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PREFACE 

This volume contains i h ~  technical proceedings of the Workshop an the Mathe- 
matics of Profile Inversion. which was held at tbe NASA/ Ames Research Center, Moffett 
Field, California, during July 12 through J U I ~  '16. 1971. Ninety-six invited scientists 
fiom nine countrizs representing several sciet~tific disciplines participated In the work- 
shop. Their names and affihations are given 111 an appendix. 

T:l Setter understand the purpose of the ~ o r k s h o p  and the contents of the proceea- 
ings, it IL desirable to define broadly, what is meant here by profile inversion. In many 
areas of physical science, fundamental junctions that deiine or describe a physical medium 
are computed from experimental data obtained through "remote sensing" of that medium, 
:.s opposed to direct, or in situ, measlrement. The fundamental firaction is related to the 
experimental data through a differentlal equation (partiai or ordinary), and the reccinstruc- 
tion of the basic functicn or some of its properties constitutes the general class of inverse 
problems. The term inlterse distinguishes these problems from the "direct" problem 
where, given the physica! rneciiurn - its fundamental function - one calculates hypothe- 
tical experimental results. The direct problem is normally more amenable to solution 
than the inverse problem, due mainly to the absence of both data limitations and experi- 
mental error in the former. In mcst inversion applications it is important to deduce the 
spatial variation (radial, height, etc.) cf the fundamental function from the experimental 
data; hence, t k  inclusion of the term profile. 

Some tifile ago. Dr. Mario Grossi of Raytheon Company was pursuing theoretical 
research concerned with the inversion of radio data to determ~ne the taciial refractivity 
profile of an atmosphere through which the radio waves had propagated - the radio- 
occultation experiment, now performed successfu~ly on several U.S. planetary probes. In 
this experiment, coherent radio waves are transmitted from the spacecraft toward earth 
and recorded there. 4s the waves traverse the planetary atmosphere and ior cgphere they 
are dispersed (and scattered and abiorbed) by those media. The inversion problem is to 
compute the refractive inricx distribution (hence presstire, temperature, and electron den- 
sity) as a function cf ra2il:s from the center of the planet using the rccorded data along 
with proper algorithiis. 



Inversion algorithms for this experiment had been under development for several 
years by the Stanford University and Jet Prcpulsion Laboratory scientists involved, but a 
very significant contribution was published in the March 1968 Journal of Geophysical 
Restnrch by two seism~logists: R. A. Phinney of Princeton University and D. L. Anderson 
of the California lnstitute of Technology. They showed that the radio-occultation inver- 
sion problem is identical, in principle, to the problem of determining the variation of 
seismic velocities in the earth from the observed travel times of seismic body waves - what 
seismologists call the geophysicai inverse problem. In applying the geophysical inverse 
problem algorithms to the radio-occultation inversion problem, Dr. Grossi recognized that 
in several other branches of physics, inversior~ techniques are mandatory for determination 
of the intended scientific resu!ts. He subsequently suggested to the National Aeronautics 
and Space Administration that all scientists concerned could mutually benefit from a 
symposium at which the various individual inversion techniques were outlinzd, discussed, 
and explored with respect to their interdisciplinary applicability. NASA concurred and 
requested the undersigned to organize the undertaking. 

To ensure adequate representation from each of the major scientific disciplines 
involve4, a Steering Group was formed: M D. Grossi, Raytheon; J. E Jackson, Goddard 
Space Flight Center; H. E. Moses. Air Force Cambridge Research Labs; R. G. Newton, 
Indiana University; W. Nordberg, Goddard Space Flight Center; A. M. Peterson, Stanford 
University; R. A. Phinney, Princeton University; and J. Shmoys, Polytechnic lnstitute of 
Brooklyn. Each was responsible for organizing and chairing a single, half-day session de- 
voted to his specialty. This responsibility kicluded specifying speakers and their contribu- 
tions, as well as recommending other participants. Their effort; led to seven formal sessions 
devoted to the following disciphnes: passive atmosplleric sounding, active atmospheric 
sounding, occultation measurements, ionospheric sounding, particle scattering, electromag- 
netic scattering, and seismology. Some 37 invited papers were presented and discussed. 
These formal sessions were followed by twa informal workshop sessions devoted to short 
voluntary contributions and a panel discussion zxploring, in depth, the interdisciplinary 
aspects of the various algorithms. 

For lack of time, s-veral scientific disciplines involving inversion prcblems were not 
formally structured into the program. These include atmospheric sounding by sonic booms 
and stellar occultation, structural mechanics, plasma diagnostics, lunar conductivity measure- 
ments, underwater soundings, biomedical xpplications, and others. However, most of these 
areas were represented by participants in the audience, several of whom made short contri- 
butions during the last sessions. 

The organization of these proceedings generally follows that of the workshop. 
Seven chapters are devoted to each of the major disciplines. Written accounts of the 
invited papers are contained therein, each followed by edited accounts of the suhscquent 
discussions. Each chapter concludes with a comprehensive bibliography, including the 
references from the individual papers. Chapter 8 contains certain of the extended volun- 
tary contributions offered during the workshop sessions, as well as other short, miscella- 
neous, but important, contributions offered during the panel discussions. Chapter 9 
contains the workshop summary papers. 

The workshop was unique in that neither the scientific methods nor the scientific 
results were emphasized or critiqued; the mathematical techniques and algorithms lead- 
ing to those results were. Of course, it was recognized that often the nature and form of 
the physical profiles lead naturally to the algorithms involved, and thus are introduced 
invariably in the papers, hut the scientific meanings of these profiles are not important 



here. In organizing the workshop, we emphasized scientific areas in which profile inversion 
is an indispe,*sable part of experimentation. However, the inversion algorithms run the 
gamut from being almost nonexistent t o  being highly sophisticated. I feel safe in saying 
that each participating scientist benefited from the workshop in terms of the primary goal. 
learninq of inversion algorithms developed in one discipline that has application m his own. 
An added bonus, perhaps not clearly recognized in the organizational stages, was that Ge- 
tailed exploration nf the algot:,hms led to  conceptual thinking for planning future experi- 
me~lts. 

As with any undertaking oi this scope. there are many people who contributed to the 
success of the workshop. The members oi' the Steering Committee, mentimed above, did 
an outstanding job in organizing and cor.ducting their sessions and in attracting leading 
scientists. Special thanks are due W. Smith who, substituting for W. Nordberg at the last 
moment, did an excellent job in chairing the session on passite atn1r)spheric sounding. 
Dr. P. C. Sabatier should be singled out  for his illuminating contributions and his heroic 
summary paper. Several Arnes personnel helped make the Workshop and the publication 
of this volume quite a bit easier and 1e:s frustrating: Zelda Ballantine, C. Duller, R. Maines, 
W. Walling, C. Frost, Carol Tinling, and D. Balandis. Finally, and certainly not least, 
Dr. E. R. Schmerling, NASA Headquarters, prov~dec! the impetus and funding that made 
the workshop possible. 

Lawrence Colin 
Moffett Field, California 

A u y s t  1972 
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1. PASSIVE ATMOSPHERIC SOUNDING 

The subject of this chapter is the ground-based, airborne, or ?paceborne measurement of emitted terrestrial 
(planetary) or reflected solar radiation. Radian..e measurements zre made as a function of wavelength (visible, 
ultraviolet, infrarrxi), look-angle, and atmospheiic optical depth, cnd are inverted to yield the vertical structure of 
several atmospheric parameters, ii;cluding temperature, ozone, water vapor, and trace constituents. Regardless of 
the measureml~l platform and wavelength band. the mdthematical prob!~:.? is ider tical: inversi.jn of the integral 
equation of radiative transfer. Sophisticated statistical and nonstatistical, linear and ~r;r.linear iriversion techniques 
are discussed and compared. The difficulties with the inversion problem are both mathematically and numerically 
oriented, and the ultimate choice of a "best" method for a particular application may not be based or: accuracy but 
is restricted normally by available resources, quantity of experimental data, and a priori knowledge. 

The chapter concludes with a comprehensive bibliopapliy comprising references noted in the text as well 
as other relevant papers. 

W. Nordberg organized the session devoted to passive atmospheric sounding; however, W. Smith chaired the 
session and led the discussion periods. 



A REVIEW OF SOME ASPECTS OF INFERRING THE OZONE PROFILE 

BY INVERSION OF U1,TRAVIOLET RADIANCE MEASUREMENTS 

Carlton L. Mateer 

Atmospheric Environment Service. Toron t o ,  Ontario 

The mathematical inversion of light-scattering observations to obtain the atmospheric ozone profile is discussed 
in terms of the filtering properties of the physical and mathematical plocesses for different spatial scales. Within this 
context, it is shown that the physical process of scattering, whether in diffuse transmission or in diffuse reflection. 
acts as a low-pass filter; which transfers large-scale profile information efficiently to radiance observations but ve;y 
strongly attenuates small- or fine-scale profile information. To avo~d domination of the mathematical inversion by 
the random error of radiance measurements, an equivalent spatial-scale filtering in the invenioli procedure is 
- :sential. Methods of inversion used on traditional ground-based Unlkehr measurements and on satellite measure- 
ments, and the accuracy and ut.lity of the inversion results, are reviewed. The available evidence suggests that 
mathematical inversion to obtain the low-level ozorle profile below 25 to 30 km is either inferior to or no better 
than the statistical estimation of the profile using total ozone as predictor. However, inversion profiles for high-levcl 
ozone above 25 to 30 km appear to have moderately good accuracy. 

INTRODUCTION 

Indirect inferences about atmospheric structure were made nearly a century ago from the unusual twilight 
optical phenomena observed following the famous Krakatoa volcanic eruption. The existence 3f  str~tospheric ril.tzi 

layers was inferred [Russell and Archibald, 18881 from these observations. According to Mia;, [I9521 . thr 
existence of high temperatures in the upper stratosphere was postulated early in the present century from observa- 
tions of anomalous sound propagation. The first truly quantitative indirect profiling probably came with the intro- 
duction in 1926 of radio methods [Mirra, 19521 for determining ionospheric electron de~~sity profiles. Several years 
later, measurements of diffusely transmitted solar ultraviolet radiation were used to infer the main features of the 
atmospheric ozone profile [G& et al., 19341 . In their classic paper, G& et al. gave the fiist hints about the 
fundamental problems that exist in the inversion of radiance measurements to obtain information on atmospheric 
profiles. However, although quantitative profile inversion is at least 40 years old and has undergone very rapid 
development in the past decade, it remains a rapidly developing area of scientific interest. 

This discussion is restricted to the inference of the vertical ozone profile by the mathematical inversion of 
radiance measurements of solar ultraviolet radiation scattered by the terrestrial atmosphere. The nature of the ozone 
prr-Tie in the lower atmosphere is illustrated in figure !, which statistically summarizes over 500 direct profile 
measurements obtained by balloon sounding at Boulder, Colando [oiitsch. 1966; ~ i i t s c h  et al., 19701 . The curves 1 are for different total amounts of ozone given in atmem. The main features of the ozone profile are the pronounced 

I maximum occurring at 22-24 km, the tendency to a secondary maximum in the lower stratosphere near 13-14 km 
when the total ozone amount is high, and the approximately exponential decrease of ozone with height above about 
30 km. 

The inference of the ozone profile from light scattering measurements may be attempted from ground 
(diffuse transmission) or satellite (diffuse reflection) measurements. In either case, the radiation scattered by the 
terrestrial atmosphere comes mostly from a fairly welldefined layer, the effective sartering layer. The vertical 



position of t h s  layer depends on the ozone absorption 
coefficient at the wavelength under consideration, the 
zenith angle of the sun, the direction of observation, 
and the vertical distribution of ozone in the atmosphere 
[&I e and Mateer, 19671. For satellite measurements 

- 

in the nadir direction, these scattering layers are shown 
in figure 2, which applies t o  a solar zenith angle of 60' 
arrd a total ozone amount of  0.335 atm-cm. The curves 
show the relative amount of energy backscattered at 
\.arious levels in the atmosphere for several wavelengths, 
w:h the ozone absorption coefficient varying from 
about 300 atm-cm-' at 2 5 5 ~ ~  t o  0.05 atm-cm" at 
3398dr. The area between each curve and t h e y  axis is 
directly proportional t o  the backscattered radiance 
observed at the satellite, and all orders of molecular 
scattering have been included in the calculation. Simila~ 
curves apply t o  the case of diffuse transmission, as 
illustrated in figure 3, where the vertical "scanning" 
effect is achieved by allowing !he solzr zenith angle to  
vary for 2 or 3 hr near sunset or sbnrise. Although the 
curves in figure 3 were obtained with single scattering 
calculations, multiple scattering curves exhibit the same 
hind of scanning effect. 

M) 200 250 

SOME PROPERTIES OF THE INTECiRAL EQUATION OZONE PARTIAL PRESSURE (pmb) 

The inference ,,f atmospheric profiles from Figure 1 .  - Average vertical ozone profiles at Boulder. 

radiance measuremen!s usually involves the inversion of C~lorado, for different total ozone amounts. 

an integral equation ot' the form 

where the go) are radiance measurements at  various values o f  y , K ( x , y )  is the so-called "kernel," and f ( x )  is the 
unknown atmospheric profile. In somt cases, the equation may be of the form 

in all cases, these are reducible t o  a matrix equation -, -- 



or, if Afo = go. Af=  f - fo and Ag = g - g,, 
where fo ,  go reqresent some stni~dard or average 
conditions, then 

AAf = A8 (5) 

Throu&out this paper, boldface symbols ir,dicate 
matrixes or vectors; other letter symbols refer to 
scalars. In profiie inversion, thc goal is to estimate 
the unknown profile Af from radiance measure- 
ments Ag, which contain random i~nd nonrandon~ 
errors of measurement. Other errors generally 
inherent in (5) include physical processes that may 
have been neglected in the mathematical model of 
the atmosphere described by (I) ,  (2), or (3) and the 
linearization of what may be a nonlinear equatlon 
that is (2) or (3). There may also be small quadrature 
errnrs in (5). 

The fundamental problems of inverting equa- 
tions such as (3). when they represent real atmo- 
spheric phys~cal processes and involve random errors, 
have been discussed extensively during the past 
decade by Twomey [1963.1965,1966). Twomey 
Pnd Howell [1963,1967] . Mateer [1964,19651, and 
others. The discussion here is drawn primarily from 
their work. 

For real sit~rations, the problems arise first from 
CONTRIBUTION FUNCTION the smoothness and large-scale nature of the kernels, 

directly comparable to the curves of figure 2 for (3); 

Figure 2.-- Contribution to the nadir-directior! ndiancc by and second from the random errors in (5). In general, 
backscattering at various levels in the atmusphere for the vector Ag will comprise n measurements (say 
the caw of satellite observations. 4 to 12). However. so tha! the mathematical quadra- 

ture will not add appreciably to the random error in 
(S), the vector Af will generally co~~iprise specifications of Af at m (>n) points (say 20 to 40, but perhaps 100 
or more). Immediately, then, the system of equations is underdetermined. admitting an infinite manifold of sdu- 
tions for Af that ~ i r l  satisfy (5) exactly. Frequently, this diffizulty is avoided by constraining the solution to sonle 
ad hoc iorm so that mCn unknowns are aught  in the solution. At this point, however, there ir no need to  artifi- 
cially restrict m ; indeed, it is convenient to suppose that m is sufficiently large that Af may adequately describe 
all features (including the fine structure) commonly found in atmospheric profder. 

It is instructive to think of A as a transrbrmation matrix that transforms from the f x  "profile" plane into 
the gt "observatiun" plane and to examine the amplitude transmission of different spatial scales from the fx to 
the gv plane. In doing this, it is convenient to use the eigcnvectors that specify the "principal axes" pertinent to 
the rows of A. We consider the stanhrd m a t r i ~  algebra equation 

where the (orthonormal) eiynvectors art the columns of W. the uterisk deiiote~ matrix transposition. and A is 
the completely diagonal matrix having the eigenvalues of A*A on its diagonal md  zeroes elsewhere. Note that if 
m>n, there are at most n nonzero eigenvalua and, hence, at most n nontrivial eigenvectors. 



SHORT f: WAVELENGTH 

Fiprn 3.- Contrlbutioa X ( z )  Io the urri(h-dirsction r d a m  by poimuy at vulous 
bwb in the rMorphrn for the cur o l p o u n ~  obmmtaons (Maru, 19641. 



TABLE 1 . -  EKENVALUES AND EIGENVECTORS FOR A TYPICAL 
MATRIX [after Mercer, 19651 

- -  - 

Vector 

I 
2 
3 
4 
5 
6 
7 
n 
9 

Einnvector points 
4 5 6 

6 . 4 0 5  -0.321 -0.125 
0.262 0.374 0.441 

-0.004 -0.231 -0.356 
4 . 2 9 7  4 . 1 6 6  0.227 

3.045 -4 391 -0.266 
0.288 -0.347 4 . 6 5 1  

-0.489 0.521 -0.031 
0.510 -0064  -0.080 
0.306 -0.356 0.331 

Number in parenthews is  power of 10 by wCich preceding number i s  to be multiplied 

We expand the profile Af in terms of the eigenvectors; thus 

where b IS a column vector of coefficients. This expansion is perfectly ernera1 in the sense that Af can be 
m 

expanded exactly in terms of m orthonormal vectofs. Moreover, the variance V I: ~ f ; !  , of A f is alsc 
m f" i m l  

@en by Z b f  , s i n e  W *  W = I , where I is the identity matrix. Table I lirts eigenvalua and rignvectors 
i= i 

for a case where m = 9 ; the eigenvalues are listed in order of decreasing magnitude while the corresponding 
eigenvec!ors are in the appropriate row of the table. Note that the low-order eigenvecton correspond to the large 
spatia! scales (low frequencies) in the profde plane, whereas the higher-ord,. eigenvectors, which exhibit frequent 
sigr, changes, correspond to smiul spatial s d e s  (fine structure, high frequencies). Therefore, the low-order eigen- 
vectors will explain the variance in Af that arises from the larger spatial soles in the fx plane, while the high- 
order eigenvectors will explain the vuiance in Af that arises from the small spatial scales. 

If we now substitute (7) in (5) and .?lculate Vg , the varianw in the gy observation plane, we have 

where Lg*, b*  are row vcLtors. The above resdt states that the ith spatial scale is amplified by Xi in the trans- 
form~tron from t h  profile plane to the observation plane. Thus the fine structure in the profile plane, which is 
Jescr~bed by the high-order eigenvectors having very s m l l  associated eigenvaluer, is very strongly reduced in ampli- 
tude in the observation plane. Indeed, when m>n, the very fine structure in the profile plane will be explained by 
very high-ordrr eigenvectors for which the 41 are identically zero ( n  < I  G m ) und will not appear at all in the 
observation plane This information about the profile is completely inaccessible, even in n error-free radiance 
measurements [Tiwrmy and Howelf. 19671. However, ;or ~racticrl purposes, the fine structure information con- 
tent of the obsenations is M reduced in amplitude that it is indistinguishable from the random error present in Ag. 
These results are direct consequences of the smoothness and large scak of the kernel functians of the basic integral 
cquations. k suggested by h m y  (19651, lhe phyncal procer, represented by the tnns fomt ion  matrix A is 
really a low-pas filter, transmitting law-frequency (larp-mle) information quite readily, but providing strong 
attenuation to high-frequency (fine-structure) information. 



%ere are two obvious consequences of the above result. First, if ope examines many observations of Ag, as 
Afotc~r [ I964  19651 did for Umkehr observations, most of the variance can be explained by large-scale components, 
suggesting that there were. at most, four li~.cady independent pieces of information in traditional Umkehr observa- 
tions. An equivalent result is. for erample, that of twelve ob~wat ions  in the same Ag vector, eight could be pre- 
dicted from the remaining four within the observational enor (7bomey. 19661. 

The second ar,d more important consequence IS that when one attempts to recoy:: Af from observations of 
Ag by mathematical inversion of (5). the re-iprocal of X i  enten iritc the picture. Substituting (7) in (5) and solv!ng 

A 

for b by least squares (restricting % to m'< n elements, where m' is the numbei of nonzero eigenvalues), we 
have 

wilere 5 is the rstlmate of b. Therefore, since b j a X T 1  , the fine scale in Ag ( i t . .  the random error) is greatly 
snplified in the inversion by reason of the very small high-order eigenvalues, and the random observational errors in 
Ag dominrie the inversion procedure. Clearly. some analog to the natural filtering inherent in (5) is an essential 
ingredieat of any meaningul mathematical inversion methbd. 

An obviow method of achieving this filtering is to restrict to m" elements. where Amv1 is the sma!lest 
eipnvalue for which the corresponding eigenvector is relatively uncontaminated by measurement errors. It is very 
nearly equivalent to one of the methods proposed by Twomey [I9631 wherein the inversion sc?!lition is constrained 
to be a minimum departure from fo [see alsoPhilip, 19621. This solution is 

where 7 is a Lagrangian multiplier whose magnitude is determined in practice by trial arid error, bu: is implicity set 
by the erroi in Ag and the natural bounds on Af. It can easily t e  show. that the following forms are identical to 
Eq. (1 O), namely 

TABLE 2.- SOLUTlON CONTRlBUTIOh BY F ACH EIGENVECTOR FOR AROSA UMKEHR 
OF 21 MARC% 1962. TOTAL 0201JE 1s 0.493 ATMCM. [Moteer, 1965) 

- 
Eigen- 
vector Vector Explained Solution contribution for each eigcnvator 

number coeffiient w i v n a  Residual Lya-mean partial pressures (pm b) 
i b i kib f variance 1 2 3 4 5 6 7 8 9  

Standard distribution 204.4 23 42 84 133 134 95 53 20 7 
1 0.225 2+ 202 0 0 -3 -2 -2 -1 0 0 0 0 
2 2.145 71.3 13G.7 -2 -1 8 10 11 8 7 3 1 
3 5.433 122.5 8.2 22 77 32 0 -18 -17 -5 5 4 
4 -2.590 6.1 2.1 -21 -14 14 14 6 -5 -7 0 1 
S 1.211 0.2 1.9 -7 I0 8 -1 -7 -3 4 0 -1 
6 0.987 0.S: 1.9 3 - 9 - 2 5  5 - 6 1  1 0  
7 -15.49 0.4 i .5 44 -212 101 136 -113 4 i i  -!d 4 
8 33.87 0.4 1.1 -SV - 784-568 311 -30 -24 24 -21 Y 
9 43.79 0.05 1.0 -5 -8 A - 4 1  218 -110 91 - 8 2  25 

Find solution (four veeton) 22 101 136 iX 2 81 48 28 1: - - 



TABLE 3.- SOLUTION CONTRlBUTlON BY EACH EIGENVECTOR USING TWOMEY'S METHOD 
WlTH y = 0.5 FOR AROSA UMKEHR OF 21 MARCH 1%2. TOTAL OZONE IS 0.403 ATMCM 

[ M a t m ,  1965) 

W n -  ' 

vector Vector Exphined Solution contribution for each ewnvectur 
number, ccefficient. 

-'==a 
Reddud layer-man partial pressures (pm b)  

I b i ( ~ i  + y)bj wi.nce 1 2 3 4 5 6 7 8 9  

Standard distribution 
1 0.224 
2 2.078 
3 4.849 
4 -1.676 
5 .229 
6 .018 
7 -.049 
8 .023 
9 . 0 8  

Final solution 

Equation (1 I), where bja(& t 7)-' , is the filtered analog of (9). It is clear that the magnitude of 7 controls the 
filterk~g effectiveness of the inversion. We choose 7 s*fl~cimtly small that the l a r g e d e  features of Af are trans- 
mitted essentially undamped, but sufficiently large to severely attenuate the fine-structure features that would other- 
wise appear in the solution. If wc substitute (7) in (1 1) and make use of (6) we have 

In the double filtering(the physical filtering) described by (S), followed by the inversion mathematical filtering 
described by (1 1). the original vector coefficient bi is reduced by the factor (1 + 7/Xi)-'. These methods are 
illustrated in table 2, which lists results accordink to Eq. (9), with the final solution taken as the sum of the first 
four vector contributions, and in table 3, which lists results for Eq. (1 1) with 7 = 0.5. These tables also show t h ~  
progressive reduction of the vstiance VI of the observations as each vector contribution is added to the solution. 

In summary, the inference of atmospheric profiles from radiance observations is not so much a problem of 
solving n linear equaiions for m unknowns as it  is a problem of establishing the degree of filtering that assures 
proper transformticn of the information antent of the observations into profile information, and filtering out 
and discarding of the spurious contributions irom the ranQm noise of measurement. The relative magnitude of 
m wit5 respect to n is of no consequence in the presence of adequate Wering, except from the point of view of 
accuracy in (5) and computational economy. n u s  (10) should be used if n>m or Eq. (12) if n 6 n ;  either of 
these is preferable to Eq. (1 1) or truncated Eq. (9) because matrix inversion is generally computationally faster than 
calculation of eigenvalues and vectors. Filtering may be accomplished by the relatively direct methods described 
above or by indirect mthods such as thore described by Clurhine [l968], Comth  (19691, md Smith [1970]. 



DIFFUSE TRANSMISSION: GROUND-BASED MEASUREMENTS 

The classical example of diffuse transmission is the so-called "Umkehr effect," which was first observed by 
~ o t z  [I9311 and was used by c*tz et al. [I9341 to infer the main features of the ozone profile. It was known at 
that time that most of the atmospheric ozone mlisr be present in a layer somewhere above the earth's surface be- 
cause the chemically measured ozone concentrations near the surface were far too low, if the ozone were mixed 
uniformly through the entire atmosphere, to account for the total ozone amounts determined optically from the 
measured attenuation of the direct solar beam. However, the precise height or center of gravity of the ozone layer 
was uncertain. 

The L'mkehr effect is observed when measurements ;re made of the zenith sky-light radiances at two wave- 
lengths in the solar uitraviolet with the sun near the horizon. If the ratio of the radiance of the shorter (more 
stronglv absorbed) wavelength to the radiance of the longer (weakly absorbed) wavelength is plotted against the 
sun's zenith angle, this radiance ratio decreases 2s zenith angle increases until a minimum is reached for a zenith 
angle of about 85" (when the wavelengths are 3 1 14 and 3324A). As the zenith angle increases further, the I atio 
increases again. The effect is illustrated in figure 4, where fhe ordinate is -100 times the common logarithm of the 
radiance ratio. ~ o t z  reasoned that the angular position of the reversal was related to the height of the ozone layer 
and that it occurred when the effective scattering layer for the shorter wavelength had risen above the ozone layer 
(see fig. 3). 

In obtaining the first indirect profiles, G& et 
al. [IF341 recognized many of the difficulties that have 
been "rediscovered" in more recent years-namely, the 
strong irterdependence between the poirits on the 
Vilikehr curve and the fact that the shape of the curve 
depends mainly on the total amount of ozone. By 
dividing the atmosphere into rather thick (15 krn) 
layers and assuming constant ozone distribution in each 
layer, Gotz et al. were able to obtain a block (histogram) 
solution through which they later drew a smooth curve 
so that the amount of ozone in each layer was the same 
as in the block distribution, but ozone density varied 
smoothly w t h  height. They correctly inferred that the 
ozone center of mass was just above 20 km for average 
midlatitude total ozone amounts, and that the main 
ozone changes accompanying changes in total ozone 
occurred in the Lower stratosphere so that the center 
of gravity b e m e  lower. Their main result was verified 
by direct measurement by Regener and Regener [I9341 , 
who sent a spectrogr~ph aloft by balloon to 32 km. 

ZENITH ANGLE I DEGREES) 
60 65 70 74 17 80 83 85 86.5 8 9 9 0  

I  I I  I I  I  I I I I ! I  
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Because only the radiance ratio, and not the indi- 
vidual radiances, is available for Umkehr observations, 
the equation usually used in recent years is [Mateer and 
h t s c h ,  19641 

%I- 
1 2 3 4  5  6 7x10' -? . 

(ZENITH ANGLE)* i 2 7 *xi=N(O)-U(O)-S(O) (14) 4 
Figure 4.- Umkehr curve for observations st Edmonton, Canada. ! 

i= : 
on the afternoon of M a y  22,1961 [Moteer, 19641. 'I 

f 



where 8 is the sun's zenith angle and 

N(8) = 100 I 108 (1(8)lFo)lm - log (I(8)lFo)3,,4 I (15) 

The quantity N may be thought of as an observed relative logarithmic attenuation (having units of centibels), U is 
the relative logarithmic attenuation for some "standard" ozone distribution, xi is the amount of ozone in the ith 
layer of the numerical model of the atmosphere, and S(8) represents nonlinear effects ignored in the first-order 
Taylor expansion. Customarily, measursments are taken while the sun's zenith angle varies between 60" and 90'. 
The equivalence of Eq. (14) to Eq. (5) is clear: A is the matrix of first-order partial derivatives, the Axi are the 
elements of Af, and N(8) - IJ(d) - S(8) comprise the eltments of Ag. The equation is solved iteratively, 

where the superscript v refers to the iteration. the subscript j refers to the zenith angle, sj0 = 0. and 

The iterations are continued unll 

where 6 is some suitably sn?aU number. Further details of this method may be found in hkteer and d t s c h  [I9641 . 

When solutions of this system are obtained by the fdtering methods of Twomey described earler, they are found 
to e:;ribit large-scale differences from concurrent (nearly simultaneous) direct balloon sounding results [Mateer and 
~iitsch, 1964; Bofhv ,  1966; Ctoig et at, 19671 . In particular, these Umkehr results show, on the average, too little 
ozone near the main d m u m  and too much ozone at lower levels in the atmosphere. 

Since the analysis of the scale transmission properties of the inversion procedure indicates that the large-scale 
features of the profile should come through with good fidelity, one suspects that the errors are introduced by in- 
adequacies in either 'he physical model cf the atmosphere or the treatment of nonlincarities, or both. DeLuisi [I9691 
has shown that a bet t~r  treatment of the first of these produces only partial improvement. Consequently, one con- 
dudes that the nonlinearities must be important and, in particular, that a poor choice for the standard distributions 
from which the solutions are computed may be respnsibk. 

The optimum statistid inversion method [Ralgen, 1966;SnPnd and Wmmter, 1968) has been applied to the 
evrfurtion of Umkthr obamtions by Dehisi and Mcteer [1971]. The mathematical kasis for this method is described 
ir. detail by C. D. Rodgen in the next section. DeLuisi and Mateer used Eq. (16) in the form 



TABLE 4.-  VARIANCE OF BOULDER OZONE DISTRI- where In = l e i .  They i~ncred nonlinear effects and 
T . - 

BUTIONS AFTER !&PLICATION OF THE TOTAL did not perform iterations on the premise that a good 
OZONE REGRESSION. VARIANCE UNITS ARE 
( 1 0 ~ ~ ) ~  [DcLuisi a d  Mateer, 1971 1 statistic.! first guess was used as the standard distribu- 

tion. Here the optimum solution profile is gven by 

L. I , u boundaries. 
Layer mb variance 

where Sf is the covariance matrix of the 
ozone profile (the elements are in effect 

4 125-88.4 0.1332 
I 88 .462 .5  0.0430 (Sf)ij = I k A Xik - Ah'lxjk , where 

t, 62 .544 .2  0.0194 15 k=l 

- 

Ozone :unouct above the top of layer 16 is 1.7 
times t'ie azont: content of layer 16. 

subscript k refers to the k th profile in the sample 
and Alnxik is the logarithmic deviation irr the ith 

... 

layer between the true profile and the first guess pro- 
fde) and Se is the covariance matrix for the mndom 
errors present in Ag . 

The first-guess ozone profile was obtained by a 
log-linear regression, using total ozone as predictor, 
and was based on the 500 odd direct balloon sound- 
ings at Boulder (fig. I j. Since the direct balloon 
soundings normally tarminate at about 30 krn. but 
the radiance measurements are influenced by all the 

ozone in the atr!iosphere, some assumption had to be made about the ozone profile above 30 km. This was done by 
smoothly mergi g eqch observed profile onto~;;tchi [I9591 standard profde in such a way that all profiles in the 
statistical sampl were identical above about 45 km. As indicated above, the matrix Sf was calculated from the 
deviations of eacn individual profde from the corresponding first-guess profile. Thc diagonal elements of Sf are 
listed in t:~ble 4 along with the prese* .e boundaries for each layer in the evaluation model. 

TAbLE 5.-  AVERAGE AND VARlAhJCE OF EMPIRICAL ADJUSTMENT TO OBSERVED 
UMKEHR CURVES AT VARIOUS LOCATIONS [Dduis i  and Mateer. 19711 

Solar zenith Arosa Aspendale Tallahassee 
W ~ C S ,  ivmge,  Var'mru, Avenge, Variance, Average, Variance. 

'=el cb (cbi' cb (cb)l cb (cb )' 

'The smallest e:.!iil r,.gle available for all u m k e h  at kpendak is 70'. The N-value at 70Q is subtracted from the 
N-values at the .emainin# zenith angles to remwe the inrtnrmentd constant. 
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DeLuisi and Matecr next estimated Sc; from samples of nearly simultaneous Umkehr measurements and 
directly measured ozone profiler at Arosl (Switzerlan$), Anpendale (Australia), and Tallahusa (Florida). They did 
this by using each profile and (19) to compute the Nj valyes that "should" be observed for each profile. The dif- 
ferences between the obarvsd Nj and there computed Nj ware considered representative of the effects of errors 
of measurtmnt not only of the rdiurce ratios but also of the cuone profiles, md to include errors introduced by 
inadeqyacies of the physical model of the atmosphere and the nonlinearities ignored in (19). The average differences 

Nj - Nj are listed in table 5 along ai'h the diagonal elements of !& .  solution,^ were obtained from (20) after 
first adjusting the actual observed Umkehr data according to the average Nj - Ni at each location. 

Results a n  presented h tables 6,7, and 8 for Arosa, Aspendale, and Tallahassee, respectively. In each table 
the second column lists the average ozone profile in tenns of the mean ozone partial pressure in micromillibars 
(pmb) in each layer. The third and fifth columns list the average first-guess and solution profiles, respectively. The 

... - I  fourth and sixth columns list rms erron for these profiles. At the bottom of each average column is the average total 
. - . . 

, ,  
ozone, while at the bottom of each rms column is the werall rms error, for layers 1 through 11, in terms of 

- . ?.... 
',. .-:* 2- * -  

AlnXi. in natural log units. The omdl nns error ia a measure of the overall fractional error in the hyen for which the 
. - . <,$ ;.. , 
,. .... .. .'.. i; balloon sounding &ta were available. 
. . .. . . ,: + 
I _ . .  
,.,. " ! .. .! . 
, . . - The tables indicate that the optimum statistical method achieves only modest improvement over the first-guess 

., , . . .. .'+ 
. . .  profde obtained from the total ozone rqrcssion. Since this modest improvement was attained through the use of an 

;::;;;{ , . : ,! 
:,.* %;: : * ! 

average empirical adjustment vector derived from the dependent sample, the utility of Umkehr observations for 
,: . . 
+; , .-. - ,. ' :-,.. ; 
"..+, .... : -; derivingadditioml information about the mone profile below 30 km f seriously in doubt. (When the adjustment 

."' .;. 2 . ,. _i .;.. .;-( ., .< . ,;i vector was not used, there was a slight improvement over the repessi~~h profile at Arosa where the w e d l  rms error 
. - . ,.*-. .,. ws reduced from 0.298 to 0.280 and at Aspendale where the reduction w , ~  from 0.256 to 0.220, but at Tallahassee 

. 2 :.; -" : _ , .  there was a trivial increase from 0.305 to 0.306.) The extent to which the residual enor in the ozone pofilt is fine 
* ' , i  . .  
:. : , . i  

- .  

TABLE 6.- VERTICAL OZONE DISTIUBUTION AT AROSA IN TERNS OF LAYER-MEAN OZONE 
PARTIAL PRESSURES. SAMPLE SIZE = 49 [Dduisi  und Mateer, 197:j 

Total mom 
lay= hhmml npaion Mution 

I*&y., Avsa14 MS. A v w .  RYS. 
rmb r m b  r m b  rmb r m b  



TABLE 7.- VERTlCAL OZONE DISTRIBU'ILON AT ASPENDALE IN TERMS OF LAYER-MEAN 
OZONE PARTIAL PRESSURES. SAMPLE SlZE = 33 [DrLuisi and Matrrr, 1971) 

Total ozone 
layer Measured regression Solution 

Avuagc Ave.qe. RMS, Average, RMS, 
b m b )  ( r m b )  ( r m b )  ( r m b )  ( r m b )  

Total ozone 
(atm-cm) .316 .316 - .3iS - 
Overall rms enor. 
layen 1-1 1 
( b e  - - .256 - .205 

TABLE 8.- VERTICAL OZONE DISTRIBUTION AT TALLAHASSEE IN TERMS OF LAYER-MEAN 
OZONE PARTlAL PRESSURES. SAMPLE SlZE = 39 [Dduisi  and Matrrr, 19711 

Total ozone 
lay a Mevured regression Solution 

avenge. Avenge, RMS, Avcrqe, RMS. 
( r m b )  ( p m b )  Olmb) b m b )  (rrr ,b)  

- -- 

Total ozone 
(stmcm) .308 .308 - .307 - 
Oven!: rmr cnor, 
layen 1-1 1 
aog, - - .305 - 269 



strucrure and not accessible to reduction by invenioa of Umkehr measurements has not been investigated. The 
results of DeLuisi and Mateer (19711 suggest that it would be more advantegeous to invest effort in improving the 
regression estimation method rather than in further work on the low-level Umkchr invenion. Similar conciusions 
have been reached by ScUen ond Y m r  [I9691 and Y w p  (19701 for the case of satellite observations. Insofar as 
the high-level ozone profile is concerned, no direct comparisons have been made between Umkehr results and con- 
current rocket b t a .  However, although the high-level ozone profiles derived from Umkehr observations are particu- 
larly sensitive to measurement bias [Mateer, 19651 and apparently haze effects can lead to erroneous conclu:iions 
ahout seasonal variation at lqh  levels [DeLuisi and Furukaw, 19701, the high-:eve1 Umkehr results are gene~ally 
consistent with good rocket results. The high-level profile remains the one area oC potential utility of carefully 
made Umkehr observations. 

DIFFUSE REFLECTION 

Satellite Measurements 

The inference of the ozone profile from satellite measurements of the solar ultraviolet radiation backscattered 
by the earth and its atmosphere is conveniently divided into two subproblems: the inference of the high-level pro- 
file above 25 - 30 km and the inference of the low-level profile below this level. The primary reason for this disticc- 
tion is economic and lies in the complexity of the lightsattering calculations; for the shorter wavelengths that 
"scan" the atmosphere above the ozone maximum and do not penetrate through the ozone layer. a single-scattering 
physical model is quite adequate to calculate backscattered intensity to yll within 1%. In figure 2, such wavelengt! s 
are 2975A and shorter. For wavelengths that penetrate the ozone layer and are backscattered appreciably within 
the troposphere, multiple scattering calculations are essential and thc effects of aerosol scattering as well as cloud 
and ground reflections become quite important. In addition, a considerable body of a priori stitistical information 
about the low-level ozone profile is available, whereas relatively few reliable data are available for the high-level 
profile. Becatise of these difficulties, the high-level inversion has received considerable attention over the past 
decade, while few pioneering spirits have ventured into the low-level inversion problem. 

The pcssibility of deducing the ozone profile from b a c b t t e r i n g  measurements wu fint suggested by Singer 
and Wenturorth [1957]. The fust mathematical examination of the problem war by k n u y  (19611, who showed 
that for a singlescattering atmospheric model, the spectral energy distribution of the backscattend radiance was a 
Laplace transform of the ozone profde, when atmospheric pressure %as expressed as an explicit function of the mass 
of ozone abwe a given prcmre level. l h i s  method has been used in 3 e  USSR to evaluate measurements of back- 
scatterin!! f r m  the Soviet satellites [Knrmopd'sikiy, 1966; lotmar. 1968; lorsros et d. I%%, b] . 

" he back :-~ttcred radiance I in the satellite nadir direction, for rohr zenith angle 8 and wavelength h in n 
p!ane pardel at:? qheric  m d t l ,  is given by 

r(r.e) = ~ ~ ( h ) ( 3 h / 1 6 r )  (1 +cosa8) exp 3 I + n I ) x ~ ~ x ~  + okp) ] d p  

where 
I' ' 

Fo(X) = extraterrestrial %;far irradiance 
= atmospheric scattering coefficient (arm'-' ) 

n = ozone absorption cat?icient (atman)-' 

Xp 
= amount of ozone above pressure p (atm) in atmxm 



If we define 

assume PXp << aAXp , and set k = aX(l  + sec 8)  , then 

This equation has the form of (3), whr;rein the profile appears only in the kernel and not sepaiately in the integrand. 
k m e y  [1961] changes(23) to the f9rm (1) by letting X become the variable of integration, thus 

V 

where Xo is the total atmospheric ozone content md dp ldX is the inverse of the ozone mixing ratio. F3r the 
large values of k associated with X < 2975 A, we may let X;- at the upper limit of integration (fig. 2). The 
second term on the right-hand side of (24) reprewnts scattering by air molecules entirely above the ozone layer. It 

then follows directly that 

where L k(p)  is the Laplace transform of p -that is, 
k 

Lk(p) =/ e-krp(r) d l  . The inversion problem 
0 

- reduces to  one of finding a suitable analytical form 
E 
t for Q ( k )  and looking up its kplace transform. It 

is necetdary, of course, to ensure that the analytical 
w o r m  for Q(k) effectively filters out the random 

noise in / ) ( k )  [Twomey and Hoswell, 19631 . 

Existing direct observational data suggest that 
tht: high-level ozone profde is approsirnately exp* 
nentid with height [Green, 1964; Rawcliffe and 
Elliott, 19661, which in an exponential atmosphere 
is directly equivalent to 

0 2 4 6 I 'I 

F i n  5.  -- Contribution to the nadirdirection ra&vy:e by back- 
scattering at various level# In the rtmosphen for mtdite 
ob*mrtion, ~ t h  ,,,~.r a t h  m e  700 cwsc). m d  where C and o are constants that specify the profile, 
cuna u a  putid derivatives (rw dw text). cr being the ratio of the ozone scale height to the 



atmospheric scale height. If (26) is substituted in (23) and the integration performed (or solve for p, substitute in 
(25). and look up the transform), we obtain 

where Iyx) is the gamma function with argument x. According to (27). p1otti:lg log (,? against log k will give a 
straight line with slope w. Thus a good fint approximation to the hlgh-6vel ozone profde may be obtaincd by 
calculating 1.he linear least-squares fit between log Q and log k. 

In attempting to infer addtional information about the ozone profile from backscattered radiance measure- 
ments, it is convenient to substitute (22) in (2 1 ), to obtain 

Because Q(X.9) changes by about one order of magnitude between the shortest and longest wavelength, it is 
further convenient to scale the system by writing 

a ~ d  to write the inversion problem as 

which is similar ta (19) in form. Because (30) is a linearization of an mentially nonlinear problem, it is appropriate 
. .  , 

' 
to perform the invenioa iteratively. as follows 

, .  ., . , . , . ,  , ,  ,- . 

"<?.' . '. 
v...:. 

..;.... 5 , e : where v refers to the vth iteration. Thb quation is of the same form u (5); by Mmcy 3 I19631 method, it 
.. . c.r .I, 

,,dT , c h 
would have the solution given by the computationrlly more economical operation of (10) or (12). 

, .!i"'..- + 
The physical situation in (31) is illustrated in *re 5, where thc solid curves show the conlribcltion to the 

radiance in the ateUte's nadir direction due to backscattering at various levels in the atmosphere for 2555 aad 
3019A. The dashed curves show the partial derivatives for 2555,2876, and 3019A, whib the chort h o r ~  mtrl b u s  
show the position of t b  puid derivative mutimum at intermediate wnrshn#tiu. For this rw, the WLI znith angle 
is approximately 75'. 

In this section, we examine the properties of solutions obtrined by the iterative application of Twomey's 
method [Smith, 1968; Ha?non and Y q w .  1969) and by the iterative method described by Smith [1970]. Two 



essetrtially equivalent methods arise from S:mith's Procedure. In the first of these, a separate solution is ob- 
tained for each wavelength: 

The solutions for each wavelength arc combined to obtain a weighted average solution for each layer, using the 
partial derivative for each wavelength and layer as the weight, thus 

The abclre may be described as the "sum of ratios." In practice, the ratio of the sums gives almost precisely the same 
result. The latter form is obtained from (30) or (31) bv taking AlnXi outside the summation and letting i*k,  
whrle k refers to layen for which the partial derivative is large. Each side of the equation is then postmultiplied 
by a U( A, e ) /  alnXk , summed over X , and the result is solved for AlnXk , obtaining 

These iterative methods are eswrrt;ally relaxation methods [Show, 19531 wherin it is cuctomary to use an "over- 
relaxation" factor (F) to spe,;d the convergence, which is usually extremely slow for i r t g e ~ a l e  forc i~g functions 
(the partial dem-tiVes plotted in Q. 5). In the present context, the ~ e n e l u r a t i c i ~  factor is used in the following 
manner 

The first form prevents x T 1  from becoming negatiw *h.m ( A h i )  "I is moderately h r p  and ncptive, d i l e  
Uv second form prevents x *' from becoming too large when (bhi)"' is moderately large and p s i t i n .  
Both forms, of m u m .  give $ t.10 r c d t  lo: wnaU (bfnxi)"'. To deterdm the best "due of F, it is custom- 
ary t o  plot the rms re8idd oR = (11n ? [R'+' (A.  ()] ' / "' , @st F L r  various numben of iterati9ns 

I 

i 

i 
I 
i 



Solutions obtained after 106 iterations with 
F = 1 .O, for three diffe~ent first guesses, are shown in 
figure 7. The radiance data used here were obtained 
from the backscattered ultraviolet (BUV) experiment 
on Nimbus 4. The two st;aight-line first guesses assume 
constant ozone mixing ratios throughout the atmo- 
sphere and are separated b). a factor of 10. The smooth - 
solid first-guess curve is obt.dned from (27). using least 
squares to derive o and C in (26), which is then 
modified to form [cf. Green, 19641 

and to choose the value of r' providing the most rapid .05 - , I 

Fire 6.- RMS residual ( a R )  as a function of ovemlaxation 
factor (F) for various numkn of iterations (5. 10.15.20. 

decrease in OR . Such plots are illustrated in f ipre  6 
for values of F between 1 snd 2. Although the posi- 
tion of the minimum changes slightly with the number 

which is the same as (26) for s~nall p , but for larger 25,30) "sing iterative method af Smith (19701 : 
p exhibits a maximum orone partial pressure at 
p = p .  . For the case iliustratej C= 90.16, u = 0.614, and p* = 0.0398 otm, for p in atm and Xp in atm-cm. 
In application, p* is specified from prior knowledge of the low-level ozone distribution. The main purpose of 
figure 7 is to demonstrate that. '.he solution is essentially independent of the first guess, Solutions obtained from 
these same first guesses after five iterations by Twomeys method with 7 = 0.005 are illustrated in figure 8. 
Although the differences between there individual solutions are somewhat greater than those shown in fiepire 7, 
they are fairly small between 10" atm and lo* atm (1 and 10 pmb) and the profiles cre in good agreement with 
those in figure 7, between there same pressure levels. 

I 

Some other properties of there iterative solutions are illustrated in figres 9, 10, acd 1 1. In figure 9, we show 
the Twomey solutions, after o w ,  five, and thirty iterations, using 7 = 0.005 und the first guess defined from (36). 
The tendency to emphasize the finer structure at  the 

of iterations, the minimum is fairly broad and one 
would probably select F - 1.85 as the best value. 

I 

number of ikra t iok incruost is quite ckar, and .I 
probaV11 lhauld be incrswd quite appreciably after 12  APRIL ISTO 

-us IV BUV 
the second iteration. What happem in layer 44 
(pressure 1.4 pmb), which is the peak of om of the 
finer structure features, is shown in fuure 10 for 
Smith's iterative procedure with F = 1.0 and 1.85 and 
for Twomey's method. These curJes should be exam 
ined simultaneously with the corresponding curves of 
figure 1 1, which show the decrease in r m  residual 
(aR) with increasing itentiord. Two important con- 
clrlsions may be drawn from thew results. First, there 
is no tendency for the solution to converge in the 01 1 0  10 100 1000 

~ormal  nu themi t id  ~ense. In t b  layer, the solution OZONE P A R T I A ~  PRCSSURL (#me)  

continues to  chana bv a finite amount with each rub- 
Rgm 7.- Invmion olconr prolylr ( W k  l b a )  obtained after 100 

seqvcnt iteration, *rhlk the corresponding decrease in Hwstionr 3, Conaspondig mr a- 
rms residual becomes quite d. The point r t  which by iluin - Smith r iterative *(bod d. 



we cease extracting real profile information and begin 
introducing the noise into the solution profile is by no 1 2  APRIL 1970 
means clear. The second conclusion to be drawn here is NIMBUS t v  BUV 

that the most economical wily to reach this point is by 
Twomey's method. 

The question of when to terminate the iterative pro- 
cedure must be pared primarily to the known or assdmed 
standard errcr of the radiance observations. There a;rpean 

m. 'Y ----- little reason to proceed beyond iteration v if I ITERAT!ON 30 - 5 ITERATIONS 
30 lTERAT10hS 

(oRIv f' ON (37) 0 I l o  lo loo 1~~~ 

OZONE PARTIAL PRESSURE u m b  

or if 1RV ( A ,  8 )  1 < 2oN for all , whichever comes Fi@"e 9.- Invasion mone profiles after I ' ;O 
iterations with Twomey's method usinp 295. 

first. Here, ON is the standard error of N , the quantity First p e a  is thin conunuous line show, ; . . 8. 
computed from the otservations (see (22) and (29)). Since 
an individual value of N may be in error by more than 2uN in a particular case, it is also useful to have an additional 
criterion such as 

- r = O . O O ~  
The accuracy of the iterative inversion procedure is - 

illustrated in figure 12. which shows a rocket profile 
obtained at Pt. Mugu, California, using an optical rocket- 
sonde [Kruegrr. 19691, and two profiles inferred from 
Nimbus 4 BUV data [Kruegcr er al., 1971 1. In this case, 
the inversion has been performed with and without the 

7 5 ' ~  3T.E 
I 2  APRIL I O T O  
NIMOUS I V  OUV 
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ITERATION 
Figure 8. - Invcniun ozone potUu (thlck Liner) obWnd ritr 

S itcnrions with homey's method using 7 - 0.005. Corn- 10. - Man partid prarurt in layer 44 rfta various 
pondlng f i s t  plows ue shorn by thin Im. numbera of itantbns. 

for all A , where 6 is chosen from experience and r 

should be sufficiently small that criteria (37) cause termi- 
nation of the iterative procedure most of the tiine. 

i 

I PRESSURE 0 0014 atm 



2975A radiance observation. The sun is sufficiently 
high in the sky for there observations that at B75A , 
there ir penetration of the ozone layer and some multi- 
ple scattering effect (similar to that exhibited by 
3019A in fig. 2). Connquently, the obwmd radiance 
at 2975A is too high to be consistent with the single 
scattering model used in the inversion and the profile 
shows too little ozone near and just abwe the main 
maximum. However, the inversion profile obtained 
without ~ 7 5 A  is quite good. These sate11;te profiles 
have no validity below the ozone maximum. 

'1 

The LowLevel Ozone Profile .04 

The problem of properly including multiple 
scattering in the inversion of backscattered radiance 
measurements to obtain the ozone profile below 30 km 

F* 1.85 was first solved by Hennun and Yagct [ 19691 . They 
considered a satellite experiment in which measure- .O 1 - 
ments of polarization components werc taken at dif- 
ferent observing angles in the plane containing the .00 
satellite's nadir dirt :on and the sun. There measure- 0 10 20 30 

J 
ments were taken at a single wavelength. Yam? ITERATION 
[1970] extended this study by considerihg the Figwe 11. - ilMS nddurl after various n w n k r  of itetrtians. 
measurements taken by the Nin~bus 4 BW experi- 
ment in which radiance observations are lrken at several wavelengths in the btellite's nadir direction. The pal tiaI 
derivative method may also be used here, followinl( the method of LkLuisiond M a t t  [I9711 to include multiple 
scattering irr the calculation of the putid derivatives. No attempt has yet been made to obtain the low-level ozone 
profile by the inversion of real mrruurements and the present dimmion is restricted to results with synthetic 
measurements. Becaw: Lhe Nimbus 4 BW radimce masu-emonts comprise the only available real data suitable to 
this purpose, the present discussion is restricted to Yamr's [I9701 results. 

In the case of multiple scattering, the equivalent of (21) for the radiance of backscattered radiation in the 
nadir direction may be written in the form 

0 1 C i  ; 
where CT YUCU CUIF , 

lZ lU*€ I910 

IUV I Y W .  IZ I ) *11  
I9nwr I,, 

t optical depth dran the top of the atmosphere 1% 
(t = 0). to some level within the atmosphere, -143 : 
hence &frning vertical potition in the atmosphere. 8 (40 '; Y 

1 5  f 
JUV w o 4 8 1 3  ,)0 

4 t )  albedo of single scattering at level t and is the 
ratio of urttering optical depth to total (scatter- 
ing plus absorption) optiul depth in unit volume 1 

and. hence, defms the ozone profile I CduA:o o l ~ t  MTU) I CIISWM 4 c a 1 4 ; b  wb IWJ ' 
12. - of rocbbodm md Nimbus 4 

( B W  orom path ova ?t hgu, wbnnh. 
[ K m c p r t . ~ ,  1971). 



71 total optical depth of the entire vertical column of the atmosphere 

J the swalled "source function," which is computed in matrix f o m  by successive iteration of the auxiliary equa- 
tion of radativc transfer [me, 19641 and then converted to scalar form for use in Eq. (39); note that J in- 
cludes the extraterrestrial irradiance, which is shown separately in Eq. (2 1). 

This eq~istion is quite general for the nadir vlewing direction in a plane-parallel atmosphere that is horizontally homo- 
geneous and in which only absorption and molecular scattering occur. 

Equation (39) has the same form as (2). with the unknosn p,ofde appearing explicity in the integrand. tiowever, -. 

w(t) is wavelength dependent and is not suitable as an unknown for direct solbtion when we use multiple wavelengths. 
We 11ave 

where subscript i refers ;G the i:h layer, xi to the ozone dontent of the ith layer, Api to the pressuil: change across 
the ith layer, and Ati the total opticai dcpth of the layer. With this substitution in Eq. (39) and letting Di(h) = 
~ ~ f A ) e - ~ i ( ~ )  

pr 

In this form.(41) is equivalent to (4) with f = Ap. AiA = Di(A) PA, and g = I, in this section 1 refers to the vector of 
radiance observations, pot the identity mat~ix. Yarger calls this the pressure increment (PI) method. 

In a second procedure, which Ydrger calls !he ozone increment (01) method, he proceeds on the vth iteration, 
with x:. I'(A), anE 0; (A) , to obtain x r1 by writing 

Subtracting, he then obtains 

which is equivalent to (9, with Ag = I - l V ,  Af = xu+' - x V ,  and AiA = [Dt(A)Api/Ati] 'flhah. Forhis 
solutions, Yarger uses Twomey's trLnirnum departure from an initial guess in the form showt~ in (I !). - 

Yarger's inversion results for an ozone profile observed at Boulder, Colorado, on Feb. 20, 1964, arc Illustrated 
in figures 13,14, ar2 IS. Figure 13 shows results for both 0: and PI methods when his synthetic measurements con- i 
tain no random error and his initial guess is derived from a statistical. .hod using total ozone (assumed known) as ? 
predictor. Figure 14 shows results for the F'l method when his synthetic measurements contain 5% random error and 



F a  20, 1964 
No U.owremmt Errors 
Actual D~str~bution - 
l n ~ t ~ a l  ------- 
lmerston Renultn 
P I  Method 1 I 111 .  

01 Method 0 00000 

Fbm 13.- ~m.nion, initial gums. and actual ozone pmRbr for Boulder, Cdondo, 
Fob. 20.1%4, for no m ~ ~ n t  orma [ Y m .  19711. 



Fcb 20, 1964 
5% Rondom M~orurrrnent Errors 
Actuol Distr~but~on - 

PARTIAL. PRESSURE W OZONE ( e l  
- .  

Fiure 14.- Invenion, initial guess md actual ozone profiles for Boulder Colorado, Feb. 20, 1964, 
for poor initial pueu with 5% measurement e m .  [ Yarger, 19?1]. 
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he starts from a rather poor initial guess. Apart from a 
slightly lower partial pressure at the main maximum , ..." I- - .."- - 
in figure 14, the solution is essentially the same as that -a- .- ,-* -*.,., -8 ---, -. .... 
shown in figure 13, suggesting ttl-t :he result is inde n -r ,..". . . . . 
pendent of the first guess. Figure 15 shows Yarger's 
results for the PI method when the statistical first guess 
is used and for the two cases: no measurement erron 
and 5% measurement errors. Because he was unable to 
achieve any real improvement over his statistical first 
guess, Yarger concluded, ". . . there seems no reason to 
 refer an inversion method based on the inversion of 
the radiative tnt~sfer equation over the statistical 
method fr3r inferring information concerning the ver- 
tical ozone distribution." Since statistical inferences 
are not without error and because of the result iilu- 
strated in figure 14 (poor initial guess), it is difficult to 
agree completely with his conclusion. However, Y arger's . I f \ \  1 ?+$ 
conclusion may be correct for other reasons-namely, . " * * I -  

".YIIU.-,L. 

the dificulty of properly accounting for surface reflec- 
t iv i t~*  as as Katterin8 haze and 'lauds in the Figun 15.- L n ~ n P n ,  initipl gueu a d  . c tu l  ozone profiles for 
inversion of real data [Twmey, 19691. Yarger Boulder. Cobndo. C'eb. 20.1964. for 5% measurement error3 
recognized these additional problems. [Yarger. 1971 1. 

CONCLUDING REMARKS 

It appears that the application of mathematical inversion methods to infer the high-level ozone profile from 
light scattering measurements provides useful results. However, the inference of the low-level ozone profile remalns 
a venture of somewhat dubious value, not only because of deficiencies in economical computational models. but 
also because of marginal information retrieval, even under the idealized conditions of synthetic experiments. It may 
prove more fmitful to measure total ozone by independent techniques md to use statistical methods, with tot4 
ozone as predictor, to infer the low-level ozone profile. 

I . .  

From the mathematical point of view, in the absence of prior statistical information, the evidence suggests that 
. . ., 

.' 1 
> . ... i .: i .  . the method of Twomey is more economical than the iterative method for inferring high-level ozone profiles from 

, . ,, . . 
, , . ., .a . 

.'., i '' * backscattered radiance measurements. 
i ' ? '  , :  
. . ..,, :?: ;! 
, ' ._ .:'. . ,?,.: It is quite clear that the mathematical inversion of integral equations of the first kind should not be considered 

.,.kc< .... ,;, , ,$ .,? . -. >.%.. , . 
. ..... .1:5'3 4 as a solution of a set of linear alget jic equations, but rather as a filtering proceoure in which the real information in 
. . - . 'L ...:. 

, . . ;ti .! the radiance observations is transmit;~d to the solution profile essentially undamped, b ~ t  the spurious fine stz~cture 
. r . .  .::. '- b. : . .. . in the solution pofde, which arises from the random noise in the observations (and in the mathematical model), is 

damped out entirely. 
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DISCUSSION 

Rzrker: What is the total number of data observations entering in the work where you have so many iterations to 
solve the equations? Clearly not the six you mentioned earlier. 

Mateer: Five, six, or seven, depending or. zenith angle #,f sun. 

hrker: Why do you need an iterative technique tu solve a bunch of linear equations when there are only six of 
them? 

Mateer: Because the system is not linear. You make a first guess aqd rwc* jute residuals. There are two ways to 
do this and you should compare them to see if the system is linear. 

Boj~rski: What is an ilppe- ~ u r i t  of N that you would like to be able to solve? Obviously, the more the better. 

Mateer: Not necew;iy. As shown by Twomey the measurements are linearly dependent. Suppose that you have 
12 observations. Given say the best 4 of those 12, you can predict the other 8 within the enor measurement. 
1 would like to nave about 6, to allow some redundancy. 

Bojarski: How about the number of data points in the final result? 

hhteer: In the range 70 to 150 points. The matrix to be inverted is still the size of the number of measurements, 
6 X 6. 

Unidentified speaker: What makes the solutions nonunique? You said there were an infinite number of solhtio~s. 

Mateer: The variance amplification factor is responsible in the complete solution. The eigenvalues are so small for 
the fine scale patterns. You must be careful to filter just the right amount. 

Chahine: The solution of an integral equation with fured limits is very stable and is unique if it exists. The insta- 
bilities shown here are due to the fact that the equations were linearized, and linearization is improper. This 
violates two or three basic mathematical rules. The damping functions in the Twomey method and other 
methods are means of rectifying the destruction of the integral equation when it was changed from a non- 
linear system into a linear system of equations. The Method of Relaxatior! is one means of solving the non- 
linear system without linearizing it. 



STATISTICAL RETRIEVAL TECHNIQUES FOR SOUNDING THE 

METEOROLOGICAL STRUCrmRE OF THE ATMOSPHERE 

a Cliuendon Laboratory, Oxford University, Oxford, England 

~ 7 3 1 1 1 5 8 7  ABSTRACT 

Statistical retrieval methods for remote soundmg arc reviewed. Methods are given for constraining an 
essentially incomplete pmblan by means of the known statistical behavior of the solution. Information content 
of the obsemations and the meteorological structun is discussed. Linear versions of maximum probability and 
minimum variance methods rn given in some detail, and extensions to the nonlinear case are describtd. 

INTRODUCTION 

The thermal radiation emitted by the atmosphere depends on the distribution of temperature and absorbing 
substances, including water vapor and clouds. The form of this dependence is known, so that in principle it is possible 
to sound the meteorological structure of the atmosphere from remote measurements of radiation, eithtr from the 
ground or from a satellite. 

One of the main problems in interpretiw remote soundings of a~ atmosphere is that there are not enough inde- 
pendent quantities in any one observation to  &te~mine the meteorological structure as completely as one would wish. 
There are an infinite number of valid solutions that agree with the observation within experimental error, thus giving 
us the problem of chasing the 'best' solution in sonre sense. 

Statistical methob use a priori knowledge of the statistical behavior of the atmosphere as a constraint on the 
solution. Two basic approdm have been used: In the mcafmum pbubilify method, a probabilitv density func- 
tion (pdf) is set up to &scribe the atmosphere, and the chosen solution is the one m a t  IiWy consistent with the 
observations; the minimum w?funce method fm& a relation that obtains the meteorological structure from the ob- 
scrvatig ~ n s  in such a way ,hat tht deviation of the derived structure from the original structure is minimum in a 
statistical sample. 

In what fdowq matrix notation is normally used, although suffice an used where necessary to clarify the 
meaning of an equation. Occasionrlly the tune symbol is used for a vector and for a matrix comprising a statistical 
sample of such vectors. Ihs distinction rhauid be dear from context. 

MODELS FOR THE METEOROLOGICAL STRUCTURE 

Tlic r?.t!enrde$S a!r?lcture of the atmosphere at a particular place can be token to consist of the vertical 
temperature, huaddity, claub;nnd pouiie ozone profif. 'Ihtw are dl continuous functions of height and cannot 
be represented mathemtically. To be treated at all, they must be approximated in tenns of a finite number of 
parameten. The simplcrt treatment is  a discretization in which valws of temperature, humidity, and the Like are 
specified at a number of fixed levels and interplated between thsw levels. This is a particular are of a g m e d  linear 
mo&l such as 



where b l  , b2 , . . . , p are p parameters representing the temperature profile 0 ( z )  as a linear combination of the P functions Sj(z) . These functions are arbitrary, except for the restriction that they be independent. 

Most representations are inefficient in the xnse that even though the functions Si(z) may be algebraically in- 
dependent, the coefficients bi are not statistically independent. T h ~ s  is especially true of a discretization, in which 
the temperature at any one level is strongly correlated with the temperature ;tt nearby levels. It is clear that the num- 
bers o i  parameters required to describe a profile to a specified accuracy could be reduced if the parameters were 
statistically independent. It is also clear that the model functions Sj(z) should also be orthogonal, and for conven- 
ience they should be orthonormal. Statistical independence implies that the covariance matrix of the parameters b 
should be diagonal: 

where m indicates membership of a sample of size M, and A is a diagonal matrix. 

We first discretize Eq. (1) so that we can use the algebra of matrices, rather than the algebra of functions: 

we let So be the me&? profde 6 . Orthonormality of S implies that sT = S - I  , SO we can put 

and on substituting this in Eq. (2) we obtain 

so that the functions S are eigcnvecton of the covariance matrix of 8 : 

It can be shown that &he cigenvalue Ajj is the amount nf variance "explained" by the term bmjSjz in the expan- +. 

sion of 8 , and if the expansion is arranged in decreasing order if Aii , it can be truncated at any term, giving the - -- 
most accurate representation for that number of brms for that statistical sample in a least-squares sense. 

F 
F 

'Ihesc functions are known as empirical orthogvnalfinctions ot characteristic puttems [Lorentz, 1956; 
Obhukov, 1960; Grimmer, 1963) . 



TABLE 1.-  EIGENVALUES OF SOME MATRICES Table 1 illustrates how well the profile 
of Hanck functions, which is related to 

I 1 1 

In the m e  of H and K H K ~  the eigcnvaluer have k e n  narn~alizcd so that The analysis in this section kas been in 
z hii = 1 .  n u s  c o h  1 and 3 are the fraction ofvuimce explained by the terms of temperature only, but the same 
c'omsponding eigenvector, and cols. 2 and 4 arc the fraction explained if the method can be applied to all the quantities 
expansion is truncated. making up the meteorological structure. 

K H K ~  
- 

i H 

1 2 3 4 

THE RADIATION OBSERVATIONS 

temperature, can be approximated with a 
rT mati number of parameters. The sample is 

for altitudes of 0 to 70 krn for the northern 

1 
2 
3 
4 
5 
b 
7 
8 

The radiance I emitted at the top of an absorbing atmosphere can be written as 

0.8941 0.8941 
0.0852 0.9793 
0.0152 0.9945 
0.0033 0.9978 
0.0018 0.99% 
0.0003 0.9999 
0.0000 1.0000 
0.0000 1.0000 

I 

0.5886. 0.5886 
0.1858 0.7744 
0.1075 0.8819 
0.0422 0.9241 
0.0202 0.9443 
0.01 14 0.9557 
0.0101 0.9658 
0.0076 . 0.9734 

where B(v.9) is the Planck function at wavelength v and temperature 0 , T(z ,=) is :he transmission of the 
atmosphere 'w!ween height z and a satellite, and g is the ground. The transmission will depcnd on the distribu- 
tion of absorbing gss, and t o  a small extent on the temperature profile. This relation is essentially an integral trans- 
form of B , the Planck function profile, with kernel dT/&, the transmission gradient. 

hemisphere. The first characteristic pattern 
1.37 
0.44 explains nearly WO of the total varia~ice in 
0.32 the sample; 972 of the variance can be 
0.185 explained with eight patterns and thertfore 
0.090 with an eight-parameter model. Thus, fewer 
0.038 observations than expected are required to 
0.014 
0.0008 determine the temperature profile. 

If we consi&r a small range of wavelengths, and a constant distribution of absorber, we may discretise Eq. (3) 
and obtain the following relation: 

where !i is the radiation at frequency vi, Bz is B(v,B(z)) and the matrix Kk is related to the transmission 
gradient. This J m p l i f ~ d  form is useful for investigating the nature of the problem, although more detail is required 
in practice. Figure 1 shows typical set of KiZ . The ordinate is z, and the curves are labeled with i. The Planck 
function is a known hnction of temperature and can be used to  replace temperaiure in the analysis. The general 
linear model (1) can be used for Bz in a discretized form: 



If tlJs is substituted in Eq (4) we gct 

where T = KE and A = KS , giving a linear relation between the observations and the model parameters. 

The components of the observation I are not statistically independent partly because of the overlap of the 
kernels (fig. l), and partly because of the statistical nature of the atmospheric Planck function profile. Tc get an 
idea of how much information there is in a sample of observations, we can transform them into a statistically inde- 
pendent form using the same method as used for the vertical profile of temperature. The covariance ma:% of the 
observations is 

where H is the covariance n ~ t r i x  of the Planck function profile B . The set of eigenvalues of K H K ~  given in 
table 1 for a typical case with eight kernels shows that over 99% of the variance is explained by the first three 
characteristic patterns. 

The interdependence of the kenrels can be expressed  by:;^ simdar analysis. If we seek a transform L so that 
the transformed kernels LK are orthogonal, we must have 

when A is diagonal. The required transform is, therefore, 
the eigenvecton of K K ~ ,  and r'bii can be interpreted as 
the square of the ratio of the transformed signal to the 
untransformcd signal where noise is constant. The number 
of independent observations can be viewed as the number 
of eigenvalues that are larger tlun (noise variance)/(signal 
variance). 

THE LINEAR CASE 

The Iinear case is convenient for illustrating 
statistical retrieval techniques without the algebraic 
complications of the general case. The problem is as 
follows. 

Given a set of obse~ations I , which a n  
related to  the profile parameters b by 

( 5 )  
Fipre 1.- A typical kernel for soundint the temperature 

pro&, uriw the CO, 1Sr band [R-. 1971 j 



where A Is a given matrix and c is a random variable (exprinental enor) of known statistical behavior, and given 
a sufficiently large statistical sample of profiles b ,  find a statistically optimum inverse relation giving b explicitly 
as a function of 1. 

Maximun~ Probability 

The maximum probability method finds the profile b that maximizes the conditional probability density 
funct~on (pdf) P@lI) -that is, the most likely solution consistent with the obstnations. The expression 
P@ l l)d b denotes the probability that b lies in the range b , b + db when I is given. Using Bayes theorem, 
wc write: 

which is the condition pdf of the observation I given the atmospheric state b. If there were no experimental noise 
it would be a delta function at I = Ab , the theoretical value of the observation. The presence of noise turns it into 
a gaussian distribution centered a\ the same place: 

-2 lop, P(b I I) = (I - ~ b ) ~  E-' (I - ~ b )  + const 

h e r e  E is the covariance matrix of exptrimental error, which is usually diagonal. 

We estimate P(b) from the given statistical m p l e  of b , and if we choose sufficiently restricted regions of 
tir:ic and space, a g a u m  distribution can be used: 

-2 l o b  ~ ( b )  = C) -61T H-' (b -i) + const 

where b is a mean and H is covariance of b about this mean. If we art using an empirical orthogonal function 
representation of the profde, b will be zero and H will be diapnal. 

The term P(I) can bt ignored in Eq. (S), as we wish to  maximize P(1) with respect to b ordy . This is done 
by minimizing -2 l o b  P(b 11) with respect to b: 

leading to the solution 

The most likely prof* is thus a linau function of the obsemtions, md the form of this liar function can be 
precomputed. An alternative form can be found by manipulation: 



Note that we do not require that the number of parameters p in the model for the mettorological structure b be 
less than or equal to the number of measurements n comprising an observation I . The use 01 statistics has intro- 
duced enough extra equations into the system to prevent the ~roblem being incomplete. Of the two forms (7) and 
(8) of the solution, (7) will be used if y < n , and(8) will bc used if p > n , so that we operate on the smallest 
matrices. If Eq. (8) is used, there is little need to reduce the number of model parameters; a simple discretization 
can be used. 

Many nonstatistical inverse methods lead to relations of the general form of (7) or (3), allowing us to give a 
statistical interpretation of !he nonstatistical constraints used [Rodgen, 19711. 

Minimum Variance 

In the minimum variance approach we choose a linear solution b* of the form 

in such a way that the residual variance 

' M 1 ( b -  b*)' 
m= 1 

is minimized for the statistical sample. This is straightforward multiple regression of b on I . The solution is 

The statistical sample can be 3btained by collecting coincidenca of remote soundings and direct soundings [Smith, 
19691. This procedure has tl e advantag that the kernels need not be known accurately, nor is absolute calibration 
of the instrument necessary. Alternatively, the sample can consist of direct soundings, for which the radiances I 
are computed using Eq. (5). If we substitute ( 5 )  in (8) we get 

where H and E are the cwariance matrices defined in the preceding section. The final solution b* is, therefore, 
identical to the maximum probability solution 

This equivalence orxun in the case of gausrian statistics arid a linear solulion. 

Note that although D is in a senre an i,menc of A ,  it is not a generalized inverse in the sense of Moore 
119351 and Pcnrow [lc)55], because neither DA or AD is a unit matrix. \f E = 0, then D is a generalizec! 
inverse of A. If E# 0, the solution found from (lo) does not give the sarr~t radiances as measured, but give*, 
radiances within experimental error of those measured. 



The maximum pobahility method can be extended to include my kind of constraint that can be expressed 2s 
a pdf. As described the statistics could be clknrtologicrl, canring some period of time and spaa. However, we 
wuld make we of a forecast prof&, in which cow we use the statistics of forecast erron: 

where bf is lhe forecast profile, and Hf is the cwariance matrix of fortcart enon. 

Another possibility is to use continuity dong the suborbital track in the caw. of satellite measurements. 
Theoretically, we could treat dl the observrtions made during one orbit, say, as one obsemtion and retrieve the 
rneteordogical structure as a function of horizontal distance u well as height. Unfortunately, this is out of the 
question because of size of the matrices involved. Howwer, we can use the statistics of horizontal temperature 
differences, and inclu& the following pdf rr a constraint: 

where bp is the previous retrieval and HA is the covariance matrix of differences between profiles at the appre 
priate distance apart. 

THE NONLINEAR CASE 

The notation we have used so far a n  be generalized for the non'ineu problem. The vector b becomes a set 
of parameten describing the meteorolo@wl structure, not necerruily linearly. The observation I b now a known 
function A@) of the structure dth  the addition of experimental ncise c . 

The mast straightfomud method of colution is to line- *he problem, and rdve it with one of the linear 
m t h ~ &  described above, iterrting until c m v q m c e  ir o h h o d  If tho problem Enitidly is nearly linear, 8 careful 
linearization may eliminate the need forhemtion, 

A genenliution of the minimum variance cm be stated u follows: G;wn 

find the function D(f) = b* such that 

Z (b - b*)' 

b minimum for a wn sample of profiles. This voriura could be pnerrlizd for exunple to 

for some suitable matrix Q. Stated thus, the problem ir dimcult. The mrximum probability method ir rmn 
tractable. 



We can write 

and 

- 2  lo& p(r Ib) :: (I  - ~ ( b ) l T & " '  (I - A@)) + const 

Ihe  solution that maximizes P& II) can now be found by minimizing the explicit function of b  

using a general numerical minimizing dgorithrn [e.g., Powell, 19641. For particular forms of ACb) it may be possible 
to construct more efficient minimizing routines, or even tosolve Eq. (1 1) algebraically. l i  the solution is performed 
numerically it is advantaipc~u . to reduce as far  as possible the numbr  of parameters used to describe the structure. 
This can conveniently be done by using empirical orthogonal f~nctions. 

It is common in meteorological remote sou~lding for the observat~ons to be linear in some qua.:tities such as 
Ranck function, but nonlinear in other qj,antities such as absorber distributions. It is possible to separate the linear 
and nonlinear parts of the problem In terms of the maximum probability method [Rodgem, 19701. We can put 

where P is  the linear p; 3 of b and n is the nonlinear part. The kernel K(n) is a function of absorber distribu- 
tion. Using Bayes theorem we can put 

P(h I I) = PO ,n ! 1) = P(1 Id ,!) PO In) P(n) l P(1) 

where the pdf are of tile fonns 

-2 1% P(l ln,l) = (I - K(n) uT Eel(n) (1 - K(n) 1) 

-2 1o~b.PO In) = (I - l(n)lT H" (n) (l - I(n)) 

where the covariance of I, H, and mean value of the linear pwt T may depend 09 n. If we keep n f w d  and 
solve for the most Ukely I ,  we obtain the ume solution as before (7): 

On ruhtitp~ting this and Eq. (13) back in (12) we obtain 



This quantity can now be minimized numerically with respect to the nonlinear puuneters, and the resulting value of 
no substituted in (14) to obtain the lineu pnmcten  lo.  The matrix X is the inverse of the cwariance matrix of 
I for given n . Thus the quantity being maximized to find n* is essentially P(n I I). 

COMMENTS 

It is not possible in r review wch u thi, to illustrate the pncticd u r  of rll the retrieval methods discussed. 
The accaracy of retried depends u much on the puticukr ndirncer measured u on the retrieval method. 1t 
depends on the number, dupe, and location of spc tn l  intervals; the spatial resolution of the instrument; experi- 
mental accuracy; ths precise nature of the atnwsphesic model; end many other things. Disarrtiona of this aspect of 
the subject cm be found in Motem (19651, h'*n (19701, Smnd and Wamtc t  [1968u,b], Wutk und Flemirg 
[1966], Cbnmth [1968,1%9], and lkmhin cr d. [1969]. 



Qlcrhine: H'lth the stat~siical method, clearly one can get bh: most probaL.. , . - What about the least pi-ha~;. 
profile? 

Rodgers: That is a slightly philosphical matter. Given an observation you willit to find some SOIL.: '-. -. **c)u 
have an infinite number. Which one do you want? The one 1 want is the one most likely to be right. 

Chahine: As a physicist 1 am interested in the unusual. 1 would hke to find that when it exists. 

Rodgeis: If a much more iikely profile is just as consistent with the observations t h s  is surely the answer you 
want. 

Falcone: if you take the Bayesian technique, it reduces directly to WestwaterStrand's method, because you've 
used gaussian distributions. If you don't and you don't maximize with respect to B, you can develop this 
system into a Kallman filter system, which yields Smith's result, except that your iteration scheme gives you 
a weighing function which you get from the theory. You can get a mathematically good theory as Chahine 
wants, by looking at Tiekenoff s method. He uses compact functions, and this is a good theory. Mathe- - 
matically, it has its basis and it reduces to the Westwaterstrand method. This allows y w  !o play the non- 
linear game, the same as Staelin's m-thod. 

Rodgers: 1 think this is the n.at important point. You want to choose the method that you can generalize to the 
nonlinear case. 

.Veming: The standard technique for solving nonlinear problems is to take the nanlinear equations and approxi- 
mate thein 5y a sequence of linear equations, which is what has been done in the= two papers. Why does 
Chahine insist we solve directly a nonlinear problem? 

W n e :  In the 1Sp case that Dr. Rodgers is treating, the oondition factor is of the order of los, which means 
that small noise or error in mzasunments will be amplified by this factor, making the solution obtained by 
this linearization process inaccurate. 

Smith: That is the whole paint of the error covariance mauix, which is to  dampen the error. 

Chahine: When you are using a damping factor you should look at how much information you are getting from 
your measurement and how much information you are getting from your damping functioil. All the signifi- 
cant information you are getting is coming Cram the latter. 

Waters: To what extent does the accuracy of your solution depend on the statistics you use-for example, locally 
and o m  season versus dubally and all seasons-and is then an op*hum way of hrealucg the latter down? 

Rodgers: We haven't been able to b that as yet. There is not dn optimum way of breaking this down, but a bt of 
research is going intc it. 
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ABSTRACT 

Mathematical techniques used in atmospheric profile inversion are rti-k. ,::A w,, ., .--inn limited to 
methods that do not require extensive information on the statistical properties of the profiies. T b  a u ,  . -' 
the calculation of vertical profiles from noise contaminated infrared spectral meascrrments is examined. Three 
specific examples of methods of solution an  given: the iterative minimum estimation method, a second linear 
iterative method and the algorithm of ChPhine. Satellite data an used in an empirical comparison of the methods. 
Several factors are considered, including the stability of solutions, convergence behavior of the iterative methods, 
and dependence of the solutions on the fust guess, a factor that is particularly important in the treatment of data 
from other planets 

INTRODUCTION 

The first explicit suggestion that tmperaturc profiles in the terreQial atmosphere could be obtained from 
measurements performed from an earth satellite was made by Kinp ;1956]. It was proposed that limbscan measure- 
ments of thermally emitted abnoqheric ndiation be ured for this purpose. Kupiun [I9591 pointed out that 
measurements obtained in adccted intemk within an infrared absorption band with a nadir-viewing instnunmr 
could be w d  for the same prpor. In the yars following, a considernble amount of theoretical effort was &voted 
to the development of computationrl technicpas for obtainkg ternpentun profiles from the appropriate 
mclsurements 

t 
_I' . Infrared measurements obtained from euly meteorological satellites cwered broad spectral bands and could 

t . - ,  . , - .,. . . not be wzd to obtrrn vertical pmfk In 1964 the first measurements suitable f a  temperrtun profde inversion . ,: - ...; . .  , . ,. . , . . ..5 were obtained from a balloon-born spectrometer ItlOUaPly, et d.,. 19651 ; this work wru foliowed by subsequent 
. ,. balloon flights of other iustrumnts. However, it was not until the launchiq of the Nimbus 3 meteorological satel- . : {  . . .r;. .. - lite on April 14,1%9, that ruiabk me1ounmentt wsre obtaixd on a global bask That satellite carried two 

. -..; ;**,:..; : 
..,.. instntrnents that obtained infrared meuumnents at relatively high rpatral nlolution: the satellite infrared spec- 

. < - . .  trometer (SIRS) [Mud HiUcpry, 19691 and the i n f m d  interferometer spectrometer (IRIS) [Hund und Conruth, 
. . 19691 . The Nimbru 4 satellite launched Apd 9,1970, curitd improd versions of SIRS and IRIS [Hmel und 

Connth, 1970) u RZU as a selective c,.oppcr radiometer [SCR). Thus, r luge body of data now exists that can be 
used in, and has stimulated, the developnent of temperature profde retrieval techniques. 

. .- 
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A theoretical exp:ession for the radiance I ( v )  at wavenumber v  measured by a satellite-borne instrument 
can be obtained fro11.r a solution of the radiativ: transfer equation written in intcgra: form 

where B(v,  T )  is the Flanck function at wavenumber 
v  and temperature T. The atmospheric pressure p has 0.2 
been used here as the independent height variable, but 
any monotonic function of p can be used with In p 
frequently be~ng found ccnvenient. The atmospheric 
transmittance from level p to the top of the atmos- 
phere for a spectral interval centered at wavenumber 
v  is denoted by i ( v , p ) ,  and Ts and ps refer to 
surface temperature and atmospheric pressure at the 
planetary surface, respectively. In deriving j l ) ,  it has 
been assumed that the atmosphere is nonscattering and 
in local thermodynamic equilibrium, and that the sur- 
face radiates as a black body. 

The first term on the rig!!!-hand :;de of (I) r e p  
resents the contribution from the planetary surface, 
while the second tern  is the alhmcspheric contribution. 
For sufficiently trar.sparont spectral intervals, the 
boundary term must be specified in some manner, 
using measuremen rs in the most transparent parts of 
thc spectrum. It will be assumed that this can be done 
satisfactc?riy, and the bour.&ry term in (1 )  will not be 
considered further here. G:ven measurements of I @ ) ,  
the basic problem then is to solve (1) to obtain an dr/d!np 
estimate of the verticai tc,nperature profile T @ ) .  Figure 1.- Weighting functions for the 15 r m  CO, absorption 

band. The absolute values of the derivatives of the tnnsmit- 
TO be able to soke for T @  ) , it is necessary to mce with respect to the logarithm of the atmospheric 

know the atmospheric trans& t t ana  r(v ,p) .  There- pressure are shown for ~ r a l  spectral intervals 2.8 cm-' 
fore, 3n absorption band for an atmcipheric constitue~c Wid". 

of known abundance must be employed so that from a 
knowiedge of the gaseous absor?tion coefficients, it is possible to calculate the atmospheric transmittance. Both 
C02 with ibsorption bands in the infrared and 02, which absorbs in the microwave region of the spectrum. 
satisfy this requirement. Inspection of (1) indicates that the vertical derivatives of the tranmitt~nce, or so-called 
"weighting functions." essentiall)* define those portions of the atmosphere sampled by measurements at various 
pints in the spectrum. Examdei of weighting functions for 2.8 cm-' wi& spectrai intervals in the 15 pn C 0 2  
band are &own in figure 1. 

The techniques developed for the solution of (1)  can be grouped roughly into two broad categories: statistical .. .- 
and nonstatistical. This discussion i:: confined to techniques that do not utilize extensive a priori statistical informa- 
tion about the atmospheric profiles. 

The basic inversion problem is evamincd first, and three methods of solution typical of those commonly used 
today are discussed Intercomparisons of the methods are ma& with data in the 15 pm C02 band obtained with the 
Eiimbus 4 IRIS instrument. 



METHODS OF SOLUTION 

In general, measurements cf I ( i )  are ~vailable for some finite number of spectral intervals. If quantities 
pertaining to the spectral interval centered on wavenumber ui are identified with the subscript i, then (I)  reduces 
to a set of m equations 

ps 
~ T . ( P  [ T )  dp i = i , 2 .  ...,. 

In the form given in (2), the equations to be solved are nr?v!linear in the unknown T ( p ) .  Most methods of solution 
begin by linearizir~g in some way. (An exception to this approach is discussed later.) One form of linearization 
employs an expansion of B [u,T(p)]  about a reference profile T ( O ) ( ~ )  -that is 

Substitution of (3) into (2) results in a linearized set of equations of the form 

d a r e  A T ( p )  = T ( p )  - f lo) (p)  and A4 = Ii - lp) with lp being the radiance calculated using f lO)(p)  
Approximating the integrals by numerical quadrature, (4)  becomes 

j= 1 

where 

with w .  an appropriate quadrature weight. Other forms of Linearization have also ' used [Wmk and Reming, 
1966; doyen.  1966; 19701. 

When linearition is employed, the problem is f o r d y  reduced to  that of finding solutions to the linear set 
of equations (5). In the overdetermined case (m > n ) ,  a least squares solution can be written in vector form 



h 

where AT is the solution estimate and the superscript T denotes matrix transposilion. In the atnlospheric profile 
inversion problem, there will be generz!ly many more quadrature points employed in (5) than measurements. In this 
underdetermined case (m < n ) ,  the family of solutions satisfying (5) can be written [Bjerhmmar, 195 1 ] 

where b is an arbitrary vector. With the additional constraint that AT-AT be a minimum, it can be shown that 
the resulting particular solution corresponds to b = 0 in (8), or 

which is the pseudoinverse of Penrose [Greville, 19591 for the underdetermined case. 

In practice, solutions (7) and (9) are of little value for. the atmospheric profile inverse problem. 'The presence 
of nlvse in the measured radiances renders the solutions physically meaningless. This is due to the high correlation 
am ..6 the measurements, and the resulting tendency toward redundancy of the equation set (5). 

If an ensemble of measurements is considered, the covariance matrix for the measurements R can be written 

where the angular brackets denote ensemble averaging, and S is the covariance matrix for the temperature profile, 

s = (AT  AT^) (1  1) 

The second form of R in (lo) is obtnined using (5). Now the correlation in the measurement!: is due both to the 
correlation of the atmospheric temperature among various atmospheric levels and the radiative transfer process 
itself-that is, the averlap of the weighting functions. The correlation due to the overlap of the weighting functions 
alone can be considered by assuming S = o 1 where o is the variance in temperature assumed the same at each 
level. This results in 

T Thus, the matrix KK provides a measure of the correlation among the measurements due to the overlap of the 
weighting functions. It is possible to find a representation for the "measurement vector" A1 in which its com- 
ponents are uncorrelated by diagonaliring K K ~ .  The resulting normalized eigenvectors u, given by 

provide a convenient basis set for representing A1 in the measurement space and will be used in the 
subsequent analysis. 



C1 

The effects of noise on (9) will now be considered. Assume the measured value A1 consists of a "true" value 
AI,  plus an error vector e-that is 

The noise-contaminated solution calculated from Eq. (9) is 

CT = KT(KKT) -~  G 

Now 3 can be expanded in terms of ui 

Substitution of Eq. (16) into Eq. (1 5) gives 

T Th3s, tile solution can be written as a h e a r  combination of the m vectors K ui. These vectors form an orthog- 
onal set but are not normalized, their lengths being fl. Normalization yields the set of vectors 

They are identical with the rn eigenvectors of the matrix K ~ K ,  which correspond to nonzero eigenvalues. 

Using Eqs. (14) and ( 18). Eq. (17) can be rewritten in the form 

and the solution can be regardd :as a linear coinbination of the vectors vi in the "profile space." The vectars vi 
were calculated for a set of 16 spectral intervals in the 15 pm CO1 band. The first eight of thew vectors, along 
with the corresponding eigenvalues, are shown in figure 2. it should be noted that there is a large dispersion in the 
range of eigenvalues corresponding to  approximately 5 orders of mapitude with the more highly structured eigen- 
vectors associated with smaller eigenvalues. 

It is convenient to w~rite ui r = Icl cos #i where Ir 1 is the magnitude of E , and #i is the angle between 
r and the i th basis vector u i .  Then Eq. (19) becomes 



m 
lel cos #i 

6 ) 'i 
The first .term of the coefficient of each vi corresponds 
to the signal portion while the second term corresponds 
to the noise portion. Now if the true profile is relatively 
smooth, A1 will be almost perpendicular to those ui 
associated with small eigenvalues in the measurement 
space, and the fint term in the comspondmg coeffi- 
cients in Eq. (20) will not be I- -ge even though 6 
appears in the denominator. however, since the noise 
vector will generally be random in direction in the 
measurement space, it can have nonvanishing com- 
ponents, in the direction of the ui associated with 
small eigenvalues, that will be amplified by 1 1 6 .  
Thus, the coefficients of d;r~se vi in the profile space 
that contain finer structure will i;e large, resulting in 
nonphysical, large-amp itude, fine-scale structure in 
the solutions. 

Detailed analyses of the infoimation content of 
noise contammated measurements employed in obtain- 
ing vertical atmospheric profiles have beer) provided by 
Mateer [I9651 and Twomey [1965] . Examples of the 
goss instabilities occurring when direct solutions are 
employed have been given in the literature [ Wmk urui 
Fleming, 1966; Conruth, 19681 . 

Figure 2 - Basis vectors employed in the representation of 
solutions in the profde space. The associated eigenvalue 
n shown in erch case. 

To produce physically meaningful solutions, an 
inversion method must be able to suppress either ex~licity or implicity the contributions from those eigenvecton 
associated with the relatively small eigenvalues. Three computational methods typical of those currently being 
employed will now be discussed 

The first method to be considered is based on a form that can be derived as a limiting case of the statistical 
estimation 

obtained independently by Rodgrn 119661 and by Shand pnd Wcsruutcr [I968 %b] . The relation Eq. (21) was 
also given b! -aster [I9611 in a differerlt context. Here fT= e- 'I(O) where T is the estimated profile. T(O) 
is the mean of a r~pre~ntative ensemble of profiies, S is the twoJeve1 profile covariance matrix obtained from thc 
same ensemble, Lif = I - I(') where are the radiances calculated d o ) ,  and E is the instrumental 
noise covariance matrix. The limiting form of Eq. (21) of interest here is obtained by ammiq S = 03 1 and 
E = O :  1 ; 



where 7 = o: lo? is the ratio of noise variance to signal variance. ?his is called the minimum information, or 
maximum entropy, solution by Foster [1961]. A similar algebraic fcmn was derived by Twomey [1963] from a 
nonstatistical point of view based on the work ofPhillips [1962]. A similar form can also be obtained from the 
method of regularization [Ghsko and Timofeyev, 1968). 

When T(O) and 7 are not precisely known from statktics, Eq. (22) can be used as the basis for an iterative 
form, treating do' as a first-guess profile. The resulting iterative rciation is 

where the parenthetical superscripts refer to the iteration order. Iteration can continue until the residuals 7- I ( ~ )  
reach the instrumental noise level. 

The behavior of this solution can be examined by considering the representation of the residuals on the P th 
iterative step in terms of the eigenvecton ui 

From Eqs. (24) and (23), a recursion relation for the coefficients ai@) can be derived in the form 

from which the relationship of the coefficients on the Qth iteration to  their initial values can be obtained 

The mean square residual on the Pth iteration, which can be employed as a measure of convergence, can be written 

Note that for 7 > 0 the terns in Eq. (27) will individually approac? zero in the limit Q +m. The rate of the 
reduction of each term with increasing R depends on the relationshi? uf 7 to hi. Temts t ~ r  which 7 << Xi 
will decrease very rapidly while those for which y >> hi will decrease slowly. Tilus, by c!.,asing an appropriate 
value of 7 ,  the portion of the residuals associated with the larger eigenvalues and valid information can be reduced 
in one or a few iterations, while that portion associated with mall  eigenvalues and noise will remain essentially un- 
reduced. By truncating the iteration at the proper mean square residual level, the noise contaminotei, m&s ass xi- 
ated with small X i  values can be suppressed. 



The solution on the Pth iteration in terms of the set of basisvectors vi in the profile space can be written 

This expression can be obtained from Eqs. (23) and (24) by straightforward algebraic manipulation. It can be seen 
that the coefficients of those vj for which 7 >> Ai will increase very slowly, and these terms will not contribute 
to the solution until many iterations have been performed. In the limit P -, - , the factor in square brackets 
approaches unity for all 7 > 0 and Eq. (28) reduces to an expression equivalent to Eq. (19), indicating that the 
iterative algorithm Eq. (23) converges to the Penrose pseudoinverse. In practice, the iteration is stopped when the 
residuals reach the instrumental noise level. 

Another type of iterative algorithm can be obtained in the following way. Multiplying both sides of Eq. ( 5 )  
by KT gives 

T Now consider K K written as the sum of a purely diagonal matrix G and a remainder R ; that is 

Once G is specified, R is determined by Eq. (27). Combining Eq. (27) with Eq. (26) and rearranging gives 

This expression can serve as the bais of nn iterative algorithm 

where  AT(^*^) = - T(O) and  AT(^ = 'dP) - T(o). Using Eq. (27) to elminate R finally results 
in 

The choice of G &termines the ccwergence behavior of Eq. (30). Examples d solutions are given in the following 
section with the r; ~diagond e1ement.s of G set equal to  



A third example of a nonstatistical solution is that suggested by Chahr.ae (19681. I t  is a relaxation technique 
that does not require linearization of the radiative transfer equation, but uses Eq. (2) directly. In this approach, the 
radiance from the ith spectral irrterval is paired with the temperature at sornc level pi. The algorithm employed is 

The superscripts refer to the iteration number, and I,@) is the radiance calculated using the estimate for the tem- 
perature profile on the Pth iteration. A first guess is made at a temperature profile to begin the iteration. In order 
to calculate li(Q) at each iterative step, the temperatures 7'(')(pi) at the m atmospheric levels must be interpe 
lated to intermediate levels. The f ~ r m  of interpolation used, along with the quadrature method employed, essen- 
tially defines the representation for the temperature profile. 

Iteration is carried out using Eq. (31) until some coiidition on the residuals (differences between measured 
and calculated radiances) is met. For example, iteratiof, may be stbpped when the rms residual approaches some 
\.due determined from a knowledge of the rms noise !el el of the measurements. The convergence properties of Eq. 
(31) are rather obscure, and the degree of success of the method must be judged empirically. There is obviously na 
unique choice of atmospheric level pi for a given spectral interval, but a logical choice would appear to be a pressure 
level near the peak of the weighting function for that interval. 

A modification of Chahine's algorithm has been epven by Smith [I9701 . This approach employes an iterative 
equation 

By solving the Planck functions obtained with this equation for temperature, m different temperature profiles 
h 

l; '@) (i = 1.2. . . . , m) are obtained. The solution is then defmed as the r igh ted  mean 

A first guess at a temprrture profile is ma&, and Eqs. (32) and (33) are iterate? until some criterion on the radiance 
residuals is satisfied This method docs not require an arbitrary pairing cf atmospheric levels with spectral intervpls 
nor does it require an explicit in!erpdatic>n between ievels since a temperature can be caculated at each level using 
Eq. (33). 



EMPIRICAL COMPARISONS OF METHODS 

The behavior of three of the methods discussed above are now examined and compand, using applications to 
actual satellite data. These methods include the minimum information estimation Eq. (i3), Chahine's algorithm Eq. 
(31), and the iterative algorithm Eq. (30). 

The data wen obtained with tht Nimbus 4 IRIS experiment [Hanel and Cbwath, 19701. The instrument has 
been described in &tail elsewhere [Hanel er aL, 13711. The spectra range extends from 400 cm-' to I500 cm-I , 
and the spectral resolution is equivalent to about 2.8 cm-' . Selected spectral intervals in the 15 pm (667 cm-' ) 
C0, band are used in the present study. The noise equivalent radiance in this spectral region is approximately 0.5 
erg,/cm2 oec sr cm-I (1% of the signal). The quality of the solutions is established by comparisons with in situ 
measurements obtained with radiosondes. 

Examples of Retrieved Rofiles 

The fint examples to be considered are solutions obtained with each of the three techniques, compared with 
a radiosonde profile. Sixteen spectral intervals were employed; weighting functions for several of the intervals are 
sham in figure 1. F ipre  3 shows the retrievals using the minimum information method, the iterative estimation 
method Eq. (30). and the Chahine algorithm. In eaA case, the snmc first guess, a climatological mean profile, was 
used 

The minimum information solution and the iterative method are found to give almost identical results in this 
caw: thcy are indistinguishable on the scale of f w r e  3. The minimum iafonnation method was iterated twice with 
7 = G.03(°K)'/(erg/cm2 sec sr cm" )' to reduce the residuals to the instrumentai 3oise level. The temperature 
dependence of K was taken into account on each iteration. The solution shown in f ipr :  3, using the iterative 
method Eq. (30). was obtained with 24 iterations, kt is essentially no different from that obtained with only five 
iterations. 

In obtaining the retrieval shown in figure 3 with the Chahine algorithm, 1inti.r ir~terpolation was employed 
between the 16 levels for which temperatures could be 
computed The appearance of sp1;rious fine structure 
in the solution b a problem enr~untered when an 7 
attempt is made to uw a l a rp  number of spectral I 
intervals, as in this ca r .  Thjs structure is essentially 
the onset of instability and grows in amplitude as the 
number of iterations is increased. The use of 16 mgvY COIphQIY* - .  

spectral intervals : d t s  in a large amount of redun- --- -a 
u m m w  l 0 l Y l " n  is1m11m ! 

dancy with weMting ftmction peaks yparated only - 1 ,  I * I I U T ~  ~S,UIRY 

slightly in many cases. lhis makes the selection of - - - umnm I 
levels for calculating temperatuns using Eq. (31) a 
rather difficult task With so many spectral intends, 
the choice of cderir. for truncating the iteration bc- 
comes critical. In studies with the Chahine method 
the iteration w u  stopped whenever the rms residual T." I 

l O O C ~ L ~ -  )#) 210 2D 2YI 2 4  S O  2W 270 210 ZW XD 

dropped below 0.8 erdcm2 sec sr cm-I or chmwd TWC(RAIURE p l ~  - - 
by leu than 0.02 erpl&n2 rec sr an" from the - 
previous iteration. The i~stability problem disappears F&we 3. - Cbmpubm of retrkvrls usin# three mathob. lh 

rdutloa obtained &th tbe minimum infornut&? #tim, 
when the number of tpcctral interah is reduad, u;d tkn md tbs itmtive method are hdirtblluhhttle c-I 
ths uzc of 7 intervals prduees better results than 16. thb rrk. 



Yigure 4.- Convergence behavior of the Chohine algorithm. The 
live examples shown wcrr selected from a Lrpr sample to &ow 
the range of behavior. 
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Figure 5.  Convergence tehavior of the iterative method. ?he 
ume five caws en~ployed in figure 4 arc &own. 
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Fipm 6.- Minimum information ertimrtbn retrievals Uuttrat!q 
dependence of solutions on the fuct f,ucss. The irothtrmal 
fmt wers was 250. K. 

Convergence Behavior 

It was found empirically that iterating tbe mini- 
mum information estima!ion more than twice did not 
appreciably improve the solutions Hence. this method 
can be done with considerablc cumputational speed. 

The convergence behavior of the Chahine a l p  
rithm is sliown in figure 4 fo: five typical cases. The 
rms residual is plotted versus iteration number. The 
residual f o ~  the 0th iteration represents that obtained 
with the first-guess temperature profile. In general, 
all the curves are characterized by a large decrease in 
the residual on the first iteration, followed by a region 
of less rapidly decreasing residual until the curves be- 
come nearly flxt. In some cases the residuais actually 
increase again after going through rather broad minima. 
There is considerable dispersion in the asyniptotic be- 
havior of the curves, which appears to depend on the 
nature of the profde, the first guess, and the behavior 
of the nose in each case. 

The best results are obtained when the iteration 
is stopped at some point where the residuals are begin- 
ning to decrease less rapidly but have not yet reached 
the flat part of the curve. However, the optimum 
point for stopping the iteration appears to vary from 
case to case, makinq it difficult to establist~ a general 
set of convergence iriteria. The quality of a solution 
1s found to decrezse rapidl. s the flat part of the 
curve is approached. 

The change in rms residual with iteration number 
for the iterative method is shown in figure 5 for the 
same five cases. The general shape of the curves is 
qualitatively simil~r to those obtained with the 
Chahine algorithm but with 3 somewhat more abrupt 
transition to the flat portion of the curve. The soi3~- 
tiom were found not to change significantly after 
iteration 4 or 5, and the quality remained good out 
through iteration 24, which was as far as the calcula- 
tions were carried. Thus, the criteria for stopping the 
iteration are not critical with this method. 

Dependence of Sdutions on the First Guess 

Since ah three solutions require a first-guess 
tmr:a ture  profile, ~t is of interest to investip~? the 
sensitivity of the find solutions to the first guess. For 
this purpose, a case was chosen in the tropics where 
the tempera:ure profile has a very sharp minimum 
(tropopause). This represents essentially fine struc- 
ture and as such is generally difficult to retrieve 
accurately. 



Solutions were obtained w.tir each of the three methods using two extremes in first guess: (1) a cl~matological 
mean temperature profile having nearly the same shape as the actual profile, and (2) an isothermal profile at 250' K. 
Figure 6 shows tlle reults of this test for the minimlim information estimation Eq. (23), with the iterative method 
Eq. (30) and Chahine's algorithm Eq. (31) giving essentially similar results. 

Good results were obtained with all three methods using tlle c!imatological first guess. With the isothermal 
first guess, the gross structure of the profile is retrieved. The essent~ally linear part of the profile In the lower atmos- 
phere (tropo;phere) is fit quite accurately. However, the solutions are about 10" K too wJrm at the trop~pallrc.,, 
and th: sha~p  structure is not retrieved. 

The mathematical techniques employed in obtaining atmospheric profiles have undergone extenwve evolution 
unce the early attempts at direct matrix inversion which resulted in h ia ly  unstable solutions. Various methods 
have been developed for obtaimng stable solutions which are physically meaningful. These solutions generally 
employ constraints, either lrnplicity or explicity, that may involve the use of extensive information on the statistical 
properties of the profilc or may usc only a knowledge of the general properties of the profile (for example-its 
smoothness). Both gc;:eral approaches have recently been employed in the reduction of infrared spctr;.' data 
acquired from sateliites [Smith et 41.. 1970; Work. 1970; Conmth et al., 19701. The present review has been 
limited to techn~ques that do not use exttnsirt statistical information. 

Constrained forms of matrix inversion have been developed through the work of Philli~ d Twmey,  and 
more recently the so-called "minunum information estimation," closely related to  the solutiors given by Twomey, 
has been used The minimum information solution can be viewed as either a limiting form of a statistical estimation 
or a constrained form of pseudoinversion for an underdetermined system. Several iterative techniques have been 
developed, including that of Chahine, which uses ratios of measured to calculated radiances, and other methods 
using differences between measur-d and calculated radimces. 

Fuce  methods typical of those currently in use were described and compared using actual satellite dab .  The 
performance of the methods also was compared against in situ measurements obtained with radiosondes. It should 
be emphasized that the empirical results obtained here pertain to ttie 15 pm C02  band and could conceivably be 
altered if other spectral bands were considered 

Hhen large quantities of data are to be reduced for the terrestrial atmosphere on a globd basis, computational 
speed is of utmost importance. The minimum information estimation is rapid, and therefore attractive for this 
applicgtion, hcause it lequu-es few iterations. Increasing the number of spectral i n t e rv l  increases the comyl.ta- 
tiond t h e  iequired for all methods, and this factor must be weighed against any possible gain through iedundancy. 

S?uQ of the covergence behavior of the Chahine algorithm inuicates that the choice of criteria for truncating 
the iteration is very important. For the iterative method Eq. (30). the results are inwrisitive to the number of 
iterations within a rather broad r m p .  A study of the dependence of the methods on the first guess indicarcs that 
only the gross features of the profile can be retrieved if a poor first guess is employed, such as an isothermal atmos- 
phere. This a p t  is cf particular intcrcc,: when the .~pplication of the techniques to spectra from other planets is 
considered An example of such an appli~atiol~ is the retrieval of profiles for ths h r t i a n  atmosphere from sbvctra 
to be obtained mth the IRIS instruments flown on the 1971 Mariner missions !Hone1 er d. 19701 . 

In this review of the mthematics of atmospheric p r o f i  imedon. several factors in reducing data for the 
earth's atmocjkere on a @OM basis hive not been discusred. Chief amon! these is the problem of a partially cloud- 
filled instrumc;~tal field cf view. In this situation, the radiances must be corrected so the cloud effects are fernwed 
before the techniques described a n  be applied The correction is accomplished uJng information frorr, c. tiher spec- 
tral intends or information derived from spo.tiol ~ a n n i n g  [Smith, 1967; Smit."rt d, 1970; Rodgm, 19701 . 





DISCUSSION 

Stmnd: l'd like to ask about the strong &pen&nce of the initial guess. Why do you lose all this informatim and 
never get it back when you start with a poor imtial guess? 

C o m t h :  The structure, like the tropical tropopause. is not contained in your measurements. You need an initial 
guess containing this. 

Waters: In applylng this technique to atmospheres other than that of the earth, how we9 do you know the kernel 
in the integrand? 

Conrath: You are on shakier ground. First, you don't know the mixing ratio precisely. This ~psets  the relat~on- 
ship between the optical depth and pressure level and introducts profie distortions. Also with lo* pressures 
and !xgh mixing ratios (Mars) we are extrapolating quite s bit with our theoretical represmtations of the 
absorption coeff~ients. This brings in other uncertainties, too. 

Falcone: If you use the Bayesian techniqu: and you put in your a r i o r i  knowledge, then you can look at your 
varianc: to see how it is changing. You will get bet~er h o w l e d 9  that way. 

Conmth: You essentially have no real a priori knowledge. All you have is the variance st yaur measurements. 

Unidentified speuker: On your curves you presented cf the rms radiance residuals versus iteration number. have 
you looked at  what your rms temperature errors do? 

Conmth: Yes. For the Chahine type relaxation algorithm if you keep iterating out on the flat part of the curve 
the temperature errors go through a minimum E ' I ~  then go up. For the other method it doesn't make a diff- 
erence and you get a very flat minimum. 

McQotchey: From what you hwe shown it appears that the ptobiem :s solved. All of the metl~ods gave very good 
answers. Does that mean we can get the temperature information we want? 

Comth:  That is a veb strong statonent and I am reluctant to  agree. The subject of cloudy atmospheres is still 
a big problem 

W n e :  1 would like to comment on the degree of ver t id  resolution we can get from a given set of rn?&iure- 
me.lts. The frequencies used to sound the tropopause are very broad and because the tropopause temperature 
is lower than above or below it, a large amount of outgoing radiance comes from the region above and below 
the t-opopause. Thc-refort, the inverse problem wil! irot reconstruct the tropopause. Methods should be 
developed to measure outgoing radiance wit5 a high degree of accuracy and high spectral resolution. 

Mddtchey: I have generated from a series of real atmospheric temperature soundings radiance distributions for 
both the 15p and 4p - ior every two wovenumbers in each band and using a set of transmission functions 
which I would be &A, to provide. 1 wculd like smoom to do the inversion and !'U keep the numbers locked 
up. 'M should be a very good and interesting test of various technips 
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ABSTRACT 

Ve~tical temperature profiles are derived from radiation measurements by inverting the integrai equation of 
radiative transfer. Beca11-t :f the nonuniqueness of the solution, the particular temperature profile obtained depeads 
oe the numerical inversion technique used (that is, matrix inversion~r iteration) and the type f auxiliary informa- 
tion iucorporated in the solution (that is, statistical or initial data). The choice of an inversion algorithm depends 
on xany factors; including the speed and size of computer, the availability of representative statistics, and the 
accuracy of initial data. This paper presents results of a .~-xrnerical study comparing two contrasting inversion 
methods: the statistical-mairix inversion method and the nonstatisticai-iterative method These were found to be 
the most applicable to  the problem of determining atmospheric temperature profiles. Tradeoffs between the twc 
methods are discussed 

INTRODUCTION 

The deterrnina tion of venicll temperature profiles from multispectral s~tcllite measurements of the earth's 
radiance, in an absorption band of a known gaseous constituect, requires the inversior~ of the integral equation of 
radiative transfer 

The spectral radiance measured from space is giver by I(v), B(v. T )  is the Planck radiance at frequency v and 
temperature T.x is any single-valued function of pressure p. and t(v,x) is the fractional transmittance of the 
atmosphere above the kvel x for radiation at frequency v. In this discussion x(p )  = a [lc(lOOp) 1 + 1 
where Q = 991[1n(100,000)] ' . The zero subscript denotes surface bomdary values. The boundary term is determined 
from atmospheric "window" measurements. The solution T(x) is obtained from the Planck ra&ance B [v, T(x)] 
assuming the kernel of drldx of Eq. (1) is known. Figure 1 shaws the nine components of the kernel (or Planck 
radiance "weighting functions") for the spectral intervals of a future operational vertical sounder. The Planck 
radiance is given by 

where c l  and c2 are constants of the Planck function. 



Reming and Smith [1971] give the details of various numerical a l g o r i t b  for solvi-4 Eq. (1) for T(x) .  
Briefly, the solution of Eq. (1) requires measurements I ( v )  to a certain degree of accuracy at  a finite number of 
frequencies and knowledge of r ( v , x ) .  Because of the consrvative nature of the atmcsphere, one begins with an 
initial profile for T ( x ) - a  climatdogical mean or a forecast profile-that retkces the probiem to solving for the 
temperature deviation rather than for its entire magnitude. The Planck function is then hearized wit!! respect to 
frequency about some intermediate reference frequency. 

The resulting matrix-vectorial approximation of the radiative tran~fei equatior is 

where r is a column vector of differences of observed radiances frcm radia~ces w e n  by the initial data; A is an 
M X N matrix whose elements are 

where M is the nub lber of measurement frequencies and N is the number of pressure levds. The elements of the 
column vector b are 

and the observational errors are represented by the row vector E. The Planck function linearization factors in 
Eq. (4) are given by 

I 

for l j  f q  
I 

Q.. = (6) Y 

for = 5 
" I  I I0 - . 

a - 
where vo is the reference frequency and 5 is the initial :: 
temperature at the jth pressure level. Since Ti in Eq. 2 
(6) is unknown, T- must be used initially, but on succm- 2 
sive iterations the ktest tnttimatc of Tj can be used in KK) 

estimate 0.- .  The inverse problem is now reduced to 
solving Eq. \3) for b since the temperature profile T can 
be obtained from the unique inverse of the Planck func- 
tion Eq. (2). 

Equation (3) cannot be solved directly for b in that 
it is unstable bcuuse of the near singularity o i  the matrix ,000 

A. The near singularity is due to the lack of vertical in- dt-/ *. 
&pen&nce of the weighting functions (fig. 1). Numerous qU I.- I*.han 

U*rUl indirect methods of solving Eq. (3) have been presented ,, f,, ths rpactnl mn 



in the literature. Howver, since the solution of Eq. (3) is nonunique, the solution one obtains depends 
on the method used 

Two very different methods of solving Eq. (3) for b are given in b7emingand Smith 1197 11 : the statistical 
matrix inversion method and the nonstatistical iterative method. The statistical method yields the ?sl.*iion 

in which the coeff~ient matrix 

where Sb and S, are covariance matrices of b and r.  The superscripts T and -1 denote the matrix transpose 
and matrix inverse, respectively. In Eq. (7) the elements of b are the deviations of the actual temperdture from the 
mean temperature values obtained from the statistical sample of soundings used to estimate Sb , and r is the vector 
of deviations of the measured radiances from the radiances corresponding to the mean temperature profile. 

The general iterative method utilizes tlre solution 

where the parentheticai superscripts ( n )  represent the n th  step in the iterative procedure. The coefficient matrix 

h e r e  D is a diagonal mt r ix  with diagonal elements 

In Eq. (9) b and r are deviations of atmospheric temperature and measured radiances as in the previous paragraph, 
but now the deviations are from the values calculated in the previous step of the iteration. 

Basic differences in the two mcthods of solution are readily apparent from a comparison of the coefficient 
matrices given in Eqs. (8) and (lo). The iterative method avoids the calculation of an inverse matrix, but at the ex- 
pense of iteration. On the other hand, the statistical metnod uthizes statistid covariance matrices and an inverse 
matrix to achieve a one-step solution for the dtparture of atmospheric temperatun from a fmcd mean prcfile. The 
iterative method is free to use an arbitrary initial profile and attexnpts to successively imprme the solutiorl through 
iteration. .4lso, this method is easier to implement than the statistical method since a priori statistics are n;;t required. 
However, the iterative method is  more time consuming than the statistid metirod due to the number of itetations 
required. 



RESULTS 

The results presented here were obtained from 
calculations previously described by Fleming and Smith. 
119711 in their numerical comparison of the two inver- 
sion methods. The procedure was essentially as follows. 
Radiances were calculated by Eq. (1) from a diverse 
sample of 109 temp-dture profiles between lSON and 
90°N latitude. Random noise, distributed normally with 
a standard deviation of 0.2 erg/(cma sec sr cm" ), was 
added to the radiances to simulate real measurements. 
The 109 profiles were then retriel.ed from the perturbed 
radiances by the statistical and the general iterative 
methods, Eqs. (7) and (9). 

Covariance matrices Sb and their corresponding 
mean profiles T were determined for four latitudinal 
zones- 1 5-30°N, 30-4S0N, 45-60°N, 60-90"N-in an In- 
dependent study that did not utilize any of the 109 
profiles used in the present study. The mean profiles 
used in the statistical method were also used as initial 
profiles in the iterative method for consistency. The 
noise covariance matrix Se was simplified to the 
diagonal form uE21 with oe = 0.2. The covergence 
criteria of the iterative method was based on a, = 0.7 
as an upper bound. 
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M E A N  A B S O L U T E  TEMPERATURE ERROR C 

Figure 2.- Mean absolute temperature errors as a function of 
pressure for .5-9@N. Solid Line and dashed line correspond 
to the twr solutions indicated by the numbers. 

Figure 2 hows the mean absolute temperature error associated with tle two methods as a function of pressure. 
The accuracy of both methods is relatively poor in the layers of the atmosphxe where abrupt changes in lapse rate 
exist; for instance, below 700 mb where surface inversions occur, within the 300 to 70 mb layer where the tropopause 
prevails, and in the upper stratosphere where the stratopause temperature revrrsal exists. In the layers where constant 
lapse rates of temperature generally prevail the accuracies of both methods is close to 1°C even though the simulated 
radiances were contaminated with realistic noise. The general saw-toothed nature of the curves is related to the fact 
that individual members of the set of 109 sounding contain sharp temperatun: inversions tihat occur randomly in 
layers having thicknesses below the resolution provided by the weighting functiuns. 

Figure 3 shows the average difference of the abse  
lute errors of the two methods for four latitude belts 
within the 1 5-90°N region. The error difference was 
computed by subtracting the average absolute error of 
the statistical solution from the average absolute error of I 
the nonstatistical method for each latitude region. Con- 
sequently, layers of positive difference are layers in wkch 

? 

the statistical solution is superior to the nonstatistical 
solution. 

In viewing the ditference curves for the four lati- m1119YcL Or .lmUIE 1 ~ 1 ~  c 
h, S*..',I., *.,". L.,*l'd 

tude belts, one sees that *e only vertical layer possessing 
a consistently one-sided difference is the tropo~ause Fin 3.- Difference of absolute enor between nonstahticpl 
layer (300 to 70 mb). In this region of the atmosphere and statistical methods for polar, subpolar, midlatitude and 
the average accuracy of the statistical solution exceeds rubtropicd areas. 
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Flgure 4.- Temperature profdes a3 a function of presstire for 

tirat of the nonstatistical solution by as much as 1°C. 
(Tile upward progression of the tropopause toward lower 
pressures with decreasing latitude is quite evident.) 
Statstics are expectcd to improve the accuracy in this 
layer because the emall-scale tropopause features (its 
height and change in temperature lapse rate) are known 
to be highly colre!ated with broader scale characteristics, 
such as average lapse ;z!e and vertical mean temperature, 
of the troposphere and stratosphere. It is somewhat 
surprising that the statistics seem to play an insignificant 
role within other regions of the atmosphere, except in 
the upper polar stratosphere. This indicates that smaller 
scale vertical features outside the tropopause layer are 
not well correlated with features that can be resolved by 
the radivnces. In fact, there are reglons- for example 
the layers centered around 10 mb and 800 mb levels- 
where.thc nonstatisticai soiuoi,ns are more accurate than 
the statislical solution:. The adverse role of statistics is 
caused by the occurrence of statistically anamolous 
temperature. profile features. 

-white ~orse; Y. T. ?he RAOB. gutased prof&. and the two The role of statistics in the temperature profile 
solutions are identified by the numbers. 

solution is nore  dramatically dcmonst~ated on a profile- 
by-profile bitsis. Figures 4 and 5 show the individual 

profiles in which the largest positive differences and the largest rtgative differences, respectively, of figure 3 occurred. 
The actual temperature profile (denoted RAOB for radiosonde observation) shown in figure 4 is characterized by a 
very sharp and cold tropopause. The tropopause layer is less than 100 mb thick and apparently below the resolution 
of the radiance observations since the nonstatistical solution failed to exhlbit this tropopause feature. However, the 

statistical m1u;tion partially reveals the tropopause be- 
cause this feature commonly exists in temperature pro- 
fies at this latitude. The accuracy of the two solutions ,- AIG~NIIA, n r r o  

(.IQN 54'WI outside the tropopause region is nearly the same. Both 

5 - solutions captun! the lowlevel surface inversion and the 
abrupt change in lapse rate near the 10 mb level. 

10 - 
- Figure 5 shows a temperature prorile that is statis- 

NON.SlATISTIC4L tically anomalous for its latitude. In this situation the 
171 STATISTICAL - statistical solution exhibits erroneous tropopause struc- 
131 1 ~ 0 1  ture as well as an erroneous stratopause near the 2 mb 
141 GUESS - level. This erroneous structure caused relatively large 

errors throughout the entire stratosphere. The nonsta- 
- 

100 - tistical solution, on the other hand, is in excellent agree- 
300 - - ment with the actual profile throughout most of the 

atmosphere. 
$00 - 
700 - 

loool . d o  A 0  . 40 2 i 0  L o  +-+MI CONCLUSION 

In comparing the statistical and nonstatistical in- 
Fbrr  5.- ' f e i n W t m  Promeru ' 'unction '' prwu= '" version the major conc~usion to be drawn is Argenth. Nfld. The RAOB. peued prof*, and the two 

solutions are identifkd by the n u m k n  that statistics generally improve the retrieval of the 



temperature profile in the tropopause region. In other regions of the atrnosphcre with the exception of the polar 
stratosphere, statistics do not appear to significantly improve the accuracy of the temperature profile solution. In 
statistically anomalous situations, the use of statistics can degrade the solution for the atmospheric temperature 
profile. 

The above conclusions are not necessarily valid when one uses better initial profiles or a different number of 
spectral radiance 0b;ervations in the solution. In setting up an operational program to do temperature ~ctnevals, the 
authors found no significant improvement with statistics when using a 12-hr forecast as the ini!ial profile. On tha 
other hand. we have alw found that statistics tend to play a more significant role when osiy a few radiance 0bst.i- 
vations are available for the temperature profile solution. 



Qrahine: The general iteration method is simply I nonlinear  laxat at ion method written in vector 
notation. Concemicg the minimum information method, or Twomey method, all methods that tend to 
linearize the Planck function by writing it as a function of frequency multiplied by a function of temperature 
are accurate only if measurements are made in a very narrow frequency range so that we can take the depend- 
ence of the Planck function on frequency as the ~ a l u e  at the mean point between the two extremes. However 
we sre looking into a complicated atmosphere 21th clouds, etc., and we would like to get all possible informa- 
tion not only from one frequency range. ( h i  !hat case linearization of the Planck function would not apply. 

Falcone: In the microwave region the problem is linear. 

Pony. As a meteordi~ist 1 have had experience in using these data. Some have been saying that the most probable 
solution is the best solution. If this were the case for operational purposes, then it would not be necessary to 
make observations. We could simply use the ciirnatology to make early forecasts. Tht unusual situation is the 
important situation. 

Sntith: The best solution is one that satisfies your measurements, given all the other information you know. This 
additional information could be contained in statistical covariance matrices or what is generated in dynamical 
forecast models. 

Kirtg: Certainly any information, statistical or not, should be considered and used. However, critical is the matter 
of where you use it. If you feed the statistical information in at the beginning of your algorithm, the results 
are always a little unconvincing b e c a w  you don't know whether you are regurgitating whai you put in o r  
getting new information. There is also the problem that with the given set of radiances there are infinitely 
manifold possible solutions. The problem is choosing among one of many, and the statistical criterion has 
been used as the basis for a uniqueness criterion. This is not the only one. We want some external condition. 
Another external constraint would be to choose from all of these possible proiiles the smoothest one, in the 
geodesic sense. This is an equivalent radiometric pr~file, not the actual profile, but it is a completely unbiased 
one. You may then insen your statistical knowledge to correct that profde. 
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ABSTRACT 

The relaxation method for inverse solution of the full radiative transfer equation is generalized to solve f o ~  all 
the atmospheric parameters that appear in the integrand as functions or functionals, without any a priori information 
about the expected solution. Illustrations are presented using the 7 . 5 ~  CH4 band for determining temperature pro- 
files in the Jovian atmosphere, and the 6 . 3 ~  band for determining the water vapor mixing ratio in the earth's 
atmosphere. 

INTRODUCTION 

The relaxation method of solution [Qtahine, 1968, 19701 developed for the determination of a class of 
atmospheric parameters appearing mainly as functions in the integrand of the radidt~ve transfer equation, such as 
temperature and constant composition mixing ratios, has been generalized [Chahine, 19711 for the determination 
of the class of parameters that appear as functiomls m the integrand-for example, variable compos~tion structures. 

Here we outline the general nature of the relaxation method, and then conduct several numerical experiments 
for determining the iemperature profile in the atmosphere of Jupiter, and for determining the water vapor mixing 
ratio p:ofile in the earth's atmcsphere. The results discussed here are based in part on Qtahine [1971]. 

THEORETICAL BACICGP.OUND 

The outgoing radiance at a frequency v, received at level Sj  of a plane, parallel atmosphere in local 
thermodynamic equilibrium, is given by the radiative transfer equation in its integral form as 

l(v) =: B [v, T(p,)l ~ ( v ,  PS + fn;iv, T(p)] - d l n p  a l n p  
In P, 

assuming a Planck blact. body boundary condition at the surface p, with 



The surface emissivity is assumed to be unity, and r ( v .  ( q (p ) ) ,  . . . ) is the transmittance of a column of 
absorbers between levels p  and - 

From an appropriate set of J observed outgolng rsdiance values I(v i ,F) ,  we aim to determine the unknowns, 
such as temperature T ( p )  or composition q ( p ) ,  by inverse solution of Eq. (1). The extraction of these unknowns 
from under the sign of integration is difficult because it requires the solution of a nonlinear integral equation with 
fned limits. Part of the difficulty can be related to the ~ i c t  that the mathematical properties of the integrand of 
Eq. (1) precludes the reduction of this problem to the inverse solution of a linear system of equations 

A comparison between the properties of Eqs. (1) and (2 )  reveals that Eq. (2 )  always has a solution for any 
arbitrary setof given values of 7(1+), while integralzquations with fixed limits as Eq. ( I )  do not always have a 
solution if I(v) is arbiirary. And in this problem I is arbitrary, because it is obtained from measurements that 
include noise, thereby making the reduction of Eq. (1) to Eq. ( 2 )  mathematically improper. 

Furthermore. the linear system resulting from Eq. (2)  is always highly ill-conditioned; for example, if the 
unknown on the right-hand side of Eq. (2) is temperature, the condition number of matrix A is 10%nd 10' in the 
15:~ and 4 . 3 ~  C 0 2  bands, respectively. Therefore, no temperature profile cui  be determir.?d from the solution of 
such r linear system without the use of strong damring functions; when the damping functions &re empirical, the 
results become arbitrary and devoid of any meaning associated with solutioi~s of the radiative transfer equation. 

Thus, under the conditions imposed t y  this problem, a nonlinear approach is mandatory in order to achieve 
physically and mathematically meaningful yesults. The relaxation method of solution applied in this paper is non- 
linear and is capable of discriminating between noise and true information, without any data smoothil~g. 

The problem to be solved by the method of relaxation reduces to fin&.lg values of T ( p )  or q(p) that s;tisfy 
the equation 

for d l  values of 3 ~ ~ ) .  The solution will be obtained by iteratian starting from an arbitrary initial guess ( n  = 0). If 
the initial guess fin)@) or 4(n)@) is the solution. the residuals R@)(vi) will be satisfied for all 
frequencies with 

But if Eq. (4) is not satisfied we generate a new guess using an appropriate relaxation equation. 

To derive the needed relaxation equation we will consider first the simple case when 7 is weakly 
dependent on changes in temperature, which permits the integrand to be treated as a function of T ( p ) .  
If T ( o ) ( ~ )  does not lead to zero residuals for all values of vi ,  we p~oceed to satisfy Eq. (3) for each frequency 
separately. We multiply the riet-hand side of Eq. (3) by the ratio 1(vi)/l(")(vi) to get 



and genefate a new guess for the Planck function from the expression between brackets as 

Next, we pair each frequency v, with a specific pressure Level pi, such that 3 frequency ui is designated to sound 
the atmosphere at the level pi from which a substanti portion of its upwelling thermal energy originates, and 
use Eq. (6) as a relaxation equation to determine ' at the J pressure levels. Then, we use a suitable 
interpolation formula, substitute the new temperature profile into Eq. (3), and repeat the relaxation process until 
the residuals approach zero. 

Equation (6) shows that pairing of frequencies and pressure levels is valid everywhere except for H = 0. 
Therefore, when~he given function is exact and continuous the resulting solution should be unique, if i r  exists. 
However, when I(v) is given at a discrete number of frequencies we can no longer obtain a unique solution. In- 
stead, wc seek ;1 family of solutions and optimize the results by selecting frequencies h a t  accentuate the physical 
factois in which we are interested. The selection of a set of sou~iding frequencies here follows the principles 
prfiposed by Kapfan (19591. 

GENERAL METHOD OF SOLUTION 

Examination of Eq. (6) reveals that the solution of Eq. (3) is obtained by prfoming, for each frequency 
vi,  a different scale transformation on B ( " ) ( V ~ , ~ )  over the whole range of integration, and then ass ip~hg the new 
value to the preselected pressure level pi, This suggests an alternative method of solution in which the transforma- 
tion is applied directly to the unknown variable, in a mvnner similar to that used by Chahine [I9701 f ~ r  determin- 
ing the constant mixing ratio. The relaxation equation for temperature then takes the form of 

where each ai is a constant scaling dn~")(p), to utisly Eq. (3) for each frequency separately. This general approach 
is required when the integrand is a functional of the unknown parameters as in the case of determining composition 
profiles, and the case of determining temperature profiles when the tranmittance is strongly dependent on tempera- 
ture variutions. Obviously, when r is weakly dependent on T, the scaling constants ai for temperature can be 
obtained directly from Eq. (6). 

To apply the general npprooch for determining composition profdes, let ue first integrate Eq. (1) by parts and, 
for convenience, write the results as 



where qc*) is the comp~sition profile, and the notation (q@)) indicates that the transmittance is a functional 
of q(p), since T depeh81s on the distribution of q(p) between p $rid p. 

To determine q@i) from a given set of radiance measurements, assuminly that the t a n  rature profile is 
known, we pair each frequency vi with a pressure level pi, then make an initial pess  for q$)@) and solve the 
radiative transfer equation 

ry 

aB d l n p  = 0 a tnp 

to obtain the scaling constants ai corresponding to each soundmg frequency vi (see appendix). We ~ n e r a t e  the 
following iterations through the relaxation equation 

The iteration p~ocess is repeated until each value of the scaling constants approach unity, which is equivalent to 
satisfying the residuals in Eq. (4). This relaxation method of solution leads to accurate determination of con.psti- 
tion profiles without my  a priori information about the expected solution, and the residuals converge to zero if, 
and only if, q(n)@) is the solution. 

The process of optimizing tht results obtained fran; a discrete set of sounding frequencies should not violate 
the law of conservation of information, so that from a at cf J sounding frequencies a maximum of J scaling con- 
stants at can be determined. The use of weighted scaling constants of the form 

in Eqs. (7) and (10) can be w f u l  in the presence of iarge errors in measurement. In Eq. (1 1) W(vf,pi) is the frac. 
tional contribution from the ith pnuurc! !r.~ei tcr the total outgoing radiance at frequency vf. An approximation to 
the values of the weights has b a n  &hen by Smith I19701 for temperature 

w v j  * pi) 
w(viIpi) ' for < P$ 

a Inp 



and for composition profiles as 

NUMERICAL EXPERIMENT 

The general relaxation method has been 
applied to invert synthetic radiance data generated 
on a computer from two freqency ranges. The 
n~lmerical experiment is intended to demonstrate 
t'ne accuracy and stability of solutions derived 
without any a priori information &bout the ex- 
pected profiles. 

The 7 . 5 ~  CH4 Band of !~yiter 

The set of seven sounding frequencies shown 
in figure 1 has been selected by Taylor [I97 1) to 
snund the temperature profile above the pressure 
!eve1 of 1 atm (Z = 36 km) in the Jovian atmos- 
phere. Assuming a constant mixing ratio of methane, 
and the model temperature profile &own in figure 2, 
a set of seven simulated values of I ( v i )  were gen. 
crated and used to reconstruct the model temperature 
profile starting from three different initial guesses: 

Figure 1.- Normalized weyhting functions d s / d  Inp for the 
selected set of 7 rounding frequencies in the 7.Sr CH, band 
of Jupiter. The instrumental slit function is 5 cm-' for 
frequency 1306 and 20 cm-' for the rest. I After Taylor, 
1971). 

The transmission function was recomputed during each of the first four iterations, to correct for the large changes in 
temperature from T(o)@) to d4)(p) .  Therefore, during the first four iterations the integrand was treated as a 
functional of T@) and the general relaxation method was applied; the corrcaponding scaling factors ai were 
evaluated numerically by linear interpolation. The solution converged rapidly and uniformly so that after the fourtii 
iteration the values of a, were derived directly, without the need for interpolation, from the Plarrck function ratio 
of Eq. (6). as 

Figure 3 shows the dependence of the find answer OII the initial gum. Thc span of tbt this horizontal bar can en- 
velope the whole family of solutions obtained from thee three widely varying initial guesses. 



Figure 2.- Thmc different initial werrer urcd to slut the Figuzc 3.- Effect of the initial pleu on the find 
iterativ, solution for the detcnnination of the model rolution for the cam of no errors and with errors 
temperature profilc of Jupiter. in mwranents .  

To study the effect of measurement errois on the find mlution a s t  of hmulateu largc errors were introduced 
to the set of exact radiance values. Tke e m n  were given a random distribution cf signs and a maximum value of 
9.6% with m rms d u e  of 5.42%. The corresponding temperature profde w u  reconstructed as In the case of zero 
errors. The results, shown u heavy b'lrs in figure 3, clearly demonstrate the weak dependence of the fin31 answer 
on the initial guess. 

The use of wci&ted scaling facton 

did not altcr the solution. However, in the case of no erron in mcsumncnts the rate of convergence became much 
slower; but in the use of large errors in memsurenlent the urt of E, improved the reurlts and removed any ambiguity 
& b u t  the terminal order of itention. r i p r e  4 shows that the solution for the cuc of 5.42% errors changed by less 
than 0.1" fro% iteration 11 to 25. The itention process should be terminated when the residuals nach their 



F i e  4.- Variations of the rms raid& with iterations F@m 5.- Compuiron between exact and reconstructed 
in comparison with the nte of conmgcna of thc pf i les  start@ &om m initid l e s s  T(* )(p) = 100.0 
tempcnturc prof*. u* weighted scaling fadon and with 5.24% rms aron in n d i a n a  mtwmn~mts .  
the process or mimation. 

asymptotic value, provided that quadrature and truncation errors are much smaller than errors in r and li. Figure S 
shorn a typical contparison between the exact temperature ~ o f d e  and the reconstructed temperature values with 
linear interpolation, for the case of 5.4296 random erron in I with initial guess (1). 

6.3p Water Vapor Band in the Earth Atmosphere 

A set of muding fnquencies shown in fwn 6 was selected for determining the water vapor mixing 
ratio profile from simulated ~bsrvatio~rs in the e m s  atmosphere. k set of synthetic radiance data 
conespondinp to the mixing ratio prof* shown in fwn 7 was generated for t L  case 9f the U.S. Standard 
Atmosphere (1962) temperature profde. The computation of I(vi) from Eq. ( i )  was carried out using a mMed 
Simpson's rule with a first-orda interpoiation formula on the scale of figure 7; the relative error caused by fiumerical 
quadrature is lea than 0.47% 

T1#se simulated radiance values were used to reconstruct the a m p -  sition profde starting with an '*id guess 
q(0)(p) = O.iplkg. Becaw Ur transmittpnce is a functionrl of qg), *r vrlvn of the scaling constants ai wen 
determined by interpolation throughout tbe iteration process. 

'Ihe results iIlustrattd in fipn 7 show that tbe relaxation method iz capable of reconstructing the composition 
profiles from radiance observations alone without my a priori informatirjn about the so!ution. The selection of 
different sets of sounding frequencies from the same spectral range. and rhe use of water vapor mixing ratio q(0)(p) = 
p p' , ar p3 as inithi gurroer did cot chmgc the rccuncy of the result;. The solid bar is large enough to avelop the 
~ h d t  f d y  of re~onsttucted ~Olution% 



 fir^ 6.- Normalized weyhting functiom dr/d In p for the 
selected set of 9 soundina fmuencies c o m ~ ~ t c d  for ,an 
instrumental tlit function of cm-' . - 
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The effect on the reconstructed profiles of random errors in radiance mesurements is shown in figure 8. This 
effect is more pronounced in the lower atmosphere; however, it ~s a characterisbr of the spectral range used in this 
illustration and should not necessarily be true in other frequency rangs. 

The rate of convergence is determined from the behavior of the residuals. Figure 9 shok  that ( ~ ( ~ ) i ~ ~ ~  
decreases rapidly and then approaches an asymptotic value approximately equal to the sum of the averaged random 
and numerical errors. The iteration process should be terminated when the rms residuals approach this asymptote. 

Application of the weighted scaling constant of Eq. (1 1) reduced the efficiency of the relaxation process for 
the case of' zero errors, but improved the stability of the solution in the presence of large random errors in measure- 
ment, and removed any ambiguity about the number of needed iterations. In the case of the upper curve in figure 6 
the optimum profile can be obtained anywhere from iteration 10 to iteration 35 with the same degree of accuracy. 

CONCLUSION 

The efficiency of any fued set of sounding frequencies can be ztrongly dependent on atmospheric conditions, 
particularly in the presence of a variable composition mixing ratio. An improvement in the level of efficiency can be 
obtained by the use of weighted scaling factors, in the presence of large errors in measurement. 

The relaxation method can be applied in conjuncbon with any interpolation formula. The extent of interpola- 
tion is dictated by the quadrature requirements, and by the need to optimize the quality of solutions obtained from 
a given szt of sounding frequencies. 

Finally, the method of relaxation, which was applied in this paper to study homogeneous nonscattering atmos- 
pheres, can be applied also to the study nonhon~ogenous scattering atmospheres without any loss of generality. 
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APPENDIX 

INTERPOLATION PROCESS FOR DETERMINING ai 

The determination of a i  from Eq. (9) can be acconlplished with h o s t  my standard method for solving non- 
linear equations. 

Let 

1(vi,ai) = B(pi5)  - aB r ( v i . ( z i q @ ) ) ,  . . . ) - d lnp a inp 

1"ps 

a d  let 

C 
I 

I r(vi, a i )  = l (v i )  - l(vi ,  a i )  + e 

I 

i 
where c is the magnitude of numerical quadrature errors. We aim to determine ai by interpolation beginning with 

We compute ri(' ) = r(vi, S(lj) and use as a second interpolation point, say, the vdw of 

.c 

ai( l )  = 
I [vi, a:')] 

we compute and obtain k = 3, by lineax interpolation as 

"1 
w-2)  - @p-U 

(k)  = ai(k--2) - r i ( e 2 )  > O - 
' i  

(k-2) - , f ( k l )  

The next value 4(k'1) is obtained by iineu interpolation between rl(&) and Il. andlest of dl other lrf I values. 
The root ai cormponds to the minimum of 9 lr tk) l .  

A check for the pmible existence of multiple roots is advisable, parti.cubrly in the presence of strong inversion 
in the temperature profile. However, if the wrong root is selected, the residuals of Eq. (49 wi'l diverge. 



LIMB RADIANCE INVERSlON: 

lTERATIVE CONVERGENCE FOR A NONLINEAR KERNEL 

~ o h n  C. ~ i l l e t  
Department of Meteorology 

and 
Geophysical Fluid Dynamics Ir-stitute 
Florida State University, Talldidsee 

The features of the limb inversion problem that differentiate it from the nadir problem ar: described; the most 
important of these are the sharply peaked weighting functions and the nonlinear kernei that arises because the atmos- 
phere h required to be in hydrostatic balance. The problem may be split into two parts-5ivcn the pressure at one 
level and the measured radiances, can the temperattlres be retrieved? And how can the pnssure be obtained at one 
level? The second problem is shown to depend 011 t;?e first, which is solved iteratively. The convergence properties 
and final accuracies are presented. Inversion to obtain trace constituents is briefly discussed. 

INTRODUCTION 

Previous writen have described methods for inverting measurements of the upwelling radiance in xveral narrow 
spectral intervals. The radiometer in those cases is pointed close to the nadii. iimb radiance measurements are made 
whiie a radiometer is scanned from the planet to space across the planet j limb. To the extent thzt thermal rada- 
tion emitted by the planetary atmosphere is passively received by a radionster, there are sunilarities between the 
limb ar.d nadir-viewing problems. However, the change in geoniecry changes the inversion problem, most impor- 
tantly by martifig the weighting functions or kerneis of the integral equation strongly dependent on the temperature 
profile. Here we describe the results of applying a version of Chahine's iterative algor'=kun to this nonlinear problem 
and note sonre of the techniqve'r convergence properties. 

Techniques for inverting limb measurements are not as developed as those for nadir observations, and experi- 
ence much more limited. Although the first satellite inversion scheme [King, 19561 proposed an angular scan as a 
means of probing the entire atmosphere, Kcrplun's j1959) suggestion for a frequency scan at a givm view~ng angle 
has been exploited for practical reasons. Schemes for inverting measumnents of limb radiance have been put for- 
ward since h e  mid-1960% but only in the last year has an dprithm been developed to use data that are easily 
measured with state-of---art technolog).. The work reported here should therefore be regarded as an initial 
investigation. 

THE LNVERSlON PROBLEM 

'he  geometry and associated rr nenclature of limb viewing an shown in figure 1. T4c radiometer receives 
radiation emitted along a particular I path, which may be identif~d by the tangent height <h), the altitude of the 
lowest point (tangent point) above the surface. The atmosphere is sounded by receiving radiation from difierent 
tangent heMts, from h < 0 (ray patlu intersecting the surface) to h - 100 km, from which a very smal; signal is 
received. 

t Resent affiliation: National Center for Atmospheric Research, Boulder, Colorado. 



bl (Top of A t m o s d m )  

Figure !.- The geometry of Limb viewmg, indicating nomenclature. A profile is obtained b '~  measuring outgoing radiance as 
a function of tangent height. 

Som features of the inversion problem are immediately apparent from figure 1. A relatively minor point is 
that all the signal originates in the atmosphere; the boundary term in the equation of radiative transfer vanishes, 
since the far side of the atmosphere is   old space. Although this is not too important for temperature determination, 
it is an enormous aid in the determination of minor atmospheric constituents, such as ozone and water vapor. 

We also note that there is much more emitting material along a horizontal path than on a vertical path through 
the atmosphere. This indicates that we may get a measurable signal from high levels, but that the large opacity at 
low levels will not allow signals from the tangent point to reach the radiometer. The problem is compounded by 
clouds. For these reasons, limb scanning is not a good way to probe below the upper troposphere. Although lower 
regior~s can be sounded, subsequent results are presented only above IS krn. 

More important is the inkdent  high vertical resolution. From the geometry, it is clear that none of the signal 
originates below the tangent point. If the atmosphere above the tangent point is divided into a series of thin shells 
of equal thickness, the iongest horizonral segment of the ray will lie in the shell immediately above the trngent point. 
Because density falls off exponentially wit!! height, this shell will also contain a large fraction of the mass along the 
path. For a wide range d tangent heights, the largest part of the emitted radiation will originate in this &e,ll. Thus, 
if we write at1 expression for the outgoing radiation I when vlewing tangent height h  as 

l ip)  =of j ~ ~ ( h  ; zf)dzl 

. -. .,.. , .  1-68 



C02 BAND 
585 - 708 CY*' 

Figure 2.- Limb viewing we#ting functions W G  ; 2 ' )  (defmed 
in Eq. (1)) for the idd  ase of m instrument with m inA- 
rlitesimll vertical feld of view. The strongly paked shape 
is an important di!Tercnce frsm the broader nadir-viewing 
weightiiig functions. 

in which subscript i denotes the spectral interval, B 
the Planck intensity, T the temperature, and z' the 
altitude, then W ( h :  2 ' )  is a weighting function, indi- 
cating how much level :' contributes to the intensity 
received when viewing h . 

Wetghting functions for severe! tangent heights 
through a midlatitude atmosphere are si~own in figure 
2 for a broad band covering most of the 15 pm band 
of C02 with an infinitesimal vertical field of view. For 
tangent heights above 25 km a large part of the contri- 
bution comes from within about 3 krn of the tangent 
hcigllt. These should be compared 10 the much broader 
nadir weighting functions discussed in the preceding 
sections of this chapter. Below 25 km, the weighting 
functions begin to look like the broad nadir-viewing 
weighting functions, although there is still a spike at 
the tangent point due to the less strongly absorbing 
wings of the band. 

'The narrow weighting functions give an indica- 
tion of the potential vertical resolution. A real instru- 
ment will have a finite field of viev:, ad its weighting 
functions, convolutions cf anes like those in figure 2, 
will be broader. (This immediately indicates that if one 
is to w the possible inherent vertical resolution 
the vertical instrument field of view at the horizon 
must be less than about 6 to 8 km to improve on nadir 
viewing.) However, spectral resolution is not necessary, 
and a broad spectrai in tend may be used. 

The most important difference comes about because of the sensitivity of the weighting functions to the amount 
of emitting rnatedal, especially a t  the tangent point. ar!d the transmission along the path. For temperature determina- 
tions we shall measure the d t t i o n  emitted by a uniformly mixed constituent, carbon dioxide. This means that the 
weighting functions will be senritive to the atmospheric density profile, which in turn depends on the temperature 
profile through the hydrostatic equation. Simplh stated, higher temperatures in the lower part of the atmosphere 
move density surfaces (or, apprcbxhately, surfaces of constant optical depth) upward. Because of the sharp weight- 
ing functions, even a shift of a give\ density surface by 1 km can appreciably modify the weighting functions. Thus, 
instead of Eq. (1) we write 

To d~evelop the spec if^ expression to  be inverted, we note from the geometry of f w r e  1 that the outgoing 
radiance firom a nonscatteri~g atmosphere in local thermodynamic equilibrium may be written 



where r is the transmission between x and the spacecraft (a) along the path through h ,  x is the distance co- 
ordinate along the ray path with orgin at the tangent point, and the other symbols are as above. 

For a finite band in the spectrum 

in which ii, B are the temperature weighted hbsorber amount and temperature-absorber weighted pressure, respec- 
tively [Goody. 1964; Rodgers and Walshw, 19661 . 

Incorporating Eq. (4) into Eq. (3), converting to a vertical integral, using the hydrosta!ic law and perfect gas 
i a ~ f ,  and specializing to a uniformly mixed constituent, we obtain [Gille and House, 19711. 

where po is the pressure at an arbitrary !eve1 zo. 
C is a constant, and a(zt) ,  b(zl)  contain constants 
and the information on the temperature variation 
of the transr.~ission. Subscripts a and p denote 
the z anterior and posterior to the tangent point. 
Ihe  exponential term relates the density at z' to 
that at to through the hydrostatic equation. 
Although not written explicity , the transmission 
derivatives depend on density in the ray paths, and 
cofisequently on the hydrostatic equation as well. 

Equaticr ~ ' 5 )  makes use of the fact that all 
other altitudes inay be measured relative to zo. 
This is extremely important, because it is instru- 
mentally tar easier to determine relative altitudes 
than absolute altitudes. Thus, given a measured 
radiance profile like the broad channel measure- 
ment in figure 3, but with no attached altitude 
scale, we may pick a particular point on the curve 
such as A, designate its height as the reference 
height to, and measure all other heights relative 
to it. Hencef~~th ,  for convenience we designate 
relative tar.gent heights and altitude by asterisks: 
h -zo = h*,z  - 2 0  = z*. 

Equation (5) defines the inversion problem. 
We have measurements of I(hC), and wish to 

RADIANCE (WATTS M"SR") 
Figure 3.- Limb radiance as a function of tanpent height for 

wide (585-705 cm-' ) and narrow (630485 cm-' ) channels 
in the IS rm band of cubon dioxide. Their difference 
multr from emission by generully weaker lina away from 
the band center, and provides information on deeper atmol- 
pheric hyen. The m o w  ( A )  indicates the ubitruy level 
whox altitude is  desbatcd zo where the pmurre po is 
nquind. (See Description md Results of an 1tcmti.vc 
Inversion Algorithm.) 



&tennir.e T(ze). Clearly po is a critical parameter. The inveniol~ problem may then be separated 
into two parts: 

1. Given po and meacurements of I(h*), how may T(z*) be determined? 
2. How may po be d~:terminea? 

The first quation is treated below. Ihe second, closely dated to the first, is discussed in a later section. 

Description and Results of an Iterative Inversion Algorithm 

The complex nonlinear manner in which the temperature enters on the right-hand side of Eq. (5) suggests that 
some type of iterative method will be req.uired. Basically, the puryose is to bring about temperature fields that satisfy 
both the radiative transfer and the hydrostatic equations. The sharply peaked weighting functions indicate that dis- 
crepancies between observation and calculation at a particular tangent height may be used to correct the temperature 
at that elevation, as in Omhine's (1968,1970j method. 

The steps in such a solution are as follows: 

1. In the first iteration, an initial temperature profile is assumed. 
2. l%e ten~perature profde is used with po and the hydrostatic equa'rion to distribute the atmospheric mass 

in altitude. The importance of this step is the major difference from r nadir-viewing algorithm. 
3. The 0utgoir.g radiation is calculated as a function of tangent height from one of the equivalent Eqs. (2), 

(31, and (5). 
4. The calculated outgoing radiances are compared to the observed values, tangent height by tangent height. 

If a convergence criterion is satisf~d, the t2mperuture profile is accepted as the sohltion. A typical con- 
vergence criterion is that the rms difference between the calculated and observed radiances over the profile 
(the radiance residuals), be slightly leu than the nobe of the radiometric measuremeclts. 

5. If the convergence criterion is not met, the discrepancies between the calculated and observed radiances 
at each tangent hei&t are used to adjust the tempentun there. 

Making the assumption that ihe dkrtpmcy is due to erron in Plunck radiance alo~le, a comctor or relaxation 
equation is [Cilk and House, 197 11 . 

2T"(ha)' I(h*)-Icn(h*) 
T"+' (h*) = P(h*) + 

I ( h * ) + ~ ~ ~ ( h ' )  

in which superscripts denote tie order of iteration, ca is the second radiation constant, is a mean frequency, I 
is the observed radiance, and I, is the computed radiance value. The impwtd temperature is then used in step 2, 
and the procedure iterated until the convergence criterion is met. 

Results of applying this procedure to data synthesized for r broad spectral intetvrl covering much of the 15 pm' 
band of CO, for an actual midlatitude winter sounding are &own in fieure 4, in which the solid line is the original 
sounding. Thc dotted line is an inversion of ideal data-that it, nohe free data hr* an infhitesirnal field of view 
at the horizon The inverted points were spncsd 1 km apart verticully. The nns ndiurce residuals were reduced only 
to 0.01 ~ m "  a-' , which was taken as r rou* instrumental noioe fitpire. The rms tampentwe error h 0.91°~,  md 
the sol~~tion rtproduca the initial profile very well. 

Note that the thin warm anomaly at 37 lun il retrieved quite accurately. S d e r  variations belcw 
25 km ue not follwed u well. 



The dashed line indicates the results obtained when data for the same atmosphere, but cow including the 
effects of a finite field of view and random noise of 0.01 ~ m '  sr-' . Now the rms temperature error is 4 . 2 ' ~  from 
IS to 60 km, and 2.43"K from 15 to 54 kr.1. In this case, the thin features are not retrieved very well (there is just a 
hint of the 37 kni anomaly), but the overall curve is followed quite closely. Large unreal oscillations occur at the top 
of the sounding. 

The spacing of the inverted points is not fixed. We may space t b m  3 km apart instead of ! km, in which 
case the results are similar to those for 1 km spacing, except that the large oscillation at the top of the sounding do 
not appear. 

CONVERGENCE PROPERTIES 

It isT . j instructive to follow the convergence to a solution. Figure S displays the reduction of the radiance 
residuals as a function of iteraticn number for the two cases discussed above. Also shown are radiance residuals 
when the inverted points are spaced 3 km apart, and intermediate points are obtained by linear interpolatit.n. The 
3 m calcualtions require much leu computer time. 

Figure 4.- Solutions obtained by inverting synthesized ided 
data (no n o i ,  infinite vertical nrolution), and reelistic Figure 5.- Root-muwquuc radiance relidwlr and tempentun 
data (0.01 ~rn ' ?  sf-' random noise, 2 km field of enon  u functions of iteration numbu, for the midlatirude 
view), compand to m actual midlatitude winter winter pro& for i d 4  and realistic data, 1 md 3 km spw 
sounding. ing of the inverted valuer. 

This is a very inslructive plot. Note first that for noisy - 
or ideel data, 1 or 3 km spacing, the res~duals are nearly 
identical f ~ r  the first nine iterations. Beyond that point, 
the residuals of the ideal data continue to drop rapidly, 
while 15e noisy data residuals l e~e l  off. The operational 
significant is important: the first stages of an inversion 
may be done ispidly with widely spaced points, and later 
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The second notab're point is that for the first seven1 iterations there is an oscillatory behavior with small resi- 
dual increases being followed by larep decreases. This reflects the up and down sloshing of the atmosphere, caused 
by application of the hydrostatic equation at each step. 

The behavior of the rms temperature errors also is shown in figure 5. For ideal 1 km data, the temperature 
error drops monotonically, reaching 0 . 3 ' ~  after 17 iterations. For the ideal 3 km data, it drops for four iterations, 
reaches a minimum of 1.2'K at the sixth iteration, and then slowly rises to 1.7OK. At the eighth iteration, when the 
residuals have dropped below the noise ("convergence"), the error is 1 .3S°K. Clearly, in this case the convergcnce 
criterion is letting the solution go past the optimum point. After the fourth iteration, the 1 km inversion is always 
better than the 3 km inversion. 

For data containing 0.01 W/m2 sr noise, the rms tcmperature errors for both 1 and 3 km inversions pass through 
minima before the radiance residuals reach the noise level. In this particular case, the 3 km temperature error reaches 
a minimum value of 1.9"K at the foulth iteration, and only 1 .5S°K from 15 to 54 km. At the eighth iteration, when 
the radiance residuals have dropped below the noise, the temperature ,rrors are 2.1°K for hoth IS :G 54 and IS to 
60 km. Although further iteration reduces the rrns radiance errors from 8.8X lo-' to 5.6X lo-', the rms temperature 
error increm8?s to 2 . S 0 ~ ,  or 2.4OK from 15 to 54 ~ m .  

For noisy data, the results of 1 km spacing of inverted points is worse. Now the IS to 60 krn error is 3.2"K ar 
the fourth iteration, rising to 42°K at the eighth, and increasing to  about 5S°K with further iteration. If we restrict 
our attcntion to the rms temperature erran from 15 to 54 km, we again find a minimum of 2.2% at the fourth itera- 
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tion, increasing to 2.S°K. at the eighth, and 2 . 8 " ~  at 
iteration 25. As could be seen in figure 4, with 1 km 
spacing a great deal of the error is accumulated at the 
top of the sounding; the rms error is much improved 
by ignoring this region. Comparison of the inversion 
data and the 15 to 54 km data with 1 km spacing 
indicates that we have lower accuracy in the latter 
case, although higher resolution. This is analogous to 
the use of larger or smaller valure nf 7 in h m e y  's 
[I9631 method (see also earlier se.. 'ons in thii chapter 
by Matter and by C o ~ a t h  and Revan) or points on a 
BackusCilbert type curve, which depicts the tradeoff 
of accuracy versus resolution explicity ( r e  the dis- 
cussion by Parker in this chapter). 

For any iterative scheme, and especially for a 
strongly nonlinear problem, we expect the rate of 
convergence a d  perhaps the final accuracy to depend 
on the initial guess. The results of inverting a tropical 
profile starting from the midlatitude standard atmos- 
phere and from the tropical standard atmosphere are 
shown in figure 6. Note that for the standard atmos- 
phere start, 18 iterations are necessary for noise-free 
data and 2lfor noisy data. The tropical start residuals 
drop much more rapidly, reaching the noise level in 
9 and 1 1  iterations. . . 

errors u functions ofiterrtion number for r tropkd 8tmor- 
pherc. ni.? effects of r t Y t i q  from r midkE5ude standard Thir svclp,ests that o p e m t i o d y  one might try 
atmosphere or the tropical sbndud rmosphao w &own with initid profles to ~ ~ v e r  the one with the 
dul and rulhlic data. with inverled I& 8pmd evay lowat residuals, or the most rapid drop in residuals 
3 km. af€er one itention, to get the best rtuting profde. 
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Except for the noise-free data on the standard 
atmosphere start, all the rms temperature errors go 
through a minimum, although the standard atmosphere 60 - 
minimum is very shallow. Error at "convergence" for 
the noisy data is 2.6S°K from IS to 60 km for the 
standard atmosphere start and 2.3S°K for the tropical 

c. 
50 - 

start, up from 2 . 1 ' ~  at the fot~tth iteration. 3 - 
Consideration of the retrieved temperature pro- 

files (not shown) indicates that with the size of the 
instrumental noise used, there is difficulty in retrieving 
the position of the tropical tropopause (approximately 
18 km) and the temperature distribution below it. 
Ihus, errors at the top and bottom of the IS to 60 km 
region are larger than in the intermediate region. of 
course we might expect from the weighting functions. 

DETERMINATION OF po 
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Figure 7 . -  The effect of the value of p ,  on the lnferrcd profile 
In the study SO far. we have assumed that The dashed line is the true profile, the U.S. Standard Atmos- 

po is known. NOW we shall show how this problem may phere. Solid lines are inversion solutions with the values 10, 
solved, if the preceding one is. Figure 7 shows the effects 12, and 14 mb assumed for po. The correct valuc IS 12 mb. 

of inferring a temperatube profile (in this case the U.S. 
Standard Atmosphere) for three different values of p,. There is no way to tell, on meteorological or mathematical 
grounds, which is the correct temperature profile. A systematic variation can be seen, however. If the pressure is 
high. low temperatures are obtained at high levels and high tempeiatures at  OW levels. In between is a region in 
which :he temperature is correct, irrespective of errors in p,. 

'Ihc physical reasons for this behavior a n  easily understood [Cine md House, 1971 1. Too high a pressure 
implies higher than correct densities everywhere, which increases the amount of emitting material and decreases 
transmittance. At upper levels. at which the optical depth to the tangent point d is less than 1, the increased emitting 
material dominates the decreased transmittance, requiring a lower than correct temperature for agreement with the 
observed radiance. 

At levels where d > 1, the decreased transmittance dominates and requires a higher than correct temperature 
for agreement. The convene occurs for t pressure too low. At the level at which d = 1, the retrieved temperature 
is independent of p,. 

7his leads immediately to a method for determining po (fig. 8). T*:o channels, with different spectral opacity 
and :Serefore with d = 1 at different levels, are employed. Each displajs 'he behavior shown in figure 7, and in 
generr! the tempratures inferred in the two channels will not agree. If the piessure is too high, the opaque tempera- 
ture will be higher than the transparent channel, m d  vice versa. Numerical studies [Gille and House, 19711 have 
shown that this temperature difference betweea the two chameis is linear in pressure, with a zero crossing very close 
to po. A consideratil.)n of all error sources sugp,ests that p,, may be determined to 20.3 mb, with f0.17 mb probably 
possible. Thus, s\wceuful determination of po reslj on accurate and rapid inversicn of spectral data according to a 
scheme like the one outlined earlier, but for two spectral channels. 



DETERMINATION OF TRACE CONSTITUENT AMOUNTS I Po+8Po ,PP-8 

'A \ 

If the temperature profile is known. measurements Li 
suitable spectral channels may be inverted to obtain concen- 
trations of variable constituents such as ozone and water 
vapor. Equation (1) is now the basic equation to invert, and 
the constituents are determined from their effects on tlrc 
weighting function. 'Ibis is a much more nearly liiiear prob- 
lem, and one of the methods described earlier might be used. 
McKee et ol., [ 19691 and Russell and Dmyson 11 9721 have 
employed a!! "onion-peeling" method, working down from 
the top of the . tmosphere to determine water vapor and 
ozone profiles from real and synthesized data. This is 
equivalent to solving a triangular matrix. House und Cil!e 
(in preparation) have employed an iterative method similar 
to the one described for temperature. Now the relaxation 
equation is 

---- OETERMINEO FROM 
MORE OPAQUE 
CHANNEL 

..a+. ...... DETERMINED FROM 
Mow m A m s M R E N T  
C M W N E L  .' - UNIT  OPTICAL DEPtn IN 
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Fiyun 8.- Schemrt!~ dirqun of the twochmnnel method for 
determining po. Only the comct value results in a zero 
mern temperature difference between inversions of n d h c e  
data from the tvo channels. 

in which c is the mixing ratio. Usually no more than two iierations are necessary to obtain agreement within 
experimental error. Three examples of retrievals of realistic data at 3 km intends to get stratospheric water vapor 
are shown in figure 9. 

CONCLUSIONS 

' h e  results demonstrate that an iterative procedure of the type proposed by W n e  [lo681 will enable 
temperature solutions to be retrieved from measurements of limb radhce in the CO2 band, although the kernel is a 
strong, nonlinear function of the tempenture. The algorithm 
also requires that the pressure at mmc levd he specified; by 
starting with m initial guessed pressure and applying the 
algorithm to measurements in two spectral chsn~sl:, t+z 
pressure may be accunlely determined, and a self.c:o.~.ained a 
inversion achieved. Thc inversion of trace constituent pro- 
files is a nearly linear prublem, and m& no special \ 

treatment. 
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K g :  You indicated that noise is more of  a limit tr, what you can infer or that noise prevents you from taking 
advantage of the e d ~ e  on helping of your we~ghting function. Is that right? 

Gille: Noise and the finite field of view are both factors, but noise at this level is morn important. 
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2. ACTIVE ATMOSPHERIC SOUNDING 

In contrast to the passive (radiance) nieasurement techniques drscussed in Chapter 1, this chapter is concerned 
with measurements of reflected and/or scattered radiation from the atmosphere arising from man-made proting 
sources-that is, active radar experiments. Both monostatic and bistatic configurations with pulse and continuous- 
wave techniques are in use, as well as acoustic and electromagnetic (radio-frequency and optical (lidar)) radars. 

The data u e  inverted to yield vertical profiles of wind speed and direction, turbulence, precipitation, 
refractive index structure, particulate concentratioirs, and gseous molecule conc~ntrations. Active remote sounding 
is a raridly growing research field, and peat  tecb.ologica1 advances leading to  sophisticated sounding techniques 
have been made in recent years; however, because this is a relatively new field, the inversion algorithms that have 
been developed specifically for this discip!ine are still rather primitive. It is clear that scientists active in this area 
should benefit enormously froin algorithms developed and described elwwhere in this volume. 

A. M. Peterson ormized and chaired the sessicn devoted to active at~nospheric sounding. 



ACOUSTIC RADAR SOUNDING OF THE LOWER ATMOSPHERE 

L. G. McAllister 

Australian Defence Scientific Service 
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Salisbury, Soutll Australia 

Acoustic radar sounding techniques were used to measure the wind velocity and direction in the first 300 m of 
the atmosphere. Angle-of-arrival and Doppler techniques were developed to obtain two independent measurements 
of the wind field. These techniques and preliminarj exprrirnental results are described briefly. 

Tile potential of the acoustic radar sounuing technique for the remote measuremect of the structure of the 
lower atmosphere (wind velacity, temperature, and so forth), has been recognized for some time [McAllister. 1965; 
McAIlister et al., 1969; McAllisr~rand Pollam, 1969; Little, 1969; Bemn, 19701. This technique c mists of 
transmitting short pulses (40-200 msec) of acoustic energy at a carrier frequency uf 1100 Hz at a power level of 100 W 
from an acoustic array on the ground, and recording the energy backscattered from turbulent flilctuations of tempera- 
ture a ~ d  of wind velocity on a facsimile recorder, to give a height versus time of day display of the structure of 
turbuler~ce in the first few kilometers of the atmosphere. It has becn shown [McAllister, 1968; McAllister, et 01. 
1969; AlcAllister and Pollard, 19691 that thermal plumes, radiation inversions, and sea bretie circulations can be 
studied with the aid of the acoustic sounder. More recently, a joint acc~stic sounding experiment was conducted 
with the W aw Propgotion Laboratory (WPL) of the National Oceanic and Atmospheric Administration (NOAA' 
Boulder, Colorado, when the sounder was operated alongside o 15n m meteorological tower situated at Haswell, 
Colorado. Good progress was made toward interpreting the vast amount of datail contained in the sounder record 
in terms of the profiles of temperature and wind velocity, and the turbulent flux of heat and momentum [Bean and 
McAllister, 197 1 ] . 

During t~ series of experiments, however, there were mme problems in the use of tower data to interpret the 
sounding data. First, it was necessary to J e p n t e  the tower and the sounder by 300 m to avoid echoes from the 
tower structure; hence the correlation between tower and sounder data was not always good during nonstationary, 
atmospheric processes. Second, the levels of instrumentation on the rower were limited by practical consideratinns 
to 40 m, 95 m, and 156 m; frequently, the height range of inte~sst lay between these levels and no tower data 
could be obtained for this range. Third, the sounder was a more sensitive indicator of temperature fluctuations 
than were the temperature-sensing e1e:nents on the tower, and it was not always possible to investigate the structure 
recorded by the sounder under very stable conditions in light winds. The need to deve!n? the acoustic sounder into 
an independent, quantitative, meteoiolqical instrument for interpretation of fme detail recorded during nonstationary 
processes was thus highli&ted. 

Angle of arrival ~McAllister et 1, 1969) and Doppier [Kelron and =out, 19641 techniques have been added 
to the mu;~der 13 obtain twa independent measurements of wind velocity. Here we discuss these technique8 and 
present the preliminary results cf the experunents. 



LIST OF SYMBOLS 

scattered power. oer unit vn!l:me, per unit incident flux, per unit solid angle at an angle 8  from the 
initial directior. of propagation 

acoustic wavelei~gth 

wave number of the m u ~ d  wave 

structure constant of the wind 

structure constant of the ten~peraturs 

velocity of sound 

absolute temperature 

horizontal wind velocity 

t ~ t a l  wind velocity measured by anemcmeter 

total wind velocity measured by angle of arrival technique 

total wind velocity measured by Doppler technique 

wind direction at height of anemometer 

wind direction measured by angle of arrival technique 

wind directior? 3 ~ ~ i ; i t r i  oy Doppler iechniquc 

SCATTERING OF SOUND IN A TURtiL1LENT ATMOSPHERE 

The propagation o i  sound tkougki a ;lrrbulent medium has been studied for some time, and the work of 
Ford and MNchom [1960], Tatmki [ l96 l ]  ,Ksllistmrova [1961], and Monin (19621 has resulted in an 
equation describing the scatter of sound waves by turbulent fluctuations of tenlperacure and of wind velocity. 
The equation is: 

where o is the scattered power, per unit volume, per unit incident flux, per unit solid angle at an angle 8  from the 
initial direction of pro;ragntion; k is tl* wave number of the sound wave; and Cv and Ct are the structure 
constants of wind ar.d of temperature a?-! are functions of the root mean rquare difference in longitudinal velocity 
(or in temperaturej for two points separat d by unit distance. 

Equation i f ' shows that the scattered power is the sum of two terra$, one for wind fluctuations and the other 
for temperatute fluctuations. The wintl term has a multiplyhg factor of cos2 ( 8 / 2 ) ,  which means that tht wind 
fluctuations produce no energy in the backscatter direction that is, for 8 = 180" . Hence, all the energy received in 
the backscattered direction requltr from the interaction of the sound wave with turbulent fluctuations of temperature. 
At all other angles, the scattered energy is the sum of both the wind and temperature terms. 

MEASUREMENT OF MEhV WIND VELOCITY 

The vertically directed beam from the acoustic sounder is transported horizczntnlly by t5e wind because the 
sound energy traveis as a spherical wave relative to the air stream. Thik property of the propfation of sound is used a 
to measure the m a n  velocity of the wind up to the height of the mtterinp volumc. .i P 



In the presence of a constant horizontal wind w ,  a sound ray transmf ted upwind a t  m angle B to the vcrtinl 
direction given by 

W 
B * arc sln - C (2 E 

(where C is the velocity of sound) wilt: rtae'l tht scatter in^ layer, wrtleally above the transmission point. After 
wrcattering, the sound ray drifts horizontally on the return journey a ~ d  arrives back at thc tcceivlng point rrorn the 
downwind direction at an angle 0 . Thus the angular difference between the tranmittcd ard remiwed rays is '18 
in the prtstnce of a constant wind. If the horizontal wind i s  not constant along the whole path, the angular difference 
between the two ray9 becomes a function of the integral of rhe wind velocity slang tne path. 

MEASUREMENT OF ANGLE OF ARRIVAL 

7 h e  angle 01' arrival of the backscat*ered energy was measured using interferometry techniques. Four ac,rustr 
arrays were uxd in this  series of txprrimnts; the arrays are shown mounted on a hotizontal turntabit in fifurc I .  

Each array consis~td of 49 loudspeakers with a 
diameter of 20 crn arranged In a 7 X 7 sqatarc a r r q .  
Tht spacing between the rows of loudspeaaers was 
22 cm. Wooden side screens were fitted to tact1 array 
lo reduce the sidclobe level ;q Ihe horizontal directio~. 
W e n  the arrays were grouped in pairs a$ shown, :he 
distance between the phase centers of the arrlys was 

Two receiving anays were piace! ddc by side, 
and the p h s i  difference bctwten tiie energ)r rtcci?/cd 
jr.  the two a r n y r  was rntasslrtd in a h a a t  deteclsr. 
To mininlize errors introduced by receiver noin, 

loclhcd ambient noise mutes, md other factors. the mean p h &  difference ' ?tween these arrays war kept ilt tern 
by cltetrically steering the tnnsmittcd beam with a zervo loop, whi-h cornper1,ltea k7r changes it,ttuduoc2 oy the 
wind. The phaw differcnct bttween the two transmiiting arrays rha; was required t:? .cer the ieam was d measure 
of the man velocity of the wind. 

In the prertnt w, the tnnmitted tntrgy was mndned within a corn defined by thc beam wdth of the 
ocmstic array; hence the backscat:cred energ), which arrived back at the receiving amy,  Pad a siz.lrr spread in 
angle of arrival about the boresight direction. The - rear! direction of arrival was obtained by averngng the engie. 
of-arrival masurtments ovoc a period of amnl minutes. Range gating techniques u,cre irwd ro c~efine tlrr height 
range of the measurement. 

The acouttic wundn was opnred fn ihc btszatic mode (figure 2(c)) l z  &ck tht ac~zr-rl.. of the agb!r of 
mlm1 mernmment. The p i t  of inclined arrays on thc left of figure 1 was mounttd over k h t  vertical a:::. of the 
turntable and inclined m t  20" to the horlzonta! as shown. The second p i r  of arrays w a s  v~ourlted OF P fixed trtdft. 
I #  rn nwry toward the west and inclined at 20" to the horimtal, facing the pair on rha turntable as *awn Is 
figure 24cl. This tiymmttrical, batatic e o n r - n t l o n  gavt a smttrring angle nf 1M0, sad the w t l t e t d  pov t r  
therefore contained components arising from fluctuationr of temperature and of wi1lJ vclosltv (Eq (I) )  with~n >kt 
common volume n l  rhc two ovtr la~prng beams, The mean hrighf of the common v u l u ~ t  was 1 27.5 rn. 

The turntable w u  rotated in 3' hcruments through a total angle ol  15'. Fiyre 3 is r plot of the t ~ r r ~ t i b l r  
orlmuth direction wms the phnw clung introduoed I?y t% KWO loop to stw the twnmritted beam luck tc the 



ondnal direction. Each measurement took 10 min; 
the extrcmc values of the phase angle recorded during 
\::is time are plotted in fmre 3, with theoretical curve 
show; (soliu line) for comparison. 

EXPERIUENTAL MEASUREMENT 
OF MEAN W'I'IND VELOCITY 

The =our acoustic . -7 ys *ere >:ranged as shown 
m figure .!: ,. The n0:t.l . est and north-east arrays were 
used to me?..... - the west-east component ot :he wind, and 
the north- , :tt and south-west arrays were used tc, measure 
the north-south component of the wind. The south-t 
array was :led to record the amplitude of t', : backwattere:? 
energy. The two components of the wind velocity were 
measured by time sharing the measuring equipment be- 
tween the north pair of arrays and the west pair of arrays. 
Each pair was alternately switched into the measuring 
equipment before successive transmitted pulses. In this 
way it was possible to obtain continuous recordings of the 
northerly and easterly components of the wind. 

On the night of April 2,1971, a wind shear iayer 
developed within the radiation inversion and the structure 

NfEO TRSnE I&NTABLt 
recorded t y  the sounder was similar to that shown in 
figure 10. The upper limit of turbulent breakdown (top Fiyrr 2.- D- shovh modes of omtion of 
of the wind shear layer) was at 180 m. The range gate rounder, ( E )  Vertiui monostatic mode. (b) Oblque 
was set between 90 and 150 m. The top trace in figure monostatic r.~ode, (c) ~irtatic mode. 

4(a) is the total mean wind velocity constructed from 
the northerly and easterly components recorded by the sounder. 'This is the ave7age wind velocity up to  a hel%t of  
120 m. The dotted trace is the wind velocity recorded by an anemometer at a height of 10 m. Note the exce!lent 
agreement between the overall shape of the two traces and the higher velocity reccrded by the sounder. Good 
correlation between thex two traces would be expected because the mean velocity recorded by the sounder includes 
the vtlocity of the wind at the surface. In figure qb), the solid trace shows the direction of the wind recorded by the 
sounder, and the dotted trace shows the direction recorded 
by the anemometer. Unfortunately, there were onlv eight 
segments on the wind direction indicator mounted on the ELL/? unemomter, and good angular resolution was not possible; g but again, the similarity in the two traces iq  evident. Signif- 
icant changes in the direction of the wind with height 

jr*'" CALCUL ATiD 
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would not be expected through a wind shear layer of this 
kind. Therefore, the 3bility to record faithfully the 
direction of the wind under these conditions leads to 
ccnfidence in the anglc.of-zrrival measurement. 01 / 

In figure qc),  the total wind velocity recorded 
: k b  -3 J 0 

TlIPNnBLE AZIMUTH - 26?ffJ 
by the sounder (Va) is plotted against the wind velocity 
recorded by the a n k t e r  ( VA ). Each dot represents FS, 3.- of .l.* of unnl 
a I .5-min. sample. The good correlation between Vd feedback loop to rotation of turntabk in uimutt.. 
and 5 is seen clearly. 'b fu l  line rhows the cdcuhod rcaponcc. 



DOPPLER MEASUREMENT OF 
WIND VELOCITY 

The Doppler spectrum of an acoustic signal 
scattered from isotropic turbulence has been discussed 
theoretically by Ford and Meechm [ 19601 and in- 
vestigated experimentally by Kelton and Bricout [1964]. 
Ford and Meecklm showed that the maximum of the 
scatteret! pawer spectrum is shifted from the incident 
frequency by an amount determined by the Doppler 
shift due to the radial component of the mean flow. 

The shift in the spectrum of the scattered power 
was measved by passing the received signal through 
a first-order tracking fdter in which the capture range 
was set at +I5 Hz. This gave a time constant of 
65 mscc for the tracking fdter that was adequate to 
track a transmitted pulse of 80-msec duration. The 
output of the tracking filter was a voltage that was 
proportional to the frequency shift of the scattered 
power spectrum relative to the transmitted frequzncy. 
Nu!\ detection techniques were used again (see angle- 
of-arr~ral measurements) to reduce the errors intro- 
duced hy teceiver noise and narrowband, ambient 
noise sources. Tnc output of the tracking filter was 
used to  control tin carrier frequency of the trans- 
mitted pulse in such 2 way that an increw in the 
received frequency due iq the Doppler effect was 
compensated by a decrease in carrier frequency. 
Sufficient gain was applied aroand the servo loop to 
keep the output of the tracking filter near zero. The 
time constant of the Doppler servo loop was set at 
30 sec. 

F i g w  4.- Compuirm between total wind velocity md direction The facsimile record of thermal plumes shown 
muarred by ma of uri*rl W q w  (fa line) and in f w r e  5 was obtained with the vertical monostatic 
anemometer (Cotted line) at I hcaght of 10 m. 
(a) TOW wbd vrkdty. 

configuration of the sounder ( f w r e  2(a)) when the 

(b) Directt,n, 1900 C.S.T. April 1,1971 to 0700 CAT. sky was clear and the wind was varying between calm 
April 2.1971. and 5 mlsec. This is a characteristic sounder record 

(c) Co~rht ion  bctwan total wind vdrcity measured u* when surface heating is significant and the wind is 
ur~k of arrival technique (Ye) md urcmometn (3) . hght and variable. The gate was set between 

120 and 150 m lu, shown by the parrllel lines on the 
facsir d e  record. Thc top trace in f w r e  5 is the vertical compomnt of the wind, drawn to the same time scale as the 
facr.mik record. Note the correspondence between the columns of intense acoustic vtums and periods of upward 
ml.tion measured wing the Doppler technique. Similarly. downward motion is seen to be associated with the relatively 
c'ear regions between the thermal columns. The peak vertjcrl velocity recorded in this sample, was of the order of 
1.6 m/mc. 

The facsimile record h w n  m figure 6 was obtained using the symmetrical, biatatic confiuration of t k  sounder 
(fw 2(c)) during thermal p l r u . ~  rctMW. It will be n o + d  that the h w t  s a l e  is now t!onbear, since time delay 
(linear scale on facsimile record) and ' .&t are not linearly related in the bistatic mode. The ellipsoidal surface 
of constant time delay, which prucs through the center of the common volume, is drawn schematically in fylure 2(c). 



Fieurc .P - Top fmce - Doppltr measurement o t  vcrtlcal wind velocity. 
h r m m  Trace - Simultaneous mtical monustatic aceastic =under 
record of thermal plumes, 1500-IbfK) C.S.T. April 2. 197 1. Hcbht 
of rongt l a r e  shown by parallel Gnes on record. 

Figure 6.- Bistatic acoustic murder mcot3 of thermal plume 1500+I600 C.S.T. Aptil7, 1971. 



The cclntr~st between the ti'cords nt tigures 5 and b. whlch are recard; of thcrrnal plume acllvlty. is str~klnp. In 
figure h. the c l e x  rerlons '5elweelt I ~ P  thernlal plumes ( l ~ g .  5) are noum Tilled ~n wlrtl relurns and the dcrall rs 
lost. The additioi:d enerpy was scattered cri)rn turbulent tluctustiuns .)I a ~ n d  vrlnclty since. in !he h~statlc mode 
of oper~t ion.  the sg t tc r  angle was 140" (Eq  ( 1)) .  The clear repons betweer, the thermal plumes shown ~n 
figure 5 (monostat~c mode) tndicate ?hat rhe flus tuat  ions ol' ternperalurt. were small In the descending air [U'wzer 
and TeEfird, Ik lh?].  1 hc apparent fluctuations of wind r*elocity in this dcscendmg air which were recorded in 
the bistatic mode (fig. hi. pruhably arose from rnechznlc3lly tnduced turbulence 

The d ~ t  iculties In usa?g other mcteorulug~cat ~nsfrurne~tation t o  intrrprer the qualr!at~ve (and now quanli- 
tattve)darl ::ceded by tht sounZer and the need to develop the sounder into an inlrependcnt instrument have 
bcen noted. The approach llas hren t o  ( 1 ) devise independent rechniques to n.xtsure each parameter simultaneously 
and ( 2 )  obtain at least two irqdepmdent streams of data that can be cross checkt.1 Tor error wtth !he hope h a t  
confidence evenlually w ~ l l  be b u ~ l t  up in the resut~s o f  the measurenlcnts thrcugh sc1C cunsisteicy. These principles 
.tre ~llustratcd in the following sections. 

INDEPENDENT DOPPLER MEASLrREkIEUTS OF VERTICAL VELOCITY 

The wrtical component of the w ~ n d  velocity was measured r;sir;g :he syrnrnerr~cal Flstat,- mode of soknder 
operation (fig. 2(c)3. Independent streams 01 data were obtained by reversing the dirtation of t ~ ~ n s r n ~ s s i o n  before 
each transmitted pulse. The west array. l o r  example, wa; alternately swttchcd to t :~e  transmitter a d  then ro rhe 
recelber. The interleaved data so obtslned wtre separated and reccrded in separate channels. The uilper two traces 
in figure 7 are the two charnels of vertical windvelacity. The th~rd  t-ace Trr,n the top i s  the differen~e between 
the first two and was recorded at the same sensrriviry. The good +rr-elatiw between the two channel. o i  rert~cal 
veloc~ty is teflected in the difference channel. There was wry Ibttle ch?,~ge in the character of the difference channel 
from 1300 to 1700 C.S.T.. April 7. f 9 7 l .  even though there were sirriiricant rh.zr,pn in the velocity channels. The 
fourth and fifth traces are the wind velocity and temaerature meisured at 10 m from the pound. 7 he record was 
obtained after a sea brecre had developed a! rhc expermental sire 110 krn from the coast). The temprraturc trace 

rn SdDD /MI w /no 
Fimre 7.- rjrrelation between independent Doppln ncasuremcntc of wtid wind vrIociry 1V,) . Tracer 1 and 2 (from top). 

Vr,  and Vrl ; Trace 3. Ifr1 minus Vrl ; Trace 4. anenlometer wind velocity (bJ : Trace 5.  Temperature l l n  rn) 
1300-1 70fl r.5.T. Aprd 7, 1971. 

b 
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clearly shows the decline of surface heating and thermal plume activity after 15N.  which is reflected in the velocity 
traces as a decline in vertical wind velocity after 1630. The mean value of the vertical wind between 1300 and 1500 
was zero; that is, there was no net upward or downward flow of air that was measurable. The rms veloc~ry during 
this period was 0.5 1 mlsec with peaks ranging between + i  3 mlsec and -1 ..? m/sec. 

SIMULTANEOUS MEASUREMENT OF THE HORiZONTAL WIND 
BY ANGLE-OF-ARRIVAL AND DOPPLER TECHNIQUES 

The oblique monostatic mode of sounder operation was vsed to obtain the t,orizontal wind vector by thc two 
independent techniques of angle of arrival and Doppler. One pair of arrays was placed at right angles to the north- 
south arm (fig. 2(b)) and the boresight direction was set at 70' to the horizontal. A second pair of arrays was placed 
at right angles to the westcast arm and inclined at 70' as shown. The two acoustic btsams intersected at 275 m above 
a point, 100 m from each pair of arrays. Alternate angle-of-arrival and Doppler measurements were made on the 
north and eas arms to obtain measurements of both components of the wind. This was done by interchanging the 
north and east pairs of arrays before the transmitted pulse. 

Angle-of-arrival measurements using the north 
arrays gave the westeast component of the wind. 
while Doppler measurements using these arrays gave 
the north-south component of the wind. Similar 
measurements using the east arrays gave the north- 
south and westcast components of the horizontal 
wind. The total velocity and direction of the wind 
were computed from these measurements and plotf,;d 
with the wind velocity and direction at 10 m (fig. 8). 
The measurements were made during the night when 
the wind was strengthening prior to the passage of 
a c?!d front. There was a deep shear layer evident 
on the sounder record to about 300 m. The range 
gate was s'rt within this shear at 120 to 159 m. The 
similarity between the three velocity traces is apparent. 
Note that the mean wind (V*) to 135 m jangle-oi- 
arrival measurement) was closer to the surface value 
than i! was to the velocity (V,) at 135 m (Doppler 
measurement), suggesting that the wind shear was 
not constant up to 135 m but increased with height 
toward this level. 

There was very good agreement between the 
three methods of measuring ,he wind direction. 

Figure 8.- Correlation between three methcds of measuting total 
wind velocity and direction, 2000-2400 C.S.T. April 5 ,  1971. 
(a) Wind velocity - Vr , V g  , md '/, . 
(b) Wind dic t ion  - A ( ,  ~~0 , md A P  . 

Scatter diagrams of total wind velocity were n/2q-- o I I.--- 
constructed from 1.5-niin. samples as shown in o 5 V o i 7  o S V O Q  o 5 I/Bo 5 
figure 9(a), (b), and (c). The correlation between m / s ~  B/.SLL ' II/SEL 

each of the velocity measurements is shown to be Fiym 9.- Scatter plots of data from figure 8(a). 
wry C ~ C .  (8) Ve Lnd Vo ; (b) Vr md V, ; (c) Vr and Ve 
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VERTICAL GRADIENT OF WlND YELOCIW 

Thc oblique monostatic configuration of the sounder (Fig. 2(b)) was used to measure the vertical gadlent of the 
wind velw5ty. TWO arrays arrc mounted on rht horizontd turntable and inclined at an angle of 20" to the horizontal 
(fig. 1 ). The turntable was rorated until rht bomight direction of the mays pointed dircc tly downwind, The height 
of the l h p l e r  range gate was witched alterfiately between two adjacent Ievtls. 30 m apart. to obtain the wind wlacity 
at cach lcwl. The dtffercnce between these two Doppler measurements of horizontal wind velocity was recorded to 
obtain the gradient owr a thickness of 30 rn. 

The Facsimile record shown in figure 10 was obtained when a wind shear layer dewloped within a radiation 
inwoign during the night of April 5,197 I .  The wind velocity at the surface increased from 4.5 m/sec at 2 I00 CST 
to 6 . ~  mlwc at 2100 CST and the temperature decreased by O.S°C. During the same period. i t will be seen that the 
top of the shear layer decreased from 150 to 150 m. Twenty-minute averages of the wind velmity at each lcvcl were 
obtained as shown in figure 10 before the mean heigh~ of cach gate was decreased to keep within the shear layer. The 
average value of the wind velocity recorded in each Fange gate for cach 20-min period was plotted abow the sounder 
record in figure 10. The wind velocity recorded by the anemometer at 10 m above the ground was also plotted. The 
wr:lcal gradicnf measured by the sounder was 2 mlscc/E 00 m for each 20-min sample. 

Figure 10, - Top - Wind p m n i  mrlruFted from d m  lnrmometcr Iml Dcppkr marurrmmt# d w i d  vebdty . 
Bottom - Simultmwur hclined monc&atie sotlnder rtmrd showing dc~lrJingrhur b y a ,  21W2200 C.S.T. Aprils, 1971. 
Height or nngc gat[ shown by paraUcl lines on record. 

Jhe wind wloeig could not be rmamd at more than two nngt g t e  imls with the present equipment, but it 
i s  clear that if more levels wen available. or if the mettorolqical conditions were sufficiently stationaty, i t  would 
bw been possible to masure the wind profile from the aurfzce to the top of the wind &ear layer. 



CONCLUSIONS 

The potential of the acoustic sounding technique for atmospheric research and operations has been appreciated 
for some time, but much of the detail of atmospheric motions contained in the sounder record still remains to bc 
interpreted. A fundamental difficulty is the inability to make meteorological measurements in the same volume of 
space that is interrogated by the sounder, and progress to date has been limited for this reason. 

Angle-of-arrival and Doppler techniques were applied to the measurement of wind velocity as a first step toward 
developing the acoustic sounder into an independent meteorological tool. The preliminary results of experiments 
were very encouraging. Good correlation was obtained between the wind velocity and direction measur :d by two 
independent, acoustic sound~ng techniques, and the wind velocity and direction rcc-rded by an anemor leter at the 
surface. The agreement between the three measurements of wind direction was particularly good when the facsimile 
record showed the atmospheric structure to be relatively simple. 

The ability ro measure the wind field in the first kilometer or so of the atmosphere, remotely from the ground, 
seems to be within reach. The feasibility of measuring the mean profile of temperarsre in the lower atmosphere by 
angle-of-arrival measurements in the vertical plane is being examined. 
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DISCUSSION 

Peterson: How d o  you obtain profiles? 

McAllisrer: Although we are range gating at one level, we could gate at different levels for profiling. 

Reiniscir. Could you sound at different frequencies to  sound different heights? 

McAllister: The scatt:r cross section is a slow function of irequency, f S 1 3  . Absorption of scund is a more 
sensitive function of frequency and relat~:e humidity. 

Parker: To d o  the inverse problem you must first be able to d o  the direct problem. Given a wind profile d o  
you have the theory to  predict the experimental data? 

McAllister: Yes, but the turbulent medium is a complication, although a second-order effect. 

Wight: S~nce you are depending on  scatter, rather than reflection, selection of the txrbulence =ale sizes should 
be based on the wavelengths used. This may have a strong frequency dependence. Have you done multiple 
wavelength studies? 

hlcAllisrer: We have looked as high as 1 .S KHz. Qualitatively there is no change from 800 Hz. Since the frequency 
dependence is small, we would need a factor of 10 change in frequency. Then absorption changes would be 
important. 

Reinisch: If amplitude measurements at  different frequencies were made, information on the type of scatterer 
would be revealed. rhen perhaps one frequency could be used for profiling. 

Bojarski: Do you have phase data? 

McAllister: We have relative phase data between the receiving arrays. 

McUatchey: in our problem - turbulent scatter of laser radiation - ways of describing the turbulence is a 
key unknown. You need detailed wind and temperature structure. Therefore, the turbulence should be 
defined statistically, and an inversion technique is needed that yields statistical parameters. 

McAllister: Provided the process is stationary, which is often not true. 
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ABSTRACT 

Monostatic and bistatic radar techniques for the measurement of the structure of volume targe!s in the 
troposphere and lower stratosphere are reviewed. The targets considered are thin turbulent layers in the low1:r 
stratosphere and rain m the troposphere. Examples are given of measurements of both types of atmospheric 
scatterers taken with the Millstone Hill L-band radar and the Avon-to-Westford bistatic scatter systems. 

The measurements of scattering from thin turbulent layers show that layers are generally detected at or near 
the tropopause, and in 31 out of 34 sets of measurements, layers were detected above the tropopause in the lower - 
10 km of the stratosphere. The layers all appeared to be widespread, covering hundreds of km in horizontal extent. 
The intensity of the layers varies in time and space with significant variations in tens of minutes and horizontal 
distances the order of 20 km. The threshold for turbulent layer detection corresponds to an equivalent C; thickness 
product of 10" m'I3 at a range of 100 km and for layc~s with less than lo3m thickness. 

Th.: measurement of scaiwring by rain shows that in the New England area both convective and widespreatl rain 
consists of 3 number of srnali cells. On average, the cells appear to have a half-intensity width of 3 to 4 km as measured 
wlih P radar system with a 1.8 km resolution cell size for cells at 100 km range. 

INTRODUCTION 

Conventional radars have been used for many years for the study of precipitation processes [Atla, 19641. In 
the past decade, as a result of advances in r ~ d a r  techniques and devices, high-power and high-resolution radars hive 
been made avaiiable to radar meteorologists for use in probing the atmosphere. These radars have been useful in the 
direct probing of two different atmospheric processes: turbulence as revealed by fluctuations in the index of refraction 
o i  the atmosphere and rain. High-power, high-resolution radars such as the Millstone Hill radar or the Wallops island 
radars are required for the study of turbulence because of the relatively small radar cross section per unit volume pro- 
duced by refractive index fluctuations. High-resolution radars are also useful for the study of rain since rain gene. ,,lly 
occurs in cells with limited horizontal extent. 

The radar measurements of turbulence aad rain presented herc -were made with the Millstone Hill L-band radar. 
The data are all the results of direct measuremtnts in that the object of the measurement program was the cross 
section per unit volume as presented. Inversion techniques were not used except in their simplest form in the prepa- 
ration of the data. The results of the measurenients are of interest because they illustrate the spatial variability that 
is to be expected in meteorological processes. The rain measurements have additional significance for users of passive 
microwave systems since rain is a source of error in atmospheric sounding for the construction of temperature or 
humidity profiles. 



THE RADAR SYSTEM 

The parameters of the radar system are given in table 1.  The radar system has a resolution volume at 100 km 
that may be approximated by a cylinder with a 1.8 km diameter and a 1.8 km length. The system has sufficient 
sensitivity to detect refractive index fluctuations due to turbulence in the lower stratosphere rind fair weather cumulus 
clouds at 100 km. 

TABLE 1.-  PARAMETERS OF THE MILLSTONE 
HILL L-BAND RADAR 

IO. 3 la* (lZ.*mr mwrW prdstwtl  
M a r )  i 

-1r.l' * v x l n  I d  mad Iin* 
I..,*.. I. 14B 

LU'rh4 Illtar prwo8oL.l b r a  I. 4 48 
1in(8. puts* C' ntsa tor -r 
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Rain and refractive index fluctuations are extended 
targets in space. However, these targets are inhornogeneous. 
and the radar therefore provides an estimate of the cross 
section of the target as averaged over the radar beamwidth 
and one-half the pulse length. The radar data presented 
here have been scaled by the effective integration volume of 
the radar system and are reported as cross section per mi t  
volutne 

The radar measurements reported have been made as 
a par: of a program of microu.ave propagation research, 
which also includes measurements of bistatic scatter by 
rain and refractive index fluctuations  an^ passive radio- 
metric measurements of rain [Oane, 1970 a; h e ,  19681. 
The bfstatic measurements were made at X-band using a 
145 km scatter path between a transmitter in Avon, 
Connecticut, ant! the Westford Communications Terminal; 
the parameters cf this system are given in table 2. The 
ra3iometric measurements were made using cr X-band 
radiometer and the Hay stack antenna system; the 
parameters of this syslem are given in tab!e 3. Measure- 
ments xith the radar and at least one of the other two 
systems were always made simultar.eously with the receiver 

--A antennas scanned in synchronism. 

MEASUREMENTS OF REFRACTIVE INDEX FLUCTUATIONS 

The models for scattering by refractive index fluctuations prcrevted by Taton# [I9611 indicjrted that bistatic 
scattering by turbulence should be one of the dominant mechrnirmo for transhorizon scatter propgation. The same 
model also predicted that high-power radar systems operating in the 10- ta 50cm wavelength region should detect 
scattering from turbulence. The hi&-power S-band radar system a1 Wallops Islmd provided some of the first data to 
verify the prediction [ H d y  a al., 19661 . Measurements with the Millstone Hill M a n d  radar [ h n e ,  1970 b ]  and 
other installations have rlro verified the existence of scattering from turbulence. 

The model presented by Tatulki related the scattering cross action per uart volume to C; , the structure conrtant 
for turbulent fiucturtions of refractive index and a measure of their intensity: 



where 

0 cross section per unit vdrlme 
1, II polarization perpendicular 1 and parallel II to 

the plane of scattering 
X wavelength 
9 scattering angle 

The model shows that for forward scatter, 9 small, 
the scattering cross section per unit volume is much 
larger than for radar measurements, @ = n . This . 
result is shown in the experimental data. 

Tatarski went further and proposed a meteorolo- 
gical model fo: the estimation of c?, given profiles 
of wind, temperature, and water vapor. In its simplest 
form, the model indicates that C; is, to first order, 

TADLE 2.- AVON-WESTFORD X-BAND SCATTER 
PATH PARAMETERS 

6.1- p.re)OL. r l t h  prlrn. locum 1e.d r r  
.t.ndbrd 1.r horn 

3; 5 dB lor  6 l w t  
11 r dB lor  h u m  

I 5' l o t  6 IWI 
13' for horn 

v.nrc.l o r  norlnonlal l l n ~ r  Ir&nsrnllled 

Varirbl. to 500 rr 

c r  r l t h  i t q u e m ~ y  .table to I par. i n  10' 
per 

?roportional to the square of the gradient of absolute R.r.ir.r Ru.. lmch 

R.t.1 ,.r bonrtr'bh 500 Hn 
humidity in the lower atmosphere or of potential 

R.c.lvor n.~.. t . m ~ r a t u r .  150.K Itnclud.e *trno*~her.  and (round I I 

tropopause, the ~ f i  values generally are higher in 1 1 
regions with strong gradients in potential temperature. 
The radar measurrtnents presented in figures 1 through 
7 are consistent wlth this observation. I he apparent TABLE 3.- RADIOMETER PARAMETERS 
thinness of the thin turbulent layers as shown in these 
figures indicate that the regions with strong potential Ib4Iumnc.r Param- - 
temperature gradients are rather thin and profiles of 

TY-Y 7.7, GH. 0. (6 ern). 

temperature will have marked small-scale changes in 
hlw 1 Z O - l m  pnrJDL rl(b Caanmsr.la f e d .  

their average properties. 
Pokrlnttom Loft-bud c1rcJ.r. 

temperature at heights at cr above the tropopause 
and inversely proportional to the two-thirds power 
of the magnitude of the vector wind shear. Compu- 
tations baled on this model and tht use of measured 
profile data show that in the regior? at and above the 

...INIL 0 . " ho-m w - w r  plat#. The radar measurements shown in figures 1 
th~iough 7 were made with the system described in I u e i w r  B- I r uns m u r k  

talale 1. Tllis system differs from that typically used Dctocmr #dab4 ~omprIno8-kl). r d o n w u r .  

for meteorological measurements due :o the use of a m m 1 ~  P~.U 0 .  I a . c a a .  

general-purpov: digital computer as an integral part q~.s  WH T . ~ . u u *  O.K. 

of the receiver. The computer detects tne radar T.-..M Y . U ~ ~ . ~  0 . 0 3 . K .  

returns, inconerently averages the returns, PFG umcom* 

calibrates the receiver system using signals from a 
noise tube that is fired after each data.taking 
operation, nnce per transmitted pulse. To improve the targetdetection capability of the radar, the recorded data 
consists of the incoherent average of the signal-plus-now minus the average of the noise. The recorded data for each 
elevation scan is further computer analyzed to provide incoherent averages of the received rignal over 22.5 km 
horizontal distance interval at a constant height. The results of a series of the horizontal averrges at different heights 9 

is then assembled into a profile of ~ f i  versus helght as shown in figure 1 ; C; as used here is found by solvlng 4 
Eq. (1) given the radar measurement of P . The corresponding computergenerated RHI display is shown in figure 2. 
As an 3id in data editing, selected elevation scans are also recorded in the conventional mnner  by photographing a .': 
PPI display. The PPI disbiay that corresponds to the ru1 rued .o generate figures 1 and 2 is shown in figure 3. /' 

.II.C~.~ 

M..lmum. du.ct.bl. I r a n e m l l l l m  
100s 220 dB r l t h  6 1081 

100 dB wlth horr 

R t h  l a s h  I45 hrn 

Data proc.aslnl R.c.lve6 a l ~ s l  AGC ro1t.a. and local 
oarl l lator I t q u m c y  *ample6 20 I1rn.s 
per ..cad 



-- - 8 b . I  -ID>€ fm j ' h e  radar systm was opcretcu to rczord data at --- !MI- 12TOtm distances between 80 and 150 km from the radar and 
heights between 5 and 30 km. At I 0 0  krn range and a t  
the tltvarion angles uad. the effective intcgat~on volume 
of the radar i s  approxmatekj 1.1 km In height. 1 .I km in 
horizontal distancc norm4 to the ?!ant of the radar and 
scattering volume, and 1 .! in in horizontal distance in 
the plant of the radar and scattering volume. The heifit 
resolution capability of the radar at 100 km i s  1.8 klr! 

which corresponds to the 10 dB 'beamwidth or the 
'F-. -- antenna. T h i s  indimtm that thin layers closer topthtr 

0 I . . A _ _ _ -  

than 1.8 km rn height will not bc resolved ; .d, for layers 
, 6~ ,&* Id- ,,.-I 13 1z thinner than li . l  km, the measured layer strcngth will be 

t,tt,iZrs a Function both of the layer thickness and C; . Since 
most of the layers probed by a U-2 atrcraft used in one 

Fbum :.- C i  profiln for I A u p u  1968,1726GMT. 233" p r t  of the measurement program were the order of 100 m 
azimuth msde using the Milldonc Hill n d u .  hick ,  i t  is beat to new the layer $trc:#tn mcarurements as 

providing the value of  the C; height product. li the 
layer at  14 km in figurm I were 100 rn thick. the actual C; nlut  for the 8 1 "1  t*  103.4 km avcragt w 7ldd be 4X 10-' ' 
m-' '3 (2~~O-1  1, A homogeneous layer that is thinner than 1 km would have different r i  +alurl rcportrd 
because the percentage of the beam filled depends on the distancc from the radar. For thin layers ;he ratib;. of the 
measured layer intensities arc 1 : 1 .25 :  I ,  50: 1 , respcctiwiy, for the 8 1. I- to 10 ' 4- . 1W.5- to 127.00- , snd t 28.0- te 
150.5-km distance intervals. Thc relative mmagriitudc~ of the &A profiles for thr laycr a t  4 km shcw that if the layer were 

homogeneous, i t  would bc thinner than 1 km and the 
value reported is a lowet bound on the !rytr strength. 
Unfortunately, the majority of profile n~rlrurtments 
show horizontal variations in layer strengths and estimationz 
of layer thickness bawd upon this techr~que arc dubiow 

Thr ndrr system k e n  leslihrated m that the 
measured C: nlue for a layer that fills the beam i s  w:lhln 
*I  .5 dB of the actval value. The stability o f  the ndar, 
the :harmcttristi~~ of the ndar tarpet, and the pulse-by- 
pule calibration system used in making the mearurtmtnts 
provid~l a relative ms error of less than a . 7  dB. The 
major mur,es of error in making the C: profile measure- 
mtnts are interference from other radars operating in t k  
ssmt frequency bsnd, reflections from fixed ground 

1 targets detected through the side I o b ~  of the antenna 
pat tern, and rcPections from &raft detectt~ through m KXI 1x1 1LO 1 5 0  

SURFACE DISTANCE I kml the side lobes. Each error source i s  monitored dur~ng 
P*urr 2.- IHI diwky the m u t e m n t  prnwrn. Interference in m n i t n t d  

1720 GMT. 233' *iunuth. 'by the relative mrpilude of the vuhnce of the rcceim 
noise temperature which ir continuously measured. The 

80- to 1SMtm measunmrnt r a m  rvu dictrtd by ground clutter problcrnr. Fixed tarvtfi and aircrafts at ranges between 
80 and 150 km must k manually detected us in^ the computer~nerated RHI displays. Data contaminated either by 
interference or extraneour zagcts artre e c t t d .  

the Lblnd md~r  used wr readily deica turbdmt lmym with a C; height prduct gcrter t h n  1 X 10" 'm"" 
km(SX10-' 'cn~"'km). Uniortunrtely, a cloud o f  th mme dimtnhn and a Z or 6% IOX 1 0 ~ r n m ~ l t n )  (see Eq. 
(2)) for liquid prticln or 1 Z of 3X 1 ~'~rnm~,'rn' for ice prrticler wilt gk: the nme return. This cmclponds to h 

cloud of liquid partick with r liquid wmter cmtmt the otdta of 0.005 dmS . The detcctic of zh~n turbulent layers 



i~ therefore complicated by masking 'by cloud layers. 
For this reason, only layers in the clear atmosphere 
may be detected. Since a single.frequency radar IS 

used, auxiliav means must bc used 10 determine if 
clouds are present. For laycrs near the tropopause, 
the presence or citrus clouds must be determined. 
The stparatinn between thin turbulent layers and 
ci~rus cloud layers has been made uslng ~ v e r a l  criteria. 
I f  the layer is detected abow the t ropopauw in a 
region where zhc radiomndc data show a defrnitc 
lack of moisture, thc layer is assumed to he turbulent 
If the layer is thin, on the ordcr o f  the resolution 
vulume of the radar, and i s  thin throughout the 
duration of the test. it is  arrumtd to be turbulent. 
If no citrus clouds arc visually obsctvcd by pilots. 
ground-based observers, and the availrblc TPQ-I 1 cloud 
radars at the height of the layer, the layer i s  anr;md 
to be turbulcnt, Whenever doubt existed as to the 
ori@n of the radar return, thc laycr was assumed ?o 
bc caused by clouds. 

Using the above layerdetection criteria, the 
data from 34 days of measurements nndornly dis- 
tribut,d between January 19611 and Auyst 1965 
wcrs examined for the existenet o f  thin turbulent 
layers at h i f i t s  abow the tropopauu. Tht: height 
of the zropopausc was determined usi~g :ht radiosonde 
data clmat both in time ar,d space to the mear..remcnt 
volume. Two types of la>crs arc reported. persistent 
and t ransitnt. A persistent laycr i s  - layer at a specific 
height t h ~ i  is prescnl in more than half the elevation 
scans. The rtwasurtments werc madt by mak~ng two 
elevation scans at a particular azimuth; then moving 
~ h c  antenna to a ntw azimuth for another set of 
elevat~on Kana, The azimuth used tor the masure- 
mt::.s changed from day to day. Typically a wries 
or mersurements werc made ai five wpqrate azimuths 
spaced over a T 80' interval ~ntcrlaeed with I wries 
of measurements at azimuths spaced over a 20' 
azimuth intcml. With the azimuth stepping mcthc 1 
used for data taking. r Illyer had to be present owr a 
range of rrirr.ma.~~ values to be cl~ssifi~d aJ prsisltnt. 

A ~ r i ~  of measurements made on May 28, 1968 
i s  shown in figures 4 and 5 .  In ahis rct of  data, a 
pcrsiacn! laycr existed at  thr Irnpopaun Icvtl, The 
laycr at IQkm hifit r, also cimified as persirtent 
since it is prtJtnt in more than half thc elemtion lems. 
As shown by the azimuths !or which tht  scans were 
made, the pcrsirtent layen are not confined to a tingle 
uimuth sector but art detected at r wide mrrtty a l  
artrnuths. Thew layers extend more than 300 km 

Fi":e ?.- RHI dusptay for ? A~pusr 1968, 1720 GMI  233" 
azimuth mate umg ~hc  Hlllstnnc llill radar. 

69 80 100 120 1 4 0  160 

SURFJlCC DISTANCE 

Fbw 4.- Computer prmntd RHt display iior 28 May 1968. 
1439 GMT, 11OO azimuth. 

FLpm 5.- l l r d u d t f e d  rtrnnspherl.: layer stntc:u-e for 
28 Mmy 1968. 



bri:2ntally. The intensity of the ldye~s, however, changes in time and position. The intensity of the layer at tropopause 
height in figure 3 fitidnates in time with approximately a 1-hr period. The data on figure 5 also show three transient 
layers at heights above the tropopaus. Apdn, these transient layen tend to be widespread in horizontal extent but 
weaker in intensity. 

The data for each of the measurement days are presented in table 4. The results ale @:t~ hy dav. The table also 
gins the number of layers per 2.5-km height interval for heights above 10 km and the total nwnber of layers detecreti 
above the t rompuse  for each day. The data generaily show a layer just above the tropopause. The layer probably is 
associated with the tropopduse but, due to the uncertainty in both the existence and location of a 'tropepause, it is 
hard to make a definite judgment about such an associati~n. The feature of the radiosonde profdeb mosr often associated 
with the layers that occur above the troppause is .. temperatm inversion. 

TABLE 4.- TURBULENT PERSISTENT (P) AND TRANSIENT 0) LAYER DETECTIONS 

' T om1 ir l a  due to  rejection of any layer with cloudr. 

2.18 

L, 

Table IV 
Turbulent Layer Detection# 

Date 

1968 

119 
1/11 
215 
219 
2/13 
2/19 

Max. 
cloud 
level 

km 

6 - 
2 
6 
6 
5 

Time 
CMT 

1800-2100 
1420-2050 
1720-2130 
1400-2050 
1340-1850 
1810-2100 

>22.5  

km 

T P T  

I 

1 

I 

I 

4 

4 

10-12 .5  

km 

1 
I 
I 

1 I 
I 

Tropo- 
p u r e  
Height 

km 

12.9 
11.0 
6. 5 

10.0 
7 . 3  
7 .6  

RHI Dam 

1 7 . 5 - 2 0  

k m  

T P  

I 
1 

Layerr  
above 
tropo- 
p u r e  

P T P  

1 
1 
1 

I 4 
2 

12 .5 -15  

km 

T P  

I 

1 

20 -22 .5  

km 

T P  

I 

1 

1 

1 
I 

1 

I 
1 
1 
I 
I 

l a y e r r  f rom 

1 5 - 1 7 . 5  

lun 

T P  

1 

I 

1 
I 
1 
I 

1 
I 
1 

1 
I 
1 
1 1  

I 
I 1 

1 

I 
I 
I 
I 

I 
1 

I 
I 

2 

1 
I 

I 

I 

317 1 
1311. 

1 
1 
1 
I 
1 
I 
1 

1 
1 
2 

2 
1 
I 
I 

I 

I 

I 
I 

\ 

1 1410-2050 

3/20 
3/21 
3/12 
4 /4  
4/15 
4/24 
5 /b  
5/16 
5/20 
5/28 
5 /29  
613 
615 
6 / t i  
6/27 
6 /28  
7/29 
7/30 
7/31 
811 
6;Z 
8 I 5  
e l 6  
a / 7  
b /8  
819 

Total 
34 

1 

14 

I 

18 13 2 5 

I 
1410-18401 i 1 1  
1400-2100 1 10 1 11.8 

1 
I 

3 20 

14 7 

6 

1730-2100 
1340-1700 
1800-2130 
1330-2120 
1600-1800 
1310-1900 
1310-1710 
1440-1830 
1400-1953 
1300-2030 

3 I 23 

1; ! :L.6 1 
10 
l i  
9 
9 
2 
9 
2 
9 

11 
1410-1950 , 10 
1550-i930 9 
1350-1720 I2  
123b-:n30 
1240-i6OC 
1430-2020 
1340-I950 
1230-2020 
1330-0100 
1400-2020 
1220-2030 
1240-2100 
1230-0100 
1240-2020 
1300-2020 

I 
I 

I 
1 
1 

I 

I 

I 

I 
I 1  

I 

I I  
I I 

12.5 
12.5 
11 .5  
12.0 
12.7 
12.5 
0 .  
12.5 
12. 3 
10.4 
12.8 
14.8 
14 .8  
12. 7 
13 .8  
12.4 
12 .8  
14 .5  
13.8 
13. I 
14 .2  
14.4 
14. I 
12 .6  

I I  
8 
3 

11 
11 
9 
5 
8 
9 
9 
7 
9 

I2  4 

28' 

I 2 
1 
2 
1 

1 
1 I 
1 5 

5 
2 1  
I 1  
2 
3 

1 
1 3 

2 
I I 

2 
1 
I 
2 

2 

Total of I07 layerr 
detected above 10 km 

9 57 
t 

66 



Transient layers haw been detected at heights up to 10 km above the tropopaw. The maximum height for a 
layer detection is 25 km. Weaker layers probably exist above this height but the radar system sensitivity is not high 
enough to detect them. The transient layers may also appear persistent to a more sensitive radar. 

Simuitaneous bistatic scatter measurements were also made of scattering from refractive index fluctuations 
using the Avon-to-Westford scatter system outlined in table 2 .  The radar measurements and bkratic scatter measure- 
ments are compared in figures 6 and 7. Figure 6 shows the C; profile as measured by the radar. Figure 7 shows 
the results of scanning the Westford antenna in elevation' ,,,, L-Bond Redor 
while pointing along the great circle path. The measure- cf pmi,i, Mmoaunnwni 

ments shown by the points show the layered structure. 
2 A U ~  1068 1630-1636 GUT 

The arrows point to th; locations of layers that also exist 
220. Azimu:h 

in the radar data. The horizontal dotted lines show the 
transmission loss value, or ratio of transmitted-to-received 

Umlmum DlhCtabh Uyu MI- 
power, (Pt/Pr) . computed using the bistatic radar q u a -  
tion, the scatter~ng angle dependence given in Eq. (1). and 
the radar estimate of C; . At elevation angles below 5' 
agreement is evident between the computed and measured 
d u e s .  Above SO, coupling via the sidelobes of the 
Westford =L?!enna becomes important and the computation ; 
model breaks down. The data show, however, that the 
model proposed by Tatarski that relates C; and 0 is 
useful in :he ir,tc:prctation of scattering from thin tur- 
bulent layers. 

MEASUREMENTS OF RAIN SHOWER cf (m-'fl) 
STRUC I'URE Figun 6.- CA profhs for 2 August 1968,1630 GMT. 

220' azimuth made using the Millstone Hill rdar.  

The scattering cmu section for rain is related to 
Z, the sum of the sixth power of the drop diameters by 
Rayleigh scatter theory: 

where ! K  1' f l(e-l)/(e+2)lZ , c = dielectric constant of 
water, and the other parameters are defmed in Eq. (1). 
Equation (2) is valid for frequencies below 10 GHz. The 
parameter Z is a function only of the drop-size distribu- 
tion and may be considc:<d to be a meteorological param- 
eter that is descriptive of rainfall intensity. The relation- 
ship between 2 and the rainfall rate R is a s t a t i s t i  
one that depends on the properties of drop-siu 
distributions. The relationship between Z and R 
normdy used by radar meteorologists is Z a 200~"' 
when 2 is expressed in mm6/m3 and R in mmlh. 

Am-Wll t fOrd f45 hm 7.74 GHz 
Awn-6f t  Antmna B'EI, 4 8 . 8 . A ~  
Watford-60 f t  Antenno 229.5. Az 
2 Aug I968 1553-1615 GMi 

I B 
W - Rodor Loyrra (413 earth) 

60 g Eat Volw from Redor Ooto ]To ; 
,2.6 hm 

, ,pm 6 0 f t  , - ,  pottar" , 1 , , , (1 420 
240 

0 3 ( 0  15 20  

ELEVATION *#OLE (drg) 
Fiim 7.- Transmhrir 1 lou va naiver elevation mgk, 

8.0" tnaunittu elevation @c. 



Radar measurements of rain generally show a marked horizontal inhomogeneity. Although propagation specialists 
and climatologists often consider two rain types, stratiform and convective (or showery), meascrements with high- 
resolution radars generally show that both rain types are inhomogeneous and quite showery. 

Figure 8.- Weather radar map for New England showers. 

u - i rwcptd  -+.asurd l.mprralure 
l.ms - RYS uncert*nty bur m dmp-sir* 6181 and m a r  

The showery structure of rain is also evident in 

radiometric measurement: of rainfall made using the 
Haystack radiometer system described in table 3. Radio- 
metric observations ..!ere made by scanning the antenna 
across rain showers of interest. The radiometric measure. 
mer.:; made simultaneously with the radar measurelrents 
presentea in figure 8 are presented in figure 9. The points 
labeled as measured and as averaged measured tempera- 
ture are mea;ured changes in antenna temperature from 
the clear sky value for an elevation angle of 2.0'. The 
solid lines enclose the 21 standard deviation estimate 
of antenna temperature change based on computations 
using an approximate solution to the radiative transfer 
equation and estimates of attenuation cross section per 
unit volume based on the radar measuremcrtts. The 
relationship between attenuation cross section and 
scattering crws section was derived statistically from a 
large number of computations \*sing measured drop-size 
distributions [Oane, 19681. The data presented in 
figure 9 are the direct measurements of antenna tempera- 
ture changes - not changes in sky or brightness tempera- 
ture. The tru: value of sky temperaturechange are higher 
and may be determined by dividing the listed temperature 
values by the integrated antenna efficiency, which is 0.6 
for the elevation angles used. The measurements show 
reasonable agreement between measilrements and 
estimates based on radar data. 

Bistatic measurements of rain shower structure were 
made using the scatter system described above. The ob- 
jective of the measurement program was to measure the 
scattering angle dependence of natural rain. The measure- 
ments also depict the showery nature of rain. Figure 
10 shows a radar measurement similar to that in figure 
8. The simultaneously made bistatic scatter observations 
are shown in figure 1 1. Note the rapid spatial chdnge 
of rain intensity. The cells evident in figure 10 are 
marked by arrows in figure 11. The horizontal lines 
give the estimated transmission loss based on the several 

AZIMUTH (&gJ scattering models listed and the use of the bistatic 
24 JUL 196- 2052 GMT 1.4-DEG ELEVATION radar equation. The only agreement shown here is at 

an azimuth angle of 215'. At the other aziniuth angles, 
Figure 9.- Estimated and mwurcd antenna temperature obstacles existed between the transmitting antenna 

relative to a 2" nkvation uyk c k u  sky value. and the scatter volume afid agreement was not obtained. 
in a recent set of me:,surements [ W e ,  1 97 1 ] , a 

large number of comparisons Rere made with no intervening obstacles. 'i'!~l,e results of the latter set of measurements 
show agreement with the Rayleigh model within the measurenlent accuracies of the radar and scatter systems. 



L n M I  Ur uo 
YWI*rr n d w  
3 r 112 m IWltm UII 
7 L* 1 W  1941 -1947 GUT 

F- 10.- Weather rrdu map. 

AZIMUTH (-1 

Fbun 11.- Tnngnisrion loss measurements vs receive 
antenna azimuth, 3.0' receive elevation angle. 

A series of measurements of the structure of two atmospheric parameters detectable by radar techniques were 
presented. The measurements were obtained as part of a program of microwave propagation research which has as its 
object the testing of models used to predict propagation phenomena. The measurements show the inhomogeneity 
typical of atmospheric parameters. Experience obtained in the course of the research program has indicated that as 
radars are Lveloped that have higher resolution volumes, measurements of atmospheric phenomena will show significant 
changes in the intensity of the phenomena aver the smallest distances resolvable. 
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DISCUSSION 

sang Art you familnr with Tatarski's 1967 book in which he shows Cn is a function of temperature ard 
ind velocity and also extends the equation over a wide tange? 

Ckc'tt' I have net seen the translation but there 1s not a big change from his earlier work. Some people, in fact, 
doubt his extension. Otner recent Russian work is even more important but difficult to apply. They show that 
details within a volume tend to govern C,,, and we can't get this from profile measurements. All we can find is 
the region to expect a layer but not its stlength. 

Unidentified speaker: How did you obtain estimates of rain drop-size distributions and how critical are they? 

Cllrnr . From a wide number of sources, yt-dominantly camera surveys of the Illinois State Water Survey. New 
AFCRL measurements improve on these. We can classify rain by type and get better estimates of 
attenuation given reflectivity and rain rate. Our accuracy is about 30'70 standard error of estimate in 
attenuation cross section per unit volume due to drop-size distribution affects. The AFCRL results may 
reduce this number. 



FINE STRUCTURE OF THE LOWER ATMOSPHERE 

AS SEEN BY HIGH RESOLUTION RADAR 

J. H. Richter, E. E. Gossard, D. R. Jensen 

Propagation Technology Division 
Naval Electronics Laboratory Center 

San Diego, California 921 52 

ABSTRACT 

A ground-based vertically pointing FM-CW radar (frequency modulated, continuous wave) is described that 
permits remote probing of the refractive index structure in the troposphere. The radar has the characteristics of 
extremely high sensitivity, ultrahigh range resolution, and close minimum detection range without clutter. The 
sounder routinely detects layer structures in the lower troposphere. These layers are always asso~iated with gradients 
in the vertical refractive index profile, and are frequen!!y very thin, approaching the resolution of the radar (1 m). 
Very often they are perturbed by wave motions. Examples of various wave patterns are presented, and an explanation 
is given for organized substructures frequently superimposed on larger scale wave motions. 

INTRODUCTION 

One important advantage of remotely probing the atmosphere is the capability for continuously monitoring 
the layer structure in depth. Pulsed radar has long been used in several countries to detect the height of zuch layers, 
but the lack of resolution has precluded the possibility of examining structural detail. Only thick diffuse layers 
were normally revealed, although these occasionally showed interesting wave-like structures. Two kinds of returns 
were observed: diffuse echoes from regions of large gradient of refractive index, and "dot angels" from insects and 
birds. Since the refractive index depends strongly on moisture and temperature, radar was evidently an important 
potential instrument for remotely probing the meteorological structure of the clear troposphere, if an improved radar 
system could be developed. Such a radar has been designed and built at NEW. It is a unique FM-CW radar (frequency 
modulated, continuous wave) that differs from previous radar sounders mainly in two features: extremely high range 
resolution (1 m) and low ground clutter. Its narrow beams are directed vertically, which permits us to observe features 
as low as 50 m frsm the ground. The sounder has been in operation since December 1968, and observations of great 
variety have been obtained. The radar observations are accompanied by both standard and special meteorological 
observations at the ground and by radiosonde soundings. The radar sounding system and some early observations 
have b a n  described by Richter 119691 . 

DESCRIPTION OF RADAR 

For the study of the fme-scak refractive index struci:lre in the troposphere we need a radar sounder that 
combines the properties of hqh range remlution, high sensithiy, and close minimum range without clutter. The 
requirement of high range resolution capability would suggest the us? of pulse compression techniques. However, 
this approach would make it difficult t o  meet the additional requirement of close minimum range, for no signal can 
be received during the transmission of the uncompreued pulse (and usually several pulsewidths after). The reason 
that the minimum rangt is such an important factor for the rounder is that low ltrel inversions frequently produce 
scatter layers in the !owest 300 m of the atmosphere, and thew layers can be studied ,yost effectively by simultaneous 
mc!rorological observations by tower and tethered balloon instmments. 



An FMCW radar dws not have the minimum range restriction and allows h i b  range resolution. I t  has the additional 
advantage of a peak-power-tmwrage-power ratio of unity, which is very desirable From a technological vtewpuint, I t  

also permits a change of resolution without affecting the transmitted energy (which is not the case fur pulse radars). 

The frequency of the radar was chown t o  be around 3 GHz as a compromise between higher and lower 
frequencies. cacll of which would haw been destrable for different reasons. Thus, to achieve a nlrrow antenna beam 
with a small antenna diameter, it would have been better to select a higher frequency. Howtvcr. we must also conmdes 
the rejlectivity-waxlength dependence of the scattering volulne. For speculat surfaces, the power reflection cocffirient 
increases as the thickness in wavelengths of the transition 2of.e decreases. and we should thus wsnt to use the largest 
possible wavelength. On the other hand, the prepnderanc* of avsilable evidence suegcsts that clear-air-scatter layers 
comprise in hornoger~eitlcs in refractivity, producing a reflectivity (ql-wavelength dependence of about X-" [Atlas 
and Hardy, 1%6: Hurdv et al., 1966: Hardv and Karz, 19691. Although this wavriength dependence is small, it 
suggests using the shortest wavelength, provided that it dots  not approach the limiting microscale (P, 5 of the 
refractivity perturbations. Arlm end Hardy [ 19661 , therefore, suggest an optimum wavelength of about five limes 
the Irmiting microscale. In weakly turbulent conditions, QE is of the order of 1 to 2 em. 2nd SO a X of 5 t o  I 0  cm 
~ e m c d  optimum. 

By means OF thtorctical calculations and experimenta1 data [S~x ton  el a!., 19641 , we decided that with an 
equivalent pulse Itngrh, h = 1 rn, and antenna gain of 35 dB, a ratio of 190 d B  between average transmitted and 
received power should be adequate to detect mast scatter layers In the  lowesr 2 km. 

The linear frequency modulation b generated with a Y1G tuned transistor oscilIat~r. amplified t o  a maximum 
power of 150 Wand radiated by the transmitting antenna, The signal: are displayed on cathode ray tubes in an A-scope 
presentation, or an ~ntensity modulation, or in a combination of both amp1 t!ude and intensity modulation (or A-I scopel. 
The data art recorded by 35-mm. shutterless movie cameras with film speeds ranging from 1 cm/hr to 0.5 cmlstc. 

The antennas consist of two parabolic dishes. 3 m in diameter, with waveguide feeds (fig. 1). For good isolation, 
the antennas were located in pits. At least 60 dB isolation is necessary to avaid saturation of the preamplifier. The 

insides of the pits arc lined with microwave absorbers 
to suppress reflcctions. The absorbrng screens ace also 
required to suppress echoes from nearby ground targets. 
T& antennas &c steerable within t1.5" t o  optimize 
the common volume for a given height. 

The pcrformana chnractcristin of the radar arc 
compiled in table 1. The basic components of the radar 
system allow operation in the entire 2- to 44Hz range. 
The restriction to the narrower nmge, around 2.9 GHz, 
is determined by the standing wave ratio of the antenna 
feed and the balanced mixer. The variable range 
resolution is an important feattre of the radar. In the 
case of volume scattering, signal amplitude changes 
continuously with resolution, thereby ptrmitting 
significant conclusions to be drawn. T h e  maximum 
range resolution of about 1 m was determined txperi- 
mentally. Two targets 43 cm apart (simulated by 
delay lines) were separable by choosing F = 219 MHz 
frequency txcunion. 

The mlun for computing minimum dettctsble cross section and minimum detectable reflectivity arc bastd on 
a tnnsn~itted power of 100 H' and on a minimum detectable signal of -150 dSm. This minimum detectable signal 
w a s  determined by using a delay lint with a delay time equivalent to thst of a tuget a t  a height of 1b7 m. 



TABLE 1 .- PERFORMANCE CHARACTERISTICS OF THE NELC RADAR SOUNDER 

PARAMETER VALUE REMARKS - 
Power 

Center frequency 

Frequency excursion 

Range resolution 

Sweep duration 

Receiver noise figure 

Minimum detectable signal 

Antenna gain 

Antenna beamwidth 

Isolation betv.Qen antennas 

Minimum detectable cross sectlon at 1 km 

Micimum detectable reflectiv~ty at 1 km 

150 W max Typical power: 100 W 

2.8 to 3.1 GHz 

Variable Linear modulation 

Variable Maximum resolution: 1 m for 20aMHz frequency 
excursion 

50 rnsec 10 sweepslsec 

5 dB 

-150 dBm 

35 dB 

2.5 deg 

105 dB 

23.7 x 1 0 . ~  cm2 

24.2  X 1 0 . ' ~  cm-' For 1-m ran* resolution 

The sensitivity of the radar for a point target is given by 

where o w  is the detectable cross section in cm2, and r is the distance of the target in kilometers. 
Typical insects with cmss sections of cm2 [Hardy and Katz, 19691, therefore, can cause dot echos 
24 dB above noise at 1-km height. For distributed targets the minimm detectable reflectivity qmin in cm-' 
is 

where r is the distance in kilometers and h is range resolution in meten. Typical values of q for a lO tm wave- 
length are 10" ' - lo-' cm-' [Hardy et  al., 1966; Atlas and Hardy. 1966; H d y  and Katz, 19691. It can be seen that 
even for the highest range resolution of 1 m, retwns can be expected from u high u 1 km. To detect the wedcer 
scattering regions at greater ranges, we should have to increase the effective p u b  depth or resolution, provided of 
course that the scatter repions are thicker than the effective pulse. 

Even though there is no basic minimum-range restriction inherent in this kind of radar, some practical limitations 
.-. 

(which could be overcome, if necessary) reduce the sensitivity of the ndar for targets closer than 50 m to the antennas. 
Reflections from an adjacent building give permanent returns for the f m t  SO m in height; therefore, targets must be 
capable of providing stronger returns or must change their position in order to be discernible. A b ,  the separation 
of the two antennas imposes a minimum height range for beam intersection. The antennar u e  separated by 5 m, and 
their bum intersect within 50 m above the ground. 



RESULTS 

Figure 2 is an example of layers that arc observed by the radar system. The SO-min aclion uf an intensity 
modulated trace shows a cornpiex vertical structure consisting of thin, undulatine scatter layers. 

~ u n d i n g  balloon carrying two mdiosonde transmitters. which were modified tv give continuous fast response 
temperature and humidity profiles, was  launched at the radar site. The balloon was ?racked from the ground to obtain 
wind information. The vertical profiles of temperature, relative humidity, wind srted, and wind direct ion arc plotted 

in f i y r c  2. The Iieighr scale For the balloon sound~np: 
and the radar return is  the same. The refract~ve index 
A'= (n-11 lo6 arrl the potential temperature are 
computed from the direct measurements. 

-I a * *  Y -*, ., i 
w- "U." I I I  ."I . -. 

-. The ttmporal continuity af the radar observation 
.-. technique may be used for presentations of the kind 
. -. shown in figure 3, which is handdrawn ta achieve the time -- -. compression necessary for illustration purposes. Ir shows 

m-  

-. height and thickness of the layer for a ?day time period. 
.--- - - , . - , * - _  . . No simple diurnal behavior of layer structure has been 

- Y.< b y .  .- . - h " , 4 . . .. . ,. . .,__ ... .- _.-. - . -  * , - 1  . . established so far, even though continuous observations 
... 9trYCI.+ - - . . . -  for as long as 4 weeks have 'be ., studied. This may be 

~ ~ Y T U I I I I R . I  *."- .*.. ..-. .--- due to supcrpoqition of other mtteorologieal factors on 
a diurnal effect. I t  is also dificult in the case of multiplt- 
layer structures to objectivtly identify and connect strata 
with strong fading characteristics that alttma!ely appear 
and disappear. 

Fbum 2.- Scrttcr hym o b d  by tho ndu and proms 
merwmlogul data obhimd I m  balloon wndingu. RH, An excellent example of a multiple-layer structure 
relrtkr humidtry; H = IR- l ) lOb ,  ttfrsctiveindex; r ,  is premted in figure 4. Scvcrd distinct sf rata af various 
temperature. vertical thicknesses and temporal behavior can be seen: 

superimposed is the refractiw index artd potential tempera- 
ture profiles obtained from a r 3 J i m d e  mundlng at 1238 PST. The agreement of backscatter zonts and refractiw index 
gradients is ttm~rkable The a i~ i f imce  of this layet structure on radar coverage i s  illustrated in figure 5, in which a 
transmitter at a height of 100 ft. is ammed. The earth is  drawn flat, which gives a straight ray an upward bend. From 

the say trace picture we should expect a hole in coverage 
a t  a range of around 25 nautwal milts. We also see from 
the ray ?ran picture that only the layer belonging ta the 
stetpest gradient influences the coverage significantly. 
This layer changed about SO m in height between 1220 and 
1240 PST, which could influence an accurate coverage 
prediction. This example txphasizes the need for precise 
and continuous knowledge of tlw refractive index structure, 
if accurate coverage predictions are required. Manv morc 
cxarnpIcs of layer structures with radiownde sounding 
data art presented by Richter mrd Cos~rd I t 9701 . 

Radar refltctivity is obtained from kht recorded 
Aaoop presentation. Examples of quantitative analyses 
arc givtn by Richter (19691 and Atlas et #I.  [ 19701 . In 
general, the maximum reflectivitim meewrtd with the 
FM-CW radar sounder are onl: ao two orders of magnitude 

F~ 3.- Appmxtlnrrs w h l  w w  of bp atme higher than those observed with raden having much 
obwrmd eonthueudy Itom 64 J m m  1969. con~ser range resolution. 
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/ k-. The radar bickmtter  propcrtia of w a t n  droplets 
f % (and, therefore, of rain) ere well known. What is  not 
3". well known i s  the fine-scale structure of rainfall, and the 
'.*I .L . .:.it radsr soundct offers a p ~ * ~ r f u I  tml Jot studying it. This 

. L:, . pos3ibility has not been fully exploited in San Disgo for 
$;+: . . two reasons. First, i t  is not associated with the purple -.- . .. For which the sounder was Iluilt; and, second. San Diego Ma- n a 

, $ 
has yearly average rainfall ot only about 10 in., which is  * -  i& r l  

I 
. 4,. not enough for extensive study. Figure 6 illustrates the 
k' capability of the sounder with respect to rain. The uppr -a 

.a t 
v.8 portion of this figure is the in~cnsity-modula!td radar -a 

$&: record of a multiple-layer structure with intermittent .. 
-gi- 
5.:; rain showtrs startlng at 1 142 !'St and 1222 PST. The 

, .. - . .  - u 
-* z;? echo intensity of the rain overexposed the intensity- 

modul~ted record. The A.1 record of the time intern1 :..,;g 
, '  . . . from 1 15 1-1 158 P1SS is  shown in [he lower part of the . h %jaj figure. Structural details of the rain shower are eviP lt. 
, . e.,. The intensity o; the rain with rtjpcct to time varies, 

.Ed; Fwre 4.- Mirltipb t y t r  ~tmdure. The dmshsd am ia the 
- 5$, leading to difYlettnt "streaks." The slope of the streaks refractive Inden pronit; the d i d  cum the potcntbl 

;* . k. gives thc rainfall velocity. The dtviatirns fiorr, 1 constant temperature measured with I sounding balloon. 
. . . I - t  slope muc.[ be due to w~nd shear. The gap in the record 
. $5: bet wee:^ 11 56 to 1 157 PST sterns from a b a ~ l i n e  shift. 
:. - . .$ v4iich i s  caused by a strong echo (probably bird or airplane) - 
, . ' $;: owrdriving the radar receiver. Fiyre 6 is one example of . , -I- . -+:, .. - nhat can be studied w ~ t h  the sounder. Orher recordings 

. t 
.%,.; -. . " exist in which rain ereporata before it reaches the gtound. .' "Ihr ice-water transition is another prol>lern that could be 

studied. as the scatter propcnin of iee crystals ar t  
dirferent from tho= of raindrops. 

-. . a #  

Perhaps the mwt exciting obstwationr made with 
radar sounder conurn the detailed structure of wave F- a,- aiy - for tb rcmdb i d e x  prom 
motions in the troposphere. T h e  presence of such wave md hyer muctum of ~ r n  4. 

n - has been known IGossprd and Munk, 19541, and they 
5;. 
.-t--' have been recorded by other radars on rare occasions 
i.,. , - &y:- when the size %ales and amplitudes were large enough 

"n'.' for their much coarser ~ d u t i o n .  Tlre present mundcr 91 
. $- showed that the waves a r t  ubiqu~tour, and occur with ir.rl I 

+*,.:; 
.., .;' 

C 
vertical amplitudes of as little as some 10 rn. It  alw . . -<:: revealed details of wavc motions that had never been ~1;  &;. observed Mote.  Many ptttentations and interpretations - . '"{r4.<. 

of wave motions obsemd with the sounder haw been 
g m n  [Gomrd cr a/, . 1970; A ths ct a[., 1 9713; Cossord 
and Richter, 1 9701 , 

A good twmple of wave patterns is given in figure 
7, which showr !he apme recording at three different .* 
enlrgemt:~tr. Two d~ffttcnt type# of wave m o t h  am -m 

clearly di~tinyuhrble:  long.ptriod (5 to 10 min. or . 1 
longer) ~r;ternal waves, and much shorttr.perid KcMn- I 

k l m h d t z  (K-H) w w  inwtability structureJ wrnctinle8 1 1 1 1  ,,,I, - 
rupcrimpo~cd on the longer-ptriod waver. The cnlargc- 
mcnts in the m~ddlc md lower part of the fip:re reveel 
short-period md rmall~rnplitudt K-H warn that show F W  6.- Stmctwm of rdn. 

2-27 

- L -. 
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np~m 0.- B d i q  wve; u p  put, i n r d r y  modulation; 
I m  p a .  A-l prsrentltbn. 

. - -;;; ? 
: .' 

dear evldence at'bnaklng. A perfect sequence of a K-H 
wave is shown in figure 8. The wave builds up until i: 
owelturns and breaks, and the ur maws at the interface 
become mixed. The lower part shows a section :IF the 
same event, but in A-1 p-esentation. This kind of pre- 
sentation shows particularly clearly h e  sharp boundaries 
and the maEl vertical c x t m t  of the zones from which 
the electromagnetic enem is returned. 

Cases in which t ic  radar illuminate1 the wave 
structure through considerable depth are of special 
interest because they can reveal details 01' the region 
where true wave matio.1 couples with tht instability 
structures at the critical level. This r-quires ndar 
returns from multiple layers over mnsiderahle depth. 
Figure 9 shows layers above and below the major wave- 
train located between 40Q and 500 m. The major wave- 
train perturbs the u p p r  stable layers, but h a s  no agparertt 
effect on the layers below, which rend to c ~ n s ~ s t  of 
independent, breaking wawetralns. The vertical struetuns 
between 100 and 170 m art caused by convection In the 
marine layer b low the stahle region. 

In an effort to examine the fine structure of zht 
ncattering layers in more detail, rhc radar record.: were 
recorded on mawetic t a p .  Since the dynamic range 
of the w e t i c  rape is much greater than that of film. 
various film exposuns could be run from the tape 
recording, at.d a minimum exposure used for examina- 
tion of the parts of tht laycn which would normally be 
overexposed. When this is done with layers such as 
?hoe shown in fqurc 10. an interesting substructure 
is shown in the lower frame of the figure. I t  rcvcale 
the prescncc of organkeztd structures Frather km 
randomly inhomogeneous turbulence) down to the 
minimrim size re:olvable by thc radar (about 1.5 m in 
rhis caw). This substructure beats an IrnpreW 
re#mblanw ta the large instability features mch a8 

tho= &own h figure 8. which haw ken interpreted 
;u K 4  stru?tutts due to shear. Gof9prdet al. 61971 ] 
have suggested that untrapped internal waves propagating 
~9ward or downward through lempcrature inversion 
b,zm can crate their awn wind hear within the layers, 
urd can also locally modify the temperature gradient. 
The criterion of d yrumie stabfllty (Richardwn's numbtr) 
is thus reduced in certain height regions within the wane 
structurt; and If kchardson's number becomes lcsr 
thin Q.25, there L theoretich reason to klieve that 



dynamic instability can occur. If gravity wave 
p r t  urbations occur a l  the ltvels of instability (either 

by the radar. Ambient shear across thc stable layer - - _  - - .. - .. - - - - is obnwed to exist almost. lm  of the time in - _ - - _  
Sour herr, California. Prexlnt tvidence supports the 
hypothesis that rnultiplc. thin, dynamically unstable 
layers are created by untrapped waves (whose wave 
vector is nearly vertical) imbedded in a nrtdium whose 
arnbien! shtar is sufftcitnt to locally reduce the 
Richardson's number below critical. 

CONCLUSIONS 

The FMCW radar sounder i s  a novel tool for 
the investigation of the strucrcn of the troposphere. 
I t  has yielded sipilicant rr.~l!s to date, in particular 
in the a r t a  of r v  ~r reflectivity and atmospheric wave 
motions. The wunder permits continuous monitot- 
Sng of the vertical refractive index ~trvcrurc in the 
troposphere with range resolution as high 4s I m. 
Layer structures are detected routinely. As they may 
change their height in short time intervals. a continuous 
knowledge -. not only of their prtwnce but also of 
their exact height - is ntcelsav Tot accurate radia 
and ri-dar propagation prtdictions. t h e  aouaaer k an 
excellent tool Tor the study of the srmct~lrc of rain. 
Thr soilr?',tr ail1 continue to play an important role 
in the field of mesoscale meteorology, in which ton- 
wntional sounding techniques art extraordinarily 
difficult. 

nmn 

I 

Fwre 10.- 70p frame Ihowl tm(y w a r n  in chi& rdu 
-turn isrpplr;ntly not phar  rehtd. Uottom lrrme 
Ilrowl w c  record with redud  film cxpon~re mnd meah 
KeMn/Hebnholtz wbatructure, which rpputntly aceour t l  
for the rdu rrhun. Slop@ st*hl kxf  u e  captive 
bhloon d o .  



DISCUSSION 

Wight: In both this and C'4. McALlister's paper I was struck by the instability structure showing two sine waves 
of abuut the same period but 180" out of phase - apparently an oscillation between two distinct patterns. 

Richtec This has puzzled us for a long time. One should not be deceived, however, and interpret thi? as a spatial 
picture. We see the wavc motion Doppler shifted by the wind sampled at one point in space. 

Unidentified Speaker: Do you have independent wind measurements? Do the waves move w ~ t h  the wi~:d, or dl, . 
they have d separate propagation velocity? 

Richter: They don't necesw ;ly propagate 'with the wind. Refer to Gossard's paper in JGR. 19712. W, do have 
means of deducing true spntia! wavelength with pressure recording measurements on the gruul 

Oane: We visualize Kelvin-Helmholtz instabilities that break down and you get turbulence. We sl, . *t no 
scattering until the breakdown occurs. But you have the wave well traced before that. Perhap seeing 
a different kind of turbulence. 

Richtec We talk about t~rbulence at  different scale sizes. The breaking -:,aves themselves consist of sinaller scale 
t1:rbulence a n t ,  as I showed, organized substructures. lbe re  is mucrl more to  be learned. We can relate radar 
reflectivity t o  mean-square fluctuations in refractive index, as done notably by Bean in Boulder. But we cai,. 
not construct refractive index profiles from the measurements at this time. 

Kdy: You are working with an FM radar, which results in your integrating over 50 msec. All the returns you see 
within the resolution element are contributions of temporal integrathn. ',%refore, you are working with 
turbulence of lower scale than the thickness of layer. 

Richter: The integration over 50 msec does not determine our spatial resolution of 1 m. We sample the spectrum 
of turbulence at half the radar wavelength (5 cm). 

Kay. Why do you see the beginning of turbulence? 

Richter: Because you see t~rbulence at a much smaller scale which exists independent of the larger scale turbu- 
lence induced by breakivg waves. 

i 
1 

fbjarski: Therefore we should go t o  higher resolutions. 
F 

Richtec That's right. 
' .. 3 

h e :  We don't know what we are seeing. Is it turbulence or something else? 
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ABSTRACT 

ljdar uses laser energy in radar fashion t o  observe atmospheric backscattering as a function of range. Because 
of the short optical and near-optical wavelengths used, very small particlcs 3nd even the gaseous - lolecules cause 
significant scatie '15. This can complicate the evaluation of  the observations by introducing attenuation along the 
path as a second ucknown into the lidar equation. In man cases, however, the obselvations may be interpreted 
directly on a qualitative basis and show the distribution of particulate matter in clear a;- or enable the almensions 
of visible cloud to be measured accurately. In other cases, particul3rly where cdditional data arc available, quantita- 
tire solutions can provide useful ~nformatian on e m o t e  targets s ~ c h  ar tenuous smoke clouds 01 :.aze ldyets Examples 
of ruchob~rvat ions are given, illustrating the computational approach to the evaluation of the v o l u w  concen:rzrtion 
of natural dust and hate layers in tbe lower atmosphere and the mass concentration of a smoke plume. In bot!~ cases 
lidar data are related to  independently obtained data on the part~culate conctntrat io~~s involved. 

INTRODUCTION 

Lidar is a technique that uses laser energy in radar fashion for remote probing of the atmosphcre. It combines 
the principles of weather radar with older optical scattering concepts to  provide an important new ;dcility for observing 
particulate concentrations and evaluating atmospheric optical parameters. 

The technique has recently been reviewed by Cbllis [1970], who desc~ibes its application in general meteorology 
and air pollution studies mainly in the lower atmosphere, while Kent and W g h t  (19701 emphasize its use in dpper 
atmospheric probing. Ira this paper the problem of deriving quantitative data fronr lidar observations is discussed and 
examples are given of successful quantitative interpretation in two actual cases. 

BASIC LEDAR CONCEPT 

In its basic form, l~dar  employs a laser simply as a source of pulsed energy. Typically Q-switched ruby or neo- 
dymium doped glass systcms are used t o  generate pulses, having peak power of tens of megawatts and durations of 
10 to 20  nscc that are directed in highly collimated beams by suitable optical systems. Energy backscattered by the 
atmosphere is detected by a photomultiplier aftrr collection by a lens s r  reflector sbsism. The resulting signal is 
evalcated ac a function of time from the transmission of the pulse, in radar fashion, and is typically displayed on an 
oscilloscope either directly, or after storage in a magnetic disc video recorder. Po1a;oid or other photographs may 
be used t o  record the displayed date. 



Taking advantage of the nlonochromatic nature of the laser energy, narrow band optic;' filters may be used 
In the receiver system to minimize "noise" caused by extraneous light. The na:ure of the received signal Pr is 
given by 

where 

Pr instantaneous received power 

P, transmitted power at to 

L effective pulse length (P); L = cs /2  where c is the velocity of light and T is pulse duratron; l r  is the range 
intervs! from which sipnals are simultaneously received at time r 

0 the volume backs t t .  :Ing coefficient of the atmosphere (sr-' P-' ) 

R range [ R = C(r - t0)/2] where t ,  is the time of transmissron of pulse 

o volume extinctio;; coefficient (C" ) 

A effective receiver aperture. 

The magnitude of 0 and o depend on the wavelength of the incident energy. and the number, size, shape, acd 
refractive properties of the illuminated particles per unit volume. These range from the hydrometeors of precipitation, 
cloud, or fog through the particulate components of the "clear" aerosol. to the molecules of the gaseous atmosphere. 
'The scattering and absrption mechh~i~rns involved have been widely studied. For the mornent it will suf~rce to note 
that at the wavelengths conlmonly emp!oyed (for exan.+le, 0 .6943~  for ruby lasers and 1 . 0 6 ~  f o ~  ?eotiymium lasers) 
the energy is readily scattered by particulate material of even very clear atmospheres and typical lidar systems can 
detect returns from the clear gaseous upper atmosphere. 

In relatively clear atmospheres the extinctior? coefficient is small and viiriations in backscattering 2s a function of 
range a n  reaCrly be interpreted. For example. the p I ~ x n c r  of a sudden increase in scattering due to a cloud or haze 
iaycr is obvious and unequivocal. Sirnilar1.y a marked rzduction in turbidity is apparent as a decrease of signal intensity 
at the rang of the discontinuity. In strongly scattering conditions, however, marked attenuation occurs and in observing 
a cloud, for example, the lidar return rapidly diminishes as the penetration ot the cloud increases. The evaluation of 
lidar signals in such circumstances thus presents certain difficulties and imposes the need for care in making qualitative 
inte-pretatior!~. 

EVALUATION OF THE RASIC LIDAR EQUATIZ-; 

The atmospheric volume extinction coefficient a , itself largely due to scattering (although some gaseous and 
particulate absorption may occur). is in gene.d related to the volume backscaitermg coefficient 0 . Where the 
scattering particles are small compared to wavelength, as- is the caw with gaseous molecules or the smaller particles 
of the natural aerosol, Rayleigh scattering applies and the relationship is consistent and 6 = (1.5/4n)o. However, 
in so-called "Mir zcattering," where particle size is comparable tr, wavelength, small changes in particle diameter cause 
nlarked chanys in backscatter cross section. (For example, a change in the diameter of a spherical particle by 11100 
a n  cause 8 20 to 1 mutation ia its backacatter cross section.) Although substantral kvcrag~ng occurs over the range of 
particle sizes present in typical naturai aerosols (such as, haze, cloud, or fog), the relation between the volume 
extinction rnzfficient and the volume Sackscattering coefficient is by no means consistent, particrilarly with the 
monochromatic energy ge~eriied by laser; [ M m c y  and HO ,19651 . 



This uncertainty has important implications, for the lidar equation can only be solved for the optical parameters 
p and o if they can be related. M e r e  the relationship remains constant (01.; = kl  ) as a function of range, the lidar 
signal can be evaluated by solving the lidar equatioli in a differential form, provided that k ,  is known a n i  a reference 
value for 0 or a is availabl:. This condition applies to  atmospheric conditions in which the particle size distribution 
does not vary substantially and for which values for k l  can be adduced from knowledge of the particle distribution, 
or deduced from other lida, measurements (for example, of calibrated targets). Average values of k, may be employed 
for different types of at~liospheri~ tarpptc In cases where pallicle size distributions are nct constant, as in the case of 
cloud and various conditions of mlst arld fog, a power iaw relationship (dPnJldQrro k2 ) may be employed to derive 
at least approximate solutions. Solutions of either form, it should be noted are gery sensitive tu errors in the initial 
assumptions or to  errors in measurement. 

Additional data In other forms may be usef711. For example, the total path extinction or transmittance of a cloud 
or haz: layer may he derived from cornparkson of observations of the clear air on the near and far side or the layer The 
add~tiundl information on transmittance may rhen be used to check and improve the assumptlw: made regarding the 
P/o relationship, as well as to provide reference values. The use of iorgets of known r4lectivitv may be usLcl in a some- 
what similar uay to calibrate lidar performance or derive path transmittance for 'Visibility" measuremer~t. In the special 
case of an homogeneous atmosphere (0 and o constant) the lidar eqraiion may be simply sokeec! !for o = 
-dPnprR2 / 2 d R ) .  Simdarly, where the. optical parameters vary only in the vertical, a solu~ion ': possible from a seiies 
of two or more lidar obstrvatioc~ made at different angles of elevation. in either case, the degrce of homogeneity of 
the atmosphere n ~ a y  be apparent from the lidar observations themselves. 

EXAMPLES O F  LlDAR OBSERVATIONS OF ATMOSPHERIC CONDITlONS 

Observation and Evaiiiation of Particulate Content cf  Relatively Clear Air 

In this example, sequences of observations made with a neodymium lidar from an aircrzft were used to investigate 
the pariiculsie content in the atmospheric layer below 3 km over the sea in connection with ihe Barbados Oceanographic 
and Meteorologiial Experiment (BOMEX) in 1969 [L'the and Johnson, 19711 . 

Figure 1 3 cc~m?l~!.;:-drawii representation of lidar S values. These S values represent range-normalized signal 
returns in logarithmic fcim that are corrected for instrumentation transfer anomalies and any pulse-to-pulse lidal per- 
formance variations. Thcy t h . ~ s  evaluate in relative terms the atmospheric-dependent parameters of the lidar equ ;1 t '  ion: 
0 exp -210 d r .  Assuming that attenuation may be neglected, a i O X 3  km vertical cross section of relative volumc: 
concentration of particulate material is shown in absolute terms (fig. l(a)) and in the form of anomalous departures 
from a best-fit exponentiil distribution (fig. I(b)). 'Illis dramatically emphasizes the layer at 1.8 km altitude, which 
is interpreted as the stream of dust carried by  the NE trade winds to  the Caribbean area from the Sahara desert. The 
zsscrnprion that attenuation is negligible in such conditions and the relationship of the lidar data t o  absolute volume. 
concentrations were investigated with thc help of particle-size distlibutions from an independent rircraft sampling 
program. Using these data and Mie theory expected lidar signal returns kcre  computed: 'bese are shown for three 
occasions in figure 2. 

The dashed lines represent simulated relative lidar returns, ignoring the effect of atmospheric attenuation of the 
energy pulsz. The corresponding unbroken lines represent another set of simulated relative lidar returns obtained after 
taking into account the attenuation of the laser energy. A lidar altitude of 3 km is assumed. By comparing the dashed 
and solid profiles, which show only abollt 1 dB difference at  the surface for the two hazy days, it is s e ~ z  that the 
neglect of atmospheric attenuation does not significantly affect the return sip,:~al profile. Therefore, analysis o '  particu- 
late mass or volume concentration need not involve the assumptions required for rigid solution 0:' the lidar equation. 

The lidar system constant may be inferred by comparing the computed lidar returns with actual lidar retlirns. 
The relative signals from ibree lidar traces each recorded durinr, the aerosol sampling period are shawn in figuie 7, as 



FwE 1.- w n u f i o n  of Mu a b d  mow\ ruvctw, dur* BOMEX (M June 198.1551-1056 EDT, Run 
{ B ~ ~ V O  and X, me h a t a n s  in the erprirntnaluU) 

Th W t n n  of a h  o b n n t b n  i. Miat& bv vertial marks do- t k  top lins of the rrtion. 

ksvy SON l i n ~ .  The thee compted and t h e  oh.mc! ~ o f i l m  w m  first plotld an two rpntt p p h l  and the 
hori.ontd diwlacrment between these pphs was a d p d  for the best mnll 'it of computetl and obsrrrd dab. 
me vnluer r e p s e n t  the ob.r.rd l~dar signals in nlrtm logarithmic uaitr. 

Cmd ~grrmcnr CASE Eel-n computed and ohsewed relative lidv return ~ivd. in bolh daptod* and altitrde 
mrhtimr in&utcr that the lid., chmctektia imnrtant l o  the abloiul* acravl dmhtin could be in fern3 



from the lidar backscatter signatures, subject to errors 
due to nonlinear variations between particulate density 
and the volume backscatter coefficient. Figure 3 
presents a plot of the particulate volume concentration 
as a functior lidsr return signal. This graph is 
derived from Mie theory, with the abscissa determined 
from the best fit between lidar and particle count data. 
The scatter of the data polnts is inherent from Mie theory 
and is a result of insufficient averaging of irregularities 
between particle size and the particle backscatter cross 
sections [ m o m e y  and Howell, 19651. Nevertheless, 
these investigations show that useful quantitsttve infor- 
mation on the particulate content of the "clear" alr 
can readily be derived from lidar observations, and, 
given the density of the particulate phase, the aerosol 
mass concentration may be inferred. 

Measurement of Mass Concentration of a 
Smoke Piume 

In this exxzple the techn~que was used to infer 
the total partic~~ie:r mass per unit length of a plume 
from the smoke stack  fa large power plant [Johnson 
and Uthe, 19711, illustrating the evaluation o i  ruby 
lidar observations when it is necessary t o  account for 
attenuation of the laser energy within the target. 

Figure 2.- Dcrlvation of lidar calibration from particle count data. 
Actual lidar profiles are show11 as 11eavy lines while backscattar 
profiles evaluated from particle count data are shown as less 
heavy l i e s  extending to above 3.0 km. 

VOLUUC ..CIY..'I. C O ( F ' l L l r * I  . 10 ' .." ',,. ' 
The problem may be approached by solving a 0. o 5 

-T ' " I  differential equation in terms of S values derived from 
the lidar equation (1). Thus 

/ 

where Bouquer's law of attenuation, relating o to  
transmittance T ,  

has been assumed and o(R) is the volume extinction 
coefficient at a distance R along the path. The 
solution of Eq. (2) for particulate mass concentration 
along the laser beam path requires relat~ng the optical 
parameters o and 13 t o  the particulate mass concen- 
tration. For this purpose the ratio of  each optical 
parameter t o  the particulate mass concentration M 
(mau/volume) is defined as 

(4) o s L 1 i ~ ~ l l l l l + i ~ l i . l I 1  '0 u- I 
4.3 

Feure 3.- Lidu rcturn siinrl and volume backr;attcr 
coefficient related to part~nrlnte volums concertration. 



Substitution of Eq. (4) into the lidar differential equation (Eq. (2)) .~sults  in an expression relating mass concen- 
tration to the lidar n-r-::zed signal return. 

where &, has been considered not to vary with range. The validity .,i this assr~mption will be discussed later. This 
nonlinear equatiori mdy be solved by first employing the linearization transform 17 a M-' with the result 

where Cl = lj4.31. This solution principally assumes that 1) Fe and tb are inwrianx *ilk iii.;ge and the vah : 
of ke is L?lowrl or can be computed, add 2) a boundary or clear-air particulate mass caqcenttation Mo is known 
or can b,r? estisated. 

Micrsscopic analysis of the fly ash effluent from :Ilc smoke stack in question clearly showed that the particles 
were vostly glass spheres, apparently formed from the mlnersi content o i  the coal by the intense heat of the com- 
bustion process; hence, the use of Mie theory in deririne estimates of Ee and Sb is justified. To a high degree of 
accuracy, the volume extinction coefficient at the lidsr wavelength of 1.06p may be considered to be essentially 
dependent only Sit the atmospheric particrllate matter, and the [ values may be expressed as: 

where 

particle radius 

extinction efficiency factor 

backscatter efficiency factor 

size parameter = 2nalX 
r~f:active index of particles 

wavelength of the laser energy 

number of particles per unit volume unit radius interval 

density of the particulate matter 



To be wcise, the pameten  4 and f b  defined by Eqs. (7) and (8) are exactly equivalent with tho* defined by 
Eq. (4) only when multiple mrtering effects art absent. This is a good assumption because of the nar:ow field of view 
of the lidar system ( < I  mrad). 

The efficiency factors may 'lse computed from Mie theory fur a given particulate matter refractive index. the real 
part of which in thls a* was estimated to have a value of approximately 1.5, based on the known mineral composition 
of coal, The requirement that & and tb be independent of range is satisfxd when the relative particle-size distribu- 
rion is invariant wlth range; that is, when 

where CZR) is the number concentration and nr(a)is the relative site distribution. Also, with thisassumption only 
the ~!ar ive particle nxe &sttibution is required to evaluate the F values. Howewer, +(a )  i s  rarely complctcly indtpm- 
dent of range, and the question may k asked as tto how smll  changes in the relative size distribution are refle:ted in 
the f values. She the 4 valws are t x p r e d  in terms of integrals over the range of particle sizes, monodisptrst 
(single-size) prricles r t p m n t  the worst case in terms of 6 variations with changes in the particle size. Mie computations 
of & and Cb m presented in figure 4 for the caPe of morrodisperoc pr t ides  consisting of material with a density of 
2.1 dcm3 (as measured for the fly ash in question) and a refrac:ive index of m=1.510 for incident radiation of wave- 
Img t h I .Wp . 

As shown. dight vanst ions in particle sizt  xn muse WO#~~IWERSL PARTIELCS 

large variations in Fb and smaller but significant variations REFRKTLVC 1III)En . 1- 
DENSII 2 1 y r m  

in . A real aerosol. however. contains particles of many ~ ~ A v E L I N G I V  - 106 . 
sites. so the variations in the 5 curves tend ta be smoothed 
out when a weighted inttgml for BU sizes present IS corn- 
puted. Relative partide-sizt distribution data indepndmt!~ "E 

C . obtained by sampling from an aircraft were made available 
I 10 us, along v ~ t h  information about m p l i n ~  volumes and 
r' tots! particle counts. Some of sers of data were r t -  

duced to absolutt size didributionr, ta  which a Junge-type ," 
t model was fitted ( h t  is, of ttte form n = where :: 

.ao and 7 are fitted constants, and n and a are as defined { 
C mlier). Howmr,  there is  m e  u n m r h g  about the 2 

accuracy of the ntnplL!g iu ium n l v s  u d  to compute the $ 
4 

absolute dutributions, &nee direct conversiun of some of the I 

cltarair mtaswernmts to ma= cancentrations gave unmalisr 
tically high values (Mo > 1OOO pglm') of concentration ui 

thc clear air upwind of the stack. Sina the rclstivt sitc 
di~tributfons are sufficient far we with the Iidar data and 
also are felt to be more accurate, they have bcen used ex- 1 

dusi ly  in our analyses. The enluation of the solution 
prameters & and f b  fmm these particulate data (24 
mmples taken on severs1 da ya a t  various times and at various 

F@re 4.- O p k I  c r w  sctbnr pm unit maw a3 m fundion of 
positions within the plum) gave values ranging from 0.2 to wick lize mmpnted from  it theory for RY uh. 
1.0 m'lg and from 0.014 to 0.064 m' fghu, respectireiy. 
The corresponding overall mans were 055 m21g and 0.039 m' Ig-sr. 

A.-. . - 
The lIdrr obmmtians and prtble mmpllng of the plume were ~IGS? eoordhted for m m  wction 64, om of the 

wries of mtid mtions made t hou@ the plume by -fining the lidar in elmtion. This crm section WM orimttd 
1 

approximately cross wind, md thi case wrs chom to apply the mus concentration solution dimmed previously. t 

The boundary parrmter Mq W ~ J  t iktn from an erEIrmfe af vimlility (7 to 10 miles), which g h  Mi, 100 &m3, 
using the relationship of NolI et af. 11 4581 . Computation of i& with the mid of the prticle4ze mcnurernents go= 

1 

r value of 0.25 m'ig. 1 

'1 _. . 
1 .  

2-37 
. LI 

4 
I 

i 
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korr Srcm No. 64 i --22m. 

I Ibl WITH ATTENUATION CORRECTION 
I i 

Figure 5. - Udu oblsnrtiona of plume crou section 64 
in relative lguithmic units 
(a) Without attenuation correction 
(b) W~th attenuation correction 
(c) Attenuation correction 

With this information, the lidai S function cross 
section (fig. S(a)) was converted by using Eq. (6) to 
an attenuation-corrected cross section of absolute mass 
concentration (fig. S(b)). Figure S(c) reprcscnts the 
results of the graphical subtraction of (b) from (a), and 
thus shows contours of mass concentration (in logarithmic 
units) added to the further side of the plume by the atten- 
uation correction. It rr.~;, be noted that the maximum 
correctior~ is 9 dB, which means that the mass concentra- 
tion in that region of the uncorrected cross section in 
figure 5 i ~ )  was almost 10 times too low. Although the 
at!cmatio:; correction docs change concentrations 
signii;;m!iy in one part of the cross section, the general 
shape and structure of the pluine remain the same. 

A planimeter was used to integrate the total inass 
per unit plume length represented by the cross sections 
in figure S(a) and S(b). The results were as follows: 
uncorrected cros! zction 5(a), 350 glm; corrected 5(b), 
680 g/m. The attenuation correction thus was siglllficant 
in terms of the mass content. These values were compared 
with an estimate of the particulate emission rate from 
the stack. Using observed data on plant operation and 
standard conversion techniques gave a plume lengthwise 
mass content of 875 g/m, compared with the 680 glm 
measured by the lidar after allowance for attenuation. 
Although further evidence will be neccs&ry from other 
comparisons, the close agreement of this initial example 
does indicate that the lidar technique may be capable of 
useful quantitative measurements of mass concentration. 

CONCLUSIONS AND OUTLOOK 
FOR THE FUTURE 

The lidar technique is a unique method of observing 
atmospheric structure and opens up new ways of deriving intelli~ence of atmospheric conditions and processes. This 
intelligence can be a vital input into many operational activities in meteorology and atmospheric physics such as aviation 
and air pollution, to Eame but two obviously important areas. In research, the value of lidar is no less great. Even with 
the relatively modest equip~nent used to date, lidar has provided a new insight into a number of atmospheric phenomena 
and revealed shortcorninp in our current understanding of certain processes (for example, in turbu1er.t diffusion from 
hi& smoke stacks). 

In certain applications its role will be to make qurmdtntive obsemtior~s of atmosphe:ic characteristics. 111 some 
cases, huwever, it may well be that the difficulties of reducing and interpreting the observation in absolute terms will 
limit the u r  of lidar to semiquufitative observations. The remote detection and mapping of structcrral features of the 
atmosphere by nferencc to nhffue variations in iU optical chuacteristics is a most valuable ~ p ~ b i l i t y ,  however, with 
obvious utility in many u e u  of atmospheric research and operational meteorology. 



DISCUSSION 

hidentif id Speuker: Have you evaluated the role of multiple scattering in your signal? 

Uthe: Yes. Multiple scattering normally plays very little role in lidar scattering because we are usrllg milliradian 
beamwidths and receiver field-of-views. The only important multiple-scattering effect is the energy scattered 
back into the forward directed beam, and this can be accounted for by using the aerosal forward-scattering 
coefficient. 



ACTlVE ATMOSPHERIC SOUNDING 
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3. RADIC;-OCCULTATION MEASUREMENTS 

This chapter which treats botn active atmospheric and ionospheric sounding, forms a bridge between Chapters 
2 and 4. Thif science is concerned with ground bsed  observations of coherert radio transmissions as they traverse, 
and thus are dispersed by, tne atmosphere and ionosphere of a planet. Information concerning these gases is obtained 
just before and just after the satellite-borne transmiitenarthbased receiver transmission path is occulted by the 
phnet -that is, near immersion and emersion of the atellite. 

The radio-occultation data are inverted to yield profiles of the refractive index, which with appropriate assump- 
tions yield profiles of temperature, pressure, density, and electron density. Invrsion algorithms have been developed 
specifica1:y for this problem; inversion algorithms developed by seismologists are also beirig used. These metihods 
are described and compared in this chapter and in parts of Chapter 7. The subject of stellar (noncoherent) occultation, 
which has been used by astronomers to infer the presence and character of rlanetary and satellite atmospheres, is not 
specifically discussed in this volume but is obviously related to the presr-.t subject. 

M. D. Grossi organized and chaired the session devoted to radio-occultation measurements. 



CURRENT METHODS OF RADIO OCCULTATION 

DATA INVERSION* 

Jet P r ~ p u l s i o n  Labora tory  
California Institute o f  Technology  

Pasadena, Cal ifornia  

ABSTRACT 

The methods of Abel Integral transform and ray-tracmg inversion have been appl~ed to datz received from 
radio occultation experiments as a means of obtaining refractive ~ n d e x  profiles of the ionospheres and atmospheres 
of Mars and Venus. In the case of Mars, certain simplifications are introduced by the assumption of small refractive 
bending in the atmosphere. General inversion methods, independent of the thin atmosphere approximation, have 
been used t # ~  invert the data obtained from the radio occultation of  Mariner 5 by Venus; similar me!hods will be 
used t o  analyze data obtained from Jupiter with Pioneers F and C, as well as from the other outer planets in the 
Outer Planet Grand Tour missions 

INTRODUCTION 

Since 1965 the method of radio occultation has been used t o  study (lie atmospheres of Mars and Venus. The 
Mariner 4 spacecraft was used t o  obtain information on the atmosphere of Mars in 1965 [Kliore n1. ,, 1967; Kliore 
et al., 1968; Fjeldbn and Eshleman, 19681. In 1067, the Mariner 5 spacecraft flew past Venut and performed both 
an uplink dual-frequency and a downlink S band occultation experiment [Kliore et al., 1967; Mariner Stanford Group, 
1967; Fjeldbo and Eshleman, 1969; Kliore et al., 1969; Fjeldbo et al., 197 1) . In 1969, two more Mariner spacecraft flew 
by Mars and again S band downlink radio occultation experiments were perfgrmed [Kliore et al., 1969; 1970 a,b; 
Fjeldbo et cl., 19701. Similar experiments will be carried out with the Mariner Mars 1971 Orbiter, the Pioneer F & G 
fly by missions t o  Jupiter, the Mariner Venus-Mercury tly by, and probably all future Planetary missions, i icluding 
the Outer Planet Missions. 

The analysis and interpretation of the data collected In the radlo occt~ltaticn experiments were carried out on 
the basis of theoretical foundations established earlier [Fjeldbo, 1964; Fjeldbo and Eshlemgn, 1965; Fjeldbo et al., 
1965; KIfore er al., 19651 . The analysis primarily involved the applications of n?!;m1 rav-tracing methods under the 
aw~mpt ion  of spherically symmetrical refractive index distributions. In the case of Mars, an additional simplification 
accrued from the very small refractive bending produced by a thin atmosphere. The basic methods that are presented here 
have been used in the pus: to obtain index of refraction profiles from observed phase and frequency data. In addition, 
some future applications of these methods are briefly discussed. 

RADIO OCCULTATION OBSERVABLES 

The quantities observed on earth during a radio occultation experiment are the frequency and amplitude of the 
nucrowave radio signal received at a ground station. The amplitude information is important in determining the exact 
times cf loss and reacquisition of the signal, and it can be used t o  obtain refractive index or absorption profiles. 
However,  he frequency of the signal forms the basic data used t o  obtain the radial distribution of refractive mdex. 
Since the observed frequency includes the effects of spacecraft motion, rotation of the earth, and so forth, it is 

*This paper represents the results of one phase of research carried out at the Jet Propulsion Laboratwy. California 
Institute of Technology, under NASA contract NAS7-100. 



not immediately suitable for use in analysis. To obtain the frequency change due only to the effects of the planetary 
atmosphere, the predicted frequency, based on an estimate of the spacecraft orbit, is subtracted from the observed. 
This is the so-called "frequency residual," which is nothing more than the time rate of change of the total phase 
change caused by delay and refractive bending in a planetary atmosphere. Thus, in simplest terms, the inverslo~i 
problem in the reduction of occultation data is simply this: How does one obtain a profile of refractivity as a 
function of radial distance in the planetary atmosphere from data consisting of the time rate of change of the 
observed total ph ise change as a function cf time? 

To obtain an understanding of the relationship of the observed phiix change to the index of refraction, it is of 
interest to exsrnine first the relationship of the phase path and refractive bending angle to a refract~:le index profile. 
Referring to figure I ,  the arigle of incidence i is related to the ray-path coordinaics r and # by: 

tan i = rd#/dr  ( 1 )  

From Bouger's rule, which applies to spherically strztified index of refraction distributions, one can express 
the ray asymptote distance a in terms of the index of refraction n and the angle of ~ncidence i :  

a = nr sin i (2) 

rrom figure 1 ,  it is aoparent that 

By differentiating Eq. (1). one m y  obtain an expression 
for the differential d i  as follows: 

Figure 1.- Ray path geometry. 

Similarly by combining Eqs. (1) and (2).  one obtains an expression $or the differential d4 

From Eqs. (4) and (5). tht expression for d$ can be obtained as 

. . ~  
The total bending angle a is then twice the integral of dJ, dong the ray path as r goes from ro to infinity: 



' h e  phase path length p along the ray path can be dirived as follows. A element of phase path dp is given by 

dp = c dr (8) 

where c is the speed ot !ight in free space and d r  s the differential time of propagation along the ray path element 
ds . Thus, dp csn be expressed as: 

ds 
d p = c - - = n d s  

v (9) 

With reference to figure 1, it is obvious that 

ds = [dr2 +r2d$2] l" (10) 

Combining Eqs. (10) and (9, one obtains 

n r  .lr 
ds = [(nr)2-a2 ] 

Then, the total phase path length along the ray path, which is equivalent to the apparent distance traveled In free 
space (taking into account, however, the actual velocity of propagation in the medium, as well as the curvaiuie Giic !c 
refraction), is given by twice the integral of dp from ro to infinity: 

= 2 l - n  ds = 2 1 m  n2r  dr  
[(vr)' -a2] 'I2 

(12) 

When the frequency res;tiualot)served during a radio occultation experiment is integrated from the time of onset 
of the atmospheric phenomena to th t time of interest, the result is the total observed phase change as a function of 
time: 

t 
+ ( t )  =I 'If(?) d r  (13) 

to 

The relationship of this phasr: change to the refraction phenomena in a spherically stratified atmosphere can be 
explained with the help of the diagram in fgure 2. The circular arc of the radius rm represents the limit of the sensible 
atmosphere. The value of rm is arttitary, the only restriction being that the index of refraction for r > tm be equal 
to unity. The phase path change observed at the earth 1s the difference between the propagation phase path SA'AE 
and the direct path to the earth SB'BE. This phase path change for a one-way propagation through the atmosphere 
can be represented in terms of the ray asymptote distance a ,  the refiactive bending angle a ,  and the propagation 
phase path length p as follows: 

1 *a) = - [ p m ( a )  + ( R ~ - J ~ ) ~ " ( ~ - C O S  a(a).- 2(rm2-a2)'12 -a sin a(a)]  
h (14) 

where R is the distance from the spcecraft to the center of the planet, pm is 

'm n 2 r d r  
pm(a) ' / M,,~)' ] "2 

ro 
and A is the free space wavelength, or the ratio at the speed oi li&t c to the rrequency f 
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INVERSION PROCEDURE 

To convert the phase obstrvable as a function of time into a quantity suitable for inversion, the trajectory, or 
ephemeris, of the spacecraft must be brought into play. For each time ti for which the values of Af and cP are 
available, the spacecraft ephemeris provides a position vector relati-re to the receiving station on the earth, a position 
vector relative to the center of the planet, and a velocity vector : -:*!ive to the center of the planet. The component 
of the planet-centered spacecraft velocity in the direction of the earth, one light propagation interval after the time 
t i ,  is given by 

where v is +e planet-centered velacity in the plane containing the spacecraft and the centers of the earth and the 
planet, and E is the unit vector in the direction of the earth one light propagation time after the time ii . The* 
Doppler frequency that one would expect to see at the earth if propagation were KO take place in the direction E 
is 

And the angle llE between :he velocity vector v and the vector in the direction of the earth, is given by 
(see figure 2) 

GE = CO"' 1v 1 (18) 

However, the angle measured between the velocity 
vector of the spacecraft and the actual direction of 
the ray that ultimately arrives at the earth af.er 
undergoing refraction in the planetary atmosphere, "E 

is given by [Phinney and Anderson, 19681. Figure 2.- Geometry for the computation of phase change. 

where Af is the observed frequency residual. T te  refractive bending angle a is then given by 

hi the same time, it can be seen from figure 2 that the ray asymptote distance a can be obtained by 

where f l  = a  + EPT, and EFT = the angle subtended by the earth and the center of the planet at the spacecraft. 

Now one has both the value of the refractive bending an& a and the ray asymptote distance a for every input 
data point - or in effect, the refractive bending angle as a function of the ray asymptote distance. Furthermore, one 
can now relate the observed total phase change @ to the appropiate value of the ray asymptote distance a , and 



hence one has @ as a function of a . It is a very simple matter to also obtc:n the expression for the phase path change 
in the atmosphere pm. From Eq. (14). it follows that 

p-(a) = ~@(a)-(R~-td' )' l a [  I-cos a(o)] t 2(rm2-0')' la t a sin a(a) (22) 

Thus, one now has computed the values of the refractive bending angle a and the phase path p as functions of 
the ray asymptote distance a . 

Thin Atmosphere Approximation 

In a thin atmosphere, such as that of Mars, the refractive bending angle is very small, and in that case Eq. (19) can 
be written as follows: 

cos II = c o s l E t A ~ f  
IVl 

But since J, = J/ t a, and ol is very small 

where rN is the velocity of the spacecraft in the plane of the spaxcrzft, earth and planet centers, and normal to the 
direction o i  the earth. Similarly, the equation for the ray asymptote distance a becomes 

The expression for the total phase change can then be written as 

Now note that the path of integration A' to A in figure 2 becomes a straight Line for a thin atmosphere, such 
that 

M I  I AO+OA' t z ( ~ ~ ~  -aa)"2+aa = 2 / '"dr (27) 
ro 

Hence, Eq. (26) can be expressed as 



where 

Also, since in a thin atmosphere the refractive index n is very nearly equal to 1 ,  the quanity p1 can be expressed 
as 

Now, introducing the transformation of variables 

The integral ur Eq. (30) a n  be expretced as 

This expression b now in a form Nitable to inversion by mans of the Abel integral transform [Hamel, 19371, which 
states that if 

then 

Applying the transform tc; Eq. (32), one obtain*: 



Now perforrr~ir~p tile change of var~ables 

and perform~ng the differentiatlor. with respect to  r ,  the following result is finally obtained: 

The expression in Eq. (38) was used to produce tht refractivity profiles from the radio occultation data obta~ned with 
the Mariner 6 and Mariner 7 spacecraft in 1969. The original data, as well as some of the intermediate products of the 
Mariner 6 data reduction, are shown in figures 3.4. and 5; the resulting refractivity profile in figure 6 .  The residuai fre- 
qucncy change Af for a two-way passage thrcugh the atmosphere and ionosphere of Mars is shown in figure 3. The 
rota1 phase change 4 is shown as a function of time in figure 4. Figure 5 shows the corrected phase path change in 
the atmosphere of Mars (in km) for a one-way passa:ge as the function of the ray asymptote distance a .  The same 
bas~c inversion method will be used to analyze the uata obtained from the Mariner Mars 1971 orbiter. 

An Inversion procedure mak~ng use of the t h ~ n  atmosphere approximation and an assurnpt~on of a spher~cally 
stratlf~ed atmosphere divided illto a finite number K of concenttic laycrs was used by Fjeldbo and Eshlem~n [ l9h8]  
to invert the occultation data obtained from the Mariner 4 spacecraft In 1965. Referring to figure 7 ,  Eq. (30) can be 
expressed as follows 

Where p l ( m )  denotes the phzse path change fn. the mth ray, and N(m) is the refractivity in the mth layer 
The eleme~,t Az(m,n) is the lengtit of the portion of tlic mth ray that 11es in the nth layer (flgure 7). The tslo- 
d~niensiona! element Az is related to  the rad~i  of the atmospheric layers by 



Figdre 3.- Frequency reridrulr Af from Muincr 6 entry data. Fig'uc 4.- Total p b v  change, Muiner 6 entry. 
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Fbure 6.- Refractivity pro& obtained by integral inversion, 
Muiw 6 enuy . 



Eq. (39) can be repetivitely solved for N , yielding the following procedure: 

The procedure (41) prov~des the refractivity of the mth layer as a function sf (he radius of the layer; figure 8 
sllows the refractivity profiles obtained from Mariner 4 r3dio cccu l ta t i c~  measurement [kpldbo and Eshleman, 
19681 by means of this method. 

The simplified inversion pr-edures making use of the thin atmosphere approximations a;e appl~cable to the 
analysis of data obtained frnin Mars. However, for p!ant!s ssch as Ver~us and Jup~ter ,  which have derlse atmospheres, 

and in which refract~ve bending is quite considerable 
(approximately 17" near the super-refractive level on 
Venus), more general methods of laversron must be used. 

General Methods 
I 

I 

THE rnth RAY 

Fuun 7.- Cross section of rtmorphcrc consisting of K 
spherical hycrr IFrom: Fjcldba and Eihlcmon. 1968 1 .  

It has been shown how the refrnctive bending angle 
a and the phase path c h a n ~ e  p, can be obtained as functions 
of the ray asymptose distance a from the observed fre- 
quency residual Af and the ephemeris of the spacecraft. 
Both a and p ,  , as well as a nurnber of other related 
quan!ities, can be inver!~d !n ohlain the rtfractive index 
profile by means of the Abel ~ntegral transform. Let us 
first consider ihe inversion of the refract~ve bend~ng 
angle a . 

REFRACTIVITY (N) 

Feure 8.- MIJiner 4 refractivity profiks 
[From: F/eldbo and Erhlemn. 1968) .  



In a method described by Fkfdbo er d.[1971), Eq. (7) is first t r a n s f o n d  by repking the product nr by 
a variable of integration x : 

00 
dn dx 

a(a) = -% - 
ndx (xz -a2)le 

Now ietting a, denote the ray asymptote distance for a closest approach distance rol .we multiply both sides 
of Fq. f42) by the quantity (a' -al z)l'z and integnte with respect to a from a, to infmity. This yieldt. 

The tern1 on the left-hand side can be integrated by parts. resulting in .- 

which is an expression for the refractive index at the closest approach radius of the ray rol given by 

m e  ~hasce p t h  change pm can be inverted in a similar manner [Wnncy mui Anderson, 19681 . Again letting 
x = nr . Eq. (1 5 )  Cecoms: 

Now, performing the substitution of variables: 

One obtains the following expression for p . 

Again making use of the Abel integral transform [Eqs. (33) and (%)I one has: 



or, reverting to the original variables x and a. 

It can be shown [Phinnev and Anderson. 1968) that this expression ultimately yields 

and finally, the index of refraction as a function ot r (the closest approach distance of the ray) can be obtained 
by 

We have seen that both the refractive bending angle a and the phase pa:h change p, can be inverted t:) yield 
the refractive index n as a function of the closest approach distanct of the ray r by means of the Abel integral 
transform, under the assumption of a sphericallv symmetrical index of refraction prof!le. 

Ray-tracing inversion may also be used to obtain t!:- index of refraction profile from diita consisting of the 
refractive bending angle as a function of ray asymptote distance [F'jeldbo, et aL, 197 I] . 

Figure 9 shows the geometry for a ray that is being re- 
frhcted in an ionosphere consisting of K concentric layers. 
If r,,? and fim are the radius arrd the indcx of refractwn 
respectively, for the rnth layer, then the radius of closest 
approach ram of the mth ray is given by 

1 
ram = - (rm+rm+l) (53) 

2 

If im,k is the angle of incidence and, im,k is the 
angle of refraction at each boundary, then the law 
of sines and Snell's law applied at the first boundary 
gives the following equations for the mth ray: 

am = r, sin im,1 <54) 

sin im, 1 = n sin jm, (55) 

F i g u ~  9.- Refraction of ray path by concentric spherial 
layers - index uf reftaction increasing with height 
[Frcm: Fjeldbo. Kliore. and Eshlemnn. 197 11. 



where am = ray asymptote distance for the mth ray 

= total angle through which the rnth ray is bent by the atmosphere 

Jim, I = the angle which the mth ray must be bent beforb it is traced from the first layer to the closest 
approach ~ o i n t .  

Generalizing to the kth boundary gives 

rk-l sin jm,k-l = rk sin i m,k (57) 

nkql sin imPk = nk sin jm,k (58 )  

The data giving a as a function of a , and the equations given above may be used to determine the refractive 
index n as a iunction of r for each layer. For a ray passing above the atmosphere, the bending angle is Lera and tlie 
radius of closest approach is equal to  the asvmptotc distance. For this layer, then, 

where a,, and a-1 denote the asymptote distances for the rays that pass immediately above the first atrospheric 
layer. Then from Eq. (51)  the radius of the first layer is: 

Setting m equal to 1 and Jll,o equal to a1/2 in the ray equations, we can calculate the refractive index for the 
first layer: 

I'la radius of closest approach for the first ray rol is given by 

Again applying &. (53) w;th m = 1 , we can determine ihe radius of the second layer r2 .  Continuing these computa- ---... . 

tions for the remaining rays, the entire refractive index profile of the atmosphere is obtained. For instance, the radius 
rm and tht refractive index nm of the rnth layer are determined from the (m-1)st and the m~ ray, respectively. 
The general expressions are of the form 



rm-i sin jm,m-I 
nm = nm-1 

rm sin1 9m,m-1 + sin-' [(rm-l/rm) sin im,m-l]t 

Figure 10.- Refractive bending angle versus the altitude at the ray 
asymptote for Mariner S entry, computed from 423.3 MHz 
amplitude data [From: Fjeldbo, Kliore and Edrlemon, 19? 1 1. 

With ihe introduction of additional mathematical complexity, the ray-tracing inversion method can be generalized 
to include cases in which the refractive index is allowed to change in both vertical and horizontal directions. However, 
when only a single occultation is observed, the horizontal changes must be specified before the data can be utilized to 
determine the vertical refractive index profue. 

AMPLITUDE DATA 
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. . Amplitude data collecied during a planetary occulta- 
NWNR ms~n em-J1 1mc41 tion also contain other valuable information. If the fre- 

lo1' lo1' 1.'' lo1' 1ca0 
61%- - am quency is low enough that absorption effects can be 

neglected, the amplitude data can be assumed to contain 

Y I O R S I I  . rr information only about refractive defocusing and a pro- 
cedure exists to deduce the ray bending angle a and the 
ray asymptote parameter a .  Fjeldbo et al., [I9711 have . Y 
shown that starting with rays that graze the top cf the 
atmosphere, the amplitude measurements can be used 

- 4 5  
B 

point by point to solve for the differential change in the 
angle of refraction Aa with decreasing ray asymptote 

.us altitude. Integrating Pa yields a as a function of a .  
Figure 10 shows an example of a refractive bending angle 

' Y  profile obtained in this manner from the Mariner 5 Venus 
423.3 MHz amplitude dak.  

m u .  *a 

On the other hand, when measurements are made 
I l ~ c  - 30 at a frequency at which absorption effects in a planetary 

o I I 10 to' 10' rr' 
m1YlIvln &I 

atmosphere are apparent, the amplitude data e n  be used 
in 2 ron>mction with the results of the previous section 

F @ ~ ~ ~  1 : -- Refativity n u m b  Genrity for Mprina  to cornputt a profile of the absorption coefficient in the 
5 er c y [From: Fkldbo, K l h  and Edrlemon, 1971 1. atmosphere. 
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- side data is shown in figure 1 1. 
5 - f Mathematical techniques similar to those outlined 

f for the inversion of radio occultation data from planets 
having dense atmospheres, already applied to Venus 

M 
occultation data, will be used in the future to 
analyze the data obtained at Venus during the Venus- 

SO Mercury 1973 mission, and from Jupiter during the 
Pioneer F and G missions, as wc!l as the Outer Flanet 
Grand Tour Missions which are planned for the latter 

.w part of this decade and the 1980's. 
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Fjeldbo has applied the rajr-tracing inversion method 
w to analyze the data from the occultation of Mariner 5 by 

Venus [Fjeldbo, er al., 197 11 . The refractivity profile 

m resulting from the inversion of the Mariner 5 Verlus night- 



It can be shown from the geometry of figure 2 that the attenuation due to defocusink in the planetary atmosphere 
(in dB) ;s given by 

where 

The refractive bending angle a as a function of a is available from the techniques described in the first section. 
Since the observed total attenuation AT is available as a function of time, it can be expressed as a function of the 
ray asymptote distance a  by comparison of the computed value of a  to the time of receipt of the freqrlency data. 
Thus the excess attenuation, or loss AE, is simply the difference between the total observed attenuation AT and 
the computed defocusing attenuation A N .  Now, the excess attenuation due to absorption along the ray path can 
be described as follows: 

AE(a)  = (10 log,, e) r ( a )  

where o ( r )  is the absorption coefficient. 

By means of ray-tracing inversion discussed in the previous section, the quantity r for the mth ray having a 
closest approach radius of ram (fig. 9) can be expressed as 

where 

and 

Thus, starting with layer o in which no = 1 



In the first layer 

Finally, generalizing to the mth ray, 

The quantities rok, jm,k and im,k+l are computed at each step from Eqs. (57), (58), (59). (63), and (64). 

A similar method has been used by Fkldbo, et al. 119711 for computing the absorption coefficient in ;he lower 
atmosphere of Venus using the Mariner 5 S band attenuation data. It is expected \hat an application of similar methods 
to the S band data derived from the Pioneer F and C Jupiter missions will yield profiles of ammonia abundance in those 
portions of the Jovian atmosphere probed by the Pioneer radio occultrtion experiment. 



DISCUSSION 

Arker: If there is significant absorption in the atmosphere, the dispersion relations will imply phase distortions. 
Doesn't this affect your refractive index profile? 

Kliore: Yes. It would actuallly affect the temperature and pressure profiles. 

Pbrker: If there is significant absorption, the phase distortion is due to two effects: pure refraction and a 
dispersion relationship. 

Kliore: That is true. 1 don't know the magnitude of the effect, but it will show up m the profile and the profile 
will be difficult to interpret. 

Bojarski: If you have absorption and phase data shouldn't you combine them and pose the inverse problem for 
a complex index of refraction? 

Kliore: That would be difficult since amplitude data include effects of defocusing and ahscrption. 

Reinisch: When you calculated the phase path change you took the difference between the refracted and vacuum 
paths forming the difference under the integral sign. You should take the difference between two integrals. 

Kliore: There is only a notation mistake. We do what you suggest. 

Unidentified Speaker: You have described two inversion methods - the Abel transform and the Shell method. 
Hzve you compared these? 

Kliore: They are quite similar. Each data point is treated as the origin of every shell. 

Unidenhfied Speaker: What is relative importance of defocusing and absorption? 

Kliore: ?'ems is our only source of data. DeI'ocusing predominates. There is no appreciable absorption down 
to where the defocusing distortion is about 30 dB. This continues until the sum o i  the two is about 45 dB. 
The maximum amount of absorption is about 6 dB. 

Whittert: We looked at the effect of ionospheric absorption. At your frequencies, the effect is neghgible. 

Kliore: We have not specifically looked at that. Perhaps it would be important at Jupiter. 

Rodgers: Do you have a well-conditioned linear pioblem, and can you get out as many independent points as 
you measure? 

Kliore: Yes. The problem is solving a first-order linear differentid equation. The discrete method is essentially 
a matrix inversion. The noise problem is manageable. 

Unidentified Speaker: In fact, can it be written just as the inversion of an upper triangular rnatnx? 

Kliore: Yes. 



ERRORS INCURRED IN PROFILE RECONSTRUCTION AND 

METHODS FOR INCREASING INVERSION ACCURACIES FOR 

OCtXJLTATION TYPE MEASUREMENTS 

S. H. &OSS and J .  A. Pirraglia 

Polytechnic Institute of Brooklyn 

The at~nosphere and ionsptiere of a planet varies with latitude. longitude. altitude. and time. The occultation 
experiment scans the medium roughly along the locus of nearest points cbf the ray. The present method of measuring 
and inverting the data is satisfactory if this locus is along a vertical. a condition that is closely approximated when 
the motion of the spacecraft about the planet is in or close to the ecliptic. When inclined to the ecliptic (as for example. 
an orbiter. to take advantage of progression or retrogression of the orbit). the resulting profiles are considerably in error 
with respect to the vertical profiles over the occultation points. Even along the locus of nearest points. significant errors 
occur about and below the peak of the ionosphere. The resulting profile along the slant locus is difficult to interpret in 
terms of the physical thr ories of atmospheres or ionospheres. Proper interpretation requires the components of :he 
gradient with radius and angles. 

A method for augumenting the occultation experiment is described for slightly refractive media. Thls method. 
which permits separation of the components of the gradient of refractivity. appears applicable to most of the planets 
for a major portion of their atmospheres and ionospheres. The analytic theory is given. an2 the results of numerical 
tests with a radially and angularly varying model of an ionosphere are discussed. 

INTRODUCTION 

As Mariners 4 through 7 moved behind the planets Venus and Mars. they provided information on the vert;-dl 
distribution of ionization and neutral gases above points of occultation [Fjeldbo atld Eshleman, 1968; Kliore et d.. 
1965. 1967. 1969). The vehicles moved in planes close to the ecliptic, and as shown by A'rraglia and Gross [1970]. 
radial profiles should be expec!ed for such patl~s. 

Actual atmospheres and ionospheres vary with latitude and longitude, the time of the planet's day. and altitude 
or radius. Therefore. more complete comprehension of the physics and properties of the media requires information 
on the variatio~~s with all positional coordinates and time. If attempts are made !o obtain such data from spacecrafts 
in c5i ts  inclined to the ecliptic. using progression or retrogression of the orbital planes to advance or retard the points 
uf occoltatinn. then. as shown by A'rraglia and Grqss (19701, the presently constituted experiment yields results 
cor.,iderably in err-r if interpreted as vertical profiles over the occultation points. At best, the result; represent a 
somewhat in,iccurdte measurement of the refractivity profile along a slanted locus of nearest points to the planet of 
rays between the ,~bsewation point on Earth and the spacecraft. The greater tne inclination of the orbit and the 
angular variation of the medium. the greater is the error The effects of angular dependence e n w  because the radio- 
tion is scanning the medium in angle as well as radius as a result of the spacecraft's inclined trajectory. 

Even if refrac'rvity i.~for~nation along a slant path is considered adequate and sufficiently accurate. it is presently 
of lilnited use because most theoretical work on atmospherrs dnd iorlospheres has been cor.centrated on thc :aturr 
and interprctatiofi of vertical profiles. Adequate theor*! would be needed for ,omprelrenEinp and interpreting combined 
verticrl z-.G hor;zonl4 v,lriations. Difficulties could be encountered with specid situations, s ! ~ h  as w5en the slant locus 



lies tingent to surfaces of constant refractivity. Since the medium is not stationary in time, these problems are not 
alleviated by the accumulation of data front numerous occultations of an orbiter in slightly different regions. 

The effect of angular variation of refractivity on the occultation experiment depends on the ratio of the planet's 
radius to the scale height. The larger this ratio. the less important is the contribution of latitudinal and longitudinal 
gradients on the measurement. This is because the angular scan of the nearest point locus is smaller. Since the lower 
neutral atmosphere usually has a scale height that is much smaller than ionospheric scale heights, it is expected that 
difficulties will be greater for ionospheres. If angular gradients in the neutral atmosphere are greater in the ratio of 
the scale heights of the two regions of the medium surrounding a planet, then the difficulties will be comparable. Deep 
neutral atmospheres. such as for Venus and very likely for Jupiter and Saturn, produce large refractive effects that cause 
considerable bending of the rays, and may cause skewing and torsion. The locus of nearest points may be considerably 
distorted and extend the angular scan of the medium. 

It ic desirable to measure the radial and angular components of the gradients of refractivity. These covponents. 
measured for each point along the locus of nearest points. would at least permit some reconstruction of tht profile 
along radial or vertical lines at various places along the locus A complete reconstruction would require the determina- 
tion of higher order derivatives as well. Althougt in principle these derivatives are measurable, they would be exceed- 
ingly difficult to determine in practice. Thus. only first-order partial derivatives may be sought, and reconstruction is 
reaso~iable only to the extent that expansion to first-order terms is acceptable. In this sense, the medium would be 
best if it were slowly varying with angular coordinates. Rapid changes with angle of heights of separate distinct layers 
would cause difficulties. At worst, knowledge of the components of the gradients would be useful by itself for more 
complete theoretical treatment of the likely physical processes controllir~g the regions. 

Here we present a method for measuring both radial and angular gradients by means o i  a modified occultation 
experiment. The method utilizes simultaneous scatin of the medium along slightly different loci. It has only been 
applied to :,lightly refractive media. Some of the ideas may be applicable to highly refractive regions, but such cases 
require further study. One must utilize dispersinr. fci~ scanning on slightly different loci. For an ionosphere. frequency 
dispersion is readily availah!:. For rleutral media, such dispersion is only possible at millimetric waves where the 
experiment would suffer from absorption. To avoid severely attenuated signals much lower frequencrcs niust bc used 
where frequency dispersive effects are neghgible. Dispersion must then be spatial, 29 may be possible with closely spaced 
radiators emitting at different frequencies tl:, avoid interference effects. It should be noted that an experiment has been 
suggested for performing occultations between two spacec-aft rather than to earth, which has some merits in view of the 
difficulties described here [Grossi e; al., 19691 . 

The analysis presents the theory of the mehod of measuremailt as applied to an ionosphere model simulating 
a medium WIL! both angular and raaial variation. Exact values for the refractivity are known and are compared with 
computed valust deduced from sinlulated ~easurements. The results of these calculations are presented. 'fie angular 
derivatives transverse! to the rays are most easily obtained. Angular derivatives along the ray are much more difficult 
to measure. l i the  locus of nearest points. from one end to [he other, does not cover too large a change in the angular 
coordinate parallel to the rays, the detemlination of thesr, derivatives is not essential. For media that do not extend 
too far frorn the planet (relative to the radius of the pla.netj, the major angular change appears to be transverse to the 
rays. a sitv.ation that may be characteristic for real ior~ospheres. 

THEORY 

7 he residual Doppler shift of a signal passing through a medium from a moving spacecraft depends on all 
components of the gradient of refnctivity of the medium. If :he contributions of the radial and transverse components 
are separable. it is possible to obtain approximations to these components of refractivity by means of Abel transfor- 
mations. The refractivity and its derivatives, so obtained, are properties of the medium at the nearests points. 

When this locus is close to a v~rtical to the planet's surface, the profile obtained by direct inversion of the residual 
Doppler data is a good approximation to the vertical profile, with the possible exception of complications below i;n 
ionization peak, or for regions of large gradients. Such direct inversion is the procedure based on spllerical symmetry 
that has been applied to the Mariner experiments [Fjrdbo, 1964; Fjeldbo at al., 1965; Fjeldbo ard Ekhleman, 19651 . 



When the locus deviates appreciably from a vertical line. the assumption that the derived data is a vertical profile is 
incorrect, as shown by A'magiia and Gross [I9701 , for media with t raxerse  gradient components and even for media 
with large radial components of the refractivity gradient. 

In the occultation experiment one may view the locus of nearest points as a line scanned by the experiment, the 
scanning being accomplished by the motion of the spacecraft along its trajectory. None of the components of the gradient 
of refractivity may be separated from one such line, unless it is a co~rdinate line. such as a .adial or a circle of constant 
radius. The ody derivable information is an approximate directional derivative along the locus. 

One may appreciate in a qualitative sense that it is 
possible to obtain information on the components of the 
gradient by simultaneously utilizing more than one scanning 
line with small separations between such lines These llnes 
as viewed from the observation pruit appear to be prric.:rd 
into a plane prpe~~cticular to the line of observation (Fig. 1). 
The spacing between corresponding points on these lines 
can be related to ;he radial component of the refractivitv 
gradient and an angular componerlt of !he gradient, th. 
component transverse to the radial component as see!: in 
the projecizd plane. In terms of a cylindric?! coordinate 

PLANET system with the n~.iar axis along the direction of observat.;.i, 
the zr axis, hnd the coordinates of the plane of projection 
designated pr and I$,, these components of the refractivity 

Figure 1 . -  Nearest point loci. The loci of nearest points of two sets would be aN/apt and I /pr aN/ad+. I?ie componen : 
of rays are shown projected into the plane perpendicular to th: aN/azr. which is essentially parallel to the rayc. appear3 to 
direction of observation. be poorly detined by the loci. 

Ths  pictorial explanation is not exact, and it turns out that one may ohtab the component aN/azr, but ihe 
sensitivity required to accomplish this is far greater than for the other components. In principle, the more loci scanned 
the greater the number and order of derivatives that may be obtained. For slightly refractive media it turns out that Zr 
over the full sweep of the loci barely changes, so that the principal changes occur in the coordinates pr alrd #r . 

The component aN/a& is of great value in :econstructing a profile along a vertical, as weU as in providing informa- 
tion on the nature of the change of the medium with angle. It is of interest that if the !nci lie tangen: to cr.nrours of con- 
stant refractivity, determillation of aN/apr and aN/a& will clarify this situation. 

The denvation of a;lalytic expressions requires the assumption that the medium blls ,mall refract:,lty an4 that the 
index of refraction p may be expressed as 

I 

! p = I+& (1) 

, where c N  is the refractivit.~ (<<I). c is a small constant parameter, and N is the part of the refrzctivity that 
contains the dependence on psition coordinates r ,  8 ,  @. N may be of the order of unity in regions cf maximum 
medium density but may decrease exponentially as density decreases. 

It is also assumed t,.,t the variation of N with 8 and 4 is small enough that N may be expanded in a Taylor 
series about some coordinate angles 8 , .  #,, and in a restricted region about these values the expansion may be cut 

I 

off at the first-order derivative t c ~ ; , ~ .  

Though these assumptions are needed to permit the derivation of analytic expres~isns, the method is applicable 
to a wiaer range of parameters when treated by c~mput:~~ional tzchniques. The Taylor series expansion need not be 
cut off at the first-order derivatives. Higher order derivstives nay be rdytically treated by utilizing additional 

i measurements, but the practicality of such measureme.its cobid prcs nt sevzre equiprncr,t problems. 
i 

t If R(r) is the radius vector of the spacecraft's path, r:ieasured from lome converiient origin, such as the planet's 
I center, the residual phase length of the ray% outsidc the region of :he caurtic has a one-to-one arsocintion with 



the vector function R and may be expressed as A4 [R(t)] . For these conditions there is also a single-valued relationship 
between points on the Locus of nearest point3 rn (t), and the path of the spacecraft, so that AQ, = A*[rn(t)]. The residual 
phase length may then be expressed either in terms of the coordinates of the spacecraft's position or in terms of the 
coordinates of the nearest points of the rays. 

The position of the spacecraft will be specified in terms o i  the cylindrical coordinate systen. that has been 
defined. The spacecraft's coordinates are designated ps , 4 s ,  zs ; 4s is measured from some convenient xr axis 
such as the ecliptic north direction, assuming that Zr axis lies in the ecliptic plane. (One may readily modify 
these definitions when a planet's position out of the 
ecliptic plane is taken into account .) This coordinate 
system is considered fixed for the occultation. (Changes 
in the earth's position are not important for the presenta- 
tion here.) Another coordinate system may be defined 
for the nearest point of the ray emanating from or being 
received from the spacecraft m any one position along 
its trajectory. This coordinate system is rotated relative 
to the fixed system. Its polar or z-am, designated zn , 
is parallel to the tangent to the ray at the nearest point 
and is in the same general direction as the direction of K)I*T oc n4v 
observation. Its x-axis, designated xn , is the radial from :rzi ;; 
the center of the planet, the grigin of this coordinate PLAM8T 

system, through the nearest point. The radius to the 
-I 

nearest point is designated rn , and this axis is located mn. 

relative to the futed axes by an azimuthal plane rotation 
4; about the zr axis and by a rotation 8; in this plane. - v, 
The coordinate systems and their relationship are shown -<,*/ \crw\ 
in figure 2. The coordinates rn , 8;. 4; for the nearest ocww PLAINT 

7" 
point is actually spherical coordinates for the nearest 

Fire 2.- Occultation geometry. The coordiite system xr.v,zr point with '; the com~lemnt the polu an@' the system detamined by the ,jMa o(obrrVtion, The 
xd,,zn coordinate system is determined by the nearest point 

The spacecraft position vector R(t) is desipated of a ray and the direction of the my tangent at the nearest 
by the coordinates pS, h, zs. In place of time : , one point. The x,y,z, coordinates ore fixed during an occultation 
may represent this position vector parametrically in terms the x d d n  moves with the layr derribing the 

of one of the coordinates. Any convenient one may be ~ ~ ~ ' " ~ ~ ~ .  

used, since in an occultation it is presumed that the . osition of the spzecraft is known relative to the planet. Here 
we choose to use p,, though in a circular orbit 'Qis .nay be preferred. The choice is not important for the theoretical 
presentation. Thus., we take ps, 4, = has) and zS = zs@,) PC, known. The nearest point position vector tn(t) 
may be described in terms of its radius rn and the rotation angles Oh, 4; relative to the pr ,  +, z, coordinate 
system. Then differentiation of A* [rn(t)] = A 4  [R(t)] leads to 

Dividing by' d rn /d t ,  



The function d / d q  (A+)  = d,'dr (A4)l(dps/dt)  is known, since its numerator is obtained from the measured 
residual Doppler shift and the denominator from the known path of the spacecraft. If (A*) a / a e h  (A@) 
and (A+)  are found as functions of rn , and if suitable functional relationships are found between the 
medium's refractivity and the phase path functions, then a N /  am , a N / a B ; ,  aiY/ a& may be determined from 
Abel-type transformations as will ~oe shown. 

The refractivity is now assumed to be expressed as a Taylor series about some angular coordinates go: 40,  
where do is the complement of the usual polar angle in a spherical coordinate system. The dependence on radius 
is maintained implicitly in all terms. The coordinates Bo,  4o correspond t o  values in the vicinity of the nearest 
point of a ray. Then, cut off at the first derivatives, 

The derivat;~:s of N  from ( 4 )  are 

( r  4  a N ( r ,  8 , 4 )  - = 
ae;, ae I 

wkl 

For media in which the angular dependence of the refractivity is small any individual ray with nearest point 
, coordinates r,,, 8; .  4 will be well approximated by a ray in o fictitious medium described by the actual medium 
I along the radial line and & equal to  constants. Then t o  first order in c the residual phase lenprh may be 
I , expressed by integrating along a straight line t a n p n t  t o  the ray at  the nearest point [Arruglb and C,oss, 19701 : 

where w is the frequency, c k the vacuum velocity of light, d s  is an element of length along the path and s, the 
b distance along the path measured from the nearest point, is given by @-. The factor 2 takes into account 

the near equal contribution from both sides of the ray path h u t  the nearest point. The upper limit of  the integral, 



which is the value of s at the sensible limit of the medium, is set equal to infinity, an approximation valid for 
exponentially decreasiqg media or refractivity. 

Taking derivatives of ( 6 )  with respect to 8;. #;, and ?,, and using (51, (6),  and (7j, 

If the left-hand sides of (9), (lo), and (1 1) can be found, then the components of the gradient or 4' wry be deter- 
mined by inversion. 

Dcfming the functions: 



(3) may be rewritten 

(16) is not sufficient to find g, h,  and e, additional equations being needed from the ray path. 

Ifrraglia and Gross [I9701 gave the first-order equation for the ray. With the aN/aOi term dropped as of 
second order in c ,  it is, inCartesian coordhltes (x,, y,, 2,) (fig. 2). 

A n 
where ro = tn + rn ?,. The vectors x,, y,, and 2, are the unit vectors of the coordinate systern. 

For large values of 12, I, where the ray is outside the effective medium, the upper limit may be set qua1 to 
infinity. With this limit (17) yields straight-line equations representing the asymptotic form of the ray outside the 
medium: 

Here, mx and my are the dopes for the ray with nearest radius dm and psilion angles 8;. $$, ; cX and c,, :Ire 
the constant t e r m  of the straight line equations and may be s h o w  to be related to m by 



Operat~onally (20) will be represented by c = T ( m ) .  

The ray path, projected onto the xlIzn and ynZn panes is shown in figurL 3. From this figure and Eqs. 
( 18) and (19). the spacecraft coordinates may be expressed in terms of the projection of ps on the XnZn plane, 
namel) psn, and onto the YnZn plane, yw : .. 

psn = 2ern9,,-eT(mx)+rn ) RAY PAT n I- s 1 SPACE59AFI  

Jc. 
Due to the small bending of the rays the I, axis ar.d the I 

zs axis will he rotated from each other by small angles of - 2" 
the order ot E ,  and we may set ps * psn. and zs =Z z,. '- - mo~ecr.0- OF 

the coordinate of the spacecraft alcrlg the t, axis. From = .-,% .. z-.-bs *-- 
Figure 2 we also see that y,: = p s ( q - h  \ Also, irom 
the definitions of m,, 9. g. h, and e we have , 

Figure 3. - Projections of ray paths. 'The upper f i r e  shows 
the projection of the ray path into the x,;, plane. The 
Ic-mr f ~ r c  shorn the projection of the ray Into the 
;,,-, PI-. 

so that, from (21) and the approximations assoclattd with the mrall angle between the z axes, 

Since bending in the xnzn plane equals emx to first order in e. 



when in (23) and (24) 

Equations ( 16). (23). and (25) form the desired set of equations which can be solved if frequency or spatial 
dispersion is utilized to provide the data. That this is so will be demonstr-ted for an ionosphere with radiation at 
two different frequencies. Since E contains the frequency dependelit quantity, its value will differ for each frequency 
For a given value of m for both frequencies the values of pS, z,, f@,) ,  $, @A, and O h  will be different. When two 
frequencies are radiated simultaneously. their corresponding values of m will be different, but if the frequencies 
are close enough or bending of the rays is slight, rays from both frequencies will reach the same m at slightly 
different times. We utilize the z,  and @s from spacecraft trajectory data as a function of ps, and f (ps )  is obtained 
from the measured Doppler for each frequency and the trajectory data. For a given r,,, the corresponding ps for 
each frequency is not known. To indicate that quantities are associated with each of two frequencir-s we utilize the 
subscripts i, where i takes on the values 1 and 2. Then, since the 0; terms contribute to order E' ,  the equations 
to first order in r from (16) and (23) through (25) become 

@si = &(m)t '  
Psi 

For a given m. with i = 1,2,  we have a set of eight equations in the eight unknowns psl , pst , $b2, G I ,  C 2 ,  
e. and g .  Rote that to first order in e. a 9  I at);, cannot be determined. By carrying out the expansion to seconc' 
order in r and utilizing three frequencies, titis quantity may, in principle, be determined. 

The set of equations (26) may be solved numerically for the functions g(m) and e ( m ) .  From (lo), (13). and 
(14)and r2  =rn2 + s 2  

I bN I 



These equations may be inverted by Abel transforms yielding 

where the prime denotes differentiation with respect to  the argument. We see that aN/ar and dN/aq50 from 
(28) are the radial and angular components of the gradient transverse to the ray, with 6 ,  and GP taking on vallies 
in the vicinity of !he nearest point of each ray. 

NUMERICAL CALCULATIONS 

Calculations were made for a model of an ionosphere distributed about a planet in which the electron density 
varies with radius and solar zenith angle and the temperature or scale height varies with this angle. The top of the 
layer is  exponential!^ decreasing. Below there is a peak in the ionization with a density that varies about the planet 
but at a fixed altitude. The model is described in terms of a spherical coordinate system ( r ,  6 ,  $1 with the polar axis 
in the direction from the planet's center to  the sun. The origin is a t  this center, and the polar angle 0 is very closely 
equal to  the zenith angle. The medium has axial symmetry in q5. At frequencies well above the maximum plasma 
frequency the index of refraction is given approximately by 

Here E = 2ne2nm/mo2 , nm is the maximum density at  8 = n/2 (the terminator), e and m are the electronic 
charge and mass, 

for the exponential layer, and 

for the parabolic peak layer, where R = (r-rp)/Hg the altitude in scale height units, Rm is the altitude of  the level 
of maximum density in scale height units, Ha is the normalizing scale height and corresponds to  the scale height 
at 8 = nl2, r is the radius, rp is the radius of the planet, ds and Q are parameters controlling the density level of 
the entire ionosphere and such that (cis + Q ) / 2  = 1 ,  v is a parameter controlling the rate of change of density with 
8, and q is a parameter controlling the distribution of temperature with 8. The subsolar profile is for 8 = 0, and 



the antisoh prc;'ile ih icjr 9 = n. For large values of v the ratio of subsolar to antisolar densities at the peaks is 
equal to d,/Q. 

For the purltow tecf numerical calcu!ations we chose the ratio of subsolar to ant~solar electron densities as 30: 1. 
The value of q us:d is 0.5, which gives a scale height ratio of subsolar to antisolar profiles of 3: 1. The value of v 
was set equal to I0  for three occultations. Ninety percent of the change in electron density occu:s within a band of 
25" centered at the terminator (B = n/2) for this value af v .  One occultation was calculated for ir = 100 for which 
9077 of the change occurs in a 3" band. The ratio of the rad~us at the peak to the scale height was set equal to 105: 1 
The correspondink radius of the planet is 100. The values of E for the two freque~lcies were 5 >( lo-' and 
1.125 X lo4. 

ia i  I D !  

Figure 4.- Occultation orbits. The three f i i~res  show the ell~ptical 
projection of a circulrr orbit into the plane perpendicular to the 
viewing direction. The heavy line indicates the part of the orbit 
used in the experiment (it is also an approximation to the locus 
a: neare~t points). The shaded portions indicate the night-side 
hemisphere of the planet. 

-RADIAL GRADIENT OVER 9CCULTATION POINT 

,ACTUAL GRADIENT 

INVERTED UORIZONTAL } GRADIENT $1 PEAK 

RADIAL GRADIENTS NEGATIVE BELOW PEAK 
3 1  
ld4 10' kiZ 1 0 '  I 

GRAUENT OF N 

Figure 5.- Gradients of N for occultation indicated in fylre 43. 
The absolute values of the gradients of N dong the locus of 
nearest points vs. normalized altitude arc shown. The radial 
gradient above the occultation point is also indicated. 

If the normalizing scale height is 30 km, the radius to 
the peak is 3150 km; then the model chosen could be of the 
scale of the Martian ion~sphere. If the plasma frequency at 
the peak level at B = n/2 is 3.5 MHz, the frequencies assoc:ated 
with the chosen values of E would be 500 and 750 MHz. For 
the vdues . ~ f  e the separation of the rays at their nearest points 
for the two frequencies neve- exceeds 0.1 scale height. 

The spacecraft is assumed to be in a circular orbit 
of radius 120 Ha and inclined to the direction of tho 
earth, so that its elliptical projection has a semiminor 
radius of 100 Ha. The axes of the ellipse are either at 4Sc to 
the axis of symmetry or to its projection as viewed from 
earth for all examples. 

The first computation is for v = 10 and for an 
occultation starting on the night side. It is viewed 
perpendicular to the axis of symmetry as shown in 
figure *a). The absolute values of the radial and trans- 
verse angular components of the refractivity gradient 
along the locus of nearest points are shown in figure 5, 
both for exact values aveilable from the model and 
computed values deduced by inversion procedures using 
computed Doppler shift dz The angular component 
is the horizontal componer. .:verse to the rays. 
Radial gradients are shown ,or inversion with 
and without corrections for tht ~lngular component of 
the gra3ient. The actual radial gradient for the profile 
over the occultation is also plotted. It is seen that if 
inversion is perfamed neglecting angular variations 
and if it is assumed to yield the profile over the occulta- 
tion point, the interpretation would be considerably in 
error. The radial giadient errors are much smaller when 
compared with the actual profile but still are as large as 
507% in the exponential region and grezter in the para- 
bolic region. Inclusion of the angular vaiiation reduces 
the error in the radial cornpoxtent by more than a factor 
of 2. The computed and actual angular components 
compare veiy well in the exponential region, but the 
comparison becomes much poorer below the peak. 



If the planet is viewed with the axis of symmetry 
at an angle of 45" to  the plane of projection as viewed 
from earth, with the occultation as in figure q b ) ,  one 
obtains the graph shown in figure 6. The results are 
essentially the same as before. 

Figure 4(c) indicates an occultation on the day 
side through a region where the horizontal, or angular, 
components of the gradient are small. In this case, all 

YIVL(ITED R A D I U  GRADIENT 

the computed radial components of the gradient, the 
profile along the loctls of nearest points, and the profile 
over the occultation point compare very well (fig. 7). 
The con~parison of horizontal gradients is poor, but 10 '  I 

W N T  OF :. 
the results d o  indicate that it is smaller than the 
radial component by a factor of 100. F i r e  6.- Gradients of N for occultation indicated in f iure  

4b. The absolute values of the gradients of N along the 

With v = 100 and the configuration in figure tocvls cf marest points vs. normalized altitude are shown. 

4(a) one obtains the results shown in figure 8. The ne radial gradient above the occultation point is also 
indicated. 

rays pass through a region of large variation of re- 
fractivity at r/Ha = 108.5. Two distinct peaks are 
obtained in the radial component when the angular variation is neglected. Inversion incorporating angular effects 
consideidbly improves the results. Although the horizontal gradient from inversion is poor, the large peak is indicated. 
The results exhibit the difficulties when very large angular gradients are involved. Refinements in numerical pro- 
cedures may improve the results. The increments used in inversion may be too coarse. 

Figure 7.- Gradients of N for occultation indicated in 
f i r e  4c. The absolute values of the gradients of N 
along the locus of nearest points vs. n o r d i z e d  
altitude are shown. The radial gradient above the 
wcultatron point is also indicated. The actual hori- 
zontal mdi tnts  a n  very small and only a amaU p* 
tion is indicated. 

Figure 8.- Gradients of N for occultation indicated in figure 
4a and with huge angular gradients. The absolute values 
of gradients of N along the locus of nearest points vs. 
normalized altitude are shown. The radial gradient above 
the occultation point i3 also indicated. 



DISCUSSION AND CONCLUSIONS 

The feasibility of determining both radial components and angular components of the refractivity trans- 
verse to a set of rays in an occultation-type of experiment llas been demonstrated. The angular components 
are found by using frequency dispersion for an ionosphere and spatia! dispersion for a neutral atmosphere. 
The analysis is for slightly refractive media of exponenlially limited radial extent in which the angular compon- 
ent of the gradient is not strong. so that a Taylor series in angular coordinates may be cut off at the first 
derivatives. With the exception of deep atmospheres, it is likely that most regions about a planet will be in 
accordance with these conditions. Deep atmospheres will have large radial gradients due to their large densities, 
and the residual Doppler may be mostly from the radial term. The angular contribatiori may be masked and 
more difficult to deduce. The physics of deep atmospheres, however, may limit the extent of the angular 
variations. 

The practical feasibility of utilizing dispersion is more limited. Accurate Doppler measurements at more 
than one frequency would be required for ionization. and dual or multiple payloads would be required for 
neutral media. The position of the spacecraft about the planet must be accurately known, and the effects of 
inaccuracies on the determination of angular dependence cf the medium requires further study. 

The occultation experiment provides information on refractivity of the medium and does not i~ecessarily 
determine the model of the atmosphere. It could provide scale height information from which temperature 
could be determined for the assumed mass. However, if the temperature varies with altitude, only t~ ie  density 
scale height is determined, which is not simply related to the temperature. The horizontal gradients could pro- 
vide information useful to studies of possible horizontal motions of the medium. If combined with tempetdture 
structure information, even with the recognized uncertainty of composition and scale height interpretat~on, the 
measurement of horizontal gadient could serve as a means for understaring the processes controlling the 
distribution with latitude and longitude. Since the physical theory of atmospheres and ionospheres usually 
separates vertical and horizontal control of the media, it is difficult ;o inteqret data along a !ocus of nearest 
points that is st an angle to either direction without seplration of the components of the gradient of the 
refractivity. The present form of the occultation experiment only approximates the total derivative along the 
locus which. in general, is differcn: fioin the radial Scale k9ghts derived from it could be misleading or useless 
to interpret, since it would correspond to the variation along ~i?e locus. On the other hand, the partial deriva'ives 
with respect to radius and angle along the locus would at least separate the radial portion. One can, at least, 
Tttempt to approximate a profile along radials to come closer to the density scale heights for the range of angular 
coverage of the occultation. Measurement of higher angular derivatives would provide better accuracy in restruc- 
turing the radial profiles; however, the present practicability appears limited. 

Radial components of the gradient of refractivity, as exhibited in figures S to 8, may be interpreted in 
terms of the density scale height along the locus of nearest points, since the data may be graphically analyzed 
to fit a simple exponential model within a region of altitudes. The graphs of the radid components in figures 
5 and 6 appear, at first sight, to be roughly parallel but displaced from each other. Such parallelism implies 
equai scale heights along the !ocus with the separation due-principally to the magtiitude of the refractivity. 
Closer examination shows that the li.?es are not quite parallel, implying differences in their sfale heights. When 
the radial gradient as represented by the partial derivatives is combined with the refractivity computed along 
the locus, the radial scale height may be computed as a function of position along the locus. In general, this 
will differ substantially from that of the variation of refractivity along the locus and will exhibit the functional 
dependence on angle. Thc results for the case of figure 5 are plotted in figure 9. 

We have ignored the effects of the interplanetary medium. Gradients may be present in this region that 
could cause difficulties in establishing the sensible extent of the medium. The practice is to subtract out th: 
contribution. One method utilizes two frequencies [fleldbo ond Eshlemn, 19691 0th the basis that the con- 
tribution of the interplanetary medium will be the same, except for a fxquency sca& fa&%, for both fre- 
quen&%. The ray paths to earth will be sIightly different for both frequencies, and if gradients are large enough, 



the rays for each of the two frequencies could 
be traveling through regions of different densities. 
Much more information is needed on the detailed " I S  I 
structure of the interplanetary medium to judge 
this aspect. When two frequencies are utilized t o  
attempt to  cancel out the contribution of the 
interplanetary plasma, then, within the context of . 
t h ~ s  discussion, a third frequency would be neces- 

----v - - 
.-- _ _ sary to measure the ionospheric radial and anpu!ar -. 

NVERTED WGLECTING gradients. KMIZONTAL GR~DICNT 

The ust of a modified occultation experi- 
ment deserves further study. Its use is a compro- 
mise between the constraints of spacecraft payload :[-.. 7 8 9 ID II 12 15 . I4 . I . 16 . 17 o 

and scientific needs. At best, it cannot compare u T l T , m / m  

well with direct probing methods and soundings, Figure 9.-  Relative scale heights derived from the gradients 
methods that require far more spacecraft weight of f m r e  5 .  The actual relative su lr  height is unity. 
and power. 
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DISCUSSION 

04: There '9 a history hcrc to a closely allied prubiem in the Rus.,lan literature. Gring~uz and Alpert had 
a iunr~in; 1-qmacntary from 19C.5 tc 1968. One was ineasuring the Doppler shift signal from passing 
satellitsc. They cdlculated the iri:rgrdted electron cwtent !s the satellite's ai'itude cirnged. He inter- 
preted the dat; in terms of kid, ,crofiles. 'The other auth.,r said you coulrrn't do this because there are 
localized irrcg,.;aritic: 'having hor~zi~l~tal  gradients 11 st would shou up as layers in your stratified models. 
If :. :I,: start with a s~r.&e-vnlued iunctioz I of one pir-tmeter, phase versus time, I dm't see how you create 
tw&) functiuns of h. &t. 

Gros~: Nc '.' u have two simultaneous measurements. If you .:at; masure for two loci at two frequencies 
you have twu sets of rrreasurements. If the locus or' nearest p i n t s  happen to be tangent to a line of 
cowtan1 refractivity and if you assume sphericil symmetry, the derivative with respect to r will be zero 
at these po1nt.s. Pertraps,yc?u then interpret thts as a peak or a minimum, either in the ionosphere or neutral 
atn-osphcrr.. This muld bc :ntirelv woag. When you have *he components of the gradient you are then 
able to  separate thc inforrimtion. 

Groni: The Russian problem r!ientio~red by Croft is muc5 more difficult because you have the telemeter on 
the ground and a teiemetri on the satellite so, f*)r instance, ttcc ba: )I: cqu:ltil)n used in occultation where 
the integral cf the Dopp!,.r leads you to 3 phase dilference wi! i an integriuon constant equal to zero is no 
!or:ger applicable 10 t.le G r i n p u  and Alpert case. Many poisto of their diqpute are therefore not applicable 
here. 
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Inversion of radio occultation data for planetary atmospheres and ionospheres has been performed by the 
huthors using the seismological Herglotz-Wiechert me!hod, as adapted by Phinney and Anderson to the radio- 
occultation case. This method does not require the assumption of straightline behavior for the radiorays. 

Profile reconstruction performed in computer-simulated experiments with this approach have been conipared 
with the ones obtained with the straight-ray Abel transform. 

For a thin atmosphere and ionosphere, like the ones encountered on Mars, microwave occultation data can be 
inverted accurately with both methods. For a dense ionosphere like the sun's corona, ray bending of microwaves is 
severe, and recovered refractivity by the tierglotz-Wiechert method provides significant improvement over the straight- 
rJy Abel transform: the error reduces from more than 60?& to less than Zm at a height of 60 X lo3 km above the 
base of the corona. 

INTRODUCTION 

Radicr occultation measurements of planetary atmospheres and ionospheres have become an integral part of the 
standard scitntific investigations performed by NASA with planetary probes since the mid-1960's, when various 
spacecraft of the Mariner class performed pioneering radio occultation experiments. These experiments provided 
the first reliabh measures of the profiles of the atmosphere and ionosphe.~ of Mars [Kliore et  al, 1965; Fjeldbo ot al, 
1966; fleldbo und Eshleman, 1968; and of Venus [Kliore et  al, 1967; Mariner Stanford Group, 1967; Fjeldbo and 
Eshleman. 19691 . 

The data are obtained in the form of "Doppler shift res~duals" (characterized by errors with lo  = 1 mm!wc), 
which are derived by subtracting from the total observed Doppler affecting a 2200-MHz microwave carrier the 
amount du3 to the link's geometric clranges. The presence of a nonzero residual (for situations in which both lick 
terminals dre outside thc medium under probing) is indicative of a change in the takeoff or arrival angle of the ray 
!hi propagated (oneway or twoway) between m t h  pnd spacecraft and traveled, for at least a portion of its path, 
through the ionosphere and the atmosphere of the planet. 

The inversion of the data ilas been performed with a variety of geometric optics techniques ranging from the 
closed-form Abel transform (based on the assumptions th?: the mediu~~t possesses spherical symmetry and straight- 
line behavior for the ray) to model-fitting approaches bscd. on iterative procedures. In principle, for a p i~net  with 
a thin atmosphere like Mars. all these methods are adeqmate. For cases like Jupiter or the sun's corona, closed-form 
inversion algorithms, desirable in many respects above model-fitting approaches, must exclude the straight-line 
approximation. 



One suitable method is available from seism~logy. based on the Herglotz-Wiechert approach for interpreting 
seismic data [Herglort, 1907; Wechert and Geiger, 19101. Another method has been published recently by Fjeldbo 
etal. (1971j. 

In seismology. this bent ray-path technique leads to the derivation of velocitydepth profiles, and to the calcu- 
lation of the position and the identification of geological features in the earth's mantel. The observables are the travel 
times of seismic waves between stations located on the earth surface. Phinney and Anderson 11968) have shown that 
this me thd  :s usable for the situations in which the observables are the Doppler residuals of the radio occultation 
measurements. The purpose of our work has been to code their formulas in a computer program and to use it in the 
reduction and processing of actual radio occultation data. 

The seismological approach has been applied to the inversion of simulated occultation data for the sun's corona 
and Mars. Application to actual experimentar data is under way. The inversion accuracies have been compared with 
the ones that characterize the inversions obtai~ted with the straight-ray Abel transform. We have found that for cases 
of strong ray bending (as xcurs  in the microwave occulta:ion probing of the sun's corona), the errors with the Herglotz. 
Wiechert approach are significantly smaller than with the straight-ray Abel transform. However, for thin atn~ospheres 
they are comparabie, as expected. 

A computer program based on the Phinney and Anderson analysis has been developed in preparation for the 
reduct~on of the occultation data to be gathered in 1976 by the Viking spacecraft for Mars and the Sun, and by such 
missions as the Grand Tour Mission to the outer planets. Meanwhile, the program is being used as a test to reduce 
cases of past occultation measurements like the one performed by Mariner 4 to Mars. 

Figure 1 .- Abcl transform geometry. 

Comparative sensitivity to horizo~~tal gradients and 
applicability of the seismological approach developed by 

, Gemrand Markushevich (1966. 1967) to situations of 
waveguidance, as encountered for instance in radio occulta- 
tions occurring at the base of the Venus atmosphere, are 
under investigation. The applicability of the seismological 
approach developed by k k u s  and Gilbert [I 967, 1968, 
1970) is also under study. All these analyses require the 

5 computation of the impact parameter of the radio ray from 
the observed Doppkr residuals, a derivation that has been 
proven feasible by Ainney and Anderson [ 19681 . 

PROFILE INVERSIOE BY 
STRAICHT-RAY ABEL TRANSFORM 

The integration in the time domain of the Doppler 
 residua!^ provides the differential ph:~se-path length. This 
quantity is the difference between the straight-line geomet- 
rical dista.~ce between transmitter and receiver and the 
phase-path length for radio waves. Thc integration constant 
is z.ero when provisions are made for starting the integration 
from a position of the probing link completely external to 
the medium under evaluation. 

M i l  reference to flgure 1 and assuming a straight- 
line ray the spherically symmetric medium (index or 
refraction n is a function of only nf r ) ,  we obtain the 



differential ph,ase-path length 

Tlus integri~l is a function of the distance of the ray from the center of the planet at the point of its closest 
approach to the planet's su:f:ce. We call 

By cllanging the variable br. we can write (fig. 1): 

In this equation the radicand in the denominator is nonnegative because for every value of the rniss-distance 
range p of the ray from the center of  the planet r > p. Let 

Equation ( i )  becomes 

L:t 

and we obtain 



Applying Abel's integral equation we have, 

Let 

We have 

where T' = dT(p)/dp . h t  

We obtain 

and 



Because of the change in the limits of integration, the radicand in the denominator is nonnegative. In k t .  for 
every radial height r, N(r)  and n(r )  are obtaiccd from colum~iar measurements made at miss-distance p 
rlways larger than r. 

The straight.ray Abel transform approach described above has been applied t o  the Martian ionosphere1 
atmospheie and the sun's corona, as representative of  thin and thick media. 

A Hamiltonian ray tracing program was used in conjunction with the chosen models t o  derive the simulated 
differential phase-path lengths for various values of p.  

Figure 2 illustrates the model used for the Mars refractivity profile (MODEL) and the Abel transform 
reconstruction of this refractivity model (ABEL). Table 1 lists the difference in N units between the model 
refractivity profile and the Abel transform reconstruction. Figure 3 and table 2 show the same functions for 
the sun's corona. 

I t  is evident that the Abel transform provides excellent results for the case of the "thm" Martian 
ionosphere and atmosphere. The errors b-come intolerable. however. in the reconstruction of the sun's corona 
when the validity of the straight-line approximation for the ray breaks down. 

REFRACTIVITY,  ;a 
hr U N l l S  5ra 

Figure 2.- Model of Mars refractivity profile and its 
reconstruction by Abel Mcform (rcctandes traced 
around the pain of circlo ud quucc identify the 
orig~lul and the recortstructed point). 

F@re 3.- Mdel of the Sun corona refractivity profile and 
its reconstruction by Abe! transform (rectangle? traced 
uound the pain of circles and quare% identify the 
or@d md the 10C~nst~cted point). 



I ' rop ,~c~t~on Frequency = 

'Pli~neloccntrlc R~diuc 

TkPLti 1. ORIGINAL AND P.I.CONSTRU<'TkD MOD1:L FOR 1111 
ATMOSPHERE AND IO"0SPHERE OF LIARS 
(RCCONSTRUCT131.I B\ ABEL TRANStORM) 

2OOO MHz 

Diffcrcntlal f naw 
Delay 

,00049873 
-.00006561 
- 00028884 
- 00043633 
- 01)05452' 
--,0006 20.16 
-00066:47 
-0OoiQ,22 
- JOn10759 
- :~.1072737 
- 5.3075000 
- 90077536 
- .33080421 
-.lJ0083780 
- .00878 18 
- 00092Y21 
-.0@0990 24 
-.PO106342 
-901 14185 
-.OUI 21566 
-.OO' '- ! ' 5  
-.OG 30720 
- 00131317 
-.00129184 
-.00124699 
-.00118405 
-.00110876 
-.00102635 
-.OW94 1 1 7 
-.33C85648 
-.OW7746 1 
-.00069709 
-.OW2482 
-.00055822 
-.OW9739 
-.OW4222 
-.00039245 
-.00034772 
-.00030765 
-0027183  
-.OW23988 
-.OW21141 
-.OW1 8607 
-.00016352 
-.MW)14346 
-.00012562 
-.M)010975 
-.00009563 
-.00008303 
-.00007179 
-.Ucr006 175 
-.00005273 
-.OK. 1459 



TABLE I .- ORIGINAL AND RECONSTRUCTED MODEL FOR THE 
ATMOSPHERk AND IONOSPHERE OF MARS 
(RECONSTRUCTIC N BY ABEL TRANSFORM) 

(Cont'nued) 
Propaption Frrqucncy = 2000 MHz 

?ABLE 2.- ORIGINAL AND RECONSTRUCiYD MODEL FOR THE SUN CORON.4 
(RECOSSTRUCTION BY ABEL TRANSFORM) 

Propgrtio-. Frequency = 2000 MHz 

Refractivity (Original) Refractivity 
(Reconstructed) 



THE FEAOlBlLITY OF DERIVING THE IMPACT PARAMETER 

FROM THE DOPPLER RESIDUALS 

As an immediate consequence o i  Snell's law. in spherical coordinates. microwave radio rays passing rhrough 
a refracting medium are characierized by the fact that the product of the index of refract~on n. the radlcs r .  and 
the sine of the zenith angle z is a constant. 

In geometric optics treaiment of microwave propagation, this constant is of fundamental importance. It is 
~ ( r t  only the product noro at the point of tangency and r(sin z )  at any point beyond the atmophere. hut it a 
also the radial perpendicular di:!-nce to the original undisturbed ray path, or asymptote. It is therefcre the 
necessary parameter to trace a ray tnlouPfr a g' 'en atmosphere. and it is a vital quantity in inversion problems. 

In particle physics. the peipendicular distance from the center of a force field to the velocity vector of an 
entering charged particle is called the impc t  pwameter. The analogy with the radio rays is crude swce the atmospheric 
refractivity carinur be considered truly equivalent tc a force field and our ral-s arc not part~cles in many respects; 
nevertheless. "impact parameter" seems to be an app~opriate name for the rays' fundamental const~rlt. The exact 
inversion technique for phase data based on the use of this parameter was presrnted by Phinney and rlnderson [ 19681 . 
Also, Tarmky [1968a. b ]  utilized t h s  term as the radius at the tangent point ro. 

The :--as~bi!ity of deriving ,his parameter from the Doppler residuds has been debated in the literature. The 
analyti~al relationships between impact parameter and Doppler rt,~daals derived by Phinrrey and Anderson were 
questioned (incorrectiy, in our opinion) by Graves and E$chboch [1969]. who argued apins! Phinney and 
Alrderson's equations for the eiconal and the directional derivatives in terms of Doppler ghifts. These equations 
are fwxlamental and give the ray direction with respect to the spacecr~ft trajectory as a function of the Doppler 
:csid~.als. Rschboch [197V :a:er reduced :he weight of his objectives. 

To evaluate the radio ray emission angle from the directional derivative it is necessary that the gradient of the 
phase or the eiconal equation be determined. Wc assume an infirite nonconducting isutropic medium where the 
Inductive capacity e is a function of position. Then Maxwell's equations for electric field vectcr become: 

-;irere KO = flc is the propagation constant m:.;rured in cycles. If we assulile that the spatial change of e is 
small compare. a wavelength 

then the wave equation redr.ces to its homogeneous farm 

Assume that the form of the solution is: 



where S = Sr + isi so that 

Sr = ccnstant. are surfices of constant phase 

Si = constant, are surfaces of constant amplitude 

Substitution of Eq. (14) k,to Eq. (1 3) yields: 

If KO 1s large in the sense that 

and 

(,4v2s + ~ ( v A )  (vs)] < < KO 

then. excluding regions of diffraction, fmal points. 
caustics. and sources. we obtain 

Now KoS = 4 + fr so that 

which is the eiconal equation. 

Since n is a function of position, if the space- 
craft S in figure 4 is inside the planet ry atmosphere, 
the profile of the atmosphere must be known before 
Eq (19) can be solved for 1~01. 

If, however. the spacecraft is above the atmcl 
sphere. then n becomes unity and Eq. (19) beconies 

The last equation is identical to the eicon~l of 
Phinney and Anderson [ 19681 . Equation (20 j is now 
in a solved form and ca.. h i  mbsti:ilted into the 
equation for the dirrc~unal derivative to solve for the 
emid011 engie. 

TO EARTH RAY 

Figure 4.- Geometry of the occultation experiment. 



The angle between the ray path and the unperturbed ray path is the deviation ang!e. and according to our 
calculation it is 

I i~ - ( D ~  + ~ ~ a t m ) ~ ] " '  -(G -D:)"' 
tan - (JI - $e) = -- 

2 Datm + *De 

where 

De = the Doppler shift of the un~erturbed ray 

Datm = the Doppler residual due to the atmosphere 

D, =fir;. 

PROFILI- INVESION WiTH BENT RAYS BY THE 

SElSMOLOClC AL APPROACH 

The straight-ray apprc::imation can be dropped when referring to inversion approaches like the Her2:otz- 
Wiechert method. In seismology. the observable is ;he central angle 0 subtended by seismic rays in the earth 
(fig. 4); and the analytical Fteps are ananged m such a way that the velocitydepth profile is obtaiiied by operating 
on 8. In radio occultation measurements. the data are obtained in the form of Dcppler shift residcals. fiinney 
acd Anderson I19681 have shown how he Herglotz-Wiechert approach can bc applied to these Doppler residuals. 
leading to the accurate reconstruction of the refractivr index profde. in a condition of ray bendin?. s.iung as it 
may be. 

The geometry of the occu11a:ion is shown in figure 4 The index of :efract~on n is a radially dependent 
function and from Ferm:t's principle the first variar~on of the phase-path length should t e  vr?. 

where drz = & + 3 do2. The Euler-Lagrange equation that ;ields a rnirdmum for f,q. (7-2) is 

. S $ , w 2  = constant 

and from the boundary conditions at the mini:r!um radius. Snell's law ir. spherical geometry is determined. That is 

p = nr sin i = np rp = irr7act para. eier (24) 

and the impact parameter is a consiarrt for s given ray 

Now let us define the var~able q as 

P q = n r = -  
sin i 



From the definition of the p t h  length 

and the application of Eqs. (23) through (25), the integral function for the path length is 

The phase (angular measure) along the ray path is 

and using Eqs. (25) md  (27) 

we then apply the operator 

where % > T), 2 9, to equation (29). Then, by interchanging the order of integration, integrating by parts 
repeatedly, and performing a final integration cver the appropriate region;. the phase function (29) c m  be shown 
to be inverted to  

Thus the refractivity is found as 



Following Phinne-v and Anderson [I9681 , if we define a ray residual 

@a = @-au 

where is h geometrical term. then 

where x is a dummy veriable such as time to occultatiorr or satellite position. 

In our computer simulated experiment, the impxt 
parameter p is calculated directly from the asr~med 
trajectory and from the Hamiltonian ray tracing program. 30: 

Therefore, a suitable impact parameter history is known 
and two forms for the recovered refractivity and minimam 

2 0 -  
probing radius were calculated: Eq. (32), since the data 
are available from the generarind program and it will coqform : 5 ~  ?O 
Eq. (3 1); and Eq. (34), where 4, is found in terms of the l o @ l  
actual observed phase hift .  R I ~ ~ A C T I V I : ~ .  ' 4 

\ UhlTS I L  4 

1 ABEL 
> MODEL 
.- :[ISM C 

Data have been generated for e Martian atmosphere o - 
mode; similar to the one developed from the Mariner 4 . . 
results. For !his example, i 3 ~  bending is small (approxi- 

-1 0 6  
rnately 40 prad) and the straight-ray Abel transform has 

- 1 S L  i - . i - u . -  
been shown in !$_P past to be a fully adequate approximation. jUO YY w Im 3W 3sPp W W Molm 3140 378U 

? L A N ~ O C E N T R ~ ~  RADIUS km 
The recovered refractivity froiii &e stralght.ray Abel tracsform 
(ABEL) and seismic kiversion (SEISMIC), and the model Figure 5.- Model of Mnrs refractivity profde and its recon- 
refractivity (MODEL) versus geocentric radius of Mars are stntction by abel transform and Hergloh-Wiechert 

plotted in figure 5 for the measured phase function. inversion (rectangle traced aroucd the pain of circles, 
squpm, and crosses identify the original and the 
reconstructed point). 

Table 3 shows that for the thin Mar:ian atmosphere, 
the errors in recovered refractivity with ABEL and SEISMIC ma 

are roughly the same. Also, the minimum probing radius 
found by tb- straight-ray Abel transforms is very close to 
the actual radius, due to the smali amount of ray bending. 

The Herglotz-Wiechert approach has been applied to 
the model of the refractivity of ?he sun's corona. In this RffRACTlVlN 

example, ray bending becomes significant, and the deviations 
between the classical straight-ray Abel transform and the -101) 

seisrmc approach are clearly noticeable. 

A B t l  
7 MODEL 
L IElShrtC 

A Baumbach electron density rl~odel for the sun's r n l ~ c ~ m ~ c  RADlOi .  tm 

c0ror.a was assumed and phase 4ata for a frequency of 
2,300 MHz were generated. The recovered refractivity 14gure 6.- Model of sun corona refractivity pmfde and its 

profiles from ABEL and SEISMIC are plotted along with ~ecorutmction by abel transform and Herglotz-Wiechert 
invcnion (tectansles traced aound the pairs of cucles, 

the original model (MODEL) versus geocentric radius in squares, and crows identlfy the original and the recon- 
figure 6 for the measured phase function. structed point). 
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As shown in table 4, the divergence of the recovered refra~t~vi ty and minimum probing radius compared to the 
original model values increases as ihe benling becomes appreciable. For the last value cslculated, the straight-ray 
Abel transform was in error 2.47X 103N units iri the calculated refractivity and 5.84)\ 103 km in the minimum 
probing radius, compared to the seismic error ci 0.92X 103N u~li ts  in refractivity ar?d 0.6% 1 Q3 km in minimum 
probing radius. 

EFFECT OF HORIZONTAL GRADIEN'TS 

In the presence of horizonral gradients, the Snell's law equation for the impact parameter, which is used to 
recover the refract~vity. is no 1anger valid. Therefore, as the severity of the horizontal gradient becomes larger. 
the Hrrglotz-Wiechert inversion technique gives poorer reconstructior G; !he refractivity profile. It is thought 
that b) ,tarting again from Fermat's principle for the new geometry, 2 better equation for conservation of some 
parameter for this type of ray may be found. This conservation properly ?pp!i~d to the Herglotz-Wiechert approach 
may yield better reconstruction of the refractivity profile for horizontal gradients. 

CONCLUSIONS AND FUTURE RESEARCH 

The work reported in this paper has shown that prcifile lnverslon of refractivity data collected with stiongly 
bent rays requires the use of techniques like the seismologica! Herglotz-Wlcchert approach that do not rely on the 
validity of  the straight-line approximation. !nversion errors dsso~iated with the application of the straight-ray 
Abel transform to a medium like the sun's corona have been shown to be intolerably high (larger than 6070. 

What still remains are the application s f  the method to simulated and actual data characterized by Instrumen- 
tation phase errors and noise; the evaluation of the ability of the algorithm to extract localized averages of the 
occultation profile from columnar measurements; the evaluation of the profile uniqueness and the related czlcu- 
lation of the probability associated with each one of the "possible" profi:es oiqtained from the data by inversion; 
the treatment of cases involving waveguidance; and the evaluation of thc minimum sampling rate required t o  
assule a desired dccuracy. 

All of these extensions planned for our research are not expected t o  invalidate i , ~  any respect our present 
conclusions indicated above. Instead, they will upglade the capability of the bent-ray approach for the inversion 
of planetary atmos~heres  and ionspheres toward the level of sophistication reached through decades of practice 
by the seismologists in probing the earth's mantel with seismic waves. 
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DISCUSSION 

Kliore:  YOU^ application of what you c d  the ASel transform approach labels that transform unfairly as something 
usable only in the thin atmosphere approximation. Actually you used the Abel transform in both cases. You 
operate on different functions, one representing a thm atmosphere approximation and the other the general 
case. What you call the seismological inversion is simply the general case in which you consider everything 
including the ray bending, atc It is not clear to me how you obtain the Herglotz-Weichert method. How 
is that related to the observed phase, which is simply the iiltegral of the Doppler? 

Mllw: q a )  is the observed Doppler residual minus a geomstric term that is a straight line. 

Kliore: That is, 9 is simply the cantribution of a phase path through the atmosphert? 

Wallio: GJ is actual Dopple- dong the ray path through the atmosphere, like Phinney and An,'orson, but you don't 
measure that. 

fr'liore: You seem to imply it was not generally known to use the thin atmosphere approximatio~?; what you call 
the Abel transform method would not give the correct result in thick atmosphtres. 

Wallio: I did not mean to imply that. 

Gross: The only limitation on the Abel transform, assuming spherical symmetry, is the nlonotonic variation of the 
product of the index of refraction C( and the radius r .  MathematicaUy, however, the Abel transform and the 
seismological technique are essentially the same. Therefore, one would expect to get the same results. Why 
don't you? 

Wallio: In what I called the Abel transform (straight-line apprcximation), which reduces to what in most books is 
called Abel's integral equation, the general seismo!ogical case reduces to that. If you have bending, however, 
you are no longer accounting for it in the Abel transrorm. 

Gross: That's not true. Once you assume spherical symmetry the only limitation is the monotonic variation of 
the product refractive index times the radius. Yorr can have extensive bending, but if you violate this one 
condition then you have a lirni!ation on the Abel transform. 



ERROR ANALYSIS IN THE MARINER 6 AND 7 

OCCU LTAVON EXPERIMENTS 

Richard W. Stewart and Joseph S. Hogan 

Institute for Space Studies 
Goddard Space Flight Center, NASA, New York, New York 

The Mariner 6 and 7 occultation experiments provide sets of Doppler residuals from which physical properties 
of the Mar~ian atmosphere may be derived. such as the ionospheric electron density distribution and the lower 
atmosphere tem;rtdtare profile. The Dop;~ler residuals contain both systematic and random errors. The former are 
removed during the data reduction, and the latter are analyred to yield error limits on thc derived physical properties 
of the atmosy"lere. 

INTRODUCTION 

The Mariner series of planetary probes he: yielded valuable informaiion on the vertical distribution of 
temperature and electron density over six points on Mars and two points on Venus. An importaht aspect of the 
occultation data analysis is the determination of confidence limits fur tbe physical properties derived from the 
Doppler residual data. This paper describts a general 3pproach to the question of deriving uncertainties in quantities 
obtained from the occu1ta:ion data aild applies this approach to the Mariner 6 and 7 experiments. Although the 
method is general, the derived uncertainties in physical quantities depend on the series of mathematical operations 
performed on the Doppler residuals to obtain those quanti th~ and the formulas given in some instances in this paper 
therefore cannot be used for experiments such as the Mariner 5 Venus occu~dtion where the refraction angle becomes 
large. 

There are two types of errors involved in deriving physical characteristics of the Martian atmospheie fiiirn the 
occultation data: systematic errors due to effects such as oscillator drift and imperfect knowledge of spacecrrft 
tra;ectory, and random errors due to the noise level of the data. 

Systematic errors are manifest in nonzero Doppler residual values at distances sufficiently far from the planet 
that atmospheric effects cannot be present. We assunre that these errors can be removed from the data by subtracting 
a bias curve, fitted to a subset of pre- or postencounter points, from the entir. set of Doppler re: duals. 

Our analysis of random errors in derived atmospheric characteristics is based on the following assumptions: 

I .  Systematic errors arc removed from the data as stated above. Errors in derived quan!ities thus reflect only 
the random errors inherent in the data. 

2. Errors in derived quantities are produced only by errors in the Doppler residuals. Uncertainties in other 
parameters entering into the analysis, such as wavelength of the telemetry sigual and spacecraft position, 
are either negligible compared to errors in the residuals or are rystematic and hence removed in the data 
reductior,. 

3. The errors in Doppkr residuals are statistically independent. 



DATA REDUCTION AND ERROR ANALYSIS 

Rt~novai uf Sv:tematic Error 

Ideally, in the pre- and pcstencoucter periods when atmospheric effect? a. not prcsent in the !elemetry 
signal received from the spacecraft, the Doppler residuals should be scattered about zero-the scatter reflecting 
the random noise in the data. 111 practice, systematic errors may be pretent that prcduce nonzero residuals in 
regions far removed from the planet. These systematic errors are removed from the data by performing a poly- 
nomial regression analysis on the Doppler residuals over selected time pcrious in the preencounter (entry) and 
postencounter (exit) periods. The resultqnt least-squares fitted bias curve is then extrapolated through the 
encounter period and subtracted from the complete set of Doppler residuals to obtain a set of corrected 
res~duais. 

Figure 1 illustrates this procedure. The dots to ---l 

represent averaged residuel data from three stations 
IA'rRINER 6 ENTRY 

obta~ned during Mariner 6 entry; as can be seen, IERAOL CASE 

there is a large bias in this particular set of residual:. 
The curved line through these rnw  residua!^ is a - 7  

third-order polynomial xit to a preenc~nnter set of 1 
these points and is extrapolated throup,,~ tbe encounter 
period. The corrected residuals are connected by the 

i 
----' 

solid line running below the raw resid~als. 
a 
w 

I' 

The error involved in extrapolating the bias ; i 
curve through the encounter penod cannot E: forrnaKy z I _  

estimate0 and for this reason an additional constraint - 
must be placed on the dala reduction. We assume that 
there exists a rcgion of essentially zero refractivity in 0 -- 

I 
the middle atmosphere of Mars where the electrons I 

are too few to give a negative contrikution to the 

i 
refractivity and the neutral atmosphere too ttnuour a00 ~ O O  !ooo h OJ 1200 

TIYE (aCCUNDS) 
to give a positive contribution. Most analyses of the 
corrected residuals do show a region of nearly constant, F@n 1.- Raw residuals, polynomial fit, and ~orrected residuals 
but not necessarily ze:o, refractivity in the middle \.for Muiner 6 entry. 

atmosphere; that is, a refractivity ledge occurs in this 
rcgion. Refractivity ledges that deviate from zero by 
snore 1:rarc an average of 0.0: refractivity units are assumed to represent cases in which the extrapolation of the bias 
curve tkoagh the encounter period results in large erron in the vdues of refractivity near the planet. Such cases 
are rejected, bald the procedure of fitting a bias curve is repeated on other sets of residual points until a near-zere 
refractivity ledge is obtained. 

The third-order polynomial fit exhibited in t i w e  1 i s  not a best fit in the sense of minimizing the sum of the 
squared deviations of the fitted points from the bias curve. Beat fits in this an* are obtained with higher order 
polynomials, but these polynonhls a n  erratic when extrapolated outside the region of fit. A change of a single 
point in the set sckcted for !he polylroniial fit can result in radically different extnpolated values outside the 
reglon of fit for higher order polynomials, but the third order p o l y n o ~  are fairly  table to such changes. 

We must emphasize that this procedure for correct@ systematic errors in the data i s  an assumption and that 
the effects of such errors on the results cannot be rtprously analyzed. We believe their effect can be estimated 
however, by reducing data for a large number of neu-zero ledb w s  obuineo after subtracting a bias curve fitted to 
several different sets of residual points in the p e -  and pnstencounaer periods. Accordingly, the results for the 
various atmospheric profrles presented in this paper u e  averages resulting from urrlyscs of 300 near-zero leogc. cases 



for each entry and exit. The standard deviatinns in these average results, when large evough, ?re indicated in figures 
by a shaded :egion about the average prufile, whilr typical standard delrlatians due ta randorr errors are indicated 
by erroi brrs. 

General Procedure for the Determination .- f Randoril E.rr+r 

The polynomial regression analysis described above yields the variai ce oi the D~ppler residual points to which 
rhc bias curve I s  fitted. Since the physical characteristics of the Martian atmr sphere are derived from these resid.lals 
the irlitial error will propaga ie through the calculations and will ultimately appear :IS error bars on the various 

3 atmospheric profiles. We dencle t.he variance in the Doppler residuals at the jth level in the atmosphere by  15 . 
where the superscript D refers to Doppler residuals. The variance in a derived r,uantity Q at the nth lcvri r the 
atmosphere is then [Beer%. 1957). 

where Qn is the value of Q at the nth Icvcrl and is assumed to be E function of the Doppler reiiduals at  altiiuue 11 

and at all higher altitudcs-that is, at all levels j < n. 

It is convenient to dePme two matrices M and S by 

F n r r  

4 That is, the jth element af tire r.;atrw iH*" is the deri,iative of Q at a',iti de ; u rtl, recpect to I 1  at ltitude j ;  
u 

i Q and U art any two general quantities derived ;r ~g lor equal to) the Dopplr,r rl.si,uals. ?he matrix S@ is 
obtained by ,f,urring the indiv~d~~al elenrent, of MB( . Sinye all derived qua:itit:r. are obtained by tic wnward 
integration 'ram the top of the etmosphere, their values at a $wen altitude do rcc, dr'perrd on the resi iuals at lower ' 

altitudes. With a single exap:ion noted I r te~,  a11 the matrices i:scd in tl'ir anziysis rre therefore either lower 
:. . , ' ' 1  trianylrr or diagonal. The rpcihc mthodr ugd  m obtain in^ the rrildom r ~ r o r  in the various atmospheric quantitres . . . I .  . ,. . . i ,.' < . . . .  ', . i j  

# . .  derivcd from the Doppler residunls are enlimerated below. 
; '. .. ' . . )  p 

Phase Pat'. 

. , 

, :.. .. * 
.A. ." , 
' . ?.', . , , .. 

: i .  ' is the t i m  interval between the residual measurements at times ti-., and !, . ';'>is . l ~ ~ ; l i s  iiCiiicnts 
5, , 4::; ,< :-.: of the errors in the phase path increase are 
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nfD = 0 i = l  or i < l  
Y 

1 
= - a,.;+ 1 i > l  and j = !  

2 

1 
=-(bj-li + h j j + l )  l < j < i  

2 

1 

= 3-I-) j = i > l  

The phase path variance is 

where up is the vector whose components are the phase path variances at points j ,  OD is the (constant) vector of 
the residuals variance, and sPD is defined by Eqs. (?) and (4). If we assume a constant At ir! Eq. (3) then it is 
easy to show that the standard deviation in the phase points increases with decreasing altitude approximately as 
f iwhere  n is the number of quadrature poin:s. - - 

IS- MARINER 6 ENTRY 
The magnitude of the errors in phase path resulting 

from the ra~rdom error in the Mariner 6 entry residuals 10 - 
in figure 1 is shown by the error bars in 5gure 2. The = 
maximum standard deviation in phase path is about 
0.63 cycles (out of -8 cycles) near the ground. The 
shaded region in figure 2 shows the magnitude of the 0: 
standard deviation in average phase path (given by the 8 
solid line) resulting from the reduction of 300 cases. 
The maximum value of this standard deviation is about 
0.49 cycles and occurs near the ground. 

Straight-line Approximation to Phase 

ALTITUDE ( km) 
The straight-line approximation to the phase path 

P' is [fieldbo and Eshleman, 19681 . F ~ y r c  2.- Avenge phruc path for Mariner 6 entry ostaind 
from thne hundred duct ions  of Doppler rcsi*~!rt data, 
using different bi c w e s .  The standard deviation in the 

zi avcrqc is indicted by the shaded arm. The error ban in- 
p,: = pi - - ‘$ (6) diatc the magnitude of *he standard drviation 'ue 10 

2X rudom error derived in any single reduction of the data. 

where Zi is the distance of the spacecratt %hind the planet, h is the wavelength of the telemetrv signal, and ori t ...... . .  . 

is the angle through which the ray is bent in traversing the atmosphere. As before, the s~ibs~ript  i denotes the ith 
altitude. The varianie in P' is given by 

$' = s ~ ' ~  . o~ ( 7 )  



where opt is the vector whose components arc thc variances of P' at levels i. The matrix sP'D is con~puted 
using (2)  once is comp~;ted from the equation 

The n~atrices h t P I P  and M ~ ' Q  are calculated froin the definition (2) using Eq. (6) to relate P' and P and a. 
S f D  h ~ s  rlready been ccmputed in d e r h n g  the phase path errors. and M& can be computed fro.n the relation 

where C', is th,: component of the spacecraft velocity along the perpendicular to the Earth-hlars li,ne at altitude i. 
The ntatrlx M ~ ' ~  in the first term on the right-hmd side of (F is the unit matrix while both btPa and IC(& are 
d ~ r s a n r l  and hence their product is diagonal. The matrix MP 2 then differs f i o n ~  IbfD only in the diagonal elements 
which are  en by 

The errors in P' are only sl~ghtly greater than those in P and will nct be shown explicitly. 

Refractivity 

The variance in refractivity is given by 

The refractivities are not given explicitly as functions of the 1)oppler residuals, but axe given in terms of the straight- 
line approximation t o  the phase path by [fie!dbo cnd Eshleman, 19681. 

where AZij is one-half the riistans!: sraversed by the ith ray in the jth layer. The matrix fl required for the 
computation of sRD may !here1 .- obtained from 



whzre # ID  has already been computed in the analysis of P' errors and IblRP' can be calculated from the recursion 
formulae (1  2). If we defme a matrix Z by 

the the matrix mR2' is computed from. 

and 

The standard deviations in rei'ractivity are shown by 
the error bars in figure 3 for the Mariner 6 entry 
case. These standard deviations, l i ~ e  those in phase, 
increase slowly with decreasing altitude. The maxi- - 

e murn refractivity erior occurs near the ground and = c 

has a magnitude of about 0.068 refractivity units. 
C I - 

Near ;he ekctron density peak at 136 km, the P 

standard deviation in refractivity is about 0.046. k > 
The standard deviation in average refractivity 5 
resuiting from the reduction of 300 cases cannot be E 
readily shown on the scale of figure 3. Sear the &! 
ground, this standard deviation in average refractivity 
is 0.039 units and decreases to 0.01 6 units near the 
electron density maximum. 

5 - ---- r-- .--?-, - --- 

MARINER 6 ENTRY 
4- i 

1 

0 100 XX) 300 400 

ALTITUDE (km) 

Electron Density Fbure 3.- A v c r y  refractivity for Mariner 6 entry obtained 
from three hundred reductions of Doppler residual data 

The basic equation for the variance in electron using difFerent b i u  curves. The stan4ud deviation in the 

density is average u t w  mull to be shown on this scale. The error 
b.n indiate the mrgritudt of the s W u d  deviation due 
to random error derived in any singJe reduction of the data. 

The matrix flD required for the computation of flD is obtained from 



We computed MRD in the analysis of the reiractivity errors, and flR is a multiple of the unit matrix, which 
is readily calculated from the relationship between electron density and refractivity 

where j is the frequency of the telemetry signal in Hz. The matiix MSR is thus 

where 6.. is the Kronecker delta. The standard 
' I  

deviation in electron denvty for Mariners 6 and 7 
are shown by the error bars i~: figures 4 and 5. Siwe 
the electron density is p;oport~orisl to  refra-tibity 
these standard deviations Increase slowly with 
decreasing altitude. The shaded areas in figures 4 and 
5 give the standard deviation in avcrage electron 
densitj  resulting from 300 redilctions of the data. 

Temperature 

The temperature variance i~ given by 

Figure 4.- Aver* ekctmn density for Mariner 6 entry obtained 
from three hundred reductions of Doppler residual data using 
different b~as curves. The standard deviation in the average is 
lndlcated by the shaded area. The error bars indicate the 
magnitude of the standard ddevint~on due to racdorn enor 
derived in any single reduction of the data The matrix hfTD required for the computation of 

sTD is r~btained from 

210 . F - ?-- T- ---- - 
MARINER 7 ENTRY 

200- 

I 
180- 4 

where Mm has been calculated in the analysis of 
the refractivity errors, and M~~ is calculated from 
the equations relating temperature t o  refractivity. 
Since the temperature at  the top of the lower 
atmosphere, say T ,  , i: computed from the scale 
height determined by the two uppermost rzfractivity 
points (the two points just below rne ledge), the 
matrix RiTR has a single nonzero element above 
th.e diagonal and is the exception noted previously 
to the set of diagonal and lower triangular matrices. 
The matrix elements at  the initial altitude are 

ELECTRON ENSTY (cni.')sl~-' 

Figure 5.- Same as figure 4 for Mariier 7 entry. 



where E is the assumeci mean molecu!ar mass, is the average acce!eration of gravity in the uppeimost layer 
Ah 2 ,  and k is Boltzn~ann's constant. The temperature aistribution in the lower atmosphere is related to 
refractivity by [ W d b o  and Eshlrmn, 19681 . 

ho refers to  the initial alt~tuile and h t o  snme altitude below ho. If we u:s the trapezoidal rule t o  integrate 
Eq. ( 2 5 )  then the disgona: matrix elements of klTR are 

where 

and the off-diagonal elements are 

The standard deviations in temperature are shown by the error bars in figures 6 and 7. The shaded areas in figures r 
6 and 7 give the standard deviation in average temperature resulting from 300 data reductions. 



MARINER 6 7 
NIGHTSIDE 

I ~gure 6.- Average dayside temperature profiles for Mariner 6 Figure 7 . -  Same as figure 6 for the Mar~ner 6 and 7 nipht\~dc 
and 7 obtained from three hundred reductions of  Doppler temperaturo. 
rcsidual data uslng d~fferent bias curves. The standard drv~at~ons 
in these averages are ind~cated t.) the shaded areas where it is 
large enough to be clearly shown. The error bars indicate the 
magnitudes of the standard deviations due to  random errors 
der~ved In any single reduction of the data. 

DISCUSSION 

The analysis of the propagation of random error in the Doppier residuals through the data.reduction procedure 
shows that physical properties of the Martian atmosphere such as the vertical distributions of electron density and 
lower atmosphere temperature can be determined with good accuracy. The standard deviation shown by the error 
bars in figures 2 through 7 are properly regarded as lower lim~ts to the ac!clal error present in these quantities since 
the effect of systematic errors cannot be rigorously anaiyzt.d. We have estimated t h ~  effect of systematic errors by 
ar!-:?zing a large number of near-zero ledge cases obtained after subt:acting a bk; curve fitted to several different 
sets of residual points in the pre- and postencounter periods. 

Generally, that standard deviation in the average prorile lor these (.ass is less than the standard deviation in 
any one profile due to random errors in the residuals. The bias ret~cval technique employed ir. the data reduction 
thus gives reliable resu!ts 3s long as the constraint of a small refractivity ledge in the middle airnosphere is imposed 
and it appears that the effect of systematic errors can be ncarly eliminated by subtracting a least squares fitted bias 
curve from the residual data. We cannot prove however. within the confin-s of the occultation experiment itself, 
that our results are valid when systematic errors are preserrt, ?ut if they are assumed valid then the random error 
limits should provide a realistic estimate of the actual uncertainty in physical properties derived from the Doppler 
residuals. 
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DISCUSSION 

Kliore: This is an excellent piece of work. However, another source of systematic error is the fact that you have 
to choose where to remove the refractivity bias once you have obtained the refr~ctivity curve. I found that 
that does make a significant difference in the surface conditions of pressure ar.d temperature. But the temp- 
eratures are still within your error bars. 

Stewrt: In this procedure, if you insist on getting a zero ledge in the f i r ~ i  place then we really have to remove 
a refractivity bias before you analyze the data. Of course, you never get to zero, bur you can Get down to 
lo-. 



E R R O R  ANALYSIS OF BENT-RAY RADIO OCCULTATION M E A S U R E M E N T S  

R. L. S t .  Germain 

Ray t h e o n  Company, S u d b u r y ,  Massachuset ts  ' ~ 7 3 ~ 1 1 6 0 0  
The radio occultation method ds tudying  planetary atmospheres has been uied successfully to study the 

atmospheres of several planets. Eadial refractivity profies of the Martian atmosphere have been achieved by 
Mariners 4.6 and 7 and of the Venusian atmosphere by Mariner 5 IFjeldbo and Eshlenlarl, 1968, Fjeldbo et  al. ,  
1970: Gliare er 01.. 1?65: ;iliore er a/. . 19701 . The Mariner '71 orbiter is expected to  provide up to several score 
of occulation data at various points of the Martian surface, and the Viking '73 dual orbiter to Mars will upgrade the 
spatial coverage and measlrement accuracy even more. 

There are two types of experimental measurement errors of the Doppler data associated with the radio 
occultation. random and systematic. Random errors are due to  thermal noise in the transmission channel. and 
the phase lock loop, and quantization error in the digital circuitry. These are called wise type errors. The system- 
atic errors are due to  geometric uncertainty and equipment phase instability. It is assumed that a sufficient ccrrection 
may bc made to render the systematic errors small in comparison to the random errors. 

This paper concerns the amount of uncertainty, due to  random measurement errors, in the refractivity profiles 
reronsiructed by this type of indirect sensing experiment. A class of refractivity profiles is defined which approxi- 

' rilately (within a certain uncertainty) fit the s2t of measured data. Bounds are placed on the extent of this class of 
solution profiles. To  accomplish this, we must examine (1 )  the sensitivit! of the reconstructed refractivity j)rofiles 
to errors in the measured quantity, that is, the stability of the inversion prr~cess to rneasuremznt errors; and (2) the 
statistics of the errors in the measurement. 

We present first a brief outline of the direct problem. Then we introduce a linearized Taylor expansioll about 
a given atmospheric model to  determine the response of the inversion operator to  perturbations of the Doppler data. 
Numerical calculatio~s of the rms refractivity error (standard deviation) are presented for typical planetary atmospheres. 
A region of cor:fidence of the reconstructed profiles is related to  the standard deviation of the Doppler error. 

In the radio occultation experiment, the ray between the spacecraft and the earth tracking station is refracted 
&ad retarded as the ray path intersects the planetary atmosphere. This change in phase-path length introduces a 
Doppler shift. With the positions of the spacecraft, planet under study. and earth m o w n ,  the geometric Doppler due 
to their relative motion may be subtracted from the measured Dcppler. The medium-induced Doppler frequency 
residual is the input t o  an inversion scheme that computes, as the end product, a radial refractivity profile. The direct 
problem involves integrating the differential phase path length over the ray path. The resulting phase shift (in cycles) 
is 

where 

k" = f/c 

r, = radius of maximum extent of the planetary atmosphere 

rp = closest approach radius of the ray path 



The ray parameter is a characteristic of each ray and 
is defined as 

p = nr sin i 

Let 

t) = tzr 

r! = index of refraction 

r = planetocentric radius 

i = angle defined in figure I .  

In all practical situations, only a finite amount 
of data erists, ar~d therefore ihe Doppler record is 
uniquely determined by its projection onto a finite 
dimznsional space. Consider a metric space D 
containing all possible Doppler residuals and another 
metric space R containing all possibl: radkl refrac- 
tivity profiles. Every Doppler record and refractivity 
p!-ofi!t h represented by a vector in the corresponding 
space. Equation ( I )  defines a rransformo:ion operator 
that relates each atmospheric model vector to a Doppler 
record vector (fig. 2); that IS, 

@ . -  o(n) (2) Figure 1 .- Ray geometry. 

AH real data are contaminated by measurement 
errors. We define the error vectors in the Doppler 
phase residual and model parameter spaces by INDIRECTLY SENSED MLASURED QLIANTITY 

QLJANTlTY 

- C # E # - # ~  and € , , = n - n 0  (3) STRUCTURE (MODEL) L P P L E H  PARALIFTER 
PARAMETER SPACE SPACE 

where a and n are the measured vectors in the 
Doppler phase and refractivity model spaces, respectively. 
The subscript o  represents the true (actual) quantities. 
Note that 

= ( n o )  and 9 = a ( n )  (4) 

We may expand each component of the refrac- 
tivity profie vector n  by Taylor's formulrr for a 
scaler-valued function of several variables. Grouping 
the terms in matrix form and applying Eq. (3) yields 
a multidimensional Taylor series (expansion of a 

Figure 2.- Transfornution between the atmosphere's model 
vector and Doppler record vector. i, 

& 
1 



vector-valued function of several variables) about a given atmospheric refractivity mode!: 

en = rl ea + * * *  hi@er order terms 

where 

The response to perturbatior? (errors) can therefore be linearized about a, by neglecting quadratic and high ~ r d e r  
terms because e4 is small. The lineai approximation to the perturbation response is, from Eqs. (3) and ( 5 )  

The model parameter error vector 1s "proportional to" the Doppler phase error vector whe:e the constant of propsition. 
ality is dependent on the given atmospheric model. From Eq. (7) it can be shown that the variances of the refractivity 
and Doppler phase vectors are lirlearly related by the factor K?. when the Doppler phase error colnponeors are assumed 
to be statistically independent: 11 

where and 6 are the variances of the refractivity and phase vector. 

The K matrix represents the incremental response al the ith refracticity profile compo:~ent to i\n incremental 
chany in ,he ith Doppler phase component. The colurnns of the K matrix represent the directional derivatives of 
the inverra function o-' (assuming a unique inverse exists). From Eq. (4) and the definition of the directional 
derivative 

may be used to evaluate the K matrix directly. When the refractivity of the planetary atmosphere is small, it may be 
shown that the operatcr o is linear. In matrix form: 

Taking the inverse 

from this form we r e  that 

- 
K = a-' 



If we examine the operator o apply the definition of p and q ,  a l ~ d  discretize the integrand of Eq. ( I )  by assunling 
spherically stratified concentric shells, we obtain the summation 

Qi = C n sec i A r  k ~k 

where ijk = arigle i at the kth shell and the jth ray, and Ar  i., the shell thickness, and x c  iik is k i i o ~ n  for the 
jth ray path. Taking the inverse of the matrix form of Eq. (9) results in the matrix inberse operator o-I. 

We next turn our attention to relating the variance vect.jr of the received Doppler phase record to known 
quantities. We know the Doppler phase is the time integral , ~ f  the Doppler frequency. The Doppler fiequency shift 
1s sampled eve;;. At sec, yielding 

where f,, = , n th  Doppler frequency sample. P ssulning the Doppler frequency shift errors are statistically 
independent. the variance of the sum is equal tr the sum of the variances. 

where Df is the variance of the hi;p!er frequency shift. '#hen we assume the mean frequency error is ~ e r o ,  the 
Doppler frequency shift variance is equal t o  ihe mcan q u a r e  Doppler frequency measurement noise: 

D;;' = D;' = rrns frequency noise i = 1,2,3, . , . (1 1) 

Using Eqs. (8), (9), and (lo), the standard deviation of the N unit refractivity divided by the 
D;" [N unit = (n - 1 jX l o b ]  is plotted in figure 3 assumi?g 200 I-second samples. Thc 3u(*3u) uncertainty 
reghn about a given nrodel (Mars) i?: shown in figure 4 for an rms noise error of  0.10 Hz (approximate value for 
Mariner 4). 

An uncertainty in the measured q:lantity space has been transformed to an uncertainty in the indirectly 
sensed quantity space by linearizing the response t o  s n i d  measurement errors. A region (volume) of confidence 
in the Doppler vector space is defined in rile conventional manner and is assumed known. ',fie correspondirrg 
region (volume) in the indirectly sensed quantity space is the confidence region of the modal space. The 
uncertainty region has been plotted for several planetary atmospheres with a physically rea11:stic assumption 
of the nature of the Doppler frequency error. This is intended t o  yield a quantitative appreciition for the 
deviation of the solution model caused by realis'iic values of random additive noise in the Doppler data. 
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Figure 3.- N unit standud dcvirtlon for a unit Doppler 
standard deviation. 
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AN OCCULTATION SATELLITE SYSTEM FOR DETERMINING 

PRESSURE LEVEES IN THE ATMOSPHERE 

Steven Ci. Ungar and Bruce B. Lusignan, Stanford U liversity 

ABSTRACT 

An operational ! ~o.satellite microwave occultation system will establish a pressure rtftrence level to be used in 
fixing the temperature-pressure profile gemrated by the AS infrared sensor as a function of altitude. In the final error 
analysis, simulated data for the SIRS sensor were used to .est !he perforlnance of the occultation system. 

The results of this analysis indicate that the occultation system is capable of measuring thr ~ltl tude of the 300-mb 
level to w~thin about 24 mrms, given a maximum error of 2°K in the input tempmillre profile. The effec:s of water vapor 
can be corrected by suitable climatological profiles, and improvements in the accuracy of the SlRS instrument should 
yield additional improvements in the rrrformance o i  the occultation systrm. 

The final rtage of the error analysis for the two-satellite n~icrowave occultation pressure reference Icvcl s\ stem has 
been completed. In this stage, simulated data for !he SlRS infrared OR) sensor were used to test the performance of the 
occultation system. The effect of theoblatenessof theearth was included in the analysis, as was the effect of water vapor. 
The resultsof this analysisare in agreement with previous results; that is, the occultat~on system is capable of rneasurlng the 
altitude of the 300-mb level to within about 24 mrms, given a maximum error of 2°K in the tempcrdtu~e profil* used as input 
for the system. 

The simulated SIRS profiles were provideti by Dr. William Smith of NOAA, and consist of 206 profiles of temperature 
versus pressure, with temperature given at :%J pressure levels between 1000-mb znd 0.1-mb. A typical data set is shown 
in figure 1. Each level gives a simulated temperature "sensed" by the 1R instrument, a temperature "error" (how this "sensed" 
temperature differs from the true trmperature!, and the errcr in height resulting from the accumulated error in temperature. 
In addition, each set tabulates rms errora ior various ranges of pressure (e.g.. 700 to 400-mb, 400 to 100-mb). 

Half of the data sets give simulated profiles for a seven channel fonsor, tht other half for a nine char~nel sensor. Only 
data sets for the pine channel xnsor were used in this error aiialysis. Tl~e  data sets are divided into three grorups labeled 
wt 2, set 3, and set 4 according to the latitude of t h  stations in the set These latitude ranges 3re indicated in table 1. 

I iir pressure-reference level program was rim ds fcllows. The "senwd" TABLE I.- LAI ITUDL. RANGLS 

temperature profile and the corresponding temperature "errors" were corrr. Set NU. 
Lot. 2 3 4 

bined to give ihe "true" temperature profile. This profile was used as the Min 2SN 3 8 N  S 1 N  
"reference atmosphere." Max 3 7  N 5 1  N 76 N 

The original "sensed" temperature profile was used as "measured data." An atmosphere was constructed from this 
profile and shifted vertically untii the results of ray tracing through the vertkul~y shifted "measured" profile matched the 
results of ray tracing through the "refercnce atmosphere." In both the "refercnce atmosphere" and the "measured atmo- 
sphere" portions of the propan;, a random error of absolute magnitude 0.5 m ivac added to the pnnse defect to simulate 
the uncertainty in satellite spacing. 

The resulting altitude error at each of nine pressure kvels was recorded. A typical output sampie is shown in 
figure 2. Statistical summrics for each of the three latitude ranges arc given in tables 2 through 7 Tables 2 through 
4 give the results for a rrte!lite reparation of 7863 lun, while tabks 5 through 7 give the results for a satellite 
separation of 7888 km. The greotcr the satellite reparation, the lower the closest approach altitude of the ray. 
Tab:! 8 lists the closest approach altitudes for each of the a r e s  shown in table 2 through 7. The results are a l x  
shown in fgures 3 and 4. 

A smaller number of profrles were run with water vapor introduad into the reference atmosphere portion of the 
program. The watar vapor information consisted of the associated rawinsonde relative humidity profiles. A simplistic 



F i  1 .- Typical input data act. 





TABLE 2.- STAT lSTlCS FOR 14 STAT IONS 
SATELLITE SEPARATlON 7863.0000 km - SET 2 

Level (mb) Mean SD RMS Min Mas 

500.000 7.70 14.05 16.02 -16.89 28.33 
400.OOO 8.18 16.42 18.35 -21.21 30.48 
300.000 17.64 28.40 33.43 -30.50 53.93 
200.000 24.65 35.57 43.28 -25.81 92.03 
140.000 2.64 33.55 33.65 -55.26 61.61 
100.000 0.57 27.10 27.10 45.36 58.87 
70.000 4.56 28.17 28.54 42.50 56.64 
50.000 11.02 38.20 39.76 -58.88 91.92 
30.000 10.55 37.38 38.84 49.27 58.25 -- 

TABLE 3.- STATIST lCS FOR 20 STATIONS 
SATELLITE SEPARATION 7863.0000 km - SLT 3 

Level (mb) Mean SD RMS Min Ma\ 

TABLE 4.- STATlSTlCS FOR 18 STATIONS 
SATELLITE SEPARATION 7863.0000 km - SET4 - 

Level (mb) M a n  SD RMS h l i t  Max 

500.OOO 12.38 22.83 25.97 -:!7.09 48.48 
400.000 9.56 25.29 27.04 -31.75 42.22 
300.000 4 . 8 2  25.32 25.33 -49.44 38.81 
200.000 12.11 . 22.26 25.34 -1 2.92 72.49 
140.000 14.80 29.62 33.11 -21.11 95.06 
100.000 15.39 33.36 36.74 -38.29 105.33 
70.000 11.87 29.70 31.99 -41.17 76.05 
50.000 1.35 19.38 19.42 -31.85 30.24 
30.000 -21.75 36.20 42.23 -78.40 43.18 



TABLC 5.- STASlSTlCS FOR 14 STATlONS 
SATELLlTE SEPARATION 7888.0000 h -- SET 2 

Level (mb) Mean SD RMS Min Man 

500.000 2.72 16.82 17.04 -32.38 30.76 
400.000 3.20 17 45 17.71 -28.07 28.X 
300.000 12.66 15.84 20.27 -14.57 34.83 
200.000 19.67 22.48 29.87 -13.67 59.76 
140.000 -2.34 32.35 32.44 -47.95 48.25 
100.000 4 . 4  1 28.62 28.96 -62.93 42.37 
70.000 -0.4 2 23.34 23.34 47 .52  32.24 
50.000 6.04 29.24 29.86 -32.20 68.65 
30.000 5.57 25.40 26.00 -44.91 44.65 

TABLE 6.- STATISTICS FOR 19 Sf ATIONS 
SATELLlTE SEPARATION 7888.0000 Lrm - SET 3 - 

Level (mb: Mean SD RMS Min Has 

TABLE 5.- STATISrlCS FOR 18 STATIONS 
SATELLITE SEPARATION 7888.0000 km - SET A 

Level (mb) Mean SD RMS Min Max 

500.OOO 14.07 35.69 38.36 -29.69 90.63 
400.000 11.25 28.34 30.49 -17.20 76.93 
300.000 0.87 27.49 27.51 40.40 56.26 
200.000 13.81 49.56 51.45 -56.19 103.93 
140.000 16.49 58.22 60.5 1 -60.69 133.87 
' 00.G30 17.08 54.47 57.08 40 .43  140.75 
70.000 13.56 50.62 52.40 47.56 127.72 
50.000 3.04 49.95 50.04 -79.01 1OB.i i3 
30.000 -20.06 63.61 66.70 -134.16 83.86 

TABLE 8.- DR\ ATMOSPHERE 

sat Ser, 
786 3 

Set No. Prof Min. rlt. Max. rlt. 

7888 

No. Rof Min. dt. Muc. dt. 



water vapor correction WIS used in the second half 
("measured data" portion) of the program. This 
simplistic correction consisted in each case of two 
humidity prcfiles, representing either a "high" va!ile 
of' water vapor or a "low" value (see fig. 5). The 
appropriate corrective profile was chosen based on 
the surface value of the rawinsonde water vapor 
profile. All the data sets from sets 3 and 4, and 
one of the profiles from set 2, used the lower 
corrective profile; the remal-ling profiles in set 2 
used the higher corrective profile. The results of 
this run are summarized in tables 9 through 14. 
Tables 9 through 11 give the recult; for a satellite 
separation of 7863 km, and tables 12 through 14 
give the results for a satellite separation of 7888 km. 
The corresponding closest approach altitudes are 
listed it1 table 15. The results are shown in figures 
6 ar~d 7. 

 fig^ re 3.- Standard deviation and rma error ~ n u v  pressure. 
hy atmosphere satellite separation 7863.0 km. 

Fiyie 4.- Standud d r~,tion uul nnr e m  nrrur prcrwe. 
D n y  atmu,,nere satellite separation 7888.0 km. 

, . ' .  8 L, , IVa .  r.11.. 1' - -11 
" or..,,, 

,+,,,.* ,,,.. ., -.: . .r.,,,.. : h t .8 .  

8 .  .l n*., ," , I  I , . "  - _ _ _ 
,,.... ' .""',".' .,,,,.". ., ..( ,. l l , . , .  1 . 1 I 1.1 

Figure 6.- Standud deviation and rms error versus p ~ u u r e .  
Wet atmosphere with simplistic climatic comction satellite 
reparation 7863.0 km. 

Profiles bnrw adapted t r a  Fimre 6. Hutchwrmm. D.C., "Water Vapr 18 
the ~ u o r ~ e n , "  Wurdity and Moisture, Vol. 2, lU5, pp. 4-404. 

The sbow pr>ttIea wm extrapolated to 2S h by urn* of tk. aquatlm 
e(z l  - :?) mxp[0.5476 * (2-7)). .her* l Ir the n t e r  vmpor pruemrn, 
in m i 1 ) t t  rr. and z Is the altitude.  in kilamtwrm. F&JR 7.- Standard deviation and rmr error mrur pnuufc. 

\Yet atmwphcrc with simplistic climatic comction satellite 
rcpurtion 7888.0 km. 



TABLE 9.- STATISTICS FOR 6 STATIONS 
SATELLITE SEPARQTION 7863.0000 km - SET 2 

Level (mb) Mean SD RMS Min Mas 

5C l3YW) 13.12 16.80 21.31 -7.95 40.43 
400.000 8.3 1 20 7 i  21.85 -23.56 29.32 
300.000 15.22 26.48 30.54 -27.64 40.54 
200.000 34.5 1 j4.32 48.67 -2.97 93.47 
140.000 32.68 47.46 5?.63 -18.32 80.53 
100.000 19.16 31.17 36.59 -26.20 59.18 
70.000 6.13 43.39 43.82 -56.23 46.92 
50.000 11.06 59.10 60.13 -52.70 83.33 
30.000 15.58 26.30 30.57 -19.93 46.52 

TABLE 10. - STATISTICS FOR 8 STATIONS 
SATELLITE SEPARATION 7863.0000 km - -  SET 3 

Level (mb) Mean SD RMS Min Max 

TABLE 11.- STATISTICS FOR 7 STATIONS 
SATELLII E SEPARATION 7863.0000 km - SET 4 

Level (mb) Mean SD RMS Min Max 



TABLE 12. - STATISTICS FOR 6 ST4TIONS 
SATELLITE SEPARATION 7888.000'J km - SET 2 - 

Level (mb) Mean SD RMS hlln Ma r 

500.000 -53.1 1 37 21 64.85 -97.58 8.24 
400.000 -57.93 41.29 71.14 -1 22.42 -2.86 
300.000 -5 1.02 15.27 68.21 -1 26 50 0.03 
200.000 -31.72 41 98 57.52 68 .77  61.2X 
140.000 -33.55 49.06 59.44 -39.27 48.35 
100.000 -47.07 37.68 60.29 -77.58 27.00 
70.000 -60.11 60.83 85.52 -142.15 9.67 
50.000 -55.17 73.51 91.9! -151.57 12.85 
30 000 -50.65 46.45 68 73 -1 18.79 5.25 

TASLE 13. - STATISTICS FOR 8 STATIONS 
SATELLITE S'.PARATION 7888.0000 km - SET 5 

- 

Level (mb) Mean 
- -  

RMS M I ~  

77.00 -12 32 
70.96 -31.52 
67.77 -5 1.88 
81.86 -32.43 
94.18 -30.39 
91.42 43.29 
80.77 -21.67 
71.27 -2.69 
75.44 -1.54 

TABLE 14.- STAnSTlCS FOR 7 STATIONS 
SATELLITE SEPARATION 7888.0000 km - SET 4 

Level (mb) Mean SD RMS Min Maa 

500.000 15.78 48.9 1 51.40 -34.20 99.85 
400.000 14.21 42.20 44.53 -37.26 85.28 
300.000 0.01 46.03 46.03 -67.46 67.63 
200.000 4.18 64.08 64.22 -89.11 92.39 
140.000 8.06 60.09 60.63 -94.93 75.12 
100.000 16.53 49.55 52.23 -68.07 67.30 
70.000 20.07 44.89 49.18 -41.15 72.56 
50.000 5 .OO 59.20 59.41 -65.16 75.32 
30.000 -39.7 1 93.34 101.44 -145.74 94.39 

TABLE 15.- WET ATMOSPIiERE WITH SIMPLISTIC 
CLIMATIC WRRECTION 

Sat Sep 

Set No. Rof Min. 7"' alt Max. ? alt. No. Rof Min. alt. Mah. alt. 



To determine the effect of an improvement in 
the water vapor correction technique--that is, t>e use 
of more sophisticated techniques than the simpihtic 
method described above-the same data were run with 
the exact rawinsonde water M p r  profile ustd in both 
the reference atmosphere and in the "measured" atmo- 
sphere. This is equivalent to an ideal water vapor 
correction. Results of this run (for the 7863-km 
satellite separation only) are given in tables 16 through 
18, and in figure 8. The correspondicg closest approach 
altitudes a n  shown in table 19. 

Finally, to determuit the effects of the temperature 
errors on the system, the analysis of six low altitude . 
proNes (without water) was repeated, this time using 
the rzference temperature -dues (the values without any 
error) in both the reference atmosphere and in the 
"measured" atmosphere. This is equivalent to  having 
ail ideal temperature sensor. The result of this run is 
shown in figure 9, for the 7863-km satellite separation 
only. 

la t i tude  rurfc lSO - 30' N 
6 PrOfilC. 
Standard h v l a t i o n  - ms- - - 

C I I Q  WI 

u t s t r  .m a'-12 * USM.~. - sm.41" s I.,&.* - sts--* \ 
I R.IIU. a rnrlt.. 9 mtztn 

IW. . ) . l .~ I . .  I- _ -. 
CIII L. m 1 1 1 1 1  -1 e q  td~*.wd * n t b n l  l u  

Fiyrr 8.- Studud  deviation d nnr error wnur peraue. F i  9.- Standard deviation and nnr enor wnus 
Wet atmosphere with ideal water vapor correction nteUite pmure. I d a l  tempen;tm profile, dry 
~puation 7863.0 km. atmosphere. 

ANALYSIS 

In f i ~ n s  3,4,6, and 7, the solid line represents the standud deviation of the error (in meters) while the stipled 
line indicates the m error; both are shown as a function of pressure. The difference between the standard deviation - .  
and the rms valbes at each pressure level is an indication of the size of the mean error at this Itwel. The rms value is 
equal to the square root of the nun of the squares of .he standud deviation and the mean (tma = sDa + meana). 

A cunory examination of these figures shows that the curve of altitude error versus pressure follows a typical 
pattern, regardless of whether the atmosphere is wet or dry, or, if wet, how the water vapor error is corrected. 
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TABLE 16.- STATISTICS FOR 6 STFTIONS 2 SATELLITE SEPARAThON 7803.000 ',m -- SET 2 

Level (mb) Mean S D RMS Min Ma\ 

500.000 10.37 8.66 13.51 -0.26 2 1.08 
400.000 5.56 15.49 16.45 -19.55 28.87 
300.000 12.47 22.52 25.74 -23.63 45.27 
200.000 31.76 27.86 42.25 1 .?4 71.97 
1.'0.000 29.93 45.59 54.54 -23.13 R9.99 
100.WO 16.42 27.90 32.38 -18.49 46.27 
70.000 3.38 38.68 38.83 -54 34 56.15 
50.000 8.31 55.82 56.43 49.15 92.56 
30.000 12.83 24.88 28.00 -15.91 55.76 

TABLE 17.- STATISTICS FOR 8 STATIONS 
SATILLITE SEPARATION 7863.0000 k ~ n  - SET 2 

Level (mb) Mean SD RMS hlin Max 

500.000 13.91 20.27 24.60 -10.24 38.74 
400.000 5.59 17.51 18.38 -19.58 27.90 
300.000 -3.74 '8.36 18.74 -39.93 24.18 
200.000 13.70 28.19 3 1.34 -20.49 66.59 
140.000 25.67 39.40 4?.02 40 .89  92.33 
100.OOO 18.75 37.49 41.92 -53.79 77.89 
70.000 13.02 26.43 29.47 -32.17 61.07 
50.000 12.74 12.80 18.06 2.70 42.34 
30.000 18.61 32.47 37.43 -46.31 67.28 

TAdLE 18.-- STATISTICS FOR 7 STATIONS 
SATELLITE SEPARATION 7863.0000 km - SET 4 - 

Level (mb) Mean SD RMS Min Ma\ 

500.W10 20.38 26.00 33.03 -25.66 4 8 . 0 3  
430.000 18.81 25.17 31.42 -31.70 45.03 
300.000 4.60 1 1.40 12.29 -9.59 19.66 
i00.000 8.78 11.17 14.20 -8.24 16.14 
140.000 12.65 20.65 24.22 -13.66 34.iO 
100.000 21.12 27.21 34.45 -28.50 58.59 
70.000 24.67 29.83 38.71 -25.05 71.14 
50.000 9.60 25.67 27.41 -20.39 45 .94 
30.000 -35.12 44.69 56.83 -100.97 18.59 

TABLE 19.- WET ATMOSPHERE WITH 
IDEAL C O R R E ~ I O N  

Sat Sep 

Set No. Prof Min. dt. Max. ult. 



Typically there are two minima and two maxima. One of the minima generally occurs in the neighborhood of 300 
to 40(! mb, and the second in the neighborhood of 50 to 70 mb. The maxima are near the 30-mb level anti between 
100 and 200 mb (which, for most profiles, is the pressure level of the tropopause). 

The pattern may be explained in the following way: the minimum at the lower altitude, near the 300-mb 
level, is associated with the closest approach altitude of the ray path (indicated by the vertical line in each figure). 
The system is most sensitive to atrnospheric effects 
in approximately the lower 3 km of the ray path, so 
the absolute value of error in this neighborhood tends 
to be minimized. 45 

The overall pattern is due to the errors in the 
temperaturc profile, which generate errors in altitude 
when th temperature-altitudc profile is constmcted 
usicg the hypsometric formula. This effect is illustrated 
hy the absence of any extrema at all in the results of 
the ideal temperature prcfde c a r  (fig. 9). Here each a 

level has the same error as that of the 300- or 400-mb 
level. 

The magnitude of the error is, of course, of 
primary interest. We see in figures 3 and 4 that the 
rrns and standard deviation of the error below 300 mb 
are generally around 20 to 30 m. Figure 10 shows the 
300-mb error for each of the profiles used in the 
generation of figure 3, plotted as a function of rms 
temperature error in the 100- to 400-mb pressure 
range. While there is no clear regression line, it should 
be noted that the upper left-hand portion of the chart 0 

0 - ,  a , J 
is free of any data points. This indicates that a low rms o 0.5 I - 1.5 2 2.5 3 3.5 
value of temperature error in the 100- to 400-mb 

TEMPLRATURE RMS ERROR l°K) 

pressure range invariably results in a small altitude error F&urc 10.- ~ltltudc error at 300-mb venw temperature rms 
at the 300-mb level. It is therefore reasonable to expect m o r  (prruurc range 10C400 mb). 

that improvements in the performance of the SIRS 
instrument will lead to concomitant improvements in the performance of the occultation system. (It should also 
be noted that a high rms value of tempelatwe errot docs not necessarily lead to a large error in the altitude o i  the 
300-mb level, as witnessed by the large number of points in the lower rut-hand portion of the chart.) 

Comparison of fwres 3 and 4 shorn that it is possible to choose a satellite separation for each of \he latitude 
langes such that the rms and standard deviation rt the 30CLmb level is ku than 26 in. We do not suggest that there 
must necessarily be more than one atellite pair in the aystem, but merely note that m i m u m  ray altitudt! b an 
important prameter that should be cholen in such a way a to optimize the system performance. In each of the 
figures, the lower minimum occurs in the range of the closest approach altitude. 

Turning to figure 6, we sac that the simplistic water vapor correction gives remarkably good results. RMS and 
standard deviation at the 3Wmb level and below are once again in the neighborhood of 20 to 30 m. That the errors 
are due 10 the failure of the corrective profile to adequately acci int for the water vapor is illustrated by figure 8, -- 
which gives the multr for the "ideal" water vapor correction. ; , retults shown in figure 8 lou ld  be compared 
to the corresponding curves of figure 3. It b apparent that erron introduced by water vapor can be eliminated b?, 
properly correcting for the water vapor. If exact water vapor corrections are not avai)rbk, fuure 6 shows that 
m n  the molt simplistic of corrections, in which r standud water vapor profile b uead to correct for water v%por 
effects, can haw dmmatic results. The effect of not correcting for water vapor at dl is to obtain errors on the order C 

of hundreds of meters. '5 
if 
.$ 

#. . 

3-75 .$ 
f 
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T i e  effect of varjing minimum ray height on the system perforr&nce in the presence of water vapor is 
illust:ated in figwe 7. We see that the system operating at  the lower ray height (greater satellite separation) yields 
geqerally poorer results than the system operating at  the gnater ray height (smaller satellite separation). Since water 
*,dpor concentration fails off rapidly with altitude (scale height on the cider of 2 km), this is not a particularly 
surprising result. Proper water vapor correction is more important as the ray passes into regions of high water vapor 
content. Although it was not possible t o  run the experiment of figure 8 for the lower ray height, presumably an 
"ideal" water vapor correction would have the same dramatic result in this case as it had at  the higher ray altitude. 

CONCLUSIONS 

Bawd on the analysis CI' the simulated SlRS data, we can say with confidence that the microwave o;cultation 
system is capable of establishing a 300-mb przssure reference kvel to  within about 24 m. The effects of water vapor 
can be corrected by suitable climatologia! profiles. Our work has shown that even the most simplistic climatological 
approach results in a dramatic irnproveclent in accuracy; more sophisticated methods are bound to be even more 
effective. 

Improvements in the accaracy of the SlRS instrument will yield improvements in the performance of the 
occultation syst.em. Most o i  the errors in the output of the system (neglecting those due t o  water vapor) are due 
to error in the i,nput telnprature profile. As these input errors are reduced, system performance will be significantly 
improved. But even ~ ~ t h  the present SlRS instrumentation, the microwa\e occultation system gives results that 
are acceptable to ,  snd badly needed by, the meteorological community. 



Glle: Does this give the absolute altitude of the pressure reference above the surface? 

Lwignon: Yes. It is referred to as the geopotential of the earth. 

Gille: How sensitive ir that to orbit variations? 

Lurignun: The system relies on knowin# differential movement between the ytellite, to the order of 0.5 m. 
It b similar to the transponder wed in Venus and Mars experiments. 

Reinlsch: You are making phase measurements; at 64x11 wavelength, how great is the uncertainty of the 
separation and how do you take care of *,~odulo 2n phase change? 

Lusignun: There are two systems, parallel to those of the M d m r  flights. There is r PAW system, a coherent 
transponder, which giv~s  an accuracy of 3-cm. This b a differential measurement. The second system has 
an FM modulation superimposed that gives an absolute referena to the order of 0.5 m. 

hkighr: Is there an ionospheric version of this experiment under consideration? 

Lusignun: Yes. Dr. Grosi has proposed dud satellite ionosphere studies. 

Rodgem: What effect will horizontal inhomogeneities in water vapor and temperature have on your 
measurements? 

Lusignrm: We've run tests with horizontal profiles in them. Profiles across the path have negligible effect. 
Along the path we are #nsitive to an integnted average over about 300 to 500 km. We measure the weighted 
averrge of the pressure in that d i r tma.  

Reinkh: Do you expect a lot of phase scintillation that would distort your measurement? > 

Lusignun: In the lower part of the atmosphere where then is water wpor, we do get some phase scintillation, 
but it does not affect our group path measurement. We do expect some clean multipati~ in the lower part 
when in the range 500-700 mb. Normally we operate at an a1tituc:le above where thb occurs (above 300 mb). 
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4. IONOSPHERIC SOUNDING 

As in Chapters 2 and 3, we are concerned here with active radar sounding, both monostatic anti bistatic. but at 
wavelengths such that the probing signals are negligibly affected by the atmosphere, but are reflected by the iono- 
sphere. T3e subject is a halfcentury old, and quite sophisticated procedures have been developed to invert the radar 
data to yield profiles of election density. The experiment has been performed only on the earth's ionosphere. 
although it is applicable to any planetary ionosphere. Curiously, quite different techniques ~ n d  algorithms are in use 
for "bottomside" sounding and for "topside" sounding. They are described in the following six papers. A com- 
panion paper on VLF sounding of the D region may be found in Chapter 8. The papers all deal with pulse, or amp- 
litude, sounding of the ionosphere; i.e., oc!y the time delay characteristics of the radar echoes are used. More 
sophisticated techniques using, for exa~~p le .  ?haw, direction of arrival, or poiarization have appeared in the litera- 
ture but have not found zxtensive application. Certain of the papers in Chapter 6 on electromagnetic scattering in 
fact relate to this latter subject. 

J .  E. Jackson or3anized and chaired the session devoted t c  ionospheric sounding. 
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ABSTRACT * - - 

A general review is given of the inversion techniques used to derive the ionospheric ele~tron density ;V as a 
function of altitude h  from group path P' versus frequency f measurements obtained by vertical irxldence iono- 
spheric sounders. The paper discusses the medium under inv?stigation, the exprirnental tectrliquies used to obtain 
the P'(n  data, the theoletical considerations leading to the ictegral equati~n elating P 'W to N ( h ) ,  and the 
assumptions made in the inversion process. The lamination inversion technique is then p~csented, with special attefi- 
tion given to mathematical difficulties arising from discontinuities in the P ' w  function, infinities in dle integrand. 
and in some caws unknown integration limits. Methods outlined for minirnizinp, the uncertainties due to discontin- 
uities include the w of ndundrnt information - that is the two distinct P ' { n  functions avdabie for a given N ( h )  
profile - and the use of models based on statistical data. hlathematical procedures ate discussed that ir.crease signifi- 
cantly the efficiency and accuracy of the required numerical integratior.;. The accuracy of the inversion technique 
is deduced by comparing the resulting N(h)  profile with N ( h )  data obtained by simultaneous but independ:nt 
observations. 

INTRODUCTION 

'r 
I 
I Ionospheric data obtained by the vertical incidence pulse sounding technique have been used extensively to 
i derive profdes of electron density N versus altitude h. The calculation of N ( h )  pro f i t  from the P r o  sounder- 
! data requires the invemon of an integral equation of the form: 

. .-.. : i:. -! . . where . . 
',,. . - 

p' = apparent nnge 

. . f = frequency 

'C.., , , P . .  . . p = propaption path 
p, = location of sounder 

p, = location of reflection point for frequency f 

n' = group refractive index 
. .  - '1 . 3 .?. 

.,-,,:. . ,.: . , 1 N  = electron density 
. .. * ) 

B amplitude of tmrarkl v a t i c  fkld vector B 
'.. 4' . . . . , cP = angle let wee^? B and direction of propaption 



The fundamentil tormula for n' is: 

where n ,  the red part of the refractive index of the medium, is given by 

where 

,qV = plasma frequency (MHz) = 8.98X lo-) ~~ (c l ec t rons l cm3)  

fH = gyrofrequency (MHz) = 2.8B(gauss) 

YT = Y sin 4 

YL = Ycos4  

f = positive sign in front of square root is for the ordinary wave; negative sign is for the extraordinary 
wave. 

l'he ordinary wave reflects when X = 1 (except when a = 0) or equivalently [as seen from Eq. (4)] when: 

The extraorchary wave reflects when X = 1 - Y (if Y < 1) and also when X = 1 t Y. In P ' (n  terminology, 
however, only the echo correspondine to X = 1 - Y is called an extraordinary echo, and the echo corresponding to 
X = 1 t Y is called the Z echo. Using Eqs. (4) and (6) to express the reflection conditions in terms of fN and fH 
yields the frequency fx of the extraordinary echo: 

and the frequency fr of the Z echo: 

Equation (1) was written in terms of a generalized propagation path p to indicate that the sounder data do not 
necessarily correspond to "wrticol" incidence. The propagation path is, howem, essentially a vertical path, if the 
electron density distribution is a function of altitude only (spherically stratified ionosphere). Most P ' O  to N ( h )  
invenion techniques assume that stratifmtio- ;S essentially spherical within the ionospheric region from which the 
sounding echoes are received artd that the propagation path ia vertical. Except when otherwise indicated, these 
assumptions are also made here - that is, in Eq. (1) p is replaced by h and a is replaced by (90' - 9) where 9 is 
magnetic dip angle. 



The complexity of the n' function [lackson, 196901 makes it impossible to evaluate analytically the integral 
in Eq. (I), except in very special a ~ s  (a = 0 and = 90'). Numerical integration techniques have to be used 
[even for a very simple N(h) madel], and special case must be token near the reflection points where n' becomes 
infinite. It should alao be noted that N(h) is the only unknown, sine B and are specifled by the sounder 
location and a n  be calculated to a order of accuracy from a terrestrial field model [Wn and a n ,  19681. 

The difficulties encountered in the inversion of Eq. (1) are due primarily to gaps and discontinuities in the P1(f) 
data. Ihe redundancy of the data (availabtl~ty 01 more &an one P'(f) function] helps overcome these problems. 
But in many cases it is also necessary to have some kncwledge of the gross features of the N(h) distribwion. A com- 

plete discussion of the inversion proass must therefole 
1O0o7-- -- - include some basic Liformation concerning the medium 

under investigation and the limitations of the P'(f) 
900- measuring technique. The characteristics of the io~to- 

sphere md of the S O U ~ ~ Z ,  technique are such t!!t two 
800- sounders (one on the ground and the other in an earth- 

orbiting satellite) ore required to permit a complete 
700 i determination of the N(h) distribution at a given loca- 

: tion. Here we discuss the P'(f) to N(h) inversion 
NIGHTTIME 3 600- I problems associated with both types of soundings. 

I 
a mi- 

THE MEDIUM UNDER 1NVESTIGATION 
$ 400 

I 
Sine the ionosphere is produced primarily by 

ionizing radiation from the sun (offset by subsequent 

__d_------i- 

ELECTRON DENSITY (EL/CC) (through the V X B; ~~~) on the motion (trans- 

Figure 1.  - Vertical electron density dbtribution~ bawd upon 
port or radiowrrs-irrduced c#rillations) of the free elec- 

simultaneous topside and pound-based oknntionr at t r 0 ~ .  Sinct the ~ p e t i c  uds k not aligned with the 
Wallo~s bland. V i r d ~  (latitude 37.8)' N. iondtude rotation axis of the emh, the magnetic control produces 
7s.4+ W, jn I .is M&, 8 = 69'). '~bedry&ne cum !on@tudinal mrlrtkm in the ~ ( h )  distribution (in addi- 
ir for JUM 18,1968 at 1200 EST M& wttbnc cum tion to d t i o m  to lo& diffmfias). 
t for June 4,1968 at 0245 EST. Tba two N(h) proWr 
cormpondrd to the cune m m t k  inbx CKp 3) md Although the miability of the anedium can intro- 
10.7 cm rdu flux (S = 144). 'fie dtibde difference 
bet- S md T & m ~ a b o u t 1 5 k m ~ t c r t l u n  duce some dmcultier (or limitrtiona) in the N(h ) cal- 
ab#nd in or&r to rhow the E vdhy mote d d y .  culations, certain fmtuaes of the daytime and nighttime 

N(h)  distributions ue sufficiently row - at leut at 
midlatitudes - to provide a b u u  for the mvrmt iod  division of the ionarphen into D, E, F1, and F 2  regions. 
The boundrries between thew regions have n m r  b a n  precisely defined, but it is usually undentd that the 1) 
region is below 90 lan, the E region between 90 and 140 km, the F1  rcgicn between 140 and 180 lun, and the F2 
region above 180 h. The typical features of *& midlatitude N(h) distribution ue Iown  in fwn 1, a d8ytintc 
and a nifittimc profile msuured over WaUopr Idand, Vir* An m t  duncterirtic of tbs distrfbutrmis ir: 
the fact t h t  the electron donfity becoixis riOnificrat at m altitude of about 80 lun in the drytime and about 153 .h 
at night (points Q on fy. 1) d increrre, almost monotonically up to th b e w t  of murimurn &ndty (hmu. F2, 
show on fig. 1 u point M), which occurs typically at altitudes between 200 and 400 lun. The major exceptions 
to this rule occurs in daytime in the nm between 110 and 140 lun (E valley). Above h - n  (topside ion* 
sphere) the electron density decmm monotonially md in wry neuly exponential fuhion. 



EXPERIMENTAL DETERMINATION O F  THE P'(n FUNCTION 

The ionospheric sounder, or ionosonde, operates on principles similar to  those of radar, and it provides echoes 
from the ionosphere over a wide range of operating frequencies. Ionospheric soundings are typically conducted at  
frequencies between 0.1 and 20 MHz, using 100 Msec pulses and a 20-to40 pulselsec repetition rate. A complete 
frequency sweep takes typically 15 to 30 sec. 

In the widely used swepi-frequency system the received echoes are customarily displayed in the "ionogram" 
format, in which the echo round-trip time A t  is displayed (in the vertical axis direction) as a function of the sounder 
frequency f .  The quantity (At )c l2  (where c = velocity of  light in vacuo) is the apparent range P'; it is greater than 
the distance to the echoing region because the sounding signal is rztarded by the ionosphere. The apparent range P' 
a: a frequency fr is thereforr;: 

where 

VG = VG (f, N, B, 4) = the velocity of the sounding signal 

pr P a reflection point for the frequency fr and the integration is along the ray path. 

Combining Eqs. (1 1) and (12) gives 

The qu?.,ltity c/YG is the group refractive index n ' ,  and Eq. (13) becomes 

as given in Eq. (1). The vertical axis of the ionogram is calibrated in terms of P' anu the basic masuremer~t  provided 
by the ionogram is P' as a function of frequency. 

CHARACTERISTICS OF TYPICAL P1(n CURVES -. 

The three reflection conditions (Eqs. (8) through (lo)] give rise t o  the ordinary, extraordiiiary. and Z tiaces i I 

on ionogrms. Conventional s o u n d i ~ ! ~  from the ground rarely yield usable Z traces. but they nonqally provide both 



ordinary and extraordinary traces. Each P 1 ( f )  trace can be used (with appropriate inversion techniques) to derive 
N(h) profiles. The ordinary trace is generally the most useful one.on ground-bard soundings and the extraordinary 
trace is the most useful one on topside soundings [Jackson, 19690, p. 9631. In both cases (topside and ground- 
based soundings), the presence of at least one trace in addition to the one used for primary data analysis provides 
redundant information that ,:an be used to check assumptions made in the inversion of Eq. (1) and to minimize 
uncertainties due to gaps irt the primary data. Further redundancy o i  information is also available on topside iono- 
grams, as the result of resonance phenomena that occur at fh', fH, and at the upper hybrid frequency ,T, given by 

These resonances permit the calculation of N and I? ilt the satellite, which is particularly helpful when the propa- 
gation tracesare not clearly defined at the satellite. Since N and 8 (consequently, f N  and fH) both decrease 
monotonically with altitude in the topside ionosphere, the P ' O  function is known in principle for both ordinary 
and extraordinary traces for the complete topside profile below the satellite (portion AM of prot'lles in figure 1). On 
ground-based soundinas, howevcr. the P ' O  function is not defined for the portion QR of the profiles on figure 1 
(where R corresponds to the minimum density for which echoes are obtained by the sounder), and for the portion 
ST of the daytime profile. 

' h e  ordinary ray P'Cf) functions corresponding to N(h) profiles of figure 1 are shown on figures 2 and 3 
for topside and for ground-based soundings. To p rmi t  a direct comwison Letween apparent heights P' and the 
actual reflection heights, the N(h) profiles have been redrawn with the density expnssed in terms of plasma fre- 
quency [using Eq. (S)] . 
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It is seen that topside and ground-bard soundings terminate at hmF2, which follows from the monotonic 
vatistihi of fN and fx with electron density. Actually, the sounbngs do not quire reach hmxF2: the lopsido 
soundii~gs stop typically at a point M' (IS to 30 km above point M of figure 1) and ground-based soundings stop 
typically at a point hf' (10 to 20 km below M). The re@on M'M" can be derived from simultaneous topside and 
ground-based soundings [Jackson, 1969bI or by extrapolation of either type of soundings. This extrapolation 
usually assumes that the N(h) distribution can be represented by , ,,rapman function in the vichity of hma,F?: 
i.e., N ( h )  is a s s v ~ d  to be given bv: 

i here 

z = (h  -h,=)l H 

H = scnle height 

There is one additional source of information that can be used to check t total profile obtained by simultan- 
eous tcpside and ground-based soundings. Topside ionograms fiequently display echoes reflected from the ground 
(ground trace or ground echoes). These echoes, which arc for frequencies greater than the maxim~m frequency re- 
flected from the ionosphere, exhibit a delay that is determined by the total profile and by the frequency of the 
sounder signal. It is therefore possible to check the accuracy of the total profile by comparing the observed grourid 
echoes with the ground echoes calculated from the total N(h) dissribrrtion [Jackson, 196961. 

MATHEMATICAL TECHNIQUES USED IN THE INVERSION PROCESS 

Here we discus the technique wed for the inversion of Eq. (1) for the case of vertical propagation - that is, 

where 
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Fo; each intennl Ah = hi+ -hi (or lunination), tt* N(h) functlon . approximated by a simple analycjc 
function. The number of luninationr required cur be minimized by chon iq  a function which approximates the 
N ( h )  distribution over large Ah increments. A linear approximation is adequate, however, if tnlrll height incre- 
ments r e  chosen, and this hrpler representation will be used to illustrate the procedure. The linear substitution: 

dves for a typical lamination: 

The integtal corresponding to a given lunination is thus completely defined except for a co::a*ant Oi+l. which repre- 
sents the value of &IdN in the luninrtion. For all laminations, except the last one (hk-, ,hk). the function n' is 
finite' and the integral on the right-hand side of Eq. (19) cm be evaluated with great accuracy by ntmerial integra- 
tion techniques, usin&, tor exunple, a p u s h  quadrature formula with only three coefficients. The last lamination 
terminates at the reflection point wirere n' is infmite. Thc integration in tllir case is based on asymptotic expres- 
sions for n' near the reflection conditions, which are of the fonn: 

where a and 6 m constants appopirte for the propagation mo& used. By letting ta=l  -w, the last integral in 
Eq. ( 1 9) becomes: 

n'&V= -1 1:' n't d t  
B 

At the n,?tction p i n t ,  the i n t ep id  cl't is fdtc sinca n't = n' d G  - a 
Most of Uw techniques currently uaed f a  tt-s inversion of Eq. (1) are krsd on the abow liminatior. concept. 

The laminations us implicitly specfed by the choia of sampling fzeqwncie,, u illustrated by the following exam- 
pk bued u p  the ordincry h ' 0  function f a  a topside munc'jng Let f t  , f a ,  . . . , fn be the smpling frequencies 
and hi,  h i , .  . . ,hA be ihe companding h' dues. Lt N, k the density at which rstiection o;curs for the fra  
qusncy 1,. and kt NI be the density at Ou, ntslllu, oom hi= 0 (or equhbntly hi = 0). 

ir one exception to this ctrtment, and tbb occun in the cam of Z dchorc on topkh  b.opms where n' 
b c o m r  infbiite at the start of the fust h i m t i o n  when X - (1 - Y'); j: - YLa). 



Using tht1 linear approximation of Eq. (19). the virtual rdnge values can be writter,. 

h c h  integral in Eq. (20) :an be evdluated using techniques previously discu~ed: thus. the ilnknown ai terms can be 
rerrdil y computed. 

For .lie extraordinar) ra). the procedure is slightly more complicated. because 'mowledge of both fi and h e  
coiresponding Bi at the height hi is required to compute 1Vi [see Eq. (? )I .  The procedure in this case is to Inl- 

tiate the -iculat!on of each new litmination with an estimated value of B and to refine t h ~ s  estimate by an iteration 
y x e s s  [Jacbon. 19690, pp. 973-975; Lockwoud, 19701. 

The iarninarions commociy used for P'U) t o  Sf h )  inversion are of the form: 

where 4' is n, fhf, or InN. When a parabolic lamnation is used (bit 1 # 0). the additional lamination parameters 
are obtained by assuming that dhld3r is continuous at the lamination boundaries, namely: 

EXPERIMENTAL CONSTR41NTS PLACED ON THE P1(f)  F'JNCTION 

Some difficulties arise in the inversion of Eq. ( I )  because the exprimenta! data do not yie!d the P 1 ( f )  functiun 
for the complete altitude range of interest. These diffici~lhes are encountered primarily with ground-based soundings 
due to regions QR and ST (f:g. 1) for which the P 1 ( n  functions are not availabie. In some cases on topside ion* 
grams, the extr.~ordinary P ' ( f )  funct~on is nct defined with sufficient accuracy at the starting point A.  This usially - 
arises when the density at the satellite is less than 200 electror~s/cc. 4 



\Inknown Start oo Topsiie lonograms 

If the density N, at the satrllitc altitude h,  is unknown. it can be determined by the following method. The 
equatiais of the first two laminations are assumed to be lir ear in InN: ' L t  is, 

N 
h = h ,  +a21n - for h p  < h < h l  

NI 

and 

h = h 2  +a , ln  - f o r h 3 < h < h 2  
-42 

It i,i then assumed that the correct value of N I  will yi:ld u2 = a3.  Various value3 of N, are tried (by i n  iteration 
~ o c e s s )  until a 2  and a3  agree mthin 0.1%. This slope-matching technique has been tested extensively with iono- 
grams where N, could be accurately measured by conventional scaling techniques. It was found that for ionograms 
whe~e NI is #ell defined, couvenrional and slopomatching techniques have comparable accuracy. Results obtained 
by means cf dope matching have cast considerable doubt on the determination of N I  using the method introduced 
by Hagg 139673. which is based on topside sounder plasma resonance observations under conditions of low Nl . This 
method yields values of N, that are typically one-third of the slope-matihing technique values. Furthermore, the 
Mgg "beat" values (socaliea because they are determined from the observed beat frequency between the fH and fT 
rmoances) yield rather questionable N(h) profdes (fig. 4). Lochwod (see p. 416) and Colin [printe communication] 
have also used the dope-matching technique (or similar procedures) to compute NI and have reached similar conclu- 
sions concerning the Hagg beat. 

Unknown Starts on Crccnd-Based Soundings 

The P ' ( n  function for a ground-bad sounding can be written: 

Figure 4 - Cornparirons betran two N(h) protlks derived 
f m  the lpmc wnoyun * t h  w t  start @mhed- 
curve and the slop match- start (solid cum). 

6 0 L - L  
lo2 1 o3 104 105 1 o6 

ELECTRON DENSITY EL/CC 

F w  5.- Rocket results (Ref. 11) showing D and E regions. 
The Iowa put of the profde (for which the P'(f)  Function 
is not normPUy avriLbk) can be appmximatcd by the indi- 
cated w t  segments. 



where Q a d  P reier to figure I ,  and hk refers to a reflection point above point R. The altitude hO is the 
altitude below wh~ch n' can be considered equal to unity for the frequencies of interest. The group index n' can- 
not be considered equal to unity in the regior~ QR, even bough this region yields no echoes on conventional iono- 
grams. The procedure used are different nn dxytime and on nighttime ionograms and these two cases wiii J? discussed 
separately. 

Daytime ionogmms. One solution [Jackson, 
1956, pp. 120- 1221 , which is similar to the slope- 40 270 WALLOPS ISLAND 

matching technique, is to assume that the region QR is - 4 APRIL 1968 
260 5 2145 EST 

a simple analytic extension of the profile above point R.  hmraF2 : 380 urn 
250 N m r n f 2 = 4 8 " l O  

Another approach, based on rocket results (fig. 5), is to 20 

assume that the density is 1000 elect~onslcc at 80 km, 10 

and that it increases exponentially up to point R. This 
gives fairly good results with midlatitude, midday iono- 
grams. 

Nighttime ionograrns. Analytic extensions of the r 23 YAY I ~ M  

profile above point R could also b: assumed fbr the re- - 250 2215 EST 

kmad2 - 380 km 
gion QR, but more reliable results can usually be ob- Nmaaf2  ~ 7 6  1 1 0 5  

tained by making use of the ordinary and extraordinary 10 
traces. which are of comparable quality on nighttime 
ionograms. The procedure is to acsume an arbitrary 
denslty value at Q and to coqpute from the ordinzry 
trace the correspondiv; N ( h )  profile. The extraordi- so 
nary P 1 ( f )  funct~on corresponding :o this profile is then 250 W A L L ~ P S  .;LANO 

computed and compared to the observed extraordinary 28MAV1968 

P'(f)  function at m values o i  ~ ~ m d i n g  frequencies. 
230 hmrzF2 NmrsF2 = = 370 68  hm = lo5 

The stanhrd deviation o between the computed and 
the obsen-ed extraordinary P'(n  values is 

01  0 4  0 1  0 8  

P.A=F FREQUENCY {MHz) 

Figure 6.- The functlon o versus plasma frtquency at 150 km 
for typical midlatitude nighttlmc lonopms. The effect of 

where d,. represents the vertical height differences at the starting point upon the ~csulting l V ( h )  profile i s  indi- 
f = f;. The process is repeated for other assumed densi- cated bv the dashed l i e  which shows the alt~tude at which 
ties i t  Q, and the density at Q that yields the mini- the density is los ella. 
mum value of o is taken as the starting density. The 
quantity u for typical nightti'ine midlatitude ionograms is shew in figure 6 a function of the assumed plasma fre- 
quency at Q. A value of h = 150 km was used for this calculation. Also shown is the altpude at which the electron 
density reaches a value of Ifs electrons/cc. Extensive tests of this technique have given a high degree of consistency 
in the 15Cbkm starting value obtained at one sounder location (Wallops Island), namely, 0.2 MHz < (fN) 6 0.4 MHz. 
Thus an empirical starting value of f l  = 9.3 MHz could be used in cases when tk.s two traces cannot be scaled with 
sufficient accuracy to permit the above d5termination of N  Q. 

The Valley Problem 

The valley ambiguity (unknown regon ST) can in principle be substantially minimized by using a technique 
similar to the one &scribed for the unknown start on nighttime ground-based soundings. In  this case, a model of the 
E valley is arbitrarily selected and the quantity u [Eq. (23)]  is computed for various valley kpths. The desired 
valley is the one that yields the minimum value of a. The effect of the assumed valley clll the resulting N ( h )  profile 
is shown in figure 7. ,The shape of the valley (a triangular wedge on this semilogarithmic plot) is one of many ( b v i s  
and Sahu, 1962; Moltsew, 1969) assumed t y  other authors. Although physically unrealistic, it is convenient for 
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Figure 7.- EXftc1 of 8uumsd nlley upon 
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computer programming. Furthermore, the shape of the 
valley is too variable to justify the use oC a more aesthetic 
representation. The objective is to improve the accuracy 
d the profile above the valley (rather than to provide 
mur.Isful data within it). The profiles shown in figure 
7 would normally be derived from the ordinary trace. 
These protile? and two additional ones !or a 80 percent 
and a 70 percent valley, respectively. have been used to 
compute the corresponding family of extraordinary 
traps abcve Em, shown in fqure 8. The solid points 
npreserrting the observed X trace are s e n  to agree best 
with a valley of 80 percent. 

The valley determination illustrated by figures 7 
and 8 was possible bemuse the X traa was wel; defined 
for frequencies immediately above the extraordinary ray 
E region critical frequency fxE. Often, this nquire- 
m n l  is not met, and inspection of figure 8 inuicates 
that the comparison would have been much leu mean- 
ugh1 had the ionogram not shown an X trace for 
frequencies under, say, 4.5 MHz (particularly in view 
of the * 5-km scaling sncertainty). 
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The valley calcu1at;o.l~ (when feasible) yield fairly 
consistent results, and these results can be used to esti- 
mate the valley depth in ases when the extraordinary 
m a  cannot be used for this purpose. For midlatitude 
middry conditions, both &y calculations, as il!-astra- 

1 ted above, and rocket data [Seddm and Jackson, 1958; 
Baurr and Jackson, 19631 show that t)?i: minimum E- 
valley density is typically 80 to 90 percent of the den:ity 
at Emu (point S of fig. 1). 

PROBLEMS ARISING FROM 
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NONVERTICAL PROPAGATION 

The routine procedure fur the inversion of Eq. (1) 
is to aanune that the P ' O  function represents virtual 
heibts measured at vertical incidence. For B = 0, this 
~ts'anptiol. wotrid be quivalcnt to stating that the sounder 
is r eeiving echoes from a spherically stratified region of 
tt ,losphere. This region for a ground-based sounder 
would be a vertical cylinder typically h~ving a diameter of 

6.0 
10 km. For a topside sounder, which a n  move horizon- 

FREQUENCY (MHd tally up to 200 lan while a complete ionlgram is obtained, 
thc rpkrial stratifsation would have to hold ovcr a vcr- 

F W  8.- c.law X for N(h) W k  01 liplre t iqj  *#on hOI hOll eUthvs 
7df0rP"'fik-t0m0-*a ~ ~ y ~ ~ - b y ~ * ~ . n ~ e " & ~ y a  (not shown in 4 . 7 ) .  Tba obrsrved X tncc v8lw ate 
rham by the -Aid pointa. chiqe in altitude (and rho some minor chimps in B and 

8) associated with the horizontal motion of the :opside 
sounder. There effects car. bc taken into consideration (set Lockwood's discmion, p. 426) by assuming h t  



the N(h) profile is a function of altitude on!y and that the successive soundings oegill at d new reference a!!i!~.di. 
( a d  corresponding density). 

The spherical stratification concept usually applie*; to 
the constant electron density contours, and for B = 0 this 
assumption would yield constant phase index contours. The 
presence of the terresteal magnetic field introduces modifi- 
cations in the constant phase index contours, and causes the 
ray paths to be deviated from the vertical mostly near the 
reflection points. Theoretical investigations of tiis problem 
[Colin, private communicaticn] indicate that no serious 
errors are introduced in the virtual hetght calculations by 
assuming that the phase index contours are the same as the 
electrcn density contours. A more important effect of the 
n~gnet ic  fieid is the occasional presence of field-aligned 
irregularities, which can act a. wave guides and cause echoes 
(in the extraordinary node) tube  field aligned. This effect 
can be recognized by an experienced observer, and the anal- 
.,$is (for @ =0) yields a field-aligned N(h) profile. An 
example of this type of analysis is S ~ O W I ~  in figure 9 

Figure 9.- Electron density contours derived from 
topside field-aligned traces. 

Departures from spherical stratification can sometimes be inferred from a time sequence of ionograms. In 
the case of ground-based soundings it can be detected (when w e r e  tilts are present) frdm the fact that multip!: 
echoes (two or more round trips) do not give virtual heights in harmonic relationship to the first (one round trip) 
echo virtual height. Departures from spherical stratification could J s o  be inferred from a closely spaced network 
of ground-based sounders. Analysis techniques that can take into consideration these departures from spherical 
stratification are currently under investigation (see McCull*:y's discussion, p. 4-36). Routine inversion techniques, 
however, assume that the N(h) distribution corresponding to a given ionogram is a function of altitude o ~ f y ,  and 
that this N(h) distribution does not change signifi~antly during Ae 10 to 30 sec required to obtain an ionogram. 

ACCURI.CY OF THE INVERSION TECHNIQUES 

The accuracy of the mathematical techniques used in the inversion of Eq. (1) has been tested extensively [Jackson, 
1969a, pp. 967-9701 . These tests have shown that the integration techniques do not introduce significant errors. For 
example, on topside ionograms the error in altitude for a given density is typically less than 1 krn. Some errors are 
introduced in the inversion of Eq. (1) for ground-based soundings due to the d.scontinuities in the P 1 ( f )  function at 
the starting point and at the E valley. These discontinuities introduce erron in altitude (up to 10 km) at the starting 
point and just above the E valley. The errors above the E valley decrease monotonically with altitude, and near 
hmaxF2 the calculated N(h) profiles are affected by the uncertainties at the lower altitudes by at most 1 or 2 km. 

Thus, it would be expected that ionograms obtained simulr-,neously by a ground-basec' ionosonde and by a 
topside sounder directly overhead would yield N(h) proti1e.n thai should agree near hmaxF2. Comparisons of this 
type have yielded disageements [Jackon, 196961 &st are several times greater than the errors attributable to scaling 
accuracy or the rnathematicai techniques used for the inversion of Eq. (1). The results suggest that the error is roughly 
proportional to the length of the propagation path. Since the maximum propagation path (within the ionosphere) is 
usually several times greater for a topside sounding than fsr a ground-based sounding, one would attribute this discre- . . . -- . . . . . 

panty primarily to the calculated topside N(h) profile. On this basis, the topside profk  appears too low by about 
3 to  5% of the distance d between the topside sounder and the reflection point. One test for the accuracy of the re- 
sulting total (or composite) profile is to calculate the corresponding total content Sk Ndh (where hs is the satel- I 

lite altitude) and compare the results with an independent measurement of the todcontent .  Comparisons of this 
type using data from GEOS-2 to compute IN& hove shown consistently that the total content for the calculated 



composite profile was too low. By raising the topside prude 3 to 4% of the distance d, the two measurements of 
D d h  can be brought into agreement. The small but puzzling discrepancy between topside and ground-based sound- 
ing suggests that some cumulative errors arise in the observations, p e r h p  due to irregularities in the ionosphere that 
cause the propaption path to deviate from the vertical direction. The discrepancy does not seem to be due to large- 
scale departures from spherical stntification, aa could be inferred from the analysis of ionwam sequences. 

Another possibility is that cumulative errors arise in the analysis due to one of the many nssumptions made in 
the magnetoionic theory such as rold plasma treatment of the ionosphere, WKB approximation. idealized *flection 
conditions, and group velocity representation of the signal velocity. Although thcse approximations have been accep- 
ted for several decades, a complete evaluation of their effects has not been made in the topside ionosphere. 

SUMMARY 

The P'V) to N(h) inversion in ionospheric soundings is based on the following assumptions: 

1. Spherically stratified medium (except in special techniques under development that make allowance for 
gradients). 

2. Medium that does not c b g c  during the sounding. 

3. Vertical propagation (except in more elaborate techniques used, for example, to deal with geomagnetic 
field-aligned propagation). 

4. Simple ray theory of ware propagation in the ionosphere. 

The most accurate inversion technique is based on: 

I .  Lamination concept and step-by-step solution. 

2. kmination model optimized for representative N(h ) distributions. 

3. Numerical intepation with change of variable to keep the integmnd fmite. 

4. Iteration (with topside extraordinary P'Cf) function) to find the upper limit of integration. 

S p e d  problem arise, particularly with the P'O function obtained by ground-based soundings, 
when the P'V) hmction is not defured over the complete altitude range of interest. This leads to 
(1) the s t d q  point problem, and (2) the valley problem (for daytime grounribued soundings). 

'The solutions to thew special jxoblems are based on: 

1. Redundancy of the data (ordinrry and extraordinary P'w functions). 

2. Estimated parameter values aerived from statistical b t a  accumuhted from previous P'O to N ( h )  inver- 
sioru, or from other teehniqws, such as in situ rocket measurements. 

3. In some cases, extnpdrtiorrc cr dope-matching techniques. 

The accuracy of the N(h) proflies derived by inversion of the P'W function is typically better than 5% of 
the length of tho propagation path in the ionolphcre. The errors in the N(h) profiles are apparently due to assump- 
tions m& in thb analysis, ninca t b y  are ts~d timer pa to r  thm the error attributable to the mathemtical tech- 
Riqm uaed in the inversion process. Ahhou* the humur ekmcnt wrr not s t m a d  in this paper, it is an important 
factor in the ultimcrte rccuncy achieved with a liven inversion technique: It enten into the initial recqnition md 
accurate d i n g  of the P'V) function, the eralwtion of the v9ldity of the mumptionr d e  for a @ven exprimon- 
tal condition, and the find acceptmce (or rejection) of the results givon by the inversion proeero. 
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ABSTRACT 

A method for converting topside sounder ionograms into topside electron density profi:es is discussed. The 
lamination r.~ethod used is modified to take into account the variation of electron density aad magnetic field within 
each 1amina.tion. Also included is a change of variable to produce a finite integrand of the Integral involved, an itera- 
tion scheme that permits convergence on an initially unknown density, a second iteration schen~.: to overcomt the 
problem of an uncertainty in the electron density at the satellite, and a modification to compecsate for the chang- 
ing satellite altitude over the duration of the sounding. Two applications of the technique t.e discussed: field- 
aligned traces for computing field-aligned profiks and computer-aided systems for scaling ionograms. 

INTRODUCTION 

Many schemes for converting topside ionograms into electron density profiles have b a n  devised during the 
years since the launch of the first topside sounder in the Alouette 1 satellite. The most accurate and most widely 
used method has been described in detail by Jackson (1969). The technique starts with the simple concept of the 
lamination method of inversion, which is eqt~ivalent to the inversion of a triangular matrix. Then it incorporates 
several complicating modifications, all of which are needed to obtain the desired accuracy of the result. These 
modifications include a second-order logarithmic model for the variation of height with electron density within 
each lamination, an allowance for the change in magnetic field within each lamination, a change of variable to 
keep the function being integrated finite, an iteration permitting convergence on an initially unknown limit of 
integration, an iteration scheme to overcome the problem of an inaccurate starting electron density, and a 
procedure to  account for the changing satellite altitude. 

Fiere we summarize the main points of topside N(h) reduction with emphasis on how our knowledge of the 
ionosphere has influenced the particular solution to  the problem, and discus two special applications of the tech- 
nique: the use of field-aligned ionograms for computing N(h) profiles and computer-aided systems for sc-\ling 
ioaograms. 

COWUTATION OF TOPSIDE N(h) PROFILES 

Topside ionograms [Hamet al., 1969; Jackson, 19691 are the range versus frequency records obtained from a 
topside sounder [Rank& ondM11~lem,1969]. Topside ionograma have many varied forms and features; the iono- 
gram shown in figure 1 was wlc?ted to illustrate clearly the Z, 6 and X-wave traces. Also identified is the Z' trace 
[(ahrert, 19661 and various plasma resonances [m et ul ,  19691. Jaclr~on has discussed the convention (followed 
here) of expressing echo time delay as "apparent range" in kilometers. 



Tho Z; 0, or X-unn trace my be used independently to compute an electron density v ( h ) ]  profile. 
dthough the 2-wave tmcc, beau= of iu cutoff, luubly providn only s prtial prollc. Fiya 2 fram Jaekron [pri- 
n t e  communication1 shows N(h) profiles computed from the 2-, 0. and X-waw tracer in ( ipm I .  The profiles - 

were computed by the invenion of the integral 

h,(f) 
p'(f)=! no[N(h) ,XB(h) . f l (h) ]dh (1) 

ho 
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whtre 
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From Eq. (2) one finds h ,  , from (3) one finds h 2 ,  and from (4) one can obtain hj .  But the evaluation of 
h -  ,?-I are known) $n'(N,~B.B)dh is not straightforward since hi and A) are unknown (although Nj-1, ., 1 

and both B and N change withir, the Integral. Thus, models that define N and B wl thn  t e lamlnatlon are 
needed before one can numerically determine the integral of n:  

N ( h )  Model 

Since the electron density in the topside ionosphere varies approximately exponentially with he~ght . a 
suitable cholce for the definition of height with density within the lamination between points j -  1 and j IS: 

N 
h = h.- + aj log - + 1 1  ;Yi - 

If the term in brackets is neglected, one has a "linear in log M' model, which, though simple, has a discontinuity pt 
the edge of each lamination. The term in brackets is necessary if the derivative is to be made continuous; the result 
is a "parabolic in log N" model. The term 

1s the "scale height" at the point j and is derived from the condition that the derivative be continuous at  each boun- 
dary. This is a meaningful physical parameter since the scale height is a meaqure of the electron and ion temperature 
Te + Ti and nleap ionic mass RT. For an ionosphere in diffusive equilibrium, the scaie height is given by: 

Te + Ti 
Hi = -aj+, = 

mg d -+-(Te + Ti) 
k d h  

where k = Boltzmann's constant. This model for electron density has the advantages that diV/dh is co~~t inucus  over 
the complete profile; the scale height, a pertinent physical parameter is implicit in the model, and the model is mono- 
tonic in A', as is the electron density in the topside ionosphere. 

Magnetic Field Model 

The magnetic field at any known height and location can be calculated t o  high accuracy from a modern spheri- 
car harmonic model such as the International geomagnetic reference field [ a n  and &in. 19681 . Thus, the field 
Bj- 1 at the top of the j th  lamination is known, and its value at other heights within the lamination can be calcu- 
lated to sufficient accuracy by assuming an inverse cube variation with height. Jackson [I9691 has combined these 
two models in such a way that the magnetic field is defined as a function of electron density. 

Change of Variable 

As the wave propagates downward t o  its reflection height the group veloc~ty Vg 01 the wave approaches zero. 
and since n' = c/V', the integrand n' approaches infinity. The following change of variable [Shinn and Wule, 1952; 



Jackson, 1956) is introduced to produce an integrand that is finite at reflection and permits a more accurate 
numerical evaluation of the integral: 

where 

t 2  = 1 - X for the 0 wave 

X 
t 2  = 1 - f o r  the X wave 

l'YR 

y~ = fHR/ f  

fHR = gyi~frequency at the hei.&t of reflection 

Numerical Integration 

Generally, the accuracy of a numerical int~gration may be d-termined by two methods: (I)  An analytic 
evaiuatiorl of the integral (if possible) provides the correct value of the integral; and (2) the number Cr points used 
in the evaluatizn of the numerical integration can be increased until no change occur, in the result. Such comparisons 
kckson,  1964j have shown that provided the above change of variable is performed, a three-point gaussian numeri- 
cal integration produces an error of less thiii~ 0.1% fr:r !he X-lvave, and an error of less than 0.1% for the O-wave, 
provided 8 is greater than 2 0 ~ .  For the wave, the percentage error increases as 8 + 0, and a 16-point gaussian 
numerical integration is required to produce all error less than 0.1% when 8 = 5'. 

Iteration 

For the lamination in which reflection occurs, the lower limit in height and its gyrofrequency (or 8)  are 
unknown. For the X wave the density is unknown also, since it is a function of both the wave frequency and gyro- 
frequency. One can make some initial guess for the gyrofrequency at thc bottom of the lamination, perform rhe 
integration to determine the height hi, and calculate the actual gyrofrequency at this height. Then one repeats the 
integration and continues the iteration until the new value of hj is the same as the old value. When the X-wave 
trace is scaled, such an iteration is absolutely necessary since the guess for fH determines the estimate for the elec- 
tron density at the bottom of the lamination. Jackson (19691 has shown that a useful first gucss for the gyrofre- 
quency at reflection fHR is that corresponding to some minimum permissible increase in density over that at the 
top of the lamination. For example, 

implies a 0.1% increase in density at the jth point over that at the j- 1 th point. 

An example of suck an iteration is shown in f w r e  3. The initial guess of ~ H R ,  calculated from !he above 
expression, leads to conveipnce at the desired height at point E. Lockwood [I9701 has shown that the above 
iteration will diverge for a restricted class of iofiograms eben though a so1ntic.1 exisu. An ionoyram of this class 
is shown ir, figure 4. The iteration for the f i s t  lamination in this ionogram is shown in figure 5. The iteration 
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Figure 3.- An illustration of the iteration technique that con- 
verges on the desired intersection poict E from an initial 
guess for fHR corresponding to a 0.1 percent increase in 
dens~ty over the density at the top of the lamination. 

Figure 5.- An example of m iteration (A'B'C'D') xhich 
diivcrgcs m d  a modified tachnique which rbnvergsr to the 
desired point E. In the modified technique, m initial 
gueu A leads to the points B, C, and D. A lineu inter- 
polation ui:y points A ,  R, C md D d t  in the rpprox- 
inute height E. The same steps m repeated wJns the 
height E a d  the actual Wrofrequcncy at that hsiJlt as 
a nzw starting p0ir.r. 
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Figure 4.- An ionogrun in which the Ccnslty at the. satellite is 
small. The difference frequency, f T - ff, is o t  *wed as a 
modulation on the combined f!i. and f T s:*es. 

Figure 6.- The N ( h )  profilc computed from the scaled points 
in the ionogram of fw;r 4. The point at 2498 km is the 
result of the modified iteration  show:^ In f iure  5. 

F b r e  7.- An ionoglim which iuustrater the brod fN spike 
r t  low ehctwn densities, and the mcrgiq of the f X S  with 
fT and fH at low densities. 



A'B'C'D' diverges because the slope of the height of reflectron curve (versus assumed gyrofrequency) has a larger 
absolute value than that of the slope of the actual gyrofrequency-height curve. A modification of the iteration, 
which always converges if a solution exists, is as follows: 

1. Perform the standard iteration for two steps only to define the points B, C, and D from the starting 
p i n t  .4. 

2. If the difference in height between points B and D is less than some small value, the iteration is ter- 
minated and po~nt D is taken as the correct solution. 

3. Otherwise, p.:rforr,\ a linear interpla'.ion by using the lines AC and BD to find the approximate 
intersectior, point E. This height and the actual gyrofrequency at this height are then used as the 
 coordinate.^ of a new starting point in step I .  For this modified iteration, an initial guess for fHR 
corresponding to an increase in density of 10 percent was used since this increase (Jacksori, 1969) 
is typical of many scaled ionograms, and this guess permits a slightly more rapid convergence. The 
resultant profile is shewn In figure 6. 

The Starting Density Problem (For Densities Less Than 1000 Electrons/cc) 

As the electron density at the satellite approaches zero, the F S  approaches fHS since m2 = fxS 
CfxS - fHS). Tlre relative accuracy to which fxS can be scaled decreases as the density approaches zero since 
fiS merges wiih the gyrofrequency resonance of the lonogram (see f ig~ ie  7). A starting density (or fxS) that 
is too small produces a "knee" in thc N(h)  profile, in which the slope of the first lamination is smaller than the 
average slope of subsequent laminations. From a knowledge of the ionosphcre, one expects the scale height (or 
slop) to be constant or to increase with height. Thus, an incorrect starting density produces an obvious error in the 
N(h) profile. 

Some possible schemes to circumvent this problem are: 

1. The plasma frequency fN can be scaled to determine the starting density iJackson, 19671. This could 
prodde a somewhat more accurat : rneasiir:mcnt of dc ty but has two disadvantages. As drown IP. 
figure 7 tile fN spike on the ion~gram is usually brodd in frequency with a corresponding uncertainty 
in its nomuial ;ec!rr frc.?uc.ncy. Also, since current topside sounders begin at 100 kHz, the minimum 
observable phsma freque~lcy is 100 kHz, correspcnding to an electron densty of 1241cc. 

2. Hagg (19671 has shown that as the electron density approaches zero, the fH zld f T resonances can 
be simultaneous!y excited by the sounder transmitter pulse. The difference frequency between the two 
resonances is observed on the ionogram as a modulation on the single spike produced by the two reso- 
nances, an example of wizich is shown in figure 4. An electron number density can be calculated by 
assuming that each resonance occurs at its norrinsl frequency. Then: 

where Af = beat f rewncy.  However, Lockwood and Jackson [private cornmunitation] have found that 
the starting density calculated by this method is t~3o small, oince it produces an N : h )  profde whose first 
scale height is smaller than the second. The starting density must be increased by a factor of 2 or 5 to 
produce an N(h) profde in which the fir,t s&!e .*.ei&t is at itiii: :r large as the second. The error in the 
calculation of fN by this method may be caused by the zppalent shift of th: f1f ant! fT resonances 
from their nominal frequennes [ & w n ,  1969;W'toun el d.. 1970) ; on the other hmd, the calculated 
vdue may represent the actual density in the proximity of the satellite and nor lne average density at that 
altitude. Nevertheless, until the ,/H and (T resonances arc better understood, this mthod cannot be 
w d  to calculate the startins density for N(h) reduction. 



3. Since tile scale height is expected to  be constant or to incn:ase with altitude, one could try several values 
of fxS and select the resulting profile that appears to  be cilrrect [Jackson, 19671. More specifically. 
for an isothermal ionospllefe in diffusive equilibrium [Eq. (7)] the scale height at different altitudes will 
be the same except for the variation due to the ch:~nging pra;.itational field. The ge9potentlzl scale he~ght 

In which the gravititional change is removed, will not change wlth altitude under the above conditions. For 
a realistic N ( h )  profile, the geopotential siale he~ght ,  Hi at the bottom of the first lamlnat~on should be 
equal to the geo~otential scale height. H i  at the bottom of the second !antination. Thus, one could per- 
form the h r ( h )  calcula!ic.rl for the first and second laminations only, and the11 tesi to see whether 

I H ;  - < E .  If the lneq~dlit" is satisfied then the N ( h )  calculation is continued. Otherwise, if H; 
is less than Hi, No is increased by some increment and the calcglatio~ IS started agaln, if H ;  is greater 
than H i .  No is decreased by sorrle inc~rment  and the calculation started again. This technique need not 
be limited in use to  low electron t:r,nt~es: it could be used for any- ionogram in which the accuracy ot 
scaling fxS or f;": is poor. At CRC the lteratlon is performed if h b  1s less than 1000/cn3. wlth 
s = 50 km. 

Changng Altitude of the Sourlder 

For topside sounders that are not in a circular orbit (Alouette 11 and 1Slb-I), the change in the satellite alt~tvde 
during the measurement of a single ionogram can be of importance when high accuracy is required [Ec'ccles, prlvate 
commun~catlon]. fyplcally, for these satellites, the: maximum vertical velocity is about 1 kmlsec. Thus. an error 
of up to 10 km is introduced by not taking into account the changing altitude of the sounder over the duration of 
the trace on the *~nnv;am. Often, this error ic rio more significant ihan the uncertainties resultirig from the scaling 
of the ionogram. But for a well-defined ionogram, the r-curacy c f  the N ( h )  profile is improved by the correction 
described below. 

The change in the satellite altitude is 

d h s / d t  
All = Af - 

dl'/ dl 

where Af =f i  - f,. The r?cj?ified starting height for the profile is 

h; = h,, + Ah 

The density at t h s  height 

a derive11 from an extrapolation of the first lamination ( h  = ho i a ,  log N/No) to  h;. The p a n t  ( h ; ,  N; )  
instead of  the point (ho, No)  is used as a limit of the first integral in Eq. (4). 



SPECIAL APPLICATIONS 

Field Aligned N(h j Reduction 

Several workers including Colin, Hojo. Jackson [private communications] and this author have showr that ~f 
one uses the Xqwave field-aligned trace to compute an electron density profile a lmg a magnetic field line. one 65- 
tams densit~es that agree with densities from vertical topside profiles at locations where the two profiles !nttrsect 

Thus, the capability exists for mapping the electron density in the eirection of the magnetlc field, as well as ~ ' l e  
vertica! direction. 

The modifications that are required to change the vertical N(h) reduct~on program to a field-aligned N ( h )  
reduct~on program are: 

1. i h e  angle 8 :s changed from 90'-DIP for vertical propagation to 8 = 0' for field-aligned propagation. 

2. For each lamina:ion, the increrncnt ( A S  = Ah = h. - h.- ) is treated as a step irr the direction of the 
/ ) I  earth's magnetic field instead of the vertical direci~on. 

Muldrew [I9631 has perfornlcd field-aligned ray tracing hy using ;in electron density nic4el containing a field- 
aligned discontinuity; he sbowed that as the energy prr?ppted along the field, the angle 8 remained less than 10" 
except at reflection. In the use of the field-aligned N(h) reduction program, no changes result in the field-aligned 
piofile as 0 is cha~ged  from 0' to  10". This jmtifies the use of the value 8 = 0 In computing field-aligned profiles. 

A Semiautomat~c Scaling System 

A? ionogram contains more information than the minimum required to  compute an N(h) profile. In principle 
either the O or the X-wave trace could be used to calculilte the N(h) profile. The other trace could then be used 
to check the validrty of the interpretation and scaling of the ionogram. Lockwood 119691 has described such a 
computer-assisted scaling system in which iu~ operator, in c-?junction with a computer, performs the scaling of the 
X-wavc trace of an ionogram and the calculation of the N(h)  profile and corresponding 0-wave trace, all in real 
time. A difference between the calculated and actual Owavc trace on the ioriogram woulu indicate an error in 
scaling or a misinterprttat~on of :;a traces on the lonogram. The owrator can rescale the ionogram until a satistac- 
tory agreemeat is obtained between the actual and calculated Owave traces. Flgure 8 shows an Incorrect scaling 
and figure 9, a correct scaling of an ionogram m d  its corresponding conp~i tcd  0-wave trace. In figure 8 the error 
in the scaled X-wave trace at I .6 MHz produces a corresponding error in the CLwave trace at 1.0 MHz.  

More recently, both L o c h d  and Colirr [private comn~uniat ion]  have developed slmilar, more sophisticated 
semiautomatic systems, with more feitures t o  aid the operator in the interpretation of the i o n o g ~ m .  For example. 
at h? latitudes, the vertical r r f lect l~~n traces are often masked by spread echoes. However, by redisplaying the iono- 
gram on the CRT at a higher amplitude threshold level, the spread I$ removed from the displa:: (but not from the 
origins1 data) and thc: refkction traces become c1e:lrly visible, as s h w n  in figures 10 through 12. Figure 10 shows a 
conventional ionogram with severe spread echoes. The surrie ionogram, as displayed on the computer scaling system 
at CRC is dlcwn in figure 1 1. Figure 1 2  shows the &gital ionogram rcdirpiryed a t  a higher threst,olold !trel; ill it most 
of the spread echws are removed and t h  main t r a m  are discernible. 

A trained operator now performs the identification of the t s ~ c e s  in the ionogrm and scales the appropriate 
trace. The operator is better suited than a computer to  perform the% tasks since they involve subjective decisons 
in pattern rtcognition. On the o t k r  hand, r computer could determine the range and frequency coordinates of a 
tiace (i.e.. scale it) if the t ~ a c e  were i d e n t i f ~ d  t o  the computer. Ir. the computer-uidd system at  CRC, the computtr 
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determines the center of the trace by making use of the amplitude information in the ionogram. HobVever, 
computer identification of the traces has not yet becn attempted because of the compiexity of the pro~lem. 

Although computer identification of patterns has becn applied successfuily i.. other disciplines {the a1,alysn 
of cloud chamber photographs and chromosome identification) the task is more difficult in the analysis of tokside 
sounder ionograms for several reasons. The sign~l-to-noise ratio is variable and often poor. The traces are often ~ n -  
complete and fragmentary. There are no distinct classes of ioncbgrams; instead. there is a continuum of ionograms 
from one "type" to another. Furthermore. the identification of the vertical traces is ofrer. complicated by more 
prominent oblique and field-aligned traces. Thus. the computer identification of traces in topside ionogram presents 
a challenge that has not yet been met. 

Th!s paper has illustrated how our knowledge of lonospheric physics has aided the development of a mathe- 
matical method lor converting topside ionograms into electron density profiles. The scheme makes use of the fact 
that the electron density in the topside ionosphere M ~ ~ C S  exponentially with height with a slowly changing scale 
height. A spherical harmonic model is used to determine accuratel) the exrth's magnetic field components at lami- 
nation boundaries, anc an inverse cube variation in B is assumed wi*in each lamination. Then, an iteration based on 
the conszancy of geopotential scale height over a smail he~ght r a q e  is used to overcome an error caused by an uncer- 
tainty in the starting density. 

Two s::x~al applicaticas of this inversion scheme !lave been dlscussd: computing an electron density profile 
along a magnetic fie!d line, and a semiautomatic sca!ing system in which redundant information in the ionograrn is 
used to verify the interpretation and scali~g of the ionogram. With regard to the second application, the computer 
identification of traces in topside ionogrrnls remains a challenging problem. 



DISCUSSION 

Wight: Both you and Dr. Jackson referred to obtaining profiles from field-aligned traces. How do you recognize 
when this ~ c u ; s ?  

Lockwd:  Sometimes you see both vertical and field-aligned traces on the topside ionogram, particularly on the 
extraer5Lary trace. 

Wight: Aren't there i~tre~~rariiair: ISMS where there is only one echo of a kind, perhaps partly guided? 

Lockwood: Yes, but you can normally recognize that. Sometimes at high latitudes you will see only the field- 
aligned traces. 

Wright: Concerning the question of correctiiig geomagnetic field with altitude. you showed a rather elaborate itera- 
tlon scheme that seemed to be concerned with removing an error of the order of 3 km in 3000 km of real height. 
In comparison with other zrrors 110 you believe this is justified? 

Lockwood: Yes, because that's an error in each lamination and it is cumulative. 

Jackson: In the analysis of ground-based soundings yo3 wouldn't be concerned with this. 

Crofr: Are there any plans for putting a sounder in a geostationary satellite? 

Lockwood: We would like to. We have proposed both a magnetosphere sounder and a sounder in a geostationary 
orbit. 

Grossi: Concerning mirroring echoes, the topside sounder shows them to be absent above 6.5 MHz. Qn the contrary 
on the ground a recent experiment shows conjugate point echoes up to 12 MHz. How stable is the PRF of the 
Alouette and ISlS sounders, such that we could do some time integration from period to period? 

Lockwood: 1 don't have a number for that, but it should be quite stable. 

Grossi: Could you integrate coherently for rninute~l 

Lockwood: No, I don't think so for two reasons: The sounder is sweeping at the same time; and we are getting 
the echoes because of irregularities aligned along the field, and the satellite passes through the center of a 
duct hnd will move out in time. 

Grossi: Sometimes there are large shells, however. 

Unidentified speaker: Combi~ing the topside and ground-based sounding. could you measure the valley between 
E and F region? 

Lockwood: I don't think we would be sensitive enough to look at anything but gross features using the ground 
echoes. 

Unidentified speaker: Have you compared topside sounding with ground-based incoherent scatter? 

Lockwood: The incoherent scatter, in general, gives comparable data. These backscatter sounder do require 
sounder datu tu calibrate the F region p:,.sk density. 

Jackson: Cohen, at Boulder, made 20 comparisons o i  :icarnarca data with simultaneous Alouettc passes, and 
there was a systematic difference between the two, indicating that the Aiouette profile was lower, the same 
sort of thins I mentioned before. 
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ABSTRACT 

Several alternative methods for solving the group helght equation are presented. Three of these are now in 
operation at Ames Research Center and use data contained in a single ionogram trace. From the data an electron 
density profile N(h) is computed. If the ionogram also exhibits other traces, "reverse" ionogram traces are com- 
puted, using the N(h) profile, for comparison with the redundant data. When agreement is poor, the initial data 
trace is reinterpreted, another N(h) profile computed, and the reverse traces generated once again. This process 
is repeated until a desired degree of consistency is achieved. 

To reduce the necessity for human intervention and eliminate decision making required in conjunction w ~ t h  
the preceding methods, a method is proposed that accepts as input,all data from a single ionogram. In general. no 
electron Jensity function wiC satisfy these data exactly, but a "best" N(h) profile can be computed. 

Finally, a method is described that eliminates the need to assume that the ionosphere is spherically stratified. 
Horizontal gradients in electron density are detected and accounted for by processing several ionograms from the 
same satellite pass simultaneously. This idea is derived as an extension of one of the basic methods. 

Sounder ionogram data I! (f) can be converted to electron density versus altitude profiles by inverting the 
group height quation 

where 

h '  = virtual height or depth (km) 

f = sounder frequency (MHz) 

h,  = height of sounder (km) 

h = height of wave reflection (km) 

n '  = group refractive index [ h i e s ,  19651 

X = (fN/na = ~l (12400f ' )  

fN = electron plasma frequency (MHz) 

N = electron density (electrons/cm3) 



Y = fH/f = 2.8Blf 

,H = electron gyrofrequency (MHz) 

B = earth's magnetic field strength (gauss) [Chin and Chin. 19681 

4 = angle between magnetic field vector [Coin and Qin, 1968) and direction of signal propagation (degs.) 

Except for electron density N, which is assumed to be a monotonic decreasing function of altitude h ,  all the above 
variables can be considered as input to the problem. 

Generally, the inversion problem is attacked by modeling the N(h) profile as an asalyti.: function dependir~g 
on several free parameters. These parameters are then adjusted iteratively to satisfy both the reflection condition 

0 trace 

1 + Yr Z trace 

and the group height equation for each of a discrete set of data points ( h', f ). 
. . -. -.>I All reduction methods discussed here take advantage of the essential "triangularity" of Eq. (1) to compute 

L. - 
only a portion of the h'jh) profile at each step. This is done by dividing the ionosphere Ir~tc 1 number of spherical 

.. , layers and relating altitude and electron density within each of these laminations by 
'. f 

Coefficients a .  and b .  are then computed for each lamination in turn. 
I I 

Although eech layer model has two parameters, only one is left free. In the topmost lamination, b2 is set to 
0 so that only a, is free. In subsequent laminations, a .  are computed by 

- .  I 

leaving b .  free. Equiition (4) provides for continuity in the first derivative of N(h) at the boundaries hi. [Note 
I 

that continvity of N(h) itself is implicit in the model given by Eq. (3).] 

Jackson was the first to present in detail a method for solving this problem [Jackson, 1 9 6 9 ~ 1 .  However, the 
iteration scheme used is open ended (not constrained) and as a result, convergence is not always obtained. Mort 
recently, Lockwood [I9701 has improved the iteration method, but convergence still depends on the accuracy of 
an initial est~mate to the solution. 

One of the primary cons id era ti or,^ in development of the Arncs direct, invcrse, and field-aligned reduction 
methods was elimination of uncertainties in both accuracy and ccnvergence in the calculations. As a result, conver- 
gence within a specified error tolerance car, be guaranteed, if only a solution exists. 



Each of these basic methods operates only with data from a single trace (X, 0, or 2) of 3 single ionogram. 
The direct and inverse methods assume a vertical (radial) ray path and are distinguished from each other only by a 
differcnce in control variable. Wave propagation is assumed to be directed along the earth's magnetic field lines in 
the fie!d-aligned method. 

Inverse processing is extended to cope with the problem occurring when significant horizontal (latitudinal or 
longitudinal) gradients exist in N(h) - that is, when the ionosphere cannot be accurately represented by a layer 
model. This $.me basic method is also shown to have application in computing a "best" N(h) profile for all data 
from :l single ionogram. 

THE DIRECT AND FIELD-ALIGNED METHODS 

The Direct Method 

A set of points (h I, f .) is chosen to represent the ionogram trace. Reflectisn heights h . corresponding to the I I I 
signal frequencies f. are taken to be the lamination boundaries and as such are a natural control variable for the itera. 
tion process. The dtrect reduction method computes these boundaries. 

I t  should be observed that with this one to one correspondence between data points and lamination boundaries. 
data selection has a direct effect on the accuracy provided by the t/l,:h) ?ode]. Too few data points can pve a poor 
result regardles of how smooth the ionogram trace may be. 

Reflection heights h.  are found by solving for the root of the group height function 
I 

This is where the direct method differs from the iteration schemes used by Jackson and Lockwood. 

This solution process is necessarily iterative, requiring that the function F be evaluated several tlmes for 
suztassively more refined estimates of hi. Since f i  is specified, an estimate of h j  determines a value for F 
according to the following sequence of operations: 

Calculation source 

hj + ;) the w ~ e t i c  field parameters are known 

compute 9 h e  magnetic field parameters are known 

Yj + Xi the reflection condition, Eq. (2) 

compute ai Eq. (4; (computed only once and only for parabolic laminations) 

hi, Xi + bj Eq. (3) (parabolic laminations) 

-aj Eq. ( 3 )  (linear laminatiot?q) 

compute F(hi) Eq. (5) 





The Field-Aligned Method 

In most cases, the results of data reduction as performed assuming vertical signal propagation, are consistent 
with the known physical s tuation. Sometimes, however, a vertical assumption is obviously invalid and the most 
likely alternative is that tht signal has propagated along "tubes" aligned with the earth's magnetic f~eld. 

A field-al~gned method is designed for data reduction when such is assumed. In concept this method IS iden- 
tical i o  the direct one, arid requlres ouiy that h and h' be replaced by distances p and p', along the field line 
discussed above, and th;it the calculations be performed along that field line. 

THE INVERSE METHGD 

Inberse processing is so designated because instead of specifying frequencies and computing reflection heights 
as with the direct method, one solves the inverse problem. Frequencies are determined that correspond to reflection 
at a specified set of altitudes. Inverse processing is also discussed by Madsen, [197&]. 

One advantage of this approach is that the approximation error inherent in the N t h )  model can be mole 
easily controlled. More significant, however, are the sophisticated extensions of the method that are possible. 

The ideas that motivated the calculation process of the direct method aiso prevail here. A group height 
function 

is defined, and the root f j found by iteration. The following sequence of operations indicates how the function G 
is evaluated for r given estimate of f .. 

I 

Calculation Source - 
compute Bj ,  4j the magnetic field parameters are known (computed only once) 

4" yi : j  = 2.8 B./J l i  

Yi + ,Yi the reflection condition, Eq. (2) 

compuie aj Eq. (4) (computed only once and only for parabolic laminations) 

hi, Xi + b, Eq. (3) (parabolic laminations) 

Eq. (3) (hiear laminations) ' "i - - 

4 + h j  An initial set of data points (h' ,  f )  is "curve-fit", and h' correspor~ding to f i  is found 
by interpolation. 

1 

- .  , . ,- 

D r .  



Computation of a lower limit again depends on the 
F;g'rre 3.- Inverse Method - N ( h )  laminations for trace from which the calculations are performed: 

four frequencies reflecting at hj+l  Curve 3 corre- 
sponds to the maximum allowable frequency since X trace: The ieflection condition is solved for 
N(h)  must be single valued. min 4 with f H  = fH; and 

fN  = f N p l  

0 trdce: min f. = f.  I 1-1 

As before. the bounds a:e obtained from the 
N(h) 

N(h) model and the reflection condition. Curve 4 in 
figure 3 corresponds tc  a phyiically impossible solution. 
An upper bound on f j  is found by solving dh/d(l nX) = 0 
in conjunction with the proper reflection condition and 

------------ the magnetic field relation. Curve 3 in figure 3 represents 
the r'lwimum attainable electron density and thus by the 
reflection condition, a maximum value for 4. Curves 1 
and 2 correspond to possible acceptable solutions. In 
this case. the maximum can be directly evaluated. It 1s 

Z trace: the quantity X - ( 1  + Y) must remain 
negative throughout the lamination. 
Curve 3 in figure 4 corresponds to a 

! ! 
\4 

physically impossible solution. Curde 2 
represents the marginal case correspond- 

hltl 1 ing to d[X -(1 + Yj]/dh = 0. Curve 1 
I corresponds to a possible acceptable 

solution. 
Figure 4.- Inverse Method - Behavior of X-(I + Y 

-h 

for three reflection frequencies (Z-traa calculations 
only). Curve 2 comspnds to the minimum allow- 

Although the inverse method does offer some im- 

able frequency since X-(1 + Y )  must be negative portant i dvantages over the direct method, it is inherently 
at every point within the lanination. more time consuming. This fol!ows primarily frog the 

not necessary to solve a system of equations. 

. - 
necessity for computing the integral in Eq. (6) over the 

entire altitude range for each trial value of 4 .  An added complication, though not as severe, is in providing the cap- 
ability to numerically determine a data value hi for any specified 4. 

THE OPTI'UL LAMINATION METHOD 

This method attempts to profitably use, simultaneously, all the available ionogram data pertinent to the cal- 
culation of a single lamination of the Nth) profile. At least one of the ionogrm traces must be visible beginning 
at zero virtual depth. The inverse method then procedes as uscS with the exception that instead of searching for 
the root of the poup height function G [Eq. ( 6 ) ] ,  one looks for the minimum of a given object func:ion. The pur- 

i pose of this function is to provide a measure of the consistency between the data and the computed N(h) profile. 
? 

Consider that the reflection heights ha, h3, . . . , h~ (and thus the gyrofrequencies fHa, fH3, . . . , fHN), 
I have been specified The inverse method then computes the corresponding frequencies fa, f3, . . . , fN 

For a given estimate of N (or jN) at t b  cumnt  reflection height h., a frequency fl is obtained for each 
t of the ionograms traces from the reflection ccitdtions I 



Xtrace: X =  1 - Y +  f N 2 =  f(f-,'If)-* f = ( f H +  -)/2 

0 trace: x = l + f ~ 2  = f 2  + f = f l v  

Using these frequencies, one then computes from Eq. ( I ) ,  the corresponding virtual hcieht 

for each trace. The subscript c indicates a computed value. The object furlction, defined for example as 

J(fW = [hf ( l j )  - h l ( / i ) l f  

x, 0,z 

is minimized with respect to fN. Note that if h l ( f i )  is visible for only a single trace, the mlnimum valce of J (  fN) 
is zero and the method is equivalent to the inverse. 

As an example, consider the case where the X trace is continuously visible from the satellite position bl;t not 
out so far as to display ground echoes; the visible 0 trace begins at some nonzero virtual height and does exhibit 
ground echoes: the Z trace is partially visible (fig. 5). All visible data would be scaled and curvefit for Later interpo- 
lation. 

If the altitudes h ,  , h 2 ,  , h ,  co~respond to the data as shown in figure 5, then the h ( h )  profile (fig. 6 )  
would be determined in the first lamination by the scaled X and Z traces, in the second laminatiori by the X 
trace alone, in the third and fourth laminations by the X and 0 traces, and in the remaining lamir,ations by the 0 

I 
N(h) 

Figure 6.- Idealized N ( h )  profde in would be computed by 
Figure 5.- Id&d sample ion- rhowiq visible portions the optima lamination method. Data from the indicated 

of X ,  0, aad Z traces. The pohts hl indicate the dti- tnces is u d  in the computatisn of the ~ndividual lamina- 
tudes at which the coirrlpondiq frequencies have reflected. tion boundaries (rct fa. 5). 



trace alone. Thus, all visible ionogiam data impact the solution for the N!h) profile in a single, computer- 
controlled operation. 

Since the choice of the object function J is arbitrary, various bits of scaled data can be weighted according to 
the confidence which they inspire. Alw, a different object function can be selected with only minor changes to the 
computer progam. 

THE HORIZaNTAL GRADIENT METHOD 

A fundamental feat dre of ionograrns produced by orbiting swept frequency sounden is that each of the trans- 
niitted pulses travels through a different ionosphere due to satellite motion withn the orbital plane. The reduction 
methods discussed previously do not take this into account, but assume that the ionosphere is spherically stratified. 
This is not generally trt e. The e~istence of region! where the ionosphere displays significant horizontal gradients in 
electron dcnslty are wei: mown packson, 1969bl. 

A conceptually simple method [see Modten. 1970b for a more detailed description1 that accounts for this hori- 
zontal variation of electron density can be emploj ed if two or more ionograms are proce=d simultaneously. The 
basic computing block of this method is the inverse method above. 

Consider a point in the orbital plane to be defined 

+(w by the coordinates h = reflection height and r = time 
"! (frequency could be used in place of time). For specified 

h2 -- reflection heights h2, h3. . . . . h ~ + ~ ,  the inverse method 
computes N(h) lamination profiles sequentially, down- 

"3 ward from the satellite positicn. Each sucmsive calcula- 
tion occurs at a later time and requires as input, the values 

"N 
of N at all reflection heights in fieure 7 directly above 
the one curre-itly considered. 

h ~ + ~  

-h 

I 
I For example, the calculation of N(h3, t2 )  requires 
I 
I as input the values N(h2, t2)  and N(hl, r,). However, 
I 

I , only the approximations N(h2, t l  ) and N(h to) are 
known from previous calculations when ionograms are 

F~ 7. - ~ ~ n ~ ~ ~ , ~ ~  bwtr =roy~ w. loahPc processed singly. Using these approximate values in the 
uc points w h a t  ckctron &ndty h cabdated by the crlcuhtions is equivalent to assuming spherical stratifica- 
hwcrae Itlethod. Thc o lmtbu ue mints when tion in the ionosphere. 
inteaplated dues of electron deruity woukl be obbincd 
in the H01~0ntd Gndient Melcthod. If the horizontd gradients in N(h) were known, 

this variation with time could be incorporated into the 
calculations to give more accurate results. Specifically, if values of N ' ( h ) = ( d ~ l d t b  for h = h l .  h,. . . . , hj are 
available, then in the calculation of N(hitl), one could use the following more accurate vrlues of N at ti: 



i h c  horizontal gradient method establishes values for the derivatives N1(h) by simultaneous calculation of 
several :ontlguous ionograms. The following step-by-step procedure describes the method. 

1 ,  Compute N(h, , to)  for each ionogram. 

2. Define N1(hl ) to de the slope of the "best" straight line through these points wher! N is plotted 
versus time. 

3. Using Eq. (l), compute the values N(h ,, t i  ) for each ionogram. 

4. Using the inverse method, compute N(h,, t , )  ior each ionogram. 

5 .  Repeatsteps'! through4for h = h 2 , h 3 , . .  . , h ~ + l  

The first-order variations of N(h) in the time direction are thus accommodated. 

Theoretically, it is possible to detect and measure horizontal gradients within the time (distance) necessary to 
proa.lr,? a single ionogram, through the judicious use of resonances, electromagnetic cutoffs, and electron gyrofre- 
quency resonances. In practice, however, this approach i; precluded by the itaccuracies due to resonance broadening 
and, in some cases, poor frequency resolution [Colin, private communication] . 

One suspects then that it misht be possible, over a distance of several ionograms, to account for more detailed 
variation of N(h) in the horizontal direction. This hypothesis could be tested by computing the two parameters 
describing the "best" parabolic description of the horizontal variation in step 2 above, and modifying Eq. (7) accord- 
ingly. A good parabolic fit to the data would justify this appraoch. 

SUMMARY 

The direct, ficld-aligned. and inverse methods for ionogram reduction operate reliably and as accurately as 
possible on data obtained frvm a single ionogram trace. The inverse method is extended to provide an N(h) profile 
consistent with all data from a single ionogram. This is accomplihed without operator intervention. A separate 
extension of inverse provides greater accuracy in the computed N(h) profile. This is accomplished by processing 
several ionograms simultaneously so as to account for horizontal gradients in electron density. 

In ti?: description of the methods for which signal propagation is vertical, the sounder height h has been 
assumed constant. far simpliety only, throughout the calculation. The direct and inverse methods as implemented 
at Ames Research Center do account for sounder altitude variations. This apability can also be incorporated into 
the proposed horizontal gradient method with little effort. 

Tlre field-aligned method fixes the sounder at sorne initial position so that the time-consuming process of 
computing field liqe parameters is not required for each individual data point. It follows that development of 
inverse and horizontal gradient analogs for field-aligned signal propdgation is not feasible, since they would be even 
more complicated and time consuming. 



linker: I didn't fully understand your method for taking out the assumption of spherical hye rm.  Do you need 
many ionograms to do this? 

McQtlley: You need at least two. 

Wight: The solution to a s u c a d o n  of ionomams obtained along the path of tire satellite isn't nea!ssarily going to 
resolve the horuontal gradient unless the gradient also Lies along the satellite's path. 

McChlIey: These satellites are mostly in polar orbits where latitude is the main change along the satellite track. 

Ooft: When you inake soundin@ of the ionosphere using techniques that are sensitive to the map of the iono- 
sphere, like HF ground backscatrer, you see much evidence of traveling irregularities that have periodic 
structure. You would have to be careful that your sweep rate wasn't in synchronism with this period. 
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ABSTRACT 

It is well known that the mlcuiation of electron denwy profiles from ionograrh cannot provide unique results, 
since the information required :- incomplete. The anisotropy nf the ionosphere provides a means to  reduce the un- 
certainty, as has been recognized by Argence, 119541 and Storey 11960j. A systematic investigation about the inde- 
pendence of the two rnagneto~onic components show that the extent to  which the range of amb~guity can bc reduced 
depends mainly a n  the magnetic latit2de. On the other hand, it is even more important that the numeric21 method 
used for the inversion is basical!~ very accurate. Studying the properties of the integral transiorrn we come directly 
to some cunclusions about the minimum requirements for s numerical inversion method. Some remarks are given 
about error estimates and first-order corrections for less elaborate methods. 

INTRODUCTION 

In vertical sounding of the ionosphere we obtain the virtual height h '  as a function of radio frequency 1'. Thr 
virtual height is related to  the reflectior. height by an ictegral equation of Abel's type. If this integral equation can 
be so!ved we obtain first the reflectio:~ height as a (unction of the radio frequency; then, using the reflectic., condition 
relating radio frequency and electrrn density at the reflection level, we obtain the electron density as a function of 
height, the electron density profile. The solution process of the integral equation requlres that the virtual he~ght  be 
knowr. for all frequencies up  t o  the frequency for which the ,reflection height is to  be determined and that the elec- 
tron density be a monotonic increasirtg function of height. Vhile the second conditioii .nay be fulfilled for a rela- 
tivel) large percentage of lonogram, the first condition is practically never fuliilled [Manning, 19491. To obtain an 
exact and unique solution, we need additional infurmarion. Some additional information is availabl: as will be shown 
later, but usually .t 's not sufficient [Poul and Smith. 19681. We then have to introduce a physically reasonable model 
assumption and try t o  estimate the range of cncertainty of the profile obtained this way. Some insight into the errors 
of this process can be oblained by studying the properties of the integral transform. A! the same time we uill learn 
about. the requirements for a rapidly convergent method of numerical solution i?eul, 1367). 

Since the ionorpherc. is a doubly iefracting medium, ths question arises if and how much addi!ioaal informatiort 
can bt obtained by using both ~Iariz:,t icns in the inversion process. The results of an investigation of this problerr, 
will be presented later on. 

We propose some practical procedures giving first-order corrections, when no additional information is available 
or where computing facilities are very limited. 



PROPERTIES OF THE INTEGRAL TUNSFORM 

The virtual h e a t  h' is given by 

where h~ is the height of reflection and z is the height variable. If we neglect the earth's magnetic field, the group 
refractive index is 

where X = fkzI f *, f is the radio freqaency, fN the plasma frequency and fN2 (z) is proportional to the electron 
Oensity. The radio signal is  reflected where X = 1 or fN(hr) = f .  If the electron dcrtslty is never decreasing with 
increasing height. the virtual ! r ea t  can be expressed by 

where hr) ia the lower boundary . the ionosphere and z' = &/dfN2. 

For a given ekctron density profde Eq. (3) represents an integral transform. Its most essential feature is the 
singularity at the refkction height. Equation (3) can be rewritten 

H'c see i~nmediitely that t h ~  difference between virtual height and refl-ction height is deteminrd mainly by the 
dope of the profik near the reflection b*?, since the factor by which 2' is weighted in Eq (4) is very small for 
mall vdues of X and tends to become infinite when ;It' a~proaches unity. Similarly. it is easy to see that h' i: 
always finite if z' is finite. On the other hand, ir is possibk that h' is Lnite, even if z' is infm;te. This %an be 
demonstrated in the following example: Consider an ekctron density profile erven by 

For r = 1 this represents a parabohc profile with the maximum density proportional to f,' at the kight z = h,  
and a half thickness ym. If we solve Eq. (5) for z and differentiate, we obtain as the expre-&on for the slope 



of the profile 
lo 1 1 

If r > 1 /? the siope becomes vertical for fhr = f,, since 
z' becomes infinite. Introducing Eq. (6) into (3), the 
integral is convergent for f  = fc if r < 1. and we obtain 

1 1 
h l ( f c ) = h o + - y m  for--<r<1 (7)  

1 -r 2 

For 112 < r -': 1 we therefore have a model laye: with a 
maximum density for which the virtual height at the cri- 
tical frequency is finite. The parabolic maximum with 
f = 1 represents just the limiting case between finite and 
infinite virtual height as is indicated by the logarithmic 
singularity in the expression for the virtual height of a 
parab~lic layer. The profile and the virtual height for 
r = 213 are shown in figure 1. A few more examples may -, f i  f Z  
illustrate how different the effect of a veriical slope on f,' f: 
the virtual height can be. A model given by 

Figurr 1.-  Electron-density profile (labeled h )  and virtual- 
helghi cunz (h') for the model given by 2.5 and 2.7. 

0 <fN 4 f m  
z( f ~ )  = (8) 

ho + ym [' -: arcsin(-! fN > fm ]lo r 
h' 

is continuous at the base of the layer where f ~  = f,. but 
it has an infinite slope, The virtual height is given by - 1 

Ah' Ah 
ym 'ym 

ho 0 t f  < f m  
h ' (9) 

l h o + y m  f > f m  0 

There the vertical slope of the profile results in a finite dis- 

I 

- 
h=h '  
-/' 

continuity of h'. This is s h o w  in figure 2. The virtual I 
0 1 2 

heights shown here x e  usually interpreted as reflections f: f 2  
from two flat thin layers a. lifferent hei&rs with relatively - 
low c!ectron density in betwern, which is proba%!y correct, 

f; 'Z - - - ___ but Cannot be 9roven by using h' observations alone, ,ps F~ 2.- ~ ~ f ~ l e  (h)  virtd-hcight curve o,), on 
demonstrated in this example. nonndizcd sales, for the model ,given by 2.8 and 2.9. 



For models given by 

again we have a continuous profile and an infinite z' at fN = f W ,  if k < 2. The virtual height, however, may have 
an infinite discontinuity or a finite discontinuity, or it may be continuous, dependi~g  on whethzr 0 < k < 1, k = 1, 
or 1 < k < 2. Profiles and virtual heights for the three cases are shown in figure 3. 

The examples so far have shown that a continuous profile may have a continuous h' curve even if z' is infi- 
nite. or a singularity of 2' may result in a finite or infinite discontinuity of p'. On the other hand. if a finite o r  
infinite discontinuity is observed in an ionograrn it is impossible t o  find out whether the profile is continuous or not. 

It is also interesting to  study the effect of a discontinuity of z'. In figure 4 we haw a model where the elect-on 
density is linearly increasing with height, but the slope is discontinuous a t  fN2 = f ,  ' .  In the upper portion thr: 

Figure 3.- Model profks given by 2.10 and 
comspondiq virtual heights. 

Figure 4.- Rofile ( h )  and virtualheight curve ( h ' )  
for a model with a discontinuous dope. 



slope is increased for fN2 > f1 in the lower portion the slope is decreased. The res~l t  is an infinite slope of the 
h' curve, with h' increasing vertically in the upper model and decreasing vertically in the lower one. 

Cusps like the one shown in the lower part of figure 4 are often observed in ionograms. On the other hand. 
if the inversion of the integral equation is based on a lamination method. the model used should permit a continuous 

slope everywhere except where a cusp ifidicates a discontinuity or at least a very fast change of the slope: otherwise. 
the h'  curve recalculated from the result will fit the original virtual heights very poorly. In other words. at least a 
second-order approximation should be used within each segment to allow for continuous slopes over the whole 
profiie to assure satisfactory convergence to the true shape of the profile. Furtherm~re, it can be shown that a finite 
discontinuity of the second derivative of the profile will always result in a contincous virtud heights and continuous 
slopes of h'. which means that in most cases a secondurdrr model will also be sufficient for good convergence. 

A SECOND-ORDER INVERSION PRWESS 

A second-order method can easily be derived by performing a partial intepation of (3): 

We now divide the integration range in several intervals and assume that z" is constant within each interval 
while z' is continuous also at the interval b i t s .  If we now define 

and gi = g(Ji2), we can write 

With the assumption of a constant second derivative, we have 

If all the .r/ for 0 < i < n-1 are known, Eq. (13) contains only one unknown z; for which this equation can be 
solved. Th:refore, if the hei@t and the fust derivative fo* fry' = 0 are known, the integral equation can be inverted 



step by step. We first obtain the derivatives at the interval limits. The second derivative rs then obtained by Eq. (14). 
and finally integration over the first derivatives gives the height 

JOINT USE OF BOTH COMF'ONENTS 

Since the two magnetoionic components, ordinary and extraordinary ray, have different reflection conditions 
we have to compare them for corresponding radio frequenzies, so that both are reflected at the same height. If f~ 
is the electron gyrofrequency of the earth's magnetic field, such a pair of frequencies f,, and fx are related by 

In general, for any given height between the lower boundary of tht ionosphere and the reficction hei&t, the 
group refractive indices are different for those two frequencies; therefore, we expect to im.prove the results, where 
uncertainties are invol-ad, bv thc joint use of both components. The expression for the virtual heights of a mono- 
tonic layer for the two components are 

The same principle can obviously also be used in the general case if the earth's magnetic field is included. We only 
have to replace 11- by B' of the component used. 

A computer program based qn this principle has been used very successfully in the Boulder Laboratories for 
almost I 0 years for inversion of ionograms to electron density profiles of the ionosphere. The method has advan- 
:ages in addition to the high accuracy obtainable. The assumptions made can be used consistently for interpolation. 
ray tracing, and extrapolation for the maximum of a layer, since z' and z" are obtained explicitly. There are. how- 
,?ver, two basic difficulties in the calculation of electron density profiles. First, we car. never obtain h '  for very low 
frequencies because of the so-called starting problem; second, the ionosphere consists often of several layers with 
minima of electron density in between, and we observe disconti~uitiee, or irregularit~es of h ' on the ionograms. As 
demonstrated earlier, there is no way to obtah a unique solution if r d y  h '  of one component is used in the inver- 
sion process. The joint use of bath components can help to reduce the range of uncertainty. 

It is  convenient to &\an@ our notation by irtroducing the ;?r.mn? frequency at the reflection level by 

f orbnary component 

extraordinary component 



and then 

Both group refractive indices now have the same singularity and can be written as 

Mo r b  = -- 
,/FT ordinary component 

"=\/l-x extraordinary component 

where Mo and Mx are slowly varying functions of X and @. 

Abel gave an exact solution for the type of integrai eqdation we have in Eq. (3). Fcr Mo = 1 (at the rnagne- 
tic equator) it is given by 

We shall attempt to find a wlution of the general integral 1 . 0 ~ -  , 
Eqs. (17) and ( 18) by modifying Abel's solution to i- 

for ordhtary and extraordinary components, respec- 
tively. The functions So (@,h) and Sx(#, h) can be F@rc S.- Fcnctions So($,%) and Sx(@,%), solid lines. 
determined numerically without difficulties. An e:ltample The cornspondkg function without magnetic field equals 

is given in figure 5. the constant 2/n shown as dashed line for comparison. 

0.8- 

hb(@)d@ (24) 
a6 

As mentioned earlier, Eqs. (24) and (25) are only correct if the electron density is not decreasing with increasing 
height; otherwise, we will have tiifferent values for the two integrals in (24) and (25), respectively. If we formally 
apply this solution method m d  obtain different values, then this differewe is due to a discontinuity of the reflection 
height if a singularity or discontinuity of h' is involved, or it has to he attributed to low electron densities for which 
no observations were oatainable. 1: we find s?~dl a differctlce we know that there is a "valley" between two layers 

1 
------------ -s-~HoE~L-~~:--- ----- - 

s. 

~ n d  0.4 DIP 62.17s. 
f, * 1.331 MHz 
+..3.0 MHz 

Sx' 
hk(4)d4 (25) 0.2 - 

- 

O ~ ' ~ " J "  0.5 
1 2  

1.0 +" 



- I or there is a significant amount of ionization at L;w 
densities, but the question now is whether the profile of 

250 those parts can be calculated from this difference which 
depends on frequency. 

Without going into the mathematical details we 
wdl present the principles for studying this question. We 
consider an electron density distribution consisting of 
two layers as shown in figure 6. We apply formally the 
solution process to ordinary and extraordinary compo- 
nents at cr~rresponding frequencies and take the differ- 
ence of the results. We obtain a new integral equation 

'for the effective slcpe zLff of the unobserved portion 
of the profile. 

1 I 
'c 

PLASMA FPEOllENCY IN MHz (16) 

min 
Figure 6.  - blodel ionosphere with valky. 

where D is the difference of the results and K is the new 
kerr,:! function, which can be determined numerically. The effective slope is the sum of the absolute values of the two 
(or more) slopes of the actual profile at each plasma frequency in a valIey betwee2 the two layers. The integral over 
the effective slope gives the correct height increment for example h3 - h, in figure 6. A few examples of the kerrtel 
function are shown in figure 7. The kernel function depends strongly on the dip angle and weakly on frequency. A 
first-order estimate for the height step or "valley width" can be obtained in the following way. Since t& n always 
positive we can apply the mean value theorem for integrals 

where Ki n a value of the kernel function somewhere m the interval between @,,,in and h a x .  The lowest plasma 
frequency in the valley h i n  is unknown. So we see that for s m l l  dip angles, If emin is not very close to hu, 
the kernel functiun is almost constant and rel?'.ively good estimate fcr Kj and therefore for the height step can be 
obtained. This is not true for dip angles around 40" since the kernel function b then very small. For larger dip angics, 
if the valley is not too shallow and not loo deep, 8ga.n a fair!y good estimate of the height step is possible. 'The uncer- 
tainty of Ki increases again towards 90" dip angle, ilnd therefore the valley width becomes less accurate. 

We may conclude that depending on dip angle a first-order estimate ol'the height step may be possible, but we 
also realize that no further details of the shape of the valley are obtainable, at least in practice, where the accuracy of 
the virtual heights is limited. 

ERROR ESTIMATES AND FIRST ORDER CORRECTIONS 

We have seen that the accuracy of an estimated height step depends mainly on the dip angle if both components 
are used in the inversion process. In practice, there is no chance to learn much more a b c ~ t  the distribui'lon in a valley 
or in the low-density portion of the profile. This is partly due to the "lmiied accuracy of the virtual heights, but in 



Figure 7.- Kernel function K( fN, &,,) for starting and vdky problems at several latitudes. Cross sections @,, = const. 
through the thr&dimensionaJ surfmcc show the depmdencc of K on fNa . The variation of K with msgnetic d ~ p  may be 
reen by comparing the four figures in a column; the variation with &E for constant dip. by compariq the two Tiures in 
the =me row. 



many cases even more to the inconsistency of ordinary and extlaordinary components if the ionosphere is not exactly 
horizontally stratified. Even if such a height step can be obtained accurately the retardation of the signal within this 
height interval has t o  be known for an exact calculation of the remainder of the profile. On the other hand. it is in 
the nature of the inversion process that errors are reduced relatively fast with increasing frequency. This means, for 
example, that for a first-order estimate of the "width" of a valley between E and F regions and a reasonable model 
for electron density distribution in the valley, the error in height for densities near the maximum of the F region 
will be in the order of 1 krn, even if the height step for the va.lley is wrong by 10 kni, provided that the maximum 
density of   he F region is at least 3 or 4 times the maxinlun~ density in the E region. 

hlure insight in the error-reducing process call be obtained in the following way: We assume the profile is cal- 
culated up t o  a height hc(&-l), the index c indicating that it is only approximately correct. The virtua! height 
11 '(@,,) is now used to calculate the portion 3f the profile between and h1. The resulting height h(&) is 
again incorrect. If an index P indicates the exact profile, we have 

On the other hand. we use the equation 

to determine the height interval between &-I and If we take the difference between Eqs. (28) and (29), we 
obtain 

If we now assume that the difference between the correct arid incorrect s l o v s  1s always positive or always negative, 
the mean value theorem can be applied and we obtain 

where pIp is some value o l  p' in the lower interval 0 <$I < #n,l and p i  correspondingly in the upper 
interval @,,-I C Q <@n. Frcm Eqs. (21) and (22) we know that pip < p; and since 1' > 1 we see that the 
height error at GI, is less than tb? error at Qn-1 



since 

This property of the inversion process is very important, especially if limited computing facilities exclude the joint 
use of both conaponents for electron density calculations. In this case reasonable assumptions must be made about 
the undetected portions of the profiles. While the use of both components permits an error estilxate based on a 
least-squares fit of the recalcuiiited 1.irtual heights to the observed virtual heights of both. cor,iponents, no error 
estimate can be obtained if one component is used together with some assumptions. 0 1  the other t.and, sinci: we 
know that the errors are decreasing with increasii~g frequency, wc can expect that the profile calculated will come close 
to the true profile at least near a maximum of a layer, often the most important portion - for example, for a w~r ld -  
wide study of the ionosphere - or its time behavior at a fixed location. 

it is standard practice to extrapolate h' linearb to zero frequency for the starting process if the slope of the 
virtual height is positive at the heginning of the ionogram. A valley correction of about the same sophirticatlon can 
be applied easily using the foliowing rule for the input data hi if nAbs are the observed data 

hj = hAbs f  C fc.= and 6 f o E  (35 )  

h i =  2 h A b s - h A n E  f C f c E  and @>foE (36) 

hj = hAhs f > f &  and Q>foE (3 7) 

which sirrlply means that for the calculation of the F layer we double the virtual path within the E  layer corres- 
ponding to the assumption that the E layer is symmetri~al, which can be roughly justified by the physics of layer 
fc~rmation in the ionosphere. 

A similar rule can be applied to nighttime ionograms if the virtual heights are decreasing with increasing fre- 
quency at the beginning of an ionogram. In t h s  case, we know that there is another layer below the observed one 
with a critical frequency less than the frequency where the first echo is seen. Sometimes it is possible to extrapo- 
!ate for this critical frequency, and the retardation in this lower layer can be estimated by simple: assumptions such 
as a constant slope in the F region and a parabolic profile of the E  region. If such an extrapolation of  the critical 
frequency is not practical we nay  instead use 

where hin is the minimum virtual height at the freq~ency fm. Equation (38) surely is harder to justify than Eqs. 
(35) through (37). but it assures at least Llat the correction is in the right direction. - - -  

Summarizing we see that the accuracy of profile calculations is always limited. Sometimes it is not even pos. 
srble to obtain a reliable error estimate in the sense that the errors of the res~l ts  should bear a simple relation to the 
estimated errors of the virtual heiP.ts. Tius holds at least for the valley and starting problem. There, depending 6 



mainly on the dip angle, the joint use of both components can help to reduce the errors significantly. The 
error is d.ecreasing with increasing frequency, but it also depends very much on the structure of the ionosphere. 
Nevertheless, in many cases the results in the vicinity of a maximum of a layer are more accurate than the 
virtual helghts, due to the irror reduction inherent in the process as can be demonstrated by model studies. 



DISCUSSION 

Reinisch: Is the programming required for routine work already done? if so do you now use it? 

Pad: This is just a study and not in routine use. 

Wright: You are asking if this .:be1 generalization has been used in a working method to deduce valleys. The 
PJ(h) fc~rmularioil that Dr. Paul has devised is in use to obtain profiles. Another process that makes use 
of the ordinar). and extraordinary information is in routine use to resolve the valley ambiguities so far as 
permits. To perforni &is solution, some assumptions are needed about the valley parameters. 

Reinisch: Do you have any figures on the frequency of occurrence of the valleys and its average depth? 

Azui: We cannot detect that. You can do something like Jackson did. Your results drpend on the model. 
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ABSTRACT 

A method is described to accomplish automatic data selection and profile inversion to obtain ionospheric 
electron den3ity profiles from d@tized radio soundings. The profile inversion is based on the wellestablished 
formulation of h d  [ 19601 by which thc opttmum mdio frequency sounding intervals can be specifed from an 
approximate knowledge of the profile; the expected virtual height coordinates (h ') at these frequencies ( f )  arc 
estimated, and procedures are then u r d  to select h '( f )  observations nearest the predicted coordinates from a 
subsequent digital ionograrn. From these the next profile is obtained. The process aihptivel) follows the changing 
shape and detail of the profik. The procedure requires an average of 15 sec per profile on a standard data processing 
computer, and can he adapted, with benefit to online real-time use in our digital ionosonde. 

INTRODUCTION 

Long before the age of digital computers, the panoramic ionosonde had ektathshed the swept-frequency 
ionogram as a convenient and subjectively informative reprerntation of ionospheric structure. To a considerable 
extent phenomena in the ionosphere arc recopized, described, and named - if not necessarily understnod - by 
their ionogram manifestations. These qualitative and pictorial applications sufficiently justify systems designed to 
make such recordings, but the greater usefulness of quantitative infcrmation has led to progressively more elaborate 
schemes for their aralysis. Radio echoes from virtually the entire near side of the ionosphere are recorded on the 
propram; the inversion problem, and most of the formidabk difficulties of deducing the profile, has been recognized 
from the beginning. But in part because it was relatively eay  to "scale" simple para:.leters in great quantity from 
ionwms, and also because profile inversion involves awemme arithmetic, only scattered efforts to deduce profdes 
were attempted until electronic computers emerged to assume the principal burden. Even so, 20 to 50 virtual 
height-frequency nz3hgs are rcq!~Led as input information to the inversion proass; when this scahq is done by 
hand from film ic.~ogram recordi~p, hie labor remains exasrive and accuracy compromised; yet the task requires 
experienced judgment, dnce a.; -t cf tht echo information of the ionogmnr in irrelevant to the profile. 

The next stap in the evolution of these techniques is cwrmtly under wry: the appllation of digital hardware, 
which we believe provides an apprwch to the mlution of the remainin# probkms. S d ,  fut  . generd flrpor digi- 
tal computers are now avrilrhlc, a: a fraction of the cod of inflexible rpedol-purpore, fwd-wire control systems. 
When interfaced to the :gemid elements of the ionomnde (trmanitter, receiver, frequency-synthesizer) the general- 
purpose computers assunie dl ei the functions of system control, echo recognition, parameter digithation, and pre- 
liminary or even f d  data prooeuing. This b tlre orientation of ow prognm of di@d ionoronde (Dynrsonde) 
development [ M & r ,  19691, and it consists of three interdependent areas of activity: 

1. Development of the Dynmnde system itself, including the rekction of digital and m d o ~  system 
components, interfac" .., and the refmement of contrd software for thc Dynuonde online general- 
purpose computer. 



2. Development of the Kinesonde, an independent and more narrowly oriented hardware systeni 111 \VI I ICI I  we 
cordcentrate on the measurement and statistical analysis of ionospheric radio echo parameters as time wries. 

for studiec 5:':;,tosphcric motions and micrrlstructure; these additional measurement capab~lities aie then 
achievabw directljl in the L)ynasonde svstem through str~ightforward software design 

3. Development or data analysis methods to  accomplish specific measure men^ c2,1ectives such as echc locat lo11 
(angle ot ?rrival) and iunospheric "drifts" : ' r m  spaced-antenna measurements. or the extraction of I ~ : I I O -  

spheric electron der.rity profiles from digitized group-path versus frequency measulenients. Although uur 
goal in e:xh case is to accomplish these analyses online and in realtime (within the Dynasonde). ~t 1s expe- 
dient t o  approach their development o~fline, using tape recorded dig~tal data and a large. general-purpose. 
easily progr amrned central computer. 

The paper reports our progress toward the specific objec!rve of determ~ning ionospheric electron dtnsrty prof~les 
automatically -- that is, without the need for manual data scaling z .  , subjective echo pattern recupnitron. hleasure- 
ments for this purpose are being made by the prototype Dynasor,ie, the maln features o h  which have been described 
recently Wnght, 1969) , and  are not repeated here, except to illustrate pictorially the diptal ronograms themselves. 
Our approach to au \~rns t ic  profiles is heavily influenced by Paul's [I 9601 illum~na~ing formulaticn of the profile 
inversion problem ar.d developed into our pesent general-p~rpose work~ng system bv Pour [! 9671, H o l v ( ~  uarrd 
McKitrriis (19673, aqd Wright (19671. In the section we outline this formulation, emphasizing some of its propel. 
ttes especrally appropriate to  our present oojectire. We also descrrbe the "Autoh'(h)" process, w h ~ h  consists of a 
group of computer s~brout ines each of clearly definable structnre, purpose, and inte:relationshrp. Son:e results of 
the AutoN(h) system are illustidted. 

FOWULATION O F  THE PROFILE INVEXSION PROBLEM 

The vertical component of the group path of a vertically incident radro wave pulse in a plane-strat~fied lono- 
sphere determines one observable parameter cl the pulse - its total trdve; tirne. One-haif of this, multiplied by the 
speed of  light, gives the apparent or "virtual" height h' for the center frequency f of the radro wave pulse. Thus, 
the group specd varies along the path z t o  the height of reflection h ,  and the resulting virtual heibil: :.:rles w ~ t h  
probing frequency as 

flere the gr -up refractive index b' is the ratio of the speed of light *o the group specd, and depends on the freque~!cy 
of the r62,o wave, the direction 9 of propagation with resbect to the earth's magnetic fieid, a 1 the properti2s of the 
ionospheric medium, electron density an3 magnetic field strength, expressed through the plmna frequency f1, and 
electron gyrofrequency fH. In our problem f~ and 9 are const :nr for a given location, and f~ is assurncd 10 vaiy 
with haight (monotonically) and time only. Although u' is double valued, resulting in two vaibes z! [N For t ~ t a l  
reflection of f (identified as fo and fx, respectively), we discus; mainly the anal; sis of h ' ( f o )  to obtai~i  ~ ( j , ~ ) .  
The observations also provide hl( fx) ,  which may be analyzed independently to give r( f ~ ) ;  m principle, the results 
should not depend on  the choice of o or x, but in practice the assumptions of mono;onicitl. and of only hor iz~v~.  
tal stratification (and sometimes profile errors) cause inconsistencies when h'(& ' .,! : %'( fx) results are cowpared. 
In part, the o and x information can be reconciled t o  :,dvantage in a1lowir.g ii fiq 'i t .lwi correction for notlnionc. 
tonicity 1, the profile [Anrl and Wright, 1963; Howe and McKi~~nis ,  !9671, but v . , .  f i  * rc~ i \ ' (h )  development defers 
this problenr and employs h'( fo) alone. 



me invtrsion of Eq. (1) to obtain z( f ~ )  cannot be expressed in closed form becluse of the complexity of p'. 
a n y  stepby .step formula ti or,^ have been advocated [:eviewed by Wtight and h i t h  ,19671 , but only Phul [1S60] 
explicitly applies the basic mathemrtical.physiul requirements of the problem to justify a workable numerical process. 
Approaching reflection, where fN(z) = foe tevds to infinity, so that a step-by-step process for the inveruiqn of 
Eq. (I) based on slabs of unknown thickness Ar is impossibk. The unknown helght is therefore removed from the 
integral limit, and the integration is obtained over the 'ndependent variabk fN, or any monotonic differentiable 
function of it @( fN), by the transformaticn 

where ho and 9, refer to the bottom of the ion?sphere. 

To simplify the notatio~, and to repnstnt the true height and the retardation sepatately, we mzy rewrite 
Eq. (7 j as 

. b(f)  
h l = h T  (p' - 1 j z '  d# 

'1, 

Many methods of i?versic-~ now pwceed by assudng that z; = ( d ~ / d @ ) ~  = const b.zr short (not neccsarily unifom) 
intervals of $I, whereupon the integral in Eq. (3) can be ;+placd by a summalion and the resultiqg system of equations 
salved for the several unknowns z', given *q equal number of h'. There are two defects of this poadure, howeve:. 
The welght function I;' remains infiite at tbc reflection level, sc that the usual a m p t i o n  - that the cons. nt zi 
represent mean lues at'5butabk to the d d l e  of &?is compr8.1ing i5tcrvais - is ystematidy wrong. . us de- 
fect misfit be ameiiorated, as AW [196G, 19711 ll;;~ proposed, by ass- &at the value of z' obtained 
refen t3 the reflection level, ratlrer *&m to the interval midpo~?:. However, a more basic probkm =Ads since i o ~ o -  
mams show us very clearly Su; z' is not discontnuous, except perhaps ,p~rodrnately so at a s d  numbc: of keil- 
narkcd "cusps" of the h (f j observaticxa. To conform with tbe abscrvatlons, it is essential *at the rz.:!i-lrity of 
2' be prc--ved by the inversi~n PiJctsc exapt where t!!e observations indiate discon4huity. If Eo (3) is ictegrated 
by parts and z' is assumed differerttia'~le, we obtain 

Noie that the retarda';on i: now expressed by two terms in which the (sariable) f i t  and second derivative ; along the 
pr~file are weighted by a quantity (PI-I)*, which is everyw5ere fdte .  If the integration of the term involvbq 
2" = d2z/d$12 is no . replaced by a sum over i intends in esch of which zi* is assumed constant, we obt in a sys- 
tem of equations relating discrete values of the observable quaiitity hi to discrete dues of the continuous prof~k 
derivati~es z; at the reflection heights hi. la our application of these ideas, we take 9 = log fN2, and defm the 
i?tegration variable t = 1- fN2 - log f 2.  The system of equations relaung hi and the profile may then be written 



where 

The quantities g and G depend on the plasma frequencies used to  divide the profile and on the radio frequency, 
but not on the proiile itself. A simple tab:e of g and G would suffice for all profiles if the intervals were to be 
specified arbitrarily xzl kept invariable. However, it must be remembered that Eq. (5) is an "exact" relation b e  
tween the profile and h' provided the z: are constant over successive intervals. The relation is thus a good approxi- 
mation if the change in z" is sufficiently small between successive inttrvals; and as the form of the profile varies 
from one occasion to the next, tht zptimum interval widths (hence the optimum measurement frequencies for h') 
will kewise vary 

The essential priicipits of our strategy for automatic N ( h )  caiculations can now be stated as follows: 

1. Corresponding to n given change of z" along the profile, there is a maximum ~ermissible interval width 
~ ~ o g f ~ '  within w:#lch z" is approximated by a constant value, such that the height error Az does not 
exceed i -srmitted maximum. In other words, the profile, once known, can be parti~ioned along the scale 
of pla~.:la freqencics t9 determine optimum intervals at which radio frequencies should be chosen to 
obtsir. virtual heights from which to determine t5e profile. 

2 Tl~e spparently circular argun;c,lt of (1: becomes useful when two other principles are realized: 

(a) Optimurr. mtrivals may be determined in a? iteratire fashion if an approximate prafile is known or 
a n  be assumed. 

{b) ;n a sufficiently continuous time-seiies of ionwams, the profile from one ionogram serves as an 
approxim~tion from which to determine the optimum intervals for measurement of the next 
ionogram. 

WE ALTC)N(h) PROCESS 

The syst?m consists of a group of subroutines 
prograr -rJ (at preseqt) in FOL.TRAN IV for use on a Onqnlal 

Imoproms 
l~ rge  central co:nputer. The observational data are tape- 
recorded sequence.$ of digital ionograms obtained by the 

Q 
Dynaronde. The ultimate aim of adapting the method to r l l ~ ~ l ~  

online real-time use within the Dynasonde has been kept ~~""~{'(~l'l fm 

in view, and is commented on later. F ipre  1 is a Mock 
diagram giving the principal subroutine names and inter- 
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-- 
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relationships. Let 11s break into the loop following s 
FROFILE calculation and trace the subsequent Iqical 

t 

PROFILE 

E~oluotes {h(fl)} 

1 
operations: VFROYH 

~ r r t n ( ~ f ~ ) }  
1. Subroutine GETF uses the result of the 

nalualct{h'(fll} 1 PROFILE calculati-rl *.o determine ~pt imum 
sounding frequency ir?ie~als such that the 
heifit interval error caused by assuming Figure 1.- Blodc dhgrun oft!!.; principal subroutines of the 
zr' = const in cach frequency interval will not AutoN(h) system showiq briefly their functions and 
exceed a certaiq c h w n  limit. intcmhtionahipr. 

+J 
GETF 

.- 
k l ~ t  a 1(2 set 

of fdqwlsles (1,) 

at mtaroh opcm~nd 
by ollonbk am, 



. . I  . .' 
J 

I . .  , . Ij 

2. For the newly specified set of sounding frequencies, and using the given trueheight profile, subrc~tine 
VFROMH calculates the expected virtual heights. This is done by a forward calculation using Eq. (5). 

3. Equipped now with optimized frequencies and their expected virtual height, FlNDlT examines the next 
digital ionogram in the sequence at these h'( f) coordinates to se'.ect accurate values of the nearest h l ( f )  
data. 

4. These values are t~ansferred I- !he PROFILE subroutine, which solves Eq. (5) in the backward direction 
for the wanted profile. 

The operation of these subroutint, is of course somewhat more complicated than this simple description might 
suggest. PROFILE and VFROhfH involve basically deterministic ilr~thmetic treatments of Eq. (5) in opposite "direc- 
tions", and each, given the oth~r's output, would produce the other's input identically. 

Similarly, GETF is deterministic: If we consider the Taylor series expansion of the profile at a given point i, 

ar.d for ~ ' ( r j )  write $: 

The profile is found using z" = const in each interval, but this yields a sticcession of values of z" that can be used to 
estimate the amount bv which z" is . <)t cunstant aiong the profile. Thus, the difference iil z" between successive 
intervals gives an estinlate of zy' 

as well ss an estimate of the error resulting from the use of constant 2". 

If the most important part of the error arises in the first term dropped from the power series, it is 

Thus an allowed frequency step can be chosen proportiortd to (elz"') " to generate an optimized set of frequencies. 

To a limited extent, the errur permitted in each irlterval automatically controls both the number of intervals 
used to divide the profile aud the resulting accuracy of the profile, and this "control" would probably work smoothly 
and monotonically with the permitted error if the ionograrn ( a d  the profile itself) were "smooth". In fact, however, 
a wide spectrum of profile fluctuations exists; it might be feared that a small pclmitted error would lead to a "runaway" 
conditiot: 111 which small detail of the h ' ( n  curve - or the digitization noise itself - would demand its own cluster of 
closely spaced intervals. Fortunately, several factor9 w r k  against this tendency. One, under the user's control, is a 
frequency-height window to 4ex. ibed, wnich smooths over h l ( f )  detail of the order of its own size. Perhaps more 
important, the GETF proces. !i..a little tendency to add detail that is not already present in the preceding profile infor- 
mation. In this sense, the permitted pcror must be interpreted as an average value, appropriate to a smooth curve over 
the interval, whatever detailed variati~tls take place within it. 

The selective effect of a given permitted e:ror in determining the degree of resolution of the ionogram and prc.lle 
is illustrated in figure 2. which shows the dependence (for a particular sequence of ionograms) of the number of 



"scaling" intervals on alternate choices of the permitted 
error r. Results for two values of IE are shown, and for 
each E, two initial sets of d i n g  inter~als were chosen, 
comprising 5 and 34 intervals, respectively. As shown, 
a b u t  10 intervals suffice for the ionogram sequence if 
E = SO, and about 25 intervals are required if e = 10. 
The number of intervals tends toward these partitioning 
values, whatever the number of intervals in the initkl set. 
n s  also illustrates t h t  the AutoP(h) process can adap 
tively follow smooth, natural chanss in the amount of 
structure of the profile, and that the accuracy of the auto- 
matic process is not necessarily constrained by the amount 
of detail incluOed in the initial scaling. 

Figure 3 represents a digital ionogram from the 
Dynasonde tape recordings graphed by a cornputel- 
drive micmfilm plotter with scale proportions chosen to 
simulste r conventional analog ionogram. In the upper 
part of figure 3 two sets of scaliig inteivals have been 
plotted on the ionogram. The arrows indicate the fre- 
quencies of the sparse Wia l  "scaling", and the 0 ' s  are 
the optimized intervals as calculated in GETF ( E  = 10) 
and plotted at the h' coordinates calculated by 
VFROMH. Because the original scaling does not ade- 
quately describe the hi( f )  curve, the virtual heights 
calculated for the optimize 1 frequency s t  do not fall 
on he hf( f curve at all points, particularly near foE. 
Subroutine FINDIT is given the task of reconciling such 
predicted h'( f )  values with the nrvt i~nogram of the 
series. 

Subroutine FINDIT is the principal link between 
the digital ionogram and the prof&. It is here that the 
Auto N(h) process adapts itself to the time-varying 
ionosphere, that echoes relevant to  the profile are distin- 
guished from those that rre not, and that moderate 
smoothing of the hf(f)  data is permitted. FlNDlT is 
provided with a sequence of predicted (h', f )  coordi- 
nates, and has the task of finding values acceptably near 
these coordinates from the array of digitized h'( f )  data 
of the ionogram. The ini'lal h' values are usually 4cu- 
lated from the previous profile by VFROMH at frequencies 
specified from this profile by GFTF. Alternatively, 
FINDIT m y  be given an approximate set of initial h'. f 
coordinates scaled "by eye"; they could easily be speci- 
fied without "scaling" at digital display by use of a light 
pen. These alternatives provide u ~ y s  of starting the entire 
process. 

Whatever the source of the initial hf, f set, FINDIT 
establishes a "winuow" of co~trolled width in f (= F w )  
and in hf(= P w )  ce~tered on the given h', f coordinates. 

0 L :  I 1 I 
0 1 2 3 4 5 6 7  

Ionogrom Sequence Number 

Figure 2.- Kumber of intervals vs. ionogram sequence number 
for two d u e s  of the aror parameter E,  showing initial 
number of  Lterais at ionogmm number 0, and for iono- 
gram numbers 1-7 the numb'r of optimrzcd intervals 
determ~ned by GETF. 
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DiGl TAL IONOGRAM , BOULDER 
2 OCTOBER 1970, 0 8 5 0 ~ 0 5  MST 

F i g u ~  3.- (a) lonogram number 1 showing the initla1 
sparse ' s d h g '  intet . . S  [aro*vs) artti tk optimized 
intervals (0'9 as crlculated by GETF. (b) The echo 
positions at optimized i n t e n d  from GETF, as found 
by FJYPiT, using h' information from the ionogram. 



DIGITAL IQNOGRAM, BOULDER 
2 Oct. 1970, 0 8 5 0 : 0 5  MST 

Figurc 4.- (a) Full d'ital ionogam. (b) Area within the 
box In ia) e ~ l &  ten timer hi height. (c) Ann within 
the box of (b) agau~ e1darg4 ten times in height, show- 
ing the correction of the estimated h' to the medLLn h' 
in the window and of f to the frequency coordinate of 
the median height. in four successive step. Note that 
the third mb fmal step position the window center 
exactly on measured data & i t s .  

FlNDlT first determines the number of h' values within 
window, the median h' of the,= values, their quartile 

range, and the frvquency coordinate of the median h'. 
If the median h' differs by l e s  than a preset value from 
the initial vaiue, the median (and its frequency coordinat?) 
are retained as wanted values for the subsequent PROFILE 
calculation. Otherwise, the height coordinate (only) for 
the window center is moved to that median value, and a 
new median and other quantities are found for this new 
position of the window. This process is repeated a maxi- 
mum permitted number of times or until the change '.rK 

h' only) from one iteration to the next is less than the 
preset toleral~ce. 

The arbitrary parameters of this process sre obvious, 
and can be chosen within wide limits without significantly 
affecting the resulting profile. Note that the a c t d  fre- 
quency coordinate of the selectei echo is reported, but 
that the window is not permitted to move ir. the frequency 
direction. This assures that the frequency intervals remain 
near (within Fw of) the optimum intervals determined 
by GETF . 

The lower part of figure 3 illustrates the echo selec- 
ticn results of FINDIT, subsequent to the CETF and 
VFROMH operations that ied to the upper part of figute 
3. The window m0ti.w operations have successfully 
located the E region echoes near the wanted frequencies. 

Figure 4 shows a typical sequence of the window 
operations. The lower part (a) is again a computer-driven 
microfilm plot of all of the h', f coordinates digitized by 
the Dyr~asonde. The ather parts of the figuio were also 
plotted by the computer, and they zoom to successively 
smaller portions of the hl(f) array. From CETF, an 
h', f coordinate hms been "predicted at a position within 
the "box outlined on the computer-plotted frill ionogram, 
and in the mid& part of the figure only this region has 
h e n  replotted. full scale (b). Neither the outlined 
region in pa: i (a) nor that in pa.t (b) represents the 
window described above; parts (a) and @) are intended 
simply to emphasize the level of ionog-am resolution 
(in h' and f )  at  which the FINDIT process is ope~rtive. 
!n the upper part (c) of the figure the initial center and 
dashed o~ t l ine  of the window is shown. The 0.2-km 
digitization resolutio:: of h' and the uniform frequency 
spacing cf the ionograms usually programmed in I?;C 
Dynasonde arc clearly evident at this magnification of 
the ionogim. The initial h' Cf) position does not 
happen to lie on an echo, but tius is rectified in the first 
step, where the fr~quency coordinate is set to that of 
the median h' within the wndow. The window is 



then centered (in h' only) on that median h', and the process is repeated. In this example, the final window 
position is shown by the continuous outline. 

:'INDIT has special provisions for expanding the window should the first look contair. fewer than an expected 
number of echoes; decisively empty windows are simply 
dropped from further consideration. This is appropriate, 
for example, for interval limits lying near a d e c ~ e a s ~ ~ ~ g  
fo F2. Conversely, if the highest frequency inter\lal BOULDER, COLD. 
limit seems too low in frequency (according to an ompi- 
rical criterion that involves an extrapolated critical fie- --- 1002 

115 --- I om quency j, then more points are added at t:'e end and 
their virtual heights are estimated (VT'ROMH) using the 
z' and z" values in the last previously existing interval. 
Any such "feeler point" that FlNDlT can validate by 

la5 exampling the ionogram is retained with its cocrdinates 
adjusted to the observed values. Together, these pro- 

100 . -. 
visions folloaf increases or decreases of the peak density. 

! I I 
The next step in this loop is the PROFILE calcula- b 3 04 0 5 06 0 7 

tion using the data obtained by FlNDlT from the new l o q ~ o ~ r ,  
ionognm. The PROFILE s~broutine is virtuilly identica! 

Fwrr I.-- E-,ar er Auto N ( h )  prordes smau, but 
to the program described Howe and McKinnis [ 19671 . nificur.t height and stFlcture chanps over a one hour period. 
Coefficients [Eq. (6)] for each qterval are calculated as 
needed; a parabslic peak is determined by extrapolating 
liz', and a topsidc extrapolation can be performed if 
desired. The p1,lncipal description of the profile is in 
terms of the height and z' values 3t the several discrete Auto N (h) Sequence 
values of lo&, fN, or their equivalent values of Ne/cm3 ; Boulder, Colorado 
both parameters are tabulated as in table 1. The cumula- 
tive total electron content is also evaluated. Since z' is 
continuous between tabulated intervals, a second-order 
interpolation can be larformed for Ne(or lo&, f ~ )  at 
wanted fixed heights. A subroutine is available which 
calculates Ne at each 10-km level and provides ?~:,~ched 
cards with this information. 

EXAMPJ-ES OF THE AUTON(h) PROCESS 

As discussed above, the permitted error E and the 
window size influence the amount af detail the AutoN(hj 
process will recognize in a sequence of profile calculations. 
Figures 5 and 6 are examples in which the process follows 
fine and gross structure. 

Figure 5 shows four E-layer height profile? cones- 
( -  

14 16 18 : 
--.-. -- 

pending to the first, fifth, tenth, and fifteenth profdes in 
MST a series spanning approximately an hour. These profiles 

were calculated with e = 2m and involved about 20 in- Figure 6.- Electron density "Printions at fixed 
tervals to describe the fine detail of the E-region h f ( f )  a 5-112-hour period calculated by the AutoN(h) process 
information. The initial profile (1002 MST) shows from an initial manual waling at 1205 MST. 



TABLE 1. - Tabulated N(h) profile produced hy the AutoNfh) process. 'he  first column lists values of log,, f~ representing the optimized 
frequenc~ intervrls found by GETF from the previous profile. ?he next column (H*) lists the observed h' from the digital ronogrim; 
values of h' are digitized to 0.2 km resolution, and used I this accuracy in the profile calculation, but are rounded ir! printing here to I .O krn 
The word EXTRAP signifies a provision to extrapolate for underlying ionization, not employed here. Colr~mns H. Z* and Z** represent the 
calculated real heights and the first and sccor,d height denvrtives. The cumulatne integrated electron content and the electron density equiva- 
lent to logfN complete the profile information. TBe F-layer peak extrapolation is listed on the bottom \in-. The quantity S repr*:sents the 
quarter-thickness of a parvbola continuoi~s (in Z*) with the profile below. 

FOR 
LOG FX LOG FN 

A102 0.1990 
0 2990 
0.3090 
0.3778 
0.4749 
0.5546 
0.5W 8 
0.5900 
0.6066 
2 6239 
0 6457 
0.6653 
0.6856 
0.693 1 
d.7044 
0.7300 
0.7518 
0.7714 
0.7962 
0.8098 
0.8165 

LOCFM=0.8178 

BOULDER 71 05 20 103653 AUTON(H) 
@3. F =0.560000. FH=1.429120. SIY 1=0.923900. 
H* H Z Z* * INTEGRAL 

EXTRAP 9C1.40 0.000 
99 0 99.40 0.000 0.00 0.000 
99 0 99.40 0.000 0.00 0.000 

100 0 99.50 1.482 10.77 0.065 
120 0 103.13 35.838 176.94 3.512 
199 0 119.40 168.1 22 829.13 26.089 
2C8 0 128.91 147.976 -0334.63 42.343 
211 C i30.51 155.477 711.96 45.308 
216 0 135.56 149.640 -0001 76.28 55.158 
227 0 141.01 165.174 448.73 60.656 
267 0 150.05 248.939 1919.05 87.584 
308 0 161.01 311.871 1608.13 115.486 
380 0 176.55 452.230 3453.79 158.813 
367 0 182.46 333.371 -007896.86 176.333 
341 0 189.05 250.264 -003681 .OO 196.715 
325 0 200.49 196.561 -001043.53 235.220 
324 0 208.80 183.871 -000297.61 266.462 
334 0 216.24 196.!95 314.92 297.250 
371 0 227.92 274.220 1571.05 350.977 
401 0 236.15 333.482 2187.07 392.229 
535 0 244.23 859.764 38850.45 434.717 

W A X =  249.62 S= 35.334 SHMAX'463.55 i 

inflections (corresponding to cusps on the h' curve) at loglo fN - 0.43 and - 0.53. About 20 min later the 
inflection at - 0.43 has disappeared, the inflection at - 0.53 appears at a lower height, and a new inflection has 
appeared at - 0.57. The same structure is present at 1045, but at slightly lower heights. At 1105 the orofde structure 
is slightly higher than the previous profde, and the inflections are less pronounced. Caref~! somparisc~n of the profilzs 
with the ionogams, and with the other profde calculations of the sequence, s h w i  tt.at there arc sigaficant, if small, 
changes of height and structure in the E region. The AutoN(h1 process can easily follow mdent height variations 
in density to better than 0.1-km resolution. 

Operational conflicts for the Dyaasonde make it difficu!t at present to obtain satisfactorily Ibng sequences of 
digitized ionograms with which to demonstrate h e  performance of the AutoN(h) process in follomng complete 
diurnai variations. A partial example of this kind, tiowever, is shown in figure 6. The calculated electron density time 
variations at a number of futed altitudes on 21 June 1971 are plotted over the pr iod 1205-1735 MST at 5-min inter- 
vals. The sequence (of 67 profdes, requiring 15 min computation time) was obtained entirely automatically after 
initiation by a rough manual scaling ot the first (1205) ionogram, which was computer-plotted for tb:, purpose in the 
format of @re 4(a). The hourly ionograms also were plotted, and the waled values of fo F2 (convertc!d to electron 
density) are inciuded on f w r e  6. After 1730 the hf(f) curve became unrecognizable because of multiple sporadic 
E reflections. Short-period changes that occur simultaneously and similarly at. all altitudes (e.g., at 1540) are probably 
introduced by the AutoN(h) process itself, by faulty following of the h l ( f )  information. However, the main features 
of this part of the diurnal variation are well represented and most of the indicated structural variations are significant. 



FUTURE DEVELOPMENTS 

The process described here is not in a final form, but it works sufficiently well that it is already of practical 
utility. The main problems arise when very rapid changes or genuine echc ambiguities occur; oiten a human 
an~iyst would then a l ~ o  not be sufficiently informed b!. the usual ;on~gr;tm to resolve the ambigilities. The addi- 
tional problem with an automatic N(h) process is that, once derailed. it is not certain to get once again on the track 
of the true profile. In practici., however, our process does realize apprzciabk stability against such derailments, and 
the way to further impravement is clear. Even within the h l ( f )  information Alone, the computer can rapidly per- 
form consistency tests - for example, between o and x, among multiple echoes, or between successive ionograms 
forward and backward in time -- that are tedious and relativellr ineffective when attempted subjectively. 

The AutoN(h) process provides a necessary link between a digitized data-acquis~i~~n system (here. the 
Dynasondej and the data user. S~nce the acquisition of fully digitized ionograms (fig. 4) is already an automatic, 
efficient, and reliable process, the N(h) analjsis could be performed ce~trally from data supplied by remote sounders. 
If tape recordings are used, the qua,ltity of tape required remains finite ance it can be reused. Alternatively, the entire 
system is compatible with centralized ionosor~de control and data procesiing via any data link c\f moderate capacity. 

The AutoN(h) concepts cm protirle entirely new capabilities to the Dynasonde when they are included as a - 
part of its own real-time software. Since only A very small fractioll of the echo information of an icnogram is required 
for a profile, and since our process Cetermines both the optimum soundink frequencies and the expected echo arrival 
times, the usual ionospheric sounding process can be tremendouslq compre, sed. While perhaps 2000 12al echoes from 
1500 discrete frequencies are contained in the average ionogram (requiring 4 times this number of pulst transmissions 
at 2001sec in our real-time echo recognition process), only about 23 pieces of hf(f j infolmation are re~uired for the 
profile. When the optimum frequencies are known with their e-ipected echo arrival times, only 1% to 3% of the nor- 
mal ionogram sounding actlvity is required. The savings cat1 be realized in many otherwise unattainable advanidges, 
including 

1. Greatly reduced radio interference. Ihe  necessary hl(f :i information car? be acquired at a rar,dom pul-x 
emission schedule, or in a burst of only 0.1 sec duration, and the frequencies arc already tangibly "rando- 
mized" by the GETF condtions. 

2. Improved time resolution. The N(h) conversion repre:tnts an amount of arithmetic requiring less time 
on a fast minicomputer than the echo pulse travel time; thus, the profiles can be produced at virtually 
ally desiled rate within this natural limitation. , 

3. Acquisition and use of additionul information. Among many examples, of paiticular relevance is the use 
of echo angle-of-arrival information to discriminate ovtl head structure, to imnrove AutoN(h) echo selec- 
tion, and to describe tilts and horizontal structure. The Dynasonde accommodates an addressable receiving 
antenna array and digitizes the complex ampiitude of c ~ c h  echo at each antenna to provide such information 
as part of its Kinesonde functions. 

In the larger context of Dynasonde applications, atltomatic N(h) profiles become considelably more than a 
desirable data output of the system; they provide essential reference information for adaptive application of the 
Dynasonde toward most other measurement objectives. 



DISCUSSION 

Crossi: How do you distinguish between the ordinary and extraordinary returns when they cross? 

Wight: If you know thz profile you can calculate both curves, and the FINDIT process can be set to the task of 
fir?iing the information nearest these. This leads then to the identification. If you know the profiie, based on 
previous results, you can predict this. hote that the pr. cess can run forward or backward. Also, the angle-of- 
arrival feature is very important here. 

Reitzisch: With regard to frequency selection, are you sure of convergence in the loop so you get reasonable fre- 
quencies? What do you do if they are unreasonable? 

Ir'rrght: It is not a fully rtfined process yet. It is workable, however, as a research tool now. 

(;rossi: Have you ever computed how much time you have to wait until the cross-ccrrelation coefficient of the 
ionogram drops to ! ;2? 

Ifright: You are asking about the autocorrelstion time of the electron density at a futed height and location. No, 
this has not been done, mainly because of a lack of adequate time resulution and statisiics in the past. The 
Auto N ( h )  process is a w;y to gain these statistics, when impleinented on a digital lonosonde. 



iONOSPHERIC PROFILE INVERSiON USING 

OBLIQUE-INCIDENCE IONOGRAMS 

D. L. Nielson and T. M. Watt  

Stanford Research institute, Menlo Park. California 
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This paper reviews some of the elementary methods used in deriving true-height profiles from oblique-incidence 
ionosgrams. The two principal methods presented are oblique-to-vertical transformation and dlrect invenlon of the 
oblique-incidence ionogram. Limitations in oblique-incidence inversion due to magnetic-field effects, horizontal 
gradients, and absolute time delay are discussed. 

INTRODUCTION 

In comparison with the amount of attention given electron-density profile measurement .it vertical incidence. 
use of the equivalent technique at oblique incidence has been dlmost totally ignored. This avoidance is attributable 
in part to the lack of facilities with which to perform the measurement. but more to the limitations and inaccuracies 
encountered. While, in principle. the measurement of any oblique wave can reveal something about the intervening 
ionosphere, in practice many effects limit the accuracy of what can be inferred from that measurement. 

It is useful to define several concepts that are addressed in this paper. There are two sounding geometries - 
vertical and oblique. There are two possible operational modes - monostatic and bistatic. All sounding referred 
to in this paper takes place in the MF and HF bands of the freque,icy spectrum (- 1 MHz to 30 MHz). 

Sounding at vertical incidence involves propagating a signal vertically arid receiving the reflected signal at the 
same ground station. Most soundings at these frequencies involve only linearly polarized waves, and a common an- 
tenna is used for both transmitting and receiving; this operating mode we refer to as monostatic. In certain special 
cases such as the use of circularly polarized waves, it would be necessary to u;e separate antennas for transmitting 
and receiving; this operating mode could be calied bistatic. 

Sounding at obliquqincidence involves transmitting a signal such that the wave does not reflect back directly 
to the transmitter site but rat'heher propagates obliquely through the ionosphere and returns to the earth at a remote 
location. Monostatic operation at oblique incidence is possible using ground backscatter. In ground backscatter, 
the slgnal propagates via the ionosphere and is scattered on reaching the ground. A small fraction of the energy 
returns to the transmitterlreceiver site. A somewhat similar setup in a bistatic mode would result from using a 
transmitter and. receiver at one site and a transponder at a remote site. A transponder located at a remote site 
receives, amplifies, and retransmits the signal back to the sounding site. The advantages of a transpond* Lr am that it 
provides an amplified return signal and that its location can be precisely determined. The nost conmon oblique 
sounding mode is bistatic, using a transmitter at one location and a receiver at a remote locat,, 7. 

The reason rrlost often cited for oblique sounding for profile measurement is the greater accessibility to rc )ate 

areas that it provides. The use of most oblique-incidence sounding, however, has teen closely related to operational 
communication needs, and the area of profile inversion has been of no direct interest to the users. 



W ! e  ground backscatter can be successfully employed in estimating single prrameters such as critical 
frequency, its use in profile measurement is severely limited. Problems such as measurement of elevation angle, the 
relativc!~ poor knowledge of the location of ,ground and ionospheric reflection points, and the extensive ionospheric 
aria involved in typical sweep-frequency operation have prev:nted its use for this purpose. 

The instrumentation for oblique-incidence pulse soundings is not unlike that for vertical-incidence soundir~g. In 
the case of monostatic backscatter soundings, the difference could be merely in the antenna; however, other signal- 
processing measures can be taken t o  improve the quality of the records. The most satisfactory records for profile 
measurement at  oblique incidence are termed oblique ronograms. These records of pulse-group delay are the result 
of opelaling a separated swer 2- or stepfrequency fransmitter/receiver pair synchronized in time (and consequently 
in frequency). Although oblique sounding was originally limited t o  am pulse waveforms with center frequency 
swept over the range of propagating frequencies [Agy et a / . ,  1959; Moller, 1964; Wilkens, 19601 ,synthesized step- 
frequency pulse [Nielson, 19661 , sweep frequency CW (chirp) [Fenwick and Bony, 1966) , and extremeiy wideband 
high-power pulse, have more recently been used with equipment developed at Stanford Research Institute. Except 
for transponder systems, all oblique-sound g systems rtquire stable oscillators !o maintain timing accuracy. 4bsolute 
delay is therefore not normally available. 

Ignoring the birefringence of the ionosphere, the lowest order ray at vertical incidence is limited t o  a single ray 
at a single frequency. Most ionospheric profiles, on the other hand, give rise at  oblique incidence t o  a high and low 
ray at frequencies above the vertical-incidencz critical frequency. Figure 1 illustrates the relationship between group 
delays at vert~cal and oblique incidence. One curve can be considered a transformation of the order. Under certain 
assumptions, the transformation is very simple and bilateral; without such assum~tions, it may be neither. In this 
papel we discuss these transformations and their attendant assumptions in some detail. 

Consider the problem of inverting an oblique ionogram such as that shown in figure 1, under the assumptions 
of a spherical earth snc! a concentric, isotrop~c ionosphere. Using the nomenclature of O o f t  and Hoogasian [1960], 
as illustrated irr figure 2, we have 

roZ dr 
= 2 cos &. (1) 

ro 

VERTICAL , OBLIQUE 

L - 
FREQUENCY - 

Figure 1 .  -. Corrcrpondence between vertical and 
oblique-incidence ionogur*~ Figure 2.- Nomtnclrturc for an oblique ray path. 



rp cos 0 = r o b  COS PC, = ro COs Po (3)  

where CI is the refractive index at  rad~al distance r .  The quantities D ar,d P' are known or measured values, and 
Eq. (3) is a form of Snell's law (Bouger's rule). For the conditions consideied, Eqs. ( I )  through (3) arc exact. From 
Eq. (3) we obtain the condition satisfied nt apogee for any particular frequency: 

For an isotropic and collisionless medium, p is defined by 

where /N is the plasma frequency of the medium, f is sounding frequency, and f i2 is proportional to the electron 
density. 

The problem. then, is to  determine the dependen:: of fN 02 r that satisfi~s Eqs. ( i ) a n d  (2)  for all sounding 
frequencies. kt; nex: discuss the capahilities and limitations of  the various methods of establishing that relationship. 

TRANSFORMATION BETWEEN OBLIQUE AND VERTICAL INCIDENCE 

We consider here the direct transformation between corresponding oblique- and vertical-inc~dence ionogram~, 
without explicitly obtaining an electron-density profile solution -- that is, from a ~ ' ( f )  ionogram. we deduce an 
h;( f,) ionogram. 

Equations (1) 2nd (2) are not, in general, analyticdly soluble. and tractable procedure. can be enlployed only 
by making certain approximations. We consider in this section approximations that can be used under appropriate 
circums!ances. 

Flat-Earth Flat-Ionosphere Approximation 

The flat-earth flat-ionosphtie approximation is most easily reached by assuming that the radii ro and rt are 
much larger than any other dimension. In this case we obtain r - ro = h ,  rc/ro + 1, so that Eqs. ( I )  through (4) 
btcoine 

p cos p = cos po 

@(ht )  = cos fl. 



In the flat-earth tlat-ionosphere approximation, a simple equivalen~ exists betwee? an oblique ionogam and 
the corresponding vertical ionogram. Fo: any oblique sounding frequency f, W* can find the equivalent vertical. 
soun,'ing frequency, fv ,  that corresjsnds to reflection from tt.e same height, h t .  Comparing Eqs. (5) and (91, we 
observe thirr, at the altitude of reflection f~ = f;r ,, and 

Since, for vertical incidence, fNr = f v ,  then 

The virtual height corresponding to fv is found directly from Mwpn f [19,5] theorem and is exactly correct for a 
flat earth and a flat ionosphcte: 

P ' h; = h' =- L7 
2 

si!, Do = - tan PC 
2 

i13) 

where hb is the virtual height associated with a vertical sounding at fv, and h' is the height of the equivalent trian- 
gle associated with an obliqrle sounding. 

Compbrison of Eqs. (6) and (7) yields an explicit so!ution for cos & in terms of observed valuc:: 

Combining Eqs. (1  2), (1 3), and (14). we obtain 

where, f ~ :  multiple-hop paths, P' tnd D are ~er-hop values. For the flat-tarth flat-ionosphere approximation, then, 
an oblique ionogram call be reduced to a vertical ionogram without introducing any a priori assumptioas regarding 
the ionospheric vertical profile. The in:egrd equation 



must, of course, still be inverted t o  solvc for the electyon. 
density profile. 

Curved-Earth Flat-lonosphete Approximation 

The curved-earth flat-ionosphere approximation is 
reasonably valid where propagation withh the ionosphere 
does not t3ke place over a lzrge horizontal distance. For 
this condition, modified forms of the flat-earth flat- 
ionosphere equations can be used. 

For a gr ~ u n d  rzilge D as shown in figure 3, the 
stra~ght-line distance between the end points is Ds, 
where 

D DS = 2 ro sin - (18) ~lgu:c 3:- ~uwen-earth geometry. 
2ro 

and the height above the cLdrd st the midpoint of D is 

h.: = h' + vo 6 - COS 2) 
Defining the arigle a. to  be the anr'c between the virt~al-pam ray PI12 ard  the plane Ds. we can write 

equations analogous to  Eqs. (6 ) .  (7:. (15,. and (16) as 

d 'is 
Ds = 2 cos a. -- I"($ - cosl  f1.Y 

Thus, using Eqs. (18). (19), (12) .  and (23) .  we ohtain, for the cuwed-e?.rth flat ionr;:?b.cfe yaw, 



where. as before, D ind P' are per-hop values. It can be seen that Eq. (24) reduces to Eq. (1 5). and Eq. (25) reduces 
to L?. (16). as P;ro tecomes wry mull. 

Curved-Earth Curved-Ionosphere 

Exacr , .-' yrionship. ..2 cumdearth curved-ionosphere caw is that described by Eqs. ( I )  through (4); for 
tnis case. thc~e  is no tractable. tidytical transformation from oblique to vertical incidence without an a priori know- 
kage of tht z'rc~rondensity profile. 

In attempting to transfcl~m from obliqur to vertical incidence, the reasoning proceeds along this line: Assume 
that for a particular concentric ionosphere of unknown profde an oblique measurement is made of group path PI, 
at frc-, .;ncy f. over a &stance D. Aithough P' may be ~ultivalued, a single value of J" will correspond to only 
C I I ~  ray propagated between the end pints. 'The ray has associated with it some apogee, or maximum real helghl of 
propagation into the ionosphere. A groupdelay transformation to vertical incidence. then. requires the answers to 
two questions: At vertical incidence, what sounding frequency would penetrate to the same helght as did the 
obliquely propagated ray? At vertical incidence at such an equivalent sounding frequency, what would be t!-t expec- 
ted w.iue of virtual height? 

A partial answer to the fint question can be given im-nediately. The equivalent vertical-incidence frequency is 
equal to the ionospheric p i a m  frequency at the ray apogee. If ht is the apogee helght. then 

Therefore, from Eq. (S), we have 

where the refrzctnt indzx CI is dependent on the soundmg frequency f and the plasma frequenry at ht. By using 
Eq. (4) and noting that ht and rt refer to the same height, we can express fv in terns of elevaticn angle: 

Equation (28) is exact, under the stated conditions, but from this point we cannot proceed further without employing 
approximations. 

In the platearth flat-ionosphere approximation the problem expressed in Eq. (28) was solved by letting 
ro/rt approach unity. In this way we not only eliminated the effect of the unknown rt ,  but we aim made the 
integrailds in Eqs. (1) and (2) identical, so that cos & c d d  be found u equal to the ratio of the measured 
quantities D and P' without our having to solve either of the integrPl equations (I) and (2). In the curved-earth 
flat-ionosphere approximation, we did essentially the same t h i i  since the difference betwcer! the two appoxima- 
tions is described completely by the trigonometric rthtionship of Eqs. (18) and (19). 



n ,e  second question i; concerned with determining the virtual helght h; associated with a vertical sounding 
at frequency f,,. Under previocs assumptions the vartical and oblique virtual heights were easily related bk sr? 
equivalent triangular path. But, for the curvedcarth cuned-ionosphere case, it can be seen from Eqs. ( 1 )  and ( 2 b 
that P' and D (or Ds) can be related only through a knowledge of the electron-density profile. Thus. the dit- 
ficulty has to do with the existence of a right triangle with a base DSJ? and a hypotenuse P112. Consider figure 3. 
The takeof< angle q, i ~ ~ l d .  in principle, be measured fgr any particular sounding situation, and the thee  measure& 
quantities would then be interrelated according to 

w the height hi cwld be espressed as 

P' 
j,; =- Ds 

2 
sin a, = - tan a,, 

2 

It can be shown. in fact, that ior a curved ionosphere of finite thickness. Eq. (29) is not in general true, sicce a triangle 
that relates the rneasurahle qumtities cannot be constructed. Consequently, the concepts of virtual height and equi- 
valent virtual path lose their meming. 

Although a prof k-independent transformation is not available, some authors [Smirh, 1939: k'c)hyarhi. 197 1 1 
have attempted to usc- flat-ionosphere expressio~ls to compensate for the curved ionosphere throu* the introduction 
of correctio:~ factc;~. All such correction factors, however, must make some as-mptions about the profile itself as 
well as the angle o' ~ncidence onto the ioncsphere. 

Approxiwarion errors. It has already been stated that, for the general case, an obhque-to-vertical tracsforrna- 
tion cannot be made without knowledge cf the ionospheric layer. In an attempt to asess the seriolisness of :he 
tlat-ionosphere approximations. a particular model ionosphere has been assumed. The model is a quasiprabolic ( Q P )  
layer defined by 

I O 
elsewhere 

with parameter values fF-nx = 10 MHz, rm = 6670 km, rb = 6545 km, and ym = 125 km. Far the particular values 
chosen. it is intendea to approximate a typical daytime F laver. lonograms were calculated from the layer by using 
a ray-tracing program [ k u l  et al., 19681 . 

The approxilnation errors associated with the flat-ionosphere approximations (fq. 4) are obtained as follows: 
By using the modei layer and the ray-tracing program, ionogranc were generated for vertical incidence and for ground 
ranges of 1000,2000, and 3000 km. Neglecting small errors in the numerical ray tracing, the vertical-incidence iono- 
gram was taken to Lt exactly cotrect. Next, for each of the three oblique ionograms, equivalent vertical-incidence 
ionograms were csl,utteci, according to the flat-earth flat-ionosphere [Eqs. (24) and (?5)]  approximations. Figure 
4(a) illustrates the t ~ o  apc-oximate and the one exact vertical-incidence ionograms for the 1000-km case. Figures 
4(b) and (c) illustrates t! ; s5.e  comparison for ground ranges of 2000 and 3000 km, respectively. 
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Figure 4.- Typical enon resulting from various 
oblqucto-vertical tran-formations. 

In an attempt to correct the frequency error 
ii~troduced by lonospheric cunature. the Newbern Smith 
correction factor I&rrt.s. 19651 was ~ntrodtied on the 
longr paths. The points in figure 4 indicate the resdlt, 
whkn iii this instance reduced the errur to within a few 
percent. 

The comparisoi~s illmtrasef in figure 4 lead to the 
followng genera; conciusions: 

1. T' .: apprc~imations aie best at the shorter 
grand ranges and become progressiszly 
p x r e r  as range increaser. 

f Negect of ionospheric curvature leads to a 
derived electrondensity profile that has a 
higher critical frequency than the true p r e  
file. The error can largely be corrected, bu? 
correctior? is a complicated function of the 
profile 71.d path length, and a simple factor 
cannrt be expected to work in all instances. 

3. At all ranges, the curvedearth flat-ionosphere 
approximation is much better than the tlat- 
earth flat-ionosphere approximaiion. 

4. The flatevth flat-ionosphere approximatior, 
laads to a derived electron density with a h -  
tude higher than that of the actual layer. For 
this part~cular model layer, the height error is 
about 20 km at  1 UMLkrn range, 60 krn at 
ZOOOkm range, and I lG km at 3OOO-km range. 

The usef~lncss of the approximations depends, of course, on the needs of the user, and the particular results obtained 
hen: arc only illustrative. 

DIRECT INVERSION OF THE OBLIQUE-INCIDENCE EQUATION 
FOR GROUP DELAY 

Lamination Methods 

In spite of h e  additional degree of frzedom characteristic of oblique incidence, inversion mf t h d  have been 
developed that are not unlike most of the approaches used at  vertical incidence. That is, the ionograrn can be inverted 
by using numerical merhods without first converting to vertical incidence. Two of thew numerical methods use iami- 
nations of electr .n density across which a particular form is assumed far the variation of electron density, a form that 
will allow a closeCform solution for the virtual delay and the p u n d  distance (Geor,~, 1970; Smirh. 19701. These 
quantities are then summed across all the laminaticns, for testing against known or mewred values of D and P'. In 
calcu1atir.g the plasma frequency for a given lamication (height), the value at the r:xt lowest interval is used. This p r e  
cedure is common to both the lamin-. methods, as well as for vertical inJdence. Such a procedure relies, of couw, on 
a lack of horizontal gradients, since oblique incidence, ocrt'r a f ~ e d  distance, ays at different frequencies follow 
different paths. 



Of the two laminar methods, the more general is that of Smith (19701. IF this method the takeoff angle Po 
and the height of reflection rt are juggled until P' and the ground distance D are satisfied. To make the search 
efficient, limits 9n the takeoff angle arc, calculated. The wiation with electron density across a dab or lamnation is 
given by a hypxbolic relation, 

which allows a closed form for grotad range subtended by the distance the ray is in the slab. The values of A and B 
are such that fN2 is approximately linear in r c3ver mall increments in r. 

Neglecting horizontd gradients and the magnetic feld, the reflection height is giwn from Eqs. (4) and (5) as 

where ro is the radius of the cartti. l?us expression is used in conjunction with the appropriate relation 

to obtain, as in Eq. (1 S), 

The takeoff angle Do must k found by hterpolation. 

An example of the accuracy avai!able in this type of 6540 
inversion is given by figure 5 from Jhu'th (19701. Using 
the electrondensity profile on 21e left <.r), he calculated 
an oblique ionogram by me.Jns of ray tracing. Points were 
then formed. sca!ed The from result the is oblique piottcd trace ( 0 )  and on th:. an vertical nversion profile. per- -- if, (:;! < 

s b5m 
0 < 

It is apparent that no downward reflection can a 
ma 1MD - occur over the helght range where a profile is reentrant. 

While the above "'stmght-line" approach can be employed ua A. 

as though no reentrance existed, Smith shows how :o 
0 8 16 24 

10'"- 
4 6 8 10 12 

allow for such profile* and what assumptions are required z 
IN - MU? FRtWtNCY - MHz 

for satisfactory results. Since no portion of 'he oblique 
trace can be directly associated with the reenirant region, 
any information about that @on must come from the F i  5. - Exunph of invenion of oblique ion- 
increase in virtual delay above that height. Lmtrrtion technique [Smith, 19701. 

George [I9701 has suggested a somewhat similar method that follows closely the vertical-kcidence work of 
Juckson [1956]. In this instonce the angle of the ray path is supplied more explicitly fran an empiricized eq.~ation 



n D 2r0 sin (D/2ro) L o = - - - -  
2 ?ro 

sin-' 1 1 
P' + E 

rather than obtaining it by interpolation. The term E is a function of the virtual depth into the layer at the frequency 
of interest. Both of the lamination   net hods give good results for nonreentrant profiles. 

Analytical Models of Layer Shape 

Usually we think of profile inversion as the process of determining a more or less completely arbitran distribution 
In many circumstances. however. a more restricted profile is still satisfactory. For these cases, some anaiytical form for 
the electron-densit\ profile must be assumed, and the "inversion" consists of evaluating the coefficients or scale factors 
of the assumed expression. At oblique incidence, two factors make an otherwise straightforwarci calculation veiy diffi- 
cult. First, there is not just a single equation in PI(]'). as at vertical incidence, but a set of coupled equations in P' 
and D. wh~clll a, . easily solved simultaneously only for the case uf a flat ionosphere. Second. the accuracy with which 
the record rnust be scaled to obtain realistic values of layer parmeters oftell exceeds that available. 

Probahly the most frequently assumed layer shape for such scaling is parabolic. The three-parameter parabolic 
n-,odei coils~sts oi  a height. a critical frequency. and a sem~thickness. Practice has shown that unless data points cart 
be scaled in :he vicinity of the junction frequency or on the high ray, the estimates of critical frequency will have nib- 
stantial errar. 

A frequently used means for mapping critical frequency ove. wide geographical areas is the use of ground back- 
scatter. Again, certain assumptions are required for the values or cl3nstancy of layer hei.&t and thickness. An indica- 
tion of the type of accuracy and range available by using one-hop ground backscatter is given by Hatfield [1970]. 
The use of ground backscatter data to obtain more complete profile data has been discussed by Egan [1960] and 
George [1970]. Measurement difficulties, however, tend to limit the usefulness of the more detailed inversions 
obtained from backscatter. 

LIMITATIONS 

Magnetic Field Effects 

The inclusion of geomagnetic field effects in propagation csiculations makes the equations far more complicated, 
and for this reason geomagnetic field effects are usually ignored whenever possible. One advantage of oblique ( as op- 
posed to vertical) sounding is that the normally higher operating frequencies tend to reduce the effect ot the gecmag- 
rletic field. When the geomagnetic field is included. ii must be recognized that the oblique ray encounters continuous 
variations in the magnetic field vector along its trajectory. Since it is difficult to treat changing field conditions and 
yet retain some ger.?rality, the angle 6 betwcen the rzy and the magnetic field is assumed to be constant and equal to, 
say, an average val,ie in the vicinity of reflection. 

The detailed effects of the geomagnetic field on oblique ionograms may be found in Kopku and Rfoller [1968b] 
for varying path orientations and locations. 

Another source of error due to the magnetic field is the lateral displacement of the ray from the nefield trajec- 
tory. Titheridge [1959] has examined this error and concluded that laterd displacements of :he order of Iv km can 
occur only at frequencies below 5 MHz. 



Horizontal Gradients in Electron Censity 

Perhaps the greatest limitation on the accuracy of inverting obliqueincidence ionograms is the lack of constancy 
of the electron-density, profde over ;he reflection region. The rays are reflected, of course, in a three-dimensional 
distribution of electron density, which cannot normally be dexribed by a single vertical profile. Although one might 
expect to perform the inversion after some correction for known horizcntal gradients, such a procedure is difficult 
to employ (not to mention that the gradients are usually unknown). The inclusion of such gradients would no doubt 
require tedious trial and enor using ray-tracing techniques. 

If we cannot treat the p d i e n u  quantitatively, we can, however, examine the type o i  error they might produce 
in a typical prome. Generally speaking, the maxirniun oblique frequency tends to be determined near the horizontal 
region having the maximum electron density. For exmple, for a simple linear gradient of critical frequency, the 
maximumfrequency ray will be reflected nearer the end of thc path with the higher density. Fui'u'iemore, the max- 
imum frequency will exceed the maximum frequency that would be observed if the average critical frequency existed 
all along the path. Conversely, a simple linear gradient in height will reduce the maximrl- . frequency. Kopku and 
Miiler [1968a] examined same ~pccific cases of each type of gradient. 

Absolute Time Delay 

There are roughly three techniques for measuring absolute path delay by using oblique -incidence sounders. The 
first, and probably the most accurate, is a simultaneous duplex pulse transmission along the sath. The average of the 
time delays measured at each receiver is the exact path length - correct to the accuracy of dr zxasuring equipment. 
The use of a transponder falls in this category. 

The second method is Cle use of "constant" time-delay modes, such as thon .-ropagated via th.e normal E layer. 
This method has the obvious disadvantage that the E-layer trace is not always detectable, cspecially over long paths; 
also, it is subject to E-layer height variations, which become more pronounced when the height 1,ariation of Es is 
included. The accuracy achievable with this method is on the order of 100 psec, depending on the iength of the path. 
For a 31OIHun path (2E), the variation in delay is 100 psec as the E-layer height is varied from 90 to 130 km. 

The third method is the use of separate stable oscillators. This method reqiilres that the standards of the trans- 
mitter and those of the receiver be in phase or that their clocks be exactly syr~chronized. ' h e  error in measurement 
will be the time difference existing between these clocks or the error in the measurement apparatus, whichever is 
greater. If the sctual time difference between clocks is unknom, the ~ n h  delay will be no more accurate than the 
computed delay used to establish the original synchronization. 

.- 
The inversion of obliqubincidence ionograms can be achieved only under rather restrictive limitations or 

assumptions. The most serious of these restrictions is the absence of horizontal gradients in electron density. The 
narmal curvature of the ionosphere may he allowed for by using correction factors in the obliqueto-vertical trans- 
formation methods or by using the laminatioc methods. With the assumption of a horizontally stratified ionosphere, 
many approaches are possible, including oblique-tevertical transformation or direct inversion of the oblique trace. 
The inaccuracies due to the magnetic field and to uncertainty ir. abso!~te time delay lead to smaller errors foi most .------ 

sitrlations. With care in timedelay d i n g  and in the selection of oblique-tevertical transf~rmation methods, a 
vertical-incidence ionogram can be derived that will accurately portray the electrondensity profde if the horizontai 
gradients are small over the reflection region. '.'$ $ .* 

, '  - 2 .  



Cha~tg: In your fiat-earth ionospl~ere apprb.ilrnation, the profile you got was far from the true one. Could you use 
the modified refractive index concept to  go from that profile to  the original profile? Booker (19463. used th:i 
concept. 

Wart: That's similar to  the mc'rhod of Ncwbern Smith. 

Rcirris~I!. The functioris \.ou gave for h' seem to all be single valued; for example for one frequency there 1s one 
time delay, while tb,e model oblique lonograms show the typical nose. The Peterson ray is attributed t o  the 
higher trace. Hcu have you taken care of that" 

Wart: The h' :unctions occur atter transforming from obliqut vertical ~ncidence and are single valued. 

Llrtidentifie~~ speaker: Is the horizontal gradient problem alleviated if you have se~eral  receivers'! 

Wart: You can learn rnore about horizontal gradients. but I don't have a qulntitative feel for the extent. 

Rf.nisch: Would pulses help to  separate the multipath modes compared to a chirp sound~i ' '  

Watr: You can separate multipath modes with chirp sounders. 



IONOSPHERIC SOUNDING 
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5. PARTICLE SCATTERING: CLASSICAL AND QlJANTUM MECHANICAL 

This chapter is concerned with the scattering of particles, either by each other or by some scattering center. 
In contrast to the previous chapters, the probing "signals" are particle beams, at least for the classical case, and the 
measured data are the number of scattered particles emerging per unit time in a given direction, per unit solid angle. 
The aim of the irrverse problem is to infer the interparticle force, or potential energy, as a function of distance from 
the scattering center. 

In general, the problem here is more complex and difficult than those in the other disciplines. The mathe- 
matical details and inversion techniques are significantly more sophisticated. Curiously, the laboratory experimen- 
tal phase of this work is not, to date, as sophisticated as the theoretical work, but *e mathematical methods de- 
scribed here have been applied to several other inversion disciplines, in particular to electromagnetic scattering 
(Chapter 6) and to seismology (Chapter 7). 

R. G. Newton organized and chaired the session devoted to particle scattering. 



IYTRODL'CTION TO THE INVERSE 

QUAhTT9M SCA'ITERING PROBLEM* 

Roger G. Newtan 

Indiana U;~iversity 

ABSTRACT 

The rnverse scattering problen is introduced in the context of the ~chrodinger equation. The emphasis is on 
,he ~ei?:ll\ Levitan approach tc  the nonrelativistic problen: at fixed angular momentum. 

INTRODUCTION 

The er~erimental situation under discussion in this chapter is, scl~ematically, the following. A colimated beam 
of pirt~cles nf given momentum is directed at a thin foil of target-particles that may be considered at rest. The force 
exertcd hj. the target on the beam particles deflects the latter from their original direction, and they emerge at various 
an$e wilere they are counted by detectors. The .atio of the number of scattered particles emerging per unit time in 
a give$i direction, per unit solid angle, to the incident flux and to the target density, is called the differential scattering 
cross sectj!on. It is theoletically most directly described in the center-of-mass coordinate system of the missile and 
target particles, rather than in the laboratory system in which initially the target is at rest. The two are connected by 
a sir 1111 le transformation. 

The :lyr,amics of the i, eraction I ttwrt? the beam and target particles may be described by classical mechanics 
if the bean1 energy is big. "nough and .lot sufficiently well defined, or more generally by quantum mechanics. In 
either case :he aim of the inverse problem is to infer from the scattering data (the differential cross section) the inter- 
particle fo,(:e, or pstential energy, as a function of distance (the "profile"). The "profile" in this case is not generally 
expected to exhibit as much detail and small-scale structure as in the cases discussed in previous chapters. On the 
other hand, the path from the data to the function sought is very much ionger and the inference more indirect. As a 
t onsequenw, the mathematical apparatus needed is much more sophisticated. 

4 

'The inve~ se scatterin: prblen. in classical mechanics was treated in a paper by Keller er al. [I9561 and it leads 
to Abel's intog~al equation, :-'lich we have already seen a number of times. In view of the formal similarity between 
classical rnecha~dcs and ray optics, the appearance of Abel's equation in both is no surprise. Here we turn directly to 
the quantum meck-:-ic~ dynamics, and to simplify matters, we shall restrict the discussion to particles without spin 
at nonreletivistic vei xities. 

QUANTUM - MECHANICAL ZYNAMICS 

The scattering of 8 beam of spinless particles by a rotationally symmetric center of force is described by the 
time-independent ~c'*rbhinger equation, which in appropriate units reads 

- -  
*Work s v p ~ r t e d  in part by the National Science Foundation and the U.S. Army Research Office, Durtam, 
Nc r: ., Carolina. 



[-V' + V(r)] JI = EJI 

where V2 is the Laplace operator in three dimensions, E is the energy of the particle, and V(r) is the potential 
energy, assumed spherically symmetric and rapidly decreasing to zero at large r .  The asymptotic form of the solu- 
tion JI for latt,: ; is 

where hk is the momentum of the particle, and k' = krlr. w e  write r for It I.) The connection between the 
enerpy and the value of k = i k I is (in our units) E = k'. You may, of course, equally well think of E as the 
frequency of the wave, and of k as the wave vector, with the wave length X = 2nlk. 

The measured differential cross section for scattering from a beam in the direction k to a counter in the 
direction k' is given by 

O ~ i n g  to the rotational invariance of the scattering center, f depends only, on E and on the angle 0 between k 
dnd k': 

The usual procedure is to solve the ~chrod in~er  equation in some way-exactly, numerically, or approximately- 
to extract f from ), 2 d thereby to calculate the cross section. The inverse scattering problem is posed by assum- 
ing doldi2 to k given as a function of E, or x ,  or both, and then to ask whether there is a (reasoqable) hnction 
V(r) that produces it vla the ~c3rodinger equation, and if to, whether it is unique and how it can be calculated. 

Assuming doldS2 to be given as a function of the angle or x for 0 < x 6 1, the first problem is to deter- 
mine the complex function A(E, x) from a knowledge of its absolute magnitude. The most direct attack on this 
problem is made by means of the so-cali?d "generalized optical theorem," or unitarity of the S matrix. It follows 
from the conservation oi flu:. implied by the Schrodi:rger equation that 

where dS1" is the solid-angle element of k", and Im denotes the imwnary part of the complex function. If we 
write (at fixed E )  

kA (E, x) = ~ ( x )  0 < F(x) 

then this equatior reads 



FOt)F(z) cos [ @ 0 )  - @@)I 
F(x) sin Q(x) = 

(1 -xZ - y 2  - z l  + 2xyz)1'z 

and the integration extends over the interior of the ellipse where 1 -x2 -y2 -z2 + 2xyz 2 0. This equation may 
be regarded as a nonlinear integral equation for sin Q(x) if F(x) is given. [Mariin, 1969; Newton. 19683 . Both 
Schauder's fixed-point theorem and the principle of contraction mapping have been applied to t h ~ s  problem, with 
the following result. If 

for all x, O < x G 1, and F(x) satisfies a   older condition, then a solution sin @(x) exists. If Q(x) < 2'", 
the solution is uniqite and may be obtained by iteration. [It was shown by Martin, 1969, that for Q(x) < 0.79 :he 
solution is unique.] It is also known from explicit examples [CZichtort, 19661 that for some F(.Y) with Q(x) > 1 
a solution exists and is not unique. The ger-eral situation for Q(x) is unknown. It is also not known whether the 
gap between 2'" (or 0.79) and 1 is real or merely a technical diffic~~lty. For further remarks, see Efrimiu [1970], 
Goldberg (19701 . a ~d Cerber and Karplus [1970,1971] . 

Let us assume now that the scattering amplitude A(E, x) has been obtained from the experimental data. We 
may expand its dependence on x in a Legendre series: 

in which the PQ(x) are Legendre polynomials. The principal virtue of this expansion is that it allows us to incor. 
p ra t e  the restriction imposed on A(E, x) by the generalized optical theorem in a very simple manner: The 
coefficients a,  must have the form 

where 6, is a real number. It is called the Uth phase shift and, of course, depends on E .  'To s ry that A(E, x) is 
given is therefore equivalent to sayisig that the phase shifts are given. 

At this point the inverse problem may be posed in two different ways. The first is to assume that a single 
phase shift S,(E) is given as a function if E, for all positive E. The second is to suppose that at one value of E + 0, 
all phasi: shifts are given. The fust was attacked much earlier and there is much more literature on it (see appendix) 
than on the second, ever! though from a practical point of view the second way of posing the inverse scattering problem 
is of greater interest. 1 shall discuss only the first, the so-called "inverse scattering problem at fixed angular mom en tun^." 
The second, the "inverse scattering problem at fmed energy," is discussed by Sabatier in the next paper. 

Before proceeding, there is a more general remark that should be made. It would be most natural to ask: 
What if A(E, x) were given as a function of both E and x. Or, what if& phase shifts were given as functions of 
E for all positive E? We shall see that, at least within a certain rather large class of potentials, a single phase shift 
as a function of E determines an n-parameter family of potentials (with n < w). Hence the prescription of 6 , ( E )  



for one P determines, for each P' + P, at most an n - p a m e t e r  family of phase-shift futlctions 6 ~ '  (E) .  Thus while 
6p(E), for any one P can be prescribed (within wide limits) arbitrarily as a function of  E, two phase shifts of 
different P values are very much restricted in their possih!e E dependence by the requirement that they he pro- 
duced by the same potentia!. 

A similar situation exists for the inverse problem at fured energy. As Sabat~er nDtes, a set of phase shifts at 
one energy determines a certain class of potentials. A set of phase shifts at another en. gy also determines a class 
of potentials. The intersection of these two classes, for arbitrarily prescribed sets of phase shifts is not krown. but 
the chances are that with probability 1 this intersection will be zero. In other words, when all dp(E) are given for 
all E, a horrendous existence problem arises. For t h s  reason, one usually assumes either all tip at  one E, or one 
tip for all E. 

THE INVERSE PROBLEM AT FIXED AhGULAR MOMENTUM 

We are concerned here with one particular scnelai approach t o  the inverse problem at f u e d  angular momentum. 
There is another class of methods r.iore suitable to  the extraction of partial information from partial input, rather than 
from the full knowledge of a Sp(E) for all positive E as discussed by Calogero in a later paper. 

If the solution +(r) of the ~ c k o d i n g e r  equation is subjected to  !~gendre expansion of its directional depen- 
dence on r relative to the direction k of the incoming beam 

then the radial functisn $&) must satisfy the radial ~chrodinger equation 

which is an ordinary linear homogeneous second-order differential equation with a regular singular point at r = 0. 
(It is assumed that 

lim r' V(t)  = 0 
r+O 

Otherwise, this statement would not necessarily be true.) There are two classes of solutions: The regular solutior,s 
and the irregular solutions (all with respect to  th? point r = 0). A regular solution is uniquely determined by z 
boundary condition at the origin-for example, 

lim r-Q-l 4+(r)(2Q+ I)!! = 1 
r+O 

For P = 0 (the so-called "s wave") t o  which we shall for simplicity from now on restrict ourelv*s, this means 



i.. 

Every other regular solution is a rnultiple of this one. This includes the physical radial wave function. The asymptotic 
behavior of a reg~lar solution for large r is given by 

where 6 is the !s wave) phase shift. 

In this context, then, the inverse scattering problem is posed by assuming the asymptotic phase 6 (E) of 
@(r) given for all positive E, to determine V(r) in the radial ~chrijdinger equation. Mathematically, therefore, 
it is an inverse Sturm-Liouville problem on a semi-infinite interval 0 < r < m .  We are given asymptotic infor- 
mation about thc regular solution. as a function of the spectral parameter, and we are asking for the reconstruction 
of the differential equation (in a specifically restricted class). 

The attack on this problem involves two essentia!, steps. As solutions of a Sturm-Liouville problem on a semi- 
infinite interval the functions @(E, r) form a complete set. This statement may be written m the symbolic form of 
a Stie!tjes integral 

The spectral function p(E) has a finite number of discontinuities at the discrete (point) eigenvalues of the Strum 
Liouville problem (at negative values of E)  and it is continuously increasing for E 12 O. The point eigenvalues are 
the bourrd states of the system, and if 

then their number is f~nite. Furtherniore they cannot be positive. The positive spectrum is absoluteiy continuous. 
The two steps in the inverse problem are ( 1  j 6 (&) -+ p(E), and ( 7 , )  p(E) + V(r). 

Step 1: S(E)+p[E) 

Let us define x(&, r) to be a regular solution of the radial ~chrod in~er  equation that satisfies the scattering 
integral equation 

where 

%(&) = k-' sin k 

and G: is the resolvent of the free Hamiltonion operator on the upper rim of its cut, 



Its kernel, the free Green's function, can be writtcn down explicitly, 

~ : ( , E ; r , r ' )  = -k-' sin kr<eik'> 

where r< = min(r; r') and r ,  = maxi:,, r'). For the bound states En we will assume x to  be normalized to unity: 

Now, since x ?,id 4 are both regular solutions of the radial ~ c h r o d i n ~ e r  equation, they must be linearly 
dependent: # ( r )  = f x ( r ) .  From the integral equation for x one easily finds that as r  -* 0 

cc- mparison of which wi1.h the boundary condition for #( r )  shows that 

On the other hand, as r  + w we find from the integral equation 

and cons.equently, as r  + w 

because #( r ) ,  being the solution of a real differential equation with real b( qdary conditions, is real (for real k ) .  
I t  follows that f','f- e2iS - that is, arg f = -6. The function fo is called the Jost function and it :an be shown 
t o  be equal to  the Fredholm determinant of the integral equation for X .  



On the other hand, the compieteneu of the spectrum of the Sturm-Liouville operator H = -d2 ldr2 + V ( r )  is 
expressed in terms of x as fgiiows: 

if En are the point eigenvalues o i  il. Comparison with the spectral resolution in terms of 9 shows that therefore 

where 

Nn2 = $: dr  M ( E ~  d l  

Thus, the connecting link between the spectral function p ( E )  and the asymptotic phase 6 (E) is the Frcdholm 
determinant (or lost function) f .  The crucial property cf f(E) that allows us to determine If(E)I from a knowl- 
edge of its phase -6 (E)  is its analyticity and asymptotic behavior. 

Since the resolvent Go(E) of Ho is an analytic (operator-valued) function of E  regular everywhere in the 
E plane cut frorn 0 to - and tends to zero there at infinity, f(E) is an analytic function of E regular in the cut 
E plane and tends to 1 there at infinity. Furthermore. f(E) has the reality property 

Therefore, d f has no zeros, its logarithm satisfies a "dispersion relation" 

log i f(E)l = -P j0- dl? 6 (E') 

n E-E' 

(it. ,  a Hilbert-transform relation between its real and imaginary parts) where P denotes Cauchy's principal value If, 
on the other hand, f(E) has zeros in the complex plane, then there are the ~ i a t  eigenvalues E,, of H. In that case 
we form the function 

k-k* T(E) = f ( ~ )  n - 
k-k,, 

which has no zeros and h e n a  satisfies the above Hilbert transform rcktion. We arc therefore free to prescribe inde. 
pendently both the bound-state energies En, and the ghue rhift 6(E), r:ad we CM ulculate I f(E) I explicitly. 



Thus the positive energy part of the spectral function p(E) is determined uniquely by the phase shift 6 (E)  
and the bound states together. The negative-energy part then still contains a positive normalization parameter for 
each bound state. Thus, prcscription of 6 ( E )  and of the N bound-states determines an N-pa~areter family of 
spectral functions. 

Step 2: p(E) -r V ( r )  

We now turn to the Second step, from p(E)  to V. By a method similar to the proof nf the completeness of 
tla functions 9, one can show that if v(' ) is an arbitrary comparison potential and #(I )  and p(' ) are the corre- 
sponding regular solution and spectral function, then there is an integral representation of @(E,ri  of the form 

where 

with 

I! is easily seen that the kernel Klr, r ' )  satisfies the partial differential equation 

One then verifies by means of this equation, the schr6dinger equations for I$ and 1, and of the above integral 
representation, that K(r, r') must satisfy the boundary conditions 

Next one inserts the integil representation for 6 in the definition of K(rl r'), and one obtains a linear integral 
equation for K (r, r'), 

K (r, r l )  = g(r, r l )  + drl1 K(r, r'l)g(rll, r') I' 



where 

This is the ~el)and-~evitan equation. It csln be shown under vcry general conditions to have a unique solution. Thus 
the step from p to V is complete, as follows. 

Adopting an arbitrary cornparidon potential d1 ) (for example, v(' ) = 0), we d ru la t e  g(,: r') from the 
given p(a. Then the  elfa and-Leritan equation must be solved, and from K(r, r) we obtain V(r> tlniqiqly. 

We summarize the invers~on ptocedure schematically in the following way: 

In the first step existence and uniqueness are assured so long as the cross section is smooth and small enough. Step (2) 
is straightforward and unique, in step (3) existence is assured by mild conditions on the functioqs dp(E), a .d  it is 
uniqx if there a n  110 bound states of angular momentum P. Otherwise, tlie binding energies can be assigned inde- 
pendently, and there is a "phase and binding+nergy equivaient" family of sy;!ral functions p#j, with as many 
parameters as bound states. Step (4) is unique, under miid restrictions, and existence is aswed. 

The final question that arises is whether w e  41 . assured that the cycle is always clor.e4. In other words: We start 
with a certain class 1 of potentials and prove cerbiil properties of the p l u e  shifts-szj, that they are in class 2. If we 
now start with any phase-shift function b&E) in class 2 ,  the inversion procedure baCs to potentials in some class 1'. 
We would call the procedure ciosed if the class 2 were known f( - which 1' .: 1.. It would be optimally closed if the 
class 1 were known for which 2 is ~ u c h  that 1' = 1 .  Tlw am8 , c ~ .  .o these questions are not known. 





DISCUSSION 

Unidentified spa~?;cc This develo?ment is r very pretty theoretical one. 'This invetx problem demands that you 
know the spectral weight function for all values of the energy, but when you meawe it in the physical labora- 
tory you are bwnded by practicle situations. How stable is this p r o a s  alpinst uncertainties or incompkteness 
in the data'' 

~llewtor~: Nct much can be said about that. Of course, you know the data orJy up to a finite energy and then not 
exactly. There are some thing that can be sa~d about tkc s t ~ b i t y  of the proms with resmt to small pertur- 
bations at a finite energy, but the main limitation of the method is that you have to know the phase shift up 
to infinite energy. 

Unidentified speaker: ' ' p p  you know it only to a finite energy, what c h  of potential can YOU fit t y  a class of 
phase shifts that is give11 only up to a finite energy? 

A'ewr~n: That's a difficult questlon aid not m: 31 is known. What you'd l i e  to know are ctitain r p ~ ~ f i c  features 
of the potential. How does it behave asymptotically? Can you tell whether thc potential goes down exponen- 
tially for larg distance? If so, how? The answer there is discouraging. If the ptential goes down exponen- 
tid!y, then the S matrix is an analytical function in a strip around the d axis. Supposs for a very large ewrgy. 
I change the phase shift by a lttle kink-that is, I give its f i t  derivative a discontinuity-then the S mstrk 
canno: possibly be anaiytic in tint strip any longer and therefore the ptent id cannot go down exponentiaily. 

Moses: Lh. S. C. Wang, MI?, tried some numerical experiments on the stability of the Cklhnd-~evitan equation. 
He varied ?he normalization constants a little. It is quite stable. I also tried to makc nonanalytic scatter 
operators, jiimps, step functions, etc. I didn:t solve them although I think it is soivable. I think you will get 
unitary scattering operii:m and so on, but I think you get singulu potentials in the finite domain. 

Anker: Even in the ideal case, you still nave an q-parameter mbiiity. a nonuniquentss-the number of bound 
state*. In the case where Q > 1, what is thk parameterization? Is it r auntable, or nondenumenble, or how 
tad is the nonuniqueness when you've got nwnter exam*? 

Newton: We're talking about t w ~  different things. You're talking h u t  the inverse probkm from the cross section 
to the amplitude. That has nothing to do with the number of parameters. In the elumpk that's known, it's a 
thretfold ambiguity. It was generated numerically. Somebody took a cross section and sead\ed for different 
amplitud3s to fit it. He found three solutions on a computer. 

Moses: John Lamont and 1 looked at this problem, but we found that if you did a measurement though dits you 
2an find complex amplitudes from the correspondrng cross sections. 

Ncwton: There is also another scattering experiment in priacipk, to detemune the phase of the amplitude, based on 
the Hanbury-Brown and Twiss effect of intensity interferometry. Whether this is feasible in the particle kinain 
is doubtful. 

Atinney: 1 dm concerned with the existence of stares that are bound at positive energies and can tunnel out. 1 
imagine these are inaccessible to experimental data with experimental errors. How a n  these viewed 
practically? 

Newtor: There are two kinds of such states. One is simply a resonance, a narrow peak in the cross-section, which 
-an k handled by the inversion method. The othe . ?,?lng is actual bound states at positive energy. For elastic 
r:atttriag by local potentials that is impossible. For nsc!c;ll ~iea?i;ils, zr 2 three-body problem, this is 
pcrssible. They may causc difiauittes. 



Phinncy: I am ccr~cemed with very broad resonances. I have a seismological analog concerning seismic body 
waves t h t  ar: observed at a variety of distances at a given frequency. These signals illuminate other regions 
0; tke earth but are not permitted to enter the earth's core unless tunneling is permitted. Fron; a geometncal 
optics vreh. there is no pnetntion. If the core had a sufficiently low velocity that the states were perfectly 
bound and the cmc actually had monances that could not be &srved. 1 would see where tile nonuniquenes3 
lay. We are unable to iliuminate thest regions of the core, acd yet the states t ! t  e u s t  in the core are ear , -  
tially resonminces and the effects of the core are down in *he noise. 

~Yewtm: The difference is that you don't ask for specific mechanisms. You are simply taking thc phase shift as a 
funcf on ot the energy for granted. Your problem is much more c-mplicated. 

W e n t i j W  spa~ker: I wodd like to make a comment on the application to seismolog) . The ~ismological 
problem was mdeled at Lincoln Labs sonu yeam ago as a one-dimensional, layered %&el. In that case, the 
inverse rroblem is iike the problem of z transmission h e  in which the impedanze, or index of refraction is 
dixo~tinuws. The hcds of effecls *at you look for. kaky states, etc.. can be taken into account by this 
same algorithm but with a rlifferect class of potentials. 

6Ektif i t -d spukzr: Yesterdq we h d  problems concerning a cu~nplex index of refraction. which would 
correspond to d compk* potential kere. includig absorptive effects. Can you generalize your procedure to 
tandle that? 

Newton: Y:+ 
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ABSTRACT 

A short review is given of the methods of solution of &e inverse scattering problem at fured energy in quantum 
mechanics. The attempt has been made to cover i h  literature up to Apri! 197 1. 

We are interested in scattering experiments of a beam of particles A at a nonw&rivistic energy C by a target 
made of particks B. For the quantbrn mechanical description of the system A - B, we use the ~chrodin~er equa- 
tion and one or several functions depeiihg on the relative distance of the particles. Our inverse problem is the con- 
struction of these potenrials from the experimental measurements. 

In the simplest case-namely, for spk~less particles and isotropic potentials-the system may be described in its 
own center-of-mass f ra r i  by the ~chrodinger equation: 

The above equation can be separated; hrnce, we are led to the socalled mdiol, or partial wavs, equation: 
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For a physical potential, the function $&r) must h ~ > e  the following asymptotic behavior: 

$*(r) = A p  sin r - - ~ 9 + 6 ~  + o (I , )  r + w  ( :  ) 
A sufficient condition for thr existence of the 69 is that the folbwi g quantity is finite: 

where a is a general length. ' This condition defines a set @of po!entials, in which IVI is obviously a norm. 
However, the s e t p  for which the 6* are defined by Eq. (5) is much larger than d :Pcontains, for Instance, 
infinitely repuls~ve potentials. The cross section is related to the phase shifts by 

The scattering amplitude f(9) appears in the asymptotic behavior of the wave function 

The conditions f ~ r  which Eqs. (7) and (9) make sense a n  not necessarily met for any potential of 3. Because 
of the bounds of the Legendre polynomials for sin 9 # 0, a sufficient condition for the convergence of Eq. (7) is 
that I tilp I be bnunded by Now, according to a r ;ult of Mhn [1965], the phase shifts are bounded for 
large P by 

provided that this quantity goes to zero. Therefore, a suffxient condition for a pod definition of f(9) is that 
pS" tE I V(p) l be bounded for large p . 

Throubout the paper, C is a general constant, e ur arbitrarily small positive number, a a general length. 'They 
are not intended !o have the tune value every time they us used. The term "bounded" is often wed in place of 
"absolutely bounded." 



This, however is much too strong a cor~dition in general. Let us def n e 3 '  as the set of potentials for which 
Eqs. (7) and (9) make sense; 9' is the set in whch one must look for the solutions of the inverse problem. In this 
simple case, the inverse problem can be formulatzd as follows: Construct the potentials V(r), ( V  e P') that yieli 
the cross section ~ ( 0 ) .  

As in most inverse problems, the questions of interest changed with time throughout the successive studies of 
this problem. In the first studies, authors iried to obtain an approximate solution of the problem. The quest for 
exact solutions led to the realization of the nonuniqueness of solutions and its consequences, which suggested further 
questions. There are six main questions essential in the inve:se problez at f i e d  energy. 

1. Given u(8), does a potential I/ exist in P' that generates a at the energy E through the Schrodinger 
equation? Such J ptential is called a soluticn of the inverse problem at the energy E. 

2.  h t  11s a w m e  a class w of functions (w C 3') that contsins a solutior V of the inverse problem at 
the energy E. Is V the unique solution in%? 

'~FC answer to (I) being in general affirmative and the answer to (2) being in gene.:! neptive, we are led to: 

7. Give a method of constructing a solution of the problem. 

4. Let us call "equivalent" two potentials that yield the same cross section. Give methods for constructing all 
the equivalc*!t potentials in P' , or in a large enough, welldefined subset of 3'. 

5. Give an appraisal of the deviation from each other of all the equivalent potentials in P' or in a large enough, 
aell defined, subset of '. 

In (1) thraugh (S), it is asumed that the crou section was exactly known. The experimental scattering data 
are necessarily affected by errors. We must find out whethcr the inversion procedures are stable with respect to the 
perturbation generated by the noise of the data: 

6. Describe the evolution of the set of equivalent potentials when the crou section is s~bmitted to 1;2lom 
perturbations. 

The above are strictly concerned with the inverse problem at lured energy. In a nure general framework, an 
inte:esting question would be. Let ~ ( 9 )  be given as a functi-r: d 5 What conditions must be fu~fded  for which 
at least one of the solutions is a static potential, and how do we obtain that solution? 

We have formulated all our questions for the simple problem cf a spherically symmetric spinless potential. 
With trivial modifications, they can be extended to the various generalizations of the problem. 

The historical development of the subject has been similar to that of other inverse problems. The early studies 
tried to solve questions (1) and (3) by trial and error, or by approximate methods. General methods began to appear 
in 1959, but they remained widely formal until a few years ago whet they were systematically developed, giving 
definite answers to (1). (2), and (3). The solutions, or attempts at solution, tb (4), (3, and (6) are very recent, and 
the subject is far from being exhausted. On the whole, the evolution of the inverse scattering problem at fured energy 
has been very rapid. and about 30 ppers have been sufficient to  achieve a state of solution equivalent to that requir- 
ing about 1CkI papen for the inverse problem at fixed angular momentum. One reason for this rapid evolution, of 
course, is t h t  many tools could he ~ o n s t n i t e d  by analogy with the inverse problem at fured P. Thcre are, howevei, 
several tools introduced in the ?resent probiem, such as the interpolation coefiicients, or th . s.:~tteriig atr.:c!ure 
function, that were developed independently of the inverse problem at fmed I:, and their pplicability to that problem 
wodd be an interesting subject for  st^ 

Here we follow the histor;:'d order in the evolution of the inverse scattering problem at fured ene.c Except 
for !rid-andcnor methods, the published sti~dier gave separate solutions ts the construction of the scattering anly 
litude ;rom the cross section and to the conslruction of the potential from the scattering amplit~de. 



TRIAL-AND-ERROR METHOD 

The trial-and-error method certainly is the simplest way to give an answer to question (3). Calculations of 
cross scptions are done for a series of trial potentials until a satisfactory fit is obtained. Hence, the following answer 
to (3) can be obtained: Here is a potential that yields a cross section approximately equal to the experimental cross 
section. 

Because of the experimental errors, three parameters related to the depth of the potenual, its range, and the 
range of its "surface," respectively, prove to be sufficient to define the class of trial potentials. The most popular 
shape of potential including t!!:se parameters seems to be the Saxon-Woods shape: 

where A is the potential depth. R its range, and a the surface width. 

The method can easily be generalized. t t  has been used for potentials including spin-orbit forces, tensor forces, 
imaginary parts, and mort gel erally ~ 1 1  sitiutions in which the direct problem has been solved. Fitting procedures 
have been made as reliable arid efficient as possible. 

Any trial-sl~ll-~ror ''method'' is nothing more than an algorithm in which a series of observable quantities is 
~dculated from the interaction and compared with the experimental result. Therefore. the differences between the 
various p r ~ e d u r e s  are concerned eiiher with numerical analysis or *with computer tricks. ?he structure of the 
method, its phjsical interest, and its fundamental limits are always the same. Furthermore, the only information 
that can be obtained by a trial-anderror method for the inverse problem is the partial answer to (3) qdoted above. 

On the other hand, the trial-anderror methods are the only ones in which the existence of a statlc potential 
consistent with the experimental resd;s has been studied. In nuclear physics, where extensive studies have been 
done, trial-andcrror methods have made plausible the proposal that the nuclear potential depends sinoothly on the 
energy, and since thk dependence is also predicted by the theory of rtuclei, we have every reason to believe it. Also, 
the failure of trial-and-enor methods to yield a static potential to fit the cross sections at various energies does not 
i:nply that such a potential does not exist. Results obtained by trial-and-enor method are necessarily biased by the 
set of trik ptentials used. 

Textbooks, such as .Yndgson [I9631 contain good chapters on the fitting proceoures used to apply the optical 
model in nuclear physics. Computer programs are available in most ccmputcr Zbraries. A classical example of a 
detailed description of a prDgram of this kind has been published by Melkenoff et d. [lYbi] . 

Although we have given only a cursory appraisal of trial-and-error methods, their importance should not be 
underestimated. We believe, they are relevant to the direct problem-not to the inverse problem. They have been of 
significant value in the development of scattering studies in physics, and their success has been the best proof of the 
validity of the optical model in nuclear physics. Furthermore, the earliest recognition of the fund3mental ambigui- 
ties of the problem can be attributed to trial-anderror studies. 



CONSTRUCTION OF THE SCATTERING AMPLITUDE FROM THE CROSS SECTION 

The problem of constructing the scattering amplitude from the exact knowledge of the differential cross section 
at a given energy could theor~tically be avoided by performing special measurements on ihe scattered particles. 
Goldberger et a1. [I9631 noted this possibility on the basis of an idea proposed by Hanbury, Brown and %iss [I9561 
See also Twis et al. [I9571 ; Goldberger and Watson [I 964; 1965a,b] and Goldberger et al. [I9661 . Although this 
suggestion may be of use in some c?ses, in particle physics it is ~mpossible to obtain the correlated counting rates of 
two detectors with the beam intensities actually available. Furthermore, it is not obvious that by overcoming this 
difficulty we will be able to obtain a solution of the problem. In typical situations, the scattering phase remairis 
deeply involved in the formulas. Therefore, mathematical ways of constructing the scattering amplitude have a good 
chance to remain useful for many years. The solutions of tlus first step of the inverie problem are reviewed by New- 
ton in the preceding discussion. 

CONSTRUCTION OF THE POTENTIAL FROM THE PHASE SHIFTS 

Let us assume that the first step of the problem has given an infinite set of phase shifts. An analysis of the 
second step of the inverse problem must deal with the sir. fundamental questions given in the introduction. The only 
modification Lomes in questions ( I )  and (6), which we replace by: 

la. Given a sequence 6 = {SQ ) of phase shifts, consistent with Eqs. (7) and (9), does a potential V exist 
in P' that generates S at the energy E? S ~ c h  a potential is called a solution of the inverse problem at 
the energy E. 

6a. Describe the evslution of the set of equivalent potentials when the cross section is submitted to randcln 
perturbations. 

JWKB Method 

De~elop~nent- The method seems to have been introduced by Firsov [1953], and Wheeler [1955]. E le  
presentation beiow is due to Subtier [1966a], who gave argumerts for the "right choice" of an interpolation. 
Extension to lugtier orders of the asymptotic approximation of the phase sh~fts also has been given by Sdbatier 
and rediscovered b:~ r'ollmer [1969], who made numerical calculations using the metho4 for practical inversion 
purposes. Miller [1569] has discussed the method in terms of its applications to prob!ems in chemicxl physics. 
Note that the first-order method is equivalent to the inversion method in classical mechanical given by Keller et al. 
[1956]. 

The first attempt toward a discussion of this problem used the JWKB approximation. if we assume the validity 
of this approximation, the phase h f t  tip is given by: 

where the turning point r~ is the largest zero of r 2  [ I  - V(r)] - (P + 1/2)'1. Let us now introduce the fuwtion 



Let us also assume that X(r) is eqial to zero for r = ro and is a monotonically increasing function of r for 
r > ro . Lct r = $(A) be the inverse function of A@). From Eq. (1 1) it follows that: 

X 
H(h) = log - 

rl. 0) 

Within the above assumptions, V(r) can be derived readily from H(h). The problem reduces to the determina- 
tion of H(X) from the 6* through Eq. (13). This is straightforward if 6Q is known as a differentiable function of 
(P + 1/2), say @(!I + 1/2), going to zero more rapidly than (II + 112)-' - E  as P goes to w. Then 

Applications- Suppose we are given an infinite sequence {6*) The first a priori assumption is that the 
function X(r) corresponding to the unknown potential is monc:onically increasing. Physically, this means that 
there must be no orbiting. Then we have to decide what interpolation we have to choose. Now, from Eq. (7) we 
derive 

exp [2i6*] = 1 t i  /'f(~)~p(cos8)sin 8 dB 
0 

One should not conclude from Eq. (16) ;hat the "natural" interpolation of 6p corresponds to the usual interpola- 
tion of P9(cos 8). Rather, an analysis of the errors due to the JWKB approximation for an even potential shows 
that the best interpolation may correspond to an unusual interpolation of PQ(cos 8) [Sobtier, 1966~1. The exist- 

- ..- 
ence of an infinity of interpolations shows that the apparent uniqueness of the inversion procedure is false. 

Actually, we see below that the choice of an interpolation completely determines the exact potential. On the 
other hand, only smooth interpolations are consistent with the assunlptions of the JWKB approximation, so that it 
is reasonable to use any smooth continuour fitting of the phase shifts, and to take for granted, or to check a poste- 
rior!, that the various potentials which may be obtained are not very different from each other. This wav of using the .--- .9r 
above metlrod may be of intermt for a real potential. When it is used for a complex potential, the experimental 
erron on the strongly absorbed exp [2isQ] can yield enormous errors on the potential [&&tier, 1966aJ There. 
fore, we conclude that the method above is not really an inversion method but a fitring procedure. It yields to the 
inverse problem the answer given by trial-and-error methodr, nothing more. It may be of interest to save computer 
time or to study qualitatively the relevance of a model. 



A Special Approach for Superposition of Yukawa Potentials 

Murrin and Targonski [I9611 looked for a solution of the problem in the class of potentials of the form 

~ ( r )  = r' t w c ( a )  exp [-ar] & (17) 

where p is positive, and C(a) r L (p,-). Now let t be the momentum transfer [t = -2(1 - cos 9)] . Its physical 
values belong to [-4.01. Let T(t) be the scattering amplitude. If V(r) is given by Eq. (17), T(t) is analytic in the 
complex t plane, except alorlg a cut on the real axis from t = $ to t = +oo, and the following dispersion formula. 
or a conveniently subtracted form, holds: 

where 2niD(t) is the discontinuity across the cut. This formula can also be considered as an integral equation for 
D(t). It enables one to obtain D(r) by extrapolating the values that T(t) assumes in the physical region. Once the 
discontinuity has been obtained, the potential can be reconstructed. More precisely, Marfin and Taqonski [1961] 
show that in the Born expansion of T(t), the discontinuity across the cut in the region p' < t < (n + 1)' CC2 comes 
from the n first Born terms only. Let us now introduce the expansion 

where 

V* = r' Aft 'Ip ~ ( a )  exp [-ar] d a  P < n 

. \ 
~ 

?.. .. 
I " .  

9 ; .  .. . , . note that Vn+l d m  not contribute to the discontinuity for pa < r < (n + 1)' d,  while Vn docs contribute 
r .' , 

,: c thro~~gh TI only. Now, assume that C(a) is known from a = p to a = np. This yields Vl , Va, . . . , V,-, , 
1 ., ' 

,- '. , , . 
' -  . . from which the discontinuity of Ta + * *  + Tn in the region n2p' < t < (n + 1)' p2 can be derived. We a n  
., I.: 

I . .  .. . ,  ther, obtain C(a) in this interval thro~gh the formula 
.: .'. ... 5% . . .I . . . . . , '  .{ 

i .i., . 2nit'"' ~ ( t " ' )  = 2niD(t) - discontinuity of (T2 + + Tn) . , . . -  .' . , .. 
I 2  

" ! 
I .  

. . '  <.. 
Through this iterative procedure, we can reconstruct C(a) from the dicconthllity of T across the cut. 

. . f  Mmtin and Tmpnski [I9611 give the neatuly (but not nccemady suf-lcieni) conditions for thc scattering ampli- 
. ,: tude to be generated by a superposition of Yukswa potcntiai.. The uniqueness of the solution follows from the 
;. . analytic continuation and the iteration promdun. The method can be wdly extended to exchange forces. It can 
, also probably be extended to porcntials bounded by decreasing exponentials (Mortin, private communication). 
,:, : . 



Numerical computations are not feasible Pesides, since the method involves an analytic continuation, it 1s 

generally unstable with respect to experin'ental or rowdoff errors [Viano, 1969) 

Appronches Tnrough a ~e~tand-Levitan Procedure 

Regge [I9591 introhced an a~proach to the scattering problems at fixed energy fairiy close to the  elka and- 
Levit~r~ procedure intrcduced in rroblems at fixed P .  In such a method, given two potentials Vo and V, one 
looks for n "transformation kerlrl.' K (r, r'), which generates the wave function llpv from the wave function 

"0 $2 through 

Thercfore, if Vo is a well-known potential with well-known wave functions, the scattering problenr reduces to the 
de!ermination of K ' ( I .  r l ) .  For this, it is convenient to introduce an auxiliary tool, the input function % :voV(r, r') .  which is a solution of the partial differential equation 

and enables one to obtain the transformation kernel through the "fundamental" integral equation 

obtained by analogy with the ~eitand-~evitasi  equation. Therefore. the scattering problem is completely solved 
when fv v(r, r') is known. A convenient representation of this machinery is given by ihe triangular diagram 
[Subotiee 19521. 

lNPUT FUNCTION 
+ 
A 

SOLVABLE iXAMPLES TRANSFORMATION KERNEL INVERSE PROBLEM 

t 
-c 

r/ * 
~ - G , ~ I A L  WAVE EOUATION SCATTERING AMPLITUDE 

i;; 
P 

Dl RECT PROBLEM 



Note that Eq. (24) is a Fadholm equation. If r' -r fvv(r, r') belongs to L a(O,r), the Fredholm alternative 
holds. If we keep only continuous solutions of Eq. (23). theSidum of r for which the homogeneous form of Eq. 
(24) has a solution correspond to singularities of V(r). At any regular point of V(r), therefore, Eq. (24) has one 
~ h t r o n  only. With weak additional assumptions, it is possible to show that the sinphities are isolated. It is easy 
to show from Eqs. (23) and (24) that the following equations hold at nny regular point: 

Two kinds of studies have used fvv(r. rl) as the fundmental tool for a solution. In the Regpe-Laffel method. 
the questions (1) and (2) are well studief but (3), (4). and (5) are definitely neglected; the emphscis, therefore, is on 
a general representation of fv  v(r, r'). In the Newton-Sabatier method, question (3) i s  dominant, and (1) and (2) 
follow; the emphasis, therefor?, is on representations of f v(r, I') that permit effective construction of the potentials. 

vo 

ReggeLocffel Method - Introduced by Relpge (1959) and thoroughly studied by Loeffel [1968], this method 
makes use of the above machinery with Yo = 1. The unperturbed partial wave equation thus reads: 

v 
Hence, reduces to a power of r. Using &lf'~d-~evitafl  119511 methods, Loeffel was able ta prove 

that the function f,V(r, i )  corresponding to any potential of o has the following representation 

where the continuous fur:ctions T(T)  and the sequences dk an4 vk are unique for r given potential, Actually, 
these quantities appear in the spectrum of the differentirl opentor - (dldx) [x' (dl&)] - 114 + x2  [V(x) - 1) xiti 
thus are termed the spccmrl I r a  by Loeffel. The series if1 Eq. (27) converges uniformly for (x, y )  in any wmpact 
contained in R+ X R,. The integral symbolizes a ~ n i G f y  opentor U defined on Ll(O,-) w h m  rpplication to a 
function of Ll(O,w) should take into account the convergence in La of all the integrals. 1 Jhg  this complete 
characterization of any potential in o, it has been possible to prove by function-theonuc metho& the two follow- 
ing uniqueness theorems [Loeffd, 19681, where v ir the "continuow variable" w + 112: 

7%emrn I .  k t  V I  and Va be in a. kt al and a? hc the corresponding Jost functions. lf 
al (v) = aa(v) for Re v > 0, then Y,(x)  = Va (x) fsr almost dl positive x. 

lheorem 2. Let sp = exp(2i ip] , let a(? * 1!2) be the interpolation of rip obtained through the Jwrt 
functions (the wca!led "Re* interprAationS'), and Let VI 8sd V 2  be in the c b E  If the corresponding 
Regp interpolations ol and o? satisfy 0 1  (u) = 172(v) for dl v with RQ u > 0 when both are hfilomor- 
phic, then Vl(x) = Va(x) for rlmort dl positive x. 



The problem of uniqueness therefore reduces to the step sp -, o(P + 112). At this point, there can be unique- 
ness only for particular classes of potentials that allow the interpolation to be unique. This holds if t h ~  analytic 
properties of the Jost functions enable one to apply a uniqueness theorem such as Carlson's theorem or the Lagrange- 
Valiron theorem. If a subclass of a is clrosen such that the solution is unique, and if the Regge interpolation is 
known, question (1) can be m e r e d  positively in certain caws [Loeffel, 1968; Burdet et  a l ,  19651 and formal 
answers can be given to (3). However, attempta to answer (5) and (6) are lacking, and no constr~ctive method is 
available. Resides, the stability of a method using an interpolation process as an intermediate step is highly question- 
able [Virmo, 19691 . 

Newton-Matier methods - Let us w the machinery quoted above, with I(, - 0, and following Newton 
[I9621 let us introduce the series 

where lc I<  C(l + P) for any P. Hence, the expansion 

follows for ~ $ ( r ,  r').' Substituting Eq. (29) in Eq. (21). we obtaln 

where 

'Ihe intaite system of coupled linear dgsbnic Eg. (30' '- eql-ivrlent to the integral I;q. (24). Letting r 
in Eq. (30) and usinp Eq. (5) we obtrin the system 

where 

if P' - P is oven 



where 

Considering separately the rea; and the imaginary parts of Eq. (32). we obtain the systems: 

tan 6 Mpp.aPl(l t t m  6~ tan 6*1) 

P' 

c Q  = ap( l  + tana 6*) (I + tan' - Mpp'ap' (tan 6 ~ 1  - tan 

Q' 

ap  = cpAp cos I f  

In matnx notation, system in Eq. (34) reads 

tan Ae = M(1 t R)a 

where 

R = M-' t;n AM tan A (38) 

This ends the formal invetsion prccedure. It is clear tnat if M-I and (I + R)" can be obtained, a set of 
coefficients ap can be nbtained from Eq. (37). When insrrt~d in Eq. ( 3 9 ,  they yield a set of cpl that yield all the 
quantities in the problem. Although this method appears very simple, progress beyond these formal aspcct:i has 
been surprisingly difficult. 

Using the properties of an auxiliary matrix N, Newton [1962] was able t c  prove the existence of a matrix 
M-' bisided inverse of Y ad of a vector v such that 

-4 rtudy bv Redmond 11964) improved out knowledge of the matrix N, but not until 1966 were M-I and 
v expi~;irly given, together with the analogous qumtitics corresponding to a class of infinite matrices [Sobatier, 
196661 . Thd result, for M is: 



where 

When ( 1  + R )  is invertible. the solution of Eq. (37) is therefore 

8 = ( 1  + R)-' (av  + M-' tan Ae) 

where a is an arbitrary parameter. 

It has heer. possible [Sabatier. 196663 to prove that the method is consistent for almost eve:). set of phase 
sh~fts satisfying the mequality 

I tan hpl <C(P + I)-' - €  (45) 

and that it yields, for each a ,  a potential V(r) bounded for positive r and going to zero as 

V ( r )  - C(a - P)r-'I2 cos +  re-^) r + - (46) 

where 0 depen, on the phase shifts only. Among these equivalent potentials, we see that one, and only one, goes 
to zero more rapidly than r'"l' and may exhibit a nonosciuating tail. If the 6$ arz chosen equal to zero, a non- 
trivial class of "trmsparent potentials" that depend on a is obtained. 

We noted that the method works for almost every set of phase shifts. To obtain the up, we need ( 1  + RY-' ; 
on the other hand, once obtained, the cp yield the phase shifts S p  ii the system of Eq. (32) ha: only one solution 

A p e i 6 ~ .  In both cases. the required conditions imply the regularity of rnntrices of the form 1 + MX. where X 
is a diagonal matrix (with element equal to icp, or to f ,L2 tan 6%). 

With the inequality iri Eq. (4S), the elements of X are bounded and MX is a completeiy continuous opekator. 
Therefore, I +MY is invertible unless the phase shifts belong to exceptional sets for which MX has -1 3s an 
eigenvdue. 

An interesting consequence of the hounds required to make the method consistent is that the dass of yoten- . - -- 
tials that can be obtained is relatively narrow. For the convergence of Eq. (32), it is necessary that I cp I < CP. It 
follows that f V(r, r') is an entire function of r and r' , that Eq. (24) h z  G unique solution for almost every r ,  

0, and that K(r, r ) is a meromorphic function [&&tier, 1966~1. The:efore, V(r)  is a meromorphic function, with 
poles of order 2, all bounded away from r = 0. Another limitaC,ion or1 the clnss of potentids comes from 
the fact that P in Eq. (28)  can be an integer only. Even potentials cannot be obtained in this way. For these 

; ;?< 



reasons. Saktier [1967u] gave s genenliution of the method by allowing P in Eq. (2%) to take any real values 
lawr than -112. When this set S of values contain the integers and dl the cp are absolutely bounded, the inverse 
probkm can be solved and yields a much Iiuger drss of equivalent potentials. It a n  also be solved, at least when dl 
the tan tiQ are s d  enou*, if P is allowed to take half-iiteger values only [Sabuzier, 1967~1. 

'I?w bounds of the CQ also yield interestiq repmentations of the Jost function in the Q complex plane. It is 
convenient to w the notation p for li + 1!2, yp( V, o) for c p - ,  ,, . vg for up-, ,*, for GP . 2 .  SO 

that bV(r, i )  reads 

Let us ass!lm that the yC, are absolutely e q u i b ~ ~ d e d .  The Jost functions are then given by [Szkaer. 1966~; 
1967~) 

which can be interpreted as a special dispersion foam& [Ntwton. 19671 . When So contains all the nm-bcrs of the 
form nlk (k, futed integer, n = 1.2, . . .), it can be bterpreted as a Lagrange-Vifiron interpolation formula [&&tier. 
196763 or a derived form of such an interpolation. Other interpolation fomuhs can be dtained for the v2aie func- 
tions which are valid even for rp strongly increasing as p + This interpretation kd us to the additive formula 

The intephtion formuhs for the wave functions make it possible to derive thc inttgnl Eq. (24). Iherefore, 
as pointed out and illustrated by SokrW [1968], generalizations of the interpolation formulas may yield generaliza- 
tions cf the RegscNewton procedure. 

Thg ?!cw*n-Slbstier mcthod can be used to construct exactly solvable potentials [Newton, 1962;Wutier. 
1967~1. In tome cases, it is even p i k  to obt8in a closed form of the scattering amplitude [.%&tier, 1966~; Cbx 
and lbmpon,  19681. In addition, throqhou. this method, the fmt moment 

can be rehted to the asymptotic behavior of the cp [Snbaricr, 196701 ; in particuiar, if t k y  vdsh for Q > L < 0, 

this moment Is an, (Newton, 19671. Some authon have emphasized this point [Chx and l7mmpron. 197Qo; 
Cowbuy and Cos, 19711 and have given 9 method [Cbx cnd Tlhompson, 197h.61 to avoid what they consider an 
essential complication for numerical celculrtiont. In our opinion, this point is certainly over-emphanzed (see below 
for nurneri=al ca!!tions). Its main effect is to produce oscillations in the tail of the potential. 



Generalizations of the Regge-Newton Procedl:.~ 

Relatively direct generalizations of the Regge-Newton procedure, in the framework of generalized translation 
operators, include those to Coulomb potentials [Coudmy rmc. Zoz. 19701 and relativistic cases [Coudmy m d  Coz, 
19711. Generalizations to spin-orbit potentials [Suhrier. 1968) and tenscr forces [Hooshyeor, 19701 necessitate 
much deeper transformations of the machinery. AU these studies are still in a "formal" state: and much work is 
needed to clariiy their details. 

COMPLETE SOLUTION OF THE INVERSE PROBLEM AT FIXED ENERGY 

The methods discussed in tlie preceding section yield answers o ~ ; y  to questions (1). (2), ?;nd (3). In the 
"Regge-ioeffel" method, the answers to (I) and (2 )  are very general. but there is almost no answer to (3). In the 
methods using the coefficients cp, the answer to  (3) is confined to special classes of potentials, which we generally 
denote as "the class C." In these methods, if we allow C( ?o have complex values, taking care of the reality of 
;'jrj, it is certainly possible to obtain expansions of Eq. (27) that are complete in a large space of functions. At 
the same time, however, we preclude the use of the mversc-matrix procedures; furthermore, inclusion of the integral 
values of p would give red~ndant expansions. Sobatier [197\), 197 I] has proposed the following method of solu- 
tion to the inverw problem, which allow answers to all six questions (1) through (6). 

Let .8 be the class of functions that are absolutciy bounded by Cr-' + and Cr-'-€, and e the class of 
prentials V(r) such that V(r). rY'(r), and rZ V"[r) belong to 0 . It has been proved that for any potential of 
6, ti13 transformation kernel K(r,r') and its tk:tvative with respect to r can be written [Sabatier. 19701 

where KN(t, /) ic a so-called "neghgible" function with respect to r ,  namely: 

Using Eqs. (2 I), (SO), and (5 I), it is @ble to  obtain the remarkable formula a 

The scattering structure f u n c t i o n a b )  can be related bijectively to V(r). The important step in the inverse prob- L .. 
lem therefore resides in ob ta in ingxb)  from the 6* through Eq. (52). This is a kind of generalized moment . .  

problem and could be treated in this way IS4borter. in preparation]. It  is also possible to use an asymptotic form 
of a Gelfand-kitan formulas [Saburier, 1971) . For potentials of 6 , the function fov(r, r') and its derivative i ,  
can be expanded: 



(1 - i L)fJ'(r, r l )  = -"'S(rl) exp [irj t fN(r, r') 
a t  

whele fN(r, r') i' negligible with respect to r .  From Eqs. (;!4), (50), and (53), we obtain 

= - / ' I D ~ @ ) $ ~ .  r l )  dp 
0 

where 

Equat~on (54) supersedes the Regge-Nrwton Eq. (24) in all situations where r is largest - that is, in scattering 
studies. Again, for potentials of 6 , it i s  pssible to prwe that [&&tier, 1970, 1971 1 

$(r . i )  = 4 1.i.m. 4 - w - '  sin w uF(u) du 

,,, = [@ - r1;2 + 4w1u2] l t 2  (57) 

V, is the first moment of the potential, (.?!he Heaviside function, $!u) a function of L (C-), and 1.i.m. means 
limit in L 2 ( C Z - 0 ) .  The premise of our method is that F(u), which is the sine Fourier transform of r$(r, r ) ,  can 
!w split into two parts: 

When inserted in Eq. (56). the t uo parts of the right-hand side of Eq. (59) give rise to  two functions: 9 I(r, r'), 
whose spectrum is confined to ( 0 , l ) ;  and gE(r1  r'), whose spectrum is confined in ( I ,  00). These two functions 
are called the internal and external projections of $(r, r'), respectively, and both can be expanded asin Eq. (53) to yield 
the in tend and the srtc..nol projections of d (r'), say, d r ( r ' )  and &E(rl). For convenience, we also define the 
slightly different funcGons 

- 
gr ( r1  r') = S'(r, r') + 6 (wl)-I sin r sin r1 



and I5e comes nding quantities 31(r1)  and 3 E ( r ' ) .  We are now in position to solve Eq. (54). For this purpose 'P we define (r) and x E ( r )  by 

Clearly, Eq. (54) is satisfied if and only if 

YE(',)  + X1(r)  = 3((r) 

We now choose 3 E ( r ,  i )  arbitrxily in a class of functions 9 to which the functions gE(r ,  i )  correspond- 
ing to potentials of & do belong. This class of functions is thoroughly studied in Subutier [197il. Let gE(r ,  i )  
be the resolvent: 

Using Eq.  (60), we can write Eq. (58) as 

where x E ( r )  can be derived in a rtrai tforward m-r from 3 E(r, i )  and gE(r .  i ) ,  and therefore can be con- 
d h d  r known quantity r won u $((, r') has been &own in 9. 

By inacrting Eqs. (61) and (59) into Eq. (57) we liCW can obt* an equation reducible to rm infirre system of 
linuu algebraic er;.urrtions t k t  CLUI be #octly solved! Since 

we can write 



where 

The coefficients c are absolutely equibounded and go to a constant as P -* 00. 

Similar formulas a n  be obtained for 3 l ( r ,  1'). and y l ( r ' ) .  Inserting them in Eg. (57) and taking into 
account the information contained in Eq. (52:. we obtain the remarkable formula 

which is independent of the choice of ?TE(r, rl). 

Now inserting Eqs. (65), (59). and (61) into Eq. (52),  we obtain the infinite system of equations 

where we set 

The quu~titiet Bp, op, g d :  arc known after the choice of gE(r ,  r'). (Actually gggep. ran be given an explicit 
form in termb of BQ and up). If' qp stands for: 

qp = Bp (sin ap - cos up tan St) (69) 

It is possible to show that r)ip vanishes more rapidly than P-' ' as P +-, and to reduce the system to the form 

(t) + tan A)t = M(l + S)a (7'3) 



where up = cpAp cos S f ,  and S is a conveniently defined matrix. As in the Newton-Sabatier method, it is possible 
to show that 1 + S is invertible for almost every set of phase shifts. Since S depends on the arbitrary function 
FE(rt r') it is possiKe to choose it in such a way that (1 + S)-I exist and that the c p  and the f ~ n c t i o n 3 ~ ( r ,  r') 
again give the 6p. 

Therefore, the method just described gives an answer to question (1) in a class of potentials that contains 6 . 
It gives a negative answer to (?), m d  the solution depends on an arbitrary function of 3. It gives a positive answer to 
(3) in a class of potentials that contains & . Since & is hardly smaller than the class 8' of potentials in which 
practically all the results of potential scattering have been obtained, these results are already useful. Moreover, the 
method gives a plain answer to (4) in the class E . Still more interesting, it shows that the deviation of all potentials 
from each other can be analyzed in teims of the values of F(u) between u = 1 and u = m. If we choose inside 

a class of potentials characterized, for instance, by given bounds on the derivatives, the importance of F(u) 
between 1 and - is smaller for smaller bounds, and in any case decreases and goes to zero as E + m. Therefore, the 
deviation of equivalent potentials from each other is smaller when they are more "smooth," and in any case becomes 
smaller and smaller as E increases. These results have been sketched and checked through numerical computations 
by S h r i e r a n d  @yen-Van-Phu [1970]. Except for a preliminary attempt by Sbar;er [1967c], tFe last reference 
is the only available study on the deviation of equivalent potzntials from each other. It is also the only available 
answer to question (9, and it paves the way for practical uses of the inve~sion proce2-~r-. 

Detailed answers to question (6) are still lacking. A general answer can however be given using the method 
above Since this method is constructive, it is easy to check the continuity of all of its steps, in convenient nq~rmed 
spaces and hence to give, in general, an affirmative answer to question (6),  occe F(u) has been chosen for 
u E ( I  ,LO). 



DISCUSSION 

Cdogero: Within a certain class of potentials, Martin is able to solve all the problems you have mentioned. He i s  
able to prove existence, p m  uniqueness, etc. 

Moses: You don't use analytic continuation in Q. Haw you tded using this in the one-dimnnsiond problem? 
This hns application to electrornnpetic theory. 

Jbbatier: There is a difference between this problem and the one at fmed 9.  



EXPLICIT EXPRESSIONS OF THE POTENTIAL AND ITS DERlVATlVES 

AT THE ORIGIN IN TERMS OF THE SCA'ITYRING DATA 

F. Calogero 

Istituto di Fisica dell' UniversitA di Roma 

Istituto Nazionale di Fis~ca Nucleare, Selrione di Roma. Rome, Italy 

The framework of this review paper is the quantum mechanica! theory of scattering of a particle by a 
spherically symmeriical potential. As in the inverse scattering pro'Jlem, the input of the calculation is the 
scattering and bound-state data, and the output is dat:l on the yotential. The results discussed are explicit 
expressions for the values of the potential and its derivatives at the origin in terms of the scattering and bound- 
state data. Various methods to obtain these results are outlined. The presentation is aimed at iniroducing these 
various approaches; the simplest scattering problem (nonrelativistic S-wave scattering on a holomorphic poten- 
tial without bound states) b used as the basis for discussion, and technicalities are omitted whenever possible 
without loss of clarity. A complete compilation is given of the results obtained to date in this field, including 
the treatment of higher partial waves and the Klein-Cordon and Dirac equations. 

The study of the inverse problem in scattdring theory consists in the development of mathematical tech- 
niques to obtain information on the cause of the scattering from the parameters that are measured in a scatter- 
ing experiment. In the framework of quantum mechanics, major attention has been given to the case of a non- 
relativistic particle interacting, via a potential, with a scatteriq center; or, equivalently, that of two particles 
interacting through a potential depenhg on their relative distance, a problem that reduces to the previous one 
after the (trivial) center-of-mass mot.ion has been separated out. Even for this specific case, several different 
"inverse problems" can be stated. depending on the input information taken as the starting point of the calcu- 
lation. This paper focuses on the problem in which the input information is one scattering phase shift (assumed 
known for all energies) and the parameters of the corresponding bound states. 

This inverse scattering problem has been solved by 1. M. ~el tand and B. M. Levitan and by V. A. Marchenko; 
a detailed account of it is givcn by Newton in the opening paper of this chapter. The assertion that this problem 
has been solved means that existence and uniqueness properties have been stated, and that procedures for the 
reconstruction of the potentid fmction from the input data Pave been given. These procedures involve quadra- 
tures and the solution of an integral Fredholm-type equation. 

I'he developments reviewed in this paper constitute an attempt to bypass the practical difficulty implied 
by the need to solve an integral equation; the goal is to obtain information on the potential in the form of 
explicit expressions involving the scattering and bound-state data. Spcifically, attention concentrates on the 
values of the potential and of its derivatives at the origin, and ,=uplicit closed expressions for these quantities arc 
obtained in terms of integrals and sums over the scattering and bound-state data. 

To obtain these results, different routes may be fo!lowed. In keeping with the multidisciplinary character 
of this chapter, the emphasis here ia on the illustraticn of vuious psib.2tkz that might be suggestive of 



developments in other fields, rather than on the presentation of the most general and rigorous picture. We therefore 
consider the simplest possible problem (S-wave scattering on a holomorphic potential without bound states), omitting 
technical details whenever this is possible without loss of clarity. We also review ali the results that this line of 
research has yielded up to now, referring for the corresponding proofs and more detailed presentation to the original 
PaF'en. 

The line of research covered in this review originates from a result obtained simultaneously and independently 
by Newton (19561 and Faddeev [I9571 - a closed expression for the value of the potential at the origin as a sum 
over the P-wave bound-state energies plus an integral over the Q-wave scattering phase shift, considered as a function 
of energy. In a sense, Levinson's theorem [k inson ,  1949) was already a firs? instance of this kind of result. Sub- 
sequent developments are due to h l a e v  and Foddeev [1960] , &uslaev [1962] , Percivol [I9621 , Perci~*al and Roberts 
[1963], Roberts [1963; 19646). These authors, employing different approaches, obtained results that irnplied the 
possibility of obtaining ali the derivatives of the potential at the origin in terms of one scattering phase shift and the 
corresponding bound-state energies, provided the potential is an even function of r (so that all its derivatives of odd 
order vanish). However the conditions to be satisfied by phase shifts for the potential function to be even could not 
be obtained. The solution of the problem for general potentials and S waves was given by Gzlogem and Degnsperis 
[1968] ; this work also yields the conditions that the S-wave phase shift must satisfy for the corresponding potential 
to be evcr.. The extension of these results to the cases of the Klein-Gordon and Dirac equations are due to Degasperis 
[I9701 and to Grbella [1970], respectively, and the treatment of higher partial waves is due to Cbrbel!a [1971]. 

The techniques discussed here produce interesting results other than those specifically cited and can be applied 
in a more general framework than that considered in this paper. Buslaev [1966]. for examptr, treats the case of 
scattering in the three-dimensional context, without performing a partial-wave expansion. dnd elucidates the explicit 
relationships between the scattering amplitude and the potential that are implied by the trace method. Buslaev's paper 
provides a complete review up to 1966, including the numerous important contributions (not mentioned here) of the 
Russian school of mathematical physics and functional analysis; it is written in accord with standards of mathematical 
rigor that are considerably more stringent than those adopted in the present paper. 

POTENTIAL SCATTERING 

The stationary ~chr;;dingcr equation in three dimensional space reads 

with units chosen such that ha I(2m) = 1. We assume hereafter that the potential V(r) is spherically symmetricai, that 
it vanishes at infinity faster than r", 

that it is finite valued (for nonnegative values of r), and that it is an entire function of r, so that the expansion 



is convergent for all values of r. The quantity vn is clearly the nth derivative of the potential, evaluated at the origin. 
This last assumption is certainly niuch more stringent than is required for the validity of all the resuits given below. 
Presumably it would be sufficient to assume that V(r) and all its derivatives are finite-valued for real nonnegative r. 

The scattering solution of the stationary ~chrod in~er  equation is characterized by the asymptotic boundary 
condition 

61th 

and 

-+ + exp(l kr) 
$k(r) - const exp(i k . r  ) + f (k , t ' )  --- 

r + =  r 

-+ + 
k - r  

cos 11 = - 
kr 

-P + 
Thus this solution con3ins asymptotically a plane wave exp ( ik-r  ), corresponding to the incoming beam, and an 
outgoing scattered wave, w$ose angular distribution is characterized by the "scattering amplitude" f (k, 8). The 
differential (elastic) scattering c-czq xction a(E, 6 )  - the measurable quantity - is related to  the scattering ampli- 
tude by 

The cylindrical symmetry of the problem suggests the introduction of the "radial wave functions*' @p(k, r) 
through the position 

OD 

where the Pp l ie  Legendre polynomials. The ~chrb;din~er Eq. (1) then yields the "radial ~chrod in~er  equation" 

. . .- with the boundary condition 



In Eq. (9) and the following. primes indicate differentiation with respect to the last argument. The hypothesis on 
the potential introduced above ensures that this boundary condition characterizes uniquely, up to a multiplicative 
constant, a solution of Eq. (9). They also imply for the asymptotic behavior of the radial wave functions g (k, r )  
the form 

The quantities qp(k), called scuttenngphose shifts, are related to the scattering amplitude by the equation 

which follows from Eq. (1 I), (8). and (4). Thus, knowledge of all the scattering phase shift!, is tantamount to 
knowledge of the scattering amplitude of the scattering amplitude if, and vice versa, since obl:iously 

k n 6 d o  sine ~ & c o ~ e ) f ( r . e )  exp [iqg(k)l sin qg(k) = - 

Xote that in the sum of Eq. (12) only tfie terms with 

where F is a measure of the ranp of the potential, contribute appreciably; in fact for rP >> L the phase shiits 
qg(k) become negligibly small. Thus, at low energy only the phase shift with Q = 0 -. the Swave phase shift - is 
important, and of course the scattering becomes isotrop~c. 

If the potential has a sufficitntly s?rdng attractive (tlegative) part, the radial ~ c h r h e r  equations (9) may 
have fiormalizable solutions for some discrete nonpoo:*h values of the energy E = k2. The condition, on the 
potential that we have assumed are sufficient to ensure that at most r finite number of such solutions can exist. 'They 
comspond to "bound states." Every bound state is characterized by its (negative) energy Eh. and by the "noinali- 
zation constant" C@ dcfmed by 

where gdEPn,r) is the bound-state wave function, nonnrlized so that 



A sufficient conditon to ensure that no bound states be present is the inequality 

where B(x) is the usual step function, 

The inverse scattering problem consists in the determination of the potential V(r)  from the phase shifts 
q ( k )  (considered as a known function of k ) ,  and from th.e energies El,, and the normalization constants CI,, 
for rr particular value of I .  These parameten are, in fact, sufficient to determine uniquely the potential, as described 
in detail by Newton at the beginning of this chapter. 

In the rest of t)us section, and in the following three, we consider the case of S waves (I = 0), omitting 
systematically the subscript zero. We also 3mme, for simplicity, that no bound states are present (except in the 
discussion of the method of operator traces). 

In addition to the radial ~chr;;din~er wave functia~n characterirrd by the boundary conditions of Eq. ( l o ) ,  it 
is expedient to introduce the lost solution f (k ,  r )  of rhe radial ~ c h r b h i n ~ e r  Eq. (9) (with 1 = 0 ) ,  characterized by 
the asymptotic bounday condition 

It, value at the origin is the Jost function 

f ( k )  = f (k,O) 

The phase of this hnction is just the scattering phase shift 

f ( k )  = I f  (k)l  exp [ir)(k)l 

Its modulus can be expressed through the phase shift by 

I/(k) l  = ex.p [A(&)]  

where 



and P indicates the principal value of t b  integral. Of course, E q .  (21)  thtilu@ (23)  are written for real k  . The 
inverse squrn of the modulus of the Jort function, or more precisely the quu:tity (1 - I f  (k)14) ,  is termed the 
spcchrrlfitnction, and it will phy an important role in the following. Another important auxiliary function is 

d 
g(k)  ik  + - In f  ( k ,  r )  

& 
(24) l r = o  

For real k ,  the imaginary part of this function is simply related to the spectral function by 

Im g(k)  = k  [ l  - l f ( k )  I-'] (25)  

which follow from the definition of the Jort function thou& the boundary condition in Eq. (19), implying for real 
k and r  

and from the WronsKinn relation 

f '(k, r )  f (-A, r )  f (k ,  r )  f '  ( - k ,  r )  2ik (27) 

The definition of f  ( k ,  r )  moreover implies !hat this is a holomorphc function of k in the half plane Im k  < 0 .  
and that the only zeros of f  (k) that night occur in this half plane are located on the imaginary axis [as is easily 
proved from the differential Eq. (9) and the boundary condition in Eq. (19)l and correspond to bound states. 
Indeed if 

f ( k , r ) l r , O = f ( k ) = O  for k = - i p , p > O  then f ( k . r )  

utirftcs the bounduy condition of Eq. (10) churcterizin8 the radial wave function. and at the same time the boundary 
condition in Eq. (19)  implies that it vanishes .uymptotidy proportionally to exp (-pt); thus, f (-ip, r )  coincides, 
up to a multipliutive amstant, with tbe nomrrliuble mw function #(E. r )  of 8 bound state, with E - p a .  Thus 
if no bound states u e  present, g(k) is rlro holomorphic in the lower haif of the complex k  plmc, and this (together 
with its asymptotic properties discussed below) implies t h t  for real k its real part cur be expressed as an integral 
over its imrwry put, nunely 

To obtain this equation w hnve dm used the reflection property 



that follows from Eq. (25)  and from 

This last equation 1s implied by Eqs. (26) and (21) together with 

b for the reflection property of the real part of g(k) ,  clearly Eq. (28)  implies 

Equations (28) through (32)  are, of course, for real k 

The convergence of the integrals in Eqs. (23) and (28)  is implied by the asymptotic vanishing cf *hd phase 
shift q (k )  and of the spectrd fl~nction 1 - If ( k )  I I. In fact, the properties that we haw assumed for the 
potential imply that the phase stiift q ( k )  admits the asymptotic expansiorr [ Verde, 19551 

and this result with Eqs. ( i 2 )  and (23) implies for A(k) the asymptotic expansion 

and therefore for I f  (k)  l the asymptotic behavior 

A more &tailed discussion of these asymptotic expansions u given in a later sectio. .. 

THE METHGG OF FUNCTIONAL INTEGRATION 

On the basis of the Gelkand-~tvitm rolutio~ of the inverw scattering yoblem, Newton [1956, 19661 o. d e d  
the following e::pnssion for the functional derivatn rf the poteatid V(r) with respect to the scotterillg p k  shift 
r)(k): 



y.: 
C-. .::* 

when 

and f ( k ,  r) is the Jost solution of the radial Schr&nger equation. :n writing these equations, and always in this 
section, we assume k to be real. The fact that C(k2. r) is a function of k2 rather than k is implied by the 
symmetry and reality properties of d k )  and f(k. r) [Eqs. (26). (31). and (2:)). 

'Ihe validity of Eq. (36) is elucidated in tho following, when we tackle the problem of its inteption.  For the 
moment we l i t  ourselves to specify thst whenever we write a functional derivative, we undentani. .he momentum 
variable k to extend over the range --, + +0; the values of the scattering phase shin for negative k are obtained 
through the reflection formula in Eq. (31) from the "experimental" values, cor,.tsponding by convention to non- 
negative k [see Eq. (3)] (note that for positive k the scattered wave is outgoing, because the timedependence 
characteristic of a stationary function consists of the multiplicative factor exp(ik2t)). 

We now note that the definition of G(t2 ,r) [Eq. (37)] and the diffe:ential Eq. (9) satisfied by f (-k,r) im,-ly 
that G(k2. r) satisfies the third-order equation 

with boundary conditions 

We introduce now the power expansion of c(kz, r): 

The convergence of t:us cwpansion is implied by the assumed hdomorphy of the potential [Vetde, 19551 . Introduc- 
ing this expansion, together with that of the potential [Ep.. (3)). in the differential Eq. (38), we get the recursion 
relations 

n+ I 



whila the bouaduy conditions in Eqs. (39) through (41) imply 

But from Eq. (36) we infer that 

and inser:ing this relation in the recursion relations of Eq. (43) we obtain 

Here, of cc~urse, the quantities arc considered functionals of the phase shift; recall that because we are limiting 
our considention to the case without Bound states, to every q(k) then corresponds a cmque potential V(r), and 
therefon d e f ~ t e  values for dl the quantities Vn . 

and 

This system of recursive functional differential quations, together with the two starting conditions 

implied by Eqs. (46). (44, (45), (28), (22) and (23), allow, by rqvdntirl functional integration, evaluation of the 
quantities Y, - namely, the values of the potential and its derivatives at the origin, in t m s  of the scattering phase 
shift q(k). The functiord integration is accomplished throu* the formula [Voltm, 19591 

v, = ah L +($ - 9 - I  AS r - d k  k(k)-ii(k)l X)  
-0 

(50) 
q'(k) = (s - q -I [(t -F)tl(k) - - s)%(k)J 



where Vn is the nth derivative (evaluated at the origin) of the potential v(r)  corresponding to the phase shift 
f(k), just 3s Vn is the nth derivative of the potential V(r) corresponding to the phase shift ~ ( k ) .  

A diitlculty is apparent, however, from the structure of this equation. Clearly, to be valid, the asymptotic 
vanishing at large k of the difference ~ ( k )  - i;;(k) must be sufficiently rapid. Using the fact that 

f (k, r) = e'k' [ I  + O(k-' )] (5 1) 

at large k ,  we get from Eqs. (36) and (37) the estimate, valid at large k ,  

and from ?his we get by differentiatim 

6 v (")(r) 4 
= (-)"I2 - !* k"+' cos(2 kr) for even n 

b ( k )  51 

6 v(")(r) 4 = (-)(nt')i2 - 2" kRt ' sin(2kr) for odd n 
6T(k) R 

where dn) ( r )  indicates of course the nth derivative of V(r). We therefore conclude that a sufficient condition for 
the validity of Eq. (50) is that 

at large k. Using the asymptotic expansion in Eq. (33) we see that this happens provided 

- 
aj = aj , j = 0 , l , .  . . ,n/2 for even n (56) 

- 
aj = a j  , j = 0, 1,.  . . ,(n t 1)/2 for oddn (57) 

We are finally in the position to begin the process of functional integration. Applying the formula (50) to 
Eq. (48) we get 

- 4 
= V  t - d k  k k )  - ( k  provided 4 = a o  

n (58) 

or, equivals.~rly, 



the constants a,,, 4 being defined by Eq. (33) and by a similar formula for ?(k) in which the constants 7i, 
appear. This equation may also be written in the form 

where the function A. is a universal function of its argument. This function may bt easily evaluated using a simple 
potential whose phase shiti is exactly known, and it turns out to vanish identically (when no bound states are 
present). Therefore, we can write 

The equivalence of Eq. (62) to Eq. (61) is easily checked by partialintegration (set Appendix A). 

Equabons (61) and (62) provide an explicit expression for the value of the potential at the origin. They were 
first obtained by Newton [1956], using the same procedure as here, and by Faddeev [1957]. Both authors obtained 
a more general version; for instance, Newton's result can be written: 

where the sum is extended over the energies of all the bound states with given Q. This formula is more general than 
Eqs. (61) and (62) in two respects: it includes the posmbility that bound states are present, and it applies to all values 
of iP, not only the S-wave case (Q = 0). 

Continuing the process of rcquential inteption, and ~pplying the rule (50) to Eq. (49), one obtains 

where A(k) and I flk) I ue given in terms of q(k) by Eq. (22) and (23), and a k ) ,  I f(k) l on given by similu - .- 
equations in t e r n  of ij(k). @in one can conclude from this formula that 



where A,  (a,, a,  ) is a universal function of its arguments. T b  function couli~ be found using a simp!* solvable 
potential (containing at least two parameters), but we defer to a later section a Crivation of the h a l  form of this 
equaiion. Note that the integral in Eq. (65) is convergent, because the integtand tanishes asymptotically as k-' ; 
this is implied by Eq. (22) and (31). 

The process of sequential integration can be continued, using the recursion relations (47) and the explicit 
expressions of the Vn that are successively determined. For instance,, the next functional equation to be integrated 
would be 

Clearly the formula (50) is always adequate to perform the integration, although the hbor involved fits progressively 
mnre difficult. 

A complete treatment of the method of operator traces h s  been given by Buslaev [I5561 in the context of 
three-dimenional scattering theory. Here we try to convey the main idea of this method in the most elementary 
setting, follcwing the work of Amival [I9621 and Wcslaev and Faddeev [1960]. In terns of the problem under con- 
sideration, t11.e main limitation of this approach is its inability to yield an expression far the first derivative of the 
potentiai at the origin, and in general to deal with potentials that are not even (so thr? their derivatives of odd crder 
do not all vmish at the origin). On the other hand the great mathematical geneniity of the approach has a p a t  
potential for appiications in other fields of mathematical physics. Okii [I9581 has reviewed the trace method in the 
general context of the theory of Sturm-Liuville differential operators. 

The basic idea of this approach is best introduced considering the hamiltonian H of a quantummechanical 
system that admits only a finite number .V of linearly independent states. Such a hamiltonian may be represented 
by an NX N matrix, ar.d the invariance of the trace of a matrix under unitary transformations implies the weil-kr.9~ 
formula 

where the En's are the eigcnvalues of H and p is an arbitrary (integral) exponent. 

Our problem is characterized by the hamiitoni3n 



whose eigenvalucs are dl the positive values E = k2, and possibly a finite number at negative values En, correspond- 
ing to (Swave) bound states, as well. Here we keep open the possibility that 'hund states exist, since their presence 
does not cause any additional complrcation - on the contrary, it may eve11 make the treatment more transparent. 

There is now a continuous infinity af eigenvalues, so that the fornula equivalent to Eq. (67) reads 

where n(E) is the density of states ir the continuum. This formula, however, has only a symbolic meaning, because 
the integral in the right-hanci side gnerally does not converge (nor, of course, does the trace in the left-hand side). 
On the other hand, because t5e density of states n(E)  is simply related to the scattering phase shift ~ ( k )  (see below), 
if it were possible to a definite meaning to this formula. one would obtain relatio~ships between the energy 
moments of the w.:cering p b  shift on the right-hand side, and the potential that is contained in the hamiltonian 
operator on tb left-hand side. Thiz motivates the attempt to extract definite relationships from the symbolic Eq. (70). 

Tt-; fmt trick to use is to subtract the same expression for the case without interaction from Eq. (70). obtaining 

where n , O  is now the increment in the density of states due to the ateraction. It is well known (see Appendut B) 
that 

where ~ ( k )  is tht scattering phase shift. Thus, in place of Eq. (71) we may write 

Of course this equation has still only a symbolic meaning, because in general the integral in the rig, . ;and side does 
not converge. For p = 0, howwer, the equation is directly meaningful, and it implies the result 

when N is the number of (S-wave) bound states. This is just Levinson's theorem [Leuinson, 19491. 

We now outline the two approaches of &mid [I9621 and Busfizeu and Fizddeev [I9601 to extract meaningful 
relationships from the symbolic Eq. (73). 



Percival Approach 

In plnce of Eq. (73) one substitutes the equation 

which is now certainly meaningful for positive f l .  This approach is very close to that employed in certain problems 
of statistical nechanics; indeed, this equation can be found in an old paper by Ilhlenbeck and Beth [1936], where it 
is used to study the virial expansion for a nonideal gas. It is then noted that, while an expansion ot Eq. (75) in powers 
of fl is not allowed, as it would merely reproduce Eq. (73), one can expand in powers of f1112 and equate the coef- 
ficients of equal pawers of PI t2  . (This corresponds, in the context of statistical mechanics, to a rearrangement of 
the Kirkwood-Wigner expansion of the partition function [fun& and Lifshits, 1959)). In this manner v:e obtain 
the moment relationships 

The left-hand side originates from the trau. operation; the right-hand side contains the coefficients an characterizing 
the asymptotic behavior of q(k) through Eq. (33). Using the results of Appendices A and C, Eq. (76) can be rewritten 
in the more compact form 

--* + 
where the operators d ,  d and D are &fined by 

d 
f ( r ) g ( r ) f ( r ) g ( r ) , f ( r ) ( r ) f ' ( r ) ( r ) ,  and D = k -  k 

dk 

(see Appendices A and C). 

To obtain Eq. (76), and therefore Eq. (77). however, it is necessary to assume that the potential function V(r) 
is ilot only holomorphc, b11t also mn 

Brit ~ ( r )  I 
V,,+l =- 

d?"+' 
C for n=0,1,2, ... 

I r = o  



The values of V(r) for negative r occurring in the integral in the left-hand side of Eq. (76) are then defined by 

This prescription, together wi:h the asymptotic vanishing of V(r), ensures convergence of the integration over the 
variable r. 

The treatment of Appendix C implies that Eq. (77) can be rewritten in the lonn 

wbere Fp is defined by the equation 

and depends only on the whose order n does not exceed 2p - 2. It is therefore clear that from Eq. (80) it is 
in principle possible tc obtain sequentially all the even br;vatives of the potential in terms of the generalized moments 

The derivauve hp of or&r 2p depends only on the moments whose order n does not exceed p + 1. Of course, 
the knowledge of ail the even &riv&ves is sufficient to reconstruct the whole potential since it is assumed to be even. 
On the n t h  hand, the cce..titio~:. that Lhe phase shift and the bound-state parameters must satisfy so that tb- 
cornspon&ng ptenud Le c:.en are far I'rom trivial; moreover, their investigation is beyond the power of the approach 
:ve have j ~ ~ t  described. 

Explicit exprcouom of ?he f i t  derivatives of the potential, evaluated at the origin, in terms of the phase shift 
and the bound-state bta,  an give1 in r kttr  section (for the general case of o potential that need not be even); 
therefore we do -at report %re the results that obtain from Eq. (80). 

BWIMY and Faddeev Approach 

The rpprmch of WIW mtd Fajdcev [1960], although originating from the method of operator traces, is, in 
fact, closer to the appro&& bamd on* ~o; ~ p t o t i c  expansion of the scattering parameters, and on their analyticity 
properties (see the next section). This mihod b Jso applicable to potentials that are not even, but it can yield 
explicit exptettionr for all the derivrtivci of the potential at the origin only in the case of even potentials-that is, 
only if all the derivative8 ~f odd order arc a priori known to vanish at the origin. 



The basic equation of the Buslaev and Faddeev [1960] method is 

n 
sin a Y k"-I n(k) + cos (nr )  ~ w ~ ~ ' z - l ~ n  if(k)l+- ( - 4 ) ' = 0  

2z n 
(83) 

that holds in the strip of the complex z plane characterized by the inequality 

This equation is established by contour integration of the function kzz(d/dk) Ir, f(k), exploiting tl,e holomorphy of 
f (k )  In the lower half plane Jm k < 0, and the fact that its zeros there corres~ond to the bound s.a.es as indicated 
earlier. 

The similarity of this equation to Eq. (73) should be noted, as also the disappearance of any explicit dependence 
on the interaction. Of course the restriction to the strip 0 <Re z < 112 is The moment relationships are 
obtained by analytic continuation outside this strip, to the valllrr : = p + I,'?, and z = p, with p = 1,2, 3, . . . 
This continuation leads to formulas that, using the results of Appendix A may be a s t  into the form 

2 w 

dP =&-l,! 4 dk d P-' Q (k) 

where up and dp are the coefficients of the :@mptotic expansion of ~(k) and A(k), Eqs. (33) and (34). Using 
Eq. (22), or rather its generalized version when bound states are present, which reads 

with A(k) always defined by Eq. <23), it is possible to recast Eq. (85) into the form 

Actually it is possible to derive these explicit expressions fcr the asymptotic coefficients an and dn by more 
straightforward, if perhaps less rigorous, techniques [Robere, 19641 . 

The results embodied in Eqs. (85) and (87) do not provide an explicit connection between the energy moments 
of the phase shifts [and the logarithm A(k) of the mcdulus of the Jost function], the bound-state energies. and the 
interaction. Such a connection is introduced usirrg the explicit asymptotic expressions of the phase shift and the 
modulus of the Jost function, or of its logarithm, in teims of \he potential. Such expressions are derived and discussed 



in the following section, using a technique due to Verde [1955] . Similar results have been obtained with a 
different procedure by Ruciuev and Faddeeu [1960], which state that 

where the coefficients Qn are obtained from the recursion relations 

where, by definition, 

and the functions Vdr) are obtained by recursion from 

and 

As usual, v(")(r) indicates the nth derivative of the potential, so that v(")(o) = are the quantities we are 
trying to compute. Note that, for p = 1, Eq.  (91) yields 

The recursion relations (91) are solved by the formula [Crrlogem and Dcgusperis, 19681 



where the sum extends over all positive integral d u e s  of fl and sf and all non~~egative integral values of S j  

( j=1,2 ,  ..., P-1)suchthat 

Ex~Iicit expressions of the first four coefficients Qp are 

inserting these expressions of Qa and Q4 in Eqs. (90) and (86) b'usluev cFnd Foddeev [I9601 obtain explicit expres- 
sions for Vo = V(0) and V"(0) in terms of the generalized energy moments of the scattering phase shift given 
in Eq. (82). It is however clear that this approach cannot produce an explicit expnsssion for the first derivative 
V, = V'(0j of th.: potential at the origin, nor for the higher derivatives, except in the case of an even potential; for 
instance, it is easily seen that Q6 is a linear combination of V4. Va Vo. (V, )', and (yo)'. 

THE NIETHOD OF ASYMPTOTIC EXPANSIONS 

This method is based on thc relationship between the asymptotic expansion of the scattering parameters, and 
the interaction. 

We begin with an analysis, followu~g Vede [1955!, of the asymptotic expansion at large k of the auxiliary 
function 

The radial ~ c h r o d i n ~ r  equation satisfied by f(k, r)  implies for g(k, r)  the Riccati equation 

g'(k, r) = V(r)  + 2i&g(A; r)  - 8 (k, r )  



vhile the condition characterizing the lost solution f(k, r), Eq. (19). implies that g(4 , r )  vanishes at large r 

lim (g(k. r)]  = 0 
r + -  

On the other hand, at the origin 

where the function g(k) is the same one introduced in Eq. (24) .  

Introducing the asymptotic expansion at large k 

into the Riccati Eq. (103), we obtain 

These recursive relations, together with the starting conditions 

and the asymptotic property 

are sufficient to detennine all the hurctions gn(r) in terms of the potefitid. Moreover, it is clear that. gn(r) is an 
algebraic expression i n v o h g  ~ @ ) ( r )  for p up to n ; for instance, 

g,(r) = V "(r) - 1' a (r) (111)  ... - - 

g,(r) = -V "'(r) - 4 V(r) V '(r) (112)  



and so on. It is clear from the structure of these equations that they can be inverted, so as to obtain v(P)(r) as 
an drbra ic  expren.ion involving the quantities g,(r) for n up to p ;  and it is easily seen that tb: ,-nerd structure 
of the resulting expression is 

where the sum extends over a11 positive integers P and over d l  sets of nonneptive integers sj  (a set being by defii- 
tion independent from the order in which the indices s j  appear), and the coefficients p. P I s1  , s2. . . . . sp vanish 
unless the equality 

is satisfied. This "dimellsional" condition severely restricts the number of terms in the sum. For instance the 
allowed values of Q are restricted by 

The coefficients ( p, P I s ,  .s t .  . . . . sQ 1 are discussed in detail by C5rlogem and &gus@s [I9631 ; a table of all 
their values for p up to 10 is also given. 

For r = 0 Eq. ( 1 13) becomes 

where the quantities 

are the coefficients of the uympl.otic expuuion of g(k): 

To rerlize the urk stated in the title of this paper, it b now sufficient to express the quantities q in t e r n  of 
the scattering phase rhift. Thu cm k eldly done stuting from the explicit expression of ~ ( k )  in tern of the phnw 



shifts [Eqs. (25), (28), (22), and (23)) and expioiting th: analyticity properties of g(k), according to a technique 
first ouggested, in a similar context, by Roberts (19646). We report here the results, relegating their proof to 
Appendix D. They consist of the formulas 

the sum in the last equation being extended over all positive integral values of Q and sq and nonnegative integral 
values of s j ,  (j = 1,2, . . . , 11 - l), such that 

Note that this last condition restricts severely the range of allowad values of P and of the indices sj; for instance, it 
implies 

The quantities d i  in Eq. (121) are proportional to the moments of the scattering phase shift, being defined by 

and !hey coincib with the coefficiel~ts of the asymptotic expanmon af A(k) (Eq. (341. The operator D enuring in 
this equation and in Q s .  (1 19- 1 20 j is the uune one discussed in Appendix .A. namely. 

Note that Eq. (I 20) obtriru from (1 19) piforming one htcgration by parts (see llro Appendix A). 



We thw s# that the purrneten gn of the m p t o t i c  (1 18) of g(k) be expmssed explicitly in 
teilllr of the scattering pbrPe shift; the pnrmcten gn with n m n  ue algebraic combinations of the energy moments 
(1 24) of the scattering phase shift, while the panmeters gfl with n odd arc directly proportional to the generalized 
momentlr af :! sptctnl function 1 - I f(k)14 [and this function ~ L I  k obtained from the scattering phase shift 
through the explicit fomulto (22) and (B)] - Insertins thtsc expressions in Eq. (1 16), we obtain the furd expression 

and 

= a j - r  ( 1 30) 

The sum in Eq. (126) extends avcr aU positive integnl values of P and r e l  and aU nonnegative inttgnl values of 
s, 0=2 ,3  ,.... Q), &that 

Thusthtmaximumnlueof P appearingh(126)is p t  1. Thecoefficients ( p , P l ~ , , s ~ , . . . . s ~ ~ ]  uenlatedin 
an obvious way, throu* Eqs. (119-121) and(127-130), to the caff.=ients { p ,  Q Isl ,$a,. . . ,sn) of Eq. (116). 
They have been computed by Cidbpo md [1%8] for dl d u s  of p up to 10, and are given in Table I 
of their paper. Using there coeffints, it L p o r a i  to T. .itt the vrhKI at the origin of - - potential and its fint 10 
dcrintiver, in term of t&e phase shift. Thew explicit ex .. GOIU are given in the fcUowinb section, which contains 
a general summary of thc results for the w# of S-mvr % I ;ring oa a holomorphic potential, incl~ding the possi 
bility that bvmd states are present. 

F i d y ,  wc note that -while the gmcnl philosophy of the approach given in this rtction was intraduced by 
Roberrs (1 W] , his method d not yield all tbe rrnrla rcpartd hen, becruse it focused on the asymptotic 
expr.lsion of the fimctiaa 



rather than on the function g(k. r). As explained in detail by Cdogcro and Degusperis (19681 (see, In particular, 
their Appendix H), the information derivable from r study of the asymptotic expansion of h(k) corresponds as far 
as the values o i  the potential and its derivatives at the origin are concerned, only t~ that derivable fron 511 ex~)ar.isn 
of the odd part of g(k), namely that transmitted by the coefficients gn with n even [see Eq. (1 1 8)) . Thus Roberts 
[I94661 could not obtvr an expression f x V 1 ( 0 )  = V1, nor could he obtain expressions for Vp for p > 2 ,  except 
i~ the special case of m even potential-th~t is, a potentid such that all Vp with odd p vanish. 

SWAVE SCATTERING 0:: A HOLOMORPHlC POTENTIAL: SUMMARY OF RESULTS 

k'. q(k) be the Swave scattering phase *Aft produced by the potential V(r). En the (negative) energies of 
the cormponding (Swave) bound states, and Cn the normalization coefficients of these bound states [defined by 
Eqs.(lS)and(16),with Q=O]. 

Let 5 be the value at the origin of the pth derivative of the potential (assumed to be holomorphic at r = 0 
and to satisfy the usual requirements in scattering theory, detailed earlier): 

Then the following formula hoids: 

the sum king extendtd over 111 positive integral values of Q and swl and n~n~egative integral values of s i  that 
iue consistent with the di~..cnsionsl condition 

The wiversal coefficients Q I s2, s3, . . . , depend only on the indices shown; procedures to compute then. 
together with a tabk -'a the nomr~lridring coefftcients for p up to 10 [see Eqs. (145) through (1 55)] are given 
by Wogem md DcgPsprris (1968). The integnils Jn with even n are essentially the generalized momentum 
mxnent ;of odd order n - 1) of tlw scattering phase shift; they depend on the phase shift ~ ( k )  and on the bound 
state energies En, but not on the normahtion coefficients Cn : 



2 d' j-1 
J,,. = (-)it1 2'h1{; C (rn)j + [k2j-' ~ ( k ]  (136) 

lr(2i- l)! 

The coefficients an enteriqg in Eq. (137) are those characterizing the asymptotic behavior of the phase shift 

They can be also defined by the integral expressions 

The integrals Jn with odd n are essentially the generalized momentum moments (or order n - 1) of the spectral 
function 1 - I f  (k)!* ; they depend not only on the phase shift and the bound-state energies, but also on the bound- 
state normalization coefficients Cn , dtiined by Eq. (1 5): 

The coefficients - (-)" gl, entering in Eg. (141) are those characterizing the asymptotic behavior of the spectral 
function 

The spectral function is expressed in t e r n  of tk phrse shift and the bounbrtate energies through the formula 



where 

&low we display the explici! expressions for the values at the ongin of the first 10 derivatives of the potential, Implied 
by Eq. (1 34) and the values oi the coefficients [p, f? I sa , s3, . . . , sf?+ given by Culogem a d  Dtgasperis [1960] : 

1 v,= -- 
4 

Jz  (145) 

V, = -J3 (146) 



In the very special case of an even potential - a potential such that V, = !I for n odd - -  all th? integrals Jn 
with n odd must vanish; this implies an (infinite) number of constraints that must be satisfied by the phase shift, thc 
bound-state entrgies, and the normalization cafficknts [Eqs. (140) and (141)]. Thus the binding energies and 
normalization coeff~ients of an even potential are determined by the scattering phase shift, which also must satisfy 
an infinite number of integral conditions. For instana., if only one bound .tate is present, and the potential is cven, 
the normalization coeffcicnt C of the bound state is given by ihe explicit equation 

d' t 
{k6(p - a* exp [-2A(k)lJ 

1 

y while rhe energy E of the boaid state can be obtained from the equation 
2 

Here A(&) is given in terms of rl(k) by Eq. (144). Of course, for an m n  potential the (even) derivatives of the 
potential at the origin an expressed as p o l y n o d s  of the iritegnls Jn with n even [Eqs. (1 36) and (1  37)] - that 
is, only i i ~  terms of the gnenlized momentum moments of the plm shift. 

The possibility of expressing all the derivatives of the potential at the origin in the form (1 34) has some ~mpli- 
cations for the so called "Jost equivalent potentials" (which have the same phase shift and bound-state energies 
and therefore the same Jost function f(k) = Iflk)l exp [ir)(k)] [see Eqs. (143). (144)). but possibly yielckng 
different normalization coefficients Cn ) and for the "Bargmann potentials" (whose Jost funcuon is a p o l y n o u  
in k). Fo- these, and a brief discussion of the possibility of finding other explicit relationships between the scatter- 
ing data d the potential, see Cldogero md w p e r i s  [I9681 ; see also the last section of this prper. 



RESULTS FOR HIGHER PARTIAL WAVES 

Some of the approaches described in the previous sections extend trivially to the case of higher partial waves. 
Indeed the result that is at the origin of this line of research, namely the explicit exprcssio~i for the value Vo of the 
potential at the origin in terms of the scattering phase shift, was originally given by Newton [I9561 and, less 
explicitly, by Faddeeu [I9571 for an a r b i m  partial wave: 

where qp(k) is the P-wave scattering phase shift arad Ep, are the energies of the bound states (if any) with angular 
momentum P. The convergence of the integral in the right-hand side is guaranteed by the asymptotic behavior of 
thephoseshift 

which impltes 

As we discuss below, this asymptotic behavidr is related to the finiteness of the value of the potential at the origin. 
The trace method dimmed earlier has been extended to W e r  part~al waves by Amid und Roberts [1963], follow- 
ing the route introduced for S-waves by P c ~ ~  [1%2], and by BJsloeu [1962,1966], who based his approach on 
the method introduced for S waves by Wulacv and Fuddecy [I9601 but was actually able to treat the scattering 
problem directly in three-dimensional s p a ,  without performing a partial wave expansion. However, as noted, h e  
trace wtbod is unable to yitld the \dues of dl the derivatives of the potential at the origin in terms of the scatter- 
ing and bound-statc data, except in the very special case of an even potential - that is, only if it is a priori known 
that all the derivatives of odd order of the potential vanish at the origin. 

The main difficulty in extending the method of asymptotic expansions, which in the Swave case provided the 
most complete solution of our problem, to the case of higher portul warn and also to the case of nonholomorphic 
potentials is due to the fact that the asymptotic expansion of the scattering phase shift at large k contains generally 
logarithmic terms in addition .o powen if the restriction to S waves (and to holomorphic potentials) is abandoned. 
There is, howmr, 3 rubdass of holomorphic potentials such that the corresponding scattering phase shifts qkk), for 
all P < L, still cm*& only (inverse) powers of k in their asymptotic expansions. The condition characterizi~g this 
class of potenbals is the requirement that the values at the origin of the first L derivatives of odd order of the poten- 
tial vanish: 

Vzn+l = 0 for n = O , l , . , . , L - 1  (161) 

Note that there is ckuly no restriction for L = 0, and that these conditions arc automatically satisfied for all values 
of L if the potential i s  men. 



The discovery o i  t h s  oroperty is due to Corbella 11971 1,  who showed that, for this special class of potentialb, 
it is possible to reduce the k-wave problem, with P < L, to an S-wave problem with a new potential that is still 
holomorphic at the origm. The process of reduction implies that the S-wave phase shift and bound-state pararncten 
of the new problem essentially coincide with the P-wave phase shift and bound-state parameters of the or~ginrl 
problem (see below). Then, of course, the results of Ologero und Degusperis [I9681 for the S-wave case can be takcn 
over, and, in ?rinciple, the complete solution of our problem is achieved for this special class of potentials We refer 
for a detailed ticstmrnt to the paper by Corbclh (19711, limiting discussion here to a simple outline of the method 
and results. The oiiginal mathematical trick for the transition from a P-wave problem (U = 1) to an S-wave one 
(P = 0) is due to Ologero [unpublished, 1970) ; its &veloprnent and use is due to Corbella 1197 1 1. 

The basis of the method is as follows. Let y(r)  be the solution of the differential equation 

and introduce a function f(r) through the Riccati equation 

Define the function F(r) through 

= f WY ( 4  + y '(r) 

Then this function satisfies the new differential equation 

T1(r) + [k2 - iE;(r)jy (r) = o 

with 

G(r) = W(r) + 2ff(r) : i 
I s can be verifid by direct substitution. Assume now that 

. $  
r' 

t 

so that Eq. (162) kcornes the Q-wave radial ~ c h r d i n g e r  equation 

#'h(r) + [k2 - P(P + 1)r-a - V(r)]@P(r) = 0 

Then set 



so that Eq. (163) becomes 

while Eq. (164) defines a new function 

The index P - 1 has been introduced because Eq. (165) now reads 

with 

LI 

V (r )  = V(r) - 2 g;2 (r)  (1 73)  

Thus the function F p - ,  (r)  satisfies now the radiaJ ~chrodinger equation appropriate t o  the angular momentum 
quantum number P - 1 ,  with the new potenrial 'r'{r) zf Eq. ( ! ??), t h ~  function ~ ~ ( r )  being defined by the Riccati 
equation (1 70). 

with 

Repeating this procedure P times, one arrives a t  the equation 

The functions gn(r) are defined by the recursive Riccati equations 

5. 

Equation (174) is the S-wave radial ~ c h r h n g e r  equation with the potential v ( r ) ,  and it is easy to  see that the 
S-wave phase shift and bound-state parameters corresponding t o  this potential coincide, or are very simply related. 



-, , ,; 
?*' k, 

a:. 

to the P-wave phase shfts and bound-state parameters produced by the original potential V(r). Indeed, the 
explicit relations given by arbella [i971] are 

where ~k: yantities r)*(t), E h .  and Cp, are the (I-wave phase dufts, bound-state energes, and-bound-stdtt 
normalization coefficlenrs for the original problem with potential V6). while ?fk), 5 and en *re the $5-wave 
phase shift. bound-state energies and normalization coefficients for the potential Ffr). 

It is easy to prove [Corbella, I 971 ] g a t  if the condition ( 16 1 ) holds and if the orignal potential Vfr) 1s 
holomorphic at r = 0, the final potential V(r) of Eq. (175) also is holomorphlc at r = 0 (for k d 4. Then the 
results of Cblogero and &garperis [I9681 are applicable to the S-wave problem with the potential i?(r), so that 
the values at the origin .>f this potential and its derivatives ar~express$le by the explicit formulas (145) - ( 155) 
in terms of the phase shift ;(k) and the bound-state data Zn and G, which are very simply related to the 
corresponding quant1tit.s foi the original 9-wave problem with potential V(r) [see Eqs. (178) through f l80)]. But 
the definition (1 7$), together with t k  recursive equations ( 176), (177). imply definite relationships between the 
values at the origin of the potential v(r) and its derivatives, and the values at the origin of the potential V(r) and 
its derivatives. This is the case only for values of P such that U < L ,  with L defrned by the conbtion (1 61). In 
particular Corbella [I971 ] gives the explicit formulas 



where, of course, Vn 1 s  the nth derivative of the potential V(r) evaluated at the origin, and 5, is the nth denva- 
tive of the potential p(r), also evaluated at the origin. The validity of the restrictron (161) ic ~lwa!.s assumed. 
These equations, together with the correspondence of Eqs. (178 - 186) and the results of Chlogero and Dcgasp .ris 
(1968) [see Eqs. (145 - 155)], yield explicit expressions of V,, ror n up to 5, in terms of the k-wave scattering 
and bound-state data. Note that ths first 0,- these equation? reproduces the original result of Faddcnv [I9571 and 
Newtcri jl9561, Eq. (1 58). 

It must bc emphasized that the expicit expressions of the potential and its derivatives at the origin in terms of 
phase shifts and bound-state data for different angular momenta imply definite integral reidtionships between scatter- 
lrrg phase shifts and bound-state data correspondng to different angular momenta. One consequence of these relation- 
ships is the pessibility of expressing the bound-stute parameters in terms of the scattering phase shifts. For instance 
for a potential that possesses only one S-wave bound state and no P-wsve bound state the Newton-Faddeev F,q. (1 58) 
immediately implies 

where E is the entrgy cf the S-wave bound state, and qo(k) resp. q l  (k) are the S-wave resp. P-wave scattering 
phase shifts. 

RESULTS FOR THE KLElNCORDON AND DIRAC EQUATIONS 

The results of Chlogero and Degarperis [I9681 have been extended to the case of :he KleinCordoa equation 
by Degusperis [1970], and to the Dirac equation by Corbella (19701. The interested reader is referred to these two 
papers for a clear and detailed presentation, which cannot be given here as it requires a previous treatrncnt of the 
Klein-Gordon and Dirac inverse scattering problems. The results obtained are interesting per se and constitute prog- 
ress toward a more complete solution of the inverse scattering problem for KleinCordon and Dirac equations than 
had been previously achieved. 

The scattering and bound-state problems for particles descrikd by the KleinCordon or the Dirac equations 
present some new features, connected with the relativistic nature of these equations. The most important is the 
appearance of negative energy solutions, which are interpreted as corresponding to antiparticles. Another charac- 
teristic feature is the possibility of generalizing tk.e basic equations hrtroducing two potentrals, characterized by 
different transformation properties - one behayip& as the fourth component of a relativistic fourvector and the other 
as a relativistic scalar. The cancnical forms of the KleinCIordon and Dirac equations, however, contain only the 
former. 

The inverse scattering problem that has been so!ved requites as input data the scattering phase shift, bound- 
staie energies, and normalizatioa pararnettrs for one value of the angular momentum, both for particles and 
antiparticles, it yields as output (through the solution of integral equations) two potential functions. 'IT. require- 
ment t h ~ t  one of these vanish identically, which must be imposed if the usual form of the KleinCordon or Dirac 
equation is being considered, clearly implies restrictions on the input; the particle and antiparticle data are then not 
iF&pndent, and indeed it is plausible to conjecture that t!e data for the particle (or the antiparticle) are sufficient 
ro determine the potential, and therefore also to determine the data for t'le antiparticle (or for the particle). However. 
no definite results hidve been proved so far. 



The results obtained by Degusperis [I9701 and Cbrbella [I9701 are explicit expressions for the values at the 
origin of the two potentials, and their first few derivatives, in terms of the phase shift; and bound-state data for the 
particle and the antiparticle (for S waves in the KleinGordon case, for S and P waves in the Dirac case). Then 
the requirement that only one potential be present - that the second one vanish identically -- provides explicit 
integral relationships between the scattering ant bound-state data for the particle a11d for the antiparticle. No such 
relationships had k e n  previously obtained, and they constitute a first step towards a more complete understanding 
of the inverse scattering problem for the usual KleinGordon and Dirac equati0r.s. Indeed, if all the derivatives of 
the potentials at the origin are considered, the requirement that all vanish for the second potential yields an infinite 
set of integral relations between the scattering and bound-state data for the particle and those for the antiparticle, 
which might be sufficient to determine one set from the other. This suggests a procedure to prove the conjecture 
mentioned above. 

FINAL REMARKS 

We have reviewed the results obtained for a rather specific problem - that of obtaining, in the framework of 
quantal potential scattering, explicit expressions for the values at the origin of the potentiail and its derivatives, from 
a knowledge of the scattering and bound-state aata (for one value of the angular momentum). In this final section 
we briefly ciixuss the phenomenological applicabil~ty of these results. We indicate the extensions that are naturally 
suggested, but have not yet been accomplished, and we mention some other developments that fit into the same 
philosophy of obtaining more explicit results than those yielded by the standard solution of the inverse scattering 
problem (that requires the solution of an integriil equation). 

The main obstacle to the phenomenological applicability of the results reported ifi this paper is the need to 
know the values of one scattering phase shift for all values of the energy. This difficulty is common, of course, to 
all approaches to the inverse scattering problem that take as input the data for a given angular momentum. It is, 
however, particularly relevant to the approach discussed in this paper, which focusses on the values at the origin of 
the potential and its derivatives, because these features of the potential are mote sensitive to the information con- 
tained in the behavior of the potential at high energy. Indeed, in many phenomenological contexts, the highenergy 
behavior of the phase shift and the short ranp behavior of the potential are just the regimes where the representation 
of the physical problem in terms of a po?ential is less reliable. This same argument can also be used to justify the 
relevance of this approach; for the explicit relationships that we have discussed constitute the more appropriate way 
to evaluate to what extent the phenomenological data determine the potcntid, and iis derivatives, a t  ih; origin, and 
thus they provide a quantitative basis to assess the consistency with phenomenology, and the definiteness, of the 
description of the interaction in terms of a potential, in the neighborhood of the origin. A useful tool in this connec- 
tion is the possibility of obtaining the parameters characterizing the asymptotic behavior of the phase shifts from 
their overall dependence on the linear momentum k [see Eqs. (138 - 139)]. 

The more complete results have been obtained so far for the case of nonrelativistic S-wave scattering on a 
holomorphic potential, as discussed earlier. The extension of these results to potentials that have an r-' singucularity 
at the origin (more specifically, potentids such that rV(r) is holnrnorphic at the origin) is closely connected with 
the generalization to higher partial waves [for potentials that do not obey the restriction of Eq. (161)). A first result 
in this direction [Degasperis, private communication, 1467) notes that the Foddeev-Newton relation (1 58) remains 
essentially valid for a potential whose expansicn at the origin has the form 



for it can then be written in the form 

provided ~(kj-?(k) vanishes at infinity sufficiently fast for the integral to converge. Since for potentials of type 
(1 88) the two leading terms in the asymptotic behavior of the phase shift are given by the asymptotic formula 

we can rewrite Eq. (189) in the form 

where Bo is now an universal function of the arguments shown. An equivalent way to write this formula is 

The choice of an arbitrary integral value of p in Eq. (192) is justified by the remark that, if a function vanishes 
suficiently fast at k=O and as k+-, then by partial integration 

On the other hand, the need for the integer p in Eq. (192) to be larvr  than unity is connected with the asymptotic 
behavior (130) of the phase shift. 

The u n i v e d  function BO[ao, bo) has been recently determined by A. fkguperis [private communication, 
197 11 . Thus. the final formula for Vo ia 



where bo is defined by Eq. (192) and is related to V-, by the simple equatien 

These equations have been written for the S-wave case without bound states. The inclusion of bound states prew:nts 
no problem; nor doer the extension to higher partial waves. Indeed, these recent results of Degasperis, :yether with 
the reduction technique discussed earlier, oper! up the possibility to obtain explicit expressions for all the deriva:ives 
of the potential, evaluated at the oridn, in terms of the scattering phase shifts and bound-state data for higher partial 
waves, even if the potentid does not satisfy the condition (161). 

The possibility of treating potentials of type (188) and higher partial waves, besides being interesting per se, has 
a large potential for application; for instance, it opens the possibility of dealing with the nucleon-nucleon scattering 
problem, especially in the context of t!e s d l e d  one-bosonexchange potentials [Colopro, 19691. (Note that the 
formula for V. reported in this reference is incorrect, as it was obtained using the conjecture that the universal 
function Bo vanishes when nc? bound states a x  present.) 

Another generdizs:ion that would considerably widen the phenomenologica! applicability of the approach is 
to multichannel potential scattering problems. The only result for this cow is conteincd in the original paper by 
Faddeeu [I9571 ; it relates the vdue at the origin of the trace of the potential matrix to the generalized first momen- 
tum moment of the trace of the loprithm of thc scattering matrix (or equivalently, of the sum of all the scattering 
e ign phase shifts). 

As mentioned above, the explicit expressions for the values at the origin of the potential and its derivatives 
discussed in this paper are not the only explicit relations between the potential and the scattering and bound-state 
data that are known. Other explicit expressions have been obtained from a study of the asymptotic behavior of the 
scattering phase shift, which yields, for example, the formulas [Cnlc&m und Dcpperis, 1968) 

' . +  
i 

' 1 

. .< . wherc ihe coefficients an ax t':n.,t cidjcterizing the asymptotic khavior of the S-wave sc~ttering phase shift ~ ( k )  
, I . . . 

, ' .. - I throu* El. (138) (and are theref?~t: expressed explicitly in lrmv of q(k) by Eq. (139)). the modulus of the lost 
/ .  

, .:. ; 
, . .  

function I f  (k) l IS explicitly expressed in terms of the phuc ahift and the bound-state data by Eqs. (143-144). and 
- ' . f  Cn are the normalization constants of the S w v e  bound states (defimed by Eq. (15)). However, as  ex^' !ined by 

. . 
:- ' .  - s  Clrlogcro and lkgusms (19681, it u not possible to obtain other simple expxssions of this kind. in fact, the next 

expression of thii type that could be explicitly related to the scattering and bound-rtate data h u  the form 

. . - . , b d namely, it conti the potential in a rather complicated way. 



Other relations between the potential and the scattering and bound-state data, in which energy moments of the 
phase shifts of neg-tive order enter, have been obtained by Roberts [1964a]. These relationships, however, do not 
involve the potential in an :;;;:bit way. 

Another relevant result given by Chlogera et a1 ,1968) equates a simple functional of the potential t~ an expl~c- 
it variational expression in ter.ns of the scattering and bound state data. A simple conse+.t?ce of this result IS th- 
following variational bmnd for the Laplace transform of :he potential 

where the only restriction on the positive constant p is 

and the other symbols hate the usual meaning (see above). 

An appealing direction for research, consistent wit\ the philosophy of sear:hing for expliar relat~vnships 
between the potential andthe scattering and bound state data, but implying more radical modifications in the 
approach, takes as point of departure a kind of information different from that contained within a single scatttring 
phase shift (assumed known for all energies) and the corresponding bound-stdte parameters. An instance of this kind 
is provided by the results o i  Buslrrev [!962, 19661, who worked in terms of the full scattering amplitude (assumed 
knawn for all enetgies), alts j'., of course, as mentioned in the first section, for a spherically symmetrical potential 
once the full scattering amplitude is known, the partial wave sczttering mplitudes eup[hlp(k)] sln [qp(k)] and 
therefore the scattering phase shifts qp(k) also are known. 

Finally, a very interesting direction of resarch is the attempt to apply the techniques described here to the 
quantal three-body and many-body problems. Practicdl no results for the many-body probicm have been obtaiczd 
so far, besides those of Uhlenbeck and Beth jl9361. consisting of an exploitation of the trace approach in the con- 
text of statistical mechanics (see also the more rcc- ~t and complete cuntribution by Berezin [!964] ) Results for 
the three-body problem that appear very interesting have been recently annouirced by hs laev  a rd  Merhrev [1970]. 



In this appendix (that coi~cides with Appendix D of the paper by Cldogem and fkgmpnis 119681 ). we collect 
some useful operator and integrrl tormuk 

First of all we introduce the opcnta 

and we note the identity 

which is easily proved by induction. 

A renurkable property of the opentor D is exp& by the fdlc,wing formula: 

P f = 0 .  if n>N, (A3a) 
rn=1 

(m - l)! 
Am. if n<N. 

(m -n  - l)! 
(A9' ' 

m 

We then consider a function f (A) whose asymptotic expansion (k + *-) is of the following type 

We also assme that f (k) and all its derivatives on f h t e  on the nd axis, md that the asymptotic behaviors of the 
derivetives of ; (k )  may k obtained differentiating Eq (A4). 

For functions of this type we write the integral identity 

 he validity of *his rel. AS easily prcwed by pactid integration and usiq hp. (Z3r) and (A4). Of course the value 
cf p in Eqs. (A4) and :,.,a) must be me sum. 



Another useful formula, whose proof requires o d y  one extra partial integration, is the following: 

r 1 

Again the value of p must be the same as in Eq. (A4). 

It is easily seen that Eqs. (AS) and (A6) rzmain valid if the integral runs only over one semiaxis, if the function 
f (k) has 2 definite parity, so tha the integranjs in Eqs. (AS) and (A6) are even. 

Finally w,: wire integral expressions for the asymptotic coefficients fn themselves: 

These are easily proved by padial integration and using Eq. (A3a). Again the value of p must be the same as in 
Eq. (A4). Note that the integrand in the right-hand side of 'his equation is an odd function of k, if j (k) has the 
same parity of its asympr -, - expansion. 



In this appendix (that coincides with Appendix C of the paper by Cnlogem d -pe?i.s (1 9681 ), we report 
for completeness an expliclt elementary derivation of the well known formula, Eq. (72). that relates the derivative ci 
the (SW) scattering phrsc drift ~ ( k )  p h a d  by the potential V(r) to the increment nI(E)  in the density of 
states due to the sme potentill. 

We enclose the system in a sp..erictl box of ndius R. In the absence of potential the allowed states are charac- 
terized ;y b wave functions sin (k;. r) ,  with 

Thus the &nsity of states in this ase is 

An An no(E) = - = - - R - -  
AE 2kAk Luk 

On the other hand, if the potential is present and if R is lare  enough so dmt the v p t o t i c  expression 
sin [kR + ~ ( k ) ]  may be used in place of the nbnl wave function. *en in place of Eq. (Bl) we have 

Here of cows  ~ ( k )  is the phase shift due to the potential. lhus the density of states in this case is 

But by definition 

. . 
- .. and inserting in this equation the expressions (B2) and (B4) m get, in the limit of the continuum (R + -, At': + dk), 

. ._.  . .-: . . .. ? . . .  . Eq. (72). q.e. d. 



This appendix coincides with appendix E of the paper by Gdogem d n l  &gospcns (19681. In it we investigate 
the expression 

and V is a holomorphic function of r which vanishes sufficiently fast at infinity to allow any number of integrations 
by parts wit!! neglect of the contributions at both extremes. 

We bepn evaiuating the integral 
(C3) 

dk exp(ikr ) f (r) Tg(r ) exdim) = - dk exp(2ikr) f (r) [-g"(r)-2ikg'(r)+k 2g(r r] 
n n 

where f(r\ and g(r) are arbitrary functions which vanish asymptotically together with their derivatives. We use the 
identities 

and 

to eliminate the terms linear and quadratic in k in the right-hand side. We then integrate by parts to eliminate the 
derivatives acting on the exponential and we thus secure 



Finally using the expression 

where 8 is the Dirac disuibution, we obtain 

4- 
It is convenient at this point to introduce the two differcntid openton d and d , defmed as follows: 

We m y  then rewrite Eq. $7) in the form 

1 1 
dk exp(ib)f(r) Tg(r)exp(ib) = - -f (r) (a-z)' g(r)l,-o 

4 - 

@n thc other hand we alto hm, for m ubitnry function f (r) 

From this equation a.td Eq. (C9) we infer that 

It is interesting to note s remarkable property of the operator a + x, namely 



+ + 
Thus the operator d + d commutes with a f1:nction of r, namely its position within a product is irrelevant: 

-+ t -+ C 

(d  +d )f(r)g(r) = f(r) (d + = f(r)g(r) (J+ XI (C13) 

+ + 
This is, unfortunately. not the case for the operdtor d - d . 

We may use this property of the operator b+ dC to express the right-hand side of Eq. (C11) in the form 

which is obtained using the identity 

-, + 2  -* t 
( d - d )  = ( Z + b ) 2 - 4 d . d  (C 1 5 )  

+ t 
a73 the binomial expansion, rSr$h is applicable thai.ks to the com~utativity of d + d.  This expansion may be 
useful because the operator d . d is such that 

moreover this term contains derivatives only up to  the order p-2. On the other hand the quantity in ?he left-hand 
side cf Eq. (C14) contains derivatives us !r, th: order 2p-2. Note that from Eqs. jC14) and (C16) one easily gets 

.:17) 
+ terms containing derivatives of order 2p-4 or less 



In this appendix we derive explicit expressions for the coefficients g, of the asymptotic expansion of g ( k ) ,  
in terms of the (S-wave) scattering phase shift ?(&I. The treatment given here is a simplified version of appendix G 
of the paper by Calogem und Dcgosperis [1968], the simpiiflcation resulting mainly from the assumption that no 
bound states are present. We recall that this assumption implies tiza: the lost function f(k), and the function g ( k )  
of Eq. (24), are both holomorphic in the lower half of the complex k-plane. 

We consider separately the expansions of the real and imaginary pans of g(k), since Eq. (D17) obviously 
implies, for real k , 

We treat first the imaginary part. Let uri recall that the explicit expression of this quantity for real k is 

Im g(k) = k ( 1 - exp [-2~(k)]  1 (D3) 

where 

It is convenient to discuss fint the asymptotic expansion of A(k), that was introduced earlier: 

We now prove ahlt 

dp = - [fluf I)!] 1- dk D'P1 q(k) 



This formula has been quoted from the paper of Suslaev and Faddeev [19til)j. The operator D is that defined in 
Appendix .4. 

krore  providing a proof of this formula we show how it may be obtained by a less rigorous but more straight- 
forsvard approach. In fact if we substitute in Eq. (D4) the asymptotic expansion 

we get formally 

which implies Eq. (M) because, by partial integration (see Appendix A) 

Of course, the last two equations need not make seme, because the integrals in the right-hand side generally do not 
converge. Both equations, how eve^, become valid, provided an appropriate part of its asymptotic expansion is 
subtr.!cted froin the function r)(k), so as to make the integrals convergeni. Specifically in place of r)(k) we must 
substitute, in both equations, 

where the coefficients an are those of Eq. (33). It has been proved in Appendix A that with this substitution, 
Eq. (D9) hclds true. There remains now to show that with this substitution also Eq. (D8) becomes correct. 

To prove this result we introduce, after Roberts [1964b], the function 

{Dl la)  

- 

(Dl 1 b) 



and its asymptotic expansion 

Equation (Dl 1 b) follows from Eqs. (21 - 22). A comparison of this expansion with those for A(k) and ~(k), 
Eqs. (D5) and (33), implies theough Eq. (Dl lb) the relatiuns 

On the other hand, integrating the function 

along a contour composed of a large semicircle in the lower half k-plane and of the real axis idented at k = 0, and 
using the fact that ate function h(k) is holomorphic in the lower N f  plane (becam f(k) is holomorphic and it has 
no zeros), one finds 

Pror.1 this equation and Eq. (D13) we get 

This equation, by Eq. (A6), becomes Eq. (M). 

There remains now to express the quantity gap in terms of the coefficients dn . To achieve this aim we must 
first solve the following algebraic problem: let 



z(x) = exp k t ~ ) ]  

and express zp in terrrs of yn 

?he solut~on of t h s  problem can be found noting that 

the p~ren:hetical superscript iudicating the order of differentiation, and using the formula for the differentiation of 
a cor,lposite function, namely, 

where 

and the sum i: extended over all positive integral values of P and sp and nonnegative integral vdues ~f 
S j ,  i = 1,2 ,  . . . P - 1, such that 



We find in this manner 

this sum being now extended over all the positive integral values of Q and sp and the nonnegative values of 
s j ,  j = 1 , 2  . . . ,  Q - i  buchthat 

But since 

we may now set 

Then from Eqs. (D2) and (MO) we fmd 

and from Eqs. (DS) and (D19) 

Thus in conclusion 

P 



the cum being extended over all positive integral values of Q al?d s p  and nonnegative integral values of 
s j ,  j .=  1.2 , .  . . , Q -  I such that 

Ncte that this last equation implizr that the  l la xi mum value of P in Eq. ( D 3 4 )  cannot exceed 

Let us proceed now to discuss the odd coefficients gzptl . namely those appearing in the asymptotic expan- 
sion of Re g ( k )  for i,sl k .  We use agaln the technique which we used above. except for the fac; that we now inte- 
grate the fi~nction 

The contour is the same as in the previous case; ar f F ( k )  is again holomorphic in the lower half plane. Considering 
only the imaginary part of the result we secure in this manner 

which, using Eqs. ( 2 5 )  and (AS), can be written in the form 

I h e  second line of this equat.on is obtained from the first hp an integration by parts. 

Of course this equation might have been inferred, in a straightforward bul nonrigorous way, expanding directly 
under the integral sign in Eq. ( 2 8 A  as was done at the beginning of this Appendix to  obtain the cocfficie~ts dp.  

' I . !  . '  - 1 
',...a : ..I;, , I., , 8 .  , 

~ . . .  . I : .  
3 .  - .,. i ,'. . ' i .' :. ! . . .  '* 



/hidendfled sparrkr: Is there a r ly of mkting more directly tbrs coaffldenu in the asymptotics of eta to the 
potentid? 

Q11ogm: Yes. nL is a question concerning the direct problem. There 8x1 explicit formulas for that. 

Croui: Would it be possible for a monochromatic particle to expreu some of the functions that Isad to the V, 
and its derivative I, a function of the inpiit parameter of the particle. 

Gdogrm: ' h i s  is the other problem, h e  problem at fmed energy and varying angular momenta. 1 have not 
looked into this. 



THE INVERSE SCATTERING PROBLEM AT FIXED ANGULAR MOMENTUM 

FOR N O N L W A L  SEPARABLE INTERACTIONS 
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Complexe Scientifique d 'Orsay, Universite' de Paris - Sud 

ABSTRACT 

As IS the mdjor thrust of Newton's paper, the problem of lnverse scattering at fixed angular momentum is 
considered. The nroblem n pa;tlcclarized to the case of nonlocal separable interactions. 

This paper is a brief survey of the inverse problem for nonlocal separable interactions. As we shali see, this 
problem can be solved exactly by ~ntegration. In fact. it amounts to  solv~ng singular intepral equations of the 
Hilbert-Mushkhelishv11; type, wbch  have been studied extensively in the past and appear in many areas of physics. 
including theory of  elast~clty and dispersions relations irl hlgh energy pb,vs~cs. 

The Schrklinger equatiu.~ for the scattering of a nonrelatlvistlc particle of mass RI by a general nonlocal 
interaction reads: 

where we have chosen the units such that ;: 2 :!? = 1, E = 1 k' I2.V = k 2 ,  k being the wave numoer. We assume now 
that 

h e  s;.?lI study later separable interactions of a more general kiscl. Making the usual partial wave decornposltion 



r we obtain the reduced ndid equation 
' 

k?; 
,-Rs;ct 

-? Z t o  .which we h;lve to add the ' , .dary condition $p(k.O) = 0 .  The asymptotic form of J l p  at large distances should 
3- . . be 

! where ; , K )  is the phase shift. i 
... 
.y In each angular momentum state - that is, for each P - the inverse problem consists of finding the 

' - .  5 . . "potential" U Q ( ~ )  from the knowledge of S Q ( ~ ) ,  which is assumed to be known for dl positive energies, and the 
- i energies of the zxntual bound states (i.e., square-inregrable solutions of Eq. (4) .  These later are divided into two 
. 5 groups: those with negative energy, and those with positive energy. 
. -  $ 
I 3  For simplicity, we shall consider from now on the case o i  S-wave (P = O). All the results can immediately be 

h generalized to the case of higher waves, as we shall see. Let us therefore look first at scattering soiutions. 
f 

SCAlTERIt4G SOLUTIONS 

. @ 
. , 

This equation can easily be solved by taking the Fourkr sine transform* 
..c , t 

,E 

sin t 
$(k. r )  ' n l* ~ ( k . p )  pa dp 

0 P 

. . *Tne Fourier transform of the wave-functions is not a function but a distribution. However, there is no problem in 

# .  L 
handling such harmless objects. We use only Fourier sine \ransfom since $ (k,O) = 0 .  



One then immediately finds t'rorn the asymptotic form of + that the phase shift is given by 

- 
where P denotes the principal value of the ~ntegral. and li IS the Fourier sine transform o i  the potential: 

em sin kr 

i l k ) - 6  o ( ~ ) X  d r  

As lt n obvious now, we have t o  impose some integrability conditions on the potential in order for the above 
formulas to  be valid It is easily seen that the following iather general conditions are xfficient. 

U IS locally integrable, except perhaps at  the origin. 

where I) and Q' are as small as we wish, but positive. (We use these symbols t o  denote small positive quantities. 
Their actual values may differ f:om place to  place.) 

Cond~tion (12) ensoures that the boundary condi t io~  is satisfied and that the integral appearing in the right- 
hand s ~ d e  of the radia Schrijdlnger equation is convergent a t  its lower extrer..g, whereas conditions (I  2) and ( 13) 
together guarantee the existence cf this integral as a whole, the existence of U(k) for sll energies (k  I)), and thc 
convergence at infinity of ::re integral 

which appears in the dunbminiitor of Eg. (9). 

We notice now that sl LZ il(r)E L l  [O, -1, k c ( k )  is everywhere continuously differentiable. (One can dif- 
ferentiate Eq. (1 1) under the integral ngn.) Therefore, the principal !Glue htegral(14) is meaningful and defines an 



everywhere Holder-continuous function with Holder index 1 - 6 ,  e as small as we wish; in fact, one knows that 
I G ( E  + h j - G(E)  I = 0(  I h I log I h I ) .  Even more can be said about the integral (14). I t  can be shown that F(k), 
for k -+ -, behaves like kl-'7. where q is some pusitive quantity. It then follows that the principal value intzgral 
vanishes when k -+ -. As a consequence, we find. according t o  Eqs. (9) and (10) that rg 6(w) = 0; and for k large 
enough, the sign of tg 6(k) is that of -e. 

BOUND STATES 

We now look at the square-integrable solutions of the radial equation. First, it can be shown that the bound 
states with positive energy are chzracterized b) the simultaneous roots of 

and that their number is finite. Equation (16) is the eigenvalue equation, whicai also gves the energy of the true 
bound state (ine Sound statt with negative energy), ahereas Eq. (1 5 )  ensures that the radial equation has one solu- 
tion that vallishes in the lirut of r -* -. For such energies, there is also the scattering solution, and these two solu- 
tions are independent of  each other. Moreover, it can easily be sctn that a t  the etlergies o: these bound states the 
phase shift g a s  through nn, with n an integer (n Z 0). Indeed, it is clear from the definition (10) that the roots 
of Eq. (1 5) are of even multiplicity (at least of order 2). Therefore, if ko is such a roo:, we have 

where we have written F ( p )  = F ( p )  - F(ko). As is obvious from ( lo) ,  this quantity has the sign of E. The last 
integral is meaningful sir\ce F ( p )  has a zero of order at least two at  p = ko.  It follows that if the roots of Eqs. (1 5 )  
and (16) coincide the roct of !he latter is simple. From the definition (9) it follows immediately that a t  these ener- 
gies the phase duft  crolses the value nz.  Moreover, it does so downward as is see:1 by differentiating Eq. (9), and 
using the fact that r (17) > 3. Once the phase shift has crossed a value nn, it can never cross it again. Of course, 
it can reach again the m e  value nn at  some other energy, but this happccs w:len only the numerator of Ec. (9) 
vanishes, and so 6,  which has a ztro slope at  this energy, does not cross the value nn. 

As f ~ r  the bocnd state with ncgatlve energy, it is given by the root of the eigenvalue equation (E = -x) 

It is now clear that there is no :rue bound state if e 1, since in that case F ( p )  L positive. We therefore 
may call s ~ c h  separable potentials repulsive. However, when c - -1, and 



it is obvious that Eq. (1 8) has one positive root x.,. corresponding to a bound state of energy -x,. 

Figure 1 summarizes typical behaviors of ;he phase 
shift. Because of tg 6(=) = 0, we can always cho* 6 
such that 

a(-) = 0 
3=0.1,2  , 

\r, \ .  We adhere to this deteni~ination rrom now on. Therefore, 
the Levinson theorem, which relates S(O) - 6(-) to the 
total number of bound states, reads 

6(0) = Nn (211 )(a: 

where v is the number of bound states of positive energy, 
and n is the number of true bo~trd  states. We leave out ,, - 
the possibility of a resonance at zel energy. If this hap- 
pens we must add n/2 to the r.h.s. of EQ. (21). Since 
the true bound state occurs only when the sign of the 

1 potential is E = -1, and since, as we saw before, the sign 
of 6(k) for sufficiently large k isopposite to that of E ,  

it follows that ,f the interaction admits a true bound F i e  la and F i e  lb. 
state, 6(k) milst be positive (small) when k is large. 
Therefore, just by inspecting the sign of the phase shift at large energies, we can determine 6. 

THE INVERSE PROBLEM 

To d~termine U(r)  from the phase shift, we must first assume that the latter meets all the requirements for 
the problem to have a solution. For instance, if the phase shift crosses upward the value nn, n integer, when we 
increase k, we are sure that oul problem with one separable potential has no solution. 

We consider first the inverse problem for the case of c = 1. As we saw before, 6(k) at large energies must be 
small but negative. The eventual bound states with positive energy are then determined by iust looking when 6 
crosses (upward !) the values nn, n = 0,1,2,  , as we d e c m e  k from infmity. At k = 0, we must have 
6(0) = vn. To find the potential from the phase shift, wzhave to solve the integral equation (9) for F(k). Once 
this quantity is found, there is no problem for finding U ( k )  via Eq. (9), and then undoing the Fourier transform 
(1 1). For simplicity, we cbnsider the caw v - 1. We may write Eq. (9) in the form 



We usume now, ailcording to our previous mrlysis, that 6 is Holder-continuous with some positive index and 
that it beham like k-q, r) s o n  positive quantity, when k -, -. These conditions ue necessary if we wish to find 
a potentid satisfying Eqs. (12) and (13). They are llso sufficient according to what follows. 

To solve the integral equation (23), we conrider fmt the function 

Assuming a ptiori the Holder-continuity of i$ and the proper convergence of the integrl, we see that H(z) is 
analytic in the z plane cut from 0 to +- (fig. 2). Monovtr, 

in dl dinctiona. 

From the htegral Eq. (23), we see that its solution 
is n e c d y  of the form 

R.8 
#(x)=H(x,)= lim H(x+fc) O < X < ~  (31) 

r+*O 

On ths o h  hmd, the dimmtinuity of H(z) on tho 
cut is given by 

r 

H(xt) -H(x-)= - 2 i ~ i n 3 x ) e ~ ( ~ ) ( ( x )  (32) 
f4@ue2- mcontourr. 

Upon substituting # by itsvrlw (31) we find 



which is a homogeneous Riemann-Hilbert type eiiuation. It is now easily verified that a particular solution of this 
equation. satisfying Eq. (30) is given by 

Indeed, from our assumptions on the phase shifr, we have 

in all directions. Moreover, w(z) is a well-deiined function on th? cut, except perhaps at z = 0, where its behavior 
is given by 

Z(z) beiiig finite when z + 0, and g(0) = 6(0) = n (one positive energy-bound state). Therefore. the function 
exp[w(r)] has only a simple zero at z = 0. According to Eqs. (34) and (35). @(x) is given by 

. r 

We have to verify now that this indeed satisfies the integral equation (23). This is most easily done since by 
Cauchy's theorem we have 

% * 
$ $ 
( I  

e - i a ~ v  dy lim 
e+O z - x - i e  

.# 

k 
(40) ,d ,. 

where the contour r is shown on figure 2, R being the circle with a very large radius. (with w(z) regular at z = 0, 
it is obvious that the contribution of the small circle enclosing the origin vanishes when its radius r tends to zero,) 



Note that 4(x) is ngular at x = 0. In fact it has a simple zero there. It is also obvious from Eqs. (38) and (39) 
that #(x) is ~oldercontinu'us wiih the tune index u the phase shift, md remains bounded when x-ca. Our a 
priori hypothesis on 4 for solving the integral equation is therefore justified. 

Let us consider now the homopneow quation 

,o which we associate &!e functicn 

Assuming a priori that t$o is &lder-contin~ws . . . etc, we get 

in all directions. Proceeding as for H, we obtain once more 

Using the Ansatz 

where o ( z )  is again defined by Eq. (35) and AS are arbitrary constants, we frnd 

Again it can be checked by contour integration that Eq. (46) is indeed a solution of Eq. (41). and that it has all the 
required properties. 

The general solution of our integnl equation ia therefore 



Going back to our earlier notations, we obtain 

2k 
F(k) = - - sin 6(k) e 

n 

This solution depends on the arbitrary constant A .  However, from its definition, F must keep a constant 
sign for all values of k .  Here F should be positive since E = 1. On the other hand, we know that sin 6 changes 
sign at the energy of the bound state. which occurs at E = ko2 , ko being the point where the phase shift crosses 
the value zero [fig. l(a)l. It follows that we must have 

in order for F given by Eq. (48) to keep a constant (positive) sign. We therefore see that the solution is cumpletely 
determined by the phase shift alone, since this also determines k,. Once F is known, we obtain 

which gives in turn U(r) by inverting the Fourier transform (1 1). It can then be checked that L' :rrisfies the con- 
ditions (1 2) and (13) since 17 is ~older-continuous and decreases like k?, q > 0, when k-+-.. From Eqs. (48) 
and (49) it is clear that these properties hold for F if they hold for the phase shift. 

'The case when several positive energy bouqd states ocru* 2: La = kaz , a = 1.2, . . . , v ,  and e = I, is quite 
similar, and leads to 

2k 
F(k) = - - sin 6(k) ea(k') 

n 
a 

We consider now the case where E = -1, and where there are two bound states, one with positive energy 
Eo = ko2 ,  and the other a true bound state with negative energy E = -?'. A typical behavior of the phase shift in 
this case is shown on Figure l(b). Since 6(0) = 2n, we get that w(z) defined by Eq. (35) has, according to  Eq. (37) 
a double zero at the origin. Proceeding as before, and taking into account the eigenvalue equation (18) with ': -- T', c .  

and the fact that the solution F(k) must keep a constant (negative) sign for all k ,  we obtain 

"? 
2k 

~ ( k )  = - - sin ~ ( k )  ea(k ) ( 1 - - >')(I+$) (53) 
n 

In this case, we see that the ptcntial is determined unambiguously from the phase shift and the energy of the true 
bound state. 
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The generalization of f.he above method to h@er partial waves is now obvious. We only have to use the 
Hmkel integral transform 

instead of the sine transf'onn (1 1). This permits us to eliminate the centrifugal potential and to obtain equations 
quite similar to thav obtained for the S wave. The conclusions are then quite similar. 

MORE GENERAL INTERACTIONS 

The method we have been discussing can be wed with more general nonlocal interactions. The first generaliza- 
tion consists in considering the interaction 

where the local potential V is assumed to be known. The radial equation now reads 

Here, the invene problem consists of finding Up when the phase shift and the local potential V are both known. 
For this purpose, we assume that the 1-1 potential satisfies 

We can now solve (in principle) the radial equation with V alone: 

md define the integral tnnaforms 



where p(E) is an appropriate measure, given in terms of the Jost function of V.  (These integral transforms c:;n be 
shown to have properties quite similar to those of Hankel transforms used earlier. They reduce, of course, t~ the 
latter when V =  0. For the definition of the spectral measure p(E), see Newton's discussion at the begin.~ing of 
this chapter.) If we write the phase shift as (for simplicity, dropping the subscript P) 

where 6 y is the known phase shift due to V alone - that is, the phase-shift of Eq. (58) - we obtain for 6 g  an 
equation quite similar to (9) and (10) where is now given by Eq. (60). Therefore, we agai.1 have a Hilbert- 
Mushkelishvili-type equation for the inverse problem. which can be solved under the same h! potheses, as before, on 
8 [ .  The conclusions are quite similar: if we know 6, and therefore 66, and the enrrgir of true bound states 
(E < O), and if 6& satisfies certain conditions similar to those discussed earlier, we can (ind U(r) unambiguously. v (Here, too, one can show that the positive energy bound states are 3iven by those values of k where 6 u(k) crosses 
downward rtn when we increase k.) 

Another generalization consists of having several separable potentials in each av~gular momentum state: 

The right-hand side of the radial equation then reads 

There are two ways of solving this equation: either we solve it step by step, usin3 the iiltegral trarisformed defined 
by the wave-function of the previous step, exactly as for Eq. (56); or we use the integral transform defined by @, 
throughout, leading to o set of alpbraic equations, to determine the relation between the potentials Ub and the 
phase shift. Once more, one is led to singular integral equations of the Hilbert-Mushkelishvili type, and finally to 
conclusions quite similar to those reached before the invers problem. In this w e ,  whatever 6p and the negative 
energy bound states may be, we can always find an appiopriate ser: of UQ, that solves the problem. In other words, 
6p may have any shape if we c h o w  Sp large enough. 

There has been recently some revival of interest in the we of ntparable interactions for studying the Fropertits 
of the nuclear matter. For references, see SPbatier's paper e d i e r  in this chapter. 



We end up by giving as an amusing and somewhat surprising exunple the construction of a class of completely 
transparent nonlocal potentials. We stut  from my t o t l y  repulsive (everywhere positive) well-behaved local poten- 
tial. that satisfies Ep. (57). We can then write its phase shift for any given P. 6 ~ ( ~ 1 ,  in the form 

where each 6jllr) has the appropriate shape for the inverse problem for 

KO be solvr;ble step by step as before. We end up in this way -4th a total phase shift that is zero at l energies. Doing 
this for every P, we obtain the nonlocal potential (63) for which all the phase shifts are zero for all cnergie~. Notice 
that ere is no convergence problem for the sum over s in Eq. (63) since for P large enough, tht local phare shift C 
6 d is very mall at d l  energies. This mans that t h e  is some P beyond which we can take Sp = 1. The local 
potential and the decomposition of 6 into the u m  (65) W i g  to a large extent arbitrary, we obtrin thus a large 
class of nonlocrl completely transparent potentials. 

The same method can be used to obtain a clur of ccniocrl potentials, all corresponding to a given wt of phase 
shifts, of which the above exunple it of wune a pwtkwlar cast [6p(k) = 0 for all P md k]  . 

These simple examples show that in genenl the he r r e  problem for nonlocrl potentials has not necessarily a 
unique solution if one it only given the S matrix on the energy shell. 



DISCUSSION 

Degasperis: I have applied this theo~y, =specially Calogero's work, to another field Two years ago I applied a 
high-energy expansion to a plasma diag~ostic problem. In that case, the hi&-frequency behavior of the 
electric potential outside a plasm?. cylinder provided the input data for reconstructing the electron density 
profile inside the plasma 



PARTICLE SCATTERING-CLASSICAL AND QUANTUM MECHAKICAL 

BIBLIOCRt\PHY 

Agranovich. 2. S., and Marchenko. V. A., Reconsirilction of the Potential Energy from the 
Dispersion Matrix, Usp. Mat. Nauk (N.S.), 12.1, 73, 143- 144, 1957 a. (Am. Math. Soc. Transl., 

! 16,355). 

! Agranovich. 2. S., and Marchenko, V. A., Recstablishm~ .t of the Potential from the Scattering 
1 Matrix for a System of Differential Equations, - Dokl. A,.. .,d. Nauk SSSR, 113.951 -954. 1957 b. 

'. -? ., ' . , : . < 5 . .  .,., .,.. Agranovich, 2. S., arid Marchenko, V. A.. Construction of Tensor Forces from Scatt~ri-;; Data, 
Dokl. -- Akad. Nauk SSSR, 118, 1055-1058. 1958. 

Agranovich, 2. S., ar.d Marchenko. V. A*., The Inverse Prot~lem of Scattering Theory, Gordon and ---.--- 
Breach. New York, 1963. 

Alfaro. V. de. and Regge, T., Potential Scattering. Wiley, New J'ork, 1965. 

Ambarzunrian, V., Uber eine Frage der Eigenwerttheorie. 2. Phys., 53,690-695, 1929. 

Atkinson. D., and Calogero, F., Construction ~f the S-Matrix from its Left-HandCut Discon- 
tinuity, When the Latter is Asymptotically Unbounded, Phys. Rev., 185. 1702-1 716, 1969. 

Bargrnann, V., Remarks on the Determination of a Central Field of Force from the Elastic 
Scattering Phase Shifts, Phys. Rev., 75,301-303, 1949.a. 

Bargmann, V., On the Connection Betwer? Phase Shifts and Scattering Potential, Rev. Mod. Phys., 
21,488493,1949b. 

Aenn, J., and Scharf. G., Determination of Nucleon-Nucleon Potentials From Scattering Dsta 
Using the Marchenko Theory, Nuclear - Phys., A1 34,481-504, 1969. 

Berexansk~!, Yu. M., On the Uniqueness of the Determination of Schrtidinger's Equation from its 
Spectral Function, Dokl. Akad. Nauk SSSR, 93,591-594, 1953. 

Berezanskii, Yu. M., On the Inverse Problem of Spectral Analysis for the SchrMinger Equation, 
Dokl. Akad. Nauk SSSR, 105,197-200, 1955. 

Berezanskii, Yu. M., m e  Uniquencss Theorem in the Inverse Problem of Spectral Analysis for the 
Schrtidinger Equation, Tr. Mosk. Mater. Obsc., 7, 3-62, 1958 (Am. Math. Soc. Transl., 35, 
167). 

&r.ezin, F. A., Spur Formula for the Schroedinger Many-Particle Equation, D~rtl. Akad. Nauk. 
2 . :. - - . > .  . a,', , . ' . ,.. - . . ' 1  SSSR, 157, 1069-1072, CQ64 (English transl. Soviet Phys.-Doktdy, 9,641-644, 1965)- 

.a$. 
-. - 

, ... 
r .  , ..-' .*.,. . , b Btthe, H. A,, Theory of the Effective Rang  in Nuclear Scattering, w. Rev., 76.36-50, 1949. 

' .p: . . - 
. ., 

9 .' , ,+:< . . _ ' I  
.<;.. ' t i  Bhattrchrrjie, A., and Sudmhm, E. C. G., A Clrrr, of Solvable Potenthb, Nuovo Cimento, 25, 

4; . .,*>, . .  - ' {  

. . ::. . , 8640879,1962. 
, - .  :>- ,.. 

.:I :., ', : , . .:' .,:. +,., . - - . c - .  . .  Blatt, J. M., and Jacksoin, J. D., &I t i c  Interpretation of Neutron-Proton Scattering Cata by the 
:,$* ,,,., ".-, . ! . , - ' ' ' 

Schwimr Variational Method, Phyr. Rev., 76.18-36.1949. 
,.?. ;<-:.;. '" ' .. -; .-\ , 
. .. ..f. . :I 
-, : < if..:.,;;.;,,, ;, ;<~  . . 

t . . ":.I :- ,"! 5-94 
. . . - .  . . 



Rlazek. M., The Gel'fand-Levitan Equation and its Application t o  the Scatte:in_e of Neutrons and 
Protons, Czech. J .  Phys., B 12, 249-257, 1962a. 

Blazek, M., Explicit Determination of a Potential with n Bound States by Means of the Solution of 
the Inverse Problem, Czech. J.  Phys.. B 12, 258-263. 1962b. 

Blazek, M., On Some Equations for Potential Scattering, Czech. J. Phys., B 12,497-507, 1962 c. 

Blazek. M., Determination of the Potential by the Analytic Properties of the Scattering Arnplitudtt, 
Mat. Fys. Casopis SAV, 13, 14'1-1 75, 1963. 

Blarek, M., On the Inverse Problem in Potential Scattcnng, Bulgzrska -- Aksd. Nauk. Comptes 
Rend., - 17, 1005--1008. 1964. 

Blazek, M., On a Method for Solving ;he Inverse Problem in Potentia! Scattering, Commun. Math. -- -- 
Phys.. - 3,282-29 I ,  1966. 

Bloch. A. Sh.. On the Determination of a Differential Equation by its Spectral M~t r ix  Functions, 
Dokl. Akld. Nauk. SSSR, 92.209-21 2, 1953. 

Bolsterli, M.. and MacKenzie, J., Determination of Separable Potential From Phase Shift, Physics, 
2, 141-149, 1965. 

Borg, G., Eine Ilmkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta. Math.. 78, 1-96, 
1946. 

Borg, C., "Uniqueness Theorms in the Spectral Theory of 

Eleventh Congress of Scandinavian Mathematics, Trondheim, 276-287, August 22-25, 1949. 

Bosco. B., Dispersion Relations for Scattering Wave Functions in Potential Theory, Nuovo 
Cimento, 17,558-579, 1960. 

Bcsco, B., and Sucher, J., Anplyticity in the Coupling Constant and Bound States in Potential 
Theory, Nuovo Cimento, 19,1183-1 188, 196 i . --- 

Brown, R. H., and Twiss, R. Q., The Question of Correlation Between Photons in Coherent Light 
Rays, N;~ture, 168, 1447-1 450, 1956. -- 
Buck, U., and Pauly, H., Determination of Intermolecular Potentials by Inversion of Molecu!;lr 

Beam Scattering Data, J. Chem. Phys., 51, 1662-1664, 1969. 

Burdet, G., Dufour, J., and Giffon, M., Completeness Property of Solutions of Schrodmger's 
Equation in the Complex Angular Momentum, C. R. Acad. Sci. Paris,259, 2369-2371, 1964. 

Burdet, C., and Giffon, M., Sur le probleme de la Construction d u  Potential a partir des donnees 
dans le plan du  moment angulaire complexe, C. R. A d .  Sci. Paris, 259 ,3  190-3 192, 1964. 

Burdet, G., and Giffon, M., A Proof of the Completeness of the Solutions of !he SchrMinger 
Equation in the A-Plane, Acta Phys. Hung., 19,263-267, 1965. - 



Burdet, C., Giffon, M., and Redazzi, 5, On the Inversion Roblem in the A-Plane, I, Nuovo 
Cimento, 36, 1337-1 347, 1965. 

Burdet, C., Ciffon. M., and Coldberg, I.,  On the Inversion Roblem in the A-Plane, 11, Nuovo 
Cimento, 44A, 138-1 46, 1966. 

Buslaev. ?'. S., Trace Formulas for Schrodinger's Operator in Three-Space, -- Dokl. Akad. Nauk - 
SSSR. -- 143, 1067-1070,1962 (Soviet Phys. Dokl., 7,295). --- 

Buslaev, V. S., Trace Formulas and Some Asymptotic Estimates of the Resolvent Kernel of the 
Three-Dimensict!,31 Schroedinger Equation, in Topics in Mathematical Physics, Vol. 1, Spectral -- -- 
Tb - 3ry and Wave Processes, - --- M. Sh. Birman, Td., Leningrad University Ress, 1966 (English 
trans!.: Co~lsultants Bureau. Plenum Publishing Corp., New York, 1967. 

Buslaev. V. S.. and Faddeev, L. L'.. Formulas for Traces for a Singular Sturm-Liouvilic Differential 
Operator. Dokl. Akad. Nauk SSSR 132, 13-16. 1960 (Soviet Math. Dok., 1,45 1 ). 

Buslaev, V. S.. and Merkur'ev, S. P., Trace Equation for a Three-Particle System, Dokl. Akad. 
Nauk SSSR, 189,269-272,1969 (Soviet Phys. Dokl., 14, 1055-1057,1970). 

Cabayan, H. S., and Belford, C. C., On Computing a Stable, Least Squares Solution to the Inverse 
Problem for a Planar Newtonian Potential, SIAM J. Appl. Math., 20 ,5141 ,  Jan. 1971. 

Calogero, F., Equivalence Between Velocity-Dependent Potentials and Static Potentials, Lett. - 
Nuovo Cimento, 2,553-560, 1969. 

Calogero F., Corbella, 0. D., Degasperis, A., and destefano, M. B., Variational Bounds for the 
Potential in Terms of the S-Wave Phase Shift, J. Math. Phys., 9, 1002-1066, 1968. 

Calogero, F., and Cox, J. R., Evaluation of the Potential and the S-Wave Scattering Amplitude 
from the Discontinuity of the Latter Across its Left-Hand Cut, Nuovo Cimento, 55A, 756-808, 
1 968. 

Calogero, F., and Degasperis, .\., Values of the Potential and its Derivatives at the Origin in Terms 
of the S-Wan Phase Shift ar,d Bound-State Parameters, J. Math. Phys., 9,90-116, 1968. 

Chadan, K., On the Connection Between the SMitrix and a Class of Non-Local Interactions, 
Nuovo Cimento, 10,892-908,1958. 

Chadan, K., The Left-Hand Cut Discontinuity and Equivalent Potentials, Nuovo Cimento, 24, 
379-384,1962. 

Chadan, K., On a Class of Completely Transparent Nonlocal T w e B d y  Potentials, Nuovo 
Cimento, 47A, 5 10-525,1967. 

Child, M. S., Repulsive Potentidl Curves from Ftcdissociation Data, J. Molec. Spectr., 33,487 493, 
1970. 

Chudov, L. A., The In7;erse Sturm-Liouville Roblem, Nat. Sbornik 25,45 1 4 5 6 ,  ! ?49. 

Chudov, L. 4., A New Variant 7f an Inverse Sturm-Liouville Robkm on a Finite Interval, - Dokl. 
Akad, Nauk. SSSR, 109.40-45,1956. 



Colton, D., On the lnverse Scattering Problem for Axially Symmetric Solutions of the Helmholtz 
Equation, Quart. J. Math. (Oxford), 22, 125-1 30, 1971. 

Corbella, 0. D., Values of the Potential and Its Derivatives at the Origin for a p-Wave Schrodingrr 
Equation IMAF Rep., Universidad Nacional de Cordoba, Cordoba, Argentina. 1969. 

Corbclla. 0. D., Inverse Scattering Problem for Dirac Particles. Explicit Expressions for the Values 
of the Potentials and Their Derivatives at the Origin in Terms of the Scattering and Bound State 
Data. J .  Math. Phys., 11. 1695-1 7 13, 1970. 

Corbella, 0. D., L-Wave lnverse Scattering Roblem, J.  Math. Phys., 12, 1873-1882. Sept. 1971 

Corinaldesi, E., Construction of Potentials from Phase Shifts and Binding Energies of Relativistic 
Equations, Nuovo Cimento, 11,468-478, 1954 and lbid 12,469, 1954. 

Coudray. C., and Cox, M., Generalized Translation Operators and the Construction of Pote~ltials at 
Fixed Energy, Ann. -- Phys., 61,488-529, 1970. 

Coudray. C., and Coz, M., Construction of Relativistic Potentials When the Energy i~ Fixed, J_. 
Math Phys., 12, 1 166-1 178, July 1971. 

Cox, J. R., Construction of Potentials from the Many-Channel S-Matrix, Ph.D. Thesis, Indiana 
Univ., 1962. 

Cox, J. R., Many-Channel Bargmann Potentials, J. Math. Phys., 5, 1065-1069, 1964. 

Cox, J. R., and 'ihompson, K. W., Some Exact Solution of the Schrodinger Equation at Fixed 
Energy, Bull. Am. Phys. Soc., 14,579, 1969. 

\ 

Cox, J. R., and Thompson, K. W., On the Inverse Scattering Roblem at Fixed Energy for Poten- 
tials having Non-Vanishing First Moments, J. Math. Phys., 11,805-8 14, 1970a. I 

Cox, J. R., and Thompson, K. W., Note on the Uniqueness of the Solution of an Equation of 
d 

Interest in the Inverse Scattering Problem, J. Math. Phys., 11, 81 5-81 7, 197Qb. 4 
.-; 

Crichton, J. H., Phase-Shift Ambiguities for Spin-Independent Scattering, -- Nuovo Cimento, 45A, 
256-258,1966. 

Crum, M. M., Associated Sturm-Liouville Systems, Quart. J. Math., 6, 121-127, 1955. 

Degasperis, A., On the lnverse Rot lem for the Klein-Gordon S-Wave Equation, J. Math. Phys., 11, 
551-567,1970. 

Dikii, L. A., Trace Formulas for st--~iouville Differential Operators, Usp. -- Matem. Nauk, 13, 
1 1 1, 1958 (Transl. Amer. Math. Soc., 18 ,8  1, 196 I). 

Eftimiu, C., Approximate Solutions of the Unitarity Equation, J. Math. Wys., 1 1, 2070-2074, 
1970. 

Eftimiu, C., An Exact Solution of the Unitarity Equation, Lett. Nuovo Cimento, 4,  475-476, 
1970. 



'.:-, \ . ;'I 
. .  k ! .  

" . 8 ;: I-:. 
* "., .5:,7. , j 

4 .::, :,.I I . . .  . ;.. ,. -7. . .  .._, 
1 I' 

- .  
, . _ . . _  . . . 

Eftimiu. C., On the Martin-Newton Condition for Finite-Dimen~ionsl Unitary Matrices, J. Math. 
Phys.., 12, 2047-2049, Oct. 1971. 

Faddeev, L. D., Uniqueness of Solutions of the lnverse Scattering Pfoblem. Vestnik Leningrad 
Univ.. 11. 1 2 6 1  30. 1956. 

Faddctev, L. D., An Expression for the Trace of the Difference Between Two Singular Differential 
Operators of the Sturm-Liouville Type, r-kl.  Akad. Nauk. SSSR, - 115,878-881, 1957. 

Faddeev, L. D., On the Relations Between S-Matrix and Potential for the One-Dimensional 
Schrodinger Operator, Dokl. Akad. Nauk. SSSR, - 121,6366,  1958. 

Faddeev, L. D., The lnverse Roblem in the Quantum Theory of Scattering, Usp. Mat. Nauk. 
(W.S.), 14,4,57-119, 1959, (J. Math. Phys.,4,72-104, 1963). -- - 

Fadtleev, L. D., Properties of the S-Matrix of the One-Dimensional SchrMinger Equation, - Tr. 
Mater. - Inst. Steklov, 73,314-336, 1964 (Am. Math. Soc. Transl., 65, 139-166). 

Faddeev, L. D.. Increasing Solutions of the Schrodinger Equation, Dokl. Akad. Nauk. SSSR. 165, 
5 E 4-5 17, 1965 (Soviet Physics, Doklady, -- 10, 1033-1035, 1966). 

Faddeev, L. D , Factorization of the S-Matrix for the Multidimensional Schrdinger Equation, 
Dokl. - Akad. Nauk. SSSR, 167.69-72, 1966 (Soviet Physics, Dokl., - 11,209-21 1, 1966). 

Fiedeidey, H., The Inverse Scattering Roblem for Rank-Two Separable Potentials and Off-Shell 
Effects, Nucl. Phys., A135,353-377, 1969. 

Fiedeldey, H., The Dependence of the Triton Binding Energy on the Hi Energy Phase Shift, 
Nucl. Phys., A156,242-256, 1970. 

Firsov, 0. B., Determination of Forces Acting Between Atoms with the Use of the Differential 
Cross-Section of Elastic Scattering, Zh. Eksp. Teor. Fiz., 24,279-283, 1953. 

Friedman, A., On the Properties of a Singular Stm-Liouville Equaticin Determined by its Spectral 
Function, Mich. Math. J., 4, 137-145, 1957. 

Froberg, C. E., Calculation of the Interaction Between Two Particles From the Asymptotic Phase, 
Phys. Rev., 72 , s  19-520, 1947. 

Froberg, C. E., Calculation of the Potential From the Asymptotic Phase, Ark. Mat. Astron. Fys., 
34A, 1 -16 ,1948~  

Froberg, C. E., Calculation of the Potential From the Asymptotic Phase. Part 11, Ark. Mat. Astron. 
Fys., MA, 1-55, 1948.b. - 

Froberg, C. E., On the Determination of Proton-Proton interaction Fmm Scattering Experiments, 
Ark. Fys., 3, i -34,1951. 

Fuda, M. C., Off-Shell T-Matrix and the lost Function, Phyo. Rev., Cl, 1910-1924,1970. 

Fuiton, T., and Newton, R. C., Explicit Non.Centra1 Potentials and Wave Functions for Given 
SMatrices, Nuovo Cimento, 10.677-71 7,1956. 



Gardner, C. S., Green, J. M., Kruskal, M. D., and Miura. R. M., Methods for Solving the Kortewcg- 
de Vries Equation, Phys. Rev. Let., 19, 1095-1097, 1967. 

Gasyrnov, M. C., Analytic Properties of the Spectral Function of a Sturm-Liouville Srlf-Adioint 
Operator, Dokl. Akad. Nauk. SFISR, -- 150,971-974, 1963 (Sov~et Math., - 4, 780-783). 

Gasymov, M. C., The Inverse Scartering Prsblem for a System of Dirac Equations of Order 211. 
Dokl. Akad. Nauk. SSSR, 16'3, 1937-1040, 1966 (Soviet Phys. Doki., 11,676). 

Gasymov, M. C., An Inverse Problem of Scattering Theory for a System of Dirac Eqilatiolis of 
Order 2n, Tr. Moskov. Mat. Obsc. 19,41-112, 1968 (Math. -- Rev.. 39, 2418). 

C;asymov. M. C., and Levitan, B. M., The Inverse Problem for a Dirac System, Dokl. Akad. Nauk. 
SSSR, - 167,967-070, 1966 (Soviet Math., 7,495). -- 

Gel'fand. I. M., and Levitan, B. M., On the Determination of a Differential Equation by its 
Spectral Function, Dokl. Akad. Nauic. USSR, 77,557-560, 195 la. 

Gel'fand, I. M., and Levitan, B. M., On the Determination of a Differential Equation Frum ~ t s  
Spectral Function, Isv. --- Akad. Naui:. SSSR Ser. Mat., IS, 309-360,1951b ( ~ m .  Math. Soc. 
Trans1 1,25 3-304). -* 

Gerber, R. B., and Karph~s, M., Determination of the Phase of the Scattering Amplitude From the 
Differential Cross Section, Phys. Rev., Dl,  998-1 01 2, 1970 -- 

Gerber, R. B., ar 4 Karplus, M., On the Determination of the Phases of Electromagnetic Scattering 
P t.tplitudes F: .rn Exoerirnental Data, J. Chem. Phys., to be published, 1971. ---- 

Gohberg, I. C., and Krein, M. G., Systems of Integral Equations Jn the Half-Line with Kernels 
Depending on the Difference of the Arguments, Usp. Mat. Nauk. (N.S.), 13,2,80,3-72, 1958. 

Goldberg, H., Remark on the Martin-Newton Condition for Solubility of the Elastic Unitarity 
Integral Equation, Phys -- Rev., Dl ,  1242, 1970. 

Goldbetg~r, M. L., Lewis, H. W., and Watson, K. M., Use of Intensit:! Comlations :o Dctcrmine 
t1.e 'rhase of a Scattering Amplitude, Phys. Rev., 132,2764-2787, 1963. 

.oldberger, M. L., Lewis, H. W., and Watson, K. M., Intensity-Correlation Spectroscopy, - Phys. 
Rev., -- 142,25-32, 1966. 

Goldberger, M. L., and Watson, K. M., Measurement 2f Time Correlations for Quantum Mechanical 
Systems, Phys. Rev., 134. S 91 9-928, 1964. -- 

Goldkrgr ,  M. L., and Watson, K. M., Fluctuations with Time of Scattered-Particle lntensiiies, 
P.ys. Rev., 137, B 13961409, 1 9 6 % ~  

Goldberger, M. L., and Watson, K. M., Accuracy of Measurement for Counting and Intensity- 
Correlation Experiments, Phys. --- Rev., 140, B 500-509, 1965.b. 

Gourdin, M., and Martin, A., Interaction nun locale separable et matrice de collision, Nuovo - 
Cimento, 6,757-779, 1957. 



Gourdin, M., and Martin, A., Exact Determination of a Phenomenological Separable Interaction, 
Nuovo Cimento, 8,699-707,1958. 

Gugushvili, E. I., and Mentkovsky, Yu. L., The Riemann Method in the Inverse Problem of 
Scattering Theory, ' & I!, Kiev preprints, 1970. 

Holmberg, B., A Remark on the Uniqueness of the Potential Determined From the Asymptotic 
Phase, Nuovo Cimento, 9 ,597604,  1952. 

Hodgson. P. E., The Optical Model of Elastic Scattering, Oxford at the Clarendon Press (Great 
Britain), 1963. 

Hooshyar, M. A., On the Inverse Scattering Problem at Fixed Energy for Tensor and Spin-Orbit 
Potentials, J. Math. Phys., 12, 2243-2258, Oct. 1971. 

Hylleraas, E. A., Calculation of a Perturbing Central Field of Force from the Elastic Scattering 
Phase Shift, Phys. Rev., 74,48-51, 1918. 

Hylleraas, E. A., Determination of a Perturbing Potential from its Scattering Phase Shift and 
Bound State Energy Levels, Nucl. Phys., 57,208-231, 1964. 

Jauho, P., On the Unique Determination of the Nuclear Potential Between Charged Nucleons with 
the Aid of Scattering Experimeirts, Ann. Acad. Sci. Fennicae, Ser. A, 1-43, 1950. 

Jost, R., Uber die fakchen Nullstellen der Eigenwerte der S-Matrix, Helv. Phys. Acta, 20,256-266, 
1947. 

1 4 Jost, R., Eine Bemr:rkung iiber den Zusammenhang von Streuphase und Potential, Helv. Phys. 
b Acta, 29,410-41 8, 1956. 
i - 
L 
? Jost, R., and Koht;, W., Constructim of a Potential from a Phase Shift, Phys. Rev., 87,977-922, 
1 19521. 

. i 
- .  .:I Jost. R., and Kohrt, W., Equivalent iyotentials, Phys. Rev., 88,382-385, 1952b. 

. . 

Jost, R., and Kohn, W., On the Rt:lation Between Phase Shift, Energy Leveb and the Potential, 
Kgl. Dan. Vidqnsk. Selsk. Mat. i:y s. Mcdd., 27, 1-19, 1953. -- 

Kac, I. S., ~omc;:'~ases of Uniqueness sf the Solution of the Inverse Rob:em for Strings with a 
Boundary Cor;dition at the ~&!lar End, Dokl. Akad. Nauk. SSSR, 164,975-978,1965 (Soviet - 
Math., 6, 1324-1 327). -- 

Kay, I., The Il'rverse Scattering h b l e m ,  Research Report No. EM-74, New York Univ., Inst. 
Math. Sci., 1:hv. Electromagn. Re&, 1955. 

Kay, I., The lrnverse Scattering Problem When the Reflection Coefficient is a Rational Function, 
Commun. Pvm Appl. Math., 13.371-393.1961. 

Kay, I., and Moses, H. E., The Detmnination of the Scattering Potential from the Spectral 
Measure Function, I. Continuous Spectrum, Nuwo Cimento, 2,917-961, 1955. 

Kay, I., and Mom, H. E., The Determination of the Sattcring Potential from the Spectral 
Measure F~~nction, 11. Point EinvPlues and Roper Eigenfunctions, N u m  Cmento, 3,6644, 

.__ . . ' , 



;Cay, I.,  and Moses, H. E., Reflectionless Transmission Through Dielectrics and Scattering Poten- 
tials, J. Appl. Phys., 27, 1503-1 508, 1956b. --- 

Kay, I., and Moses. H. E., The Determination of the Scattering Potential from the Spectral 
Measure Function, 111. Calculation of the Scattering Potential from the Scattering Operator for 
the One-Dimensional Schrodinger Equation, Nuovo Cimento, - 3, 276-304, 195Crc. 

Kav, I., and Moses, H. E., The Detcrmination of the Scattering Potential from the Spectrai 
Measure Function, 1V. 'Pathological' Scatterjng Problems in One Dimension, Nuovo Cimento 
Suppl., 5. 230-242, 1957. 

Kay, I., and Moses, H. E., A Simple Verification of the Cel'fand-Levitan Equation for the Three- 
Dimensional Scattering Problem, Con~mun. Pure Appl. Math., 14,435-445. 196 1.a. 

Kay, I., and Moses, H. E., The Determination of the Scattering Potential from the Spect r~l  
Measure Function. V. The Gel'fand-Levitan Equation for the Three-Dimensional Scattering 
Roblem, Nuovo Cimento, 22,689-705, 196l.b. 

Keller, J. B., Kay, I., and Shmoys, J., Determination cf the Potential from Scattering. Data, Phys. -- 
Rev., -- 102,557-559, 1956. 

Kellcr, J. B., and Zumino, B., Determination of lntermolecuiar Potentials from Thermodynamic 
Data and The Law of Corresponding States, J. Chem. Phys., 30, 135 1-1353, 1959. 

Keller, J. B., Determination of a Potentidl from its Energy Levels and Undetectability of Quanti- 
zation at High Energy, Amer. J .  Phys., SO, 22-26, 1962. 

K~starev,  A. A., Perturbation Theory in Inverse Scatte:ing, Izv. VUS Fiz., 4,  109-1 12, 1964. 

K.rein, M. G., The Ideas of P. L. Cebser and A. A. Markov on the Theory of Limiting Values of 
Integrals and Their Further Development, Usp. Matem. Nauk, 6, 3-1 20, 195 ia. -- 

'Krein, M. G., Solution of the Inverse Sturm-Liouville Problem, Dokl. Akad. Nauk. SSSR, 76, 
2 1-24, 195 1;b. 

Krein, M. G., On the Transfer Function of a One-Dimensional Boundary Problem of the Second 
Order, Dokl. Akad. Nauk. -- SSSR., 88,405-408,1953a. 

Krein, M. G., On Some Cases of Effective Determination c1 the Density of an Inhomogerleous 
Cord from its Spectral Function, Dokl. Akad. Nauk. SS3R, 93, 6 17420 ,1953  b (Trans]. by 
Morris B. Friedman, 2 Pine St., West Concord, Mass., 1955).- 

Kriin, M. G., On a Method of Effective Solution of an Inverse Boundary Problem, Dokl. Akad. 
Nauk. SSSR, 94,987-990,195Q. -- 

Krein, M. G., On Integral Equations Generating Differential Fxluations of 2nd Order, Dokl. Akad. -- 
Nauk. - SSSR, 9 7 , 2  1-24,1954b. 

Krein, M. G., On the Determination of the Potential of a Particle From Its $Function, Dokl. - 
Akad. Nauk. SSSR, 10S,433436,1955.  

Krein, M. G., On the Theory of Accelerants and S-Matrices of Canonical Differential Systcris, 
Dokl. Akad. Nauk. SSSR, 11 1, 1 167-1 170,1956. 



Krein, M. G., On the Continual Analogue of a Christoffel Formula for the Theory of Orthogonal 
Polynomials, Dokl. Akad. - Nauk. SSSR, 113,970-973, 1957. 

Krein, M. G., Integral Equations on the Half-Line with a Kernel Depending on the Difference of 
the Arguments, Usp. Mat. Nauk., !3,5,83,3-120, 1958. 

Landau, L. D., and Lifshits, E. M., Statistical Physics, Pergamon Press, London, 1959. 

Lavrent'ev. M. M., On an Inverse Problem for the Wave Equation, Dokl. Akad. Nauk. - SSSR, 157, 
520-521, 1964 (Soviet Math., 5,970-972). 

Lavrent'ev, M. M., A Class of Inverse Problems for Differential Equations, Dokl. Akad. Nauk. 
SSSR, -- 160,32-35, 1965 (Soviet Math., 6,23-32). 

Lax, P. r)., and Phillips, R. S., Scattering Theory, Bull. Amer. Math. Soc., 70, 130- 142, 1964. 

Lax, P. D., and Phillips, R. S.. Analytic Properties of the Schrddinger Scattering Matrix, in Pertur- 
bation Theory, C. H. Wilcox, ed., Wiley, 1966. 

Levinson, N., On the Uniqueness of the Potential in a Schrcidinpr Equation for a Given Asymp 
totic Phase, Kgl. Dan. Vidensk. Selsk. Mat-Fyx. Medd., 25, 1-29, 1949. a. 

Levinson, N., Determination of the Potential from the Asymptotic Phase, Phys. Rev., 75, 1445, 
1 949. b. 

Levinson, N., Certain Explicit Relationships Between Phase Shif1:s and Scattering Potential, Phys. - 
Rev., 89,755-757,1953. - 

Levitan, B. M., Certain Questions in the Spec~ral Theory of Self-Adjust DifferentialOperators, - Usp. 
Mat. Nauk. (N.S.), 11,6,72, 117-144, 1956 (Am. - Math. Scc. l'ransl., 18,49). -- 

Levitan, B. M., and Sargsyan, I. S., Some Problems in the T l ~ e o ~ y  of Sturm-l..iouville Equations, 
Usp. Mat. Nauk. (N.S.), 15, 1,3-98, 1960 (Russian Math. 8lrvt:p, - 15, 1-95). 

Invitan, B. M., On the Determination of a Differential Equation by Two of its Spectra, Dokl. - 
,\ kad. Nauk. SSSR, 150,474-476,1963 (Soviet Math., 4,691-693). 

Levitan, B. M., On the Determination of a Differential Equation by Two of its Spectra, Izv. Akad. 
Nauk. SSSR, 28,63-78,1964.1. -- 

Levitan, B. M., Generalized Translation Operators and Some of Their Applications, Translated 
from the Russian by the Israel Program for Scientific Translations, Jerusalem, 1964b.(published 
in the USA by Daniel Davey and Co., Inc., N.Y.). 

Levitan, B. M., and Gasymov, M. G., Determination of a Differential Equation by Two of its 
Spectra, Russian Math. Surveys. 19, 1-63, 1964. 

Uance, V. E., A Differential Opentor with Spectral Singuluitier, I, 11, Mat. Sb., 64,521-561 ; 
65.47-1 03,1964 (Amer. Math. Soc. Transl. rer 2,60, 185-283). 

Ljance, V. E., Tiis I ~ ~ c r s t  hh!w for a Nonaelfadjoint Opcntor, Dokl. Alud. Nauk. SSSR, 156, - 
30-33. 1966 (Soviet Math.. 7.2730'1. 



Loeffel, J .  J., On an Inverse Problem in Potential Scattering Theory, Ann. lnst. H. Poincure, -- 8, 
339-347, 1968. 

Mal'cenko, V. I., The Inverse Problem for the Equations of Quantum Mechanics with Energy- 
Dependent Potentials, Ukr. Mat. Zh., - 18, 126-1 29, 1P56. 

Marchenko, V. A., Some Problems of the Theory of Second-Order Differential Operators, 1)okl. .- 

Akad. Nauk. SSSR, 72,457460,1950.  

Marchenko, V. A., Some Problems in the Theory of One-Dimensional Secofld-Order Different~al 
Operators, part 1, Tr. Mosk. Mat. Obs., 1,327-420, 1952; and ibid., 2 , 3 4 2 ,  1953. 

Marchenko, V. A., On the Reconstruction of the Potential Energy from Pnases of the Scattered 
Waves, Dokl. Akad. Nauk. SSSR, 104,695-698, 1955. -. 

Marchenko, V A., Expansion in Eigenfunctions of Non-Self-Adjoint Singular Differential Opera- 
tors of Second Order, Mat. Sbornik (N.S.), 52, 739-788, 1960 (Am. Math. Soc. Transl., - 25, 
77). 

Martin, A., For the Generalization of Levinson Theorem to Nonlocal Interactions, Nuovo 
Cimento, 7,607, 1958. 

Martin, A., S-Matrix, Left-Hand Cut Discontinuity and Potential, Nuovo Cimento, 19. 1257-1 265, 
1961. 

Martin, A., Construction of the Scattering Amplitude From the Differential Cross Sections, Nuovo 
Cimento, 59A, 13 1-152,1969. 

Martin, A., and Targonski, A., On the Uniqueness of a Potential Fitting a Scattering Amplitude at 
a Given Energy, Nuovo Cimento, 20, 1 182-1 190, 196 1. 

Mason, E. A., and Monchick, L., Methods for the Determination of !nten lolecular Forces, Advan. 
Chem. Phys., 12,350-387.1967. 

McVoy, K. W., Heller, L., and Bolsterli, M., Optical Analysis of Potential Well Resonances, to be 
published; 197 1. 

Melkanoff, M. A., Saxon, D. S., and Cantor, D. G., A Fortran Program for Elastic Scattering 
Analyses with the Nuclear Optical Model, Univ. California Ress, 1961. 

Melnikov, V. K., On Approximate Methods in the Inverse Roblem of the Quantum 'l'heory of 
Scattering, Mat. Nauk. (N.S.), 14, 4 (88), 121-131, 1959, (Amer. Math. Soc. T~nd., 25, 
271-282). 

Miller, K., and Viano, G. A., On the Stability of the Complex Angular Momentum C,. ?tinuation, 
N-, 825,460470,197 1. 

Miller, W. H.. WKB Solution of Inversion Problems for Potential Scattering, J. Chern. Phys., S 1, - 
363 1-3638,1969. 

Miller, W. H., Additional WKB Inversion Relations for Bound-State and Scattering Problems, J. - 
Chem. Phys., to be published, 1971. 



hlills, R. L., and Reading, J. F.. Inversion Problem with Separable Potentials, J. Math. Phys., 10, 
321-331,1969. 

Moses, H. E., Calculation of the Scattering Potential From Reflection Coefficients, Phys. -- Rev., 
102,559-567, 1956. 

Mushkhelishvili, N. :., Singular Integral Equations, Groningen, Holland, 1953. 

Neigauz. M. C., About the Determination of the Asymptotic Behavior of the Function q(x) on the 
Basis of the Spectral Function sf -y" + q(x)y, Dokl. Akad. Nauk. SSSR, 102,25-28,1955. 

Newton, R. G.,  Connection Between the S-Matrix and the Tensor Force, Phys. Rev., 100, 
41 2-428, 1955. 

Newton, R. C., Remarks on Scattering Theory, Phys. Rev., 101, 1588-1 596, 1956. 

Newt~n, R. C., Electron Scattering by the Deuteron, Phys. Rev., 105,763-764, 1957. 

Newton. R. C., Analytic Properties of Radial Wave Functions, J.  Math. Phys., 1, 319-347, 1960. 

Newton, R. G., Construction of Potentials from the Phase Shifts at Fixed Energy, J. Math. Phys., ---- 
3 ,7542 ,  1962. 

Newton, R. G., Scattering Theory of Waves and Particles, McGraw-Hill, New York, 1966. 

Newton, R. G., Connection Between Complex Angular Momenta and the Inverse Scattering 
Problem at Fixed Energy, J. Math. Phys., 8, 1566-1 570, 1967. 

Newton, R. C., Determination of the Amplitude from the Differential Cross Section by Unitarity, 
J. Math. Phys., 9,2050-2055, 1968. 

Newton, R. C., lnverse Roblen~s in Physics, SIAM Rev., 12,346-354, 19'0. 

Newton, R. G., and Fulton, T., Phenomenological Neutron-Proton Potentials, Phys. Rev., 107. 
1103-1 11 1,1957. 

Newton, R. G., and Jost, R., The Construction of Potentials from the S-Matrix for Systems of 
Differential Equations, Nuovo Cimento, 1,590-622, 1955. 

O'Brien, T. J. P., and Bernstein, R. B., Investigation of the Hyllcraas Method for Determining the 
Potential-Energy Function Form the P ~ M C  Shift, J. Chem. Phys., 51,5112-5 1 17, 1969. 

Ohrnura, T., Extensions of Variational Methods, 111-Determination of Potential From Phase Shift 
Function, ROO. Theor. Phys., 16,231-243, 1956. 

Pearce, W. A., A Note on the Ohmura Method of Potential Deduction, w. Th .or. Phys,, 32, 
180-181.1964. 

Percival, I. C., Energy Moments of' b t te r ing  PhPse Shifts, Proc. Phys. Soc. (London), 80, 
1291-1300,1962. 

Percival, I. C.. and Roberts, A. J., Energy Moments of k t t e r h  haw Shifts, 11. Hlgher Partir.1 
Waves:, Proc. Phys. Soc. (London), 82 ,s  19-528, 1963. 



Petris, M., Singularities of Jost Functions and Potentials, Czech. J. Phys., 812, 87-92, 1962. 

Portinari, J .  C., The One-Dimensional Inverse Scattering Problem, Ph.D. Thesis, MIT Department 
of Electrical Engineering, June 1966. 

Portinari, J. C., Finite Range Solutions to the One-Dimensional Inverse Scattering Problem. -- Ann. 
Phys., - 45,445, i967. 

Rats. F.. and Toll, J. S., Construction of the Dirac Equation Central Potential from Phase Shifts 
and Bound States, Phys. Rev., 113,363-370, 1959. 

Rosser, R. T., Formal Solutions of Inverse Scattering Problems, J. - Math. Phys., 10, 1819-1822, 
1 969. 

Ramm, A. C., Conditions Under Which Scattering Matrices are Analytic, Dokl. - Akad. Nauk. SSSR, 
157, 1073-1076, 1964 (Soviet Phys. -- Dokl., 9,645-647). 

Redmond, P. J., Some Remarks Concerning a Pathological Matrix of Interest in the Inverse- 
Scattering Problem, J. Math. Phys., 5, 154 7-1 554, 1964. 

Hcgge, T., Construction of Potentials from Resonance Parameters, Nuovo Cimento, 9, 49 1-503, --- 
1958. 

Regge, T., Introduction to Complex Orbital Momenta, Nuovo - Cimento, 14.95 1-976, 1959. 

Regge. T., Bound States, Shadow States and Mandelstan~ Representation, Nr~ovo --- Cimento, - 18, 
947-956, 1960. 

Roberts, M. J., Energy Moments and Cross Sections for a Gaussian Potential, Proc. Phys. Soc. 
(London), 82,594404,1963. 

Roberts, M. J., Negative Energy Moments and Low Energy Approximations to Phase Shifts, Proc. - 
Phys. -- Soc. (London), 83,503-5 17, 1964.a. 

Roberts, M. J., Alternative Derivation of thc Moment Relations Involving Scattering Phase Shifts, 
k'roc. Phjs. Soc. (London), 84,825426,1964.b. 

Plokris, k. J., Moment Relations for Schrddinger Two-Body Cross Sections, Proc. Phys. Soc. 
(London), 86,683491,1965. 

Roberts, R. E., and Ross, J., Potential Inversion for the Semiclassical Optical Model, J. Chem. 
Phys., - 53,2 126-2 127, 1970. 

Roman, P., and Marathay, A. S., Analyticity and b R e t r i e v a l ,  Nuovo Cimento, 30, 1452-1464, ---- 
1963. 

Ross, M., ed., Quantum Scattering Theory, Indiana University Press, Bloomington, Ind., 1963. 

Sabatie:, P. C., Interpolation des Fonction d'Onde dans le Plan Complexe du Moment AnguCirc?, 
C.R. Acwd. Sci., Pi~is, Ser. A., 263,788-790, 1966.8. 

Sabatier, P. C., Asymptotic Ropertier of the Potentials in the Inverse Scattering Problem at Fix& 
Energy, J. Math. Phys., 7, 1515-1531, lS56. b. - ---- 



Sabatier, P. C., Analytic Properties of a Class of Potentials and the Corresponding Jost Functions, 
J. Math. Phys., 7,2079-2091, 1966.a 

Sabatier, P. C., Le prob!dme inverse ti Cnergie fix& en mdcanique quantique, These de Doctorat 
d'Etat: Universitd Pati~-Orsay, Mars 1966.6. 

Sabatier, P. C., General Method for tlte Inverse Scattering Problem at Fixed Energy, -- J. Math. 
Phys., 8,905-918, 1967.a. - 

Sabatier, P. C., Interpolation Formulas in the Angu1r.r Momentum Plane, J. Math. Phys., 8, 
1957-1 972,1967.b. 

Sabatier, P. C., Approximation des Potentiels par les Potentiels de Classe, C.R. Acad. Sc., Paris, 
265, 5-8, 1967. C. 

Sabatier, P. C., Approach to Scattering Problems Through Interpolation Formulas and Application 
to Spin-Orbit Potentials, J. Math. Phys., 9, 1241-1258, 1988. 

Sabatier, P. C., A New Tool for Scattering Studies, J. Math. Phys, - 12, 1303-1326, July 1971. 

Sabatier, P. C., Complete Solution of the lfiverse Scattering Roblem at Fixed Energy, J. Math. 
Phys., to be published, 1972. - 

Sabatitr, P. C., and Quyen van Phu, F., Numerical Computations in the lnvene Scattering Problem 
at Fixed Energy, Phya Rev., M, 127-132, 1971. 

Schonbeck, T. P., On Inverse Scattering for the Kleidiordon Equation, preprint , Florida Atlantic 
Univ., Dept. of Math. 

Sprung, D. W. E., and Srivastava, M. K., Soft-Core Potential Model for Nucleon-Nucleon 
Scattering. 11, Nucl. Phys., A139,605424, 1969. 

Srivastava, M. K., Off-SlicU Behavior of Phase-Shift Equivalent Momentum Dependent Potentials, 
Nuclear Phys., - AlS7,bI-72,1970. 

Srivastava, M. K., Banerjee, P. K., and Sprung, D. W. L., A Very Soft Core Potential Model for 1 So 
Neutron-Proton Scattering, Phys. Lett., 29B, 635637,  1969. 

Stashevskaya, V. V., On inverse Prublems of Spectral Anal:& for a Clur of Differential Equa- 
tions, Dokl. Akad. Nauk. SSSR, 93,409-41 i ,  1953. 

Swan, P., and Pcarce, W. A., Deduction of Potentials from Scattering Phwc Shifts-I) Neutral 
Pan: Aes, Nucl. Php:, 79,77-107, 1966. 

Swan, P., Deduction of Potentials from Scattering Phrce Shifts, 11. Cbuled Putick, Nucl. Phys., 
90,436448.1 967. 

Tabakin, F., Invcne Scatter!! Robknl for Sep- ble Potentials, Phya Rev., 177, 1443-1451, 
1969. 

lietz, T., Discrete States for NonSln&r  and S h g u h  PotcntW Probhr, Nwwo Cimento, 11, - 
126-1 30,1959. 



Titchmanh, t. C., Theory ---- of Fourier Integrals, Oxford, 1959. 

Twiss. R. Q., Little, .4. C., and Brown, R. H., Correlatioti Between Photons, in Coherent Beams of 
Light, Detected by a Coirrcidence Counting Technique, Nature, 180, 324-326, 1957. 

Uhlenbeck, G. E., and Beth, E., Quantum Theory of the Non-ideal Gas. Part I. ileviations From 
Classical Theory, Physics, -- 3,729-749, 1936. 

Verde, M.. Asymptotic Expansions of Phase Shifts at High Energies, l iuovo Citnento, 2, 
1001-1014, 1955. 

Verd~ ,  M., The Inve3ion Problem in Wave Mechanics and oispenion Relations, Iiucle.ir Phys.. 9. 
255-266, 1958159. 

Viano, G. A., A Note on lnverse Problerns in Potential Scatttring, Nuovo LO. -- 63. 581-597, 
1969. 

Volk, V. Ya., On Inverse Formulas for a Dif'ferential Equation with a Singu.anty at x = 0, - Usp. 
Mat. Nauk. (N.S.), 8 , 4  (56:. !41-151, 1953. 

Vollmer, G., Inverse Problem in Atom Scattering in WKB Approach. 2. Phys., 226, 423-434, -- 
1969. 

Volterra, V., Theory of Functio~lals and lntegro-Differential -- Equations, - Dover Publications, New 
York, 1959. 

Weiss, R., and Scharf, G., The Inverse Problem in Potential Scattering According to the Klein- 
Cordon Equation, Helv. Phys. Acta. - t o  be published. 1971. 

Weiss, 2.. Stahel, W. and Scharf, C., The Invcm Rablc . ,I  ; Potential Scattering According to  the 
Dirac Equation, Univ. Zurich pnprint. 

Wheeler, J. A., Scattering and Potential, Phys. Rev., 99,630, 1955 



6. ELECTROMAGNETIC SCATTERING 

This chapter is concerned with the broad range of practical inversion problems in the field of electromagnetic 
scattering; these problems are also discussed by M i t m ,  Bojunki, Sondhi, and Prosser in Chapter 8. Certain of the 
problems arc amenable to full-wave treatment, while others require geometrical J r  phy iical optics assumptions. The 
authors invariably are concerned with several facets of the problem: 

1. Charxterization of the scattering data. Gne wishes to  know the necessary and sufficient conditions to ensure 
that scattering amplitude functions really are scattering ~nrplitudes of properly pored problems; such conbtions 
usually are of the form of analyticity requirements for exa:t problems. 

2. Practicality of solutions. Algorithms that invert the scattering data to yield the scatterer function should be 
simple and "practical"; they should use a minimum of data. b .  

3. Relationship between approximate and exact techniques. 

4. Stability criteria. Small errors in scattering amplitudes should not lead to large errors in characterization of the 
scatterer. I 

5. Realizability criteria. These are requiranents on scattering properties that lead tc physical, realizable scattenrs. 

6. Extension of inversion techniques to dissipative systems. 

H. E. Moses organized and chaired the session devoted to electromagnetic scattering. 



THE INVERSE SCATTERING PROBLEM FOR TRANSMISSION LINES 

Wavne State University 

A number of exact and approximate methods for solving the inverse scattering probkm :?r tranrmifsion lines 
m nviewed. In pertiarlr, the application %I trrnunission lim of M m k o  L [I9551 version of ths Celfand-Levitan 
exact method f a  tht quantum mtchar~ial probkm is compued with a more E k t  approach based on a &!ennt 
version of the ~elhnd-kv'  m m:thod. In addition, sane tspa~s of the Ira of uniqueress of sdutions ue bed. 
and tome open questions ~chted to the inverse tattering problem ue s u ~ s t d  

Tmmnhion line scattering is distinguished here by its onodimensiond character and the fact that waves 
propgte dong the Line m two dimtiom. from kft to right t i ~ d  from ri@~t to 'eft. It takes :lace, typialty, in a 
cylindrially symmetric medium that extends to infinitv in dw direction of prqqation. The physical properties of 
ntcha ;nediusna~stntikd- t h c y o u y o n l y i r . t h c ~ t i o a o f p ~ t i o n  -rltbou#~ it may k e c d o d i n  a 
qfhddd  structure. 

A c a q k t e  d#rriptioa ot electromagetic rm popaption in r cylindrial m c t u n  nquins representing the 
fields m infinite nrnrr of modtt. Eack %Id in a mode hs a vtctor factor which depends only on coordinates trans- 
veroc to the cnlindricd axis and a scalar factor which &!perids only on position dong the cylindrical axis. In the loss- 
lets cast, in tach mode a pair of such scalar frdon, conspondiq to the deetric d magnetic fnlQ, satidies the 
CrPnanisjion !inc equations 

where V i; d a t e d  with the ekctxic fnld, I is aswciated with the m a p t i c  f ~ l d ,  o is the freqwncy, L(z) is 
the effective distributed inductance, and C(z ) is tht effective distributed aprcitrace @fmcwitz, 1964, pp. 1-51 . 

Other than cylindriarl s t ~ c t u r a  an kad to a t r a n a o n  lint description of wrve pope t ion ,  e.8.. a rpheridy 
qmmetric nv--aium iAkarrrPin, 1964, pp. 29-54]. The r e q u i m n t  is  that solutions of the brtic governing equations 
be separable into foctan, one of which 6 r fu?rction of a sin* ntirbk whose rrhKs denote positions dong a propap 
tion path. This vuhbk can nprmnt  curvilinar disglwxmnt and m w t ,  f a  example, be one of tb uyulu 
coordhutes in r rpberial yttaa. 

The tmumhion line equations!!: =n be p e r d i m  r. tiut the V md I are n component vectors and L 
and C art n X n rztrkq s& s psnmbtion is neccttuy, for example, when th: medium is misotropic. 'Ihen 
the physical prototype is r system of coupled 2n wire tnnwirdon W. 



For certain nonsepble cases the transraission h e  fomulisn can provide an approximate model for wave 
propagation. For example, it can be used for a tapered wavepi& with slowly varying cross section [Shelkunoff, 
1943. pp. 405-406). 

The physical meanin8 of the ~ ~ u m t c r s  in Eq. (1) may be modifid on occasion. For example. Bechcr and 
Shorpc (19691 hvc applied the tmnrr;linion line formalism to the problan of determining the conductivity of the 
earth from its low frequmcy propagation effects. In this case, ?he hrmtions C(z) and L(z' a n  proportional to 
the square root of the conductivity and its reciprocal. 

DIRECT VS lNDIRECT SCAlTERNC 

The direct rattenq proMtm for tht transmission line is tquivaknt to tk problem of calculating its input 
impedance at its terminals ! b y ,  1963). whi& can be taken to be 2 o. in wed. It is assumed that 

wherc L I. C,. Lo, Co are dl constants. 

C~de r  appropriate conditions Eq. (1) also has the property tint a solution exists for which the asymptotic 
behavior of !' is 

Then 

V % ap(ikQ z) t r(w)exp(-iko z) for z + -0 

V t(w)cis(ikl z) fo rz++-  

when 

1% Yo[exp(ikc z) - r(w)exp(-ikoz)] for z -, -0 

I 2, Y (w)exp(ik, z) for z -+ +w 



where 

The quantities ki are propagation constants. Yi characteristic admittances, Zi characteristic impamces; 
d o )  is the kR rmplitudr refkction coefficient, and t( o) is the W t  amplitude trasnission coefficient. 

The asymptotic relations (3) md (4) coneopoDd to a wave of unit amplitude incident from the left, partially 
reflcctbd, rnd putidly transmitted. If a wr*e of wit amplit& is inddent fmr tk @tt, a mfkcted wave with amp 
l i tu&cq\adtoadect imcob~t  p(w) m d t . t t a l r r r e r i t h r m p l i t u d e ~ t o a t n a c a a 9 m a  

. . 
camcltnt 

t(w) will k gemrated Ibt coefficients r(w8, p(o), t (o) ,  r(w) ut dements of a 2 X 2 matrix alled the scatter- 
ing matrix. Ibe scat* w t ~ ~  a n  also k formulrted as tht alarlrtion of tbe scattering matrix of the 
tnnrmlssioa line. With this fornulation, oaly the h & o n  V Y be k e r e d  in the wlukn of Eq. (1). 

In the inverse satteriq problem some p r t  of the scatteiing matrix, usuly the reflection cocfliacnt riw). is 
given and it is required to calculate L(z)  and C(i) or their equivalents. Most often r ( o )  is o prescribed function 
of frequency, dthar* in ~aae  case the reflection coefficient b given at a fixed frequency and a? J. function of some 
other prnmctcr such as mgie of incidence. 

'Ihe invenc rcrtteringprobh for quantum medunh is simil8r in that oame put of the scattering wtrix 
associ8tcdwithmun&nompatenttl b#~~safunct ianof&~,di t i srspuirrdto&tennint  the 
scattering potential. Homrer, in qustuin mcchnIa the pmMcm is essenthlly t h e  dimensional and therefore 
la& most mtunlly to r #nnerrh.t diffacnt mrdmutial fordation, mn after rep~tion of vuitbks, than does 
the tnmmhsh line p r o ~ t i a n  ptobkm. This is 8 l ~ 0  true of certain inverse scattering problems for the ekctrc 
magnetic f ~ k l -  when r fAd is scattered in a homgeneous medium by n obstack of unknown dupe and ;; is 
q u i d  to &tambe the rbrp or o h  -trial and &sicd properties of the &stack from r knowledge of the 
sattend f ~ l d  at hge dirtures. 

It is true tht f a  qherkdy iymmetric potentids tk clurntum mechtnia @verse s c a t t m  problem reduces to 
one fclr the S&~&QW equation in a siqk wLbk, tk Rdirl coordinate. Howmr, tk p#an i st i l i  essentiJly 
three dimadad imd M e n  From that of the tnambion line m that it k wurlly fonnulrttd in terms of the pbue 
& h o f a ~ m n n t h c r t h r n r e l l c c t i o a d ~ t d r p ~ ~ m * a .  

For quurbtm mchmia the gaurd ate ndirlSdudhger equation has the fonn 

for the internl 

with the boundry coIMltti01~ 



and the asymptotic condition 

The inverse scattering problem is to determine P(r )  from a knowledge of # ( E ) .  The transmission llne problem can 
be transformed into one for a differential equation similar to Eq. ( 5 ) ;  however, the interval over v hich the independem 
variable ranges is (--. -) rather than (0 ,  -) and the boundary condition (6)  is not imposed. 

Mathenraticdly. the difference between the two problems is primarily that the spectrum associated with the 
quantum mechanics problem is simple, whereas that associated with the transmission line problem has a multiplicity 
of 2. Because o i  this difference the ~ ; k a n d - k i t a n  method of solving the in~enc  scattering problem of quantum 
mechanics (Gclhnd. a d  Levitm, 19511 must be modifwd when it is applied to the transmission line problem. 
The Marcenko variation of the ~eliad-Levi:an method [ k e n k o ,  1955; Agmnovich and Mmenko. 19631 was 
originally applied to the problem of quantum mechanics but has been used by Shmpc 119631 111 solving the synthesis 
problem for trat,smission liws. This was possible because in the Mucenko method the quantum mechanics model 
given by Eqs. (5), (6) and (7) is viewed not as a standing wave picture, but as one for a propagating wave incident 
from the right on a potential with a short circuit terminal impedance condition at 0 and a wave reflected to the 
right. ?he reflection coefficient in this case is exp(2i#). When Marcenko's method is applied to the transmission 
line. however. an unnecessary complication arises becam of the artificial boundaiy ccndition (Eq. (6)). This will be 
discu=d in more detail later. 

The difference in form between Eqs. (1) and (5) is not as crucial as it might seem at first. A transfetmat~on 
exists that will change Eq. (1) into the form of Eq. (5) and thus reduce the inverse scattering problem for the trans- 
mission line to one for the Schrodingcr equation [Kuy and Moses. 19561 . The transformation is given b j  

where 

is the wave velocity and Z = L/C is the ch;lraci=ristic irnpecfwce of the medium; then J/ will satisfy Eq. (5) with 
P(x)  related to b y .  

If the inverse scattering problem for Eq. (5) is solved to determine P(x). can then be determined. However, the 
range of x in this case is ( --, ao) rather than [0, -) as in the problem of quantum mechanics; compare Moses 
and deRiddcr, (19631 . 



The relation between Eqs. (1) and (5) can be more direct tt when a plane wave at a futed frequency is incident 
on a linearly stratified medium at various an&$ and the reflection coefficient is givtn as a functiomof the angle of 
incidence rather than frequency. If I,  is c o n m t  and only C varies, I arn be eliminated from Eq. (1). and the !qua- 
tion for V becomes 

fl dt 1 +[to' ma a - p 2 ( : ) 1 ~ = 0  (10) 

where ko is the wave numkr in the haopencous region assumed to he to the left of the inhomogeneous medirw. 
a is the mgle of incidtna, and p2(z) is the &ffer:m~ ' .tween the quart of the wave number in the inhort3ogeneous 
region ot~d tha; in the homogeneous w o n .  

:<:. ::. :. . : 
. .  ~'..$>.. r.., 

QUESnONS Cc UNIQUENESS 
... .i. . .>, . . I . -  . . . . . . _ . _  . . >  

In view of Eqs. (8) and (9) the inverse scattering problem for the trzsmission line slearly ; a s  not have a unique 
solution, since the velocity of propaption v(z) can be any continuous positin: flnction. Hovrever. in most propaga- 
tion medm of practical importance the permeability is that of vacuum, and therefore only the permittivity varies. In 
such a case, then will be a weUdefined relation between L and i' depending on the particular mode being considered, 
and this relation will resolve the ambiiity. 

Under suitable mtrictions r knowledge of the refkction coefficient r(w) is sufficient to provide a unique 
solution to the inverse scattering problem. H m r ,  a knowle& of the transmission coefIlcknt t(w) is ncit 
sufficient to determine a unique solution, in p n d ;  compue Karp and Shmoys (1955) ;Kay, (19601 . This fact is 
implied by a consi&ration of whether a knowkdgc of r alone or t done is sufficient to determine the remaining 
elements of the scattering matrix. F a  physically teuonabk transmission lines the scatteriq matrix will be unitary 
for red w and the principle of reciprocity will hold. Its elements thus will have the following properties [cf. Heim 
and Shurpr, 19673 : 

. : -1 (fbr o mr) Itl' + Irl' = 1q2 + IPI' = 1 (conservation of energy) 

t = r (reciprocity) 

(for w real) t(-w) = t8(w), r(w) = c*(w), P(-o) P*(o) 

r, p , t are analytic functions of o , r ~ l a r  in the upper hdf plane 

t(w) = 1 + o(w) for luge o on the d axis and in the upper half plane 

t (a) has no mat in the upper half plane a on the nrl axis (passive lint) 

The properties (1 1) imply t h t  t(w) and p(o) an be determined uniquely from bowkedge of r(o), 
but r(w), annot be &ternrind uniquely from 8 k n o w l w  of t(o). In fact, for w in the upper hdf plane 
I(W) b given by 



log t ( o )  = - 

When r(w) is a rational function of w 

where the hi are poles of r(w) in the lower half plane and the K~ are the n roots of 

in the lpper half plane [Ka.v, 196bJ. 

These results are based on the assumption that the differentia: equation does not have a discrete spectrum, 
which is the case when the scattering matrix is regarded as a function of frequency. However, a discrete spectrum 
can occur along with the continuous one in the case of a plane wave incident on a linearly stratified medium at a 
fmed frequency when r is regarded as a function of the angle of incidence so that the differential equation for the 
problem is Eq. (10). In this case the inverse scattering problem has an infinite number of solutions for a given r (a ) .  
These occur when the condition that t(w) be regular in the upper half plane is violated by the assignment of poles 
for r(u) on the positive imaginary axis. When these poles are not also poles of r(w), additional solutions occur. 
For example. an infinite set of media exists for which the reflection coefficient is identia!ly zero f3r all angles of 
incidence [Kay and Moses, 1956b). 

EXACT METHODS OF SOLUl7ON 

Exact solutions of the invem scattering problem have been based on a general technique given by ~eljand and 
Levitan [195 1) for the differential equation (5). This is a method for determining the function P(r) from a knowl- 
edge of the spectral measure function m(E) [Titdrmarsh, 1946; Newton, 1966, p. 616; Kay and Moses, 1955 ] in 
terms of which the spectral resolution associated yith the differential operator and the boundary conditions of the 
scattering problem is defined. In applying the Gelfand-Levitan technique it is usually necessary, as a first step, to 
conrtmct the spectral measure function from a knowledge of elements of the scattering matrix. 

In the case of the quantum mechanics problem for which the given scattering data is the asymptotic phase 
shift, this is accomplished by the use of a dispersion relation &rived from analytic properties of the scattering matrix 
in the complex plane. For the transmission line problem, where the scattering data is the amplitude reflection coeffb 
cient r(w), such a procedure b not necessary since in this case the spestral measure function depends only on r(w) 
itself [Kay and Moses. 1956~1. 



k m n k o  [I9551 used a modification of the technique to solve the quantum mech~nics inverse scattering 
problem directly in tenns of the phase shift. His treatment of the problem can be interpreted as taking the transmission 
line point of view, wherein a wave incident from +- on the right is reflected from a trar.in;ission line which is short 
circuited at 0. Thc reflerted wave, propagating from left to right, has tha behavior 

where for real positive E the factor S(E)  has unit amplitude and a phase which is twice that of the phase shift 
associated with the umal version of the scattering problem. The transmission l i e  reflection coefficient is S(@; the 
fact that it has unit amplitude is a result of the short circuit at zero and conservation of energy [Kay, 1963) . 

I 

I A solution to the inverse scattering problem associated with Eq. ( 1 )  for a short-circuited line has been given by 
I bhwn [1%6] using Marcenko's method. Shatpe [I9631 used Marcenko's method to solve the closely related syn- 
i t',~esis problem for Eq. (1) without restricting the problem to u short-circuited line. A direct version of the solution 
I 

was ginn by Heim and Shurpe [1%7] , who were able to avoid the assumption of a short-circuited line at the cost of 
having to require a knowledge of both the reflection coeff~ient r(w) and the transmission coefficient t(w). 

A physically oriented, heuristic derivation of a solution to the inverse scattering problem can be given [Kay, 
19601 that shows why the transmission line approach leads to a solution depending only on a knowledge of the 
reflectiorr coefficient. The derivation depends on associating the partial differential equation 

with Eq. (5) and 

with tbe unperturbed form of Eq. (5) - the fonn which occun when P vanisha. It is then assumed that br is 
related to Uo by a linsu transformation which can be expressed in the form of an integral operation on Uo. 
'Ihe ~Luurnption h, explicitly, 

, . .. 
, .,; T<,, i' . t  
. , ;, *.ac",. ,;.:<. .. , ,&: -! 

' . f  ..,,"' 
.' ' c; ' *: ., :. . '. where K(x,y) is the kernel of the integral operator. 

If the function R(r) is defmed by 

R(x t t )  will repment the asymptotic reflected ?.ye +SG to an incident w e  6 ( x  - t ) ,  whre 6 ti13 Duac 
delta function. The hurction 

Vo(x,r)  = 6(x  - t ) +  R(x + t )  (19) 
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will then represent the asymptotic form of U when x -, -. The function R(7) vanishes for T < 0 if r(w) is 
analytic and o(1) in the upper half plane. This will be the case when P(x) is zero for negathe x. 

If U(x,t) that satisfies Eq. (17)  is the proper solution to Eq. ( I S )  for the scattering problem it must vanish for 
r > t  since i t  represents a simple disturbance traveling from left to right with velocity 1 .  Thus, i.t can depend on (Io 

orily at values of x that the disturbance has had time to reach. In view of this appeal to causa!ity the integral ic 
Eq. (1 7) should only extend from -= to x .  Then 

or, from Eq. (19)  and a fundamental property of the delta function, 

Now, if t > x .  Eq. (21)  becomes 

Since R vanishes for negative values of its argument the integral in Eq. (22)  actually can be written with -t as its 
lower limit. Equation (22)  is a Fredholm integral equation for the kernel K(x , t )  in terms of the Fourier transform 
of the reflection coefficient r(w). 

If Eq. (I 7) is substituted into Eq. (1 5) it is found, as usual when the  elka and-Levitan techniq~e is used, that 
K(x, t )  satisfies the differential equation 

subject to the boundary condif.ons 

the second of which provide, the solution of the inverse scattering problen~ for Eq. (5). 

If a Fourier trnnsfm, is applied to  Eq. (20) a solution Q of Eq. (5) will be expressed in the form 



when go( .va  satisf~s Eq. (5 )  when fix) ia zero and $ ( x J )  I\. $o(xB)  as x + -ao. In Eq. (25) the independent 
variable r has been replaced by x to indiate that the of the independent variable is (-m,w) rather than ( 0 , ~ ) .  

In v, h+ (25) hddr when 6 is  zero. Therefon, beaur  of Eqs. (8)  and (9). 

which gunntees that for any 

To prescribe 2, it is necetruy to chw an appropriate value of r(O), the limiting static d u e  of the refkc- 
tion coefficient. Sina thic corresponds to the case in wE& the wavekngth is infinite it might be expected, at krtt 
for a Rnite inhomogaeour %wmhsion line, that r(0) corresponds to thc vminhiq of the length of the inhomo- 
lpneous line. Thus, it wwld be expcted that 

which is the usual d u e  of the nfktion coefficient at the interface between to homogeneow transmission lines 
having characteristic impedmar Z* and Zt . 

To we that Eq. (27) b. in fact, the correct condition consider that beauw of the properties (1 1). r(0) and 
t (0)  an both red and that, beams of Eq. ( I ) ,  V is conttai1t arnr the inhomogeneous line at zero frequency, Now 
from the &enition of r and t urd from Eq. (8). 

It then fonom ftom energy commation (1 1) md from (28) that 

Equation (29) baa two mot& One of the is r(O) = -1, which is  ruled out by energy conservation except when the 
line it short dtcuited. Tb otbsr root is given by Eq. (27). 

A heuristic aqment rimitu to the are jut givtn bdr to the fundnnentrl intsprl equation of Irdrrcenko. In 
rhic cue bw incident wrrs & holr! the d&t and therefcue hr tbs form iS(t t x), while the reflected m e  hu the 
form S(t - x). Tk ugunmt immodhtaly I d  to the in- equation f a  tb corresponding kernel H(x,t). 
wh'itramform,rrdution of Bg(16)intorrdutknofEq.(lS): 



If r is replaced by -r the equatlon becomes 

where 

In the Marcenko method the reflection coefficient p is not actually the one used. Instead, the boundary 1- 

condition $(O) = 0 is imposed, and the corresponding reflection coefficient po then has a modulus of 1 so that its 
Fourier transform will not exist as a proper function. This difficulty can be resolved by considering solutions $*(x) 
of Eq. (5) having the asymptotic forms 

These solutions can be represented in accordance with Eq. (30j, as 

The boundary condition wiU be satisfied by the solution $, + po $+; hence, 

It follows that 1 + po ( E )  = 1 - Jl,(O)/ $+(0) = o( 1 ) for luge real \/E The Fourier trartslonn of 
1 - $ ,(0)1$ +(0) with respect to thus exisb and gives the transform of po except for a delta function. 
Since the incident dbturbonce does not teach x = 0 until t = 0, it must produce a reflected wave independent of 
the boundary condition at x = 0 until t - 0. It must therefore be equal to S(r) for T C 0 or S(-T) for 
r > 0. Thus, from Eq. (30) 



where 

which is Marcenkc's w l t .  

Shnrpe (19631 wu able to adapt this solution of the inverse scattering probiem for Eq. (5) to the transmission 
line problem despite the fact that it is based on a reflection caffcient corresponding to the boundary condition 
JI = 0 at x = 0 by observing that the Fourier transform of the kernel F in Eq. (33) cm be expessed directly in 
terms d eltmcnts of thc scattab?, matrix for the tMtmitrian line without the short circuit at zero. If the line is 
assumed to be homogmeous for negative x, the solution JI corresponding to a wave of unit amplitude incident 

I from the kft will be given by JI = r(o) ljl+ where the frequency o now replaces a of the quantum mechanics 
problem. For negative x 

Hence, 

Also, from the properties (1 1) and Eq. (31) it follows that 

Relations (35) and (36) prndt 9 construction of the bmel F when r (w) and t(o) are known. Thus, the use 
of Marcenko's vmion of tba GelfrndLevitnn technique f a  the tna#nitdon line p o b h ,  introducing the unneamry 
boundary condition rc zero, brQ b 8 requlrmmt for hrowbdp of two ebments of thc rclttr?ring matrix. while the 
direct apporch laub to the &tion in krm, of Ep. (22). wbich req~hs e Irnowbd~c of just the rtflection ca!llc#nt 
Nu). Aa indicated d & r ,  t(o) aa be Qtambd whan r(w) ic lraorwa with the ure of Eq. (12). a d  it is @en 
bxplidtly by @ (13) when r(o)  t a W a d  function. In pard, it wndd appear to be 8 auabem+m procedure, 
b w m .  



APPROXIMATE SOLUTIONS 

Here we review briefly some of the approximate analytical methods for the inverse scattering problem, 
but numerical methods as such are not considered. One of the greatest benefits to be derived from an 
approximate method is the possibility that it will provide Witle physical insight that might not be readily 
obtained from a more complicated exact method. Approximate methods are paiticularly useful ~f they 
shed some light on what is most important in the experimental data and what properties of the transmlbslon 
line can be deduced from incomplete c r  partially erroneous data. 

For many years, an approximate method has been used to solve the i n v e r ~  scattering problem associ- 
ated with vertical incidence radio soundings of the inoec~phere IRydbeck, 19421. At a given carrier fre- 
quency a pulse is sent vertically upward, and ttie time delay of the return is observed experimentally as a 
function of the frequency. These data are then : u d  to determine the variation of electron density as a 
fullction of height by a metkod whch is based ewntially OF. the W.K.B. approximation to the solution of 
Eq (5). The method has been limited mathematically to the case of a single turning point; that is, the 
assumption is made that P(x) is a positive, manotonically increasing function. In the quantum mechanical 
interpretation this n equivalent to solvina Abel's problem in! classid mechanics: to determine the shape of a 
hill, given the time it takes for a particle to ga up and return as a function of the particle's init.ial velocity at the 
foot of the hill [Coumnr and Hilbert. 1931. p. 1341. In fast, both problems lead to the Abel integral equation. 

When P(x)  is a monotonically increasi~g function the retrection coefficient r ( c )  has unit amplitiide due to 
total reflection at some height where the plasma ictquency is equal to the carrier frequency cf the incident pulse: 
hence. the phase of r(w) constitutes all of the information given by the experiment. In accordnce with the W.K.B. 
method. 'he phase is approximately 

where, for c the velocity of light in vacuum, k = wlc is the wave number and h satisfies the equation 

The group time delay of a pulse is then given by 

The left side of Eq. (39) is determined from the experimental data, arid Eq. (39) is the Abel integral equation fo: 
which the method of solution is well known [cf. Whirraker and Wtson 1948, p. 2201. 

Korpund Shmoys (13551 considered the inverrc scattering problem f a  Eq. (5) given the transit time of r 
pulse propagpting through the medium between two f w d  points. Thy rlso used the W.K.B. approximation a n j  
thus started with a relation similar to Eq. (39) except for the limit6 of integration. 



Ihe trrnrit tlrne is given by 

As indicated eulier, the transmission coefficient, and hence the transit time obtained from the phase of the 
tnnmriuion cwffjcient, b not ~lmcient to determine P(x} uniquely. However, Karp and Shmoys point out that i ! ~  
this approximation P can be determined as a function of a variable t ,  which it defnred by 

when the nun b aver d l  v b s  xi of x such 'hat 

and where 

'That is, for mry poedbk nlue of P tbe .- m roots of Eq. (42) and 4 is then determined by Eq. (41), thus 
defining E(P) and, by inversiwd, P( t ) .  Bpurtion (40) then becom~s 

hrp  und Shmay, wen then able to tmmfam &. (43) into m integral spurtion thrt cm be solved by meruu of r 
Menin t d m  

An rppoximte solution to ths direct ratterirq problem for the tmn&nWon bine equrtiona (I), sixnih to tha 
W.K.B. rpposdmtion wed in connection with Eq. (S), lo& more alm?ly to r solution of the inverse scattering 
problem I&&~ifin, 19501. P a  4 1  (dZ/&x)/Z, &mmer 1195 1 ] hc dwm that r WX.9. type of rpproximr. 
tion Is vrUd end b, in fact, h lowest term of r &OD tht  w- to the mIuMoln. F a  



where G(x) = F(z)  wheal the change of variable (Eq. (8)) from z to x is introduced, and where 

The solution is obtaii~ed then, by taking a Focrier transform of both sides of Eq. (45) and integrating the result in  
accordance with Eq. (44). 

Another method for solving the inverse scattering problem associated with Eq. ( 5 )  in the quantum mechanics 
case was given by Jost and Kohn 11Y52], and generalized by Moses 11956) to cover all scattering problems for Eq. ( 5 ) .  
including higher dimensional cases and even cases where P is a linear operator of a very general type. The approximation 
is equivalent to the Neumann series expansion, of which the Born approximatior, is the lowest order term, for the so- 
lution of the direct scattering pliLlem in a certain sense. If the series solution is cut off at a term of order n a ~ ~ d  the 
resulting approximation to P is used to calculate a Neumann series approxination of the direct scattering problem !o 
the term of order n, the scattering rnatrii elemerts will be reproduced as given. 

A particularly simple expression for P(x)  in the trmsmiuion line problem is obtained by this method when the 
firs! two terms of the expansion are used. 

where R is defined by Eq. (18). This result is exactly what is obtained from thp ~Geliand-lev it^.^ method if the integral 
equytion (Eq. (22)) is solved by iteration to two orders. 

SOME PROBLEM AREAS 

In applying the various methods of solution to the practical determination of inhomogeneous transmissiun line s 1  

characteristics, two questions have considerable importance: How sensitive will thc result be to errors in the data, and 
what physical features can sttll be determined whcn the data are incomplete? In 8en:ral. there are reasons to believe 
that the inverse scattering ploblem is very sensitive to certain kinds of error in the data. For example, the scattering 
matrix for Eq. ( 5 )  can be calcillated approximately in the direct scattering jrroblem by the va~iational method, the 8 

validity of which implies that small changes in the data could produce large changcs in the wave function J/. This 
m y  not be significant for the inverse scattering problem ass&.ated with Eq. ( 5 )  itself, but because of Eq. (9) the 
solution to the inverse scattering problem for the trmmirrion line equations (Eq. (1 )) is given in terms of a wave 
funct~on of Eq. ( 5 )  with E J 0. Thw, it would not b : surprising to find that the characteristic impedance has an 
unstable pointwise dependence on the reflection coeff~ient. 

a 
I ' 

- .  *:-:' 
For inverse scattering pmblems associated with Eq. ( 5 )  thcre is no renson to expect that such an illstability exists * ---. 

b#* 

when P(x) is a monotonically increasing function, a case for which the hbel integral equation approxim~tion pro- 
vide~ a reasonable result. The situation is not as clear, however, when f (x) oscillates - represents a medium consist- 
ing of several layen as in the core of the real ionosphere. Shielding by front layers mi&t completely obscure laycrs 
farther back. This can nrppen if, at the lower frlquencies, the rounding p u b  cannot penetrate far enough to affect 
the rear Iryen. and if the htgher frequencies, for which sutficient ptnetration occurs, are above the critical frequencies -- 
d t b  mar layers. 

klrthemticdy, these problems are connected with the frst that the kern: R(Y + t )  of the integral equation I 

(22) is the Fourier transform of the reflection coefficient and can be very rmsirivt t o  pirr twia errors in the data. If 
the reflection cafficitnt is approximated by a rational or merornorphic funct~on. !he important properties of the data 
will be in the location of the poles and their corresponding midues. Although ail explicit solution to the inverse 
~a t t e r ing  problem for Eq. ( 5 )  a n  br giwn when r ( o )  is n t i o ~ d  [Kay, 19601. the form of the 1~enercll S~iution 
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is too compllated to exhibit in an obvious way the manner in which various layers of Y(x) might be correlated lo 
tpeafic features of the data. It would seem -e that poks f u  from the red axis will contain the informadon 
obscured by 8 shieldiq effec! if it occurs. It is possibk that this tdrtionship a n  be st~~died and clarifd by con- 
sidering thc nfkctiaa catmdent p(w) on th f u  side. 'Ihb is theontially w i k  tiace p ( o )  a n  be expressed 
in tenm of r (o)  with tk i d  o:relltiau arch as Eqs. (I 1) and (12). 

Ibt question of haw r(w) an best be appoximated by lirrans of 3 n t i d  function from given rek4.;on 
mtrrunmmts is important in my since r& solution to the invent xattering problem can then be given exphc- 
itly. The appoximtioa must be such that dl known physical poprtied of the tmsmhirys &1e a n  taken into 
account-for example, t h t  the liDc is furite b kngth and is terminated by an impdance equivalent to the character- 
istic impedurze of a kncm homogaeora line of infinite length. k m  d shape j1966) have discused som such 
rquirrrrwnts of the ttmdsiaa liae and have painted out t!!t for a fmite w v e  line rjo) must be meromrpk 
with pdes only in the lowet hlf pknt, it must be o(1) in the r r p 7  half plane and on th? red axis, a3d it must be 
o Iexp(2ib P)] in the lower Imlf pianc if tk inhmogmeous line hrs kngth E. 

Another problem which may not be impcrtmt in the solution of a practical inverse scattering pr h k m ,  is 
nwerthekzs disconcerting. Thc exact mthods used for sdting the inverse scattering problem awx ia t l ,d  with Eq. 
(I) cannot produce a line whose churcttristic impeboce hu discontinuities if tb nnthtmatically required condi- 
tions of m t y  ate impo6ed (Hdm und Shape, 19661 . For insight and for the Eakc of completeness it would be 
desirable to gnerdiu the methods to indude discontinuws solutions. 

ADDENDA 

A number of open problems exist in connection with tk inverse scattering problem for transmission lines. 
Some of these mrr mentionsd eulier. llre following are added here p i d y  because hey arc probably solvable. 

Two of the approximate methods for the Wme scattering probkm Prsodrted with Eq. (5) have been derived 
from tbt W.K.B. approximaticn for the direct pobkm but hve not k e n  derivtd from the exact solution to the 
inverse scattering problem obtrined by m#ns of the integral Eq. (22). These are the Abel integral equation method 
for data in tbc fonn of the time &hy of 8 nfkcted pukt, and the method of IGrp and Shmoyr for data in the form 
of tk transit tim of 8 pulse between points ar a t k r  nde of the i n h o m m  line. It would certainly be of 
academic mtm#, at least, to k z k  t h  qpmximrtions fmm the exact method. In addi~on, the derivation might 
kad to i n t t d t t  approximations that would impox  on Ihe original approximations or provide additional insight 
into the physicrl rehtionsbip ktma tk data md the tnr,mbion line chacteristics. 

Tbc radrictioa of the A M  integnl cqurtioD method to sacs in which P@) in monotonic inmasing mi& be 
nlwd by such 8 pudimt ion ,  thus proridig 8 systematic, practical technique for interpreting existiq ionospheric 
data If tk method of Kup md Shmoyr were &ted to an exact treatment of the probkm the precise nature of 
thc informtion &bid in thc tmmmision a ~ f f i a e n t  done could be elucidated. Ti is rehted to the very practical 
question of vhat inforumtion cm be obuincd from partial scattering data. 

A n o k  open qwstiori is the solution of tk inverse scattering problem for the 2n wire coupled system of 
transmission tinu. J a t  and N- [I9551 and Agmmvich Md Mwccnko (19581 bvc dven the miuum for 8 

system of coupled !kh&qer equations [cf. Wltler, 1 x 9 ,  who d e r e d  the inverse scattering probkm for diffa- 
mtid qurtions of higher otder tlnn two]. A difficuhy iri applyiq Mucenko's mthod to t L  2n wire coupled 
tnnunbdoa line, as was done for a sin& 2 wire l h ,  ia the fact that, in gnerd, the wave velocity v (z )  will be 
different for each chnnel md cannot, tkrcfm, k derh with by a sisrrpk of variables such u that of Eq. (8). 
One pousibility is to gnenlite or adapt the 8pproxhte method of Moats to the multiple transmission line pobkm. 
Some due for bmdlbq tba difeculty of different wne velocitier tkreby be revealed so that the exact method 
of Muanko might fin@ be rpplicd. 



DISCUSSION 

Newton: The problem you mentioned at the end of coupled transmission lines is analogous to the quantum 
mechanical problem of coupled channels. It is analogous to coupled channels. inelastic scattering. Prof. Cox is 
the expert on that. You said there is a relation betweep the :ransmission coefficient i ~ l d  reflecticn coeffic~ent. 
If you do the Marcenko procedure, you don't have to put that relation in - the two come in independently. 

Koy: His expression for the kernel that goes into the ~ e l h n d - ~ e v i t a n  equation is given directly in terms of the 
phase shift. 

N e w n :  If you don't put in the relation. but put them in independently, what happens? 

Kqv: That's hard to answer. You will be vichting one of the conditions on the scattering matrix elements them- .- 
selves. Whatever potential you get w~ll violate that condition. It would have some kind of p.ithological 
behavior. 

M a n :  In the case of a simple, infinite line. what happens if you impose the boundary condit~on at the orig~n? 
You have two solutions. one of which vanishes at the origin. In matrix form vm have the right to left and 
left to right signals. 

Kay: This is what Marcenko's method does. You arrive at the boundary condition by taking a linear combination 
of the two fundamental waves. Then you get a relationship that involves both the transmission and reflection 
coefficients. which creates a problem because they are not independent. 

Subatier: You have spoken only of passive lines. Are there analogous results with nonpassive lines with sources? 

Kay: 1 don', know of anyone who did that. When you !rave sources. the conditions imposed on the analytic 
behavior of the transmission coefficient are no loriger appliczble. This is analogous to what happens to the 
reliability conditions in circuit theory. For passlve circuits, all your poles are confined to one half plane 
and they don't lie on the imaginary axis. For active circuits they can. You have to go back and look at the 
consequences, including the question of existence and uniqueness of the solution of the ~ielkand-kvitan equatian. 
In proving this, a very important contribution is the ~on~ervation of energy. 

Mittm: You started with inductance and capacitance in the transmission'lines and ended up with one fur.ction. 
That ambiguity can never be resolve&. 

Kay: You can assume anything yt,: vent for the other function as long as it is monotonic. 

Mitm: If the transmission line n;ld losses and you know the capacitance, resistance, and conductance, can the 
inductance be fuund? 

Kay: No. They are independznt. 



THE INVERSE PROBLEM FOR RADIATION SCATTERING 

Dartmouth College 
.4. 

ABSTRACT 

This paper provides a brief rumy of recent theoretical progress on the invcise scattering problem for radiation 
scattering from refkcrive boundaries and variable indicts of refraction. 

The theory of ndirtion satterhg is mccmed pnmuily with the far-field relations between incident and 
scattered radiation in the presence of a scnttering object. The primary, or dire:t, problem of this theory is to develop 
quantitative information about these scattering relations from a knowkdge of the scattering object. The secondary, 
or inverse, probkm, on the other hand, is to determine the nature of the object from an analysis of the scattering 
relations. 

Whh the & i t  problem has by now gmnted  a welldeveloped discipline, the inverse problem has only recently 
aroused my -us attention. This is qechUy wqwkhg in view of the manifold pnctial applications to the design 
and operation of pecidon ndu rys- 'This paper provides a brief sumy of the present state of knowledge and possi- 
ble future development of the inverse p r o b i  for radiation scattering. 

SCATTERING FROM A POTENTIAL 

The fim real contniution to the inverse probkm was made, not by radar enginan, but by nuclear physicists, 
around 1950. The physkhts were interned in the andogous inverse problem for the scattering of electrons from a 
nuclear potential: to detcnnine the shape of the po?ential from the resulting scattering data. 

L c v h  (19491 fmt lowed that every spherically symmetric Fential satisfying suitable regularity conbtions, 
is uniquely determined by a knowledge of the phuc shifts in the partial wave analysis of the scattering data. His proof 
however, @ves no algorithm for constructing the potential from n given set of phue shifts. Josr Pnd Kohn (19521 then 
provided a r w A v e  rlpritfun for h a  purpcne, which converges if the potentiill is sufficiently weak and there an no 
bound stater. The recursion relations are clumsy to use in pncticc, however, and the conditions required on the poten- 
tial are too restrict;% for many applications. Mcmwhik, Ge@ond and Levitan [I95 11 rdrcrwe4 that under suitable 
regularity conditicnu ~b potential may be recovered f m  the solution of a certain integral equation whose kernel 
&pen& on the rpctd  m@*s. 'W mwts in turn may be obtained from a lcnowkdge of the phase shifts and 
bindin) energies of the poblem. Since then 8 number of variants and refmements of the Celfand- tan procedure 
haw appeued; they are mmarhd in the excellent survey of Foddceu (19631. 

In this analysis it d i r  to know the phre shifts and bin- energies for my tingle d u e  of the angular 
momentum. Whcckr (19551 ml Newton (IN71 haw shown that a quite W a r  analysis reconstructs the potential 
from the phaa shifts for all h a  of the aquk momentum at any ah& d u e  of the energy. In r sense, there results 
compkmmt each other and exhaust the podbilitier for ndirl potentiah. 



For potentials that are not spherically symmetric, the situation is more complicated in practice but essentially 
the same in principle. In a series of papers devoted to this problem, Kay and Moses [1955-19561 have shown that 
the ~el iand-~evi tan  procedure can be extended to nonspherically symmetric problems in such a way that the poten- 
rial can be recovered from the solution of an integral equrr:on whose kernel depends ultimately on the matrix elements 
of the scattering operator. Fo: 'his procedure it suffices to know, at least in principle, the scattering data (cross sections 
and phase shifts) for a single aspect angle, all scattering angles over a fiied hemisphere. and all energies. The a priori 
conditions required of the potential, however, are not investigated in the~r papers. 

Moses 119561 also has shown, by means of a similar extension of the Jost-Kohn procedure. that the general 
potential can be recovered, at least in principle, from a knowledge of the backscatterirrg data tor all aspect a~gles  
over a fixed hemisphere and all energies. Again the a priori conditions required are not clear, although the procedure 
appears to be applicable for sufficiently ~ e a k  potentials. 

None o i  these results applies directly to the inverse prablem for radiation scattering, which involves scattering 
from a variable index of refracr:on, from a retlective boundary, or from both, rather than from a nuclear potential. 
In the first case we seek tci determine the structure of the index of refraction rather than the structure of the poten- 
tial, so that we are dealing with an inhomogeneous problem whose ~nbomogeneous tern is frequency dependent. In 
the second case we seek to determine the shape of the boundary. so i'lat we are dealing with s homogeneous 1, ~undary 
value problem rather than an inhomogeneous problem without bo~andary. Moreover, radiation scattering involves the 
vector wave equation rather than the scalar wave equation, although this difference does not appear to be decisive. 

SCATTERING FROM A VARIABLE INDEX OF REFRACTION 

Superficially, the problem of radiation scattering from a region of variable index of refraction strongly resem- 
bles the problem of electron scattering from a nuclear potential, and similar methods might be expected to apply. 
Specifically. the reduced wave equation for both problems has the form 

where is the case of potential scattering the ~nhomogeneous term 

is independent of the frequency u, while in the case o i  refraction scattering the inhomogeneous term 

is freque~cy dependent. For fixed frequency, then, the solutions to the two direct problems have the same form, but 
their dependence on frequency is different; and this difference forces a considerable difference in the solutiorls of the 
associated inverse problems. In particular, the  elka and-~evitan procedure depends essentially on the frequency inde- 
pendence of the inhomogeneous term. 

In the spherically symmetric casz the index of re!:. uon depends upon o d y  the radial variable and the problem 
can be presented in one-dimensional terms. Kay and Mosn (19551 and Moses and DeRidder (1 9631 have shown that 
in this case the refraction problem can be reduced to the potential problem by means of a form of Liouville transfor- 
mation, and that the corresponding inverse problem can then be resolved by means of the Gelfand-Levitan procedure. .-+ 
Specifically; in this case the refraction problem reduces, via a partial wave analysis, to the one-dimensional problem: i! 

(S + u 2 p ( r $  ( r ) =  o 4 g 
.&. 



If we introduce a new independent variable 

and a cormponding new dependent variabk 

then we fmd that $(p) satisfii the equation 

where the "potential" V(p) has the form 

V ( P )  and V'(p)+  0 a s p + -  

Now V ,  and h a  n ,  may k dsduced from a knowled@ of the S-wave phse shifts via the ~ e h d - h i t a n  algo- 
rithm. Note that tbe new independent vrrirbk hen is essentially the optid path length, and that, in the new vari- 
ables, the optid path metric is constant. 

In prinaple, this proadure a n  be extended to nonspheridly symmetric probkms, but in practice new diffi- 
culties htnrde. If we start from the reduced wave equa!ion 

(0' + 02n2(x);  #(x) = O 

and introduce the h t z  

O(x) = i M ( ~ ) , b ( x )  

the11 we f d  

(v' + w1n')4 = r{kS~[, ' (n'  - IVS(') t i o ( v a ~  + v* OS) + $1 



Hence. if we choose S so that 

and then choose $o(x) so that 

then we find that. with 6,  = 

Hcnce. the solution of the original equation must also satisfy an equation of tke tbrm 

The, right-hand side here is independent of o and serves as a potential. for which a suitable extension of the 
Gelfand-Levitan procedure would apply. 

Note that here S satisfies the eikond equation, and $o is related to the gaussian curvature of the !we1 su;faccs 
of S. In effect, we have introduced as new coordinates essentially the rays and wave fronts of the geometric optics 
solution, which s frequency independent. This transformation is nonsingular, however, only if there are no caustics 
in the geometric optics solution. The presence of caustics presents additional difficulties which have not yet been 
resolved. 

The ~eifand-~evitan procedure is not even formally applicable to problems involving frequencydependent 
perturbations. The lost-Kohn procedure, on the other hand, is not sensitive to such a frequency dependence and t 

normally extends directly to the general refraction problem. Briefly, this procedure begins by expanding the reactance 
matrix T in the Born series [Rosser, 19691 : 

K 

where k and k' are the incoming and outgoing momenta, k2 = k" = o2 , Wd w(k) is the Fourier transform 
, . 

of 1 - n2(x). The reflection, or backscatter, coefficient b(k) is simply t ~ ~ ' h l u e  of T(kl, k) at k' = -k. If we 
00 A;).,  ." 

now replace b(k) by eb(k), and w(k) by wdk) =ZC w (k ) , substitut~in the expansion above for T(4c.k). 
3 
!,i 

1 -9 
and equate the coefficients of en, we can wlve for then w,(k) in terms of the reflection coefficient b(k): -7 a 



'I?& procedure determines the index of refraction, at least in principle, from a knowledge of the backscatter coeffi- 
cient for all aspect angks and all frequencies. A similar procedure determines the index of refraction from tbie scat- 
tering angks and all frequencies, or for fued scattering angle, all aspect angles and all frequencies, or for certain other 
combinations of data. These solutions are all formal, and give no information on the question of convergence or the 
a pion' restrictions required of the index of refraction. Msa (19561 has shown, however, that in the spherically 
symmetric cue the fvst two apptoxima~ons to the index of refraction obtained by this method agree with i ! ~  first 
two approximations obtained by the Gelfand-Lrvitan procedure, so that there is some reason to be optimistic about 
the prospects. 

SCATTERING FROM A REFLECTIVE BOUNDARY 

For the problem of radiative scattering from reflective boundaries, the preceding analy J docs not directly 
apply. Certain approximate resulta arc wrilrbk, however, which suggest various avenues for future study. 

If the boundary is known to be smooth and convex, with a g a u h  cuivature everywhere positive, and if the 
frequencies involved m sufficiently high, than the geometric optics approximation to the scattering matrix may be - 
valid. According to this approximation, the scattering cross section mcawred through a scattering angle 8 is given 
by 

where R (9 12) b the reflectivity oaffldent at the reflection pdnt on the surface (whore normal lies at an angle 
812 with the incident ray) and G(812) is the gaus$an curvature of the surface of that point [Keller, 19591. Thus, 
if the reflectivity is constant over the surface, the scattering cross section is inversely proportional to the gaussian 
curvature at the reflection point. It follows that a knowledge of the scattering cross oction for a single (hlgh) fre- 
quency at two (diunetrfically oppopite) a t w t  angies and all mttering andes, or oltematively, a knowledge of the 
backscatte,,q croa section for a dngle frequency at all aspect angler, win determine the gnussian curvature of each 
paint of the surface in tomu of the direction cosines of the n o d  at the point. Note that the convexity of the 
surface assures that there is just one su& pdnt for each srormal direction. 

Ihuc, we are led to the p b k m  of determining a unooth convex surf- from a knowledge of its gawrirn 
~ t m .  '2hir pobbm is a cL#ic in tbe -try of surfaces, and p e r  by thc nuns of Wowski 's  problem. It 
is hown that kIinltowJd*s problem rdmitr a uaique dut ion  provided that the puu&n cunature G(n), aa a func- 
tion of th6 n a n d  direction n , satisfjes the obvious necessary c~nd t io~ r  



If this condition is satisfied, the surface may be obtained as the solution of a cr:rtain nonlinear elliptic di ffert ntial 
equation of Monge-Ampere type. [Nirenberg, 19533. If the surface is describzd in rectangular coordinates 111 the 
form z = 8 (x ,y ) then the determining equation has the form 

where p = a e l a x ,  q = a e / a y ,  r = a 2 6 / a x 2 ,  s = a2 e l a x a y ,  t = a2t3/ay2 , and G(p,q. 1 )  denotes 
the gaussian curvature of the point who* normal has direction numbers @, q. 1). 

The proof of the existence and uniqueness of the solution, however, is nonconstructive. and no effective algu- 
rithm for consiructing the solution has appeared. 

Special cases of this result are sometimes useful. If, for example, th~: surface is known a priori to t e  axially 
symmetric, it may be described in the form x  = B ( p )  where P* = y Z  + z 2 .  Then the deterrn~ningequation 
becomes 

where now C(@') denotes :he gaussian curvature given as a function of the normal direction ( I ,@ '  cos a .  8' sin a). 
the axial symrnetry implies that the gaussian curvature is the same for all values of a = arctan z ly  and so depends 
only on thc: slope 8 ' .  Hence, it suffices to know the curvature only at points with different valcles of 8' -that is, 
only along any profile. In this case the determining equation is integrable for 6 ' ,  and hence for 8 ,  by quadrature. 

5 

We conclude that for axially symmetric smooth convex bodies, it suffices to know the monostatic, monochro- 
matic scatterinn cross section for each aspect in any plane containing the axis of symmetry. 

If polychromatic scattering data are available, then we might expect that fewer aspect angles would be required. 
To see how this can come about, we consider again a smooth convex body, but replace the high-frequency incident 
wave with a short pulse and use the physical optics approximation in place of the geometric optics approximation. 
Then in this approximation the backscatter return from a short pulse incident on the surface is essentially propor- 
tional to the second derivative of the cross-sectional area of the surface sectioned at a distance ct from the source 
and aormal to the incident direction. Thus we have o(2 t)  = const A" (ct) where A(x) is the cross sectional area 
of the surface in a vertical plane normal to  the x axis and at distance x  from the origin, and A " ( x )  = d ' ~  I dx2 . \ 

Here the source lies at the origin, with the incident direction along the x axis [Lewis, 19691. 
? 

From these relations we can recover the cross-sectional area A(x) as a function of x. If we now do the same 
for all other horitontd aspects, we obtain a two-parameter family of cross-sectional areas of the surface. 

The problem of recovering a surface from a knowledge of its cross-sectional areas is another classic in surface ? - .  - -  

geometry, and is known as Radon's problem. Thir problem, too, has ,nique solution for smooth convex bodies 4 



provided only t b t  certain necetury conditions are satisfled. The solution may La expressed in terms of quadra- 
tures over derivatives cf the crw~ectional area data. If, for example, the surface is described in rectangular coor- 
dinates as z Nxy) and we ore given the anas 

where L(r.4) is t ! ~  line in the xy plane given by x sin 13 + y cot 0 = r ,  then the function $(x,y) may be recovered 
thrcugh the formula 

where p denotes the projection of the vector (r,B) on the vector (x,y) .  

Thus it suffices, at least in principle, to know the backscattering amplitude as a function of time resulting from 
a short pultt incident on the surface from each aspect in any plane passing through the surface. 

if it is known a priori that the ~xfuce  is axially symmetric, then it suffices to probe the surface with a short 
pdse ir. two diametrically opposite aspects. If there ~tpects are taken as "nose on" and "tails" along the axis of 
symmetry, the formula &we reduce to the following: 

t., 8 t . , !  . . 
., . . ; ' . j  Similar formulas for other aspects may alto be derived along the same lines. 

The werkneo in all of these arpments, of course, lies in the optics approximations, which are notoriously bad, 
. .  . .  particularly the dudow l i i .  Nevertheless there arguments make phusible the hypothcsia that monottatic scatter- 

. ,  ... i 
in# data depending auentklly on two puuneten, such u two independent upcct angles or one aspect angle and the 

, -.,;. . .. : . . .< 
ftequency, should mffict to determine the dupe of a reflective boundary. 

. -. 
C. ,.... . . . ... = ‘ , . .  .$ 

It would be highly &&able to have 8 procedure for recmnstnrtinfi the dupe of the boundary from the scattering . '  t . . . . . .*.;!" ' data that, in principle 8t bt, b axrct. The mdy& of LP* 8nd PlrUlipS [I9631 hu mown that m r y  smooth closed 
.- - ..L..J . - -4 . .I 

reflective d a c e  is uniqusly determined by the satbring mrtrix - by the totoUty of the scattering data - to that the 
- , .-.. .:. ;.. ,.,, - 4  



search for a constructive algorithm is at least not doomed from the outset. Ros.ter (19691 has shown that, at least 
formally, the Joa-Kohn procedure can be extended to this problem as well, and that it reconstructs the Fourier 
transform of the characteristic function of the region bounded by the surface as a formal series of approximations 
involving the backscatter coefficient. just as for the general refractive problem. 'fhis procedure requires the back- 
scatter data of all aspects and all energies. so that, in light of the preceding arguments, the solution is overdetermined. 
Moreover, in simple examples the first few terms of the approximation don't seem to give anything sensible at all. 
At the moment, however, this procedure is zll we have. 

One other approach deserves mention here. If we consider the boundary scattering problem in two dinierwions, 
it can be reduced to a refraction scattering problem by means of a suitable coilformal mapping. Specifically, suppose 
we are dealing with the problem 

v'@ + w2d = 0 outside S 

4 prescribed on .S 

defined in the xy plane. If we put z = x  + iy, and int~oduce the coniormal mapping z = F(w) of  the exterior of 
the unit circle C in the w = u + iv plane onto the exterior of the given boundary S in the z = x + iy plane, normal- 
ized so that F(o0) = -, and F1(-) = 1, then the equation 

4 prescribed on S 

is mapped into the equation 

4 prescribed on C . 

where the "index of refraction" is just n ( w )  = IF1(w)l  . Because of the normalization of F ( w ) ,  n ( ~  ! -+ 1 as 
Iwl + and the scattering data are all unchanged. Thus, any procedure that resolves the inverse refraction problem 
will reconstruct n ( w )  = IF ' jw )  l from the scattering data, and since the mapping is conformal, F ( w )  and hence 
S can be reconstructed from IF1(w)  I. 

In two dimensions, then, the boundary problem bewmes a special case of the refraction problem, and will yield 
to the same methods. In three dimensions, however, the method of conformal mapping is not available, and no similar 
reduction is yet known. 

PRACTICAL CONSIDERATIONS 

Even if exact theoretical solutions were available for the general inverse problems of refractive and boundary 
radiative scattering, thc task of translating these solutions into practical procedures for the design and operation of 
precision radar systems would still present many problems. 



Let us suppose, for example, that such a system is tc be used to identify the structure of an unknown object in 
orbit above the earth. Then to begin with, the index of refraction along the radar si&t path is generally not constant, 
and will depend on meteorlogical and other natural data as well as the frequency and other operating parameten. In 
addition, the general shape and reflectivity of the unknown object may not be available. In particular, the surface 
certainly need not be simple, smooth or convex, and the reflectivity need not be constant over the surface. Moreover, 
the aspect angles are not uncer the control of the system operator. It is true that most objects in orbit contain som.? 
mechanical lossy mechanism, so that their spin axis event.ally cmverts to the axis of largest moment of inertia and 
they tumble end-overcnd; it is also true that such an object eventually presents every aspect to a fixed radar ir.talla- 
tion. Nevertheless, the task of extracting the scattering data f-r each aspect of an object whose motion is ur~known 
from a time record of observations made over many passes, is by no means trivial. Finally, if the object makes only 
one pass, most aspects are never seen at all. 

Practically speaking, the scattering data obtained in any such application are apt to be inexact on4 incomplete, 
but the theoretical procedures described above for recovezing the object from the scattering data all dssume a complete 
and exact knowledge of this data. No studies have been made of the stability question: whether small errors in the 
data cause only small errors in the result. And no progress has been reported on the approximatir~n question: what 
partial data can be made to  yield partial results. It might be possible, for example, to infer frorr suitable partial data 
the first few spherical moments, or other similar signature parameters, of the unknown object. At present we have 
no information in this direction. 

Finally, even if all of these problems could somehow be resolved, the remaining task u1' computing the shape of 
the object from the scattering data is in general nontrivial. If, for example, the object is known to be smooth and 
convex, and the exact geometric optics backscatter data are obtained frora all aspects, the problem remains of com- 
puting the shape of the surface from a knowledge of there data, even though tile solution is known to exist. The 
trouble is that the required shape is obtained as the solution of r nonlinear elliptic equation for which the usual 
computing algorithms fai! miserably. The errors appear to accuaulate uncontrollably if local approximations are 
w d .  In spite of considerable work on this problem (mostly classified) no successful computational procedure has 
bc :n reported. [GISAT, 19651 



Newton: I'm a little puzzled by your statement that you can generalize the Jost-Kohn procedure to three dimensions. 
The first step is to equate the scattering ampl~tude to the first Born approxirnation. The Born term depends only 
on the difference between and k',  but the scattering amplitude: will not. It will depend on both vectors inde- 
pendectly. I'm not sure how to start. 

Rosser: Thc first approximation for the potentia:, in the case of potential scattering, is simply given by 
r, < ? k )  = T(-k, k). 

U 

Chodan: When you expand the T matrix as a Born series, it doesn't converge if you have bound states. How do 
you know if you have bound states or not? 

h s s e r :  Characteristically, the radiation problems have no bound states. But the convergence question is still open. 

ChodPn: When you go to higher terms, those integrals are principal value integrals. 

Rosser: Yes, but one treats them with the usual quantum mechanical prescription, by assigning to the denominator 
a small positive imaginary part. 

Bojarski: The geometr~cal optics problem and the Minkowski problem have been solved successfully by Keller and 
Lewis for a body of revolution [Keller 19591 . 

Kay: Do you think that the Jost-Kohn method m~ght be related to a multipolar expansion for the body? 

Rosser: It looks to me a little more like this functional integration procedure we heard about here. 

Unidentified speaker: Since mention has been made of the papers of Faddeev, and since they represent considerable 
progress in the inverse problem they should be referenced here: . ~klady May, September 1966. Presumably 
Faddeev has new results. 

Rosser: The suggestion it that a combination of his results md  the methods of Kay and Mores might well nuke the 
~eifand-~evitan algorithm acceuib!e in three dimensions. Tllat would be a tremendous advance. 



DIAGNOSTICS OF NONRADIALLY STRATIFIED MEDIA 

J. Shmoys arid J. Pirraglia 

Polytechnic Institute of Brooklyn 

INTRODUCTION 

With a few exceptions, the inverse scattering methods have been applied to onedimensiona1,distributions only. 
Both the trajectory approaches of the Abel and Herglotz type and the wave approaches of the Gelfand-Levitan type 
were directed to plane, cylmdrically, and spherically stra!ified distributions. 

In recent yean a number of papers [Moses, 1956; Kay and Moses, 1961; Rosser, 1969) dealt with the applica- 
tion of the wave.type methods to asymmetric distributiot~s. The difficulties with this approach are twofold. First, 
the waw methods are much more complicated than trajectory methods. Second, the Jost and Kohn approach used 
by Moses and Prosser is bawd on a Neumann (Born) series. which converges slcwly if the dhtritution to be diagqosed 
is very extensive and of sufficient magnitude to produce large phase shifts. 

Here we investigate an admittedly primitive method. of the trajectory type, to distributions lacking spherical 
(o , in two dimensions, cylindrical) symmetry. We assume that the medium is "thin" enough so that the ray remains 
rectilinear. The data to be wed consists of the change in phase of a wave propagated along a ray due to the presence 
of the medium, for a given set of rays. 

TWO-DIMENSIONAL DISTRIBUTION 

Let us consider the problem of diagnosing 
a twodimensional refractive index distribution 
n(r,d). The set of probing ray8 includes all straight 
lines. The parameters characterizing a pr l t icuh n y  
are the impact parameter b and ray direction ar 
(fig. 1). The refractivity of the medium will be 
assumed expandable in a Fourier series: 

It is difficult to conceive of a physical situation in 
which the repmentation (fig. I )  would not exist. 
The phue shift for a my ir then 



We a n  simplify this further by recognizing that the integrand in Eq. (3) has symmetry about nl2: 

b b 
N~ - - Cn N~ - idkD (sin P)-' 

hn(n-0) sin p 

The term in brackets reducer to 2 cm k$ for k even, and to ?i sin kfl for k odd. Hen@ Ik is either pure real 
or pure imaginuy. The functions IkQ) are obtainable directly from the oboemd phue l i f t s ,  since they are -- 

g. 



simply the coefficients of a Fourier series expansion of +(b,a): 

Equations (4) represent thtn a set of independent integral equations for the coefficient functions Nk(r). 

SOLUTlON OF THE INTECRAL EQUATION 

It is easy to see that for k = 0, Eq. (4) is equivalent to the usual Abel equatlon for a radially stratified medium. 
Simiiorly, for k = : . the integral quation is 

so that we obtain an Abel eqstion for N(r)/r. Unfortunately, simpk reduction to an Abel equation is not psi- 
ble for k > 1. We have not icen abk to invert the equation explicitly. However, intelgrl Eqg (4) an be inverted 
numerically. To e~rs the difficulty of do iq  so, we tested a procedure that could be used for all k on special 
casts: 

1. Select a set of values of b for which the data will be matched: bo, bl, b2. . . . , in decreasing order. 

2. For r > bo assume .V(r) = No exp [(bo - r)/W , when H is chosen arbitrarily. 

3. Using the exponenthi approxlmrtion in the integral equation, evaluate No. 

4. For b o < r < b l ,  rsrume Nr)=Ar+B. 

5. From the requirements that (a) the function N(r) be ccntinuoua at bo and (b) the linear -exponential 
approximation sat* the ktegral equation at r = bl ,  obtain fwo equations for the two unknowns A 
and B. that cm be solved. 

6. Roaed in a similar wry with the piecewise linear approximation to the d e n  value of b for which 
data we available. 

Wc haw inverted the phase shifts calculated for &(r) = e v 2  and Nl(r)= e-~.'' using the points 2,1.8.1.6,1.4. 
1.2.1. Three values of H wen used in each are: 0.5, 1, md 2. The results a n  shown of fwres2 and 3. We s e  that 
in spite of tk crude piecewioe linleu mdel  mC sparsity of points, rcruacy u fair. The choice of H has little effect 
beyond the initial point. The mthod is rimpk enough so that & e b o n t e  prognmm%g was necerury. Clearly a 
denser r t  of points andlor the use of o pitawise parabolic model with continuous derivatives would have improved 
the results. 



Another procedure !hat could be ~ s e d  rel~es on the 
expansion of N(r) in inverse powers of r: 

so that 

If Ik(b) can be represented as a series in inverse powers 
of b, the coefficients Akd can be obtained. Such an 
expansion could be obtaine by observing that for large 
b the lowest value of j dominates the behavior of 
I(b); after that term is subtracted, the next higher value 

F w  2- Results of numerial inversion for k = 0. dominates, etc. 

EXTENSION TO THREE-DIMENSIONAL 
DlSTRiRUTIONS - APPLICATIONS 

- 5 

The method described above is capable of inverting 
a twodimensional distribution in a given plane. Since we 
a n  assuming that rays remain linear, a threedinensional 
distribution can be inverted by applying the two-dimen- 
sional procedure in a series of parallel planes (or any other C 

convenient set of planes covering the region of interest a 
,$ 

sufficiently densely). ,+ ,%a 

The methods outlined here could be used for diag- 
0.1 - nostics of planetary atmospheres provided sufficient exper- 

imental data were available. Ir(ote that for a three-dimen- 
sional distribution we would need a three-parameter set of 
data, w'wreas even a single-parameter family is hard to 

PROFILE obtain. More realistically, perhaps, the method could be 
n.0.5 applied to millimeter wave (or laser) plasm diagnostics 

L i 
I 1.2 1.4 1.6 I .  2 where we often encounter rotating cylindrical (but not 

cylindrically symmetric) distributions. The apparent 
Fyvc 3.- Rerultr of numarkd invmion for k =  1. rotation is caused by an azimutha3y traveling imtability. 



The two-parameter set of data would be easier to obtain in this case since tho angular paremeter a would be 
quivrknt to time. This substitution is e b k  became of the normally rather slow rate of rotation of the 
plasma distribution. Hence one would n& only r set of phase shift versus time curves for difierent values of 
the impact parameter. 

Research reported herein was sponsored in part by the Atcmic Energy Commission under Grant No. 
AT(30-1)39% arid in part by the National Aeronautics and Space Administration under Grant No. NGR33- 
006-047. 



DISCUSSION 

b y :  You mentioned that the medium has to be weak. It seems that the approximation you used would be valid 
m n  if it isn't weak as long as it's slowly varying. 

Shmoys; No. The approximation made here is that the rays are straight. 



ELECTROMAGNFXlC 1WVERSE SCATTERING* 

! , . .  Norbert N. ~ojarskit 
.. . , 

ABSTRACT 

A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is 
developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity 

I is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular 
, integral equation is developed for the arbitrary case of incomplete frequence andlor aspect angle scattering information. 
I A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such 

incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, 
I 

I yielding short-pulse target resolution radar system parmeter equations. The special cases of two- and onedimemional 
inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits 
of this solution over the conventional radar imaging techruque iue discussed. 

The direct scattering problem, whether electromagnetic, acoustic, particle, or quantum mechanical, is defined as 
the problem of predicting the scattered quantities, given the incident quantities, the relevant description of the scatterer, 
and the appropriate laws governing the interaction. The backscattering and forwardscattering problems are the special 
monostatic case and the special bistatic case of scattering in the direction of incidence, respectively. 

The inverse scaitering problem is defmad as the probltm of determining the relkant quantities describing the 
scatterer, given the incident and scattered quantities, and the appropriate laws governing the interaction. The unique- 
ness and well-behavedness problems must also be taken as an integral part of the inverse scattering problem. The well- 
behavedness problem is the problem of determining the degree of smoothness and continuity with which the so-called 
"output data" vary with respect to the d e d  "input data." The uniyueness problem must also deal with the 

c question of incomplete input data. 

The electromagnetic inverse scattering problem is thus defmed as the problem of determining the size, shape and 
electromagnetic properties distributions (conductivity, susceptibility, and permeability distributions) of a scatterer, 
given the incident and scattexd electromagnetic fields, and the electromagnetic f ~ l d  equations (Maxwell's equations 
and the appropxiate wave equations; the constitutive equations and their coefficients are taken as part of the electro- 
magnetic properties of the scatterer); and the determination of whether this problem is uniquely solvable for incom- 
plete input data - the various permutations of incomplete bistatic aspect angles, incomplete monostatic aspect angles, 
incomplete frequency, monochromatic data only, incomplete polarization matrix, amplitude (power cross-section) 
data only, and scattered far field data onu. Also of interest is the invene scattering problem for wsch there is some 
a priori hfonnation about the scatterer, such as that the conductivity of the scatterer is infinite (perfect scatterer) or 
that the geometry of the scatterer is of axial symmetry. 

This paper is restricted to the momstatic far field special case, a restriction [being characteristically] inherent 
to the radar application. For mathematical reasons thnt will become evident, the further special are of a priori 

*This research was supported in part by USAF contncu AF 30 (602) 3961 and F 30602-68C-0260. 

+~h~sicis t ;  Research Contractor and Consultant to the Depnmnrnt of Dcf- 



knowledp of t 5  tcrtterer bin# a perfect conductor is ircated. Fcr both these cases, special attention is given to 
the further special caw of the finite three-dimensional aperture, the case for which monostatic scattering data are 
available for a limited and incomplete frequency and aspect angle domain. From a practical short-pulse target 
resolution nbu point of view, this special ass is of fundamental and primary interest. 

THE PHYSICAL OPTICS CROSS SECTION 

Hers the physical optics approximation is taken as the basis for the direct scattering theory, and its validity for. 
and consistency with, short-pulse target resolution radar concepts is discussed briefly. 

The scattered magnc!ic f ~ l d  HS in terms of the induced (by the incident field) surface current density K on 
the surface of a perfect conductor is given by [Srmtton. 19411 : 

where the Cmn's function Qi and its gradient are pr4.r by 

ikr - 1- V$=- 
? r Qi 

The physical optics approximation [Van W d .  19641 for the induced surface current density in terms of the 
incident magnetic field is 

2n X Hi, on the "illwninated" segment of s 

= 10 , on the  shadow^' rgnent  of s 

Thus, by Eqs. (I), (3). ud (4). the scattered magnetic far field Hf, in terms of the wale number propagation 
vector ks of the scattered fu field, is 

If the incident feld Hi ir taken as a plane wave of the fom 

in the vicinity of the scrttenr, where ki i s  the wave number propagation vector of the incident field, and the range 



and phase normalized (in the coordinate system in which the scatterer is described) scattered far field is taken as 

then for the monostatic case, that is, 

ks= -ki mk 

Eq. (5) reduces with the aid of Eqs. (2) and (8). and ?he transversality of the incident field to 

Consistent with the conventional definition [Berkowitz, 19651 of the power cross section o and the field 
cross section p 

Eq.  (9) yields for *h physical optics field cross secrion the well-known expression [&rAodtz, 19651 

For a short-puhc target resolution radar system to be effective, its pulse kn@h must be short compared to the 
target size; furthtrmore, since the fractional bandwidth of such a pulse is limited by practical considerations to much 
less than unity, it follows that the laqest waveleqth in the spectrum of the transmitted pulse must be very short 
indeed compared to tk t u g t  size. The physical optics approximation Eq. (1 2) is thus a good model for the direct 
scattering theory for such a short-pulse tars t  resolution radar system. For a detailed discussion of the physical 
meaning and implications of the physical optics approximation, that is, its being a total first order l o d  scattering 
theory, consistent with short-pulse radar concepts, see Born# [1968]. 

THE INVERSE SCATTERING IDENTITY 

With the aid of the physical optics approximation, we now develop a basic inverse scattering identity that stater 
that the characteristic function (in threedimensional space) of a scatterer is related to the field crou-rection (in three- 
dimensional k-space) by a threedimensional Fourier transform. Uniqueness of the solution for finite-rized mtterers 
is established. 



Introducing the variable K defined as 

yiolds for Eq. (12) 

Thus 

and 

Since the intqrand of Eq. (17) is continuous and differentiable on s and in v banded by s, it follows ~y 
Caw' theorem thot 

Introducing the quantity F(K) defined by 



yields for Eq. (19) 

Defining the characteristic function ~ ( x )  of the scatterer by 

1 ,  x i n v  
~ x )  3 

0, x not in v 

permits the reformulation of Eq. (21) as the threedimensional Fourier integral 

if the volume v of the scatterer is finite, thcn by Eq. (22) 

it thus follows from Eq. (23) that for finite-size scatterers the threedimensional inverse Fourier transform of r(u) 
exists uniquely, 

which, with the aid of Eq. (20), can be reformulated as 



Aftdr replacing K by 1( in the second integral of Eq. (26), we obtain 

Both inverse scattering identities Eqs. (25) and (29) clearly require complete scattering information; namely, 
knowledge of p(k) over all K space-that is, all frequencies and all aspect angles. 

THE FINITE APERTURE INTEGRAL EQUATION 

In this section we develop a general, nor~ingular, inverse scattering integral equatiiln, solutions to which permit 
the determination of an appropriate maximurrl of information about a scatterer from incomplete scattering data. The 
use of the physical optics approximation is further justified. 

In practice P(K) is known (measurable) only for an incomplete finite portion of the complete K space; namely 
a K-space aperture consisting of a limited (furite) frequency band and a limited aspect angles band. Furthermore, 
Eq. (23) is valid only in the physical optics regime (wavelength short compared to the overall size of the scatterer), 
and hence Eq. (25) must either include fictitious (physical optics scattering data in the Raybigh regime, which is 
physically not realiible) low-frequency scattering data F(K),  or no such data at all. We thus turn to the problem 
of determining what can be deduced about a scatterer [?(%)I from such limited high-frequency flnite aperture data. 

Lct A ( K )  be an rrprrture function defined as 

where C(K) is a chamcttristfc aperture function defined as 

I 1, for K for which I'(K) is known 

C(n)  = 0, for K for which ~ ( K O  is unknown 



and where W(K) is any appropriately c h a m  (in general nonzero) aperrure weighlingfunction, subject to  the 
conditions 

Thus, if the K-space volume of the apeiture is finite, and the aperture weighting functio~l is appropriately 
chosen, then the three-dimensional illverse Fo:irier transhrms i>f the aperture and characteristic aperture functions 
exist uniquely: 

Thus. by Eq. ( 2 5 )  and the zareedimensional convolution theorem for threedimensional Fourier transforms. it 
tidlows that 

which by Eqs. (30) and (31) reduces to 

whcre r(w) is clearly known in the domain of integration C -- the aperture. The r~ght-hand ride of Eq. (36) can 
thus be taken as known, say the known function g(x): 

The thnedimenri3nrl invcm scattering problem for 8 finite aperture thus mi- AS by Eqs. C36) and (37) to the 
threedimensional nonsingulrr convolution i n t e p l  equation (a Fredholm integnl equation of the fin1 kind) 



This integral equation can be solved numerically by a variety of existing techniques such as the matrix methods 
of RitzCalerkin [Mldebmnd, 19651, the associated least-squares best estimate methht [Hifdebmnd, 19651, and the 
aurociated momenta method of Hrrnington I19681 ; the eigenfunction expression method of Toraldo Di Francit! 
[ W d f ,  19701 ;leading to so-called "super resolution"; and the K-space method of Boprski (19711, which airri, ieads 
to super resolution. Several closed-form solutions of Eq. (38) for apertures of specific geometry have been obtained 
by Lewis [I9691 ;an alternate closed-form solution of Eq. (38) for apertures of general arbitrary geometry is presented 
in the next section. 

A SOLUTION OF THE FINITE APERTURE INTEGRAL EQtJATION 

Here we develop a closed-form solution to the integral equation of the preceding section. This solution is valid 
for any arbitrarily h p e d  f i t e  K-space aperture (of incomplete frequency and aspect angles scattering data). The 
full details of a ptaitlml frequency and aspect angles band limited right rectangular quasi-conic section aperture are 
then developed as an ex;n$e. 

The -:!ution of Eq. (38) for ~ ( x )  is greatly facilitated by the special properties of y(x)-a priori knowledge 
that y(x) is r characteristic function of the form Eq. (22)-and the possible judicious choice of the aperature func- 
tion F (K ) : 

Let the x3 axis be chosen as pssing through the 
(mu) center of the aperture A (fig. 1). Next, let the 
aperture function W(K) be chosen as 

It thus follows from Eqs. (30), (32), (33), and (34). and Wn 'm"n 

again the threedimensional convolution theorem for three- 
dimensional Fourier transforms, that 

where c(x) is known: 

It thus follow from Eq. (38) that 

(41) 

Fipre 1.- The aperture ud surface coordinate system 

which reduces to 



Since ~ ( x )  is a characteristic function of the form (22)-in particular, for Bxed values of x I and x a .  ~ ( x , )  
is a dual step function in x3 of u i t y  mpnitude and s t e p  at the lower and upper surfaces, say Z'(x I .x a )  and 
Z(x I , x a  ), nspectively. of the scatterer (fig. 1 t i t  follows that 

which by Eq. (43) yields 

Ehamination of Eqs. (20). (26). and (37). and symmetry and physical considerations (the implications of Eqs. (4) 
and ( I 2 ) j .  thus yields for the upper surface Z(xl ,x, ) only 

provided 

which is assured by Eq. (39). 

By the implications of Eqs. (4) and (1 2). it b physically reasonable that information about the lower surface 
ZIIxI J,) should only be obtainable from scrttering data from the lower imgc aperture A*(*). It is now evident 
that the introduction of the image rperture served the tole purpose of a mathematical artifice, which permitted the 
application of Gauss' theorem to Eq. (12). yielding Eqs. (25) and (29); and that knowledge of scattering data in this 
inlage aperture is not needed. 

The threedimensional conv~lution on the left-hand side of Eq. (46). say Y(x), reduces to 

Thus 

whesc X(x) is a resolution density function thrt is a meuure of the location of the upper wrface Z(xl .x,). 



That X(x) is indeed such a rc~olution density function can best be visualized by considering the limiting case of an 
infinite aperture function A(K) for which c(xj  = 6(x); for such an aperture, 

by Eq. (49), whereas for a practical realistic aperture of finite K-space extent, the spatial extent of the nonvanishing 
portion of c(x), and hence the nonvanishing portion of X(x), is still small compared to the size of the scatterer. 
In fact, this resolution function X(  ! determines the resolution of the solution Eq. (SO), a resolution that can 
be exceeded only by the supcr-resolut.!on method mentioned earlier. 

A three-diniensional density plot of X(x) thus represents the smeared geometrical image of the surface of the 
scatterer, the spatial extent of the smearing clearly being the spatial extent of c(x) -- the resolution. 

A best estimate of Z(xl j 2 )  can alternatively be obtained by a variety of correlation [between Eqs. (41 ) and 
(49)j methAs, employing Fourier transform theory. 

THE RESOLUTION 

Ihe resolution in x space is clearly the spatial extent of the nonvanishing s i x  of X(x); it thus follows from 
Eqs. (30). (32), and (49) that the resolution in any one direction in x space ie the reciprocal of the w-spatial extent of 
the {nonvurirhing portion of) the aperture A(K) in that one direction. 

The finite rperture invent scattering solution Eq. (50) can clearly be refornlulated in a variety of desiretl 
,pcticrl (ndrr) spherical coordinate systems. For the particular spherical coordinate system shown in figure I: 

d3r 21 r' 61 cor 4 dt 

the inverse s a t t e r i q  solut!s;t a. (SO) for the ridit rectangula. quwiconic section aperture shown becomes 

when 



1:igue 2.- The mixed coordinate syszem 

where KO and AK are the carrier and bandwidth of the 
transmitted spectrum respectively: 

Examination of Eqs. (41 )and (49). after a similar 
reformulation into this same spherical coordinate system. 
readily reveals (after small angles approximations) the 
resolution in range and cross ranges to be 

This resolution can only be exceeded by the earlier 
mentioned techniques of super resolution. 

Equations (58). (59). and (60) are thus the equations 
for the parameters of a target resolutior! radar system. 

THE SPECIAI. CASES 

The special cases of the one- and two-dimensional inverse scattering problem (scattering data restricted to a 
K-spce line or plane respectively, obtained from a threedimens~onal xatterer) can be treated by applying the methods 
of Lewis i 1969) or Bojanki [I 9671 to equation (30) ct rcq. 

Namely, by choobing the characteristic aperture function for the two- and onedimensional special cases. rapec- 
lively, as 

The three-dimensional convolution intern1 Eq. (38) reduces to the two- and one-dimessional integral equations 

I I  ~(XIJZ) 

and 



respectively, where f l  is the thickness distrib:ction jbnction in the x3 direction, a is the area distribution function 
orthogonal to ?he x l  direction of the sccltterer, and g(xl ,Xa )  and g(xl), respectively, reduce to 

The nonsingular integral equations (63) and (64) can be solved for f l  and a by any of the previously discussed 
means. 

The further special case of a priori knowledge of the scatterer be in^ a surface of revolution about the x a axis 
(fig. 2) con clearly be treated by the preceding two-dimensional formulation Eqs. (63) and (65) by recognizing that 
the pufilefunction (generatrix of revolution) of the scatterer is 1 /28(0,x1 ), thereby further simplifying Eqs. (63) 
and (65) after the appropriate modifications. A more direct treatment of the problem of the surface of revolution 
will be presented subsequently. 

The special cases of the aperture A(K) being of certain given geometrical shapes can be treated by applying the 
method of Lrwis I19691 to equation (30) et saq. 

The special cases of a priori knowledge of the scatterer possessing certain geometrical symmetries can be 
treated by applying the methods of Bojmski 11967). We use the case of the scatterer known to be a surface of re-+ 
olution about the x, axis (fig. 2) aa anexample. For such a scatterer, the monostatic cross section clearly is inde- 
pendent of the longitudinal aspect angle 3; 

Furthermore, the profile function x~(x,) of such a surface of revolution h given by the function describing the 
uppur d a c e  Z(xl ,xa) at the p h e  xl  = 0. Taking the limits of integration over 3 in Eq. (50) as from 0 to 
b, aet(ing x! =O in Eq. (SO), an:. using the integral representation of the Bessel functions, it follows that 

which for unall-angle approximations yields the doubly truncated two-dimensional mixed Hankel (Fourier-&ssei)- 
Fourier transform 



As expected, only two-d~mensional scattering information (in K and t ;  i.e., in frequency and one aspect anqle, 
the latitudinal aspect angle) is required for an inverse scattering solution by Eq. (68) or (69). 

Solutions are also obtainable for the various combinations of the special cases cited. 

CONCLUSIONS 

The solutioras developed in this paper can be viewed as solutions to the frequency-band-limited and aspect-angles- 
limited short-pulse syn!hetic aperture radar imaging (and associated data processing) problem. The solutians presented 
are based on rigorous electromagnetic scattering and inverse scattering theory applicable to spatially distributed scat- 
tcrers. yielding real three-dimensional geometrical images; in contrast with conventional two-dimensional radar iolaging 
technique, which is hased on the heuristic approach of isolated point scatterers (scattering centers) concepts. yielding 
so-called "radar images," or maps [Rihaczek, 19691. which most often do not resemble the real geometrical images of 
tlie scatterer. 

The merits of the solutions presented in this paper over the c~nventional radar imaging technique deserve the 
Llllowing t'u!ther examination. The rather unsatisfactory results of the coilventional radar imaging technique are 
e\>entially ihe consequence of the heuristic approach to the problem: The approach consists of considering a spat~ally 
cstended target as a fictitious ensemble of identifiable, station.ary. noninteractive, nondispersive, and isotropic point 
scotterm. From a rigorous electromagnetic scattering point of view, a spatially extended scattercr is not an ensemble 
ut p i n t  watterers, nor are these fictitious point watterers in principle identifiable, stationary, noninteractive. non- 
diqxrsiv:, and/or isotropic. (The point scatterers are not always identifible by virtue of the so-called registration 
poblem; i.e., that the point scatterers can be continuously, consistently, and correctly identified for various aspect 
angles. The point scatterers are not always stationary due to the fictitious relocation caused by changing aspect 
angles.) Furthermore. this technique does not contain basic unique existence consideritions, and/or rigorous consid- 
erations of the problem of optimizing the results for incomplete aspect angles andlor frequency information availa- 
bility. The attempts to convert radar images to geometrical images have thus failed for precisely these reasons. 

The solutions of this paper alleviate all these objections to the so-called radar imaging technique by the regorous 
application of electromagnetic inverse scattering theory, based on rigorous direct scattering theory (and not based on 
the heuristic model of a spatially extended scatterer as a fictitious ensemble of iderltifiable, stationary, noninteractive. 
nondispersive, isotropic point scatterers). It, therefore, avoids the problem of the conversion of radar images to geo- 
metrical images, by sidestepping and avoiding the radar image altogether, and addressing itself to the problem of 
generating actual geometrical images directly from radar data, including unique optimal results from incomplete 
observation aspect angles and frequency information. 



hidentifrcd speaker: If your set C in phase s p c e  is bounded in some high-freque~cy shell then did you say you 
could get r good determination of the body? 

Bo)iwski: Yes. If the extent of C is such that its transform is small compared to the body size it will map it out 
for you. The resoll~tion ir, x s p c e  is essentially divided by its size in a space. 

Kuy: Part of the limitution imposed on your aperture function is due to the breakdown of physical optics. 

Bomki: The aperture must not be in the Rayleigh or resonance regime. 

UIidentifi speak DCI you have a criterion for what limit you should place on the aperture function to 
yprurtee this? 

Born&: Typically, if the lowest frequency is of the order of either the curvatwe or 2 or 3 :mes the Ka number 
then you p t  answers within 5 or 6% without noise. 

Moses: Have you done numxical modeling to check this? 

B o b & :  Yes. We took the Mie series solution for a sphere, truncated the data over a IW bandwidth, Illh num- 
ber. 1 / 10 nd, to see if we could reconstruct the sphere. We did so within 6% of the profile function. 



SOME SPECIAL CASES OF THE ELECTROMAGNETIC 

INVERSE PROBLEM 
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ABSTRACT 

A review of exact techniques for determining the surface of a threediniensional perfectly conducting body is 
given. followed by some new results on the uniqueness question concerning the number of measurements that may 
be required lo explic~tly determine the surface of the body. It is then shown that the nonhomogeneous but spher- 
ically symmetric dielectric electromagnetic case is reducible to a scalar inverse problem that can be treated by known 
techniques. 

INTRODUCTION 

A review of exact techniques for determining the surface of a three-dimensional perfectly conducting body is 
given. This is followed by a discussion on the uniqueness problem for the perfectly conducting case, a subject not 
well understood but important, since it delineates the necessary set of measurements that may have to be made. 
With regard to this problem. some new results are presented. Finally the case of a spherically symmetric object is 
treated- that of a conductine, sphere surrounded by a dielectric that is nonhomogeneous in the radical direction. 
It is shown that this vector inverse problem can be reduced to a scalar inverse problem which can be solved by 
known techniques. 

REVIEW OF THE PERFECTLY CONDUCTING CASE 

For a perfectly conducting threedimensional body, the inverse scattering problem has been treated using 
continuous w a n  information. For a futed dbection of incidence, polarization and frequency of the incident wave, 
the total (scattered plus incident) near fnld can be computed from knowledge of the far scatterea field given over 
the complete unit sphere of directions. Namely, if the scattered far f d d  has the form in spherical polar coordinates, 

the far field data is given by prescribing Eo(B, 4) as a function of tha angular variables for 0 < 0 < n, 0 G $ G 2n. 

Thele are various methods of obtaining the near %Id from the far field data. Wcox [I9561 gives an iterative 
procedure for determining the near scattered f ~ l d  by expressing it in the form 



and showing that b ( 8 ,  4) can be calculated through a set of recursive relations involving partial different~al operators 
in the variables (@A), with initial data given by prescribing Eo(8, 4). The expansion is convergent down to the min- 
imum sphere (with center the origin) enclosing the body. However, this domain of convergence can be extended fur. 
ther. under certain conditions as discussed below. 

Another approach is to use the plane wave expansion where the near scattered field at a point x ,  is giver, by 
the integral 

nlz-i.o za 
eik' x Eo (aJ)  sin a da dp 

where k' = k(sin a cos 8, sin a sin 8, cos a). Although this integral involves knowledge of the far field data k(d, 4) 
for complex angles of 8 ,  it is shown [H'eston et al., 19681, that this can be obtained if b(8 ,4)  is shown only for 
the real angles for the complete unit sphere of directions. The above expression is convergent in general only for the 
half plane z > zo, where z = zo is the tangent plane to the obstacle such that the obstacle lies in the half space 
z 4 2,. Again for certain cases discussed below, the domain of congergence may greater, namely a half space 
z >z , ,  where zl <zo. 

Even though the plane representation given above gives the near scattered field in the half-space, by rotation of 
coordinate system, or by using other forms of the expansion [Twersky, 19621 , the near field can be obtained by sim- 
ilar representations for other half spaces; hence in practice, the near field can be obtained in at least the union of all 
half spaces exterior to the body - outside the minimum convex shape enclosing the body. Although liie plane wave 
representation is mainly useful as a theoretical tool to prove results, it is extremely useful to obtain asymptotic expres- 
sions for the near field in the case of high-frequency scattering, even if the far scattered field is not known over the 
complete unit sphere, but in some sector such as the cap 0 < d 4 go. Stationary phase techniques may be employed 
to evaluate the integral, and it is shown [Wesron and Boerner, 19681 that this is equivalent to tracing the rays (of 
geometric optics) back to  the surface. Thi- asymptotic technique of using the plane wave representation is equivalent 
in practice to the analog device of holography where the phase and amplitude is measured over a sector usually in the 
near field. 

Another approach which is useful numerically is tu expand the near scattered field in terms of the spherical 
vector wave functions [Strotton, 19411 as follows 

The coefficients a and b \omitting subscripts) are obtained by matching the above expression to the far field data. 
This involves in prictice inverting a matrix to solve a linear system of equations. Some results on the matrices and 
determinants involved is given by Boerner [1970]. 

As mentioned above the various expressions for the near scattered field converge in some domain exterior to 
the body. However, the domain of convergence of the expressions may be extended part wry inside the body, if the - 
surface of the body is infmitely differentiable. The domain of convergence is determined by the singularities of the 
scattered &Id. As an example, the exact expression for the scattered field by a perfectly conducting sphere centered 
at the origin (the Mie s e h )  converges and satisfies the free space Maxwell's equations t~rerywhere, except at the origin 
where it has a singularity. Physicially, the scattered field appears to rise from an equivir1;nt source at the origin in con- 
tns t  to the actual physical currents induced on the sphere. 



The location of the domain of convergence is important for two reasons: (1) to know when the scattered field 
representations may exter.4 part way inside the body, thus providing a means to determine the surface from the total 
field; and (2) from a practical standpoint, when a finite set of measurements is made, the scattered field has to be 
approximated by a finite sum. and the knowledge of the domain of the convergence is important for estimating the 
errors in the scattered field in the vicinity of the surface. This was ignored by Butes 119711 when he assumed that 
the absolute value of the sum of an infinite series of terms of order E was less than E ,  where E is a small parameter. 

This leads to the question of what conditions niust be imposed on the surface for the singillarities to lie inside. 
It is well known that the total field is singular at a discontinuity like an edge. From physical grounds, one must ex- 
pect that the surfae be infinitely differentiable for the singularities to be inside. This was shown for convex por- 
tlons of the body in W'sron er al.. (19681 .and an algorithm was presented that yields the domain of convergence. 
The results of the algorithm indicate that for a prolate spheroid, the singularities lie on the axis between the focal 
points, which agrees with well-known results of R. I-. Millar for the elliptic cylinder. Alternative procedures (other 
than by the exterior representations given above) must be used to obtain the scattered field in cavity portions of the 
body-that is, portions exterior to the body but inside the domain of convergence of the various exterior representa- 
tions given above, Weston et al., [1968]. 

The conducting surface is found bv sear-ching for th.: surfaces for which the tangential componen?s of the tot-l 
field vanish. T'2 uniqueness question (namely is there more than one such surface for which this is true) is disclrssed 
in the next section. From a numerical standpoint, the procedure is to look for the surfaces for which EX E* = 0. 
where E* is the complex conjugate of E This is 3 necessary but not sufficient cbndition. I t  implies that the dir- 
ection of the electric field is real. Another necessary condition is E H=O. Hence, once surPaces are found such that 
EX E* = 0 and H E= 0, then those surfaces for which nX E=O jn the unit normal to the surface) can be easily 
picked out. 

UNIQUENESS FOR PERFECTLY CONDUCTING BODIES 

We now consider the question of uniqueness for inverse scattering of peri'ectly conducting bodies. We have 
pointed out that for a futed frequency, direction, and polarization of incident wave, the knowledge of the complete 
scattered far field. led to the determination of the total field, from which the scattering surface is obtained by locat- 
ing the surface for which tangential E vanishes. The question oC uniqueness arises; namely, is there more than one 
such surface for whici; the tangential electric field vanishes. If more than one such surface exists, how many sepa- 
rate measurements must be performed to evaluate the correct surface. By separate meawremnts, we mean the 
observation of the compbte scattered feild for a different incident wave. 

We shall restrict ourselves to scattering bodies contained by simply connected closed smooth [Leis. 19673 
surfaces. The smoothness condition is not that restrictive physically, since for a finite wavelength, sharp edges 
exhibit the same characteristics as e d ~ s  rounded with radii of curvature much less than a wavelength. 

Let So be the surface of the scattering body. We know that the scattered field must possess singularities which 
lie inside S,,. Hence, if in performing the inverse problem, we find surfaces additional to S,, such that the tangential 
electric field vanishes, we can eliminate from consideration, those closed surfaces that do not contain So. For if such a 
closed surface should lie outside So (but not contain So), it will contsin no singularities in its interior, and hence 
cannot represent an obstacle. 

Th,re may exist more than one surface S, , S2. . . . , on which the tangential electric field vanishes, and which 
enclose $ At present, however, we need consider only the smallest surface St enclosing So. If the scattering 
obstacle's surface is infinitely differentiable the singularities cf the scattered field lie well inside the surface, and sur- 
faces could exist inside such that tangential E vanishes. However, to simplify the analysis, we will consider the 
case where the additional surface St is outside S,,. (The other case may be treated in the same way.) 



The existence of the vrdshing of tangential E on the surfaces So and S, implies that the operating 
frequency is at an eigenfre.,uency of the volume V enclosed by the surface; i.e., there exist eigenfunctions 
(Em, H,) of  maxwell'^ quations. In the volume V, the total field is thus a linear combination of these 
eigenfunctions. 

I 

To dete-mine the set of measurements required to eliminate S, as a candidate for the surface of the obstacle, 
t e  eigenF fictions and their properties will be considered in more detail. The field at any point y in V cpn 

br represented in terms of surface currents as follows 

where 

where x n the variable of integration over the surfaces S = $ + S, . If it is postulated that the field quantities 
satisfy the free space Maxwell's equations, in the interior of So and exterior to SI , and the radiation condition at 
infinity, then j and j' are related to the discontinuity in the tangcntlal components of E and H across the surfaces 
So and S I  ,i.e., 

where n is the unit outward normal (out of V) to the surfaces, and H and H+ are the respective values on the 
interior (with respect to V) and exterior of the surfaces. 

The eigenfunctions can be represented by setting j = 0, and j' = -@, giving 

Let y approach the surface Sl from the interior, then the above quat ion yields 

and similuly letting y approach the surfaa &, from the interior of V, 



For (E,H) to be an eigenfunction, n X E(y) = 0. hence the necessary and sufficient conditions for E(y) given by 
Eq. (3) to represent the modes is that p must satisfy the following integral equations 

The integral operators associated with the above homogeneous integral equations are compact operators [ ~ u l l e r , ' ~  969). 
with respect to the Banach space of continuous vector-valued functions defined on the smooth surfaces. Because of 
this, we have from well-known results that the null space is finite - there are only a finite number N of independent 
eigenfunctions (E,,,.H,). By introducing the adjoint operator [Muller, 19691 upper-bound estimates on N can be 
obtained. 

We come to the main question: How many additional ~neasurements must be made to eliminate St as being 
the scattering surface? To try to eliminate St as a candidate, take another set of measurements (different incident 
wave but same frequency) and find the total field and hence those surfaces for which tangential E vanishes. Again, 
we will obtain since it is the obstacle, but we may or may not obtain Sl . If we don't obtain it, S, is eliminated. 
but if we do happen to obtain SI again, we will have to repeat the process, with another set of measurernpnts. D a s  
this repeated process terminate? !t will be shown that it does 

Let d ( n )  and H(n) represent the incident and total m.agnetic tields for the nth set of measurements. It will 
be showii that if at least N + 1 separate sets of measurements are made, then it is impossible for tangential E(n) to 
vanish on S, for all N + 1 sets. For if tangential E(n) vanishes oa S, for n = 1,2 ,  . . .,N + 1, then we have the 
following integral equation 

the solution of which exists, and u unique provided that the frequency is not an eigenfrequency of the volume con- 
tained by SI . Since the tangential component of H is continuous across S t ,  n X H on S, h a linear combination 
of the N eigenfunctions of the volume contnined by ,!& and S1. This means that the set s X H(n), 
n = 1,2, . . . , N+ 1, is a linearly dependent set, and from the integral quation (5) that n X Hi(n), n = 1 , 1 , .  . . , N+ 1, 
must be a linearly dependent set. This i s  a contradiction, however, since the incident fields are independent ti! begin 
with. Hence, it is impossible for n X E to vanish on S1 for the N + 1 sets of measurements (at the same frequency); 
thus, at most N + 1 wts of measurements need to taken to eliminate St . In practice one may need to take only a 
few separate measuremnts (at the rune frequency). 

When more thnn one surface SI , & , . . . in addition to S,, exists for which the tangential components of the 
electric field vanitt,.es, the eigcnfunctions Puocisted with the volume enclosed by ,!& and &, where ,!+ contains 
Sl , must be a rul>set that belongr to the eigenfunctions of the volume encl\.aed by So and Sl since the fields are 
continuous across St. Hence. the uma number N + 1 of measurements is needed at most to el imiite S, as a 
possible surfarx of the obstacle. 



An alternative approach [Weston anfi Boemer, 19691, to eliminate the extra surface is to change the frequeqly. 
This is based on the result that the eigenfrequencies of a fixed finite volume are a discrete set. Hence, by makings 
set of masurements at a shifted frequency, S  will no longer appear as the result of the new measurement, pro- 
vided that the frequency has not beer, shifted to a new eigenfrequency. Theoretically, all one needs is the set of 
measurements at a frequency and at m infinitesimal increase in the frequency. In numerical practice, however, the 
problem of eliminating S l  as a contender for the scattering surface may not be accomplished by such a slight shift 
in frequency, since the effect of changing frequrncy may be to shift or perturb the surface S I . From a numerical 
standpoint the shift in frequency must be sufficiently great that the possible shift in the surface S I is large enough 
to detect numrically, taking into account numerical erron. 

INVERSE SCATTERING FOR SPHERICALLY SYMMETRlC BODIFS 

We now consider the case where the body is not ~ n l y  ~erfectly conducting but also dielectric. To obtain a 
solution using known techniques for inverse scattering, we consider the case where the body is restricted to be 
spherically symmetric, in which case the relative dielectric co~rstani e will be taken to be a real function of the 
radial coordinate R .  In particular, the body will be taken to be a perfect conducting sphere of radius R o ,  with 
dielectric coating of outer radius R , . 

The spherically symmetric assumption allows one to express the fields in terms of two scalar potentiah II. and 
x as follows with time dependence exp(-iwr) assumed 'ou: omitted. The spatial dependence of !he electric field is 
given by 

which for R > R, reduces to 

where k is the free space wave nunber. The assymption of a perfectly conducting surface at R = Ro imposes the 
following boundary conditions on JI and X. 

It can be shown that the scalar potentials must satisfy the following equations 



where 

For the inverse scattering problem, we would like to determine how the far field measurements can be separated 
out to uncouple their dependence on the two potentials, in which case the vector inverse problem is reduced to a scalar 
inverse problem. 

Before investigating this, we need to consider the incident field. Because of spherical symmetry we can fix the 
direction of the incident wave to lie in the direction of the positive z axis, and polarized in the x direction: 

It can be shown that this can be split up into two scalar potentials gicos 4 and 4, where 4 is the azimuthal 
iingle. as follows, 

with 

1 1 + cos ~ b + i k R  --( 1 - cos ~)e- ikR 
2 I 

It then follows that the scalar potentials corresponding to the total field have the form 

X = x(R,O)c- r 
For h' > R ,  , the potentials can be split into scattered and incident parts 

where @ is given by Eq. (14) and xi= @. f i e  scattered components will mtisi'y the radiation condition and thus 
will have the form for R --, 



From this and Eq. (7). it can be shown that the far scattered field has the form 

where 

EQi = +A-. 
a8 sin b 

We now conie to the problem of separating out the components f und g from far field measurer,~ents. If the 
far field scattering pattern is measured for 0 < 8 < n, and a fixed angle Qi which is not a multiple of n / 2  (otherwise, 
we would need two fuced values of Qi), Ee and EQi can then be obtained as functions of 8 .  From Eqs. ( 1  9) and ( 2 0 )  
we obtain the two fust-order differential equations 

1 d E ~ - G = -  -(r-fi+z@-n 
sin 8 

which on integntion yield, 

For the fW& t o  be nondngdar on the udt, the following must hold 

( 8 )  0 )  g 0 )  for 8 + 0 

8nd 

f ( ) O ( - )  g m 0 - )  fur 8 - n  

hence, the conrtmts of integration to be trlren will be 

f i O = O  and 8 , = n  



I t  thus follows 

sin 9 1 + cos0' 

The iar field components can now he separated out, giving 

sine I ICOSO' [El) * E4]dBl 
f(e 1 = $'- -- 

sin 0' 1 7 cov tl 

where the upper and lower sign is taken according as 0 > 8 ' or 8 ' > 8 .  Hence once Eo and E# are known for 
0 < 0 € n, f(8) is determiried from Eq. (25). The vector isverse scattering problem now is reducible to the following 
scalar inverse probism. 

Given that 

is a wlution of the equation 

subject to theboundary condition # = 0 at R = R,, , the problem is to determine r(R) from the knowledge of the 
far scattered field f (8)  when 

for an incident wave t i  of the form Liven by expression Eq. (14). 

By expanding the above solution in tmnt of the associated Legendre function Pi(cos 8 j involving the polar 
variable, the problem is reduced t f t  a clr.edimensiond inverse problem involving the radial variable. Hone, with 
knowk4e af the complete scatrered fkld for all frequr.ncks. c(R) cm be computed "airy the  elka and and Levitan 
approach [Newlon ,19701 . 

For the case when Re + s but the thickness of thc dielectric byer (R, - &) remains finite, a d  the measure- 
ments of the rcrttend ue m d s  in the rtu-zone back scattered direction, the thnedimentiond invene problem 
reduces to the one-dimtwmrl drb problem, wMch hu been treated elwwbere. 



This introduces the intermediate u s e  of obtaining a uniform asymptorlc expansion to the inverse scattering 
problem when RZ -+ 0. If a uniform asym~totic expansion can be obtained, withouf imposing stringent conditions 
on r(R), then correction teltns could be obtained to the slab apyoxirnation containing the effects of cuwture.  
&sent ray-tracing or geometric optkc tccnniques do this, but these dre limiteci to the high-frequency case where 
e(R) must be slowly varying. 

COMMENTS 

We have concentrated on the exact three-dimensional electromagnetic inverse scattering pt~blem. Al!hough 
in vractice the measurements required for the exact inverse problem appear to be out of the realm of practicality. 
the understanding of the exact problem gives a better insight into the limitations and errors when approximate or 
asymptotic techniques are employed, and can lead to further refineme..t of these m-'hods. 



DISCUSSION 

Kay: Khus and Mulkr related the spherical harmonic expansion of the scattered fwld to the sphere of minimum 
radius that would enclose the singuluities. Il.is sounds close to  your results. He did a similar thing for the 
electromagnetic case. 

Westun: Did he relate the behavior where t k  singularities lie with r a p c t  to the body shape? 

Kay: What hz did was not ; nsidered a boundary-value problem as such. He considered the far field thzt iesulted 
from sources of any kind and related the coefficients of that spherical harmonic expansion to  the minimum 
enclwiag sphere. The relationship to your problem has to do with the nature of the induced ; ~ u ~ c c s .  

Twersky: Bob Miller at Nw, showed for the twodimensional problem that the corresponding expansions for the 
circular cyiirlder the Hankel functions converge down to the axis and for the elliptic cylinder converge down 
:o the focal l i e .  

Utidentijiedsparkcrr Have you tried this? There seems to be a stability problem. You have the function only 
approximately at iniinity, how could aeterm!ne the body? 

Weston: The big problem is to get input data. It has been tried for the sphercid and gave better results than I 
expected. 
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7. SEISMOLOGY 

This chapter is conarned primarily with the earth's interior, although several of he techniques discussed are 
finding application in space science studies of other solar system bodies such as the Moon. The geophysical inverse 
prcblem is concerned with the invemon of seis1118c data to obtain profdes of parameters which describe the earth's 
irrterior. The techniques described heic have also found application in r a d i o ~ l t a t i o n  studies (Chapter 3), and 
certain of the techniques rely on the mathematical a o r i h n s  developed in the particle scattering (C;iapter 5) and 
ekctromagnetic scattering (Chapter 6) disciplines. 

R. A. Phinney organized and chaired the session rlevoted to seismology. The paper by G i r t  is a 
transcription, edited by Dr. Phinney , of the oral presentation. 



MONTE C A R W  INVERSION OF SEISMIC DATA 

Ralph A. Wiggins 

University of Toroilto 

ABSTRACT 

The a~alytic solution to the linear inverse pr c tlem provides estimates of the uncertainty of the solution in 
terms of standard deviations of corrections to a rarticular solution, resolution of pameter adjustments, and info~ma- 
tion distribution among the observations. Monte Co. lo inversion, when properly executed, can provide all the same 
kinds of information for nonlinear problems. "roper execution requires a relatively uniform sampling of all possible 
models. The ernense of performing Mcate Culo in= rsion generally requires stnttgier to improve the probability 
of finding passing models. Such strategies a n  lead to a very strong b iu  in the distribution of models examined 
unless great care is taken in their application. 

Here we examine the general invem! problem from the pin! of view of Monte M o  inversion (MCI). First 
~e describe the framework of simple linear inverse pt 3blems to estabhh the nomenclature and purpose of MCI. 
Next we will see that MCI b r natural alternative to thc d y t i c  inverse (AI). After a discusdon of MCI techniques 
and difficulties, we present a short discussion of the apklicabllity of MCI for determining the structure of the earth. 

This paper is devoted to r review of the principles of MCI and d x s  not include specific descriptions o i  
applications. MCI has been applied to various types of seismic &ta by several ruthon. Kdh3-Bomk a d  
Yanovskya [1967]and W&ns [I9691 have inverted hody wave observations. h s s  und M l e r  [1964]. Ress 
[1968,19700,b], and V. KdIr-Baok Md L. Knopoff [pmond communication, 19681 have inverted various 
comb~t ions  of body w e ,  surf- wrw and gravity &to. In addition, Andcnscn (19761 has wed HCI for 
estimating the conductivity structure of the d. 

Let us consider the c h  of inverse probkms dealing with the earth. We assume that we have measured 
m gross earth data(GED) 4, j -1, . . . , m. Backw ond Gilbert [1%7] define grow earth data aa any of the 
possible observations that may be relevant to r puticulu mlutim of the pnenl inverse problem of the earth. We 
a h  assume that we cur repremt the structure of the euth by n discrete panmeten pi, i= I ,  . . . , n Any 
invene problem depends then on exploiting an asu~yticrl (computational) relationship between the model parameters 
and the expected GED 

The object is 10 ffi3d set(s) of sdution prPomcten pi that will minfmlze the dif'fenna betweet. the observed and 
computed GED gi-gj . 

If the function f i0, i )  is Ilnw, we can find a completely analytic dewription of the class of satisfactory 
models, ths resolution of the parameters rad the information distribution among the grw, eanh data. If the function 
is not linear, then we uc: faced d t h  the choke of either Ifns- fi in the neighborhood of o particular rolution 
or resorting to altenute procedures such as MCI. 



ANALYTIC INVERSE OF LINEAR PROBLEMS 

The treatment of the A1 as expressed here is a condensation of a much more extensive survey [Wiggins, 
19721 . Other excellent treatments of A1 has been'stated by hckus and Gilbert [1967,1968,1970] and in other 
papers in this volume. 

Let us minimize the difference between g,! and g, by expanding the functional relationship in a Taylor's 
series 

whe I e 

We now have a set of m simultaneous equations to solve for the parameters Api . Clearly, one must be able to 
compute both the function f i ( p i )  and the partial derivatives or variationalparumeters a f i / a p i  in ordcr to effect 
a solution. 

Norc ,msider the matrix notation 

where the weights Si = o/od are proportiond to the reciprocal of the standard deviations of the GED and the 
weights oi are proportional to layer thicknesses or volumes. If we parameterize the model by dividing it into a 
set of layers or volumes and asr ign~n~ an average value to each parameter, then this specification of wi makes the 
length of the vectors AjW-I'a invuiant to the thicknesses or volumes rclected for parameterization. 

We can now write the simultaneous equations as 

Among these m equations, we will find some k independent relationships between A P  and AG where generally 
k <<n,m . Note that A ham been defined so that indices dong rows of A correspond to pnmcls r s  and indices 
along columns of A correspond to GED. 



Loncsoz (19611 hu shown that the matrix A W ~  can be factored u 

where U u e  column eigenwctors, A b a diagonal matrix of eigenvalues, and V are row eigenvectors: 

(Note that the V matrix here is the transpose of Lpncsoz' V mtrix.) 

The eigenwcton Vi have a simple geometric interpretation. The vector Vl is that vector whose dot yoduct 
with the rows of AW'S is rruximrl. That is, V, W - ~ A T A W - ~ V  T is a maximum subject to the constre.4 that 
V1 VI  = I .  T h u  V1 is a s o m e t r i d  aveh,,e of the rows of Aw- A . If r remove the component of the Aj 
parallel to VI , then Va is a vector that b most nearly parallel to the raminder, and so forth. 

We can thin? of the 6 as a reparameterization of the inverse problem. Each Vi represents a particular linear 
combination of the oid parameters. We define a new parameter vector of length k 

and, since the Vi are orthonormal 

AP = w-HvTAP* 

Substituting A = U A V W ~  and vwsAP= AP* into the simultureou, equations AAP= AG we find 

UAAP* = AG 

which has a leut-squres solution 

AP* = A-WAG 

Since we have weighted the simuluneou equations by the r e c i p r d  of the GED standard deviations, we can apply 
the theory of linear leut  squarer estimates [we, e.8.. Johmn, 1963, p. 106-1 103 to f d  the s tmdud deviations 
of the parameter adjustments 
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Generally, tnere are not k nonzero eigewalues and n-k zero eigenvalucs for the matrix AW-'I2 . Rather. 
the eigenvalues approach zero asymptotically. Thus we must choose some k based on the behavior of thc standard 
deviations okj . That is, we select an upper bound for the parameter standard deviations and then select k such 
that the solution standard deviations are not greater than that bound. 

Now let us examine briefly what we can say about the solution of the inverse problem based on the ao we 
development. We have determined a set of k adjustments to add to the model based on the eigenvectors I.;. . The 
size and standard deviations of !tie adjustments are determined by the GED and their standard deviations. Therr ate 
a set of' n-k Pee vecton Voi, i=l  . . . . ,n-k, which are orthcgonal to the Vi and whose coefficents are 
completely undetermined. In the linear problem, we can add any amount of any of the vectors Voi to the model 
pi without affecting the quality of the fit at all. 

Each of the k adjustments arc determined t y  a linear combination of the gross earth data. The particular 
combillations are give:] by the column eigenvectors Ui .  That is, U, gives the explicit linear combination of 
gross earth data that determines the coefficient for the eigenvector V l  . Thus we have also determined a set of 
k lir,ear relationships between tht GED. If any data value falls significantly outside these linear relationships, then 
our model is imprope:ly speci!ied or the observation is in error. 

The eigenvector: Vf and Ui can be further manipulated to estimate the resolving power and information 
distribution of the p-stlem. First consider the k parameter eigenvectors Vi .  The resolvingpowcr of a set of 
CED is determined by finding the smallest sets of adjacent parameters, thc average value of which can be 
determined uniquziy. The thicknesses of the corresponding x t s  of layers are said to be the resolved thicknesses. 
Clearly, since the k eigenvectors Vi detennine the total linear relationship between the parameters, we must 
explore the resolution properties by considering linear combinations of the V i .  There are a number of ways of 
finding particular combinations of the Vi that maximize a set of adjacent parameters while minimizing all the 
others. A consideration of all such ccimhinations will then map the resolution distribution in parameter space. We 
can make similar manipulations on the cigenvectors Ui to determine adjacent sets of GED that provide equivalent 
iaformation. All these types of analysis should be performed for a complete description of iny particular linear 
inverse problem. 

MONTE CARL0 INVERSE 

Suppose that we have a particular solution of an AI problem Po = [pi . . . pnj together with the 
eigenvectors Vj and their standard devirtions o; as determined in the last section. Further. let us assign (large) 
standard deviations od; to the free vectors V d .  Let us then generbte a set of random n:odelr Pi, i = 1 ,  . . . ,1, 
by adding rarjom amounts of each of the vectors Vi and Voi tc the particular solution. Tht random coefficient 
for adding each vector will be constrained to have zero mean and a standard deviution of 07 or o:i 
respectively. 

The object of this exercise is to realize that we can recwer the eigcnvectors Vi and Voi and their stdndard 
deviations of o?d 02 from the models. We simply form the model matrix 

If the standard deviations were distinct values, then the eigenvalues of this matrix will also be distmct and will be 
proportional to the standard deviations of and 02 (arrmneed by descending numerical size) anJ the eigenvectors 
will be equal to the corresponding vecton Vi and Voi. Note that here the best aetermined vectors have thc 
largest sttndrrrd d..whtions as o p w d  to the andysh of the A matrix in the l u t  section. 



If for each of the models Pi we hrd ccmputed a vector of gross earth data Gi = !fl (PI ) . . . fm(PI )I we 
could dm recover the ~; ,r  vecton from the row cigenvecton of the matrix 

Henr , we see that ~iven an adequate sampling of random models, all of which are solutions of the inverse problem, 
wr can estimate the qme quantities that were determined by the analytic inverse: an average solution, the standard 
de riation of the parameter estimates, the resolving power in parameter space and the information distribution among 
tht GED. In addition, we m y  be able to establish absolute bounds on the range of parameters. 

In principle then, MCI is completely equivalent to Al. Both approaches have basic dil'licultles. k requires 
the abllity to compute the partial derivatives af;.Iapi and that these derivatives remain nekrly constant thvoughout 
the model space. MCI can completely avoid the problem of computing the derivatives. Thus the linearity of the 
derivatives is of little or no consequence to the solution. We must, how eve^, obtain an adequate sampling of the 
model space and therein lies the diff~ulty. Before discussing these difficulties, let us consider a formal statement of 
the MCI procedure. 

In MCI we begin by establishing a space 4 of possible models and reek to fmd the subspace Pa of allowable 
models. We will consider here only models which are specified by a set of n parameters pi. Generdly, the bounds 
of this space are defined by upper and lower limits on the values of the pi; however, much more complicated limits 
can be established. In the simplest implementation of MCI the search consists of the following steps: 

1. Generate a random model P, in the space 4. 
2. Compute the corresponding GED G, 
3. If the difference between the computed and observed GED are less than some fixed multipie cf the 

standard deviations of the GED, a n  add the model P, to a list of successful models. 
4. Return to step 1. 

The dinct application of the algorithm just describad to molt red imam problem is prohibitively expensive. 
The ratio of pudng models to rejected models is usually v q y  d, and the cost of computing tL corresponding 
GED is often significant. Mort researchers attempt to mlve this problem by increasing the number of constraints on 
the mdel  gtnention procedure or by factoring the problem into sequential mgmants. If certain CED are affected by 
only a unaU segment of the m& ' , then that vgment is regenerated until dl tho CED involved are satisfied. The search 
then prom:& to a now wgncnt, which qabt is rwnemted until tk new GED involved are s a t i s M ,  md so forth. This 
procedure greatly faciiitutes finding mo&b but m y  skew the distribution of models rlrjicrlly. 

Let us considst a simple example. Our model will consist of eight parmeten pi, i = 1, . . . ,8 ,  with the con- 
struntt that pi = 1, . . . ,8. Thus the panmeter space P can be represented by the squares in figux 1. The only 
constraint that we phx on the passing models is ttut the piruneters be monotonically increasing: pi >pi-]. This 
restriction can be considered dther a firther cowtnint on the model generation or a bet of GED. if we take the 
latter approach, then the MCI consists of generating sets of e w t  uniformly distributed (preudcl) random h~tegers 
lying beruren 1 and 8. We then check to rsc if there numben are monotonl.,rlly increasing. Clearly, the probability 
of finding such r;..delr is very rmd (approximately 0.003). After much computation, we wodd find that the p r h .  
bility distribution for the patsing model8 would be rr ir shown in fyom 1(a) [W@IU, 19&]. Mort of the mr&ls 
occur neu the h e  pi f ,  a d  v a y  fcw occur MU the oppodte comers. Ihls illustnto the patest  werkness of 
MCI: the probable distribution of p-4 modeb my hrvr little or no vhtion3Pip to the total of possible 
models or to those mod& whldr, m y  be phydcdly meurinsful. To fully explore thc ;pace of possible models for 
this example, r4e would need to exsmint more than 75,000 models! 



Of course. we can improve the efticiency of the 
search by a factor of 300 simply by corlsidering the 
monotonic criterion as a constraint on the generation of 
the models rather ihan as GED. That is, we will only gen- 
elate rnodels for which p i  >pi- l .  After the generation 
of ehch pi .  we will consider only valucs of pi+ 1 which 
are > p i .  If we use a uniform probabil~[y distribution 
for generating each p i ,  the di5tr;bution of passing models 
will be as shown in figure I(b). Nearly all ihc inodels lie 
near the upper limit of the range of poshible models. This 
distrihutii)~ has eveq less relaticnship to t i l ?  flrll range of 
po\\ible ~iiodcls than did the distribution in figure I(;:! 
n l c  skew~ng ol' the iiiodel distribution illustratcd in this 
exan~ple is a necessary consequence of segnienting the 
search for passing models. Segmenting can certainly 
vastly improve the probability of finding passing models, 
but the distribution of :.~odels found niay be very dif- 
fcreiit from whst would be generated without selgnenta. 
tic~ii. The degree of skewingdepends on the number of seg- 
iiients and their interdependence. In this example. each 
parameter represents a separale segnient and thc segments 
are strongly interdependent. Since we know tlie solution 
distribution for this example. we Lriow how to alter tlie 
probability distribution for generaung cach pi so that we 
can obtain a set of models with the distribution shown in 
figtire I(a) Ih'im'ns. 19691. In general. howrver. the 
purpose of  MCI is to investigate the distrib;.,lon of mudcis. 
arid therefore we do not have such yreknowledge and 
,:annot compensate for the effects of segnienla!lon. 

This discussion can best be sumr~arized as follovis. 
The distribution of models examined is strongly affected 
by the parameteriz3tion and  constrain!^ i ~ p o s c d  or .be 
generation of the models. A successful M::l procedure 
must be capable of  generatirig a large proportion of model5 
that span the range or'successfu' models with a relatively 
llniform probability distribution. Such a desideratum can 
seldom be realized ior models that reqilire a large number 
of parameters for their specification 

E;~;trs-Burok and Knopoff [personal comml!nicaticlij 
have prbposed an dtcrnalive MCI technique cailed "hedge- 
hog" that avoido soine of the problems of model distribu- 
tion. In their scheme each parameter i3 allowed to have 
discrete valu.?s only. They perform a random search until 
a passlng model is found. Then they change the search 
s t ra tcy  to  t h ~ t  of examining all nearest neighbors to  pass- 
ing models until they have explored the entire space of 
passing models. This approach fo'!ows from their belief 
that one rtlust hwe all pcesible passibig nlcdels available 
hefore one can adequa'.ely describe t6e statist~cs of the 
inversion. 

PARAMETER NO. 

PARrMETER NO. 

Figure 1 .  Probrbrht: :-strit\tt!!~ns of random ~tlodel. which 
c%ndst of ekht prnmea. .;. t a c h  parameter pi IS rrstric*cd 
tc d~scretc intqcr ra:i*i. octwecn I and 8 such that pi 5 

The upper portion show: !ha !.;:I'.\G:~c:: f a  a 

random sampling of *I! poss~bic mcdelr. The lower 
. .rt1011 show(, s b i d  distr~but~on p~odu~.ed by Improper 

wn:!,;~. 



APPLICATIONS 

Seved . tars ago, the FJIC of thumb for inverting CED - ?s that the vuiational panmeten for surfnce waves 
and fres odcihtions were r~fficiently linear so that A1 could be used. md that the variational pmeters for body 
wavctu sononhear hat MCI must k used. This picture'is lets clear today. The ring: of models for the upper 
mantle a suficn,,:; krge that I& all these modds can be derived by li-. pciturbations fmn? soae "avenge" 
model. On h e  dz: hand, as shown by jui&n and Johnson and Gilbert h*er iii tius chapter, A1 ct? be used 
for body waeS, #t krd for certain well* puts cf the earth's interior. Frrther, Keilis-Borok and his 
c o b p s  k- WSW a nonlinear mdytic i-~ that cu; !!e extentbd to phcc &salute bounds on the 
mqc of pr- mcdds that is1 k &tab& f- 3 body-wave data. Thus, x.hexas MCl m y  have become 
obde:e for In\ z t i ~  body-=. ';ED. it 512 i ?!! only pnctial approach to i n v e ~ ~ i q  surface wave GED. 



DISCUSSION 

Subariet.- Caul+ yougive computer time examples for several methods. iay, Monte Carla. hedgehog r ~ t h o d s .  c-c . .  

in seismology? 

Itfggi~rs: I can oniy give a qualitarrve answer. The hedgehog ntethud is an approach to MonteCarlo espoused by 
Kc~lis-Borok and Knopoff. You only u s  a randont search unt'l you find a part i~uhr nlodel that passes and 
then make the values of the parameters discrete and investigate the space .>fall possible models that are 
neareFt neighbors to passing models. -4s regards time for inverting, the Itedgehog or straight hlonte Carlo are 
very ~tspr.sivr Contpred to analytrcally :omputing the range of -wss~bl-. models its an ~nrposslhle ioinparl- 
sun. To get tho: envelope takes a trivial tml:. 

,!loses: The use of the amplitudes of the wdves suggests. fro111 electromagnetic: analogs. that you a n  go beyol~d 
turning points. Is !his trlx? 

ItFg@~a: Ttut'> right. ?he Abel equation approach to inverting has been extended by Gerrer and Markishevich 
to include low :elocity rones. We do no! need to deal with models that dre monotonically inc~easlng. There 
is a certzin ambiguity in how you construct these rones. however. 

Gross: The travel tine against distrance data 1s obtained from various stations that are dl:~rlbuted in sortie ILshion 
an5 may have entrrcly different aspects reiative to the epicenter. From one earthquake to another you may 
have waves arriving from different directions at each individual station. Yet you interpret them as if they are 
ail on a line. Is that right'? 

Wiggins: We make the assumption t h t  the earth is radially symmetric and then subject the observations to a 
number of incompkle corrections which we think we know. 

Crc)ss: How sensitive are the bounds on the model to the radial resolurion that you allow? 

Itfg$vts: Qualitatively, the widest bounds are those for models that a;e cassinated (stairstep). When we force the 
model to have smoothly varying velocities. we have a redu,-tion ~f maybe two in the total area of that space. 
However, it is not clear from physical grounds that the earth has to have a smoothly changing velocity. 



BACKUSGILBERT INVERSION OF 

TRAVEL TIME DATA 

Leonard Evans Johnson* 

University of California at San Diego 

ABSTRACT 

This paper describes the application of tic BackusGilbert theory for sophysical inverse problems to the 
seismic body wave travel-time problem. In particuhr, it is shown how to generate earth models that fit travel-time 
data to within one standard error and having generated such models how to describe their degree of uniqueness. An 
exampk is given to illrntra te the process. 

INTRODUCTION 

In this paper I wiU describe the application of the BackusCir t  theory for geophysical inverse problems 
[1967,1968,1970] to the seismic body wave travel time problem. Given a set of measured travel times for the real 
er-th frcm a particular sour* to various surface locations, what is the seismic velocity as a function of depth? 

The traditional method of inverting travel time data i s  due to Herglotz and Wiechert, who observed that in the 
case of a spheiical earth, with the velocity v a function of the radius r alone, if v(r)/r increases with depth, the 
inversion amounts to solving a form of Abel's integral equstion. An ekmentary solution is given by Jeffrys [I9621 : 

where p = dT/dA, the derivative of the travel time curve; p ,  is the value of p at A = A, and is also equal to 
r, Iv, for the seismic my that has its dcepe~t point of penetration at r, ; a = radius of the earth. Now p is a known 
function of A, and Eq. (I) thus determines r, conesponding to A, and hence to r, / v l  and so detem:ines v as a 
function of r. 

The Herglotz-Witchert method is subject to several limitations. First, the method requires that p = dTldA be 
known for all values of A from 0 to A, . This requirement cannot be met in the presence of a shadow zone in the 
interval 0 to A, in which there are no arrivals of t L  particular seismic phase being considered. Shadow zones are 
caused by regions in the earth where the velocity decreases with depth at a rate such that dvldr > vlr. That the earth 
has such a region, at least for shear waves, was convincingly demonstrated by Dormrm, et al. [1960]. Another diffi- 
culty with the requirement of a complete travel time curve out to the distance range of interest is that there may be 
multiplicities in the curve. These multipliatics are caused by regions in the earth where the veiocity increases with 
dqpth at a rate such that ray, penetrating to different depths are refriaed to the same location on the surface. This 
is not a theoretical ditficulty provided that dl the later arrivals are taken into account. In practice, however, the 
time intervals betwren t b  different onivals at a given distance in the presera of a multiplicity in the travel time 
curve are usually very short and cannot be satisf~ctorily resolved. Seco~d, since the slope of the travel time curve is 
required, the data are usually smoothed and fitt with a c u m ,  which is then numerically differentiated. This 
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process strains the data in that a large amount of data closely spaced with respec: to epicentral distance is required 
for accurate slope information. A more fundaniental consequence of the finite amotint of data available at any glven 
time is that it leads to a gross nonuniqueness in the solution to the problem. Backus attd Gilbert (19671 prove that 
the set of earth models which exactly fit the observed ikata is either empty or an infirite dimerlsional manrfold. Third. 
the method does not take into account observational errors in the data and the effect that these errors may have oil 
the solution. 

The Herglotz-Wiechert method is valuable in the sense that, in the absence of low-velocity zones, it estahlishes 
the existence of a wlution to the seismic velocity inverse problem. Moreover. Gerver and hf.:rkushevich 11966. 19671 
have proved that if we are given an infinite amount of perfectly accurate travel time data at all distances from sources 
&eve and he!~.w r!! tk !ow ve!ocity zones. a solution exists and is c~ique except ir! the !ow velncity zones themselves. 
It is always comforting to know that a solution to an idealized version of one's problern exists and is unique. 

The Backus-Glbert method of inverting travel time data is not subject to the limitations nlentiorlrd above. 
There is no need of s complete travel time curve, there is no need to fit the data with a snrooth curse before invert- 
ing. and th: Backus-Gilbert method takes observa;ional errors in the data into account. The method exploits the 
nonuniqueness of the problem to generate solutions that fit the data and, most important. it allows us to make a 
quantitatrve statement about the degree of nonuniqueness of the solutions. 

INVERSION TtlEORY 

We consider spherically symmetric earth models in which the velocity is only a function of the radius r. We 
may think of earth models a; members of a Hilbert space in which the inner product of a pair of functions m.ml 

1 

is defined as (m.ml) = m(r)rnt(r)dr and a norm as nlln 1 = (m.n')"'. To zpply the &ckus-Cilbert method 

we must find, to first order, the change in the travel times 6 T produced by a small change in the velocity 6v(r;. 
Following Backus and Gilbert [I 9691, the travel time of a group of nondispersive body waves from a source p ,  to 
3 receiver p2 is given by 

where ds is the element of path length. According to Fermat's principle, to first order in 6 v, we have 

If we introduce spherical polar coordinates, radius r, colatitude 8 ,  and longitude 11 ; choose units so that the radius 
of the earth is at r =  1; and consider the ray path from r =  1, 8 = 0 to r = 1, 9 = A ,  h = 0, we have IBuNen, 1963) 



where rp  is the minimum radius reached by the ray, q ( r )  = rv(r)-', and p = v-'r sin i is called the ray parameter, 
which, according to Snell's law, is constant along the ray. The angle i is the angle between the ray and the locai radios 
rector. At r = rp,  i = 90' and p = rplvp whew vp = v(rp>. 

We can relprd 8,  the travel time calculated from a given model v ( r )  at epicentral distance Al , i = 1 ,  . . . , N, 
as a nonlinear functional of that model. To linearize the problem, we appeal to Frbchet differenuabiiity of the func- 
tional Ti. Then, correct to fist order in the small quantity 6 v ( r ) ,  6 Ti is a welldcfined linear functional and we 
write Eq. (4) as 

where Kj(r) is the ith data kernel or so-called "FrCchet kernel" and is defined as 

K = - 2  v )  [ ( r  ) - p 2  ' , r$ < r C I 
< 

In the nonlinear case, the data kernels are different for different Earth models v(r). 

It is often preferable to consider a relative perturbation to the model rather than an ab~olute one. If we define 
Ci(r)  = v(r)Ki(r)  imd m ( r )  = Sv(r)lv(r), we can write Eq. ( 5 )  as 

1 

I q  = 1 Gi(r)m(r)  dr 

and Ci(rj  isnow our data kernel for the model V(r )  = In v(r) ,  i.e., m ( r )  = 6 V(r) = Gv(r)/v(r) .  

Now, the Backus-Gilbert method requites the data kernels to be square integrable, and it is obvious from Eq. 
(6) that this is not the case for Gi(r). To remedy this situation, we integrrte Eq. (7) by parts o n a  to obtain 

Associated with each travel time ii9 an observational error that we assume has zero mean and variance o: 
If we consider 6 5 rl the difference between the observed trawl time for the real earth y b s  -L ui and the travel 
time calculated for a particular model qcd. and define r i  3 T ~ O ~ S  - 7''d we canwrite Eq. (8) as 



Our objective *low is to determine m(r)  from Eq. (9) given a finire wmber of kcown y i  2 u i ,  i -c ! , . . . R: 
Formulated in this way, the problem is ill-posed in the sense that the solution is not unique. We can take advantage 
of this nonuluqueness if we are willing to accept any m( r )  that is a soiution to Eq. (9). A method proposed by 
Bockus and Gilbert [I9671 f o r  choosing a solution is to find the model that satisfies Eq. (9) clnd is closest in the 
least-squares sense to a starting model. In partlctllai, we seek to minimize 

subject to the constraints Eq. (9). This is a classic problem in the calculus of variations. and if we introduce Lagrange 
n~ultipliers vi and carry out the minimization we have the solution 

To determine the Vi we substitute Eq. (1 I) into (9) to obtain 

We define the symmetric inner product matrix 

and writr: Eq. (12) in matrix form as 

We notice that the system of Eq. (12, or (14) would be much simpler to solve if the Gi(r) Were orthogonal. Then. 
the matrix A wwld be diagonal and Eq. (14) would be a system of linear algebraic equations, one for each pi. Since A 
is symmet;ic and positive definite there is a linear transformation that diagonalizes A and simultaneously diagonalizes 
the covariance matrix E..  of the observed data [Gilbert. 19711. Usually, we assume the data have independent stan- 
dara errors oi lo that 4. is already diagonal, but this may not be the case. Follcwing Gilbert [;97 1 1, we let T be 
the matrix of ihc diagonddng transfo~mation and the transformed version of Eq. (14) becomes 

-C - 

( T . 7  - A - " ~ )  < T . V < C T . Y + A - 1 1 2 )  

where A-' is the transformed diagonal covariance matrix. 



When the data kernels are orthogonal, we have from Eqs. (10) and (i 1) 

Thus, the minimum in Eq. (16) occurs when each (T V) i  i1 Eq. (15) is as small as possible. We write the 
expression 1 = (T *Y -A-I"), a = (T  *Y + A-'!*), C = T P and we have 

When Pi > 0 we take Ci = P i ,  when ui < 0 we take ci = ui and Ci = 0, othtruist. Gilbert (197 1 ] shows 
that the element: of the transformed covariana matrix E are the invem eigenvalues of the nlatri. i t i j  ; A~!U!-' . 
Thus, the transformd data can be ranked according to standard ertar; that is, large eigenvaiusr of Q correspond to 
transformed data with small standard error. This allows us to keep track of the grcwth of the perturbation to the 
model in Eq. (16) and to reject rhose transformed data which have standard errsn that are larger thin we wish to 
consider. 

Once we have iound the v i s  from Eq. (17) we calculate m'(r) from Eq. (1 1) and integlate once to get 
m(r) = 6 v(r)/v(r). 'Ihis integration produces a very smooth perturbation 8 v(r) to the model. We nc:v have a new 
model v(r) + 6v(r)  from whlch we can calculate new travel times to compare with !he observed travel limes. Since 
we have linearized the probkm, ;he new calculated travel t ims may not agree with the observed travel times to with- 
in one standard error, so we repeat the process outlined above. The process S.ouid converge provided the initial 

of t i  = 50bs - TP armot too luge. 

RESOLVING POWER THEORY 

Now that we haw a method for generating models that fit the ubtewed &ti, ~ h r t  can we say about their 
uniqueness? When we have onl, a fini:e amount uf data we cannot expect to rcsolve details of arbitrarily sr:d 
scale. The best m can hope for is that our data provide us with an estimate of the trri- value of the model. at any 
particular radius that is in some sense a smoothed or averaged version of the structure around that radius. 

Neglecting e m n  in the data for the moment we have 

If we wish to consider linear aver*, of m(r), we have 

We would like to chooa the constants q in Eq. (19) so that the function in quare brackets is localized around some 
value of the ndiur, say ro . In other words, if we define 



we would like A(r, ro) to resemble a Dlrrc delta function centered on ro ; if this were possible, Eq. (19) would 
simply give m(r,). the exact value of n ~ ( r )  at ro .  As mentioned above, it is impossible to construct a perfect 
delta fiinction with ,nly a finite amount of dsta, but by choosing the ai carefully we [nay be able to do a good job 
of approxin:~til!g a del!a function at t o .  Then Eq. (19)  would give us 

where < n:, A > is a smooriied c.r avciap? ve-:ion of m {r) around ro . The averaging length would correspond to 
the width of A(r, ro)  at ro .  

How can we choose the a, so that A(r, r n )  is an approximation to a delta function'? Backus and Gilbert 
have investigated several so-called "6-ness criteria," which are numerical measures of the difference between A(r. rO)  
and a delta tunc~bc .  nne such measure is 

with the condition that 

The ai are found by minimizing Eq. (22) subject to the condition (23) 

The criterion in Eq. (22) is not the most appropriate one to use in the travel time problem because the data 
kernels Gi(r) i~ the expression (20) arc not square integrable. However, the 

are square integrable and so an obvious extension of Eq. (22) is 

where H(r - ro) is the unit step function. Suppose A(r, rO)  were the "box car" function-that is, 



then 4 = Q. Thus, we see that 4 b a measure of the width of our averaging function A (r, ro ) ,  which we will call 
the "spread." she criterion Eq. (24) is an example of a linear "quelling" of a discontinuous linear functional 
described by Buck  [1970]. Ona we have found the constants y from the minimiution of Eq. (24) subject to 
the condition Eq. (23) we can calculate the amoothed or aver@ version of m(r) from Eq. (21). If m(r) has any 
fine-rcrle structural detail with wavelenm r d k r  than our measure 4 of the spread of the averaging fvnction 
A(r. ro), we will not be able to r # o h  it. l'lb is an ineviuhk consequence of the finite amount of data we have 
available and the spread 4 ia a quantitative measure of the uniqueness of our inversion. 

So far, in discussing resolvinls power, we have assumed prfectly accurate data. What effect do the observational 
errors in the data have on tht rcsoking power? If the data have observational errors A Ti, then it is easy to see from 
Eq. (20) that there erron produce an error A < m, A > in our averaged value of m (r) at ro given by 

it ir c!rar that a highly localized avenge of m(r) at re is not very useful if the rissociated error in the averagt in 
Eq. (25) is large. We wli-id be willing to accept an average with a slightly larger spresd if we could reduce the 
error in Eq. C5) appreciably. 

Now we don't know the A T,- exactly, but we assume we h o w  something iboui 2 e i r  statistics. In particular, 
we assume they have Bra mean and finite v a r h a  : that is, we wurnc that the covariance matrix 

exists where E 1 1 means expected value. We take the square root of the v u i 8 . u ~ ~  of A < m , A  > as m estimate of 
the error we make in alculating < m, A > with erroneous data, all it a .  Y e  k v e  

or in linear opentor notation 

For a precise definition of the notation see B o c k  and GUbnr [1970]. 

Sirnilrrl.y, after lome Jpbnic manipulation, we cm write Eq. (U) u 

where 



and the condition (23) as 

Our object is now to find the a that minimize both th? spread given by Eq. (28) and the error in the average of nt(r) 
given by Eq. (27) while satisfying the condition (30). Clearly, we cannot minimize Eqs. (28) and (27) with the same 
set of a but Backus and Gilbert [I9701 sl~ow that we can minimize a linear combination of the two. Consider the 
combinat~on 

where 0 is a parameter ihat runs from 0 to n /2 .  When 9 = 0 we are minimizing spread and when 0 = n / 2  we 
are minimizing the error i : ~  the average of m(r). Backus and Gilbert 119701 prove thdt as 0 goes from 0 to ni 2 
the curve c 2  (A),  called the tradeoff curve cii error versus spread, i s  a monotonically deireasing functiun of b ;  that 
is. we can lower the error in the estimate of <m. A >. by willingness to accept a larger :;.1;-1. 

Minimizing Eq. (31) leads to a systetil of equations for the a of :he form 

where 

Qij = 12Sij cos 9 + Eij sin 9 

There will be a differerit set of a for each value of 8 on the tradeoff curve. Once again, the system Eq. (32) would 
be much simpler to salve if Q were a diagorrai matrix; and once again we C ~ R  use the diagonalizing transformation 
davelopd by Gilbert 119711 to simultaneously diagonalizc S and E.  

To summarize briefly, at each radius ro where we wish to calculate <m, A > we minimize Eq. (31) subject 
to the conditicn (30) to determine the a's at each point on the tradeoff curve. At each point on the tradeoff curve 
at r0 , we calculate the spread 4 by Eq. (28) and the error in < m, A > at ro by Eq. (27). 

RESULTS 

Most of the results of the inversion and resolving power calculations using body wave travel time data will be 
published elsewhere. Huwever, one example is given to illustrate !he method. 

Figure 1 shows a starting model for the inversion of a set of data consisting of 70 Y-w~ve travel times from 
25" - ( lo )  - 94" taken from E d e n  and Clark 119701, and 30 PCP travel times from 15" - (2") - 73" taken from 
Hem'n et al., [1968]. 

Figure 2 shows the result of the fifth iterate in the inversion prcass that fits the data to within one standard 
error (standard errors of 0.5 sec were taken for the P and PCP data). Evemden and Clark's travel time curve (EoSI-I 
in their paper) consists of a series of matched straifit line segments. As a zault, there is considerable detail in the 
final model which fits t, is data. The perturbations in vclocity evident in figure 2 between r la  = .55 and rla - .85 
are on thb order of 241 over distances of 100-200 km or greater. The question now is, are these details resolvable? 



Figure 3 is the resolving power map for this model, which shows the contours of spread or distance over which 
we must avenge the model to achieve a desired level of relative error in the estimate of the velocity at any given 
radius. The values of spread are given in fractions of an earth radius. For example, we wish to know if the detail in 
figure 2 is resolvable. Since these velocity jumps are on the order of 2% we follow a horizontal line across figure 3 
at the 1% level to we over how much distance the velocity must be averaged to achieve such an accuracy. As we see 
from the figure, frcm r la  = 0.55 to r / a  = 0.85 the spreads range from 40 k n .  to about 130 km. As we near the 
surface, the spreads get much larger, approaching 640 km. This is due to the fact that only P data from 25' on out 
was  used, and these rays only begin to bottom at about 460 km. depth in this model. So, if we average the model in 
figure 2 with the spreads we obtain between r,'a = 0.55 and r la  = 0.85 in f ig~re 3 at the 1% ievel, the detail will 
not be lost; we say that it is resolvable. 

Note that we have not made a statement about the real earth yet. Bockus and Gilbert (1968, 19701 show that 
only if the real earth is linearly close to our model, in the sense in which we have linearized the problem, will it have 
the same linear avenges as OUL model. 

rla 
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Figure 4 is a picture of the step functions con- 
structed from linear combinations of data kernels u ing 
the criterion in Eq. (24) .  The step functions are pictured at 
various points from 0 = 0 to 9 = n/2 along the tradeoff 
curve at r / a  = 0.7 for the model shown in figure 2. 
Recall that near 8 = 0 we are minimizing spread so the 
step functions are very steep and the resulting "delta 
functions" would be very narrow. Near 9 = n / 2  we are 
minimizing: error SO that the step functions are more 
gradual and the resulting "delta functions" are wider; 
that is, they have more spread. 
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Itrrkc The method you are usinl), because you've linearized and made various approximations, doesn't depnd 
stri~tly on the data available. You can map the data in any way you like that is more convenient. as you've 
done. Yco can map it into a more convenient form to avoid triplications; for example, you can rxplait the 
fact that you kac . that the curve of the matched da:a is piecewise continuous. Thus, you incorpo.dte 
assumptions and remove the difficulties of interpretation. Having a general method available means you aren't 
dependent on the tyje of data available. You can map it, always under the abwmption that linearity is a valid 
assumption. 



THE BACKUS-GILBERT METHOD A: . . ITS APPLICATION 

TO THE ELECTRICAL CONDUCTIVITY PROBLEM 

Robert L. Parker 

University of California a t  Sari Diego 

The theory of Backus and Gilbert g. - .  a technique for solving the general linear inverse problem. Observa- 
tional error and lack of data are shown to reduce the reliability of the soiution in different ways: the former 
introduces statistical uncertainties in the model. while the latter smooths out the detail. Precision can be improved 
by sacrificing nsolvhg power, and vice versa, so that :ome compromise may be made between the two in chw rng 
the best model. Nonlinear inverse problems can be brought into the domain of the theory by linearizing abuut a 
typical solution. 

The inverse problem of electrical conduct:v~ty in the mantle is used to illustrate thc BsckusGilbert technique; 
an exrmp!e of the t~adeclff diagram is given. 

The most general theory for handling inverse problems that we have today is that of kckus  and Gilbert [Boc.kus 
and Cilkrt 1967, 1968, 1970;&rckus 1970a.b.c]. This work has pined the reputation of being mathematica!!~ 
very difficult. However. it is not the basic cuncepts ;hat are difficult. Rather, to make their exposition rigorous and 
general, the original authors needed powerful mathematical weapons that are not in the armory of the average geo- 
physicist. The situation is analogous ro that of quantum mechanics: Von Neumann rigorized the subject by usi ,: 
the theory of unbounded operators and specizl theory in Filbert space, but undergraduates grasp the basic ideas of 
quantum mechanics without this apparatus. Backus al;i Gilbert also use Hilbert space LO develop their theory, but 
we shall not need any such profound mathematics here. 

What is a~ inverse problem? Suppose we have made measu-ements of the ma~jneti~ field of !he ear&. What 
does this tell us about the magnetization of surface rocks? Or given a set of normal mode frequencies (the frequencies 
of free oscillation of the earth observed after the largest earthquakes). we would like to find the density and seismic 
velocities as a Function of radius. These ale typical geophysical inverse problems; they are attempts to infer properties 
of the interior of the earth, which is inaccessible to us, from measurements made at thi: surface. The general procedure 
in such problems is to construct a model of the earth that possemes the same extemcl observables as those measured 
in practice. With modern computers this is no longer a difficGt task. The real difficulty is in knowing how well the 
data determine the property we are seeking. For example, it is well known that measurements of the external gravity 
field of the earth do not determine uniquely the density within it: there are infinitely many structures, wide!y differ- 
ing from each other, which all give rise to the same field. This is the sort of problem that k k u s  and Gilbert have 
solved and, what is more, to which they have brought a great deal of insight. 

THE BACKUSGILBERT TECHNIQUE 

The Data 

We first deflne the observations to be the N real numbers 7, = 1,2.  . . . , N ,  where N is finite. Clearly. in 
the normal mode example, we will always have a limited number of measurements. But what about the case of 



magnetic data recorded on a strip chart? Then we have a continuous function. How can we pretend that an adequate 
representation is obtained by N numbers? Then are two ways to answer this objection. The first is the frivolous 
suggestion that since we now always process our observations on a computer, which cannot hold an infinite number 
of samples. we must be siltlsiizd with something kss. This suggestion dodges the issue because we have aopealed on!y 
to the practicd nature of data processing. one might ask whether continuo-as records slt,z!d be digitized so closely 
that the number of samples is as large as the available computer memory permits. 

It is more pertinent ' 3  appeal to the practical nature of measurement. All recording instruments h v e  a limited 
bandwidth, and all records are finite in kngth. It is dear that our continuous chart rxording coulii be Fourier ana- 
lyzed (there is no problem about exis.ence of the Fourier series here). m d  coefficients corresponding to frequencies 
higher than the Instrument cutoff must be useless. Thus. a finite number of n u m k n  ( the N accepted Fouricr 
cmfficients) represent the original continuous curve adequately and can be used as the data yi. In time-series ail* 

lyis. this is called choosing the proper Nyqust frequency to samp!e 311 the information. 

DELTA FUNCTIONS 

Suppcse we non have our data, and for the present assul~ic !key are exact-no experimental error. Let us take 
the problem of determining a property in the earth as a function of ra&:~, assumlng no angular dependence. F~r ther-  
more. we initially consider a linear inverse problem: this means the observable depeiids in a linear way on the property. 
Under these assumptions we can write 

where m(r) is the property and Gj(r) is called a data kerne!, oce for each observabk. A sinlple but instructive 
example is to make m(r) the density and Ti the rx&b  omp pot lent of gravity at radius Ri from the center of the 
earth (Rj >a). Then 

where G is Newton's gravitaY~nal constant. We see at  once 

s~td  the problem is, of mum, linear. 

Now let us return to the more general radial property m(r). The only thing we know about m is the set of 
measurements 7,. How can we l&e this information to points within the earth? Backus and Gilbert make the 
following suggestion: consider a linear combination of y j  given by 



From our linearity assumption we have 

Now suppose we could choose the constants a, so that the function in square brackets w2s a Dirac delta f u n c ~ ~ o n  
centered on ro . Then L would simply be m(ro) .  the property we want at the position ro . !n geocial. it is 
~lnpossible t c  get ideal delta functions. but by choosing our coefficients a, carefully we might be able to find a 
function that is concentrated strongly at ro . How d o  we chcasc. ai to p:ovide approximlit~vns to  a delta function 
at various radii'? Backus and Gilbert define a numerical measure of "difference from a delta function" and nlinimi~e 
I!;;> nuniber by varying the coefficients a,. For example. they investigated these two measures: 

w t h  F(r)  d r  = I .  The masu iz  D, is essent~aiiy a mrrn  q u r e  deviation, the other is a more sophisticated 
0 

criterion, but I think one can see that if or D2 can be made small, the function F(r) will have a large  pea^ at 
ro and unit area under it. Other cri::ria are possible but the two above have proved useful because they yield simple 
equations for the coefficients ai. 

Having decided on a criterion and performed the minimization we wili obraiz for every radius ro a set of a, 
and correspcnding t o  it an estimate of the property m(ro) given by 

So the information we gain about the property m is a smoothed version of the actual structure; the real profile has 
been convolved with the hest "delta func.tionW we can find from linear combination of the Gi. If there is detailed 
siructure that has wave lengths less than the width of our "delta frlnction" at a particular deptti, our measurements 
cannot reveal it. In other words the finite number of data (perfectly accurate t h o 4 1  they are) give us a blurred 
picture of the earth. We have thus dko~vered  the extent to  which our inversion is unique. 



rO=li Returning now to the example of gravity, we can 
see that measurements at different Ri yield no new 
information ahout p (r) , because any linear combina- 
tion of the Gi is stiii proportional to ? . This is the 
best (and only!) approximation to a delta function that 

l2 we a n  make. Thus, rather trivially, we have confirmed 
the statement made earlier: any radially structured 
model with the correct mass sat~sfies the data. Suppose 

10 now we include the moment of inertia as a datum y2 , 
whik y, is a sin& gravity measurement: 

so this datum is linear in p . Without going into details 
we can see that linear combination of the two dab ker- 
nels will allow us some sort of approximation to a peaked 
function. Using the D, criterion 1 calcl~lated some 
curves (see fig. 1). We are not getting very good resolu- 
tion with these data. If experimena were available that 
gave data w h w  kernels w e n  proportional to r6 ,  r8, 
rlO, etc., it can be proved that arhtrarily good delta 
functions can be constructed from them by means of 
the Weientrrss approximation theorem [Cowmtt and 
ffilkrt. 19061 . Unfortunately these data do not exist! 

The Role of Experinental Error 

So far all our data have h e n  precise: we have see:, 
~ i r c  1. - Three ddta functions for deniity p v i t y  that with only a finite number of mtosurements our 

md moment of inertia. knowledge mvst be imperfect even in this ideal situation. 
In practice, each of the meitruremcnts will be subject to 
enor, whooe rough sire the experimenter usually estimates. 

The property a v e r a p  < m (ro) > a 2  simply linear combinations of the data -y - so that it is easy to fni the associ- 
, ated errors of their values. Now r hve two measures of imprecision both of v(uh we should likc to mah as small 
as Wbk-the error of the estimate and its resolution (defined to be the half width of the delta function for 
example). Can the ai be chosm to minimize both at  once? In fact this is impossible: some compromise must be 
accep:ed. Let us ux the Dl criterion for delta function quality; it is possib!: to define the resolution width s to 
be equal to i 2D1 (this has dimensions of length). After some manipulation m e  can show that 

where Sii is a matrix that dew& on the Gi and to. Similarly, the error estimate c of <m(ro) > is given by a 
quadratic fonn 



wliere r, frrrs standard error a .  (it is assumed here that the errors are statistically independent). Slnce we 
1 cannot minimize e2 and s with one set of a,, let us agree t o  minimize instead a composite quadratric form 

wh, ,e  ,s a weighting iactor tkat, when 0. gives 111 the weight to resolutlon i m d .  of course. yields the solu- 
ticrr we . '  ,cussed earlier), and when I .  glves all the we.@ to error. Backus o r ~ d  Gilbert [I9701 show that as I\. 

va-les ircn; 0 to 1. and we mlnimize Q by choosing the appropriate set of 9. the resolutlon length increases 
and :.he L.1 ior decreases. In other words. one can improve the error estimate of 3 property average by sacrificing 
11s resalvlng power and vice versa. The "best" cholce of i v  is impossible to  give: I: depends on what one is 
ti)flng to !iry about the earth. Therefore. to solve a real problem completely one niust give :he relationhhip 
hetween error and resolution at every radius. 

Thi. ituation outlined above is analogous to that described by the quantum c~echanical uncertainty princi- 
ple; ~t ii i ,possible to  g i \ c  a perfectly accurate property value at  a perfectly defined position. We can improve 
o a at the :xperse of tbe other. but In the u s e  of linear invcne theory neither the :Accuracy nor the resolution 
c z l  be refined indefin1t:l): the inadequacy of our data puts bounds on both. We shall look at an example of a 
"tr tdeot'l" diagram in dis~.ussing the electrical conductivity piobleln. 

Nonlinear Extension 

Mov: (hut not all) irderrsting ge'~physica1 inverse problems are nonllnear. The observable data are nonllnear 
functi ~nals  tti the earth p:operty in question. and consequently there is usually n o  explicit relatlon between y i  
and n (r). Non1in:ar anaiysis is notor~ously difficult. and the solution proposeil by Backus and Gilbert is siniply to 
1inearit:e L!le prob!em. A model of the earth is found that fits the data well (how this is done will not concern us): 
a l l  i t  I I I ~ O ) , ~ )  ;md the ~ , b s e ~ a b l e s  it predicts y,(') . Then it can be shown. by a process rather like Taylor wries 
expan: on. that it is usua ly possible to write 

a 
2 

-;,, - ) = [ m )  - m(0)(r)lCi(r)dr + O j  [a() - m(')(r)] d r  
0 0 

If the second term is  neglected, thu  is a new linear problem with li - 7i(0) as the N observablcs and m(r)  - 
m(')(r) as the required property. 

Suih Ilnea:,ization is c) !ar!y a r ~  approximation. and even if it is a valid one, we have no guarantee that a "base" 
niodel other thatq. rn(')(r) d':s not exist that is outside the scope of the linear description. Nonetheless. a linear 
description of the unce. .nties in inverse models gives us a much clearer understanding than we had before. 

THE ELECTRICAL COND\ICTIVITY PROBLEM 

Physical Background 

What are :he surface ir?uences of electrically conducting material at great depths within the earth9 Geomag- 
netic variations :ire modified by the presence of a conductor in the following way: magnetic field fluctuations cause 
eddy currents to  flow In the conductor, and these currents themselves give rise to magnetic fields. Remarkably. 
potential thec ,, p . 2 ~  a method whereby a surface cbsemer can distinguish between the driving field, caused outside 
the earth. anti the induced field appearing in response to  the first. The method requires the surface field to be 



decomposed into spherical harmonics. It h3s been found 
that the driving field consists largely of an Q = 1 harmonic 
(a uniform field) at the longer periods, and a physical me- 
chanism is available to account for ttus observation. 

I 

To obtain information about the conductivity from 
P IG: km to 1OOO km it is necessary to record very slow 

variations in the field from about 1 cycle per day to 1 cycle 
per year. In this frequency band there are periodic and 
aperiodic sources, bo!h of which can be used for inversion 
purposes. But the arlplitudes of the variations are very 
small, often only a f:w parts in 10' when compared with 
the steady field, so that in practice the application of 

I I [  I I cross cor~elation and otheritatistical techniques is vital. 
0 01 002 003 005 0 1 02  

fAECL:rKY v . an cycles p* doy ( log 'Ihe theory is made much easier if we assume the 
Fiw 2.- data phtl &ls 119691 earth is spherical and that the conductivity varies only as 

showing the amplitude ratio of the vertical to horizontal 
field in the frrqu,,,,cy ruy 0.2 to O.O1 cyde per dry. a function of radius. This approximation is clearly rather 
line result of \heantical itentive modd. poor near the surface, where there are oceans and other 

hgularly distributed conductors. By concentrating on 
the lower frequencies we hope to "set through" the sur- 
face layer and observe a region where the assumption is 
valid. With the further assumption that the source field 
is uniform, it turns out that the key observation is the 
ratio of the amplitudes of the vertical and northward 
horizontal fields considered as a function of frequency. 
This quantity should vary with position like the sine of 
the geomagnetic latitude; that it does for a itumber of 
stations [Bunks, 1965) ] bears out the validity of the two 
assumptions. The geomagnetic data published by Banks 
were used in the application of the Backus-Gilbert theory 
to the electrical conciuctMty probkm These data cover 
the range 1 cyck pe: day to 1 cycle per ye:u from which 
the frequency band 0.2 cycles per day to 0.01 cycles per 
day was extracted for purposes of the work under dis- 
cussion. In this intt?rval Banks gave 35 frequencies at 
which he estimated the amplitude ratio of the vertical to 
horizontal field (n~rmelized by the sine of the latitude). 
Of couse, this nt.0 has a phase as well as a nqdtude, 
but the former had a much larger uncertainty and was 
not included in my analysis. 

o 0 0 l t  Application of Backus-Gilbert Methud 
- -- - - - 

06  0.8 10 
MMENSEONLESS RADIUS r/a 

Mathematical details required in finding the data- 
kernels for electrical cosSuctivity, which is a nonlinear 

R ~ R  3.- 'Thaorrtid conducr~ty modd und to fit &a prbblern, are given by krker [19M]. 'Ihe 35 data described 
of fwre 1. above and their standard errors are shown in figure 2. An itera- 

tive scheme not dircuued in this article was used to generate a 
tiwunticai that fits ti otmemtims to within about me standard e m :  continuous line in f i p e  2 shows 
the response of the modal, which i s  shown in fiw 3. Such a simpla cum is not an adequate description of the model, 
and the ambiguities due to lack of resolution and lack of pedsion u e  of considerable importance. 



A "tradeoff' contour diagram is shown in figure 4. 
Spread (the length over which the real conductivity is 
smoothed to obtain an estimate) is contoured against 
relative error ar,d positlon ~n the earth. The D, criter- 
ion described earlier was used here. The diagram is 
arbitrarily terminated at the top since errors larger than 
10074 are ilot very ~nteresting. but the bottom of the 
diagram is the linc of n~inimum error; n o  matter what 
resolution we may tolerate this is the smallest error pos- 
vble. If the relatne error level of 0.2 or 20,;  is traced 
a~ russ the diagram. it will be seen that the spread 1s un- 
reasonably large until r / a  = 0.8 or so. Below this depth 
our estlniate is a virtually meaningless average over the 
whole mantle. made even more valueless by the fact that 
the lineariration approximation breaks down for such 
iarge ranges of o. This simply shows that we know 
nothing about conductivity below rla = 0.8. 

The purpose here is to  demonstrate how the nonuniqueness informat~on geiierated by the kickus-Gilbert 
technique is used. A geophysica!ly interesting question concerns the appexailce of a conductivity minimum at 
rla = 0 75. The tradeoff diagram shows that the minimum is not a oelievable feature of the model. In a cas' 
like thls. the errors ascribed t o  a solution dre as Important as the solution itself. 

Continuing the 20% level across. we can see that 
resolution lengths improve to 0.07a or so for r / a  between 005 

Discussion 
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In recent years our inverse problem has received some ingenious analytical attention: Bailey I19701 gives a 
direct solution based cn the application ?f Kronig-Kramers relations t o  the Ricatti equation, and Wclidelf 11970J 
achieves the same objective with the Gelfand utzd Levitan [I95 1 ] procedure of q t a  .tum mechanics. Both tech- 
nlyues assume the availability of data that are perfectly accurate and cover all frequencies. Before these results 
bere known. of course, iterative model building was used. 

0.85 and 0.95. If we would like a more precise estimate O 5  0 6 0 7 0 8 0 9 ' 0  

~IMENSIOL~LESS RADICS r l o  
than one with 20V error. we must take a larger averagng 
length as shown. I igure 4. "Trade-off' contour model. Spread I\  plotted 

a~ainst relat~ve error and pusitlon of tarth. 

i have given here a very brief sketch of the application of the Backus-Gilbert approach. I hope I have nude 
11 plain why it is necessary to  go beyond the production of a model fiti'ng the data t o  a description of the uncer- 
tainties: I haw indicated the form of  the description in terms of a trade-off diagram, and given examples of its 
use. The Backus-Gilbert method is a general theory and I h o p  -/e shall see a wider use of it in the future. 



DISCUSSION 

Newron: You seem to be implying that the main limitation on the resolving power comes from the number of 
observations. There is another problem that has'to do with the linear dependence ~f the obaemations. Your 
exampk is a vivid example of just that. It is implied by the theory that two observations are not going to give 
you any more than a single observation. In another cax you may not be able to see that so easily. 

Arkec This is very true. But, if you go throu* the procedure carefu!ly it comes out automatically. 

&identified speukec Could you use this theory to plan your experiment? 

hrker: Yes. It can be used in that way, especially in a problem like the conductivity problem I discussed. Another 
case is satellite phnnin~. 

Lux: You mentioned data of the order of 500 or 1000. In that case there are some numerical problem in 
minimiziq a quadratic form under a linear restriction. Can you comment on that? 

Arker: This is a vey important problem. The problem of linearizing very large quadratic forms is exactly the 
same problem a.i diagonalizing a large matrix. We try tc overcome the difficulties by examining the spec*r:.m 
of the eigenvalues you get. This is feasible. 

Sondhi: How do the results depend on the criterion you use for the concentration of the linear combination of 
delta functions? 

Rtrker: This has not really been expl'ae d. 

Sondhi: Is there any difficulty in extending this when the G's are known only at discrete values of r? You have 
a certain number of kernel functions. What if you know the values of the samples of the kern*! fuqct~on only, 
and not the continuous function? 

ttrrker: I think one could fcnnulrte it that way. We haven't in tIu? geophysical sciences. 

King: I think you've shown krutifuUy the Umits of infornmtio~. retrieval wing htlmr inversion techniques. This 
is basically due to the fact that there b a spnad in your wti#iUq function that no amount of lir, ar games- 
marchip in t e r n  of rmnipulatior! will surmount. This same restriction doer not tam to apply to nodinear 
combinati01.s of the observations. I think there is a limit in principle. 

&. . m :  I think you ue quite conact. If the imene pobkm ia Uneu you win gain nnthiry by using nonlinear 
averages. If, however, the inverse problem is n o n h u r  there must be rvaiIable derqcr insifit wing nonlinear 
theory. 



CULLING OF REDUNDANT DATA 

F r e e m a n  Gilbert  

1 N73- --- University of California  at S a n  Diego 

This paper cnnsiders some p:actical numerical matters [Gilbert, 1971 1 .  This is In effect an extended anbwer to 
the question, "What do you d o  when you have a large data set?" We first demonstrate the inversic,;~ of a large data 
iet. with its errors. ,.,~d then discuss the tradeoff curve. or resolving power calculations. We consrder Inverse prohlen~s 
ut'the earth. represented in the ideali~ed f o ~ m  of a single scalar funct~on of a s~ngle coordinate nit (s). A n1odc.l ot' 
tl?e earth that may i l r  may not fit the data 15 nl(s). Fol each model. we calculate a gi-05b earth functional g,. whrch 
1s some observable quantity that depends o n  the wllole c;l~.th or some fraction of the whoif earth: yi is the ubhcrved 
value of gi .  the outcome of some erperlment or set of experiments. 311d Gi is the Frechet kernel. or the first der~va 
tive. which permits the effect bgi of a small change In the model d m  to be computed: 

In practice. allnost all geophysical data are not ~ r e c h d t  derivatives but ordinary d~fferen!ials, and we consider only 
tlil~se. 

In forml~lating inverse problems, we want to turn this relationship around a r~d  think of 6gi as 5eing the dit'fer- 
ence between the fonctional for the real earth and the functional for some model. We may regsrd the model as ii 
starting model or as a model in some stages of an iterative procedure, so that the functinl~al for the real earth is the 
observed value of 7;. It is the difference between the observed value yi and ihe ialculated value of gi that we call 
6 ~ ; .  

We h o w  the mode!, we don't krtow the real earth, and we seek to estimate this difference. It  is clear that we 
have linearized the statement of the problem, and because we only have a finite number of data that represent 
linearized moments and the difference & n ~ ( x ) ,  the answer cannot possibly be unique except under very pathologi- 
cal circumstances. This is both good and bad. It is bad because we will never know what the teal earth is really like, 
but is is good because we can explore this line of uniqueness to  find a model, any model, a t  the present time. 

i 
For example, we can regard the linear relationship between 6g and im for all the data as being a side condi- 

tion, or constraint, and make the demand that we want t o  find the 6rtr that is smallest in an rnis sense: 

We wish to  minimize this quadratic form, and use those linear relationships between the differences in the data and 
the differences in the m d * l  as side conditions. This is a classical isoperimetric problem in the cal~uluo of variations. 
and has a very simple solution. For this particular minimum condition, the Lagrange-Euler equations turn out to be 
algebraic. which is always nice. 
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Two other criteria my be mod: the fittest mob1 J ?crturbation that fits the data 

or the smoothest model of perturbation that fib the data 

From tn esthetic point of view we find that the criterion (5) is the one that gives us the nicest results, but any one can 
be chosen If we use the fint criterion, for the smallest rrru 6m, the result of solving the Lagran~e-Euler equation is: 

where the v are thc Lagrange multipliers we put in to handle the side conditions. We fmd in this case that the per- 
turbation is just r linear combination of the Frz&t kernels. Tllir may be substituted back into Eq. (1) to qive: 

So far, I have assumed t h t  then are no e m n  in the data. The lrsrnel G f i j  is a symmetric matrix that is at least 
positive semidefinite, and is podtive definite if you rre lucky. The exprsdott in Eq. (7) b an inner poduct of a very sim~le 
kind. Thur, there dues of v m y  be found by sow the system of llasu equations. Equation (6) allows construe- 
tion of 6 4  which when a d ed to the - model gives a new model whose properties, as predicted by perturbation 
theory, agra with the proprth nmrwed. 

Of course, since tba invene problem & not lineu, thir proan has to be iterated, and we have found that when 
you start one of there itmtiva produrn it either M m  up i.nrtratly or converp very rapidly. 

We now consider thc effect of erron in the d8t8. Suppose each datum has a standud error o, and we require 
only that the data be fitted to within some b a d ,  my one or two standard erron. Once again, the isoperimetric prob- 
lem may be set up, with the rldc conditions 

, .... 

; and minimize thc integral of (6m)'. Once a@ 6m tu rn  out to ba a llasu combinrdon of Fncbdt kernels, md 
. I,. we have to solve 

. . 



Now it is tilore difficult to solve these inequalities than i t  is to solve equations. and usually some kind crf linear pro- 
yranlnling tecl~nique is used. Suppose. however. that we are ver) fortunaie. and in addition to having a m ~ t r l s  that 
I \  11ot only syn~nletric and positive definite. we have a diagonal tnatrix. Then solviag Eq. ( 0 )  is very easy. In tl l i \  

case. when the G is o(thonor11ial. the integral of (6111)~ i s  easily shown to be just t!lr sum of the Lagrange ~ntllti- 
plicr\ 

To m i n i m ~ ~ e  Eq. ( 10). we need ollly niake each of the Lagrar~ge n~ultipl~ers as small as possible .t t~;ect t o  llie side 
cot~dit~olls. wliich are now 

Thls IS done merely be taking t. = V it' t > 0. 1, = u if u < 0. and 1, = 0 otherwise. 

Because of the rase of solving these inequalities. it is evident that we need to diagonalire the ~ i ~ a t r i x  

At the same time we .;hould allow tor the possib~lity that each datum may not have a single standarc error associated 
w ~ t h  i t .  There may bc interactive errors . . . covariances. In addition to diagonalizing thc inner product matrix G 
we need to diagonalize the covariance matrix V . 

The niatrix will always be symmetric positive semidefinite; V will always be symmetric positive semi- 
definite. and will be positi le definite if the experiments are pr,~perly conducted. Our problem is the classical one of 
diagonalizing simultaneoushy two quadratic forms, both of which ore symmetric, and one of which is positive defi- 
nite. This can readily be doqe [Whitraker. 1937: pp. 178-1 8 3  J . 

Let T be the diagonal. zation t r~nsfor r r~ t ion  

1vJ1crt- E is diagonal, and i is the diagonal unit matrix. The new gross earth functional~ and the new kibservables arc 
trunsforlnations of  the old ones : I 

.; 



and new Frechet kernels F are generated by linear transformation of the old ones 

Tie standard errors of the now independent data are just the square roots of the diagonal entries of the diagonal 
variance matrix 

The relationship between the perturbation of the model and the perturbation of the data kernels is now given in terms 
of rhe new Freche't kernels by 

where 

We proceed to the ~:otatruction of T in two steps. F ~ n t ,  we find the orthogonal matrix Q which diagonali~es 
the covariance matrix V .  

In most cases V will already be diagnoal, when there are no covariances. A transformed inner product matrix H is 
then 

Second, we start with the quantities v i ,  which are the square roots of the errors 

and form a new symmetric matrix 4 by dividin~ the rows u. . columns of H by the v 



Aii = vi-' H y -' 
ii j 

The matrix A may now be diagonalized by an orthogonal matrix R 

The standard errors of the new data are just the square roots of the reciprocals of A .  Now if we :.." P the following 
nondiagonal matrix 

then the transformation that diagonalizes G and V simultaneously i s  

The new error xatrix is just 

The problem is now redcced to finding the two orthogond niatric;: Q and R ,  which in most cases amuunts 
only to finding R. The procedure we use for diagonaliring thaw ~natrices is essentially a classical, stable method, due 
to Householder [Wilkin:, 1965, pp 290-3323. We will return to that after considering the problem of tradeoff curves. 

After doing the construction problem-creating a model that fits the data by means of the ideas given above- 
one presumably needs to do resolving power caliulations. as discussed in the preceding paper by Parker. We consider 
his matrix for the "spread" S and thc covariance matrix V. Then W is a weighted sum of these matrices 

where a tradeoff curve is vnerated as S runs from 0 to n/2. Generaliy. we want tr solve some system of linear 
equations like 

Now if both S and V were diagonal, the equations could be easily solved. Since they are both positive semi- 
defmite, we can go through the some thing again, and diagonalize them, and turn this into a system of independent 
equations. 

. 
In practice, we find the orthufonal tnnsfonnations which dirgondize !ne matrices as follows. A matrix iuch 

u 4 in Eq. (23) is fiat reduced to tridiagond form by Householder's met!~od. The eigenvalucs of the tridiagunal 
matrix are the eigenvdues of A and can be found by Sturn's bisection mwthod. Finally, the eigenvectord of the I 



tridiagqnal matrix. are found by Wilkinson's [I9651 method of iterative improvement, and are transformed into the 
eigenvectors of A by the tridiaguii:lizqtion transformation. We have found this approach to be extremely stable and 
rapid. 

Now, to wlve a system of symmetric linear equations like this, about (1/6)n3 oper;c:ions are needed. If p point5 
are required to generate a tradeoff curve, then ( l / 6 b 3 p  + O(nap) operations are needed. In the diagonalization 
method, one needs (2/3)n3 operations t o  tridiapnalize and another (2/3)n3 to get the eigenvalues. That is done 
once for the entlrc tradeoff curve, and the number of points on the tradeoff curve gives a further 0 (n2p)  operatior . 
If p is large, it is poss~ble that the number of operations required to solve the system of linear equations will be iarger 
than the cost of diagonalizing once and for all for each tradeoff curve and then doing n2 operations. For n g, ter 
than p -  that is, when the data set is larger than the number of p i n t s  riceded on !he tt:deoff curve then the I ~ t l o  of 
operation: is p ,  8 (in our applications p IS about 25 and n is 'iril -r more). irl other worc4q, if the-c are more than 
eight poin;s on the t ra~cof f  curve it is more efficient to  diagonaliz Cnt  insteiid of solving the :Ys!~rn of linear equlr- 
lions. That is for a single tradeoff curve, so it is always more efficient to  diagonalize. 

If the smoothness criterion ,, the D, criterion discusses by Parker. S must be rediagonalized for every r ,  
changes. If the Dl criterion is used, no ro appears, and the matrix S tab-s the same form for ,111 radii, so diaporzil- 
zation is done once, nut only for each tradeoff curve, but for all of them. If there are C curves then tb diagonaliza- 
tion meth >d is pC/8 more ~ff icient  with the use of th t  D l  criterion. If, for example, t h e ~ e  are 24 points on 3 curve 
and 50 curt,es, it is 150 times more efficient, which is not trivial fi;,ancially. T o  d o  the ?quivalent of 300 d a t ~ .  wi,n 34 
points per curve and 50 curves, takes about 410 scc, on a C X  6600, whidl is not expensive. This kind of calculatic;n 
is nut done very often. 

'he actual procedure we use is t o  make the model fit the la ta  after diagonalizing everything . . . the constructive 
part of the problem. The data are culled, by accepting only those relative stan&rrl errors that are less then 100%. In 
most geophysical problems, ?he effect is t o  reduce the arnoullt of data from about 300 to about 30. We have termed 
this redundrmc;). But those 30 represent the projection of the contribut;ons of all of the 300 data into that good data 
set. This turns out t o  be an extremely efficient and rapid procedure. Typically, when a model agrees with the data 
within a few percent, and we wish t o  get it t o  agree within 0.296, two iterations are surficient for 300 data. 

In doing the tradeoft cun'zs, we do exactly tlre same thing. What the large errors do, after diagonalization of  
these 300 forms, is essentially allow you, nt an extreme price, to  narrow down thc averaging width a little. The extrcnle 
price is enorlnous errors. In a practical case all the errors greater than 100% are discarded and we forget about the top 
part of the tradeoff curve. 

2 
- . .  This is a vt ry simpk, practical scheme. We have spent a lot of time coding these matrix operations for efficiency. 
_. . -. . . . . . + .  

I foliowed all the recommndatione that Wilkinson has made in his book on the algebraic eigenvalue problem, plus one 
I 3  , .  or two of our own. Wc store the matrix in linear, diapnnvl form. and operat? successively from one column t o  thr  next. 

' .,.. , . . So. in fact, so far as the computer is concerned, we start with cell I .  go through sequentially. and wind up  with cell 
:.!;:' . ,.. , .' ' ., .. ' t number n (n + 1 )I 2. Con~puten like this, so the effkiency gas up  enormously. 

. ,  . . . ... ( , 
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DISCUSSION 

Aicone: What is the form of  the Freche't kernel Ci? 

r t :  It is a function of radius that may have one or two step discontinuities. Of course. it is represented as a 
set of points ior machine calculations. Norlnally it is a linear conlbination of squares or cross prodilcts of 
eigenfunctions. 

L511Jet1tifieJspruker: Did you say you could diagonalire u positive seinidefinite matr~k'! 

tirlbcrr: Actually. from the polnt of view of the vompurer. these matrlccs are extremely singular. Mhat 1s done. 
with the Sturm bisection method. is to find the largst  eigenv~lue. the next largest. and so on. until one wlth 
v:~lue I or less occurs. Since this lniplies a relative error of 100%. the calcclation is terminated. 

Uniderrrified speaker: You implied that you could diagonalize a matrix in a finite number o f  steps. Doesn't 
finding the eigenvalues. the roots of a polynomial, take an infinite number of steps? 

Gilbert: Is practice. of course. we quit when :he relative value is known to 10-". Thdr figure oi( l13)r i3 reftrred 
to the number of steps needed to tridagonallre. The bisectton method then completes the process rap~cily. 

.Iloscs: Could this be used for Fourier transforn~ation? 'i'ou iiugtt have data with errors. f o r  whi.'~ you seek the 
Fourier transform. 

G i r t :  Yes. As a matter of  fact. you could certainly look at  the problem of digital Fourier analysis as being :he 
inverse problem of trylng to find the spectrum. given the time f!mction. 

77rellnwt: Aside from the question of the size of the standard error:, we found that near-zero eigenvalues were 
associate . ~ i t h  too much covariance between points in the modcl. which implies too much resolution. 

Wib~r t :  If yo11 go ahead and diagonalize the covariance matrix by a simple orthogonal transformation. you are 
projecting into a new orthogonal space, where your data can be ranked a .cording to standard error. If you 
have too inany data because you ma& too many overlapping measurements, you make this projection and 
look at the standard error. If it begins to  build up, y3u just cut off the data set. 

(hridentified speaker Adding on data that have large standard errors should not make the errors w i d ~ r  in the n~odel.  
It might make the mathematics easier if you throw it away. 

I :  That is quite true. There is nothing wrong with having a completely redundant set of data. In fact. one 
of the easiest ways in a big machine p~ogram to substitute a new datum for an old datum is t o  just read it in. 
because the cld one automatically gets shoved down in the eigenva!ue stack. We have a redundancy factor of 
somethin2 like 10 or 15-witn 300 data, we come up  with 20 or 30 significant data. 



APPLICATION OF A STOCHASTIC INVERSE TO 

THE GEOPHYSICAL INVERSE PROBLEM 

Thomas H. Jordan 
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J. Bernard Minster 
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The inverse problem for gross arth data can be reduced to an undertennined linear system of integral equations 
of the first kind. Discussed in this paper is a theory for computing particular solutions to this linear system based on 
the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized 
inverse of Penrw and Mr~orc. A BackusGilbert type tradeoff curve is constructed for the problem oi  estimating the 
sdution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal 
point on this tradeoff curve. In the appendix a useful form of the solution autocorrelation oprator as a nxmher of 
a one-parameter family of smoothing operators is derived. 

INTRODUCTION 

This paper addresses the problem of computing particular solutions to certain fmite systems of linear integral 
equations that arise in the study of the earth's interior. On the earth's surface, quantities an be measured that are 
fcnctionals of the distributio~ of physical parameten at depth. The eaWs  mass and moments of inertia, functionals 
of the density distributior?, and the travel times of seismic rays, functionals of the velocity distribution, are examples 
of this kind of data. !,r essence, the geophysi.rl inverse probkm is this: given the observations of a finiie number of 
these functionals, what is the distribution in .he earth's icerior of the parameters or  which they depend? The formu- 
lation of thr problem used in this paper reEP:es small changes in a chosen model to small changes in the data through 
a linear ~ransformtion. With the use of this fmt-order approxima : . I the problem is reduced to the solution of an 
~trricrdetermined system of linear integral equations. Sia observations are invariably contaminated by errors intrc- 
duced through inaccurate mlsunment, only atimtes oft!& valuer of the data functionals for earth are available. 
and estinrote of the solution must be made with this realiition. A general and extensive theory coqcerning the solu- 
tion of the ii~xu pophysical inverse problem for imccurately known data has been provided by Buckru and G i l k e  
[1967,1968,1970] . We draw heavily from the concepts and terminology developed by these authors. Ogr concern 
here is the application of stochastic invme theory psented by -#in [I9701 to obtain particular solutions to the 
linear system. This papcr represents an expension on the work of Jordon and hznAlin [I97 1 ] . Since the geophysical 
inverse probkm is an example of a canonical problem in the mathemaGcs of prof& inversion, the discussion is kept 
general to facilitate other applications. Numerical results from the inversion of gross earth data an the subject of a 
separate paper vordmr and Andemn, in preparation] and are not presented here. 

A model is here defined ;ls a real-valued function m specified on the closed interval [0,1] . In the geophysical 
problem m represents the distribution of, say, dcnsity as a function of rs&u in the earth. The model space m is 
the Hilkrt spce completed from thr: space of real-valued piacesriss continuous functions square integrable on the 
interval [0,1 1. 'Ihe inner product of a p i r  of functions m,m' c m is written m m' arid taken qua1 to the scalar 

value of thc integral m(x)m'(x)p(x) dx. The weight function p(x) is required to be strictly positive on I' 
[O.l ] . Associated with this inner product is the norm Im l = (m m)'" . Given a Unw operator L, mapping 



M into itself and an element m, the vector L m in M whose value at each point x equals the integral 

L(x, x') m(xf) p@')  &' can be compted. The function Ltx. x') is B e  kernel of the operator L . The kernel 

of the identity operator 1 is S(x -xf)/p(x') where the numerator is the Dirac delta distribution. L* denotes the 
transpose of L. If L = L*. L is symmetric. 

A linetw &fa functional is a linear functional defined over the model space M . (If a function is nonlinear but 
~rhchet differentiable, then it car! be approximated by 3 h e a r  data tunctional at each point.) The inverse problen is 
t3 estimate the function mo. representing the actual density distribution in the earth, given the observed values of an 
ordered set D~ =(:i(m) : i = 1.2, . . . ,  o of N linear data function&. uy th- earth's mass and moment of 
( N  = 2). Correspjndiiig t c  the funct~ondl di(m) 'here exists a unique ai e M, the kernel of d i ,  such that 

Each di jm) can be considered as the ith componen: of a vector d in the N-dimensional Euclidian space E ~ .  
The inner product between two rectors d and d' in E~ is written dd' and equals 

The inner product is assumed to be dimensionally homogeneous. Let do be the vector ahose components are the 
observed Qta: then, if the data on error-fm, mo satisfies the operator equation 

where A : M + E~ is the operatar whose ith row is the vector q m a p p a  M onto the subspace R(A) 5 E ~ ,  
the range space of A. Equation (2) implicitly assumes that a, e R(A). 

THE GENERALIZED INVERSE 

For finite N the problem of computing the solution to  Eq. (2) is ill-pored in the sense that the solution is not 
unique. In fact, A paacscs a null manifold N(A) of infinite dimension. For each h e N, A h = 0. If 

h : n = 1 2 3, . . . is basis of N(A), then the general solution to Eq. (2) tan be written 

where B is my particular solution to Eq. (2) and the coeff~c',ents an a n  arbitrary leal numbers. One particular 
solution of interest is given by the generalized Inverse of A [Moore, 1920; Bjerhmnmv, 1952; Penmse, 1955; 



new, 19491. R(A*) is the s p a  spanned by the set \ai : i = 1.2, . . . , N), so M = N(A) @ R(A*). T:,c opr -  
ator A has a unique generalized inverse At : E~ + M suc! that 

A A = P A  At  A = PR(**) (4) 

. . ..;..j 
where P A): E~ + R(A) and PR(A*) : M + R(A*) are orthogonal projection openton (that is, P . P = P and 

- .. , 
. . ... P* = P). e estimate 

. . .. .. 
, . 

%, 
-3 . > -  , 

iii = A t d 9  ( 5 )  

, . .  

, ..- . . .  is the unique solution that minimizes the norm Im I. Using Eqs (2) and (4) we write 
. ' . < (  

: 2 - - : .  .,7.:.. .j ...=.. .. 
-.-i - . : . . . , .  _ . 

Thus, ths solution corresponds to the orthogonal projection of any solution onto the subscape R(A*). It is easily 

. .-s 
shown that At = A*(A A* t, reducing the conlputation of At to the determination of the generalized inverse of 

..:,r . -  
, .  a symmetric operator on EN) If A has r i i  N, then (A A*)? = (A A*)-' d n a  h A* is nonsinplar. If A 
-. .. !-f has rank less than N, other algorithms for computing (A A*)t can be used, sl.tch as that of Ben-lsmel and Charnes, 

' .  . 
, I  [1963]. 

7 

The form of Eq. (6) illustrates an important point: sina the data kernels do no: form a complete set, the value 
~ ( x )  cannot be determined at each x e [O,l] ; rather a linear average of ~q (x) given by 

, . 
, , 

I ~. . . ., . ? ' . .. .: . ,. . i'.. ' 
, . . .. .. 
, . : . . I  1 is obtained. Usually, it is desirable to compute an avenge which b at least lucdizd at each point. Roughly speaking, 

,,.. . p : s  
, . '... . .t. :' an average is said to be localized if the contributions to the integral (7) an s d  away from the p i n t  x.  The concept 

. :.' .> : $+.. ; ,',L.-. 4 of the localized linear avenge is of central impork~ce in the BadtW1bc:rt theory for the resolving power of a linear 
* ;,.~:::*: , .:.:$ ;.;i . !,>. . - system [hckuc and Gilbert, 19b61. In practice, these considerations a n  Li$t the usefulness of the generalized in- 

" , J i  .: 
s..., , , J .  verse BPckw rrnd Gilbert [1968] examined the kernel of PR(*.) and found that, for typical sets of ei;,:nfrequency 

, .. . _ .II, ;, ..i . . , J data, the linear avenging associated with this projection was not sufficiently localized to provide useful estimates of ..; ,<#;,:< . i .: .:.q..,:rc. .T ..< the density in the earth. Fur*~ermote, Eq. (5) was derived under the auun~ption that the data are perfectly well-known. 
: 3. :: :, ,; ;g -- . ,; *. 

. 7. -... Actually d,, is only an estimate of the vector A mo that has been corrupted by error or "noise" entering through 
. ... - .  . '-4 

., :. . . .*-A 
observational enon and computational inaccuracies. Neglecting this enor can yield mode1 estimates with large statis 

. ;:, , *, , :?- 
Y . , .  . tial uncertrinties [ k k w  und Cabnt, 19701. 

\..I ". . , 
rc i 

* . 's'.-lr . Fievertheless, solution of the perturbation quations by the minimization of a tpcdfted norm is an a p p e h g  
'.' . '4 , . . ._.. . , , 

metl~od for selecting porti~ular solutions to Eq. (2). For instance, if on Jn basis of uuciliuy information tbere is 
.; " ;;6. .> , , 

. . . II:, 1 -. good r eam for believing that the representation mo is somehow dose to a particular rtarting model, suck r .?linimi- 
. . 

" - 
I. , _ ..?: . ., ; ation can provide the smrllest pert,.rbation awikble-in a norm m - t h a t  satisfies Eq. (2). The bitations of the 

. . . ,  . , .. 
+,...! ' 

- . , 2 ,. :; * . . . , 
generalized invene can be overcome by appealing to a stochastic formulation of this linear problem [Fmnklin, 19701. 



THE STOCHASTIC INVERSE 

The equation corresponding to Eq. (2) for inaccurate data can be cast in the form 

N where n r E is a vector containing the noise components. Since these components have some unknown scalar value, 
the error is described only in terms of i t s  statistics. Treated here is the case for Gaussian noise with zero 
mean. Following FranMin [i370] we consider Eq. (8) tn be a rnmple of the stochastic equation 

where pS a a stochastic process describing the solution and is defined over M , and p, is the noise process and pd 
the data grocess, both defined over EN. The pro5lem is to construct the best linear unbiased estirnpte of the 
solution process ps resulting from the application of some linezr operator B to the data process pd : 

To ensure that this estimate is unbiased, p, and pn must have zero expectation. 

Tlle process p, has zero expectation if the expected value of the random variable p, g ,  denoted E [ps . g] , 
is zero for ali g in the model space. So long as convergence in the quadratic sense is sufficient, then p, c..n be 
represented by the decomposition: 

where { f n : n  =1,2 .3 , . .  . \  issomeorthonormalbasisfor M and { a n : n  = 1 , 2 , 3  ....I isrsetoforthogonal 
Gaussian random variables. The autocorrelation operator of the rocess p, is the symmetric operator CsF mapping 
the model s p c e  into itself such that g Cn g - E [(& for all g e M. The term on the "ght-hand side is 
the variance of the random variable p, g; therefore, Cu is positive semidefinite. By the Karhunin-Ldeve theorem 
[Lobe, 1955, p. 4781. ifn[ are the eigenfunctions of CSS (taken fiere t~ be normalized) and ( an2 : n = 1,2,3, 
. . . 1, the variances of the gn, are its eigcnvalues 

'Ihe linear operator fn fn is &fwd by ' . fn) g = fn(fn l). if the spectral coefficients an2 equal unity 
for all n, then Eq. (1 1) reduces to the completeness relation 



Cormpufldmgly. the solution-data crossconelation operator CSd : E~ + M is defined by the bilinear from 
E [(-- ps)(pd -)I. Evidently, Csd = Cd,*. The following expmsions are obtained for the data autocorrcla- 
tion oprator and the solutiondata cross-correlation operator from Eq. (9) 

Assurning that the solution and noise processes arc uncnnelated, Cm = Cm = 0, and the above expressions re- 
due to 

In this form, the &ta autocorrelation operator Cdd is nonsinguLr if CW is positive definite. 

The best linear estimate of the solution process ps is the process k which minimizes the quadratic form 
e2 w E 1 Bps - k) for aU 8 E M. Substitution r&g Eq. (10) and expansion of the autocorrelation 
operator of ps - ps yidds 

The fmt and second variations of the functional e' with mped to a miation of the vector q = B* 8 (4 fixed) 
are 

The functional e' 6) is statiomry if and only if S (r' ) = 0 for all arbitrary variations 6 q. Therefore, the linear 
combination Cddq - Cds 2 is required to be mro for all g r M. Assuming CZ4 to be nondngular, this is true 
if and only if B = Ctd Cdg . For this choice the rswd varktion nducas to the positive defmite form 6' (e' )= 
6 q Cdd6 q. Since tlus stationary point is unique and a miniram, the best li11ear a t b a t e  of p~ is 

For the particular sample of the data p r o m  do, the best estimate of is, using Eq. (13). 



This stochastic inverse is well suited for numerical computations. Its validity is limited only by the ass~sptions that 
the solution and noise are uncorrelated and that Cnn is positive definite. In practies. it is commonly assumed that 
the error components are themselves uncorrelated; then 

The positive real number oi2 is just the variance of the ith datum. This matrix is positive definite. thus ensuring 
the existence of Cdd-' . 

( 

Statistical information concerning ps and p n  contained in an ensemble of samples can be used to estimate 
their autocorrelation operators. The variances i.n Eq. (17), for instance, can be estimated from the scatter in the data. 

Information concerning the distribution of the solution and noise processes has been used in the solution of the 
linear estimation problems previously. Equation (16) is analogous to the results of Wiener's theory for construction 
of an optimum infinite-lag smoothing filter [lkvenport and Root, 19581 and was explicitly obtained by Strundand 

- 
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Wesmter (19681. It reduces to T w m e y  S (19631 results for the special case Css = 1. Cnn = 7 1. 

In the geophysical problem it occurs that no statistics for ps exist. Then, what is the significance of charac- 
terizing the solution as a sample of a Gaussian process with a zero expectation and an autocorrelation operator Css? 
To answer this question we assume that the noise 1s identically zero and that both Css and A . Css A* are positive 
definite. Under these conditions the best estimate Eq. (16) reduces to 

This solution has a simple geometrical interpretation. Let M' be the space whose elements are the members of M 
with an inner product defined as the positive definite bilinear form 

m, m' r M', where L = css" . Tlle solution autocarrelation operator Css is idempotent with respect to this 
L product (Css * Css = Cu); it is the identity operator on M'. Define R':M'+ IiN as the linear operdtor A . Css. 

The elements of N(A1) are the same as the elements of N(A). Substituting ~ ' ~ m ,  for d, in Eq. (18) we obtain 

where the operator PR(A'+) : M' -+ R(A'*) is the orthogonal projection operator onto the range space of A'*. In - 
this notation, 



Thus, the solution d m  by Eq. (18) ir the rymmetric projection of any dution, in prrticukr I&+, onto the manifold 
R(A1*), in the inner product being dofmd by Eq. (19) in terms of tb mlution rutaoomhtion -tor. 

Often it is weful to prescribe Cs 8s a smoothing openta axresponding to a prkwi u~umptions about the 
snoothness of the solution. This is a way to hcorporateadditiond information about the solution not contained in 
the data r t  ghr. Beam this point is important for phydcd applkatiolu, it barn futtlter discunion. To illustrate 
what it means for CSS to be a smoothing operator or, in other tennindogr, a lowpm fdter, we return to its KarLunin- 
Loeve expansion Eq. (1 1). Assume that the o r t h o n o d  basis {fn : n = 1,2,3, . . . 1 hu been ordered such thut, if 
fi is a "smoother" function than f j  -say, hu fewer zero crotringc in [0,1] -then i < j. In the appendix we con- 
sider an ordered complete set with this property provided by the e&enfunctions of a Sturm-Liouville system. We will 
call Cs a smoothing operator if a t  > a t  for i < j. Thia llbn a o d d q  to be &fwd on M: a vector ml 
is said to be smoother than a vector m2 if 

Here, lmlt = (m m)"' . T h g  for ml the solution (18) and for ID, the dution (S), we have, by the proper- 
ties of projection, lmll > dm1 and ImllL < l l q l L  if mi # III, . Therefore, by Eq. (22). mi is smoother 
then mi is moother than mi. 

Also, numerical computations with sets of gross euth data hare drown that the introduction of a smoothing 
operator for the igul rutocomlrtion operator can haw the effect of providing more localized linear avenges of the 
represenrjltion than thae given by tk integnl(7j. 

'RiE TRADEOW CURVE 

The Backu&ilbert theory of linear estimation [&rclkur ond GUbm, 1968,19701 mglerts that far the problem 
described in the previoua section-the ertirmtion of a function ma ghn tbe vrlw d a wt of linear data functionals 
do corrupted by a random noise-there exists r t n h f f  be- tbs M f y  to remk tbe detail of ma and the 
rdiobiiiry of the dnmb C In thir section, we h W i @ e  tlw of fhb rtochrrtic molution (16) in terms 

of i t s r&Wpdt imonah&~typtnQof f - .  Tb~pnemlkedinnerpoduet - * -  uld norm 
I- IL mtroduced in the previw d o n  wil l  be retained throu@otat the rnrlyis, but the use of primes to distinguish 
poduca is ~upen&d by &fining ths Osnenllzed product ova M inrted of M'. 

is sought given A, & and tbs statistics of r Gaumh noics pmau PI( whid~ n is  r mmple. The prooso pn 
is assumed to have zaro 6xpectatim and a podtiw dsfurito rutacmelatian operator Cnn . The nuil rpace N(A) is 

~ a t c d b y t t m e - b m d  L for- ALL = 0. s ~ t h ~ ~ c m a j a a o i n f ~ n r ~ u t ( h t ~ ~ t s  
of mo in the null space, the estimate h required to belong to the cprcc R(Ao). This statement is equinknt 
to constnirliy to be a linw ambht ion of tbe data ken& 



The vector b is to be determined by minimization of an appropriate scalar measure of the xror of estimation of 
m,, , which we are free to construct. 

One obvious measure of the error of estimation of m:, is the norm of the difference between rno and iii: 

By the orthogonality of the spaces N(A) and R(A*) it is clear that the pryection of mo in the null space con- 
tributes to e, its full squared norm regardless of the choice of b. In fact, e l 2  is minimized at the value 

IIPN(A) !rn0 l L2 for b = (A: A * ) ~  d, . This is the solution given by the generalized inverse Eq. (1 8) 

If the data were perfectly accurate, the best linear estimate of the function mo w o ~ l d  result from the appli- 
cation of the generalized inverse of A to the da!c sampic vector do. However, n # 0 implies an uncertainty in 
d, and, correspondingly, in P. A measura of the uncertainty of any estimate of the form Eq. (24) due to noise in 
the data is the variance €2' of the pryection of pn onto b. By definition, 

An attempt to minimize this error with respect to a variation of b yields the trivial solution b = 0 

In general, the two measures of error cI  ' and e2' compete: minimizing e l  ' alone results in an estimate 
for which e2' is large, while minimizing c2' without regard for how well the estimate satisfies Eq. (23) yields e l  
at its maximum value. To explore the possibilities for a compromise, consider the quadratic measure of elror 

composed of a weighted sum of el  and c2 2 .  The weighting is parameterized by nn angle 8 that wries on the 
interval [0, n / 2 ] ,  so that e2(0, b) = e,  (b) and e2(n/2, b) = eZ2 (b). For a given futed 8, e2 (8, b) can be 
minimized with respect to a variation of b.  The unique b that minimizes e2(8, b) is 

I, L b(8) = (A A* + tan 8 Cnn)-'A (28) 

L 
Replacmg the vector A nb by its estimate do and substituting Eq. (28) into (24) gives the bes! estimate of mo as 

L 
iii(8) = A*(A A* + tan 8 Cnn)-' do (29) 

Special cases of Eq. (29) include the generalized inverse (8 = 0) and the stochastic inverse (8 = 114). 

The solution b(8) can be put into Eqs. (25) and (26) to obtain e l 2  and el2  as functions of 8 



The operaton Q(8) and R(8) appeuing in there axpreuions ue defined by 

Equations (30) determine r curve parameterized by 8 in the ela  - el2 plane. Backus rmd Gllbcrt [I9701 have 
termed such graphs mdwflcurva One can wily l o w  the following: 

From these relations we infer that the tndcoff cum between elz and el1 ia monotonially de~rusing and convex 
towards the origin and that 8 is the acute an@ between the -t to the tradeoff cum and the ela axis. These 
and other qditrtive features of the tradeoff arm have been givc~~ by B a c k  und CUbert [1970], who point out 
that k is best to avoid solutions corraponding to extremd valua of 8.  Ckuly, the genenlizsd invercc soiution is 
a pocv choice on the tmdeoff cum. The o p t i d  point ia wkre d[%'] /d[ela] = -1 corresponding to the 
solution Eq. (16) given by the stochastic inverse. 



APPENDIX 

Construction of the operator Css 

In this appendix we present a useful form of the solution auto-correlation operator Css based on its Karhunin- 
Loeve expansion Eq. (1 1). For generality we restrict the definition to an arbitrary semi-open subinterval (a, b] of 
[O, I ] ,  0 < a < b 6 1. The construction yields Css as a member of a one-parameter family of smoothing 
operators with norm (and therefore gain) less than or equal to one. 

The operator Cu is entirely determined by the specification of an orthonormal basis { fn : n = 1.2.3, . . .I 
and a se! of spectral coeff~cipnts (an : n = 1,2 ,3 , .  . .I. Let A be the Sturm-Liouville operator: A(x) = 
dldx [p(x) d/dx] - q(x), x e(u, b] . The system with homogeneous boundary condition: 

A(x) f 1.x) + k2 p(.x) f (x) = 0, 

generates a set of eigenvectors { fn 1, taken to be normalized, that is complete on the interval (a, b] [Alorse a: t i  
Feshback, 19531. The eigenvalues kn2 can be ordered as a continuously increasing sequence; k, ' < k2' < . . . 
< kna < . . . . With this ordering the number of nodes in the eigenfunctions f, bctween a ahid b also forms a 
continuously increasing sequence [Morse and Feshbach, 1953, p. 7221. This provides the ;ieceseary ordering of the 
basis fn discussed in the tcxt. For a given scalar value of the parameter k we specify the snectral coefficielits 
by 

Particularized in this way CsS has the following desired properties: 

(i) ICwll< 1 

(ii) lim !(I - Css). mil = 0, n e M 
k + -  

(iii) for k finite, CS btheves as a low pass filte.. i.e., 

a12 > a2' > . . .  > ana > ... 



Then the kernel of Cs satisfies the inhomogeneous syntern 

As an example we solve this system fcr the special case p (x) = p(x) = x', q(x) = 0. in this case the system 
Eq. (Al) has a singular point at x = 0.  Solutions to Eq: (Al) are the spherical &SKI functions of angular order 
zero. The solution to Eq. (A3) is 

mta 1.- T b  into@ k m d  of Cm centered at 
x, = 0.5 for l / b  l/r = 0 and for 
& nlwt of I. 10. md SO. 

w t h  

.4 = [ l  -a(k+Xj] (1 +b(k-p)] 
I 

9 = k t p b - [ k 2 - k ( A + / l ) + X / l ] a b - 1  

C = ki,lj-a) 

D = [ I  -ha-pb. t  (Xu - ia)ab] sinh k(b -a) 

-k[b - a . ~ ( ~ - X ) d ]  coshk(b-a) 

Figure I &ow: tha kernel of Cs c.cr the :nte~al(O, I ] ,  centered w k . 5 0  
at xo = b.5. Here we take 1Ip 1IX = 0 and display the 
kernel icr k values of ,C. 20, and 50. 
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DISCUSSION 

Grots: Apparently the variance of what you want, and tho resolution, cannot be independently minimized so that 
one forma a rum with a weighting function [and for this particular parunttor] then ir an infinite set of tolr;- 

tions, and one chooaer the particular value of interest. What confldezce d m  01,e have in this solution? 

Jordan: This particular solution represents a point on the trrdeoff curve. 'Ihe aecond minimirotion shown, whcre 
we cast the meamre of our error in terms of the sum of two terms, ia analogous :o the some minimization that 
Parker and Johnson talked about. The uncertainty in the resolvable part of the solution is given by the second 
term of this rum. The enor 4ue to finite resolution is expreued in the fust term. Gigen only the obaewations, 
we can compute the aecond term. but not the fust. 
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9. MISCELLANEOUS CONTRIBUTIONS 

The papers presented in this chapter are accounts of voluntary contributions presented during the two work- 
shop sessions. T h ~ y  expand on points made in previous chapten or describe some inversion problems not properly 
falling in one of the major disciplines considered at the Workshop. The last section of the Chapter is an edited 
account of the more important discussions at the Workshop panel sessions. 

I. Shmoys chaired both Workshop sessions. The published papers are authors' summaries of their oral com- 
ments or edited transcriptions of their ccmmnts. 



SOME MEfHODS FOR DETERMINING THE PROFILE 

FUNCTIONS OF INHOhiOGENEOUS MEDIA 

R Mittra, D. H. Schaubert and M. Mostafavi 

University of Illinois 

~ l G 1 1 6 2 2  ABSTRACT 

The problem of determining thc electric permittivity of an inhoiatlgeneous dielectric medium is considered. 
Two analytical methods and one nunlerical method for solving this problem are preanted. All these methods utilize 
the reflection coefficient measured as a function of the angular spectrum variable 8 .  This allows one to make 
measurements at a fmed frequency, and thcse methods, tlwrefore, can be used when the medium being studied is 
dispensive. A few examples are provided and some comments arc ma& regarding the stability of solutions obtained 
using the v a r i ~ l i s  methods. 

INTRODUCTION 

'he problems associated with making remote probing measurements are knwn to workers in many fields. 
Engineers, physicists, biologists, geologists, ecologists, and many others have been confronted with the problem of 
determining the nature of an object when it is impossible or undersirable to  place measuring devices directly at the 
point of interest. It then becomes necessary to make measuremmts at some point removed from the object and to 
determine the nature of the object from these measurements. 

The general remote probing problem is very difficult to solve. This leads most authors to consider a simplified 
version of the problem, that of determining the characteristics of an inhomogeneous medium that is uniform in two 
dimensions and varies in the other dimension. Also, the variations are assumed to result from only a few parameters. 

The particular type of problem discussed here is that of determining the electrical permittivity of a medium 
that is uniform in the x and y directicns and varies according to the profde function K (2) in the z direction. 

Using the techniques of Geliand a d  Levitun (19551 and I(lerrchmko [1955], many authors, including &cker 
a d  Shotpc (19691 and Kuy [1959], have reported the slution of thw type of problem. All of their work, howevet, 
requires that the response of the medium be known as a function of the temporal frquency. It is also required that 
the medium itself k independent of frequency-that is, nondispersive. Often, however, it is desirable to make 
measurements at a sin@ frquency. Therefore, in this paper we consider the remote probing problem in the angular 
spectrum domain. Here the independent variable f l  is the spatid frequency, which can be associh,ted with k sin 8 
where k is the free space wave number and 8 is the angk of incidence of a probing plane wave. 

The technique bv which the response of the medium is measured is to illuminate the medium using a spatially 
confined source. 'the total field at the interface is then measured. The information is then converted to the angular 
spectrum domain by taking the Fourier transform with respect to the x direction. 

In the next section, t k  differential quation describii the probkm is derived. Three different mneth~ds of 
obtaining the profde arc then discwed. The fust method makes use of the form of thc equation in the lim't of low 
temporal frequencies [ S c b k r f  and Mtrrp, 19701. The second method can be used for arbitrary frequency and is 
based on a new representation for the wave function which is appropriate for t i e  angular spectrum donuin. The 
third method is a direct numrial  approach which uses puamter optimization techniques [Mostafii and h.fitm, 
19701 . 



FORMULATION OF THE PROBLEM 

The geometry of the problem to be considered is 
shown in figure 1. Note that there are no variations with 
respect to the y direction. The dielectric is also uniform 
in the x direction and varies in the z direction as K ( Z ) E ~  

where eo is the permittivity of free space. The permeabil- 
ity is assumed to be constant and equal to that of free space. 
It is assumed that a known electromagentic wave of a single 
frequency is incident from the left on the airdielectric 
interface at z = 0 and that the tangential fields at the sur- 
face of the dielectric can be measured for all values of x. 
Of course, the actual meascrement could be performed at 
some plane z = a, a<O, and then the fields at the interface 
could be computed since the propagation in free space is 
completely known. 

If the incident field is polarized such that the com- Figure 1 .- Remote probing probkm in the angular 
ponents Ex. Ez, and Hy are all zero, then propagation spectrum domain. 

in the medium is completely described by the scalar equation 

(w is the angular trequency of the incident wave). The function v(x. I )  may be identified with Ey or H z ,  which- 
ever i s  inore convenient for the problem at hand. 

To obtain the differential equation in the angular spectrum domain, we introduce the Fourier transform 
relations: 

Then Eq. ( ' ' ' :comes 

This is the differential equation we are seeking. Recall that o, , and eo are constants, f3 is the independent 
variable, and K (2) is the unknown profile function. 

METHOD 1: A LINEAR INTEGRAL EQUATION 

In this method, we assunc that the mctium is terminated at .t = L by a perfect electric co~~ducting wail (see 
fig. 2). This simplifies the expressions by causing some of the boundary tenns to vanish. 



We look now at Eq. (4) and consider the special case 
of w = 0. 

Note that S(fi, z) is the static solution for Hz (8, z) and 
is independent of K (2). Therefore S(P, z) can be calculated. 

Figure 2.- Geometry of the m o l e  probing problem with a 
perfectly conducting plane at z = L. We can now use Eqs. (4), (5). and (6) and the fact that both 

u(8, z) and S(B, z) vanish at z = L,  to arrive at the follow- 
ing integral equation for K (2). 

. . -.. ; .. .; 4 
e,:. . - ?  

' 3  .- , 
Two points should be noted about Eq. (7). First, the right-hand side is related to the tangential fields at the 

, I : . .  . surface of the dielectric and, thus, can be determined from the input impedance. Second, Eq. (6) is nonlinear be- 
cause u(8, z) depends on ~ (z ) .  Therefore, t i e n  is no systematic procedure that can be used to find K (z) from 
Eq. (7). To circurrkvent this problem, a linear farm of the integral equation is obtained by expanding u ( 0 ,  z) in a 
power series of o, the angular frequency. 

. -. . .-- 1.. 
It can be proven that for o sufficiently s d ,  no surface wave of this polarization will propagate and that Eq. (8) 
is a uniformly convergent series. This allows us to substitute Eq. (8) into (7) and interchange the order of summation 
and integration. Equating the coefficients of like powers of o yields a series of equations. The 02 term, in g r -  
ticuiai , yields 

f L  
w% K ( ~ ) C O  (fl,z)dnh[B(z -L)] dz = -B mPhlPL1 4 ( 8 , 0 )  - sinh[BL] dCi(0.z) 

o dz 
(9)  

Z Z O  

To simplify Eq. (9), note that Co (0, z) = u ( l ] ,  z) . But, for o = 0, Eq. (4) becomes ibccrtical with 
I w . 0  

Eq. (5). and u (B, z) becomes identical with S(B, z). Therefore, Eq. (9) can be written 
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This is the linear integral equation that K (z) must satisfy. 

It should be noted that Eq. (10) is exact. No approximations were made in the expansion of u (8.2) or in the 
matching of coefficients. It should also be noted that the hea r  equation is not obtained without cost. The right- 
hand side of Eq. (10) involves the second derivative with respect to frequency of the tangential fields. This requires 
that the probing be done using frequencies in the neighborhood zero. This, however, may not be a limitation since 
some remote probing, such as the determination of the electrical properties of the earth, is often carried out at very 
low frequencies. 

Finally, it should be noted that the ut~sfaction of Eq. (10) is sufticient to guarantee that the equations obtained 
by matching other powers of o are all satisfied. 

One of the greatest advanta~s of the linear form of the integral equation is that thc solution can be shown to 
be unique. To do so, we must show that the homogeneous equation 

has only the trival solution. Rewriting Eq. (1 I), we have 

which says that a linear combination of three terms must vanish for all values of 0. Clearly the last term in Eq. (12) 
is independent of 0; considering its first term, if I f(z)l < M  for 0 < r < L , 

Therefore, for large 13, the first integral is of the order of 8'. Now consider the second term h. Rq. (1 2). 

The integral on the right-hand side is the ftnite Laplace transform intelgal. Hc,,ce, if f(t) is a Laplace transformable 

function, the second term of Eq (1 2) behaves as exp(20LI for large p,  since the integral sL f ( z )  exd-20z) dz 



is algebraic for large 8. Therefore, Eq. (12) can be satisfied for d l  0 only if f(z) is identically zero. Hence, the 
solution of Eq. (10) is unique within the class of bounded, Laplace transformable functions. 

A finai comment a b u t  the numrical behavior of the a~lution of Eq. (10) is needed. The matrices obtained by 
various quadratures on Eq. (10) were found to be illconditioned. That is, small deviations in the data appearing on 
the rirrht-hand side of the equationlead to large deviations in the calculated profile function. This limits the ayplica- 
tion of this method in practical problems. However, Eq. (10) was proven to be nonsingular; hence, better inversion 
methods than were used in our investigation could lead to usable results. 

METHOD 2: A NEW REPRESENTATION 

Recall that method 1 required the angular spectntm response of the medium to be obtained for angular frequen- 
cies in the vicinity of o = 0. The method presented in this section can be used for any futed nonzero value of a. 

Before continuing, we introduce an equivalent form of Eq. (4), which will be used as the basic diffezential 
equation in this section 

where 

The prime denotes differentiation with respect to z . Note that if we dete~mine Q(z), u (z) can eady be found. 

We will assume that Q(z) is bounded and that 

We then write the solution to Eq. (15) in the form 



The associated profile function is then giver. by the expression 

The function P(n) m Eqs. (It,) and (19) contains infoimtion about the medium being studied. We can determine 
P(Q) from a knowledge of u(y. o) by considering Eq. (18) for z 9. That :s, the equation 

i j  a linear ir tegral eqaation for P(r)), 

Usin? these equation?. we obtain the *lnknown fulictions Q(zj by the following steps- 

1. Knowing u(7, o), solve Eq. (20) for P!q), 

2. For various Fiied values of 2, solm Eq. ( 1 8) for u(7, I )  

3. Obtain Q(z) hum Eq. (19). 

It crn be shown that 4. (18; is a solution 13 ( 1  5).  This is done by substituting Eq. (1 8) Into ( 1  5). yielding 
an integral equation of the form 

where T(y , z )  = ~ " ( 7 ,  z) + r2 u(7,  z) - Q(z) u(v,  z). For functions of the type enmunte:ed i? tt:is prctlem, 
Eq. (21) has n ~ l y  the sol~ltion Tly, z) 5 9. Therefore, Fq. (15) ts satisfird. 

Using a r l  example due to Sharp [1963], the above method was tested for numerical stabihty. 1.1 

this case, the field o i  the i n t e ~ f ~ c e  v.as g i ~ n  by 

Figure 3 indicates the close comparison betweeti .he cdcu- 
lated result and the analytical result obtained by :,narpe. a 

I 

METHOD 3: PARAMETER OPT1MIZATION 0 

7 

In contrast to the two nsethcds presented abve ,  the 
third method is numerid in naturc. This method is more 

- 
gerieral than the previous onts, but it d x s  kick the analyt- 
icd niceties that are present in those methods. For insbnce, 

L4pe 3. - R a l t r  obtained when method 2 wu rpp!ad 
to Shrrpe'r example. 



it is impossible to prove uniqueness of the solution. Nevertheloss, this niethod can use data obtained in the angular 
spectrum domain or the frequency domain, or both, and it can be generalized to a wider class of geometries-for 
example, circular columns and sheath configurations in the neighborhood of space vehicles. In addition, this method 
is numerically stable. 

The method is based on the parameter optimization approach commonly used in systems theorv. The method 
secks to minimize a performance index function F, which is defined as the L, norm of the error of the responr . 

where 

~j are ullltnown puuneters introduced to describe the medium, 

ug(wi . pf' K )  = surface field for the tme mtdium described by a profile functior. K(Z)  when measured for 
angular frquency oi and spatial frequency Pi. 

u(wi .  f l i p  u1 , K ,  , . . . , K ~ )  = surface field for a trial medium described b5. the parameters u 1  , K Z  , . . . , urn 
when measured for angular frequency o i  and spatial frequency 01. 

---- - -..an The term; uP(wi, pi ,  K ) are the measured values of the 

- WO~ILI 
field for tk.e medium being investipted. 

-~"~' 0 
f 

?he strategy of the method is as follows. One begins 
r,lth a continuous or layered model for the rnedium involv- 
ing the parameters K L ,, . . . , urn .  With the parameters 
set equal to some reasonable values, the response of this 
trial medium for each w i  and 131 is calculated using €q. 
(4) and some standard numerical technique for solving 
differential equztions. This response is the u ( o f ,  Bl, K :  , 
K ,  , , . . , Km) term in Eq. (23). Ona the performance 
index F i s  calculated, the optimization algorithm deter- 
mines a new set of parameter values and the process is 
repeated until a preset stopping criterion is satisfied-for 
example, F is less than a given enor tolerance e . 

The optimization technique has been applied to a 
variety of inversion problems involving inhomogeneous 
media with continuous as well as discrete variations in 
the proflle function, for both planar and circular geometries. 

I Ihc numerical crlculations were done wing two differ- 
& L . & & ;r ent optuniurtion rlpdthnu. Fwre 4 shows the results 

x u s i ~ ~  Rosmbmck'r (1960) method for r profile func- 

Fipn 4. - Prof?ka ..f riektctrlc mutant r (z) = 22 for a tion-w(z) = exp (22). Fipm 5 shorn the retults obtained 
dab terndnrtrd by r peffact conductot at r = 1. wing the arnjumte @ h t s  method [Fletcher d Reeves, 
Rorantwck'a nnthod. 19641 on the m e  profiEs. Figure 5 shows the results 



obtained using Jle conjugate gradients method wben 
the data was polluted by noise. The very good ngree- 
merlt here ~ndicatec ihat this method is stzble enough 
to be uscd with laboratory data. 

It <;an be seen thn: the computed nsulis a p e  
with thc tr!\e prcfiie better in the vicinity of r = 0. 
l i i is can t,: explained by t f : ~  [act the signa; returned 
from the deeper inside of the medium (nes the ptr -  
fecr conducting wall) is masked by traveling, through 
the front portion of the medium. Thus, va:iations 
&curing deep in the medium hiivc little effect on the 
fields measured at the interface. Figures 7 and 8 show 
the results obtai:~cd for a profile illomi~iated from the 
left and from the right, respectively. In both cases the 
results are better near the interface than peer the 
perfect conductor. 

1 - 
-6 he 4 d, 1.00 

2 

Rpur 5. - Profie of dickctric constant r D) = c * Z  for 
a slab taminrted by a perfcct cor~ductor at z - 1.  
Conjug& prdisnts method 

F i r e  6.- RoFlr of dielectric: canstant r (z )  = e 2 z  for a slab 
terminated by a perfect conductor at z = 1 .  Random noise 
was added to the rimulrtcd &Is. 

8 L- -C---- 

"OW Ot 'J  0 4 0  014 a00 1 0 0  UO 

Figure 7.- RoNe of didectric canstant w (z l = -45 + m)za 
+ (4 + 0 ) z  + 2 for a dab terminstad by r perfect conductor 
at z = I .  &me wave w u  incident from -z to +r direction. 
Cojwte writs methoil, k , = 1 .O. 



8 l 
" o m  o l e  o w  ow om loo I ro  . 

8.- Rome of &ltcMc constant re) - 4s. + a ) z  ', 
+ ( 4 + a ) z  + 2  forrdrbrithrperf6cteonductotrtz -0. 
h n e  wave wu incident from +t to -z direction. Conjugate 
padienu method, k, - 1. 

~9.-RofU80f&b~txtccoadmt rC)ui+tdnIw for 
a &tact& dab. Romr~brock'a nutho4 k ,  = I .  

Figure 9 is another example in which variations 
of the profde function occumng deep in the medium 
have little effect on the surface fields. This example 
illustrims the uncertainty that must be attached to 
the proposed solutions. Although the results are not 
particularly p o d ,  the performance index for this case 
was very mall, leu than lo-', and the amplitudes of 
the scattered fields agreed to two significant digits. 

CONCLUSIONS 

The three methods discussed for solving the 
m o t e  probSng problem were developed especially 
to utilize data obtained in the angular spectrum 
domain. The first method is a novel technique for 
extncting an exact linear integral eqlratiog from a 
nonlinear integral equation. The second method, 
based on a new representation of th: sol-ition to the 
differential equation describing the problem, is more 
stable numerically than the first. 

The third method was v to bc numerical in 
nature and so lacks many of 11s analytical niceties 
that the first two methob possess. However, this 
mthod can use data from either the frequency do- 
main or the angular spectrum domain, and it can be 
used for geometries other than p!anar. Furthermore. 
this method is nurmtrically stable. 



DISCUSSION 

i :  Would this be applicable to the case of  \#trtical incidence ionograms, the valley d and F layer? 

Mitm: Yes With ccrtain p:ovisions. 

Shellman: In the last example, what was the allowable class of  functions? 

Mirm: We have not found the restrictions yet that one has tu ~ I J :  
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A-SPACE FORMULATION OF THE N-DIMENSIONAL 

SCATI'ERING PROBLEM 

Norbert N. ~ojarskit 

ABSTRACT 

The n-dimensional scattering problem is wlved by means of a k-spau formulation of the field equations, thenby 
replacing the conventional integral equation formulation by a set of two algebraic equations in two unknowns in two 
spaces (the constitutive equation being an algebraic equation in x-space). Thce equations are solved by an iterative 
method with the aid of the k t  Fourier transform (FFT) algorithm connecting the two spaces, requiring very simple 
initial approximations. Since algebraic and Fm equations are used, the number of arithmetic multiple-add operations 
and storag doat ions required for a numerical solution an reduced from the order of N' (for solving the matrix 
equations resulting from the conventional integnl equations) to the order of N log, N and N, respctively (where 
N is the number of data points required for the specification of the problem). The advantage gained in speed and 
storage k thus of the order of Nlloh N an3 N. respectively. Thm method is thus considerably more efficient 
than the conventional matrix method, and permits exact numerical solutions for much large: problems. Ar-nts 
are presented towards the view that the field equations a n  more fundarnend in k-space. The details and some 
numerical results of the application of this method to the three-dimensional electromagnetic scattering problem are 
presented as an example. 

INTROWCTlON AND BACKGROUND 

Consider the n-dimensional &,vector, or tensor field f(5) end the source density g(i), governed by the 
hear  m th order differential feld equation 

where the n-dimensional linear differential scalar, vector, or tensor operators Lf md Lg are of the form 

t ~hysiciit; ~ c # u c h  Contnctoi and Consultant to the of~cfenre. 
16 Circle Me, Moonstown, New Jersey 08057; h: (609) 235-3G! 



subject to the ndimensiod scalar, vector, or tensor constitutive equation 

The conventiorul n-dirnensiond integral representation of the generalized initial vabe or (scattering) problem 
assodated with the field Eq. (1) is 

subjec! to the constitutive Eq. (4); where fi(G) is the e~ternally imposed field [initial value, source distribution 
external to the problem &fined by the constitutive Eq. (4)j ; D is the domain of nonvmishing h (2) ; and ~ ( 2 )  
is the appropriate Green's function, vector, or tensor, satisfying the differential equation 

The conventional numerical method of solution of this initial value problem is by meats of numerical matrix 
inversion methods Hmhgton (19681, applied to the Fredholm integral equation of the second kind, formed by 
combining Eqs. (4) and (5); that is, 

- - 
where the integral transform kernel K(x I x ') is given by 

-. I . ., . , I  
Such matrix inversion methods require the order of N2 oomputer storage allocations, and of the order uf 

. , . .. / 
> ,  . ., '..'I , . :  

from "V2 to N3 arithmetic muitipIy-add opentiom (ior conventional matrix inversions and matrix inversions by 
. ! . , .,i 

1 
iteration metho&, respectively), for the execution of a numerical solution; N is the number of &ta points required 

. ?. ;! . j..:;. .: -.. for the numerid speafication of the constitutive Eq. (4), the specification of the nonvani3hing portion of h(2 )  . 
, , . .  ..* . 
,t , . .  ::,.$ m e  practical size limit with state-of-the-art computers is for N of the order of several hundred. 
. 11.5 :. 6:; 

,!."a,. .*;j 
' . ,  , 

:,, -., .. ; .,.j . i' ..--. :'. 
' ... . , : . 1  . THE k-SPACE FORMULATION OF THE GENERAL INITIAL-VALUE PROBLEM 

9 ,. ., . Y I 1 

k.rpaa reprentation and solution of the generalized n-dimensional initial-valw problem is discussed. 
The n-dimensional Fourier Transform of the differential field Eq. (I) yields the algebraic scalar, vector, or tensor 

.,...I .- k-spce equation 



where 

and where, by virtue of Eqs. (21 and (3). the quantities LPZ) and Lg(%) are polynomials of the form 

The k-space representation of the generalized n-dimensional initial value problem, consistent with the x-space 
integral representation in Ep. (5). thus is the algebraic xnlar, vector, or tenior equation (*:a-vis the conventional 
integral or differential equation) 

subject to the algebraic x-space constitutive Eq. (4); that is, 

where 

which clearly can be taken as the Green's function (or vector or t c~uor)  in &-space, that is, 

r(X)+ -G(:) 

Ihe genedited n-dimnsiond initial vaIw problem is thus reduced to a set of two aIgebraic (scalar, vector, or 
tensor) equations in two unknowns in two spaces - that is, Eqs. (13) and (14). 

The unique exister~ce [Pbpoullt, 19621 of this k3p1.c~ representation is mtricted to media for which 



If h(x) is in genera! norvanishing only in a finite n-dimensional ~domain ,  then the pair of algebraic equations 
(13) and ('4) can be solwd numricdy with the aid of the ndimensional fast Fourier transform (FFT) algorithm 
[Codey er ul.. 19671 as the connection between the two spaces, by the following iterative relaxatior. method [Vargu. 
1962). the recursion relationship for which is 

where a is an appropriately chosen relaxation coefficient (best numerical results to date were obtained for a = 112). 
and where F(E I x) and F(F I E) designate the fast Fourier transform algorithm operator and its inverte, 
respectively. 

The initial approximation go (2) can be taken as any known simply programmablr approximation to the 
problem, including the trivial case ,I (x) = 0. 

To avoid the numerical difficulties arising from the fictitious periodic nature of the FFT, which is a discrete 
and finite Fourier tramform, Ms4-vis the continuous and infinite Fourier transform implied by Eq. (lo), and the 
possible singularities in the fields, sourccs, and Gmn's function (or vector or tensor; in k-space, ~t becomes necessary 
to choose an n-dimensiod hyper-rectangular box of twice the size (in each dimension) of the smallest hyper-rectan- 
gular box in which the nonvanishhg h ( z )  is imkddable as the x domain for the FFT, and take the Green's function, 
vector, or tensor as 

in the convc~ltionalT!T notation (Coodry rr d .  19671 wherz 

w,, = ,;2ni/N 

A"X = AX, Pxl Axn 

N = N j A 2  .,Vn 



and where appropriate use is made of the periodicity properties of the FFT [Cooley er d., 19671 for both Eq. (19) 
and the desired placement of h($) artd fl(x) in the hyper-rectanplar FFT x domain. 

The n-rical difficulty arising from t\e possible singularity of the Green's function at the origin of the x space 
(that is, C(0) = m) can be alleviated by taking advantap of the appropriate principal value integral representation 
of the field Eq. (S), such as, [Van Bludel, 19611 

It thus immediately follows that ~ ( 6 )  f ~ i  Eq. (19) can be taken as 

Since algebraic and FFT equations are used, the number of arithmetic multiplye2d operations required 
[Singleton. 19691 for a solution is reduced from the order of N' (required for solving the matrix equations result- 
ing from the conventional btegral equation representation of the problem) to the order of N log2 N, and the stor- 
age requirement is red~ced also from the order of N' (required for storing the matrix associated with the matrix 
method of solution) to the order of N (required for storing the k- and x-space vectors). The advantage gained in 
speed and storage is ti us of the order of N/log2 N and N, respectively. This method is thus considerably more 
efficient, and permits exact numerical solutions for much largr problems. To date, problec~s of the order of N = 10' 
have been succtsjfully splved; and problems of the order of lo6 seem feasible with state-oi-the-art computers 
[Singfeton, 1 970) . 

1'HE k-SPAC8 FORMULATION OF THE GENERAL WAVE SCP.M'ERINC PtOBLEM 

For the general ndimensional wave scattering problem, the (range- and phase-normalized) scattered far fields 
in x space are in general haply and algebraically related to the ndimensiond Fourier transform of the source distri- 
bution g(2) - thd is, C(Z) - induced by the incident field fl(x) ; C ( X )  clearly is yielded directly by the iterative 
solution in Eq. (Id) without additional computations. Since this is not the case with the conventional matrix method 
of solution of the integral equation representation of the scattering problem, the k-space method of solution pre 
sented is particularly and additionally attractive when applied to scattering problems. 

For the special case of the ndimensional He!mholtz (time-reduced) wave equations for which 

where ko wlc , and c is the wave wlocity in free space (this deviation rrom convcntionai notation is fcr the 
purpose of distinction from k ,  the Fourier tmsfonn variable of x), the ndimensional k-rpace Green's function, 
in the notation of (9), (15). and (16), is clearly 



r (E) = 4 ( E )  L ~ ( E )  

The form of the Green's function 4(x)  in k space is clearly invariant to the dimensionality n of the space, 
which is not the case in x space. 

Thus, by virtue of the previously s%ted relationship between the (range- and phase-normalized) scattered far 
fields in x space and the source distribution c(Z) in k space, and consexvation~fcnergy considerations for 
passive media of finite spatial extent [see the inequality (17)], it follows that the radiation condition for the Helmholtz 
equation in k space can be stated as 

where ks is the propagrtion wave number vector of the scattered far fields; see also (37) through (40). 

It can thus be argued that the field equations ~f ,rlammatical physics are more fundamental in k space, be- 
cause of the simple algebraic nature of these equations in k .pace, and the invariance of the form of the k space 
Green's function of the Helmholtz equation with respect to fie dimensionality of the space, particularly when bearing 
in mind that the Fourier transform is the only transform kncwn for which a fast algorithm exists. (This apparent more 
fundamental nature is most obvious for quantum mechanic:.) 

ELECTROMAGNETIC SCATTERING 

Three-dimensional electromagnetic monochr   ma tic scattering by passive inhomogeneous media, including per- 
fect conductors, of finite spatial extent and arb;;ary shape, is cons~dered. 

The time-reduced electric a+. .napetic field wave equations, valid for all  linear inhomogeneous media, in terms 
of the total cumnt density :imrtton, 19411 , are, respectively, 

which, with the aid of Maxwell's fmt und second equations, and the equation of continuity for the total charge and 
current density, can k: written as 



For nonmagnetic media and perfectly conducting media, the appropriate constitutive eqcations for the total 
volume and surface current density j (%)  and K ( x ) ,  respectively, are 

where of and xe are the free charge conductivity and electric susceptibility, respectively, of a (nonmagnetic) medium 
and n is the otward surface unit vector of a perfectly conducting medium. 

Equation (33) is usually regarded as a boundary condition for perfect conductors, but in the context of this 
paper,it must be taken as a constitutive equation in the truest sense, particularly if regarded as a geometrically con- 
straining condition on the flow of all charges. 

For the electric and magnetic field equations, consistent with Eqs. (1 3) and (26) the appropirate k-space field 
equations and Green's tensor and vector are, respectively, 

and, by the relatio~ship between surface and volume current densities, consistent with the FFT notation of (19), 
the volumz current density for a perfectly conducting medium, can be written by Eq. (33) as 

where A; is the (finite) differential vector surface area in the FFT cell of volume Av = A)%. 

Eqsmtions (32), and (34) and (33), and (35) can now be solved numerically by Eq. (18). Defining the range 
and phase normalized scattered far-fsld T(zS) as 

S(k,) r fi Limit I2 l FS(J;) e-iE, 2 
IXl-+=J 



- - 
where F S ( ~ )  is the scattered field satisfying th: relationship F = f l  + Fs , which is consistent with the conven- 
tional definition [&rkowitz, 196%) of the radar pow:r cross section o and the relationship 

readily reveals that the range and p h a ~  normalized electric and magnetic scattered far fields S ,  and Sm are given 
directly by the k-space current density distributions 

where 2 ,  is the irnpedence of free space. As dictated by the transversality of the scattered far fields in free space, 
Sea gm , and ES are indeed all orthogonal to each other. 

It can thus be shown that the cor~ventionally defined [Berkowin. 196563 electric polarization scattering matrix 

"VE 
is given directly in k space by 

where, in the conventional notation for spherical coordinates, Sjs am the eigtnpohrizations (spherical coordinate 
unit base vectors) Ts and ps associated with the scattered far-field pro, rgation vector kS and /(k) is the k-space 
current density induced by an electric incident plane wave field of the form and polarization 

where 1 are the eigcnpohrizations (spherical coordinate unit base vectors) $i and 9, associated with the incident 
propagation vector E,. 

The solution to the &space formulation of the three-dimensional scattering problem-for the electric f ~ l d  
Eqs. (32) and (34) for nonmagnetic media, and the magnetic field Eqs. (35) and (36) for perfect conductors-has 
been numerically computer executed for a limited number of cases by the iterative method of soldtion of Eq. (18), 
with final results within about one decibel of exact known analytic c l d - f o r m  solutiom after about 30 iterations. 
Figures 1 throu* 5 compn  this technique with the exact solution of Mie (19081 for the perfectly conducting 
sphere (of radiusa). The failure of this k-spsce technique ir! t k  ?:tar vicinity of koa = 2.75 (fg. 1) is due to the 
fact that koa 2.75 is the occurrence of the fint r,-;pnfreqwncy (internal resonance of perfectly spherical shell) 
[Oshiro et al., 19701. This difficulty can be m & y  and simply deviated, but since the objective of this project was 
to prow the feasibility and merits cf the k-rpace meaod, and not the generation of an operational wer library of 
computer programs, this difficulty was Wren u beyond the scope of this projeci. 



QUANTUhi SCATTERING 

Three dimensional nonraelivistic ~chrijdin~er scattering at constant energy by strnng finite short-nnged nucleai 
potentials v(:) is considered. The time-hdependent schradinger equation in centerof-mass coordinates can be 
written in x space as 

where 

Fipre 1. - Power cror Esction m r  Frapuaicy. 



* 
The kr,tid-wue integral representation [ R a f b c ~ a d  
N e r ,  119671 of which is 

9 4 . * 

a(?)+ - 1 Ni l3  42) )(a d3x' + rY '(i) (46) 

Consistent xr~ith Eqs. (1 3) and (26), the appropriate .I-.- -. -..,,I 
k-spce Green's functian is is~us given by 

* . ~ I ) U I ~ I ~ I * I I )  

5 - - m.8 
~,lma""l 

* CI- 

i dko 1x1 
tp(@ = -- * #(;;>%- (47) F m  5. - POW crou rsction wnur upect angle; 

k' - A o '  471 \;I &,a = 2.3; 9, = 9 4  

acd, consistent with Eqs. (13) and (14), the k-5poa tsprewntatiun of the initirldut schtadinger field equation is 

subject to thc xsww constitutive equation 

Consistent with the inequality (1 7); the unique existence of this k-rprce reprerntation is restricted to poten- 
tials satisfying ;he relationship 

and the iterative numerical mluticm (18) is applicable if the potential v(;) vddws at a Rnite distance. The recur- 
don relationslip for this iterutiva mlutim cleuly Ir 

Consistent with (37) thro* (40). thr -C and phU)Q- (~ittefed fu-Rr:d w m  functions 
s(E,)  are yfrldsd directly in k r p c s  u 



and the differential and total scattering cross sections od and ot are . 
- 

oq(Es) s (ES)  S*(Fs) 

where a is the area of the spherical surface in k space of radius ko. 

If the potential is a ncmlocal potential representable by a difference kernel - for example, 

the constitutive Eq. (49) bemms a local equation in k space: 

and the scattering problem represented now by Eqs. (48) and (56) can be solved ir. closed form in k space: 
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Uhldrntdw speaker: What do you m a n  by the "fut" matrix form? Y w  msm ths fact that you can do it quickly? 

BojmM: Well, that is a p o d  way of describing it. I t  is basically a Fourier transform. If you write Eq. (10) and if 
you compute it numericdly and it wen to go straightforward it would take you n2 operations to obtain n 
values. But if you clmrly wc the periodicity, which war done at the turn of the century but h u  only been 
prognmmed reandy, you will find out that you don': have to compute na operations but only n lo8 n . By 
the way, we did do it in three dimensions, so you can do thmdimendonrl problma and luger. 

Kay: I think that this u n very clever use of the f u t  Fourier tnndorm, and I think maybe something could be done, 
but I can see a fundunend difficulty. Your rccond equation is an integnl equation which is a convolution, 
and therefore could theontically he inverted. 

Boiarski: Let me rewrite it so we will know what we ore taking about. Thc first one b Eq. (13) and the second one 
is Eq. (14). 

Kay: Okay. Now, in the first one, f(k) L the Fourier transform of the product of two function8 of x.  Write it 
out in tenm of the unknown function o(x) ao a convolution, an integral equation of the con-:elution fonn 
that can be inverted by the Fourier transform. 

Bojurskd: Yes, but that b precisely the thing to a d d ,  to put it in the convolutiar fonn. 

Kay: I underatand that, but I unjust comme?ting that the mcass of the fu t  Fourier tnnsfom seem to depend 
m this fact, md the problem with the CelfrndLsvitan methods in the invene problem u that the kernel of 
the integral equation hu the right fonn but it bn't one d u t  an be inverted by the Fouricr t m d o m ,  ro it is 
not quite cleu that this tcchiqfie would work in that ar, for example. 

Bojarski: Perhaps we uhouldn't p to that but p back to the original &ffstentW equations. I needn't have written 
it for this operator. In fact, for the electromagnetic crac it is of the form del croa d d  croas, which you put in 
other forms. Basically this techn@c will work so long u yau +it mput a physial law that hu  r differential 
opentor on a field, giving you a tource, and a conrtitutive equation that says the source io nlated to the fild. 
k long u this is a linear differential squrtion the technique will. work. 

Kuy: Yes, but it does depend on win# a Fourier truuform, so thh mrnr that the squivrlent in@@ equation has 
to be one that an be inverted by the Fourier tnnrfonn. 1 un not podnl this m a fundanmtrl objection. 11 
b j ~ t  h t  1 C U l  W 8 difftdty becuus of thrt quetti0n. 
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INVERSION OF RADIATION DATA IN BIOPHYSICS 

Victor T-scrsky 

University of Ninois t ~ 1 3 - 1 1 6 2 4  

This summarizes the essentials of my informal suppkmentiuy talk d1irin3 the panel discusdon (final workshop 
session) and incorporates some remarks relevant to comments from the floor. 

There are essentially two sets of tapia in b~ophysics that are appropriate. The first relates to how we acquire 
informati~n about our distant environmeci through seeing, hearing, and w forth. The second relates to how we 
usf eiectromagnetic, acoustic, or 0 t h  radiation for diagnostic pposes, either at a bulk or a molecular Icvel. 

The first zet includes inversion aspects not covered by this conference, in that the mapping characteristics of 
the receiver (the sensor-perceptory sy~tem) are as important as the scatterers. An elegant example, Luneburg's [1948, 
1950) theory of bir.ocular vision [Bhk, 1953, 1961) was motivated by work on sterroptical and optical localization 
equipment (such as long-arm binoculars to widen the base for triangulation). Luneburg was able to account for various 
results in the literature of experimental psychology, particularly for the noncoincidence of parallel alley and equidis- 
tant alley test data, by a model based on non-Euclidean geomztry: under restricted conditions, the subject exposed 
to optical stimuli in euclidean three-space maps them icto a perceptual three-space of constant negative curvature. 

As another example, consider the development of acoustic guidance devices to aid the blind in foot travel 
[Twenky, 1947,195 la.b], such rn hand-held high-frequency sound sources to supplement or inprove on ambient 
noise (er heel clicks, etc.) for obstacle avoidance by hearinq. Tht average increase in scattered sound intensity at 
the ear as an obstacle is approached provides two lunds of auditory cues: because of the nonlinear behavior of t!e 
hearing mechanism, an increase in intensity of the hi&-frequenq stimulus is perceived as an increase in pitch as well 
as loudness. 

The second set of relevant topics, radiation diagnostics, involves the same fundamental physical processes that 
motivated the present conference. Thus, the mathematical developments that have been presented are as significant 
to scattering phenomena in biophysics a in geophysics, quantum physics, etc. The inversion of x-ray, optic, or ultra- 
sonic scatteril~g and propagatian data to determine thc density profile of tumors and of tissue layers, the shape of 
foreign objects in the body, the velocity distributions in vital fluid systems, and the like [Medicul Physin, 1944,1950, 
19601 provide full analog of rhe data inversion problems already considered. 

In addition, there are various many-obstack problems, periodic arrays, or statistical distribations, that are of 
interest. Although a my-obstack configuration can be thought of as one scatterer in 3i joint pieces (so that the 
analytical procedures already discussed are applicable), it is ~uualiy more eff~ient  to exploit the known results for 
the iomponents as isolated scatteren. We represent the many-obstacle soluhon (for nonptnetrating scattering poten- 
tials) as a functional of isolate~catterer functicns, and concentrate on the ~ ~ w l  aspects arising from the configurg 
tion (7kmky.  1952; 1962qb; 1967a;Burke er d., 19651 of scatterer locations, or their statistid distribution 
[Foldy. 1945,195!, 1952; KC&, 1964; lkcnQ, I959,1962c,d. 1964,1?69]. 

A wellknown exampk of a bidogicrlly significant config !ration discavered in prrrt by i; vting x-ray scattering 
data [Lunp'dge et d., 19601 is the double helix of DNA. " part" is stressed because mucli of the infomatior. 
used by Watson and Crick come from direct chenicd analy+ : ratios of the four bases thnt distinguish the 
nucleotides, from electrometric titntion, from viscosity studies, and so forth; but ooe does not play a gentleman's 
pme with nature ! The x-my data pn obtained from rncPsumnents on a relotiwly thick fiber consisting of billions 
of aligned DNA molecules. In the plane psrpendimh to the fiber's axis, the distribution of the helices should be 
essentially that of a two-dimensional liquid; thum, the fiber data may show additional structure. analogous to that 
shown by x-ray data for &me gases and liquids [Cuinia. 19631, f m  which the t w ~ n s i o n d  pairdbtr i t ion 
function could be obtained by inversion. 



A singlescattering approximation for the nucleotidas suffices for x-ray studies on DNA. However, for ultra- 
violet studies, the interactions of lhe fields of the nucleotides must be taken into account. As discussed by Weissbluth 
[1971], the ultraviolet attenuation is smaller for a solution of DNA helices than for a solution of random coils (as 
obtained, for example, by heating), because the applied fxld couples the oscillator strengths (electric dipoles) of 
neighboring nucleotides m a helix. 

As a fmd example we consider the invelsion of optial data to determine the oxygen saturation R of blood: 
the ratio R of oxygenated to total hemoglobin is one of the principal parameters of interest in clinical medicine. 
If a sample of blood is hemolyzed - that is, the hemoglobir is released from the red blood cells - then R for the 
hemoglobin solution can be determined by optical absorption measurements at two different wdveiengths. (This is 
essentially a refmed version of observing the color of blood, bright red for h@ R as in arterial blood, and dark 
red for low R as in venous blood.) To avoid sampling, optical instruments (transmission oximeters for !he shell of the 
ear, reflection oximters for the forehead, fiber-optid catheters for insertion in blood vessels) and empirical chlibra- 
tion procedures have been developed for continuoudy monitoring R during anesthesia, spaceflights, etc. To design 
more versatile instruments, the inversion procedure LLahger et R. 1969; Andason mtd Sekelj. 1967a,b] must 
take account of the scattering effects ( 7 b ~ .  19701 of the large red blood al ls  in which the hemoglobin molecules 
are packapd For transmission oximetry on suspensions of whole red blood cells, the main beam is attenuated by 
scattering to other dimtions as well as by molecuhr absorption; in addition, there are the enrichment effects of 
scattering into the beam. For a reiiection system, incoherent scattering interface effects are also significant 
[Twenky, 19701. 

In connection with comments on measuring phase as well as amplitude, it should be nc:ed that various para- 
meters sought by inverting the total average illtensity and coherent phase shift could be obtained more directly from 
averages of several products of the phase quadrature components of the f ~ l d  [7bersky, 1963,19676; Beard er al., 
1967; Hawky et d, 1967). The components may be measured with a coherent source and a double interferometer 
analogous to the double-bridge heterodyne system developed for millimeter wave measurements on scattering by 
large-scale random distributions [%em&y. 1963,1%7b; &md et d.  1967; Hawley et d.. 19671. Such systems 
enable us to separate the coherent and incoherent intensities even in the forward direction, to measure new combi- 
nations of the fundamental pararmten, and to seek data in which the many-particle distribution functions enter in 
fmt order instead of as small corrections. 
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TRANSMISSION LINE INVERSION AND SYNTHESIS 

FROM THE POINT O F  MEW O F  TRANSIENT RESPONSE 

M. M. Sondhi 

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey 

The work described here is a joint effort ofSondhi md Gopinuth [197ltz,b; 

Although the problem is discussed as one of transmission line inversion (or synthesis), the motivation for study- 
ing it comes from research in speech communication. Since this fie!d of research is rather remote from the other 

,:. :: 1 
,..... ., . .r: disciplines represented here, we first briefly consider the problem in its original form and then reduce it to one of 
, . transmission lines, indicating the most recent results obtained 

Figure 1 is a cross section of 'Jle human vocal tract. To produce speech sounds we acoustically excite this tract 
by means of quasi-periodic pulses from the vocal cords during vowel souniis and turbulent air flow at various points 
along the tract &!ring fricative sounds such as s, sh, and f. If we assuim  lane wave propagation (which is a good 
approximation for propagation of waveforms limited to about 3500 Hz), then the cross-sectional area C(x), the 
pressure p(x, t), and the ;dume velocity u(x, t ) ,which is defrned as C(x) times the particle velocity, are related 
through the differential equations 

(1) 
1 au ap - = -- 
c a t  ax 

where the units an chosen so that the density of air and 
the velwity of sound arc both unity. We identify x = 0 
wth the lips and makc the hrrther normalization 
C(0) = 1 - that is, (he lip opming has unit area. These 
three normalizations completely specify a nndength- 
time system of units. 

Now if the shape of the tract is known - that is, 
in our idealization to plane waves, C(x) is known - 
and the excitation is known, we can compute the pns- 
sure at the l i p  - the speech wave. This computation 
involves solution of Eqs. (1) for given boundvy conditions. 

Figure 1. 
The inverse problem of interest here is to infer C(x) 

from acoustic masuremmts at the lip That b the sort of information one requires for synthesis of speech, making 
models of the speech production mcchanisan, and so f h .  

The problem becomes a tranmnicsion line problem if we replace the pressure p(x, t )  by the voltag v(x, t) 
and the vtirum ve!ocity u(x, t) by the current i(x, t). With thsr identifrptions EQI. (1) become 



which are theCquations discussr;d by Kay (Chap. 6) except that he used the steady-state, frequency domain version 
with slat replaced by iw.  in fact, Eqs. (2) are the equations for a special type of line for which C(x] is the 
capacitance per unit length and also the reciprocal of the inductance per unit length. This reciprocal relation between 
capacitance and inductor.ce eliminates the inherent ambiguity of the general transmission line inversion problem. 
Recall the fact brough? out by Kay that input measurements alone cannot yield both the inductance and the capaci- 
tance of an arbitrary line. Only one function derived from these quantities can be reconstructed. This function may 
be c h w n  as, for cxunyle, the charac*ristic impedance as a function of electrical distance or some other equivalent 
form. In our a%, because of the reciprocal relation the function to be reconstructed may be chosen to be C(x) 
itself. 

The end x = 0 of this transmission iine is accessible to us for measurement. As the Eqs. (2) are linear it is clear 
that if we can measure L .  impulse response at the input then we have measured all we possible can. All other measure- 
ments can be predicted from the impulse response by superposition. The impulse response is defmed here to be the 
voltage h(t) developed at x = 0, t units oktime after a unit impulse of current is applied to the quiescent line at 
x = 0. It can be shown that h(t) = B(t) t h(t) where $(t) is continuous if C(x) is continuously differentiable. 
(We assume this degree of smoothness for C(x), although this is not necessary.) 

With this definition of the impulse response if the transmission line is quiescent at t = to -that is, 
v(x. to) = i(x, to) = 0 for 911 x > 0 - then the input voltage and current are related by the convolution 

Gu problem may now be stated precisely as follows: We are given a transmission line, described by Eqs. (2), 
with C(x) continuously differentiable and 0 < C(x) < w. At x = 0 we masure h(t) for the interva! 0 < t < T. 
Can this measurement tell us anything about C(x)? 

Since the velocity of propagation is unity, it is clear that h(t) for t < T is unaffected by the properties of the 
h e  for x > T/2. Those remote regiolis of the line just cannot be proted in so short a time from the input. Thus 
h(t) for t < T tells us trothing about C(x) for x > T/2. The remarkable thing, however, is that it gives C(x) 
uniquely for x < T/2. 

The basic result is as foCrws: With C(t) given for t < T choose any a< T/2; solve the integral equation 

for the unknown function f(t). Then 



which solves the problem. 

The argument leading to this result is simple and is based on the notions of causality and charge conservation. 
Suppose the line is quiescent at t = -a, at which time a current i(0, t )  starts to flow in at x = 0. Causality and 
unit propagation velocity then assure us that at r = 0 the line will be undisturbed for x > a .  Thus, the charge de- 
livered by the input curreqt must appear somewhere on the portion x < a  of the line. From charge conservation, 
thereforr, 

What one can show is that if i(0.t) = fit), ~ h e i :  f ( r )  is the solution of Eq. (3) ther v(x, o) = 1 for all x < or. 
Thus, +w obtain Eq. (4). 

To obtain C(x) one has to differentiate the integrated capacitance obtained from Eq. (4). For numerical 
computation this is a wry undesirable operation. It turns out to be unnecessary, for a simple manipulation of Eqs. 
(3) and (4) shows that 

Note, however, that differentiation of Eq. (4)  with nspect to a does not give f (a) = C(a) because f ( t )  
in thb t equation depends on a implicitly. 

' h e  impulse response is a positive definite operator; mathematically, this means that the inequality 

holds for any square integrable function g(t) on the interval I t 1 < a < T/2.  Physically, this inequality states that 
an input current g(t) delims a positive amount of energy to the line because of the passitivity of the line and 
because C(x) + 0 or u . Thia positive d e f ~ t e  property ensures *h existence and uniqueness of the solution of 
Eq. (3). 

In conclusion it should be noted that if h(t) is specified a priori rather than measured, we have a synthesis 
problem. The theory, of course, applies equally well to this car provided the specifid function is a vnlid impulse 
response. Clearly h(t) must satisfy the two necessary conditions diocusacd earlier - that is, it must be positive 
definite and of the form 6(t )  + h(t). We can show that these conditions arc also sflicient to mstnrct C(x) .  
At least f . continuous x ( t )  and continuously differentiable C(x) the theory ia compkte in the sense in which 
SBbatier used the term (Chap. 5). That k to say the relation h ( t )  * C(x) ia unique in each direction. 



DISCUSSION 

Moses: 1 want to say 1 am very much impressed with thir paper, and 1 will tell you some masons why. First of all, 
I want to correct an impression. The method of &&and-Levitan, the way Irv Kay does it does hold for time, 
so it can be put in the timedependent form You can m d  in a time-dependent impulse and get something 
out. There is no diffiicuity whatever. In fact, he presented it in the timedependent form, actually, when he 
did it through causality, with a S function and so on. He immediately transformed, but ~t is complttely un- 
necessary to transform. 

Sondhi: Yes, but the viewpoult has always been in terms of steady-sta te behavior as far as I know. 

Moses: You don't have to do it that way, though, with v elf and-~evitau. 

Sondhi: Perhaps not. Only, they have never pursued it this way. 

Moses: Well, in Irv's paper, it will be this way. He has published elsewhere, as a matter of fact. I have to give credit 
to Irv for recognizing menj years ago that the p elf and-~evitan equation was an aspect of causality, just as this 
is. Now, you seem to haw a different aspect of causaiity. This is what makes it very interesting. 

When Irv and I worked on the thrte-4imensional ~eltand-Levitan theory we tried to derive t'le causality 
and got absolutely stuck, and we couldn't do it. We had to go to the spectral theory. But I think causality is 
the proper way to do all these problems. 

Sondh:: Well, I would like 'ro make one additional point as far as causality is concerned. For the specific problem 
thet we mre interesbed in, if p use the frequency approach, you must knr~vl first of all the end condition at 
the glottis. Now, this end condition is never really known. You could amme tha! the tube is closed at that 
end, but this m m p t i o i ~  would not always be vali4. 

Our method doesn't require any information about that. It builds up the cross-sectional area function 
starting from the end at which you a n  making measurements, ~.s far mwn as you can go, depending on how 
many sewn& of the impulse : a p s e  you haw. 

Avry: For this particular application, wouldn't it be more natural to start the signal at one end and observe it at 
'he other end? 

Sondhk But t!!t is what we are trying to get around, because we can? put a known signal into the glottis. That's 
the problem. ideally, what you would like to do is to pt the m a  function directly from the speech, but you 
don't know what the exdtation is. You cm only make some reasonable assumptions about it. However, that 
might produce a large error in the teconstructed ma. 

Now the measurement problem is not easy bearue you have to ask the person to mouth the words tith- 
out actually speakins. While you are makiq the meuuremnt you don't want the speech to interfere with it. 

Many linguists don't like this, because they say tho; you on not memuring the shapes you would produce 
in normal circumstanas. How important this effect i s  PO one really knows. However, ti measuring the area 
function no assumptions are involved about the exdtation and the boundary conditions. 

khny: As I understood it, you assumed that the a o ~ o n d  area at x = 0 w u  I? So your results, then, will be 
given in term of a ratio of C(x) to C(O)? Anycme who hu a b* m a t h ,  so to speak, would therefore upset 
your calculations, or, being more wriou about it, the point ia that the C in not constant at x = 0. 



Sondhf: Riglit. We scale down big mouths in the following way. To nuke this measurement it is not feasible to 
just put a pulse of round at the lip and make a p e m  measurement right there. Whlt we do is we have 
what M known as an impedrna tube, into which we put some energy, and the person liolds his mouth at one 
end by a flexible coupling. We start mmstructirq the area from mne point in the tube where we know what 
tb uer in. That is the way we get around the problm. But in @nerd you are ri@. If you were going to 
mdlce muursmants without such a tub, then tha aule factor wuld bve to be reatored by other means. 

Portinnri: Did you look into conditions of h ruch that C(x) is of finite range, is., is constant after a finite length? 

Sodhi: You mean tiat C(X) should have mmb vrriaticn and then stay constant? 

Fbmmnmi: That's right. 

Sondhi: I hovan't looked at that prmlem, but if that were the cue, y w  sa, it woldd be easier to :oak at it as a 
termination of the twumircion line, and rdva the problem thit way. Thc uniform tub:! is equivalent to a 
resistance termination on a tmmnbsb~l line, m I d d  look at thii vuivble transmi&on h e  with a resistor 
termination. I tm not cure I undentood yau probkn, meetly. 

What I am rdrinp; is m e  of a synthesis question thur diagnosis. I man. you have h. You want to 
construct C!x), and you muld be interested in hrOg something that occapies a finite length. What would 
be %nditions on h to guarantee that? 

MndM: I Lvi: not looked s: that problem. We b e  looked a little bit at transmission lines that if,:lude distritruted 
rr-.risti.de and cr~nductivc loam. nS u the question I askc& Professor Kay, in fact. What happen! if you hiow 
the resistma and conductance? Can you get C from md! meuunments? 

We don't Itnow the ;Mmr in general, but in some specid cases wc navt act~.iaUy solved that problwn, 
also I h w  ncver seen ,anybody treat the inverse poMtm inrJudi- loas in transmi.~on lines before, even in 
special cues IS& and Gopimth, 1971 b] . 

t :  I wonder if Dr. Motst  and you would c o t r m t  on the comrpmdenoe k- the time damair. ~clircrl- 
Levitan c~uotim and this one? 

Mses: I h m ' t  studied this eqwtion 1- en@., redly, to makc a contrast. With the ~clhnd-~evitan, wtunr 
you do it in the time domain, in whi& you start at t  = 0, you aaumc 8 t h e  cut-off. Your line doesn't go to 
infwdty. III do it in the Scbriidingtr equation. 

You start at t 0. tr'ou send the signal in. It  bounmr back fmm the reflection coefficient, or the con- 
mlutio~ of the reflection cocflicicnt, whrttver wave you get back. You can p t  the reflection ca f f~ i en t ,  and you 
cury out the ~dtmd-Mtari. There's a f~te timc for tbis pclcet to comz out. The cutoff of the potenlid 
prrmts you to send unnahir,,~, t ! ~ .  I urumt the same thing hrppenc hew. 

Mftm: He it nrrkk~ dh th thcq  v.  he never Las to worry about the terminations. He is steady on the line. He is 
j u t  genera- the ucutnptionr. 

Son&: W b  t b f ' b m r  !&moyr is uyinl is wt. In T unita of tinm you an only tnvsn+ TI2 units of the line; 
whothc?? it b intiniu from than a: or hot is immsto&rl. 

But I don't rrrrlly know w b t  L m m t  by the tim6-bmin ( ; e l ~ m d - ~ t m  equation kawe I have never 
sdsn i;. I wuld like to. 



Moses: I think csurrlity is the essential featwe. I think spectral theory may be a way of solving it, but the causality 
makes it very interesting. 

Unidcnfipcd s p e a k :  Harry, you should make tlut clear, it is the Mardrenko version that you have in mind. 

Moses: 1 was thinking, actually, of the  elfa and-Levitan, with 0 to 00, I man f -. You just cut off the potential 
at 0. Marchenko is very close to that. 
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THE INVERSION OF VLF-LF SOUNDER DATA 'r0 OBTAIN 

D-REGION ELECTRON-DENSITY DlSTRlBUTlONS 

C. H. Shcllmsn 

Naval Electronics Laboratory Center 
San Ei2go. California 

ABSTRACT 

Work is being carried out at the Naval Electronics Laboratory Center to determine D-region electrondertsity 
distributions from VLF-LF sounder data. The auect problem is to compute reflection coefficients for an assv.med 
electron-density profde, using a full-wave sc~lvtion. The inverse problem is treated nurnsricaliy, using derivatives of 
the reflection matrix with respect to mode; ,mameters. A technique for the rapid computation of the derivatives 
is described. An alprithrr~ for determining resolution in the profile is dscussed. 

INTRODUCTlON 

Our work at the Naval Eleclronics Laboratory Center is that of furding D-region electrondensity distribu- 
tions r.om very low frequency reflection data. It is an inverse problem, sina the direct problem is that of computing 
reflection coefficients when the electrcr. density profile is known. The direct problzm involves the numerical solu- 
tion of the ftLwave problem for a 1-y anisotropic ionosphere, sinc:, in the VLF region of the radis spectrum. ray 
tireory no longer applies. Data were ffvst hken in 1961. In an effort to perform the inverse problem of finding elec- 
tron density proftles from the data, vi - first attempted trial-and error methods, rather unsuccessfully. 

Function optimization tshniques were later used for furding these distributions. Sheddy [1963a] has discussed 
this subject, and an error analysis for relating the uncertainties in tht &ta to uncertainties in 'rh: profile subsequently 
was given by S M l m  [1969,19701. 

Not mury sets of data were analyzed, however, became of the luge amc'int of computation required. The 
;.roblen~ can be appreciated a little more by mentioning that it takes about 1 or 2 3ec on an I W 360-65 cornputer 
to compute the fuli-wave solution for one frequency. Data m y  be W n  at u m y  as ten frequencies, so carrying 
out a complete set of hrll-mve solutAm for very many trial profdm could run up r computer bill very quickly. 

About two months ago we discovered r npid m y  of differentiating the numerical integration with respect to 
electroa-density model puuneten, which hrs speeded up our computation considerably. The method is discussed 
a bit later. 

'Ihis meeting has certainly demonstrated h imporma of interdisciplinary communicatioi~, as we have reen 
paidelr with our efforts at NELC, especially i r r  the prcwntrtions given by the ~ophyridrtr. Doubtless our work 
with the VLF sounder data could bvs been much euier had we known ~f these other efforts rower. 

- .--- 
The region of the ionmphere that we ue interwted in, nunely, the Dregion, ir inrccsuibk to HF rounde t. 

Tb dendtkr a n  p d y  below 10' electrons per an', md the rqion w p m d y  denoted by a dotted line at 6 
the bottom of the profile in the trllrc on HF sounden. 3 

I 



The N E K  VLF sounder [Arulson and rndsen, 19623 is located s t  Sentitiei, Arizona, in a re$on of lava flow, 
and hen* low electrical conductivity. I h e  transmitter (dipole) antenna is oriented along the rnagnetlc north-south 
direction, and is about 9 km long. The receiver vans are usually placed about 15 km magnetic went of the :rans- 
mitter. Two receiver loops, oriertted perpendicular to or~e mqther, are wed. One receives the normally reflected 
skywave and the other receives the conversion component, which is preserlt only because of anisotropy -the influence 
of the earth's magnetic field. The two components are usually of the same order of mapitude. 

Reflection from the ionosphere is described by the nfiection matrix 

where the first subscript refers to the polarization of the upgoing wave with respect to the plane of incidence and the 
secolrd subscript refen to the downcoming wave. Because of the orientation of tranimitter and receiver, the right half 
of this inatrix applies to the sounder, hence we have four (red) meuurables for each sounder frequency. 

For convenience of notation, we denote dl the observabln by Ri  and assign to each one an expected standard 
error UR 

i' 

What we ue tryin8 to accomplish is the following: 3 e  hm &to from which we want to find an electron 
&nsity distribution: b e a w e  the data have uncertainty, and we have a finite amount of data, the density distribu- 
u@n similarly has uncertainty. So we have in !!~e profile a certain resolution and certain error width, the resolution 
being related mostly to t L  amount of data, and the error bsnd to both the amount and accuracy of ih: data. 

The :neasure .,i Gt crf any electron density distribu- 
tion tii the data is taken to be the s u m  oi the squares of 
the deviations of the computed values rj from bfc data 
vdues Ri , where norcullzPtion ii rmde by dinding 
through by tlte standard erron: 

I ' Figure 1 show tho arodd wed. lh electron density LA distribution ia specified try pmrameten aj at a set of 
hei&ts hj in the profile. Logarithmic interpolation it 
made between the pohts, so that then are two thinp 

04 9 =3 01 to h d  here: first, the distribution of heightr, which is 

LUGN 
dstermined by the type of data available; and second, 
given &ow heights, we need t'm dvllw, of the parameten 

F e r n  1.- U~tronWtymo61forn-4. a/ that a n  the log of Lhe electron densities at the 
w i t s  hi. 

We cond&r the problem in rmm order, first u rumh that we how the distribution of heights and treating 
ths problem of finding the pruneten a], and later ccrrdddrq the distributian of heijhts. 



THE DERIVATIVES, a R/  aa] 

For both problems we need ~erivatives ari/aa denoting the rites of change of reflection coeffic~ents w ~ t h  
changes in the model peramcters. The solution for a  at^/, he.,ce for ari/aai, is the problem we have recently 
solved for rapid computation. 

I 

The full-wave solution for R is an integal 

which is carried out by Runge-Kutta integration. The expression for dR/dh is .. veri by Budden 1195 ! as 

The initial condition for R is given by m analytic compuktion [Sheddy. 1968bj. The dijj are 2X 2 complex 
I: :-'ces that are functions of the il~cidence angle and susccptihilit) zztrix, which in turn is a funct~on c.f the normal- 
ized plasma, gyro, and collision frequencies, X ,  Y ,  and 2, respectively, and direction of the magnetic field. 

The normalized electron density X depends in turn on t h  model parameters aj. We want to find derivatives 
of R with respect to aj,  which is the &I+ ative on an i n t c p l :  

We now take the derivative inside the integral: 

At fInt glance this doe, :t,t appeu to solve us u~ything b e a w  we stiil have to do the integration. However, v : 
know that each panmte r  of the model dffecu only 8 certain region of the profile above which the derirativ- is 
zetu, xi t h t  the inkpal is z ro .  Within tlg region affected by tht parameter we illtegrate an expression obtaintd 
by differentiating dRldh  with respect to the punmeter a,: 



Ia the region below the dabs affected by aj this equa- 
tion is lineu w 3 homogeneous since the fit term in 
square brackets is s ro .  This is what saves us, because it 
turns out that integrations for linear homogeneous dif- 
ferential equations can be performed without knowledge 
diniC conditions. You can insert the initial conditions 
at the end. 

F i e  2 Indicates these three regi~ns. In integrating 
we do four things. We perform the integration for R. 
We integrate through the pain of slab5 affected by the 
parameters a, and store the d u e  of each integral 
( a R / a ~ j ) j + ~  a: the bottom of the pair of slabs. We 
also integrate the linear, hunogeneous set of equations 
through each slab and store the value of the integral Aj 
at the bottom of each slab, where A, is such that 

&id R is a vector with the sunc four ekmcnts as thc ~mtrix R. We con hen work our way back up the profile, 
forming the product of Ails and conib:.rting 

So the om to p t  the whole set of dchtives does not really depend on how fmcly the profire is divided. We 
get the whok set of derivatives in about the =me time, wbtther the prof* is divided into 10 slabs or 100 or whatrver. 

SEARCH l'ECHNIQUE 

Once we ha* the &ri;atim we urc a combination cf standard search (function qtimization) techniques. R.e 
masure of Et r is to k minimized. We know *thing about the first and secend derivatives of s : 

What we know fotm rrc idcahd pbolic d a c e  of n dimnduns (fig. 3), and dong that swface we moke 
essentially a Fletcher-bvcs search, v.bich defines a qwsi-steepest descent path down the surfaa. 



The minimum of the real function s is then seardied UI.. 

for along this path by a Fibonacci one-dimensional se~rch,  u , 41 ON(. F4TH 

which involves about half a dozen full-wave ~01uti~:rs for I I 
each =under frequency and accounts for most of the com- 
putation time. 

Once the minimum is found along this path we have 
completed an iteration. For a rough approach to the mini- 
mum about half a dozen iterations may be sufficient. 

RESOLUTION i N  THE PROFlLE 

POI \T 

Figure 3.- Idealized parabolic surface. s (a, , . . . , on ). 
Now consider the problem of choosing the heights in &fmd by derivatives a R l a y ,  i = I , .  . . n .  In the 

thc profile. The development of algorithm for choosing figure. n = 2. 

such heights was begun fairly recently. The philosophy 
here is that we do not want heights hi in the profile for which electron density cannot be determined from the data. 
We can't have too many in, but on the other hand we want all that are warranted by the data. 

The basis ior choosing the heights hi is the mapping of the uncertainties in the data paameters into an error 
band on the profile. Such a mapping is described in detail by Shellmn [1970], and the mathematics are simplified 
in this presentation. The width of the error band on the profde is determned both by the uncertainties in the data 
and by the covariance between profile parameten ai. The width of the error band at the height hi is 

where i.- is the j th diagonal element of the inverse of the variance-covariance matrix. The latter has elements I1 

The rather simple algorithm for choosing the hi - determining the resolution - is then the following: I f  at 
three successive points in the profile the error band is wider than a chosen upper threshold value, the middle point 
is deleted; and if the error band is narrower than a chosen lower threshold valce, points are added on each side oi th.: 
point. The threshold values are not critical. 



A N  EXAMPLE 

Figure 4 shows the iteration steps in one particular case. In this example the variancecovariance matrix was 
normalized by dividigg each j th  row and jth mlumn by [C(ar i /  a y)2]"2 ; hence, the matrix was actually a 
"correlation matrix." The principle is the same, however. 

We start out with three (open drckd .Joints in the profde. The algorithm for choosing heights then added a 
point at about 80 km, and one itention m the numerical search led to the profile with the long dashed line. The 
second iteration led to the profde with the -.ort dashes. 

;, . 
, -. :yi I I --- At that point the algorittm added a pomt at . . '. ; . . . . . . .  . . 1 ---I--- - ;..! , ................. 

, , 1--- 
60 km. Then we go to the dotted line in the next 

. . . .  .. , .. :. . ,. _ I .  - .t I__r_m iteration and three points are added, indicated by 
3- - I 

.:dx: . . - . .-. . 
. ; . . . .> .>a : the txianglcs. The mxt iteration then took us to the ... . . .  . ? *..;. 9 . . . . . .  chain line. We cafied out three or four niore itera- 
,. . - , _  .,..~..,. 

: . . '  
, . <  tions, but the fm1 prof& was a?proximately the 

. _ I .  -, -. a form of the last one &own. 
;;;., : . . -  I . .  

.... .'.' 1 
. ,. >,.. .. i' . . .  ..{ . , ::-. .. :.:it. . In general, the algorithm for choosing the heights 

... :. ....... - -. . .  . , .  . of the profile leads to about the same number of heights 
' ..: .:-< . -" ' :.. .: ' 

, ' ' -  '., .* j . . .  as we have data jmmcters, which is encouraging 
:z : . :., t . '-! because that is what we would expect; that is, we get 

, .: '* , * ' , >  . -  , 
. . I I tk same amount of information out that we are putting 

. . , -  I-un.u 8 n n 3 t a u t  Ld in. 
I@ MI ~d 14 la' I# 

It should dso be mentioned that the collision- 
F v  4. - Furt f w  rtcntia. in rardr for p f i l e  - fits 

&ti taken 23 Marcb 1971.1300 MST. Rtr aet comisttd frequency profile has been mated in the same manner 

of I R I R I md IIRII at8.3.13.2.21.7,27.5, as the electron-density prof&. That is, it has teen 
and h.l t i  Phase at,, Ie,-l*l md was a s s d  that the collisicfi-frequency profile is also an 
&led in s u k r c w t  !tentiom. unknown to be found from the sounder data. 



REFERENCES 

1. Budden, K. G: The Numerical Solution of Differential Equations Governing Reflection of Long Radio Waves 
fiom the ionosphere. h c .  Roy. Soc., London, Ser. A, 227, pp. 5 16-537.1955. 

2. Paulson, M. R.; and Theisen, J. F.: NEL Ionospheric Sounding System. J. Bur Ships. vo:. 11, pp. 3-6.'1969,. 

3. Sneddy. C. H.: A Curve-Fitting Technique for Obtaining Electron Density F'rofdes Consistent with VLF-LF 
Reflection Data (Abstract). International Scientific Rodio Union. 1968 Spring URSl Meeting. p. 50, 
9-1 2 April, 1968a (Rogram), National Acadenry of Sciences. 

4. Sheddy, C. H.: A General Analytic Solution for Reflection from a Sharply Bounded Anisotropic Ionosphere. 
Radio Sci., vol. 3(8), pp. 792-795, 1968b. 

5. Shellman, C. H.: D-termination of Error Limits on Electron-Density Distributions Derived from VLF/LF 
Sounder Data. lJELC Research Report 1676,1969. 

6. Shellman. C. H.: Electron-Density Distributions in the Lower Ionosphere with Associated Error Limits Derived 
from VLF and LF Sounder Data. Radio Sci., vol. S, pp. 1127-1 135, 1970. 



THE JOST-KOHN INVERSION PROCEDURE 

Reesa T. Rosser 

Dartmouth College 

With reference to my discussion of the Jost-Kohn procedure in Chapter 6, there are some conditions 
that must be 'mposed on the situation before reasonable results can be expected. These conditions are con- 
sidered briefly here. 

This disrussion is restricted to the quantum-mechanical probkm, but now in three space-dimensions, without 
assuming any radial or other symmetry of the potential. We consider the probkm 

In Chapter 6, I suggested thst w search for a solution of the form 

( k) = t ~ G ( x ,  x' ; 0) Y(x') ((x') dx' 

where V is the potential, G the associated G m n  function, k the incoming momentum, and k' the outgoing 
momentum, with I kl = I k'l = O. 1 said that in the far-field limit this solution would tend to son;ething like 

e ilk1 Ixl 
$(X,k) ' C&*X + T(kl,k) --- 

4r la1 

that is, as a.1 ingoing p$l!- wave plus an outgoing spherical wave weighted by a "reactance matrix" T(k', k) of the 
form 

Evrlier I implied, but didn't make explidt, that the smttcring data of the probkm are d l  contained in this reactance 
matrix. this far-field behavior being unifomdy good for large I x l , and the conection t t m  being o(l1 I x I). 

The Jost-Kohn procedure assumes t ls t  m have some information about the reactatla matrix, from which we 
want to obtain the orunal potentid Y. Tbe sitwtinn is better understood if an embed the prctblem in a family of 
nonphysical, purely mathtmatifll problem\ defmd by nonbcrJ potentials. S~dicdly, we let this probkn~ be a 
member of a larger class of problems in which the potential has the form 

We begin by counting dimensions. For a potential of this form, we must find a fvncti~ n of six variables. We 
thus need a six-puan2ter family of data. md that is nrpplkd by the complete reactance matrix. 



Proceeding formally, we express the reactance matrix T in terms of the potential matrix V .  Since 
$ = @ , + G V @  and T(k l ,k )  = (&ITI@,)= t$biVl#), where 6, = e i k o x  and # = #(x,k),wehave 

<$; IT 14,) = ($; I V I$,) + (4; l VGT 14) 

or, in operstor form, 

Thus 

This argument gives us a formal series. the Born series, for the matrix T in terms of the matrix V .  The Born 
series converges, in general, only if the potential is sufficiently small. Specifically, we must introduce a suitable space 
of ~perators A. B, . . . . acutrg on squareintegrable functions, and then define a suitable ncrm for these operators 
such that 1 AGB 1 < U A II R B I ,  where G is h e  appropriate Green's function, and require that, in this norm, 

Clearly, the Jost-Kohn inversion procedure cannot be expected to yield anything useful unless the Born series 
cosvergs, because the entire procedwe is based on this series. We are therefore restricted immediately to weak 
potentials without bound states. The same argument applies to the Jost-Kohn procedure for other types of scatter- 
ing problems, wiire it dso depends WI the convergence of a perturbation series 

The interesting thing, houaver, is that this requirement, seen here to be necessary, is also essentially sufficient. 
Suppose 1 insist that the norm of V is not only less than one, but also less than one*. 

1 evi <-  
2 

Then I see that, since 

T = v + VGV + VGVGV + - * .  

we must have 



Thus, we can invert the equation 

T = V t VGT 

for V in terms of T: 

= T - TGT + T G X T  - * *  + 

giving V as the sum of a fornlal serks t h t  converges becruse I T I < 1 .  

This is dl the J ,  -Kohn procedure does. It is a wry simple-minded procedure, which is not at all sensitive to 
any of the details of I .le problem. It is sensitive only to the fact that the problem must be solvable by convergent 
perturbation series. 

This isn't the whok story, of course, because in practia we arc looking for !d potentials, and we arc given 
only p&rt of the corr pkte reactance matrix. We generally know the scattering data only for certain aspect and scattering 
ulgles. For exampl . , we know the case where k' is -k -that is, the backscrtterillg data for all aspects. Or more 
cornonly in quantum mechanics, we know the scattering data for facd aspect and aU scattering angles. In either 
case, we know some but not all of the scattering data. Counting dimtinions again, we set that a local potential is a 
function of three variables, so that in general wt will need a thne-panmeter family of information, and that's just 
what we have in the two cases mentioned above. 

Now the question IS: If wt know some part of thr scattering data-some thnegPrameter part-and we know 
that the potential is local, can we then obtain the remaining scattering data, by analytic continuation or some other 
mthod, to construct the complete reactma matrix? This is when the papen of Faddeev mentioned by Calogero 
(Chap. 5) are so important; Faddeev a p t l y  does provide just exrctiy 5a: 'kind of information. 

At this point, we cart see that m haw established a onbtwne correspondence between a certain class of wak 
potentials, loczl and nonlod, and a corresponding c h  of weak reactana matrices. Moreover, this conerpondena 
is described by mr.veqipt perturbation series in b t h  directions. Now let's suppose that the original potent4 was 
i~ fact local. Thr. inversion proa&n an be auned out without this extra knowledge provided that the complete 
reactance matrix is krlom. That the potential is local is irrelevant to the inversion procedure, but is vital in the pre- 
liminary process of obtain& the complete reactance matrix from a suitable partid description. It W O U ~ ~  be highly 
desirable, I think, to find co~nputationally effective wcyr of performing this preliminqj proas% 

Suppose I look at the Rnt Born approximation only, takiq the ~ r L s  for thC T nmhix and ignoring all but 
the f intader  term 



If 1 invert this equation I find simply that in this approximation T V .  If we write this equation in the momentum 
space representation, and assume the potential is local, we obtain 

If we know, for a:iample, the backscatterir., data at all aspect angles, then we know ~ ( k ' ,  k) for k' = -k, and so 

In other words, in this approximation the momentum space description of the potential is essentially given by the 
backscattering data. This is bojarski's result (discussed earlier in this chapter), translated in;o the quantum 
mechanical problem. His very pretty result is, I think, capable of extension to all of these : zattering problems. 

One can say something qualitative now about how good the above approximation is. I t  is particularly good 
at high energies, as is well known, because the Born approximation becomes better as you go higher in energy. 
This observation is the analog of the one that Bojarski's result is a physical optics approximaiion valid fnr high 
frequencies, and the higher the better. 

There are many ramifications of the Jost-Kohn procedure that an not yet clear. However, the subject can 
probably be pursued with profit in various directions to provide both qualitative informatio~ and effective calcu- 
lation procedures for all these different scattering problems. 



DISCUSSION 

Moses: I was going to suggest t b t  tha procedure be tried for the onediixensional case fron~ plus to minus infinity, 
where things are much simpler. :n fact some years ago I applied it to the one-dimensional problem, x going 
from minus infinity to plus infinity, y d  did Lhc first two iterations. I wanted to compare the first two iterations 
with the first two iterations of the Celfand-Levitan onedimensionat equation. Much to my surprise they y r e  
the same. So I conjecture, without proof, that t cm  by term the JostXohn procedure agrees with the Gelfand- 
Levitan iteration proadure if they converge. The Gelfand-Levitan iteration procedure seemed to converge if 
there *re no bound states. 

Newton: You are talking about the Marchenko version of it? 

Moses: No, no. I am talking about the onedimensional, Kay version, x going from plus to minus infinity. 

Chodan: 1 think this app-oach which you e x p h e d  has one drawback. As you say, the fmt term is p o d  at higher 
energies. That mans that it is good for the inner part of the potential in r space. Now, at energies we 
know that the potential approach to many of our problems is not pod. The potentiai approach is good for 
low energies, and there you have to know the outer p r t  of the pcfential. 

Rosst.c I agree completely. 

Moses: It is just that this is simpler to treat, I think, for electromagnetic theory and perhaps for the model. 

&&n: Yes, because if the frequency is large, then you see lots of details of the scrrtterer. 

Glogero: I think the fact that if you expand the ~elfand-hvitan equation or the Marchenko eqmtioa or this 
approach, they will always give the same result, term by term. But this is not surprising. This could not be 
otherwise beause we know that so 1o11g as we stay within the c l m  of nonsingular potentials the scattering 
amplitude is holomorphic at small values of the coupling constant, and therefore you have the power expansion 
in the coupling constant, which is convergent in the neighborhood of g = 0 (let's call g the coupling wnstant), 
and therefore the two power functions cannot but coincide; the same is true for the inverse problem, so tl is is 
certainly so. 

Moses: Normally one puts the coupling constant in front of the potential. 

a m :  Yes, but also the invene is true, that if you put the coupling constant in front of the reflection txtfficient 
and you expand the potential as a power series in this coupling constant, this is also convergent provided the re- 
flection coefficient satisfws certain conditions. 

Moi3: That's right. 

QIIogero: But these art just the conditions that correspond to the requuement that the pot-ntlal be nonsingular, 
and this has to do aith thc asymptotic behavior in k. 

Moses: But this is an inverse problem. You want the condition on the reflection coefficient. 

Gzlogem: Thesc conditions arc easy to find: They are jwt the conditions on the asymptotic behavior of luge k 
It has to decay at lqp k suffcientlj rapidly so that when you iterate you don't get divetgenas. 

Moses: That's dl I wanted to say. Inddmtrlly I have to say that when bound states were present, the iteration 
serves, for the Gelkmd-hitan equation did diverge. You have to remove the residues corresponding to bound 
stgtes. 



Soborier: There is a re~*:nt series of paptn by Barringer, and other nuzlear physicists, on the off-shell continua- 
tion of t , and its use in inverse problems. 



THE LOCATION OF THE POLES OF THE SCATTERING MATRIX 

Peter D. Lax 
New York University 

and 

Ralph S. Phillips 
Stanford University 

This report describes a number of r ean t  results bearing on the direct problem; that is, they relate geometric. 
properties of the scattering obstacles to analytic properties of the associated scattering matrix. 

Our results deal with exterior problems; for :'.\lplicity, kt's take the acoustic case, governed by the wave equat-~n 

in the exterior of an obstacle 0, on which u satifies the boundary condition 

Other boundary conditions such as u = 0 and du / dn + Ku = 0 will also be considere J. 

We have studied nem-feld phenomena-.the asymptotic behavior near the obstwle of solutions whose initial 
values are zero outaide of a bounded set. happens asymptotically to such a signal Qpends on the geometry of 
the obstacle. The key property seems to k whether there are reflected rays that stay inside the hull of the obstacle 
for arbitrary lengths of time. If there arc such rays, the obstacle is d l e d  capturing. If on the other hand all rays are 
reflected zi: $0 infinity after a maximum sojourn time, the obstacle is d i e d  noncupn~ring. Convex obstacles are 
noncayturiirg pa- oxcellcnce, and so arc star-sbped ones. 

Our conjectur:: for noncapturiy obstacles is that there exists a sequence of compkx numbers p., j = I ,  2, . . . , 
I 

and functions hi(%), j = 1, . . . , depending only on the obstacle, such that every solution of the wave equation in 
the exterior whose initial values have compact support has an asymptotic expansion of the form 

the numbers aj  depend on the solution in question. This conjecture has been proved for convex bodies by Ludwtg 
md Morrrwrz I19691 and PlriUips [1969]. For starshPped bodies, Lax cf pl, [I9631 haw shown a weaker result: 

where k is some positive constant that depends only on the obstacle. 



The intuitive reason for the exponential decsy indicated in Eq. (4) and (5) is this: outside a noncapturing 
obstacle all rays go to infinity; according to geomtrical acoustics signals follow rays except for a diffracted portion. 
This remaining portion again propagates out to infinity alor~g rays, except for a diffracteci portion, and so on ad 
infinitum. The signal remaining around the obstacle decays exponentially in t .  

High-frequency signals suffer libtle diffraction; that is, they follow rays pretty closely evcn after a multip!rzity 
of retlecrions. Therefore, around a capturing obstacle. which supports arbitrarily long reflected rays, there will be 
signals whose strcqgth around the cbstacle is hrdly di~ninished no matter how large t is. 

There is a bit of mystery about the numbers c(. and functions wj entering the expansion in Eq. (4); purely 
f 

formally, epjt w i ( x )  must be a solution of the wave equalttm so that 

and w . must satisfy the bound?ry condition 
1 

d - wi = 0 on the boundary of 0 
dn 

(7) 

Clearly we are not dealing with ordinary, or even generalized, eigenfunctions that figure in the spectral resolut.ion of 
A exterior to 0, sincz the eigenvalue p? is n3t real. To distinguish them from the eigenfunctions occurring in the 
spectral resolution of A, we shall call t ie  w . and p j  occurring in Eq. (4) the rcultcring eigenfunetions and fre- 
quencies of A in the exterior of 0, subject lo the boundary condition in Eq. (7). Near infinity, the scattering 
eigenfunctions satisfy a radiation condition of the following sort: 

For I x  I large, w(x) can be expanded in a convergent series of the form 

where cu(x) are homogeneous functions of degree 0. 

In theorem 5.5 of Lax and PMUipt (19691, the following is proved: 

7%eorem 1 For any obstacle 0 there are infinitely many teal scattering freq~~encies p . the nllmber 
N(a) of pj between 0 and -0 satisfies i '  

N(a) 
c < lim inf - 

az 

If 0 is star shaped, there is a cornrponding upper bound for N: 



The quantities c and C are related to the geometry of t h  body by c = 1.12r and C= 1 .12~ '  where r and R 
are ndii of inscribed and ciraimcribcd spheres. in fact -we conjecture that for any obstacle, 

tends to a limit as o +ao. 

A more recent result, contained in tc# und Phillips [1972], is the following: 

7Reorem 2 There are no scattering frequencies, red or complex, in& the circle 

where R is the radi-us of a sphere containing 0. 

The following is a convene of theorem 1: If for large a ,  

then the obstacle in question doe; not contain a sphere of radius 0.94 (A--"' ), and is not contained inside a sphere 
of radius 0.94 (A""). 

The following is a converse of theorem 2: 

If p is a scattering ft-ttti.~y contained inside the circle in F4. (1 l), then the obstacle 0 is not contained 
inside a sphere of radius R . 

if wt could o k e  experimentally ths location of the rcrttexing frequencies, the last two results would shed 
some crude hght on the overall ritb of the obstrde 0. The dunw of making s u d ~  masuremnts are not very good, 
u:fortunately. Sict the natunl duncteriution of there frequencies is in tenns of the relaxation of the reflected 
near field, we need neu fsld msuut~wIY.~ts, md thew u e  qot eny to come by. It is unlikely that we an measure 
accurately my of the scattering frequencies but the one that drays m a t  slowly-that is, the one whose nd part is 
largest. Thus, then is no chance of making ;?y practical we of the convem of theorem 1, and only a slir,~ dunce 
that the convaa of themm 7 can be used to give a lower bound on the size of 0. 



DISCUSSION 

MOYS: There is another invcrie problem which we hsvec't ment~oned, and ti:?; is the synthes~s problem That IS. 

you ?ctually want to construct something that has a predeterm:oed shape or sumething. What if you want to 
construct a hard body? You have to start t ~ f f  with someth~ng. A scattering operator has to  havc iomr requirc- 
m?nts that indeed produce a hard body. These are necessary conditions for thrs. 

In fact, in real electromagletic e.igneering work this synthes~s oroblem is a very InlportLilt one. You 
actually do want bodies thrt have specific reflection. You do want transmission lines of that type. I t  1s not a 
diagnost~c. It is a construct;on. 

,Vewron: I just wanted to m&= a brief remark about this work. This result, I believe, IS quite d~fferent from what 
one could poss~bly hope to expect in quantum mechanics, because in the first place yuu do~i ' t  have any signals 
with compact support in quantum mechanics, arrd partly beause  nf that of course. the cause is the same- 
tht re will be always asymptotic terms that go down as the inverse power of t .  You don't have th:s kind of 
result. 

Now, your second result there about the distribution of these, the leading term C( there, seems to me to 
be cicsely related to a result in wanturn mechan~cs which. in tbe case in which the scatterer has finite support. 
relates the asymp~otic decay, the relaxation length, which isexactly the analog o: 1 1 ,  to  the s ~ z e  of the body. 
So I think that is qulte directly related to it. 

There is a rcference to  the quantum mechanlcal result in lny Look. 111 fact, it IS d~scussed there. 

f i y :  How important is the requirement that the i r , :~a l  value hare compact support? Suppose you have a point 
wurcr and move it out to  infinity so th2; it becomes a plane wave? 

If ycra are treating this as an initial value problem, you start with a sign21 w h ~ d  I; ;*ro everywhere except 
in a bounded reglon; th~swould presumably satisfy the requirement. Then can you move that region out to  
infinity, increasing the strength as you go, 9, that you end up  with an ; n ( ~ d e ~ ~ t  plane wave? 

La\: Well, the farther oui you move it the Iongtr yr u hxdc- t o  vlwt for it to  cQme ill. 

What is important here is that we don't want rhings comi.tg in after the init~al signal arrives. W: don't 
want rays conti .d !y  coming in from infinity and interfering with tk.a somewhat delicate decay behavior. 
That is why I insisted on a pulse 

Moses: I don't think ~t has to  bc. 1 mean, any pulse would be the scatteri.?g cpra tor .  

Kuy: No, but the question here as related t o  the quan!;mi i x j r w l c a l  applicaticrl w c ~ l o  be imprta!~t ,  because 
there we would like to  consider essentially a plar~e wave. 

Aioses: But you could use the tilnedependent analog if you chose. The scattering prolllem vould be the sanic.. 

Rosser: This depends effectively on the noncapturirrg conditions, because if  yo:,^ hive a body that captures. then 
you can have aroitrarily slow decay rates. 

Lux: That is right. If  there is a phetrom-non of capturing possible, as in this picture. then tile (bllowrnp happens 
Look at !Ls interior cavity. If it is bitten orf sufnciently sharply thlre is a rerson:,ole urq* of ciosing it off as 
ui interior probkm. as an interior region. and this interior region wi; .me elljenvalues hi t ,  wluch correspond 
to vibration frequencies I(Ak-I" ). 



Then the exterior problem will have ~ k ,  which wi'd be approximateiy like these minus a small rea! part 
pk,  where pk ;:n& to 0 as k tends to infinity. For the hlgher and kigher modes the exterior modes will be 
very close to the interior modes. These, however, are hlghly oscillatory modes, and the statement referred to 
the nonosdating modes. The ncwscibting decay modes are related to the bulk properties of the object. and 
h e  highly oscillatory ones are to be detailed. 

Mmrr).r: 1 think these results are very interesting, and the subject raises some interesting possibilities for inhasion. 
: don't know how, but it seems that it should !R possible. Certainly the sort of thing that same people in 
electromagnetics hm been y:z.!ing with-for example. it is possible to reconstruct the size of the sphere irom 
the scatterer' icld? Now e ,-% oody knows it is. It has been done in practice. This is another :ompleteIy 
different appr & ~ c h  to the LC. . kind of question. Once you have done it for a sphere you can go to more com- 
plicated things, :. 3 perhaps from the knowledge of the radiative states you can deduce the properties of the 
system. 

QZ'ogero: J u t  0r.e remark in cortnection with  hi you have j u t  said. There is a tendency to think that once one 
has proved existena and uniqueness and perhaps a constructive procedure, the inverse problem is solved. That 
is ns; quite so, because you may have a very complicated construction procedure going through an integral 
equation. for Insane. 

Now, one can try to formulate other !ess ambitiocs inverse problems, in which you do not want to recon- 
struct the whole thing but you want to find some features of it. and then, of course. you may want to find 
interesting features, general shape or things like this. Tnzn you may h o ~ ,  if you are lucky, that you may be 
::';re to set up an inveroc problem that will produce only these features, and this may be much simpler. The case 
I was taking about, the result obtained by Newton and Faddeev. is an example of this type, in which, in the 
context of the futed aa&br momentum problem in quantum mechanics, the general problem is soived through 
the ~ k a n d - L e e t a n  and Marchenko equations, but that involves solving an integral equation. It turns out that 
the explicit fomulas a n  be obtained for the value of the potential, in fact all its derivatives, at the origin, 
which is, of course, much better, if one is interested in that feature of the potential, because that is an explicit 
formuia. 

Shmoys: This would give us a different approach than comes in from the other side. It appears to y icld some 
intomtioli about !he extent or moment. 

Chlogvrc: Yes. 

Ruker: 1 would just like to amplify your remark. This turns out to be exactly what happens in a specific geo- 
physical inverse problem where, in the put, people have t~i-d to be far too ambitmus. The data, in fact, you 
can prove quitt: accurately. an compktely ambiguous on the :ibject of the material[bi~g sought from the 
wnrrement]  . It has to do with the magnetization of sea mounts. They have been trying to construct the 
intemai details of the magnetization. 

h t  it turns cut the ultimate purpose of their work was a bulk property, which could be found from the 
measuremcnb, and so i!ey haw gone to all this m a t  length of trying to r,arar..:erize the model, and limit the 
model in some troy to malie !he problem unique, solve it, ard then average the answer to find a bulk property. 
Now, in fact, if you can formula~c the problem in such a way to go directly to the bulk property, everything is 
~uce. I think this is a m y  important wint  yoti made 

b y :  I'd like to mention another point dlzt pccurrzli t o  me abut the particular result, and that is that if you con- 
sider the long wavekngth limit to a t ter ing,  that is, thc body is d l  compared to the wavelength when you 
g t  Raylei* scatttpii, the c ros  section is proporticmil to the square of the volume of the body, and there may 
be m s  rc&tionsh?ip between that asymptotic result and the tratuimt result that might be worth comiderkg. 
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MISCELLP.f+4EOUS COMMENTS 

R. Porker: I would like to raise a question zbout an inversion problem tb;t has no: been considered here in detail. 
It is addressed to those people who ard considering the e!ectromap:ret;: ccatteri~g problem; it is a three-dimen- 
sional scattering problem that is ro?;tinely considered, and yet 1 don't knclw if any real mathematics has been 
done on it. It rs the very importint problem of constructinp crystal-lattice electron densities a i ~ d  molecular 
structures from x-rey scattering. 

The treatment is just a special case of very hip!&-frequency electromagnetic scattering from a truly three- 
dimensional body with strong periodicity condi t*~ns  imposed on the body. There is a definite element of 
nontr~viality about it. The problem is formal'j very easily solub!.: if you have complex scattering inforvation. 
but in fact one snly has intensity mea~urer~ents .  The phases are lost to  you by photographic film. 

1 was woi~dcring if anyone had looked at the formal ma:hematics of this situation, to talk about the 
nonuniqueness, because peopie ril~tinely claim they know exactly what the atoms, and so on. are. 

J. S h m q s :  We have a fairly actit6 group in crystallography at  Brooklyn Poly, and despite many attempts we h v e  
\ et to estah!ish contact ).;tween that group and our electromagnetics grcup, which is lery much interested in 
pertodic structures. Tlrere are semantic difficulties that seem t o  crop up. 

I. K0.v: The methor' of lnaklng hoicgrams, which is to  mix a known coherent fie!d with the scattered field. will 
allow recordi,~g on film of phase information. It seems t o  me that something aiong those lines would be a 
r ime prar.~cal way of inverting this type of problem than considerations of intensity alone. which don't really 
ha'::: er.ou& information to do the inversion. YOJ need phase information. 

R Porkrr: But is that completely practical? 

I Kay: This isn': so farfetched. There are lasers in the high W region r~g!!t nov;. The reason it is impossible to  
invert pur? intensity information is that it is incomplete. You can't reconstruct the phase information from 
the intensitjr. T h ~ s  is a well-knoivn fact. You can d o  it thc other way arouad. 

J. Slimoys: We have heard the 3roblem of identifying the phase functioil f r o n  the amplitude function in Professor 
Newton's talk. 

L Kay: It is the other way around. Ycu can derive the amplitude from the phase, but not vice versa. 

J. Shmoys: Holography is an interesting new area for exploration as an inverse method. I for one don't understand 
completely its possibilities ~ r d  limitations. 

K. Chodan: I have a comment on :he existence of the kernel of the ~ e l i a n d - ~ e v i t a n  equation in quantum scattering 
theory. I will just discuss the case of the S-wave. We have the radial ~ c h r o d i n ~ e r  equation which reads 

and we are looking for the regular solution, which satisfies 

Now, on the basis of the Volterra integral equation for @ which incorporates the boundary conditions in 
Eqs. (2 ) ,  oi .,v using the well-knotm Poincarl! theoren?, you can prove that 4 is an even entire function 



of k for any value of r .  You also find from the integral equation, that the asymptotic behavior of 
# is given by 

where the first term is just the free solution Qo.  We see therefore that 0 is an entire function of k of order 
1 and type r for each value of r .  Moreover 4 - 4, is square integrable on the real k axis. It follows then 
from the Paley-Wiener theorem on the support of the Fourier transform of such functions that for each r ,  

0 = /:. K (r, t )  eikt d t  

whire K (r, t )  is square-integrable with respect to r on [-r, r ]  . By integrating by parts, and using the fact 
thai 4 is even in k ,  one can put Eq. ( 4 )  in the familiar form given in Prufessor Newtcm's talk. So you see that 
here in the scattering problem thc exhence of the kernel K(r .  t )  is just a  ons sequence of Eqs. ( 1 ) and ( 2 )  dnd 
nothng else. This is in connection with Professor Moses' remark that the existence of the kernel may be related 
to tht causality condition. This may be true in the time-dependent case with electromagnetic v:aves where you 
c?n m.tke wave packets of finite size, and where you know that the speed of the particles is finite. In the non- 
relativi~tic case, particles may have any speed, and there are no wave packets with sharp fronts srnce only posi- 
tive val~es of the wavenumber are 3vailable, so that there does not exist any srmple way of formulating causality. 

H. Moses: There is a time-dependent problem with causality, which Irv Kay brought up when he gave his talk, which 
has exactly the same scattering properties as thi: problem, and this is the one that I wa- referring to. It is a 
synthetic pioblem, but it has exactly the same scattering properties. 

R Artinney: 1 have some points and some questions which are not my own by any means, but represent things that 
I have culled fiom conversations in the past several days. To the sc.ismologist :he use of Geicilnd-Levitan methods 
has a certain great attractiveness. Many of us are just learning about these methods, and, of course, we nave 
been learning wilh realistic data, in fact acting upon this for some time. 

The first quelion is addressed to the people in quantum mechanics. Are there experimentalists or team 
with quantum-mechanical data upon which Celfand-Levitan methods are being applied, oi upon which they 
ought to be applied lr  they knew better? 

R Newton: As to the first part of the question, I think ?he answer is definitely no; they aren't being applied. Now, 
whether they ought to rf they knew better is perhaps not answerable quite that easily. The ttouble is that in rnost 
practical problems in which one really wants to know the force and where the force is not very uell-known- 
say in a nuclear physics problem-the fint kind of inversiori problem is not really very practical because you 
don't know the data at the highest energies. The second kind of inversion problem, at futed energy, would be 
much more practical if it were not for the fact that particles have spin, and that complicates matters considerably. 
In fact, the inversion prcblem at futed energy for particles with spin, if t i c  force depends on the spin, has not 
been completely solved. I had a graduate student who tried that as a project 15r his thesis. He didn't push it 
all the way through as an inversion problem, only part way, and it looks terribly complicated. 

There are in addition spin-orbit forces, and Sabatier has written a paper on the inversion problem with 
fmed energy with the spin-orbit forces, and it is also very complicated. So to what extent, even after that 
problem is completely solved, it will be practical is quite open. 



J. Shmoys: Let me just add a comment. In answer .o this sort of question from a nuclear physicist who is an 
experimentalist, he felt it would be nice to try and apply these methods, even assuming the simple ~chrod in~er  
equation. 1 think it just has not occurred to many experimenta .sts that they ought to try to do something 
like that w ~ t h  their data. 1 am not sure what the reasons are, whether it is inertia or what, but I think it should 
be done, probably will be done eventually, but there is somehow no impetus at present. 

R Newton: Perhaps I should add something else. These techniques are sometimes useful not just for numerical 
inversions, but they are also useful for the construction of explicitly,solvable examples. For example, the 
whole class sf Bargmann potentials has been found by means of Gelfand.Levitan technique. Now, of course, 
onie you have found those examples you don't need the ~eli'and-Levitan technique any longer. They stand 
on their own feet. But that was the original way of finding them. So there you have a large class of potentials 
CCI which the ~ c h r d i n ~ e r  equation is explicitly solvable. That is the class of potentials which lead to scatter- 
ing lnatrices that are rational functions of k .  Whenever the scattering matrix is a rational function of k ,  
then you can write down the potential that leads to it explicitly for one angular momentum, that is for one 
L-value. 

J. Shmoys: The equivalen: sort of thing for transmission lines synthesis was Sharpe's theory. 

H. Moses: I might mention that there is some interest in applying this to the ionosphere, provided it is simple 
enough, i.e., it is isotropic. There is an error analysis problem to which i think the geophysicists have con- 
tributed a great deal. You know, usually you don't have all the frequencies available. Also, in the past you 
haven't had arnplittldes available, but now they are gelting amplitudes and phases rather well for this scatter- 
ing. It is just too recent. 1 think it is only in the last couple of years that material has come out on the iono- 
sphere. There is an error analysis problem because you don't have all frequencies available. 

R Phinney: A slight extension of my question concerns the existence of limits to the amount of data, not neces- 
sarily the finiteness, but the cut-off in terms of frequency bands available. Certainly we would be very inter- 
ested in methods which are both mathematically correct, in some sense, and practical, for applying to low and 
high frequency tails; to observed data which one might assume to be a continuum nf perfectly good data in the 
middle of an accessible region. I take it from the remarks that this question has not yet become really important. 

R Newton: Oh, it is important. 1 think that is a very important question. In fact, that is a very inteiesting problem 
that hasn't been solved. 1 think that will be an extreme!: interesting problem to solve for many applications, 
namely, the problem of what class of potentials -if I desc-ibe it in quanlilrn mechznical language-would fit 
certain phase shift cuwes known only in certain energy cr  frequency regions. l h a t  is a very interesting question, 
but that hasn't been solved. 

H. Moses: It is related to the question of determining the character of the scattering operator corresponding to 
some knowled~e of the potential. Suppose you know the potential cutoff in the nuclear physics case. Then 
you do know the aymptotic forms of the scattering operator, and perhaps something could be done, some 
sort of curve-fitting procedure. It is in Its infancy. 

J. Shmoys: 1 think that the situation in seisnrology ray be worse, in a way, than in quantum mechanics or in 
plasma diagnostics, in that if you Ict the energies become iarp compared t c  the largest value of U, then you 
can say something readily about the asymptotic behavior, whereas if you have a nondisprsive medium that 
tail is completely \mpredictable. The dispersive character heips in qululturn mechanics and in plasma diaenos- 
tics, *Itereas it would not in the nondispersive case. 

R Phinney: Since you raised the practicalities of the high frequency problem, in seismology there are two elements 
to it. The first is perhaps the simplest one, and th3t is the existence of finite dissipation which causes the 
broadening of spectral lines, and in fact, the inability t c  resolve spectrai lines as free oscillations at short periods. 
'This leads in practice to a complete traveling wave picture for the kinematics. This essen?ially removes high 



frequencies. In fact, the high frequency sigi~als that one observes have really fewer degrees of frzedom in the 
data. Most of the signals have been completely attenuated and are not visible at all. This fortunately removes 
some of the infinity of degrees of freedom from the high frequency problem. 

The other one is a little trickier, and this is related to the existence in seismology of multiple scales of 
the model, in which the scale length of the model can range from centimeters to thousands of kilometers. We 
have been using ray theory for some time, and are quite aware of improvements to ray theory, which enables 
one to look asymptotica!ly at amplitudes, and yet, for instance, one can look at a sharp interface ;s a model 
for a particular physical situation, and study the reflection coefficients from this interface. Of course, they 
are frequency independent. One can then model this interface by some kind of ramp or Epstein potential which 
is smooth and get asymptotic behavior, and it is alwajls anzlytic. 

But, in fact. observed reflection coefficients don't behave this way at all. We get some practical fellows 
from the oil business who will say "Well, if we tune the band pass filters like this, we get really good signals. 
Otherwise you can forget the experiment." This means that the existence of the multiple scales is getting to 
us, and in a really practical sense the earth is not even a continuum, and we use continuum mechanics. uf 
course, to derive these equations. 

This leads to a remark about Tom Jordan's autocorrelation functions for the model. Thesc are essentially 
smoothing windows which one decides the model ought to be seen through. They have been ~ntroduced in 
seismology, and yet there they are subject most to a priori assumptions for which you have no physical laws 
except, conceivably, for the earth's core, which is thought to be a iiquid. 

Yet in some of the other problems I have seen here, in plasmhs and atmospheric proklems. it IS clear 
that :he physics of the medium on small scales puts restric:lons on how sharply the model can chanpe, and sc 
you can actually specify autocorrelations in the model, or at least inequalities to tiiese things, and I think yoc 
can perhaps do something very useful this way. This, in a sense, provides a rational way of smoothing the deta. 

fL Newton: I would just like to say a few wards about something that may be of use to some people. There wss 
some discussion about the relation between solving the exact inverse problem and a discretkation that one 
uses in approximations. 1 just want to give one little example of smietlling which I think shows that the 
solutior~ of an exact inversr problem can be vcry instructive, where one can be led astray by discretization. 

Let me go back to the phase problem, in which a scattering cross section is given as a function of the 
angle and one wants to find the phase of the scattering amplitude. Suppose that an experimentalist is given a 
scattering cross section at a fmed energy as a function of the angle, and he fmds that the curve that he gets is 
reasonably simple. S u p p  he now fits that angxtlar distribution by a Legendre expansion, in which he will of 
course use only a finite number of terms, perferably e small number of terms. He finds that to within his exper- 
imental error he can fit the cross section by a linear combination of Legendre polynomials up to order 2L. In 
other words, hc has now 2L + 1 real parameters which he can u s  to fit his curve. Any experimentalist doing 
this would immediately draw the conclusion that if the cross section can be fit by a Legendre expansion up to 
order 2L then the ampiitude ~ u s t  require only Legendre polynomials up to order L. 

Now, the generalized optical theorem impl~es that each term in the Legendre expansion ~f the amplitude 
has only one real parameter, namely the phase shift. Here he has 2L + 1 real parameters, and there he has only 
L + 1 real parameters to play with. Therefore he draws the conclusion that the generalized optical theorem 
implies a strong restriction on the posibla ang(u!ar dependence of a cross section. 

But from the exact solution of the inVerne phase problem, we know the following. The fixed-point 
theorem tells us that if you give me any reasonably smooth angular distribution for a cross section, if I now 
multiply that crou section by a parameter A ,  and if I make A small enough, then there always exists an 
amplitude that fits that cross section, no matter what the angular distribution is. Therefore, the generalized 



optical theorem imposes absolutely no restrictions on the possible angular distributions that you can get. Thus 
the conclusion that was drawn here on the basis of the discretization was completely wrong. 

Of course, if you assume that the amplitude has only a finite numb:r of Legendre polynomials in it, then 
obviously it must terminate at L. If the cross section (the absolute valur. squared of the amplitude) terminates 
at 2L, then the amplitude must terminate at L. But the point i s  that : ou may have to have infinitely many 
terms, and almost all amplitudes that fit a cross section that requires or,ly Legendre polynomials, up to order 
2L, would require an expansion with infinitely m a y  coefficients. 

I think Ulis shows that an exact solution of an inverse problea can teach you something about things 
that one otherwise might not be aware of. 



9. WORKSROP SUMMARY 

P. C. Sabatiet volcnteered to author an overall summary to conclude both the workshop and these proceedings. 
The Editor felt that the sc9pe of this task and the magnificent way in which it was accomplished warranted its publi- 
cation in a separate chapter 3f this volume. J .  Shrnoys, session chairman, also has provided additional summary 
comments. 
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2 9  
ABSTRACT 

R e  only way to extract maxlmur-. informatio,~ from experimental rerilts is to solve inverse problems. When a 
new study is undertaken, the first goal of the physicist is to obtain satisfactory fits. This can be done either by 
approximate methods or numerical computations. However, it soon becomes obviouc, that "good fits" can be obtained 
that correspond to fairly different data on the unknown quantities. The progressive realization of the consequences 
of this nonuniqueness imply an evoliltion of both the methods and the centers of interest in inverse problems. This 
evolution is schematically described in the present paper, together with the vario.1~ mathematical methods used. A 
comparative description is given of inverse methods in scientific research, with ~,xamples taken from mathemetlcs. 
quantum iind classical physics, seismology, transport thedry, radiative transfer, electromagnetic scattering, electro- 
cardiology, etc. It is hoped that this paper will pave the way foi an interdisc~plil?ary study of inverse problems, lead- 
ing eventually to the design of experiments that are most efficient to give ir~formation. 

INTRODUCTION 

Our knowledge of the world proceeds through "mod:ls." In ,my given model. the scientist defines a certain 
mapping M of a set C of functions into a set E .  Tht "physical" functions are the elements of C that are mapped 
onto the set Ee of experimental rewlts Ihe mapping M and tlie set-say Ce-of all the "physical" functions are 
altogether called the physicd low. 

In classical or quantum mechanics, the mapping ci,nsist.i of the "kinematics" and C is the set of the "dynamical" 
functions, such au the potential. 

In seismology, the mapping is usually defined through the laws oC propagation of elastic waves. li9e set C con- 
sists of several functions of position such as the density ;>, the bulk modulus K , the shear modules C( , the local 
quality factor Q , which give a description of the earth. In georfremistry, C would have to include the con-entra- 
tion of vanous e:e.?rents or compounds as a function o!'po&;on and time. In geomagnetism, it would include 4ectri- 
cal conductivity as a function of position. 

In the diffraction of electromagnetic waves, C' would include functions of position such as the conductivity of 
the diffracting body, and, most i~~iportant, it wodd inchrde the geometry of the body-namely, a boundary condition 
in the wave equations. The mapping is defined th,ough Maxewll's equations. 

The same general schame hdds in the tmscr ision line scattering, but it is diitinguished by its one-dimensional 
charactef and the fact that waves propgate along h e  line in two directions, left to rigtr? and r w t  to left. 

In studies of extended radiation sources, C includes the radial distribution of the emission coefficients (which 
in turn can give information on such parameters ~l tefllperature and density of the emitting matter). The mapping is 
defined through the laws of radiative aruufer. More p.wrally, in radiative transfer, as well as in neutrop transport 



theory, the set C is the set of properties of a semitransparent medium relating to the absorption, emission, and 
scattering of radiative fields. 

In electrocardiology, C is the gerlerator data, and tile mapping is defined through the Poisson quation and 
the geonetry of the human torso. 

In the mathematical problem of "identification," M is defined by a partial differential equation, whereas C 
enters as either a boundary condition or as a parameier. 

Throughout these physical or mathematical situations, we encountel the same general scheme. In the following, 
it  is convenient to us2 the mechanical terminology and to call C the class of possible dynamics, Ce the class of 
effective dynamics. M the kinematics of the problem. Giving C and M , and defining the measurements, is giving 
a model. Now, let us assume that we perfect1.v know the kinematics of o model. There are tvro ways of using the 
model to increase our knowledge of the world. In the direct problem, the dynamical functions are known, either 
from general principles, or from previous informatio;~. The kinematics enables one to deriv; from the dyniirn~cal 
functions a set of numbers, which should fit the experimental data. In ihe inverse problem, the dynamics: functions 
are derived from the experimental results and can be used in turn as funiamental information for further investigations. 

The present paper is devoted to a comparative study of the inverse prohlems in physics. The most straight- 
forward idea for such a comparison is to establish a classification of the physical situations in which an inverse piob- 
lem has been of interest. Suppose first we put the examples quoted above in an order depending on the field con- 
cerned: classical and quantum mechanics, geophysics, electromagrretic theory, radiative transfer, electrocardiology, 
and mathematics. Suppose then we refined our classification-for instance, dividing geophysics into seismology, 
geochemistry, geomagnetism. Clearly the net result of such a classification would be to enhance the uniqueness of 
the inverse problems in various fields, and to make Jery difficult the classification of certain methods such as electrical 
sounding in geophysics. 

A more persuasive v:ay of making a classification is to dsscribe the physical situations. In the example quoted 
above, we tirst encounter scattering studies, in wilich the experimental results give information on the asy rrlptotlc 
behavior of waves (qusr!:um mechanics, seismology, electromagnetic theory). These studies reduce generally to 
Sturm-Liouville problernc. There is, however, a large qualitative difference between the problems in which the main 
phenomenon is a stational y state of collision (quantum mechanic:. electromagnetic theory) dnd the problems in 
which progressive waves J:e dominant (seismology). The second category 1 ' physical situations could be called the 
"transfer phenomena" in which the experimental results give information on the intensity of a transferred energy 
(radiative transfer. neutron t r a ~ s ~ o r t ) .  A third category would consist of "closed situations" in which the experi- 
mental measurements can be modified during experiments according to the information previously obtained (electro- 
cardiology, electrical and some other soundings). It is clear that this method of classification is disappointing. The 
first category is fairly well defined and could justify a study by itself. The two other categories. al th~ugh they are 
most important for applications, have many chances to contain several otherwise disconnected studies. Fur an exten- 
sive study of inverse problems, this classification may be of interest. For an introduction to interdisciplinary aspects, 
we will keep it as a secondary way of classification, not the main one. 

A third way of makine a classification would be to emphasize the mathematical distinction between a well-posed 
and an improperly posed problem. Since the definitions of these words exhibit important fluctuations, and are 
generally too precise for our purpose, let us say that we use them in the following sense: a well-posed problem is a 
problem in which the mapping M of Ce into E is a bijection, provided that E is the class of all possible experi- 
mental results of a certain kind This means that for a well-posed problem, if a given element of E , a defined set of 
experimental results, is known exoctf'y, then the dynamical function can be obtained co..npletely. In practice, the 
experimental results are n e w w i l y  affected by errsn, so that even in a "well-posed" problem the dynamical func- 
tions may !x impossible to determine completely from exprrimental results, especially if the available inversion 
methods are not s:phle. I h e  slturtion is much worse, however, in an improperly posed problem, in which E is either 
too small a class, so that an izfmity of dynamical functions correspond to an "exact" set of "experimental results," 



or too large a class, so that certain elements of E do not correspond to any dynamics at all. For example, in quantum 
mechanics, if 60(E) is a known function und there is no bound state, the inverse problem for P 0 may be well 
posed in our sense, although physically it is frivolous to speak of 60(E) for E -* -; if there iu no restriction on 
the bound states, an infinity of potentials correspond to 6,(E); and we d e r n i e  the problem 11s improperly posed 
by underdetminetion ; if 6 Q(E) is known for all P and all E, the conditions that have to be imposed on 6 p(E) 
to ensure the existence of a solution are unknown, and the problem generally is improperly posed by overdetermina- 
tion. Obviously, improperly posed problems also may exist in which E is neither smaller nor larger than the class- 
say Ee -that is the image of Ce thnlu* the mapping hf . The distinction between we!l-posed and inlproperly 
posed problems is of practical importance but it clearly cannot be the main motivation of a dassificrtion. 

Ultimately, the most practical way of making a classification of the interdisciplinary aspects of inverse problems 
is to study separately the various steps through which the attempts of solution of such a problem may proceed. After 
each step, new questions are asked to increase the knowledge of the problem, and the following steps attempt to give 
them an answer. Since the questions are more and more refined, it is not surprising that the logical order of this 
"quest for information" is also, in many cases, the historical order of the studies of the problem. First came the 
anproximate methods, followed by the trial-and-error methods. Then. generally, authors realize that the solutions 
are not unique, and ask a set of deep questions such. as existence, uniqueness, constructibility, approximation 
theory, stability. Then the incomplete exact solutions come, in which subsets of E or & are used. The inci- 
dence of experimental errors and the statistical convergence of the systems identifications are studied apart. Ulti- 
mately, the complete solutions, the approximntion theories, and, of course, the mathematical generalizations come 
to prove that the problem is now a "classical problem." Obviously. there is no real problem that has gone through 
the full cycle of evolution outlined here. Studies of problems concerned primarily with fundamental physics 
(e.g., quantum mechanics) went through a large part of the cycle, but did not pay much attention to the 
question of experimental errors. On the other hand, studies concerned with applied physics (e.g., the various 
soundings) paid most attention to the experimental e n o n  and did not develop c r y  interesting exact methods. 

In this introduction to the inrerdisciplinary aspects of inverse problems, we outline the various steps of 
their evolution, with emphasis on the structures of the methods and the quantity of infcrmation referred to. 
Specialized methods of each discipline are minimized as a result. The simiiiarities of the inverse problems in 
the various k l d s  are emphasized while their differences are left to more detailed studies. 

Examples are given of the problems noted earlier, particularly those in quantum mechanics and seismology, 
which exhibit almost all aspects of the cycle of evolution. Another reason for this cmphask is even better: the 
competence of the author repidly decreases from quantum mechanics to clectrocardiology! 

MATHEMATICAL NOTATIONS 

ii , ' . , 

, : . 4 
To summarize a physical model, we we the notation m with an index to denote the model, V with an index 

q c ,  to denote a particular dynamics, and E with an index to denote a particular experimental result. A typical direct 
problem is therefore schematized u 

. . -  - 7  
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,' I m d  a typical inverse problern u 



In all the cares we study, it is possible to define C and E as complete metric spaces. rile direct .oblem is formu- 
lated by 

Let Ee be a subset of E , which can be associated w t h  the set of all possible experime-ta! results of a certain type 
(for instance, all the functions 6 p(E) continuous and going to zero 9s E goes to 00) .  .ne inverse problem is the 
problem of obtaining the solutions of Eq. (3) in C for all E E Ee. The problem is well posed (in our stnse), if there 
is one, and only one, solution for each element E of Ee. Notice also that our definition is essentially ident~cal to 
the one introduced by Hodomor$ 11902) of a "probleme parfaitement bien pose', je v e u  dire possible et determink ." 
It is only more recently that a third condition was introduced to define a properly posed problem in Had-. nard's 
sense, namely, that the solution of Eq. (3) depends wntinuously on E [Lmvrentiev. 19671. This condition is 
essential for stability. 

APPROXIMATE METHODS 

Classical Methods 

In a number of wave propagation problems, the variations of the dynamical functions over a given wavelength 
are so small that diffraction and reflection can be neglected. Then wave coups propagate along classical trajectories 
to the next discontinuity surface; the parts of classical trajectories between two discontinuity surfaces are rays. These 
rays obey Fermat's principle: among possible paths joining any two assigned points in the medium, the actual ray is 
such that the travel time along it is extremd. If the radius of curvature of the surface discontinuities is s!~fficiently 
large, diffraction can also be neglected to study a discontinuity, whlch gives rise to a reflected and a transmitted 
wave. both propagating along rays, so that a completely classical model can be used in the medium. 

Suppor now the problem has either spherical or cylindrical symmetry, and is a realization of one of the two 
following (equivalent) situations: the paths of propagation have turning points in the medium (quantum mechanics, 
seismdogy), or the ~ u r c e  of radiation is an extended ball (or an extended cylinder). Then it is possible to relate 
measurable quantities to the dynamical hnctions by an Abel's integral equation. 

Examples of such a result are shown in the inverse scattering problem at fmed energy in classical mecimics 
[KeUer et d ,  19561 and quantum mechanics [Finov, 1923; Wheeler, 1955; Sahtier, 19660 ; Vollmer, 1969; 
Mllr ,  19691, where the formula 

obtained thraugh the JWKB rppoxinution, is typical. In Eq. (4), provided the p t e n t i d  allows only one "turning 
point," Ha) b bijectively related to the put of the potential V(r) beyond the distance of closest approach to; 

6 p is ths phn.w M, u r function of ths qurntizsd aqulPr momentum Q. and an be constnrctsd, in certain con- 
ditions, from thc experimental results. 

A more useful example is the study of extended &tion sources where external measurements of the radiance 
produced by ;he w r c s  u e  ured to deduce the r a m  distribution of the emk!on coemcient (Nator und Olscn. 1960; 



&eman and Katz, 1960; Bockacrm, 1961 ; Borr, 1962; Herlie, 1 9 6 3 ; M d d ~ o  et d., 1965; Ckmn and Blrkeback 
1966;MImrbo and Levy, 19691. Lst us denote by Y(y) the measurement of the radiance emitted by the extended 
radiation source don8 the ed8e of a circular slab of center 0 ,  in r cross section taken perpndicular to the axis of 
symmetry Ot (Ox and Oy being with Os a rectangular tried~on). Let R(r) be the emission coefficient, which is 
assumed to vanish beyond a finite radius a. Then 

A still more remarkable example of this type of result u rhown in seismolog,, where the time T of travel along a ray 
can be determined, as a function of the ray parameter p , by 

In Eq. (6), qo is equal to ro/v(ro), where r,, u the eartn radius, v(r) is the speed cf ;sopagation of the wave along 
the ray, at the point with radial coordinate r ,  and t(q) is a function related bijectively to v(r), provided that rlv 
decreases monotonely from qo to p as r decwer  from ro to say, rp(rp > r' > 0). The problem is to recover 
((Q) frow;~ T@) [Hetgioti., 1907; Wlrchrrt, 1907; BPtrmon, 19 10. Slichter, 1932; BJlm, 19561 . 

lntegral transforms similar to Eqs. (4), (5), and (6) also appear in the analysis of vertical incidence radio sound- 
ingr of the ionosphere when the JWKB approximation is ~!wd. The relations between the group time delay of a pulse, 
or its transit time between two points, and r fuilction directly related to die electron density are of this form, 
[Rydbcck, 1942; Koy, 197 1) , provided that the last function u monotonic, which ensures the UN jueness of the 
turmng point. Apun, r dmilrr transform mo given by Sh:.~ys ond PImgfh 1197 t j ,in thdr studies of nonradially 
stratified media by trajectory methob. In diagnosing a two-dimensional refractive index distribution n(r, d), ex- 
pandable in Fourirr series with coeftlcimts Nk(r), they prove that the Fourier component Ik(b) of the phase shift 
of r ray, characterited by its imp#:-t parameter b and its male a,  is related to Nk(r) by 

which, for k = 0 and k = 1 reduces to r truufonn dmU8r to Eq,. (4). (S), or (6). Cnh. r exmples cur be found 
in runy UKI when r cludcrl approximtion is wed in r physical problem. The amplest orre IS arobably the his- 
torical Abel's problem: determine ths 3up of a hffl, dvcn the time @en by 8 particle tc yo up tzd ntum as a iunc- 
tion of the pmrtide's initial velocity [ A M  18261. 

l'l?e farmula8 (4). (5). md (6) a n  k c d d e r t d  rc inkqd equations for the dynunicrl fimctions irtcp. H(A), 
R(r), g(r))] when t k  " e x p d m n d  ftrutlor.:" [rasp. 69, Y(y),  T(p)] are known. Thd integral equation is of 
.4bel's type. md cur be mlved exactly if 6(9 + 112), Y(y). Tb), u a  bwwn d i f l m h b k  furct!!onr! For instance, 
the exact inverse of Eq. (5) b 



Similar formuias hold in the other cases. 

Anolysis of the inverse pmblcm- To use the above m$thod. we first must assume that the msult to be found 
makes the approximation passible. This is not a trivial assumption. In quantum mechanics, it mans that we have 
to excllrde the possibility of "orbiting." In seismology. it means that v(r) has to increase steadily as r decreases. 
Now, it is possible to weaken this assumption-includmg, for example, special velociry variations IBuilen, 1050. 
19631 --without implying any gnat mathematical difficulties, but only a small number of such compli-dions can 
be taken into account. In any case, from t k=  ~athemnticd point of vkw, the class of imctio~rs in which the salution 
of the p&lem is &sired is not very well defined. 

A second difficulty comes from the experimental errors and fluctuations. It foBuws from them t h ~ t  the erwr- 
imental function is not Anow us a diffmntiaMefinction Actuaily, the integral transform Eq. (6) is cquivaient t c ~  

half-order differentiation [Gmmfro und Koven. 19661, and therefore noise amplification is unavoidable. However, 
then has been no mmpkte study of this instability up to now. Sevenl authors have proposed numerical mihods to 
solve the Abel's equation using Gaussian integration, interpolation formulas of low order [Nestor and (Xrzn, 1960; 
fie, 1963; Bockasten, 1961 ; Ed& et uL, 19621 , appraxirmtions of the data by smooth functions [Frcemun and 
Kan. 1960; Omem md Rrkehik, 1966; Wen. 1961.19641 , orthogonal function expansions [Hcrlirz, 1963; 
MnIdomth et d. 1965; Comrflo and Kovetz. 1966;Minerbo a d  bay. 19691. 

A third difficulty comes in quantum mechanics. In the other cases, if convenient asc~mptions are taken, the 
problem is well posed. In quantum mechmics, at the best, only integer P values can be taken into ac:ount. The 
net result is that, even if the experimental errors were canceled, an interpolation wo15d be neneassary. It iollowt from 
Loeffel [I9681 that the choix of the interpolation makes the problem well posed in the class U of potentials whose 

/*p I V@) I dp is ffite. Unfortunately, the choice of an interpolation r.*nsistent with JWKB approximation !s 

diff~ult and bi no case unique [Sobotier, 1966aj. She uniqueness appearing in Eq. (6) is misleading because the 
mnuniqueness appeus in the step 6~ -+ S (P + 112). 

&tensions d impovements  of the ~ s u l t s -  In quantum mechanics and in seismology, as well as in the 
truruniuion line scattering, the formulas quoted above are ob'ained through the JWKB approximation. This approxi- 
mation a n  be conadered as the fust term of a series of powers of the reflection coefficient [ h m m e r ,  195 11 or similar 
prometers. Rather surpridnety, trlring into account th next order of the approximation again yields an Abel's 
integral equation [Sokrtia, 19660; Vollma, 19691. '& JWKB approximation and a fustarder perturbation can 
also be combined; leading to an inversion method when both srnooth mJ sudden (but small) variations of the 
dynamics are taken into account. 

Oth&applicaa'ons of clasricvd methodc to invase problem- The ray method n commonly used for diagnosis 
in ekctromapetic scattering, but its widest f ~ l d  of application is seismology. It has been used in almost all the 
determinations of earthquake parameters. M e n  [1963] provides a comprehensive review of tnese applications. 
More recent theoretical work is found in CcrvamdMmhushdch [1%6,1967]. It is interesting to note that the 
my method kd  Mohorovicic, in 1909, to detect the famous discontinuity below the surface of the earth that has 
been named riter him. 

Usually, the most important experimental memunment used in the method is the arrival time of the wave 
although m y  other pnmeten, such as dupenion cunes and amplitude, can be taken int:, account. However, 
the filtering effect of the errth, together with the random distribution of the shells in the crust, prewn! precise 
analyses of the spectra. On the other hand, under certain conditions, large deformations of the Mohorovicic 



discontinuity an yield convereing effects through which the amplitude measunmnts allow an easy diagnosis 
[Bamrjih, er d. 19701. 

Perturbation Methods 

Let us assume that we know a certain exactly solvable model % with which, for a given dynamic Yo, depend- 
ing on a few parameters, we can solve completely the dinct poblem 

S u p p  now Vo is given a perturbation A V, and k t  AE be the modification of the e~perirnental result. It may 
happen that A E  an be expanded in powers of A: 

where b(V) .  Air,(!'). are certain functionals, which also depend on Yo. A "perturbation method" is possible if 
I AE - A 4, V 1 is much s d e r  than AE as AE goes to zero. Then, for reasonably small deviations to the solvable 
scheme in Eq. (9). it is possibk to study the direct problem through replrcing AE by h&V. In addition, higher 
order of the perturbations expansions can be calculated in ceiA& cpses. The inverse problem un be handled if L\o V 
is inversibk. Once a value V, has been obtained from the measured AE, n is ps ih ie  to use the expansion in Eq. (10) 
or an iteration process to improve the precision. 

The perturbation method has been used ii scvenl invene problems. In quantum mechanics, it yields the essm- 
tial port of the methods of Fbhtg [1947,1948] and HyaCmus [I9481 for inverse probkm at f w d  E; it b s  also 
been used as a first approach towart the approximation probkm [Soboth, 19674: in the inverse probkm at faed 
energy. IF. seismology, it hoc 5cen studiad by KnopM [1960,1961,1962] several type of problems [see also k l  
mrd Knopofft 1968, and the quoted references]. including a study of higher orden of the perturbation expansion 
[Knopofi 19621. Applications to tbe inverse probkms for surface waves have aiso been given by Jobo? [1960, 
19701, and to tk invene eigenvalue problems in seismolo%y by Vmaaclr [1965]. 

Lt us now try to analyze more thoroughly the structure of perturbation methods in the imrenr. problems. 
(Such an analysis would hve avoided well-known enon in some cases.) In typical probkms, C m.d E can be given 
the structure of nwmed linear spaces, and Y is a differentiable mapping of c into E , namely, r Frechet differen- 
tiabk functional. Thee, Lf Vo a d  V u e  elements of C , we can fmd a liw c m ~ f i c n . 5 t i o d  6 Mo(V) such 
that 

where ro(Y) is r functional whoae norm b infinitely small comprtd to I V I as I V I p s  to zero: 

when I - I denotes the norm in C md I - I the norm in E .  Usually, C ha rprcs of integnble functions md the 
Uneu function b Mo(V) cm k put in the in- form 



where u(a, p) is a known function of a and p,  and a is a parameter related to thc Ttructure of E . As an 
example, in quantum mechanics, at a @in energy, in the (first-order) Born approximatil~n 

In that case, a is a discrete parameter and E is a sequence space. 

Let us now study the Inverse problem in the first-order perturbation theory. Let us assume that the experimental 
function E(a) is perfectly know 'Then Eq. (13) is a generalized moment problem, which in most inverse problems 
has at least a solution. Ncw let Cl be a space of functions in which the g.m. problem has one solution only. Clearly, 
if the solution of Eq. (1 3) is sought in a set larger than C, , the problem is undetermined. This is the case for Eq. 
(14) if V@) is sought-say in L, (0.00). Actually, with the usual !imitations on the 612, a unique solutian could be 
obtained in the subspace of Ll (0, w) containing only entire functions of order 1 and type 2 [Sclbatier 1967~1. The 
conditions on u(a, p) for which Eq. (13) has a uniq~l: solution in a sufficiently large space of functions are gei~erally 
not .net in the physical inverse problems. The nonrealization of that point led nobeg [I9481 and HyUemus [1948] 
to an incorrect guess [Bogmrvvr, 1949; Lcvinson, 1949; Hdmberg, 19521. 

Let us denote h) N a linear functional that is an inverse of 6 Mo, with norm N1 . Let us m m s  that 
ro(V) is lipschitzian in a ball [0,6"), and that the product L of N1 by the Lipchitz constant is smaller than 1. 
(I'he first assumption is pnerally true in physical problem; the second one depends on N .) Then the mapping 
N [ro(V)] is contracting UI tiie tpl! ~f center 0 ,  radius 6' = 6" (1 - L ) : 

To obtain a solution of AM = E, we now solve V = N1 [E%(Y)] by iteration through the fured-point 
construction procedure: 

v(') = Nl( t )  

d i t l )  = N , (E) - Nl [ro (V(i))] (16) 

Clearls, the inequality in Eq. (15) and a well-known argument [see, for example, Stilov, !965] enable one to -. 

guarantee that if I I < 6' , the sequence of Eq. (16) converges toward a unique solution V. Moreover, Eq. 
(14) is a constructive method: after a finite number of steps, it yields a result v ( ~ )  such that V - v ( ~ )  ! can be 
bounded, by L~~~ (1 - L)-'. Therefore, to each inverse N of the linear functional SM corresporliis one in- 
verse and one only of the functional M such that I Ni(i?) I is smaller than a certain quantity. Therefore, the 
differential 6 M yields a way to study the nonuniqwness of the inverse problem, but some other solutions may 
escape it. Notice, in particular, that, SMo being linear, either ul is unique, or there exist an inficity of them, and, 
among them., some with a norm so large that the method above fails. It also yields a way to study the appro xi ma tic,.^ - . .  
problem and the fluctuations due to experimental errors, but again with the same limitation. From the theoretical 
point of view it is good for a first study but not sufficient for a complete om. 

From the pncticd point of view, the we of a perturbation method has the same dcfects as cIas..cal methods. 
It requires a strong a priori orrumption, and experimental errors are still a cumbersome complication. 



iiir~truction of perturhtion methods- In most cases, the inverse problem is defied by a linear 8artial 
differential equation, and a certain set 8 of boundary conditions. Assume that the differential equation is of the 
form: 

where Do(r) is a well-known differential operator in Rn , such that the solutions of 

with the boundary conditions 8, are well lu:nwn, and p(r) contains the part of the dynamics which can be treated 
as a perturbation. Assume also that the Green's function corresponding to Do(r) and 8 is well known: 

Then X is a solution of the integral equation: 

If the Neuman series for Eq. (20) converges, it yields a "perturbations expansion" for X(r). Thr convergence of this 
series, however, is ncit always neccssmy to get a good approximation of X(r) by the first-order (the Born 
approximation): 

Now, to make a measurement Mi of X(r), we obtain the values o i  

where Mi(t) is defined from the experunent~l measurement, with the linear approximation ii Eq. (21) ill place of 
X(r); therefore, we get mmben of the form in Eq. (13). 

NUMERlCAL METHODS 

The discussion of numerical methods logically should follow a complete analytic study of the mathematical 
problem. However, since the purpose of a physicist is to obtain results, numerical methods come in the study of 
invene problems aa soon as a constructive method is available, either exact, or ipproxirmta One might question the 
relevance of numerical =tho& in 8 study of inverse probhm. After all, most numerical methob are nothing but 
applications of the methods of rolution of the direct problem to various dynamid functions, comparison with the 
experimental results, and choice of the best approximation. But the whole developmen\ of physics goes this way; 
we amnot encompass in our study the whole of physia! On the other hand, many d y t i c  methods to construct a 
solution of inverse problems go a h  this way, dnce they proceed by arcardve approximations. In short, if we do 
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not include in our study ill the fitting proctdures, we have to nukc a distinctii~n between the numerical computa- 
tions according to the nature of h e  mformation hey are able to extract from 'he experimental results, not accord- 
ing to tir very structure of the methsa. Such a distinction is very arbitrary. 

Th., ughout the papers devctted to numerid cr.:npu*ations to fit the experimental results with the help of trial 
dynan\i~;i1 functions, we see two kinds of studies, tho& wnich, so to speak, the position of the guess is moving. 

Completely Numerical Computations 

'll~ese are methods in which the mathematical transcription of the physical processes is handled on the com- 
puter from the very kginning. For each step of the physical problem, there is a crrnsponding step of the program. 
T1.1e direct problem is solved in this way, for several possible dynamics, among which the program enables one to 
choose, : : as to get the optimal fitting of the experimental results. 

b r  -as take for example a one-dimensional process where a (partially) measurable quantity U is ielated to a 
dynamic. d function a of the medium, to be defined for x E [O,h+l 1 ,  by 

and boundary conditions on certain components of U, say Uk(0) and Uke (bN+:: The inverse problem is to 
infer the function a(x) from measunlmnts of a component of U at vaf 3us points 

'lhe oroblem can be discretized by introducing, to cover the medium, N homogeneous sections (bi ,bit 1 ), where 
the llucs ai of the desired dynamical function are selected so as to minimize the sum of the square of the 
ileviatior:~: 

In dyrlpmic progtDmrning th:: minimization is done at each step, through a function 

L_ .... __ 
'llhe equation D(ai,U) k wived inside each section (bl,bi+ 1 ), for i = 1,2, . . . , K , with the boundary conditions 
cl and c, [which, ulthtely, for K = N,  should fit Uk(0) and Ukv(bNt1 )] , and with appropriate continuity 
requirements of U at the boundaries of ths sectiona. Ihc minimhation of fK k done on the coefficients ai at 

I 

a c h  step '1 ., c ,d MK is the number of msuurements on the fint K intervals, with K = 1,2, . . . , N. Sequences 
of functia .r are thus obtained, which sdve the problem. The above way of proceeding is convenient for inverse 



problems of transport theory [ & U r n  et d., 19671, diffusion processes, or radiative transfer, when the 
measurements are done all along the physical processes. 

In most cases. however, the measurements are made only at a boundary of the medium. Then, if we call "trial 
results" the images of the triai dynalrical functions in the mappirig M ,  we see that the direct problem has to be 
solved completely for every trial result, and the deviation of these results from the observed ones has to be computed. 
The trial functions In b: investigated in various ways. 

In the "Monte Carlo" method, first a procedure is introduced to generate random dynamical functions. Next, 
it is necessary to specify a set of tests, whether direct or indirect, that must be satisfied by the functions to be chosen. 
Direct tests are a priori properties or conditions (e.g., bounds) on the functions. Indirect tests are essentiaily com- 
parisons of the trial results and the experimental results. In these comparisons, the allowed differences-say 6 i- 
should be smaller than the errors (roundoff or discretization) coming from the numerical computations. In addition, 
the test is precise if the differences between the bounds defining the experimental data are smaller than the 6 i .  Now, 
a random dynamical function b e l o ~ r e g  to the class defined by the direct tests is accepted if it satisfies all the indirect 
tests. Clearly, the great interest of this method is that it works as well for an underdetermined problem and for a well- 
posed problem. Even more important, this method is able to  give nonprogrammed infornration: if the totality of the 
tests contain more information, about t h ~  dynamical functions and certain indirect tests than the direct tests and tile 
experims~tal error bounds indicate, then at the end of an application of the method to a suitably Iarg number of 
trial functions, the t d  functions and/or the trial results corresponding to the nonprecise tests will lie in clearly dis- 
cercible subregions in c. Such a method is particularly suitable for the (widely underdetermined) inverse problems 
of geophysics [Asbel, ct 1, 1965; Levshin et d., 1966; Keilis-Borok ancl Yanovshya et al.. 1967; Yanovskaya, 1963; 
Pkss. 1968; Andemen and Seneto. 19701. However, the method possesses also a great disadvantage, for the results 
of the trials already made are not used in the next trial. In the neighborhood of the best fit, if the "best fits" are 
isolated in C, a direct optimization method can save time, so that one ought to combine the two procedures. It is 
also possible to introduce an estimation procedure that formalizes the procedure for implementing and interpreting 
the results obtained [Andemen and Seneq 19701. 

In a weU-posed problem, a systematic method of optimization is generally preferable to a random method. 
Usually, the trial dynamical functions are chosen in classes described by a few parameters and the optimization is 
done on these parameters, a great variety of classical numerical methods being used to solve the direct problem of 
going from the trial functions to the trial results. See Hodgson (19631 for nuckar physics; Keiiis-Borok and Yunov- 
s b * a  [I9671 for geophysics; K @ w &  m d  KIJobrr, [1968], Bellmrm et d., [1963,1965,1967,1968] for radia- 
w e  transfer and diffusion processes; Gelemrerand Swihrnt [I9641 for electrocardiology; and QIovent [I9701 fur 
the general mathematical problem. Clearly, the advantage of choosing the trial dynarnid functions inside a clau 
depending on a few parameters onl-y is that first the problem becomes well posed, and also much computer time 
can be saved. Unfortunately, the price to be paid is very high: a method constructed in thin way can give only 
biased information, severely restricted by the class of trial functions. A good example is given by the numerical 
computations made in nuclear physics to fit the experimental cross sections by means of an optical potential. A 
three-parameter Woods-Saxon potential is pnerally used. Experimentalists are quick to note that even if all the 
possible data (differential cross section and polarization) are available, there are still some small ambiguities. They 
usually ascribed these small ambiguities to experimental uncertaintks, and took for granted that changing the form 
of the trial functions would not make drastic modifications. However, for certain classes of trial functions, there 
cun be drastic modifications [&&tier rmd Quyen Vun Phrr, 197 11 . 

Now we set that, in all these numerical methods, there is somewhere o guess on the dynarnical functions. To 
apply any of them, and particularly in dynamic programming, it ia necessary to assume that the problem can Et dis- 
cretized. This implies a "sumdent continuity" of the functions. Besides, in most cases, cheap pa-omeuizations 
impose further restrictions. The method with the largeat number of "degnes of freedom" would probably be the 
Monte Carlo method, if only an infi i te computer time could be fimncidy supported. 



Reduced Numerial Computations 

These are methods ir? which a preliminary step has reduced the problem to a simply defmed mathematical one, 
usually an integral equatiqn. In some cam, the preliminary step is done by approximate methods, hence introduc- 
ing what can be &d a badly defined. GK a "hidden" guesa. In many other cases, the preliminary step is exact. 
Then, the good &Anition of the secorld step makes it possible to study & uniqueness or the stability of the solu- 
tions much more fruitfully than in the completely numerical computations. 

Examples of this type of approach a n  shown in radiation measurements, where a Fredholm equation of the 
fmt kind relates the unknown function f ( y )  to the meatured functi~n g(x) 

Such an equation has notoriously unpleasant mathematical properties. First, it can easily be seen that no solution 
exists, for a given K(x y ) ,  if g(x) is an arbitrary continuous function. For example, one may check that if the 
function x 4 K(x y )  satisfies a linear differential equation, with coefficients depending on x only, g(x)  must 
also satisfy this equation. If L(x y) is a degenerate kernel, equal ~ O ~ A ~ ( X ) B ~ ( ~ ) ,  no solution can be found 
unless g(x) is a combination of the functions Ar(x). Now, if the eigenfunctions of the kernel are known: 

if no e' nvalue is ?am, and if the cigenfunctions form a complete set in the space E ,  so that &) = x b r f r ( x ) ,  then 
f (x)  =FarM), where ar = b,./A,. This does not work for a degenerate kernel, which has at least one zero 
eigenvriue. Practically, these difficulties generate a lack of stability of the "approximate" solution with regards to 
the right-hand side of Eq. (27). Then are several ways of reducing Eq. (27) to a matrix equation 

for instana, by numerical quadrature of the left-hand side of Eq. (27). But if the right-hand side is intended to be 
treated exactly, and if the number of points in the quadrature formula i3 increased, ill conditioning and instability 
will be the general lot. On the other hand, the problem of flna-ig a smooth function f(x) for which the remainder 

is in some #we mull, and is well p d  and physically meaningful. The smoothing can be done using some a priori 
knoplledgc of the unknown. Several methods have been used in thh framework for inferria temperature profiles 
irom stimulated emiuion msrruremaats [&me& 1968; WcrWtn, 19701. In more mant  studies, the minimiza- 
tion of e(r) is undsnsood rr a mhhbtion over r rtrthticrl enamble, In the linear statistical method of S W  .- .. 
cad Wancrrta [I9684 b,c] , the coeffidents of hear combinations am determined by minimizing the expected 
man squue error in the solution w h  av- over r reprematative ensemble of profile and uncomelated 
muumment enon. 3 



Several examples of inverse convolution problems can be found in geophysics \seismology or magnetic inter- 
pretation, as in Bott, 19671 and in optics. The problems reducing to an Abel's integral equation, discussed earlier, 
are of this form. Other examples leading to the numerical inversion of integral operators are generally studied by 
well-know? numerical methods. It is worth mentioning that in many cases, there are several possible reductions of 
a gi.~en physical problem (several integral equations giving a key to the solution). Some of these possible reductions 
may be better than others for numerical computations. It may also happen, in certain cases, that a new way of 
reducing the problem is physically better, because it automatically bars unphysical solutions. An example is given 
in ground electrical sounding, where the formulation used by Kunetz and Rocroy [ 19701 generates only sequences 
of positive resistivities. 

Mathematicai Foundations of the Numerical Methods in Inverse Problems 

Rather recently, there has been interesting mathematical work on the general prc?b!ems of convergence. optimi- 
zation, statistical convergence, and filtering in well-posed inverse problems (there called "identification" and "estima- 
tion" problems). Several strong theorems have been proved by topological methods [Bensoussan, 19691. 

Critical Comments on the Numerical Methods 

The greatest asset of these methods is that they work in all the cases for which the direct problem can be 
solved numerically. Their greatest defect is that they give blased information. The trial functions have to be chosen 
in subclasses of C defmed esscnnhlly for the purposes of the numerical calculations. Certain of the conditions are 
simultanecusly physical conditions. There is no lack of information if all the conditions are really physical condi- 
tions-that is, conditions implied by the physical laws. In many cases, however, the so-called "physical" constraints 
follow from previous experimental tests. In other words, h e y  follow from the known accumulation of previous 
"inverse problem" solutions in a certain subclass of C . Smce these inverse problem solutions often are obtained 
by poorly conditioned trial m d  error methods, the constraints on this subclass of C should not be assumed in sub- 
sequent an.dyQ. Rather, the investigation of the trial solutions should be as broad as possible, and the physicist 
should have always in mind that nothing proves that the path toward the complete knowledge of a physical law is 
unique. 

0 3  the other hand, if the problem is well posed, it reduces to a problem of "optimal control" and can be 
treated by well-known numerical rr.ethods [Lions, 19681 . 

FUNDAMENTAL QUESTIONS 

To summarim the above analysis: What kind of knowledge do the approximate and the numerical methods 
afford? Given the experimental results, what is the dynamical function? These methods yield the answer, "Here 
is a dynamical function that for the given kinematics yields results rpproximately equal to the experimental measure- 
ments." 

What kind of howledge would we like to obtain? If we know, from previous information cir from a general 
principle, a plausible dynamial function, then we would Ilke to know whether the corresponding results do  fit the 
actual measurements. If the only previoudy obtained information enables one to reduce the number of the arbi- 
trary parameters characterizing the dedred dynamical function, then it is interesting to use trial-andcrror methods 
to solve the inverse problem. However, we must realize that the "proofs" obtained by these methods can always be 
questioned, while the counter?xamples they may give cannot. Take, for example, the fitting cf cross sections by 
mans  of a complex potential of the Woods-Saxon form. It has been recognized that a smooth variation of the 
potentials with respect to the kinetic energy is neclwrPry for a good fit. We have every reason to believe that such a 



dependence is "physically correct," since according to the theory the constructed potential sLould be equivalent 
with a nonlocal me.  From the point of view of inverse problems, however, the fact that a static Woods-Saxon 
potential cannot fit the experimental results at all energiesdoes not prove that no static potential can do it, since 
this inverse problem is improperly posed by underdetermination! 

Therefore, what we would like to obtain from inverse problem studies is not only the most probable dynarni. 
cal function, but the total amount of information contained in experimental results. This means that we must 
evaluate our results in terms of the following factors. 

1. Existence. Does a dynamical function exist in C that gives, through the given kinematics, the proposed 
experimental result? In other words, if Ei is an "experimer.ta1 result," is there an element Ci of C that 
M maps onto Ei? When Ci does exist, it is called a solution of the inverse problem corresponding to the 
experimental result Ei. 

2. Uniqueness. If Ei is given and C',- exists in C , is Ci unique? The answer is positive if the inverse 
problen~ is what we called "well-posed." From the mathematical point of view, a perfect experimental 
result is simply an element Ei of E . A real experimental result Ei is actually the set of all the elements 
of E that are consistent with the measurements and their possible errors. Since in practical cases E j  is 
given, not Ei, there cannot be uniqueness. Therefore, it should be understood that the question of unique- 
ness, as well as 3.4, and 5 below, involve Ei, not Eii. Only in the later step do we allow Ei to take on 
successively all values in the set 

3. Constmctibiliry. It is not sufficient to know that a function exists. For a physicist, a much more impor- 
tant question is: Can a solution of the inverse problem be constructed for any element Ei of E ? By 
"constructive method," we mean one in which it is possible to obt:~.,,, after a convenient finite number uf 
steps, any desired approximation nf the solution. 

4. Complete conmtctibiliv. When the answer to 2 is negative we also are led to the question: Can all the 
solutions of the inverse probier.1 belonging to a given class C, ( C, C C) be constructed? In the following, 
we call equivalent two solutions of the inverse problems corresponding to the same result Ei. Now, suppose 
we can construct a set f of equivalent vtentials. It is Important to compare the elements of J, , or the 
elements of subwts of f defined by some a priori "physical assumptions." 

5. Approximution, We are therefore led to the question: Is it possible to define a distance in C , , and to get 
definite bounds for the diameters of the sets t, n CI ? Clearly, questions 3,4, and 5 are essentially con- 
cenied with undetermined problems. Consider now a well-posed problem ( if the problem is underdeter- 
mined, it is theoretically possible to restrict c ,  so as to obtain a well posed problem), and let us allow Ei 
to take various vxlues in Ei. It is most important to know whether f show small or large perturbations 
wh+n a small perturbation is imposed on Ej.  

6. Stability. We now ask: With E and C, being metric spaccs, is the mapping of C onto C I (the solu- 
tion of the invem problem) continuous? A related question concerns the efficiency of a series of tests: 
If a series of random tests yields results Ei@), and if the corresponding dynainicnl functions lie in the sets 
f:("), does the intersection of these sets stea8dily go "toward a unique element"? 

We have touched on these questions in earlier sections. However, She studies described there were much more 
concerned with obtaining a solution, whatever it may be, than with information problems. In the next two sections, 
the quest for information is pursued methodically. The difference in the studies described does not reside (in most 
cases) in the nature of the methods they contain but in the quality of the information they seek. 



FORMAL METHODS AND INCOMPLETE EXACT SOLUTlONS 

Scarct~y Puametrized Methods 

The simplest way to construct an exact method is to reduce so drastically the class of possible dynamic functions 
that the direct problem can be exactly solved by analytical methods. The inverse problem then reduces to determining 
a very few parameters by elemeritary operations and matrix inversions. On the other hand, the necessary consistency 
conditions on the results are very strong. They can be fulfilled oniy if the acculacy of experimental results is very 
poor. In practice, this method is used mainly to giw models that show the importance of a particular type of experi- 
mental result. More wr less academic examples of this kind can be found in many arsas, such as the one- or two-layer 
models of seismology [Ewing et d., 1958). 

Special Infinite Classes of Dynu,.~cal Functions 

Phydcd condderations are sometimes sufficient to select in C an infinite class of dynamical functions that, 
for some reason are physicrdy more mearhgful than the others. In quantum scattering, an example of this kind is 
shown in the class of superpositions of Yukawa potentials, which are favored by certain theoretical arguments: 

Another class corre~~ponds principally to "simplicity" motivations, the class of truncated potentials-those that vanish 
beyond a finite tat~us. The same kind of motivations favors f d t e  smooth bodies in electrom~gnetic scattering. In 
these scattering problems, the asymptotic properties of the waves can be represented with the help of a transition 
matrix, part of which is measurable in scattering experiments. From the properties of the special classes investigated. 
one can derive analytic properties of the transition matrix T, which in turn permit derivation of the matrix from its 
measurable portion by a process of adyt ic  continuation. 

In the class of Yukawa potentials for the quantum invem problem at fued P [Martin, 1961 ; Cha&n, 19621 
and at fwed E [ W t i n  and T m ~ n k i ,  19611, the construction of the dynamical function from the traosition func- 
tion involves the use of a dispersion farmula and a special itention pmcedun. In the class of truncated potentials 
[Mbrchenb, 1957; to?ffel, 19681, rhis derivation is more formal. In electromagnetic scattering [Weston and Boerner, 
19671, the field is readily calculated t~utside the convex cnvelope of t k  body. It remains to locate the surface of the 
(convex) body by taking into account necessary conditions on the boundary. 

What is the value of these methods for the inverse problem? The invem procedures are broadly f o r d .  Insta- 
bility for random perturbations of the data appears in the analytic continuations. In addition, the naceswry consis- 
tency conditions on the experimental result< are not really known (tau: they are pr~bably not very strong). There. 
fore, these methods have hardly much practical value. On the other hand, they are important from the theotetical 
point of view, because their rolution il generally unique and p h y d d y  meaningful. 

Although it is difficult to my that phydd condderations Pae  su-ted the choice of separable potentials, we 
put here the study of their inverse problem beu.w it has common characteristics with the above ones. Again, inte- 
gral equations containin8 Hilbert trmsfnrms that come from diaprsion relations ore a key to the problem (the so- 
called Mruhkeliahd equations). The inverse problem treated in this way L probatly a go bd approach to the gecerd 
invene problem of nonlocll ptentirlr. It hu Ant been studied for theoretical reasons [L u d n  d h f i u r i n ,  1957, 
1958; Choclhn, 1958,1967] but hu more recently pined the favor of nuclear physicists [Bolstcrlf ond Mukenzie, 1465; 
Mi& and RcPdlng, 1969; Tabakin, 19691, who could have saved much 6 by mading the previous references. One 
of the mod remrkabIe ruumw of this problem ir the result of [I9671 concerninn the possibility of 



cancelling by a separable potential the phase shifts generated by a local potential, obtaining in this way a po:ential 
that is mrnspmmt a t  dl energies and therefore cannot be distinguished from the potential 0 by scattering rxpri-  
mea:~! No ruample, we think, better demonstrates the surprisina results that the physicist can reach in a study of 
qutssion 2. 

Formal Methods 

The inverse scattering problem at futed IZ in quantum mechanics has given rise to a large number of studies 
from which some methods have emerged that have a large domain of applicability. The Josr and Kohn [I9621 
method, for instance, in which the transition matrix is expanded in powers of the interaction, has been used as well 
in electromagnetic scattering [hsser ,  19711. The method of Hylleruus (19481 . aithough it yields only one soiu- 
tion of an underdetermined problem, has recently gained some favor among chemical physicists. Howeyer, no 
method has been so generally applicable or given rise, by analogy, to so many other methods, as the Gelfand-Le~~itan 
method. 

There are two aspects to the Geifand-~evitan method. The first is its relation with the spectral problem for 
differential operators; the second is the "algebraic" structure of the method itself. The first one expresses the 
mathematical contents of the method,and the second expresses the constructive ~lature of the method for the study of 
inverse prob1,cms. We briefly consider the first aspect in the next two sections. referring the reader to the or~g~nal 
paper of Celfand und Levitan [1951] and the excellent review paper of Fddeev 119631. As for the second aspect, 
it is interesting to draw the scheme of the method because it works for so many generalizations and analogous 
methods. 

We are interested in the construction of the potential V(r) from the phase shift of the regulr: solution of 

where 

and the normalization of @ y(k.r) is chosen in such a way that @ y(k,r) - r as r g a s  to zero. The asymptotic 
behavior of #V(k,r) is denoted by 

The function 6(k) is the "experimental result." Now. the key of the ~efimd-&tan equation is a function 
KO v(r, r'), referred to vuiourly u the " t ruufom~tion kernel" or the "generaked translation operator," which 
yields reudily both the potential - 



ar.d the wave function8 

t $  = o l  - & r ~ [ ( r . ~ ) ~ o ( k . ~ ) d ~  (36) 

from the wave functions t$o corresponding to the potential zero (i.e. k-' sin kr). This kernel ~ [ ( r , p )  IS a e~ lu-  
tion of the partial differential equation 

(37) 

with the boundary conditions (35) and 

... , 

V v To construct KO (r,rfj, an auxiliary function fo (r,r') is introduced, which is a solution of the partial 
',.?'. 
a:*( ' ; @ 1 differstid equation 
. a > .  . :.it 

f,Y(r.i) - o fr(r.0) = f,Y(0.r1) - 0 

and which ir related tc ~ f ( r , r ' )  by the (~ehnd-Levitan) integnl equation 

The logic of this procedure an conveniently be reprerented by a tnu\gulrr diagram [&&?tier, 19681 : 
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. .  . j kernel #ids e-pk of colutioa of th -I Eq. (32). *Llsli p. be exactly dcuhtd if f, p"ulm (r.r ) is 
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conveniently chosen. k an ex;unplc, if f[(r,i) L thc product cl sinh (kp) rinh(kirP), we obtain a so- 
called "Bargmann potential" [dWgmmm, 19491. 

The second way of using the above scheme is to relate the experimental results to the "auxiliary function," 
obtaining a solution of the inverse problem. In the invew r;uantum scattering problem tit 13 = 0, where the above 
procedure exactly applies, this i s  done by relating f:(r,r1) to I f(k)i by a spectral expansion and relating d (k) to 
I f(k)l by a dispersion relation (discussed in a later section). 

The logic of the machinery describe-ri above applies to a large number of inverse methods. Moreover, the 
analogies are @nerdy not restricted to the general scheme but also imply analogous partial tlificrential equatipns 
and intelpol equations. Let us sketch rapidly, by order of increasing complicatioe, these exte~tsicne zf the Gelfand. 
Zevitan formalism. 

Replacing Do(r) by Do@) - Q(Q + I )  r* readily yields the formalism for any P . PrrT-r~rig 0 by Vo , 
the free-wave functions by the V .  - perturbed wave functions, and V by If-  Vo readil. we perturbed 
formalism. Replacing the wave functions by the Jost solutions and d the boundary con : the origin by 
asymptotic conditions at + w we obtain the s o d e d  "Marchenko formalism" [Marchenko ' Agmi~ovich and 
Mmhenko, 1963; and the quoted references]. Both the ~ekand-levitan and the Marchenku . ~~~ua l i srn  can be 
extended by using vectors in place of the wave functions, yielding generalizations of the procedure to coupled equa- 
tions [Newton and Jost, 1955; Knin, 19561, to the mttering of spin 112 particles by a tensor force [Newton. 1955; 
Agmovich und M m k n k o ,  19581, and to coupled channels [Ox, 19621. 

To study the inverse scattering problem at fured E, in which the "experimental result" is the set of the phase 
shifts 6~ at the given entry, it is again possible to use the formalism quoted above, with the following replacements: 

D(r) 4 Do (r) - ? V (r) 

k2 + - Q(IZ + 1) 

40&3 + *JL.~) = ( -  rrta JQt112 I 
Monover, tb Cielkmd-L&wr integral Eq. (40) md the p r ~ t i n g  formuli in Eq. (36) are replaced by the R e w -  

N-ton integral eqution 

and the #merating formula 





Problems Exactly Reducible to an Integral Equation 

Some invene problems can be exactly reduced to an integral equation. The fundamental questions 1 through 
6 are then studied with ng3rd to 'Ar integral equation. If this equation is linear, a p a t  wealth of results 2 avaiiable 
in the Literature, and all the question.: can easily be studied. Thk does not mean that the studies arc always pleaunt. 
As we haw seen, Fre&.olm equaton of the first kind, which is often encountered, necessitates several assump 
tions to urswer ques%or 1 and makes the study of question 5 difficult. However, a much more unpleasant case is 
the nonlinear equation encountered in the construction of the phase shifts from the cross sections [Newton. 1968; 
M%. 19691 ; in this problem, whose solutions were reviewed by Newton in Chapter 5, the only way of proving 
the existence of solutions is to w fwd-point theorems. The Banach theorem, which has the remarkable character- 
istic of giving a corrcmtctive method of solution, works when the cross sectioc satisfies certain bounds, yielding one. 
and only one, solution. It is possible to increase slightly the domain of existence and uniqueness. and the domain in 
which the existence cf the solution is guaranteed, by using the Leray-Schauder theorern. Unfortunately, even the 
largest do- i- not very useful for applications. 

Stroq theorems of analysis have been used in certain inverse problems io give answers to questions 1 or 2 but 
are generally not very efficient in giving .3nstnrctive methods [see. for example, Mireles, 1965; and Hunter and 
Bores. 19701 . 

Research of Condensed Properties 

Usually, in invene problems, the construction of the dynamical functions from the experimental results is quite 
complicated. Therefore, it is interesting tc iook for properties of the dynamicid ;unctions that can be re~dily derived 
from the experimental resdts. An example of these properties is given by the following exact relationship between 
the due of the potential at the origin, the scattering phase shift, known as a function of the momentum k , 2nd ?he 
(negative) bound-state energies: 

8 d 
Y ( 0 )  -; lo [*TI(*\] kdk - I ZE,, 

n 

' h i s  fonnula was &?:lined by Newton I19SO: through variational mtih~ds. Extensions of the result to the deriva- 
tives of ?he potential at the origin haw been given by Foddeeu [1957], B u s h  ond Faddeeu [1960], Percivul [1962], 
R o h  [' 41, Bdccv [1967], C$fogm ond Dedrrfpais [I9681 ,3113 in the relativistic clrse. Degusperis [I9701 . 
These results nnre reviewed b) Caldgero in Chapter 5. 

MFORMATIVE SOLUTIONS 

As noted, the central problem in the previous sectiol~ was the construction of the dynar~iics. Here the central 
problpm is the determination of the amount of informabon contained in the experimental results, which can be 
p~nued  by three types cf investigrtion. The first apptoarh, the informative formulation of the problem, which 
appltes to probkrns which are too intricate to be solved, consists of; diiect a?pmisal of the spreading of the Inverses 
of the functicnal hi . The second consists of completely solving the problem in a priori welldefmd mathematical 
classes, yielding what we call "a complete sduiion" of the inverse problem. It is then possible to perform the third 
way of investigaticn- $.ha? is. appraisal of the dig;. .ers of the subsets of equivalent potmtials in C. 



Informative Formuiations 

The best example of these formulations is the Backus and Gilbert (19681 method for the inverse problems in 
geophysics. It is assumed that the class C of all the possible dynamics (here, the earth models), is a linear-normed 
space (here, the continuous functions of r , with values in R,), and one defines each way of measurement by a 
mapping Mi of C into E;  Mi is called a "grew earth functional." A finite collection of mappings Mi defines a 
set of acceptable dynamics. The authors assume h a t  the functionals Mi are differentiable and replace them, 
locally. by their differential. This leads to the study of linear functionals M i ,  which in a simple case have the form 

where Gi(r) is a known function of r . If the measured value of gi(m) is -yi, the dynainical function m(r) is 
defined by the gener*d moment problem 

Clearly, the problem has an exact solution if it is possible to construct a kernel A (r* r) that is a linear combination 
of the Gi(r) and such that, for any function m(r) in the class of dynamics which are studied, and for any r, . 

If such a function is know!, and is equal to 

the sjstem of Eq. (48) has the solution 

The solutions to the inverse problems, exap t  in very narrow clnsses of dynamical functions, a n  not unique, and it is 
not possible to construct a kemel A(ro,r) satisfying Fq. (49). But is is sotr~~times possible to construct approximate 
kernels A(ro,r), namelj., unimdular linear combinations of the Gi(r) that are in some sense nearly 6 (r - ro). 
More precisely, one selects, throughout the uni~nodular linear combinations of the Gi(r), the cne that is most nearly 
6 (r - ro) (or, in Backus and Gilbert terminology, has the "best 8-ness"). Thus, such a method gives an "average" 
solution of the inverse problem; more important, it gives an appraisal of t t e  deviation from each other of the equiva- 
lent solutions. This appraisal is readily related to the 8-ness of the kernel that can be effectively constructed from the 
knowledge of the functionals Gi(r) and the experimental data. The deviation can be visuahed ir. another way: one 
of its consequences is the existence of a dynrmical function m(r), which averages to z-c, ruer all out small length 
scales, and to the first order represents a possible deviation of any computed dynamical function. If this is the only 
source of the differences among the equivalent dynamics, there will be some smallest length such that all the accept- 
able dynamics have approximately the same average over an interval of length P at radius r ; !? is called the resolv- 
ing kngth at radius r. B a c h  d Gilben [I9701 were also able to determine how the erron in the data affect the 
resolvlrq length of the data. 



Now, the great value of this method clearly lies in it: physically meaningful presentation of the consequences 
of nonuniqueness. In the frame-work of inverse problems in which the functionds are reasonably represenied by 
their differential. it yields a fairly good answer to questions 4 acd 5. 

Earlier we showed how an "inverse" study completed on the differential of a mapping could be extended to the 
mapping itself, by using the Banach method of successive appr~ximations. This extension is valid in a certain open 
ball of the normed space, with a radius related to the norm of the selected inverse mapping. Clearly, if we could find 
a covering of the v~hcle normed space (1 by these open halls. the studies on the differentials would be fully extended. 
However, such a covering cannot be found. Whe~e the distortion is too gre:t, equivalent potentials escape this schrme. 
and only complete solutions (or, in lucky cases, random investigations) are aLle tu detect them. 

Complete Solutions 

Let C be the set of all possible dynamicd iunctions. A complete solution of the inverse problem would be a 
method of solution giving all the equivalent solutions in C . This definition is too strolrg. because it includes very 
unphysical complications, such as solutions that are almost everywhere equal and nevertheless should be considered 
as distinct solutions as defined abcve. Therefore, we use a slightly weaker defi~ition i-! which C is replaced by "a 
mathematically well-defined subchss of C ,  which is dense in C for a reasonable norm and whose definition inside 
C is done a by simple mathematical requirements" (not a poste~iori, to make the problem solvable, as in 

incomplete solutions). Let us &,.card the problems that reduce to a single equation and can be studied by well-known 
methods. The following compk:e methods are available in more complicatcd Inverse problems. 

In the inverse scattering problem at fwed Q,  where the r~el'fand-Levitan formalism applies, it is possible to 
show that f(r, r') has the expandon 

m 

f (r, r') = - d ,  k ( k f  I )  I - ! ] + C) sinh (kjr) sinh (l irf)  
R 

(52) 
j= 1 

where the k j  m ~ e s p o n d  to the bound states (ki = -Ej). This expansioa holds und is unique for any given 
potential of a large class-say the class U -of continuous functions V(x) such that 

is fidte for any r > 0. If the phase shifr, as a function of k und &lle bound-states parameter, is consistently given. 
If  (&)I and f (r, r') can be constructed from which K (r, r') and the potential can be derived. Therefore, the non- 
uniqueness in the inverse problem [where 6 (k) only is known] comes from the bound-state arbitrariness. 

In the Marchenko fo rm+m,  the re!atior. betv~wn the auxiliary function f (r. r') and the ex;arimental results 
is still simpler than in the Gelfand-Levitan formalism; f(r, r') is equal to a function of (r + r'), say F f r  + r'), which -. -- has the expansion 



where S(k) is the (experimentally measurable) scattering function (S(k) = exp [ 2 i 6 ( k ) ] ) ,  and the X .  and S, 
refer to bound &ales. Again, this expansion exists and is unique for m y  potential in U . Clearly, the irl&:henko 
method is simpler to apply to the inverse problem at fixed P than tielland-~evitan's. This improvement I!, cer- 
tainly related to the fact 1' , t  :he Marchenko approach reproduces more faithfully the physical path of the infor- 
mation. A further conseqcence is h i  the Marchenko method has applicitions in s larger area of scattering 
problems, such as :he transmission-line inverse problems. 

Each unique expansion of a function f(r, r') has its origin in the spectnl analysis of the boundary-value problem 
consisting of the (differential) rave equation and the boundary conditions required tor its solution. If the dynamical 
functions belong to a suitably defined chss, this boundary-value problem has, in the energy plane, a continuous spec- 
trum coinciding with the entire positive real axis (E > 0), and, possibly, a finite number of non-positive eigenvalws. 
The corresponding eigcnfunctions are a total subset in the space of functions f(r, r? corresponding to the "well- 
behaved" class of potenuals. 

The spectral andysis has been applied by Locfl'ei (19681 to the inverse quantum scattering problem at fixed 
energy. He was able to prove that f(r. r') has a unique spectd  expansio6 and that this expansion can be related to 
properties of the dynamical interpolation of the Jost function. Unfortunately, the Jost function is not related to the 
phase shifts in as direct a way as in the inverse problem at faed P,  and no constructive methd can be obtained in 
this way. However, this has given partial answers to questions 1 m d  2. 

The complete method given by Sobatirr (13721 to the inverse scattering problem at fixed energy follows from 
a Fourier transform prcprt;. of f(r. r'). It can be shown [Sohtier, 19701, for a subclass E of u that is not much 
narrower than U . that f(r, r') be written as 

(w*T' f(r,r') = 4 Qim j m r ; - l  sin w u F(u)du 
0 

(54) 

where 

w = [(r  - r'f + 4w'u2] 

I Fl(u) for u 6 1 
F(u) = 

F2(u) for u < I 

where u F, (u) is a continuous function and Fit.) belongs to L 2(1 ,-). "1- important point is that F2(u), 
car' be chosen (almost) arbitra~dy. Then the part of f(r, r'), c ~ ~ r e ~ p o n d i i g  to Fl(u j, say fhr, r'), can be expanded in a 
double kssel  series 

where the c; are related to F,(u) and, most important, can be obtained by mnl nrtrix hrvenionr from the L p  
once F,(u) has been chosen. In that work, the author did not we the --Newton formalism but m asymptotic 
form of this formxlitm, obtained by keeping only the asymptotic part of the o p m t o n  [Sohofict. 19791. Such a 
formalism has !he advantrge of avoiding as much u poEdbk the &perdon of information in complicated functions 
of several variabler. It enabled the author to put the problem in the form of a p r r l L e d  moment probkm for a 



function bijeetively related to the dynamical function, the so called "scattering structure" function. Somewhat 
analogous (but less useful) results can be obtained for the inverse problem at fixed P using the Krein's method, 
and can probably be obtained in most scattering problems. 

Approximation theory- Any complete method in which algorithms yield the equivalent solutions can 
theoretically be used to study the "approrimstion" qestion 4. However. from a practical point of view. G n  

approximation theory is most easily constructed if it is possible to associate to the dynamical function a function 
of a well-known space, such as L1(O,w), in which approximation theories are well known. Tlus is easy in the com- 
plete method given by Sobatier 119711 , because of the properties of F2(u). I t  is possible to derlve the diameter of the 
set of equivalent potentials characterized by given bounds 01: the derivat~ves, and to predict that for J static poten!idl 
this diameter gaes to zerc 7s j: -- 00 and is gen2rally snraller if the bounds on tke denvst~ves are smz1:er. Ttiese rest.:'- 
have been checked by numericru computations (Scrbalret &., Qttjten Van Phu. 19711. In the inverse problem at 
fixed P. Krein's method has been used by Melnikov (1961 j to study approximatt .r.ethods. 

Wd;~nt~,res of the complete methods - Clearly, the complete m:thods, when the\. .Ire constrilctive, give 
ac,swsr: to questions 1 through 5. The continuity of algorithms for the construction ot the equivalent potentials can 
be checked to give answers to question 6. Is it possible to conclude [hat the complete methods are perfect? Unfor- 
tunztdly, they have two defects: First, they are very difficult to abtain, except in relatively simple cases; and second, 
they are complicated. However, these two properties may be the most constant characteristics cf Inverse problems. 

MAIMEM ATICAL GENERALlZATlONS 

inverse methods involve many mthi.maticnl tools, most of whch are beyond the average level of mathe- 
matical tools in physics. Therefore it is not surprising that an important body of mathematical literature on inverse 
problerrs has developed. Moreover, physical Inverse problems have suggested the studv of many math! natical in- 
verse problems. After all, the problems o i  construction of a function of certain classes such as harmonic functions, 
or holomorphic functions, frorn its values on a boundary are in a certain sense inverse problems. If we limit our point 
to inverse problems readily originating from physics, it is worth mentioning the studies made to clar~fy or formalize 
numerical methods or improperly posed problems (see, for example, Luvrentiev, 19673, However, by far the most 
numerous mathematical studies connected with inverse problems have been those of inverse spectral problems (con- 
struction of m operator from a spectral function) and the theory of generalized translation operators. These subjects 
have been extensively studkd by Russian mathematicians, in particular, Gelfand, Levitan, Marchenko, Krein, 
Agracovich, Fadccev, and Berezanskii, whose works have been cited mcly times (see also references to Naimark, 
Ljance, Gorbacuk, and Kac). The research of general properties of Sturnl-louville problems, has been of interest in 
inathematics since the 193C's. Many general results [7Itchmarsh, 19401 are of interest in the physical inverse prob- 
lems. More particuLr results h v e  been devised for the inverse problem in quantum mechanics [see, for example, 
Borg, 1947; Levinson, 1949ybl. Other results could easily be used for physically intere-ting generaliitions [Chm, 
1955; medmrm, 19571. 

All these mathematical studies have the o,e,randing characteristic cf being ngorous: The class in which the 
solution is sought is correctly dcfure~, integrals and series that are used converge, and except for some casual snd 
trivial errors without impcrtant implications, the results can be taken for granted. Unfortunately, t h s  is not always 
true in physical papers. Therefore, it is very important t c  enhance and increase the curiosity of mathematicians 
relative to thz physical inverse prablems. On the other hand, it also is true that matnrmaticians tend to study the 
simplest inverse problems with the weakest assumptions, instead of giving solutions of more difticdlt problems with 
stroiigcr assumption:. Nevertheless, , easy to see that among inverse prob:ems, the ones which have awakened 
the interest of mathematicians an now the best known. Are they well known because they have been studied by 
nathcmatic ians, or are they studied by mathematickes harue they are easy to understmd? 



Or; 
!& 

CONCLUSION 

The direction of the evolution of inverse problems is determined by a qualitative evolution of t!!e information 
sought. &ysicists fmt try to obtaic a solution of the problem, whatever it may be, either exact or approximate; 
for this purpose, approximate r&thods and numerid methods are the best tool. They soon discover that the domi- 
nate feature of the inverse poblem is the lack of uniqueness of solutions, and it becomes necessary to determine 
whether this feature is due merely to experimental uncertainties (well-posed problem) or to the very structure of the 
problem jimproperlp posed problem). In any case, the problem moves toward the information questions. Roughly 
speaking, the physicist goes from 

"Lie= are the experimental results. Give a dyna.nical function to fit them." to "Here are the experimental 
resu!is. What amount of information do they contain?" 

Apart fro,a this general trend, the inverse problems exhibit rr ;* features in common, the origin of which can 
easily be ascertained. The Abel's integral equation is clearly a subproduct of a turning point in a classical trajectory. 
The perturbation method, which is a very general tool in functional analysis, produces, to the first order, liner 
functionals. The integral form of such a function being of n large generality in analysis, Fredholm iategral equations 
come In a natural way. And the ~el?and-~evitan and derived methods can be related to properties of self-adjoint 
operators in scattering problems. 

For an interdisciplinary working program on inverse problems, we think that these three tools-chsical method:, 
inversi~n of !inearfunctio~mls, and spec& merhodr-should be three chapters. A fourth one would deal with the 
numerical mer;tods of i&ntification, with optim'zingpmgrams. A fifth one, perhaps, would deal with statistical 
numerical methods. In all these studies, the six fundamental questions prexnted earlier must be studied and answered. 

Now there is a further point which may be, in thc ruture, of fundamental interest. In our opinion, inverse- 
problem studies should be used not only to explain experiments but also to plan them. For a given model, inverse 
methods can be used in designing experiments in a way that more information can be extracted from fewer experi- 
mnts. When this is done. the studies of inverse problems will k the most important tool in scientific research. 

During the Fall 1970, the author was invited to give a coum on "Inverse Problems m Physics" in the Indiana 
University Phy9c.s Department. This was crrt-ahly the best preparation to the pre3ent hcture. The author is very 
grateful to Professor R. G. Newton for giving him this opportunity, and for scverd steresting discussions. He is also 
indebted to the students attending that c o w  for useful remarks. 



DISCUSSION 

S/cm.lys: \{hat kind of bias are IVI? putting in when we restrict the class of potentials? It is nLt clear whether the 
Backus-Gilbert method, which appears to remove some of that bias or formalize the procei'ure, is the best. 
Whatever procedure is used, there is always the question of somehow smoothing the informvtion. We either 
restrict the class of potentials which we are trying to construct or we smooth the data we obt.dn immed~aiely 
and proceed analytically. This restriction must occur, and it is not obvious which end to put it in, at the data 
end 6-r class of potential end. 

5hbatier: In any case you have to put a yriori cvnsiraints on the class of dyi~smical functions you are looking for. 
If ycu know what constraints you are making you are then OK. 

IJtlidentified speaker: There is one aspect deserving more emphasis, which is illustrated by the Backus-Gilbert 
procedure. We should concentrate on how much information is contained it! the data supplied by the physi. 
cist. These con ititute measured values, includixig errors contained, in lighl of what we know a priori about 
dynamical variables. Then we should determine what this implies about the dynamical variables. The impor- 
tant question is, how much work do we have to perform to extract that information? That subject is in its 
infancy. The astonishing thing about Backus-Gilbert is that they get throuzh with a feasible amount of 
computation. 

Sabatier: I agree. 

Parker In the situation where y c 7 ~  have your complet' solution to the quantum mechanical scattering problem 
how do you describe the content of the physica! me.asuiements:' 

Sabotier: l3 is  deserves much study. Your question is the problem of stability. If the inverse mappings are con- 
tinuous, and if they are differentiable, then you can as.;ociate to a ball in the s,\ace of experiment results, a bal! 
in the space of dynamical functions. Then, if you take experimental results with only 15 points, you in fact 
know more than these IS points. In the Gelkand-~evitan method you know 15 points. But from the a priori 
constraints you have on the potential, you can put inequalities on all the other values you don't know. In this 
case, then, you also have an infinite set. You have to put hounds on all :he things yoir dorr't know anu' on the 
experimental errors. 

Culo,?eru: At what p a n t  one should smooth t!!e results is still the question. One always smooths experimental 
b t a .  One must do it sensibly staring errors. 

Pa?: In the matter of cost of producing data, snd the aims set dow.1 in the whole field of geoscience, these 
measurements are extremely expenwe. 1 would l i e  to add another goal: We not only want the physical 
re1i:tionships and the infc<rmation conterr, but also we would like to have a uniqutg one-to-one ~orrespond- 
enctl bttween tlie physical parameters and the inverted parameter. 
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ADDITIONAL COMMENTS CONCERNING JNVERSlON TECHNlQUES 

J .  Shmoys 

PoiyiL<?.?ic Institute of Brooklyn, Long island Gradhate Center. 
Fanningdale, New York 1 1 735 

ABSTRACT 

The chronolwcal development of multidimensional inversion techniques 1s reviewer! briefly. Some current 
work in t h s  area is described. 

As we have seen, the one-dirrtensional in~erse problem ius received a great Gev of attentton cver the past 65 
years. The !iterat~re is tremendous and the effort has extended over a great many areas of application as well as the 
basis mathematic procedures involved. By comparison the extension to problems in more than one dimension has 
received relatively little atteniion. m e  history of the multidimensional inverse pr8,blem differs cocsiderably from 
that of the one-dimensional one. In the one-dime~siond problem. "cbssical ' methods came first. varibus nurtler:cal 
and modeling procedures were being developed sirriultaneously with perturbation methods and other appro:iim.tte 
procedures for the inverse "uave" problem; finally, exact methods for the inversl,n of the wave problem were 
devised. 

The iaultidimensiona! inverse problem developed in reverse order. Exact ir~version n-lethods have been kncwn 
for dmost 20 years [Moses, 1956!. Classical methods uslng -lanation of prameiero or perturbations have been used 
in recent years, but relatively sparsely [Coin rt d., 1966; dross and Rnuglir!, 19711. There is as yet no systematic 
procedure for classical inversion of a multidimensional scattering problem. One might ask. why bother with classical 
methods if wave methods are available? First, the available exact wave methods appear to depend on Born-type 
expansions and may therefore converge slowly when the phase shifts are large and strongly depndect on frequency 
and d~rection of incidence due to large extent of the unknown medium. Second, classical formulation geners!!y 
results in a simpler probkm; this, at least is the case in the one-dimensional inverse problqn. The latter consideration 
may be rephrased to siy that the classical problem requires a different type of data, a type that is sometimes easier to 
obtain experimentally. For example, the time delay of a wave packet may be easier to measure than the phase shift 
of the carrier. 

In their impo~tant paper, l w t a  und Nagata (19701 present a perturbation treatment of the eikonal equation. 
The resulting system of equations, each equation containing terms involving the solutions of all the preceding equa- 
tions, can be solved. Unfortunately, rather than expand each perturbation in a complete set of functions. they 
assume a finite series, and the coefficients are obtained from a finite set of observations. Tile method can probably 
be carried further, and ~onditioits on the existence of solutions knd convergence of the series should be established. 

bmti~ et ul. [I9701 have provided a fairly systematic presentation of multidimensional inverse problems. 
The stepping stone for their monograph is the determination of a f~nct ion of n varizbles from the values of its 
mean over a set surfacs. The surfaces constitute an n-parameter family, and the mean must be known as a function 
of all the parameters. This basic inversion problem in integral geometry is treated carefully, with conditions estab- 
l i k d  for the unknown function as well as for the set of surfaces. Various inverse problems of partial differential 
equations are reduced to this basic problem of integral geometry. In all the problems treated, the spatial domain of 
!he partial differential equation is the Mf space, and the data available are assumed to be the response to an impulse 
source h a t e d  at a point on the boundary as observed at another point on the boundary. 



bmtieu et oL deal with the Klein-Cordon type equation, with variable coefficients. giving results that would 
be applicable directly to plasma diagnostics. The unknown coefficient function is *en to be a perturbation of a 
constant. This pertubation can be calculated from the response as a function of the coordinates of the source and 
observation points. 

In dealiq with the non,dispersive saivr wave equation with variable refractive index is delt with, Lovrentier et 
d. immdiately restrict the information required to the classical variable, time of arrival of the wave front. Agam 
the problem is considered as a perturbation problem, this time of a one-dimensional index variation which is assumed 
known. The time delay as a function of %cure and observation point locations can be inverted to yield the perturba- 
tion in refractive index. Other applications of this approach are given. 

Clwly, while the multidimensional invent ptoblem is f d y  receiving some attention, we are not yet at the 
end of the road. The utihatio~l of temporal response to an impulse both in the multidimensional as well as in the 
one-dimensional ~ l f r :  has interesting possibilities. Perturbation procedures might be useful if they can be shown to 
be sufticiently rapidly convergent for nasonabk amplitudes of the prturbation. 
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