
Application of Conservative

Finite-Difference Methods to Advection Problems

by

Behrooz Fattahi

Submitted as Partial Fulfillment of

the Requirement of the Degree of

MASTER OF ENGINEERING

Major Subject: Aerospace Engineering

CASE FIL
COPY

Iowa State University
Of Science and Technology

Ames, Iowa

1971



11

TABLE OF CONTENTS

Pago

INTRODUCTION 1

PROBLEM DEFINITION 4

NUMERICAL TECHNIQUES 6

Brailovskaya Method 6

Lax-Wendroff Method 8

MacCormack Method 9

Rusanov Method 11

Kutier-Warming Method 13

SAMPLE PROBLEM 15

RESULTS AND CONCLUSION 17

REFERENCES 40

ACKNOWLEDGMENTS 41



INTRODUCTION

In the last decade, with the advent of high speed com-

puters, numerical calculations using finite-differencing

techniques applied to partial differential equations has

been of great interest to gas dynamicists and meteorologists.

This has been brought about by the accuracy, capacity and

speed that electronic computers offer in the solution of the

complex partial differential equations describing the motion

of fluids.

Finite-difference equations may be constructed and used

in various ways depending on accuracy, stability and import-

ant physical considerations, e.g., conservation laws. A

"conservation law form" of a system of differential equations

may take the form

^ w 4. ̂  F - « '" <^ E + *- F -

where F and E are conservative variables. Another form of

equation (1) may also be considered. This is the "advective

form" of equation (1) which is

^L. E + [R] |_ F, = 0 • (2)

where F, and E are vectors and R is a matrix.



In development and use of finite-differencing techniques,

meteorologists have favored the advective form of the partial

differential equations. This is partly due to the form of

the advection equations which are encountered in meteorological

studies. Molenkamp (9) and Crowley (4) have extensively ap-

plied advective differencing methods to meteorological model

problems and have examined the results. However, they have

not been able to obtain accurate solutions to the problems

considered, except when relatively complicated and time-con-

suming fourth-order accurate techniques were employed. On

the other hand, gas dynamicists have particularly been

interested in the application of differencing techniques to

"conservative law form" of partial differential equations.

Kutler (5) and Anderson and Vogel (1) have successfully

applied conservative techniques to sonic-edged, conical,

wing-body combinations and flow about a rectangular wing

moving supersonically.

It is the purpose of this research to investigate the

possibility of application of the most recent conservative

and widely applied numerical techniques in gas dynamics to

problems encountered in meteorological computations.

Solutions of the advection equation are obtained using con-

servative differencing methods common to gas dynamics.

These results are. compared to those obtained by Molenkamp,

who differenced the advection equation directly. The



comparison shows that better results are obtained where

conservative form of governing equation is used. This is

in agreement with the results obtained by Crowley (4). In

addition, better results are obtained with lower order con-

servative methods as compared with higher order differencing

applied to the advection equation.



PROBLEM DEFINITION

In a two-dimensional rectangular coordinate system, the

differential advection equation is

3A . .. 3A , ... 3A ^ Q (3)

where A is the quantity being advected. Velocity components

u and w are respectively in the x and z directions and t is

time. If a steady velocity field is chosen then velocity

components are no longer functions of time. The above

equation becomes linear and an analytical solution is then

possible. Considering the motion of the fluid to be a rotation

with constant angular velocity, n, an equivalent form of

equation (3) in cylindrical coordinates becomes

0A . n

Tt + n

when 9 is the angular coordinate and radial velocity is zero.

Equation (4) is the wave equation and its analytical solution

is found to be

A(r,8,t) = Ao(r,9-nt) (5)

where r is the radial distance from the axis of rotation and

Ao is the initially given distribution of A at time zero.

Equation (5) shows that the solution of the wave equation (4)

is an angular displacement of the initial distribution Ao.



A conservative form of equation (3) may be obtained con-

sidering an incompressible flow. Then the continuity equa-

tion is

V.q" =0 (6)

or

multiplying each side by A

= 0 (8)

Now add equation (8) to equation (3), or

3A , 3A , , A ^_ _
U + W + A+ A 37

which may be written in the following form

(AU) + (AW) =

This is the conservative form of equation (3). The differ-

encing techniques that are described in the next section are

applied to the general form of this equation.



NUMERICAL TECHNIQUES

In the following section those differencing methods con-

sidered in the present paper are explained. The form of each

equation is given when applied to the general conservative

hyperbolic partial differential equation in two dimensions.

H+1 + If • ° «»>
The modified equation for each technique is obtained by apply-

ing these methods to the one-dimensional wave equation

<»>
In addition to the above, the stability criterion for each

technique is given as obtained from the linear stability

analysis.

Brailovskaya Method

The first-order predictor-corrector scheme described

below was devised by I. Y. Brailovskaya (2) based on central

differencing. When Brailovskaya's technique is applied to

equation (11), the result is

=-n+l _ n At , n n
Ej,k ~ Ej,k

At , n n



At

At ,7*11+1 rn+1

The modified partial differential equation (6) for

Brailovskaya's method may be found by applying this scheme

to one-dimensional wave equation (12)

u. + cu = -re cv Ax ut x 2 xx

(14)

where v is the Courant number.

Brailovskaya's technique is easy to program because of

the simplicity of the structure of the scheme and the simil-

arity of the differences in both predictor and corrector.

The latter allows the programmer to define only one set of

boundary conditions for both of the above steps.

This first-order technique is stable under the follow-

ing conditions.

At
max Ix" max Ay (15)

where a is the maximum eigenvalue of the hyperbolic sys-
IU3.X

tern under consideration.

For better accuracy of the computation, the modified

equation above requires the mesh size to be small such that



it decreases the magnitude o± the second-order error.

Brailovskaya's technique is not widely used because of

its low order of accuracy and also because of the predictor-

corrector sequence form whicli increases the computation time

to that of the second order techniques.

Lax-Wendroff Method

A second-order differencing scheme was derived by Lax

and Wendroff (7) for which the stability criterion is defined

by

AJb
max Ax

At
max Ay (16)

where again o is the maximum eigenvalue of the hyperbolicm el A

system under consideration. This technique when applied to

equation (11) yields

' n-fl _ n At ,pn _ n' A

i (At)"
8 AX.Ay

j+ k

,n

n

-Fn-

rn

At . n n

n

' -i-i k- J ''D T'K

n -rn
-i k Gi
D' D

P 1 A "* — f ^
j+l,k-l' j-l,k+l j-l,k-l

n -Fn

(17)



where

and

A«;n1 - (E) E A' [j(Ê k+Ej,k)]

B'" (E) 5

The Lax-Wendroff method applied to the one-dimensional wave

equation forms the following modified partial differential

equation

Ut + cux = - c (1-v)Ax Uxxx + ..... (20)

The form of the above equation confirms the order of accuracy

of the Lax-Wendroff technique. One may note that at a Courant

number equal to unity, the above equation reduces to the exact

wave equation (12) and thus provides an exact solution.

MacCormack Method

MacCormack (8) developed a second-order predictor-

corrector sequence for use in studies involving hypervelocity

impact cratering. When applied to equation (11), it yields
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At ,_n _n . At ,pn _n .
(Gj,k-fl Gj,k)

It is interesting to note that this technique is a prefer-

ential scheme using a forward predictor and backward cor-

rector. The backward predictor and forward corrector version

of MacCormack ' s technique is also examined and results are

reported in this paper. MacCormack 's differencing scheme

has been applied to gas dynamic problems in recent years

and has resulted in accurate solutions comparable to better

second-order methods (1,5).

In this case, the stability bound is again found to be

o At
max Ax a At

max Ay (22)

The following modified partial differential equation is

obtained when MacCormack's technique is applied to equation

(12)

VCUx = -T C A*2 (1-v2) uxxx + (23)

Note again that at Courant number of unity the above equation

reduces to equation (12).
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Rusanov Method

In 1969, Rusanov (10) and Burstein and Mirin (3)

separately developed a third-order accurate scheme which

has been of great interest to gas dynamicists where high-

speed computers are available. This throe-level predictor-

corrector technique provides accurate solutions when applied

to gas dynamic equations. The Rusanov method applied to the

general equation (11) results in

£n +£n +£n
D lf ̂ 1 -i ̂ . 1 If -i \f

/ ̂  » -L I » JL f A. j f r±

+Fn_ ,.Fn pn
1 /At l"pn
7" XTT""" I * _jD Ax

A_t f^n
Ay

n rn n

E (2> - En~

A_t
Ay

(D

(1)

(1)

+F(1)1 .. 1

~G
(i)

~G
(i)

E Atrn

" -i — 1 k -i —'
J *• i * J '

At,.,n

..n

At

n

, n
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3 At ' (2) (-2) ..At, (2) (2)
Gj,k-i

(24)

This technique is stable when

At

and

where

amax Ax

2 4
4v - v $ u> ̂  3.0

at = - 24 y

At
a Aymax J

30

(25)

(26)

(27)

When Rusanov's technique is applied to equation (12), the

following modified partial differential equation results.

CUx = -2T C -4v + v uv xxxx

1 4 Fj * A c Ax [5oj-4-

Again it may be noted that when

15v2+4v4] uxxxxx +... (28)

v = 1.0 a) = 3.0 (29)

an exact solution of wave equation is formed.
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Kutler-Warming Method

The most recent third-order differencing scheme developed

is the modified version of the Rusanov three-level predictor-

corrector sequence developed by Kutler and Warming (11).

When applied to equation (11), the Kutler-Warming technique

yields

E(l) _ £n _ £ At(pn _pn }_2 At(Qn _Qn ^

E(2) = l[En ,+EU)_2> A.t(F(l)_F(l) }_2 AtrG(l)_G(D

£••-•*• t»rx
. * ^ Ci m

At I ~_n
["2Gj , j , k - H j , k - l j ,k-2

- (2) r(2)
8 Ax [ j+l,k j-l,kj 8 Ay[ j,k-H j,k-

30)

The modified equation which results from the application of

this technique to the linear wave equation (12) is

VCUx = - 2TC A x - 4 v + v uC AX I— — 1\J-f-\J I U
XXX

4 r 2 4l u +
c Ax 5u-4-15v +4v xxxxx * ' * *
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This technique is modified so that results comparable

with the Rusanov scheme are obtained in less computation

time. Similarity of the results come from the fact that

their modified equations are similar, and, in fact, identical

up to the fourth-order. A decrease in computation time is

the direct result of simpler equations and less computation

in all three levels due to elimination of intermediate grid

point calculations. Note again when

v = 1.0 = 3.0 (32)

the modified equation reduces to equation (12). The usual

stability requirement is

max Ax <1 At
max Ay (33)

and

2 4
4v - v < CD < 3.0 (34)
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SAMPLE PROBLEM

An initially specified disturbance is considered in

rotation about an axis normal to the XZ-plane or the plane

of grid points. The angular velocity £2 is taken to be

constant for which the stream function is defined as

(35)

where 1

(36)r' = [(x-x-)2 + (z-z')2j

and y." and z' are the coordinates of the intersection point

of the axis of rotation and the grid plane.

An incompressible flow is considered where the govern-

ing equation of the fluid flow is

9A a(Au) 9(Aw) _
3t * "Tx~~~ + ~T5 ° (37)

Velocity components u and w are determined from the follow-

ing equations

'dty 3ip
u = - a¥ ' w = 37 • {38)

The initial distribution of A is chosen as

1 - -rr r" for r"< 4A
A0(x,z) = {

0 for r"^ 4A (39)
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where A is the grid interval and

r" = [(x-x")2 + (z-z")2J? (40)

where x" and z" are the coordinates of the point of the maxi-

mum value of A.

It may be noted that the prescribed initial distribution

above describes a cone with its base on the XZ-plane. The

peak is placed such that the disturbance is away from the

axis of rotation and does not hit the boundaries of the grid

plane in the course of its rotation about (x",z'). Also,

the values of A are forced to be equal to zero along the

boundaries during the sequence of numerical integration.

The following constants were used in all the calcula-

tions except where otherwise specified.

n = number of time iterations =40

ft = angular velocity = -0.001 radian/second

At = time interval = 30 seconds

Ax = Az = A = 1.0

x' = 12A

z" = 12A

x" = ISA

z" = 12A

All of the computations were performed on an IBM 360-65

digital computer at the Iowa State University Computation

Center.
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RESULTS AND CONCLUSION

The numerical techniques described earlier were first

applied to the modified Burger's equation in one-dimension

2
Conservative: -spj- + JJT(J) = 0

Advective: |£ + u|£ =0

An initial distribution of

u(x) = 1.0 for 0 «: x $ 50

u(x) =0.0 for 50 < x ^ 100

was assumed. The results obtained were in complete agree-

ment with Crowley's results indicating that conservative

techniques are to be preferred over advective methods.

Another important conclusion is also derived. Conservative

methods are preferred for problems with continuous and smooth

solutions as shown by Crowley and also in problems involving

discontinuities such as shock waves. In fact, non-conservative

differencing can result in improper wave speed in flows in-

volving discontinuities.

In order to further examine the conservative differenc-

ing techniques described earlier, they were applied to the

sample problem discussed in the last section with governing

equation (37). The relationship of the solution obtained by

difference approximations to the analytic solution may be
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better represented when contour plots of A are examined.

Also, the accuracy of each solution in terms of its general

approximation, phase and radial displacement can be easily

investigated (Figures 1-15). In these figures, the analytical

solutions are represented by broken lines, while the solid

lines are the solutions obtained by differencing techniques.

Table 1 contains a summary of several important features

of the results obtained by Molenkamp, while Table 2 contains

the results of present conservative solutions.

Examining Figures 1, 2 and 3 with results given in

Tables 1 and 2 for the first-order schemes, the superiority

of conservative approximations is clearly shown over advective

solutions. The advantage is more obvious when higher values

of A isolines are considered. Computation time is 30% higher

for Brailovskaya's technique than either Upstream N or

Upstream N+l, but its higher maximum isoline approximation

and lower radial displacement justifies its use. It is to be

noted that the accuracy of these first-order techniques may

be increased somewhat by decreasing the mesh ratio, ~- andAX

-r— . However, first-order techniques are only simple means

of determination of the general behaviour of the solutions

and therefore are not recommended for use in solution of

complicated partial differential equations.

Second-order techniques (Figures 4-9) resulted in

generally better solutions than the first-order methods as
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expected. The quality of the approximations of A isolines,

using MacCormack and Lax-Wendroff conservative schemes are

comparable to those approximations obtained by Molenkamp

using advective Leap-Frog, Arakawa-Euler, and Arakawa-Adams-

Bashforth techniques with conservative angular displacement

error being 16 to 66 percent less than errors involved in

advective solutions.

In general, the MacCormack differencing scheme is a

better method overall than any other second-order advective

or conservative technique considering the general approxima-

tion, computation time, error, and structure of the differ-

encing equations.

Third-order techniques (Figures 10-15) resulted in the

most accurate solutions obtained in this investigation.

The accuracy of Rusanov-Burstein-Mirin technique had been

investigated (1) where accurate solutions were obtained for

gas dynamic model equation, i.e., Burger's Equation. The

Kutler-Warming method is basically a modified form of the

Rusanov technique and, in fact, the similarity of their

modified equations suggests a close agreement of the solutions,

This proved to be true for the problem under consideration in

this report. The approximation obtained by application of

these third-order methods closely follows the circular pat-

tern of the analytical solutions proving their advantage over .

any lower order advective or conservative scheme. Tests
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were made for different combinations of values of y^_ and

At. When the values

Y30 = - TO , At - 60

are used, the Kutler-Warming technique yields the best

solution to the above problem. It is interesting to note

that the above values of y-i0
 anc* At correspond to about

one-seventh of the lower bound for Y_Q prescribed by equation

(34). Anderson and Vogel also found that better results are

obtained when the Y-,O values corresponding to lower bound and

fractions of the lower bound of the stability equation (34)

were used (11). This indicates that linear stability analysis

resulting in equation (34) does not define accurate stability

bounds for all linear and non-linear problems. It should be

noted that Y30 may not assume the value of zero, and there-

fore a limit exists on how small the value of Y-.J is to be301

chosen. This is also shown in Figures 10-15 and Table 2.

The quality of the solution is degraded as Y30 assumes

values lower than ̂  . In general, the Kutler-Warming tech-

nique is preferred over the Rusanov-Burstein-Mirin method

mainly because of the simpler structure of the differencing

equations in all three levels and elimination of intermediate

grid calculations. A direct result of this is a considerable

decrease in computation time. A comparison of the approxima-

tions obtained from the application of the above conservative

third-order schemes with the results of the advective
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Roberts-Weiss method, indicates again, the superiority of

the conservative differencing over advective computation.

Comparable approximations were obtained in both cases with a

ratio of 1.2 to 45 of required computation time in favor of

conservative differencing (Tables 1 and 2).

In general, conservative differencing is to be pre-

ferred over the advective approximation. Numerical experi-

ments by Crowley and those reported in this paper confirm this

fact. An improvement in results is obtained when higher order

differencing techniques are applied. This is shown to be

independent of whether the equation is in conservative or

advective form. Those differencing techniques discussed in

this paper are mainly gas dynamic differencing methods,

but the results of this investigation in comparison with those

by Molenkamp and Crowley indicate that these techniques may

be applied to advection equations as well, resulting in

better accuracy and more economical computation. The Kutler-

Warming version of Rusanov's third-order technique resulted

in the most accurate solutions and along with its short

computation time presents, at the present time, an optimum

differencing method in the solution of meteorological and

gas dynamics equations.
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Analytical solution
Computed solution

At = 30

0.1

0.1

Figure 1. Solution using the Upstream N Method.
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Analytical solution
Computed solution

At = 30

0.1 >

A

Figure 2. Solution using the Brailovskaya Method.
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Analytical solution
Computed solution

At = 60

0.1

Figure 3. Solution using the Brailovskaya Method,
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At = 30

-• Analytical solution
- Computed solution

0.1 -»• ̂-zr*Z —

Figure 4. Solution using the Lax-Wendroff Method,
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Analytical solution
Computed solution

At = 60

0.1

0.1

Figure 5. Solution using the Lax-Wendroff Method.
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Analytical solution
Computed solution

At = 30

0.1

Figure 6. Solution using the MacCormack (forward predictor,
backward corrector) Method.
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Analytical solution
Computed solution

At = 60

0.1

Figure 7. Solution using the MacCormack (forward predictor,
backward corrector) Method.
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Analytical solution
Computed solution

At = 30

Figure 8. Solution using the MacCormack (backward predictor,
forward corrector) Method.
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Analytical solution
Computed solution

At = 60

Figure 9. Solution using the MacCormack (backward predictor,
forward corrector) Method.
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Analytical solution
Computed solution

At = 30

Figure 10. Solution using the Rusanov-Burstein-Mirin Method.
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At = 30

Analytical solution
Computed solution

Figure 11. Solution using the Kutler-Warming Method.
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At = 30

Analytical solution
Computed solution

0.1

Figure 12. Solution using the Kutler-Warming Method,
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At = 30

Analytical solution
Computed solution

0.1

Figure 13. Solution using the Kutler-Warming Method,
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At = 60

Analytical solution
Computed solution

1
TO

0.01

Figure 14. Solution using the Kutler-Warming Method,
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At = 75

Analytical solution
Computed solution

0.1-j

0.1

Figure 15. Solution using the Kutler-Warming Method,
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