configuration will readily process the Mission Phase 18

workload under the constraint of the SUMC processing times.

Note that these tests were carried out on a system having a single

input/output subsystem and a single bit CPE-IOE bus width. These parameter

values were chosen after it was established that they imposed no constraints

on the system due to the relatively light amount of I/O activity to and from

the external subsystems.

Hence, it is concluded that the ARMMS system will require six CPU's

in order to meet the data processing and reliability requirements of Mission

Phase 18.

Having established the need for six CPU's, the Interface Simulator

was then used to determine the effect upon instruction execution times of

(a) varying the number of RAM modules

20

H

O

O W
M O
H Prf

IS 4

NO

YES

YES

YES

NO

YES NO

1.0 1.5 2.0

SHORT INSTRUCTION EXECUTION TIME
(MICROSECONDS)

YES - All program deadlines met
NO - Some program deadlines not met

Figure 9. Results from System Traffic Model Runs with 3 CPU's

21

LO
N

G

IN
ST

R
U

C
T

IO
N

 E
X

EC
U

TI
O

N

TI
M

E
(M

IC
R

O
SE

C
O

N
D

S)

I-
1

I-
1

a\

*~
i

oo

\o

o
I-

*

YES

YES

YES

YES

YES

YES

NO

YES

YES

YES NO

SHORT INSTRUCTION EXECUTION TIME
(MICROSECONDS)

YES - All program deadlines met
NO - Some program deadlines not met

Figure 10. Results from System TrafficeMpdel Runs with 6 CPU's

(b) multiple instruction fetch

(c) variation of the width of the RAM/CPE busses

All these tests were performed with relation to Mission Phase 18

in that two instruction streams were simulated representing the two TMR

sets required by that Mission Phase.

Also, an analysis of the proposed instruction set as mapped into

a Gibson mix revealed that 16 percent of all instructions required no D-bank

access, and this figure was used in all experiments performed.

The RAM/CPE busses were assumed to be 32 bits wide.

C. Determination of Number of Memory Modules

A set of tests was carried out on the Interface Simulator to

determine the effect, upon instruction execution times, of varying the

number of RAM modules assigned separately to the storage of instructions

and data. Table 2 shows the instruction execution times obtained from

these tests as a function of the number of I-bank and D-bank modules.

Module Size
(K Words)

No. I-Bank Modules
No. D-Bank Modules

SIT Grsec)
LIT (usec)

8

4
8

2.02
6.20

4

8
16

2.01
6.19

2

16
32

1.99
6.16

SIT = Short Instruction Time
LIT = Long Instruction Time

Table 2. Instruction Execution Time as a Function
of Number of Memory Modules

23

It can be seen from Table 2 that the amount of memory interference

is small when greater than 12 memory modules are used. The total memory

requirement for Mission Phase 18 is approximately 32K of I-bank and 64K of

D-bank; hence, Table 2 represents the effects of varying module size from

8K to 2K.

From the standpoint of reliability, it is unlikely that an 8K

module would be used since it represents too large a "throwaway" module.

Hence, the 4K module was chosen and used in all further studies to be

described.

D. Multiple Instruction Fetch

The design contractor of the ARMMS system (Hughes Aircraft Company)

has recommended the concept of a small local store within each CPU. A major

function of such a local store would be to retain a small number of previously

executed instructions so that, should a branch backwards within this bound

occur, an instruction fetch from main memory is not required. After a detailed

analysis of an extensive set of aerospace programs, Hughes state that a

saving of 4 percent in the number of instructions accessed in main memory

is achieved for an eight instruction retention capability. While this has a

negligible effect upon instruction execution times, an eight word instruction

retention capability will handle approximately 35 percent of all branch instruc-

tions (Hughes Report, 1972). The remaining 65 percent of the branch instructions

are jump-ahead type, and were assumed to represent 10 percent of all other

instructions.

These figures were used as the basis for a set of experiments to

determine the effect of multiple instruction fetch upon instruction execution

times. Table 3 shows the results of these experiments for 2,4 and 8 instruc-

tions fetched per memory access.
24

Instructions per Fetch

SIT (/isec)

LIT (M sec)

1

2.01

6.19

2

1.63

5.75

4

1.40

5.57

8

1.29

5.45

SIT = Short Instruction Time
LIT = Long Instruction Time

Table 3. Instruction Execution Time as a Function
of Number of Instructions per Fetch

The greatest percentage improvement is observed in going from

one to two instructions per fetch, and this improvement was used in the

next set of experiments as a trade-off against reduction in RAM/CPE

bus widths.

Note that a two-instruction fetch implies reading a double

word from memory on each memory access.

E. Determination of RAM/CPE Bus Widths

From Figure 10 it can be seen that the 6 CPU configuration can

meet all real-time requirements with execution times of up to 3 /usec for

short instructions and up to 8 /tsec for long instructions. Table 3 shows

that the two instruction fetch produces execution times of 1.63 Msec and

5.75 fisec, respectively, for short and long instructions when using 32-bit-

wide RAM/CPE busses. Instruction execution speed is traded off against

RAM/CPE bus widths in Table 4 which summarizes the results of a set of

tests where the RAM/CPE bus widths were held equal but reduced from the

32-bit baseline value down to a width of 4 bits.

25

RAM/CPE
Bus Widths (bits)

SIT (JA sec)
LIT (/i sec)

32

1.63
5.75

16

1.91
6.03

8

2.48
6.62

"4

3.63
7.68

Table 4.

SIT • Short Instruction Time
LIT - Long Instruction Time

Instruction Execution Time as a Function of
RAM/CPE Bus Widths

These results show that the RAM/CPE busses can be reduced to a

width of 8 bits and still satisfy the real-time requirements of Mission

Phase 18.

Hence, based upon the computational requirements of Mission

Phase 18 together with the constraints stated in Section IV.A, the optimum

configuration of the ARMMS system is

• 6 CPU's

• 8 x 4K RAM modules for Instruction storage

• 16 x 4K RAM modules for data storage

• 2 instruction fetch per memory access

• 8 bit RAM/CPE busses

• single Input/Output Element (IDE)

• single bit CPE/IOE bus

This configuration is shown graphically in Figure 11. The effects upon

instruction execution time of the parameter variations performed to

arrive at this configuration are illustrated in Figure 12.

The above configuration was then used in the simulation of the

data processing required by Mission Phase 9, the one assessed to be the

next most demanding upon data processing resources after Phase 18: Phase 9

is characterized by having mixed mode execution, i.e., both simplex and TMR.

26

o
n-l
+J
CO

00
-rt

60
i-l
(14

27

8 -i

2 cj •o w 4 ~"

u%
w

2 -

8 -I

6 ~

z o ,o w 4

£

8 -

§ 6 -
M
H

w 4 -

2 -

8K 4

OPTIMUM CONFIGURATION

LONG INSTRUCTION

SHORT INSTRUCTION

2K

MEMORY BANK SIZE

I
8

NUMBER INSTRUCTIONS PER FETCH

I
J 16

BUS WIDTH (BITS)

Figure 12. Instruction Execution Time as a
Function of System Parameters

32

28

The instruction execution times produced by the Interface Simulator

were 2.53 /xsec and 6.73 ^sec, respectively, for short and long instructions.

These times were derived under worst case conditions where a three instruction

stream environment was assumed for the whole of Mission Phase 9. Since this

Phase is mixed mode, two instruction stream operation will occur part of the

time when two TMR programs are executing concurrently.

Using the above instruction execution times, all Phase 9 programs

were simulated without producing any real-time violations.

The simulation of Mission Phase 9 was repeated with the same con-

figuration, but this time under the assumption that all programs executed in

the TMR mode. Instruction execution times of 2.48 and 6.62 ;usec, respectively,

were used as derived for the case of two instruction streams. Again, no real-

time violations occurred.

Checks on several other Mission Phases revealed no real-time viola-

tions when using the two TMR set configuration; hence, for the Reusable Shuttle

Booster application, all programs should execute in the TMR mode, thereby

relieving the Executive Module BOSS of the task of scheduling for a mixed

mode operation.

29

V. CONCLUSION

A deterministic simulator has been described and its application as a

design tool illustrated by the hypothetical example of defining a minimum

Automatically Reconfigurable Modular Multiprocessor System (ARMMS) which can

process the data pertaining to the Reusable Shuttle Booster mission.

It has proved possible to define the required ARMMS hardware in terms of

(a) number of CPU's;

(b) number of RAM modules; and

(c) width of the system busses.

This definition was based upon a data processing load description which

was broken down into a number of mission phases, each mission phase being

defined in terms of the executing program modules and associated data elements.

The program module description consisted of the total number of instructions,

the number of long and short instructions executed per normal interation, the

required data space, the number of times the program executes per second, and

the reliability requirements. Each data element was defined by the number of

times it is used per second, its size, and its sources of updated data and the

program elements and/or subsystems which use its data.

It is concluded that, provided the data processing requirements can be

defined to the above level of detail, a minimum hardware configuration can be

derived. Further, in an environment where high reliability is a requirement

for some programs, this type of model can be used to determine the effect of

executing all programs in a high-reliability mode, with the attendant advantage

of relieving the Executive System of the task of mixed mode scheduling.

30

REFERENCES

NIELSEN, N.R., 1967, "The Simulation of Time Sharing Systems,"

Communications of the ACM, Vol. 10, pp. 397-412.

GAVER, D.P., 1967, "Probability Models for Multiprogramming Computer

Systems," Journal ACM, Vol. 14, pp. 423-438.

UNIVAC Report No. PX 6550-1, 1971, "Space Shuttle Booster Data Manage-

ment System (DMS) Requirements Analysis," prepared under Contract NAS8-30186.

SMITH, J.M. , 1968, "A Review and Comparison of Certain Methods of

Computer Performance Evaluation," The Computer Bulletin, Vol. 11, pp. 13-18.

HUGHES AIRCRAFT CO., 1972, "Design of a Modular Digital Computer System,"

prepared under Contract NAS8-27926.

31

