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ABSTRACT

This document reports the results of an analysis of the nuclear safety aspects (design
and operational considerations) in the transport of nuclear payloads to and from earth
orbit by the Space Shuttle. Three representative nuclear payloads used in the study
were (1) the Zirconium Hydride Reactor Brayton Power Module, (2) the Large Isotope
Brayton Power System and (3) Small Isotopic Heat Sources which can be a part of an
upper stage or part of a logistics module. Reference data on the Space Shuttle and
Nuclear Payloads are presented in an appendix. Safety oriented design and operational
requirements were identified to integrate the nuclear payloads in the Shuttle mission.
Contingency situations were discussed and operations and design features Were recom-
mended to minimize the nuclear hazards. The study indicates the safety, design and
operational advantages in the use of a '"nuclear payload transfer module'". The trans-
fer module can provide many of the safety related support functions (blast and frag-
mentation protection, environmental control, payload ejection, etc.) minimizing the

direct impact on the Shuttle.
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FOREWORD

The establishment and operation of large manned space facilities in earth orbit would consti-
tute a significant step forward in space. Such long duration programs with orbital stay times
of up to ten years would benefit the earth's populace and the scientific community by provid—'

ing:

1. A flexible tool for scientific research.
2. A permanent base for earth oriented applications.

3. A foundation for the future exploration of our universe.

Specifically, the NASA objectives include earth surveys and scientific disciplines of astron-
omy, bioscience, chemistry, physics and biomedicine, as well as the development of tech-

nology for space and earth applications.

Operational and design requirements, of large manned space vehicles, differ from those of
the Mercury, Gemini, and Apollo programs. Of particular interest are the radiatiqn- sur-
vivability and nuclear safety requirements imposed by nuclear power reactors and isotopes

and the long term interaction with the natural radiation environment.

The General Electric Company under contract to NASA-MSFC (NAS8-26283) has performed

a study entitled “'Space Base Nuclear System Safety“ for the express purposes of addressing
the nuclear considerations involved in manned earth orbital missions. The study addresses
both operational and general earth populace and ecological nuclear safety aspects. The pri-
mary objective is to identify and evaluate the potential and inherent radiological hazards as-

sociated with such missions and recommend approaches for hazard elimination or reduction

of risk.




Work performed utilized the Phase A Space Base designs developed for NASA by North

American Rockwell and McDonnell Douglas as baseline documentation,

The study was sponsored jointly by NASA's Office of Manned Space Flight, Office of Ad-

vanced Research and Technology, and Aerospace Safety Research and Data Institute. It was

performed for NASA's George C. Marshall Space Flight Center under the direction of Mr.

Walter H. Stafford of the Advanced Systems Analysis Office. He was assisted by a joint NASA
and AEC advisory group, chaired by Mr, Herbert Schaefer of NASA's Office of Manned Space

Flight.

The results of the study are presented in seven volumes, the titles of which are listed in

Table A. A cross-reference matrix of the subjects covered in the various volumes is pre-

sented in Table B.

‘Table A. Manned Space Flight Nuclear System Safety Documentation

Volume

Part 1
Part 2

S
Part 1
Part 1A
11
- Partl
Part 2
Part 2A
. Part 3

v
Part 1
Part 2

A%
Part 1
Part 2

VI

VII
Part 1
Part 2

Executive Summary
Space Base Nuclear Safety
Space Shuttle Nuclear Safety

Space Base Preliminary Nuclear Safety Analysis
'~ Nuclear Safety Analysis
Appendix-Alternate Reactor Data (CRD)

Reactor System Preliminary Nuclear Safety Analysis
Reference Design Document (RDD)
Accident Model Document (AMD)
Accident Model Document - Appendix
Nuclear Safety Analysis Document (NSAD)

Space Shuttle Nuclear_ System Transportation
Space Shuttle Nuclear Safety
Terrestrial Nuclear Safety Analysis (C)

Nuclear System Safety Guidelines
Space Base Nuclear Safety .
Space Shuttle/Nuclear Payloads Safety

Space Base Nuclear System Safety Plan

Literature Review
Literature Search and Evaluation

ASRDI Forms

Document No,

725D4201-1-1
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728D4201-2-1A*
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725D4201-3-2
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728D4201-7-1
725D4201-7-2*

*Limited distribution
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This study employs the International system of units and where appropriate the equivalent
English units are specified in brackets, A list of Conversion Factors and a Glossary of

Terms is included in the back of each volume.
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SECTION 1
INTRODUCTION

The Space Shuttle with boost, maneuvering, payload handling, retrieval and reentry capa-

bility is potentially a versatile and reliable transporter of nuclear hardware.

This study, performed under the same contract as the Space Base Nuclear System Safety
Study (Contract NAS 8-26283) investigated the nuclear safety and integration aspects of

transporting nuclear systems to and from a Space Base by the Space Shuttle.
The prime objectives of the study were to:
e Determine the safety related impact of nuclear payloads on the design and

operation of the Shuttle.

o Identify safety related constraints imposed by the Shuttle upon the design and
integration of nuclear payloads.

e Assess nuclear hazards to the earth's populace that result from transportation
of nuclear payloads.

e Establish nuclear safety and integration guidelines and procedural recommenda-
tions for use in the transportation of nuclear payloads with the Shuttle.

Key study ground rules .and scope are listed in Table 1-1.

Both the North American Rockwell (NAR) and the McDonnell Douglas (MDAC) Shuttle con-
cepts were investigated., The nuclear systems ident;'ﬁed as reference payloads were the
isotope-Brayton, Zirconium Hydride (ZrH) reactor-Brayton and Radioisotope Thermo-

electric Generator (RTG) power systems, and other small isotope heat sources.
The Shuttle can be used to transpbrt these nuclear systems from the launch pad to a Space

Base in low earth orbit (typically 500 km, 55o inclination), and dispose of the nuclear sys-

tems at their end of life by return to the earth's surface or injection into high earth orbit.

1-1



Table 1-1. Study Ground Rules and Scope

The

Ground Rules

The reference mission is the Space Base mission supported by the Space
Shuttle as defined by McDonnell Douglas and North American Rockwell for
NASA, MSFC, and MSC respect1ve1y

The Space Shuttle will be used as the transporter in the initial launch and
subsequent replacement and disposal/recovery of the nuclear sources.

The nuclear payloads to be considered will consist of complete or modularized
isotope-Brayton and ZrH reactor-Brayton powerplants in addition to small
isotope sources. The payload configurations and operational capability are
those studied by NAR and MDAC for NASA.

The Space Shuttle baseline is assumed to be capable of handling a paylead of
at least 11.3 t (25 klb) to a 500 km (270 nm), 55° inclined orbit with payload
dimensions of up to 4.6 m (15 ft) diameter and 18.3 m (60 ft) in length.

Dose rate to the Shuttle crew should be minimized. Maximum dose rate to
the crew from nuclear payloads is to be limited to 150 mrem/day (5 cm depth
dose),

Study Scope
study includes the following:

The total Space Shuttle system/Space Base program nuclear safety aspects
including crew/personnel safety, mission success, and the impact on -

supporting facilities.

SN TR

Parametric evaluations appropriate for effective application to future missions.

The nuclear system safety aspects of the nuclear payload transport missions
for the following operations: :

Preparation and transportation at Launch Site.

Launch and ascent to the Space Base,

-Rendezvous and docking at the Space Base,.

In-orbit transfer (loading-unloading).

End of Mission return to earth including reentry and landing.
End of Mission disposal into high orbit.

Emergency disposal.

Abort/contingency modes.

@

Means for effecting normal and emergency in-flight maintenance and repair of
nuclear systems with assistance by the Space Shuttle.




For purposes of this study, it was assumed that the Shuttie could also be used to transport
nuclear sources or spacecraft into low earth orbit, where the payload can be checked out
and subsequently deployed from the cargo bay, and then placed in a high earth orbit or
planetary trajectory.

The safety related analysis of the integration and operational aspects of the transport of the:
nuclear payloads by the Space Shuttle are contained in this document (Volume IV, Part 1).
The terrestrial nuclear safety aspects of these missions are contained in Volume v, Part 2.
The related guidelines and requirements are detailed under separate document Volume V,

Part 2.

1~3/4




SECTION 2
SUMMARY

2.1 GENERAL

This study has investigated the nuclear safety integration and operational aspects of trans-
porting nuclear payloade to and from earth orbit by the Space Shuttle. The representative
payloads considered were (1) the Zirconium Hydride (ZrH) reactor-Brayton power module,

(2) the isotope-Brayton power module, and (3) small isotope power systems or heat sources.

2.2 REFERENCE DESIGN SUMMARY

This section contains brief descriptive data concerning the Space Shuttle and nuclear payload
configurations utilized in the analysis. Reference should be made to the Appendix in this
volume for detailed descriptions of the Spaee Shuttlevconﬁguration and mission (Appendix A),

Reactor Power Module (Appendix B), and Isotope-Brayton Power Module (Appendix C).

2.2.1 SPACE SHUTTLE

The Space Shuttle launch configuration consists of two separate vehicles, (a) a booster which
provides the initial lift-off thrust, and (b) the Shuttle orbiter which carries the payload into
earth orbit after separating from the booster subsequent to first stage thrust termination.

The reference Space Shuttle systems used in this study are illustrated in Figure 2-1 and are
based on the concepts identiﬁed in the NASA Space Shuttle Phase B studies completed in March,
1971 (References 2-1 and 2-2). The upper drawing s‘hows the North American Rockwell (NAR)
design while the lower drawing depicts that of McDonnell Douglas Corporation (MDAC).

The nuclear payload to be delivered to the Space Base is placed in the Shuttle orbiter's cargo
bay. The maximum allowable payload envelope is the same in both the NAR and MDAC designs -
4.6 m (15 ft) in diameter by 18.3 m (60 ft) long.

Since the nuclear payload is carried inside the Shuttle, the Shuttle configuration rather than
the booster was of most importance in this study. The NAR and MDAC Phase B Shuttle

configurations are shown in Figures 2-2 and 2-3, respectively. In both configurations, the
cargo bay is in close proximity to the primary LH2/ LO2 tankage. This is undesirable from

a nuclear safety standpoint in the event of a Shuttle explosion and fire.

2-1
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Contrasting cargo transfer schemes are used in the two designs. NAR has selected general
purpose manipulator arms to transfer payloads, whereas the MDAC approach is touse a 90

degree rotation scheme to dock the payload to the Space Base.

The NAR Shuttle has two crew locations - the manipulator operator's station and the pilot's
cockpit, respectively. The MDAC Shuttle has only one crew location, the pilot's cockpit,

located 6.1 m forward of the cargo bay.

2.2.2 NUCLEAR PAYLOADS
This study has considered three representative nuclear payloads that may be transported to
and from earth orbit by the Space Shuttle: (1) ZrH reactor-Brayton power module, (2) isotope-

Brayton power module, and (3) small isotope heat sources.

2.2.2.1 ZrH Reactor-Brayton Power Module

The reactor power module identified for the reference Space Base Program is 6.6 m in
diameter and does not fit within the 4.6 m diameter Shuttle cargo bay. Therefore, the Space ..
Station ZrH reactor power module with a Brayton cycle power conversion system was used in
this study because of its compatibility with the Space Shuttle cargo bay dimensional limitations.
The basic reactor (Figure 2-4) is the same as that identified for the Space Base Program

(Reference 2-3), with the following exceptions:

1. Normal operation is at 125 kWt compared to the 330 kWt of the Space Base Program,
resulting in decreased radiator area. (Transport of the Space Base power module
by Space Shuttle might involve a deployable radiator or multiple Shuttle launches).

2. The reactor/shield assembly incorporates less radlatlon shielding resultmg in a
lower mass but increased dose rates around its perimeter.

The reference reactor power system can be packaged in various configurations to maintain
Shuttle compatibility as illustrated in Figure 2-5. One obvious method is to package the
reactor and Brayton power conversion equipment in a single reactor module that does not
exceed the maximum allowable payload dimensions. However, because of the mass involved
with a single reactor-Brayton power module and the low W/ CDA of such a configuration,
o_thef packaging designs appear to be desirable. An alternative scheme (dual reactor module

approach) is to package the reactor/shield assembly, intermediate NaK loop, and NaK-to-gas
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NEUTRON SHIELD
(LiH)

GAMMA SHIELD
(Ta-10W)

NEUTRON SHIELD
(LiH)

o REFERENCE ZrH REACTOR DESIGN
e THERMAL POWER = i25 KW
¢ REACTOR OUTLET TEMPERATURE = 922°K
o COOLANT T =31I%
e SOLID SHIELD
o WEIGHT = 4960KG
o DOSE RATE = 150 MREM/DAY @ 62 METERS

Figure 2-4. Reactor/Shield Assembly

heat exchangers in one module and the Brayton power conversion unit in a second module with
gas line disconnects between the two modules. This allows more flexibility in packaging the
reactor power system, but requires two Shuttle launches. A third packaging approach involves
a separable heat exchanger that can be used in conjunction with either of the first two schemes.
This allows the reactor/shield assembly to be separated from the rest of the power system and
therefore launched and disposed of separately. This approach facilitates the handling operations

and allows for greater flexibility in packaging.

2.2.2,2 Isotope-Brayton Power Module

The isotope-Brayton power system could consist of one of more large isotope heat sources
coupled with several power conversion systems to provide the desired total electrical power
output. For purposes of this study, two 52 kWt heat sources are operated simultaneously to

provide 25 kWe usable power.
Three configurations for the 25 kWe isotope-Brayton power system are depicted in Figure 2-6.

The common nuclear component to be found in each of the three systems is the Isotope Reentry

Vehicle (IRV). The IRV consists of a planar array of plutonium-238 fuel capsules (heat source)
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contained within a reentry body. The "'power boom' module (Reference 2-5) is 14 m (46 ft)
long, 4.3 m (14 ft) in diameter, employs two IRV's, and contains four power conversion units
(two on line, two redundant). In this system, the Xe-He working gas is ducted the length of
the module to provide separation distance between the heat sources and the power conversion
units, thereby attenuating the radiation level at the units and permitting in-flight maintenance.
The Shuttle would transport the IRV's separate from the Ihain ra_.diator aSsembly to allow for

thérmal control of the IRV's.

In the "engine room'" configuration (Reference 2-6), the system is housed in a 10 m (33 ft)
diameter cylinder, 4.6 m (15 ft) long, which is launched and compatible with the 10 m diameter
Space Base modules. Three power conversion units are provided: two operating, and one
spare. Thése‘are rail-mounted so that either operating power conversion unit can be replaced
by the spare as required. This system usés two IRV's which can be transported by the Shuttle
either jointly or singularly. . ' A

The''modular" power system (Reference 2-7) is 6.1 m (20 ft) in diameter and 12.8 m (42 ft)
long. Its radiator has been divided into segfnents so that the power conversion unit and
corresponding radiator segment are contained in one structure. The system shown contains
four IRV's and four poWer conversion modules, but it could be configured from 2 to 6 units of
each. Each segment is designed to be Shuttle compatible which permits transport of an IRV,
Aradiator segment and power conversion unit in one laﬁ.nch, or the IRV can be transported

separately.

2.2.2.3 Small Isotope Sources

Two small isotope sources considered representative in future space operations, that might
be transported by the Shuttle are the Multi-Hundred Watt (MHW) Radioisotope Thermoelectric
Generator (RTG) and the Radioisotope for Thermal Energy (RITE) fuel capsule. . The MHW-
RTG is designed to deliver 150 w of electrical power from a heat source loading of 2400 w
thermal of Pu-238. It could be used singly or in multiples to power unmanned vehicles such
as a Grand Tour spacecraft on deep space missions. Design operating temperature of the

MHW capsule is 15330K (23000F). The RITE fuel capsule is intended to provide heat for
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an Environmental Control/Life Support (EC/LS) waste processing system to be used on
Iarge manned spacecraft. The capsule used in this unit is loaded with 420w thermal of

Pu-238 and operates at a temperature of 1033°K (1400°F).

2.3 STUDY SUMMARY AND CONCLUSIONS

A summary of the most significant safety related considerations and associated recommended

guidelines resulting from the study are contained in the followin_g paragraphs.

2.3.1 TRANSPORTATION OF A ZrH REACTOR-BRAYTON POWER MODULE

A ZrH reactor power module presents a relatively low nuclear hazard prior to orbital opera-
_ tions if pre-ﬂight criticalityvtests are limited to low powér levels. . Affer 'operations'in

orbit, the reactor could have a potentially large core fission product inventory, thus in-

creasing the nuclear hazards during retrieval, disposal or récovery operations which would

be performed by the Shuttle.

In addition to a launch into a low earth orbit, the Shuttle has the capability to boost a 13. 6 kg
reactor power module from a 500 km to an 835 km circular disposal orbit which provides an
orbital lifetime of at least 250 years. An alternative to this disposal mode is to return the

reactor to the earth's surface.

Several power module ground handling and orbital transfer techniques were defined. Two
important safety ground rules which should be followed in these operations are (1) maintain
positive handling control at all times including situations where two modules must be.han— .
dled to enact replacement of a spent or failed module, and (2) minimize the Shuttle crew
dose rate (maximum of 150 mrem/day) by maintaining adequate separation distances between .
the crew and radiation source within the cargo bay, allowing timé for reactor fadioactive

decay, and making maximum use of reactor and Shuttle shadow shielding.
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In addition to the nuclear hazards, the NaK in the reactor primary and intermediate coolant
loops can result in hazards due to the exothermic reaction thatoccurs when NaK combines
with oxygen sources. Environmental protection must be provided the power module includ-
ing periods within the Shuttle cargo bay. In-orbit retrieval operations could involve the
placement of a thermally hot reactor power module in the carg'o bay. Thermal control pro- _
visions would then be required. A short waiting period of approximately 2 days after reactor

shutdown could eliminate the need for post-operational thermal control.

Some of the safety related considerations for the Shuttle/reactor mission are summarized

below.

¢ Radiation Protection - No additional radiation protection is required for the crew
with a pre-operational reactor placed in the cargo bay. A similar conclusion can
be made for the post-operational case provided the reactor is placed toward the
rear of the Shuttle cargo bay, not prior to ten days after reactor shutdown. Ad-
verse radiation effects on Shuttle subsystems are not expected, however, inte-
grated doses over many nuclear missions would merit further consideration
(material selection and location of solid state electronics, film, etc.).

o Blast and Fragmentation Protection - The Shuttle presents a severe blast and
fragmentation environment. Little or no additional blast and fragmentation
protection is required of an unoperated reactor, however, the positioning of
the payload away from the Mobile Launcher tower to provide an unobstructed
ejection path, will reduce fragmentation damage. Design for intact impact
of the core in the post-operational case could be required due to the potential
high fission product inventory.

¢ Environmental Protection ~ The cargo bay should be capable of preventing LO
and LH2 vapors from entering. Double containment or an inert cover gas
"blanket' around the power module (particularly around its liquid metal com-
ponents) will reduce liquid metal hazards.

¢ Thermal Control - Temperature transients within the cargo bay could cause NaK
freeze up. Auxiliary heating may be required to resolve this problem. If it
were found necessary to place a reactor power module into the cargo bdy im-
mediately after reactor shutdown, up to 1 kWt cooling could be required to re~
move decay heat. A transfer of this nature should be avoided and a waiting
period of at least 2 days planned.
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¢ Payload System Status and Controls - The receipt of 80 data points and displays
(periodic and continuous monitoring), and sending of 25 control signals are re-
quired of Shuttle systems.

® Electrical Power - A maximum of 1 kw electrical power is required for 2 days,
if decay heat thermal control is necessary. Other electrical requirements should
not exceed 0.5 kw total. Either power from batteries or the Shuttle Electrical
Power System could be considered.

® Attachments and Payload Handling - The power module center of gravity may be
located toward the reactor/shield and away from the primary attach points.-
Additional support may be required to prevent longitudinal buckling. The use of
a cradle type "transfer module' which supports the reactor and in turn is placed
in the cargo bay can significantly reduce Shuttle integration requirements and
increase safety during handling operations. A capability of emergency payload
ejection into a deep ocean area (during launch or end~of-life recovery operations)
could be provided by the "transfer module".

2.3.2 TRANSPORTATION OF AN ISOTOPE-BRAYTON POWER MODULE

Transport of an isotope-Brayton power module presents several different safety considera-
tions than does a reactor, No liquid metal hazard exists with an isotope-Brayton power
module as contrasted with a reactor power module. Coolant loops generally contain rela-
tivély non-hazardous organic fluids. Important differences occur in the Prelaunch Phase
where an isotope heat source presents continuous thermal and radiation hazards. The
isotope heat source must be cooled at all times prior to lift-off. In addition, it is a con-
stant source of neutron radiation with increased gamma radiation occurring as the isotope

decays-reaching a peak at about 18 years. Shielding must be provided accordingly.

For these reasons and due to the relatively passive nature of the power module prior to
operation, the heat source should be installed in the Shuttle orbiter as late as is practicable

in the countdown timeline.

Each of the 130 isotope-Brayton fuel capsules contains approximately 12, 000 curies of
Pu-238 isotope. Rather extensive blast, fragmentation and fireball protection coupled
with a well designed fuel capsule and fuel form are required to prevent release of the fuel

to the environment should an accident occur.
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The principal recovery mode is assumed to be a return to earth by the épace Shuttle. Con-
sideration should be given to an ejection of the heat source out of the cargo bay onto the
continental shelf or into deep ocean areas should an abort occur during ascent or be immi~

nent on landing.

The principal safety related Shuttle intégration considerations for transport of the isotope

heat source are summarized below:

e Radiation Protection - No auxiliary shielding is required for the Shuttle orbiter
crew for normal operations provided the base of the conical heat source is
parallel to the cargo bay and at least 5. 5m from the nearest crew member.

@ Blast and Fragmentation Protection -~ Blast and fragmentation protection must be
provided while in the Shuttle. The most severe problem exists at launch due to the
large amount of propellant. The payload must be provided an unobstructed ejection
path, preferably into an ocean or swamp area, should a launch pad explosion occur.

e Thermal Control - Thermal control of an isotope heat source is required within
the shuttle to maintain acceptable capsule temperatures. Where an entirely pas-
sive system is not feasible, redundant and/or back-up systems must be provided.
The design of the blast and fragmentation shield is intimately involved in thermal
control design. : ' '

® DPayload System Status and Controls - The receipt of a maximum of 62 data points
and display functions (periodic and continuous monitoring), and sending of 32 con-
trol signals are required of Shuttle systems.

e Electrical Power - A maximum of 300w of electrical power is required, and the
total energy requirement will not exceed 23 kw-hr for support of the thermal control
system. This power could be supplied by batteries.

e Attachment and Payload Handling - The use of a supporting cradle "transfer module"
will greatly reduce Shuttle interface requirements and provide possible ejection
capability over the continental shelf or deep ocean areas if diagnostic data during
ascent and landing warrant it. '

- 2,3.3 TRANSPORTATION OF SMALL ISOTOPE SOURCES
The impact on the Space Shuttle and the operational procedures involved with transporting
small isotope heat sources are generally less severe than the impact of transporting an

isotope-Brayton heat source or reactor power module. The radiation hazard when transporting
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a small isotope heat source is a function of the fuel composition, inventory and placément
with respect to the crew. The transport of certain isotobic fuels may require auxiliary -
crew radiation shielding. However, the most common material, Pu-238, shbuld not require
any additional Shuttle shielding. Thermal output will genera’ﬂy be lower than an isotope-
Brayton heat source, but individual packaging restrictions within the cargo bay could
necessitate additional cooling. The blast and fragmentation hazard should be minimized

by positioning the source away from propellant tanks and permitting unobstructed ejection

after a launch pad explosion.

' 2,3.4 OVERALL CONCLUSIONS _
In addition to establishing nuclear safety guidelines and safety-oriented requirements

(Volume V, Part 2) to reduce the risk to the general public and Shuttle crew, several key

conclusions involving the Shuttle transport of nuclear payloads have been identified.

® Safety and handling can be improved and support requirements imposed on the '
Shuttle reduced if a transfer module is used to support the nuclear payload
within the cargo bay of the Shuttle. The transfer module is simply a carriage-
type of assembly in which the nuclear payload is placed prior to being installed
in the Shuttle orbiter. The entire nuclear payload/transfer module assembly
is placed in the Shuttle cargo bay. By using such an assembly, the integration
items required for the transportation of nuclear payloads, such as blast and
fragmentation protection, radiation shielding, thermal control, and electrical
power, can be incorporated into the transfer module rather than being de31gned
into the nuclear payload or the Space Shuttle.

e The nuclear payloads must be designed to fit within the 4.6 m (15 ft) diameter by
18,3 m (60 ft) long Shuttle cargo bay. An additional Shuttle-imposed constraint
limits placement of the payload's center-of-gravity. This constraint is not ex-
pected to restrict most power module configurations anticipated.

® Any nuclear payload to be transported by the Space -Shuttle is subject to the normal
operational Shuttle-induced environments, in addition to various potential accident
environments, During normal operation, the environment within the Shuttle
orbiter cargo bay is relatively mild and comparable to that of other launch vehicles.
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However, a launch pad explosion of the Space Shuttle produces a blast and frag-
mentation environment that is more severe (approximately one order of magni-
tude greater) than that of either the Titan III-C, INT-21, or Saturn V. This is
primarily due to the proximity of the Shuttle orbiter cargo bay to propellant
tankage. Considerable blast and fragmentation protection may be required to
protect the nuclear payloads from such an accident environment.

e A launch complex configuration where the nuclear payload is facing away from
the Mobile Launcher tower is desirable. Space Shuttle/Launch Complex con-
figurations which position the nuclear payload between the Shuttle propellant
tanks and the Mobile Launcher tower present an undesirable fragmentation en-
vironment and should be avoided.

e Based on the results of a terrestrial nuclear safety analysis, it was determined
that the risk to the general public is low in transporting either a nuclear reactor
or isotope-Brayton power module by the Space Shuttle. In both cases, the most
significant risks would result in the Disposal/Recovery Phase. Reducing the
risk in this phase can lower the overall mission risk significantly (e.g., the
provision for no reactor excursion, the capability of emergency ejection of the
payload into a deep ocean area during launch or landing operations, and the
improving of the impact characteristics of the aged isotope system). Results
of the study have shown that the use of a Shuttle for recovery of a reactor power
module as contrasted to a boost to high earth orbit, can reduce the overall risk
to the general populance during disposal by at least an order of magnitude. The
detailed terrestrial safety analysis is contained in Volume IV, Part 2,
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SECTION 3

SAFETY ASPECTS IN THE TRANSPORTATION OF
REACTOR POWER MODULES WITH THE SPACE SHUTTLE

3.1 GENERAL
Figure 3-1 outlines a typical mission profile for the Shuttle transport of a reactor power
module along with the principal packaging considerations. The mission éan be broken down

into four major phases:

a Prelaunch
e Shuttle Launch/Ascent
° On-Orbit Operations

° End-of-Mission

The Shuttle transport mission begins with the prelaunch activities at the launch site. This
includes the checkout of the entire reactor-;Brayton power module upon receipt at the Nuclear
Assembly Building (NAB), the installation of the reactor power module in the Shuttle orbiter
cargo bay, and the mating of the Shuttle booster and orbiter vehicles. Following the Shuttle
launch/ascent and Space Base rendezvous operations, the reactor power module is trans-

ferred from the Shuttle orbiter to the Space Base.

The Shuttle orbiter can be used for disposal of a spent reactor, either by placing the power
module into a high orbit or by returning it back to earth, The AV capability of the Shuttle
permits deploying the power module into an 835 Km (450 nm) circular orbit where the orbital

decay time is at least 250 years (Reference 3-1),

During all of these mission phases, various integration considerations play an important
role in implementing the nuclear safety of the Shuttle mission. This section discusses the
nuclear reactor packaging items that are required when transporting a reactor power module

by the Space Shuttle and the mission operational procedures that are involved,
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3.2 SHUTTLE REACTOR POWER MODULE PACKAGING AND INTEGRATION
The Space Shuttle cargo dimensions of 4,6 m (15 ft) in diameter by 18,3 m (60 ft) in length

are the primary _Shuttle imposed .design cqns'traints for the reactor powef module. The cargo
bay envelope limits the cylindrical length and therefore the radiator surface area, The
available radiator area has direct impact on reactor power system growth capability, A
further Shuttle imposed constraint limits the envelope of the payload's center o.f graﬁty as

discussed in Appendix A.1,2 of this volume.

In addition to the above mentioned constraints imposed on the reactor power module by the
Space Shuttle, the following safety and integration items that may affect the Shuttle design
and packaging of reactor modules (Figure 3-2) include:

e Radiation Protection

e Blast and Fragmentation frotectibn
o— Environmental Protection (Encldsure)
¢  Thermal Control

e Payload System Status and Controls

e Electrical Power |

e Attachments and Payload Handling

E Thermal, radiation, mechanical, electrical and Shuttle induced environment interfaces must
be accommodated, The following sections discuss the key safety related integration and

‘packaging requiremehts_ for transporting a reactor module aboard the Space Shuttle,

3.2.1 RADIATION PROTECTION
The nuclear radiation environment from a reactor being transported by the Space Shuttle is
presented in Appendix B, Dose rates to the crew from a pre-operational reactor are sub-

stantially less than 150 mrem/day. Based on this data, no crew radiation protection will be

- required during launch/ascént. However dﬁring the reactor Dispdsal/Recovery Phase, radia-

tion protection may be required because of the large core fission product inventory following

5 years of reactor operation,
' 3-3
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Two reactor module orientations in the cargo bay are possible - reactor aft or reactor for-
ward, Figures 3-3 and 3-4 show, for the aft and forward orientation, respectively, the es-
timated tungsten gamma shielding thicknesses required to reduce the Shuttle crew dose rates
to 150 mrem/day as a function of time after reactor shutdown. A significant penalty in radia-
tion shielding weight must be accepted if a forward reactor orientation in the cargo bay is re-

quired. However, with the reactor positioned aft in the cargo bay, the thickest part of the

reactor shield lies between the reactor and the crew, and the radiation shielding required to

limit the dose rate to the Shuttle crew to 150 mrem/day is minimum, No shielding may be

required if a spent reactor is not loaded aboard the Shuttle prior to a waiting period of 10 days

following reactor shutdown,

Scattered (reflected) radiation from hardwa'rellocated in the near Viéinity of the reactor can be
a contributor to the total radiation received by the crew, As shown in Figure 3-3, even though
~ the reactor is located further from the crew compartment in the NAR design than in the MDAC
design, the radiation dose to the crew is higher. This can be attributed to the increased
scattered radiation resulting from the reactor being closely surrounded by Shuttle structure

and propellant tanks on three sides.

If radiation protection is required for the Shuttle crew, the mass of additional shielding would
depend on the reactor fission product inventory and the location chosen for shield placement,
The radiation shield must be located somewhere along the path the radiation follows, The two

most likely positions are at the reactor or at the crew locations as shown in Figure 3-5.

Radiation damage to Shuttle components from the reactor is only of significance in the trans-
port of a spent reactor. Shuttle structural materials will ndt be affected, Critical components
are solid state electronic devices, film, and emulsions, The impact on Shuttle components is
related to the integrated dose and hence is mission dependent, Radiation sensitive coxhponents

should be located away from the nuclear sources. Consideration can be given to localized

shielding, and hardening techniques can be applied where required, Reference should be
made to Volume II,Part I, Appendix,A for detailed radiation limits on typical space sub-

system components.
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CREW COMPARTMENT SHIELD ING.

.........

SHIELDING AT REACTOR/

Figure 3-5. Typical Shield Locations in Shuttle

3. 2.2 BLAST AND FRAGMENTATION PROTECTION

Prior to initial reactor startup in orbit, little or no blast and fragmentation protection is re-

quired due to the small fission product inventory present in the reactor core, However,

following reactor operation in space and the resultant buildup of relatively large fission pro-

duct inventories, blast and fragmentation protection must be provided to reduce the probability

of a release of these fission products to the environment (space vacuum or the Earth's atmo-

sphere) following an accidental Shuttle explosion,

The Shuttle blast environment on the launch pad and the assumed ""worst case'" Shuttle blast
enviromnenf at 30, 5 km (100 kft) upon reentry are defined in detail in Appendix A, 3, In
reference to Figure 3-6, it is seen that the overpressures resulting from a launch pad explo-
sion and fire are so high that it precludes the use of any material that would withstand the
blast loading, In all likelihood, in the event of a Shuttle explosion and fire on the launch pad,



the power module (or for that matter, any type of payload in the orb1ter cargo bay) would be
thrown or blasbed out of the cargo bay by the resultant overpressures. It then becomes a
matter of protecting the reactoxj from the pnmary and secondary fragmentatlon follomng
such an explosion, A Shuttle launch configuration conéebt (Figure 3-7) which pdsi_t_i_ons fhe '
orbiter between the booster and the Mobile Launcher (ML) is particularly undesirable due to

the possibility of sl_amming the nuclear payload against the ML tower in the event of a launch

pad explosion,

100,00 . BOOSTER

Pe - .
. . SHUTTLE
0000 2 10 o X . ORBITER
\ » 3 .
RFT 7 - ’ p
P YIELD, % )

PR : Ps

o) 10 10,000
INT-21
1000 > R~100 F1 » 5

208 YIELD L YIELD, %

P - PSI

P - PS)

Ps
INT-21
wol—b— 0 o a0 00014y 1000 R ~100FT 2 5“)
- 20% YIELD <7 Vi s

NOTE$ ENGLISH UNITS

Figure 3-6. Blast Pressures Resulting from a Launch Pad Shuttle Explosion

An-accidental explosion of the Shuttle at altitude greatly reduces the blast environment due to
- (1) the decrease in atmospheric pressure (density), and (2) the reduced Shuttle propellant
loading, The possibility of fragmentation of the reactor core is also diminished due to the

demonstrated‘ inability of hypergolic propellants to forcibly ignite in a vacuum (Reference 3-2),



From the Space Shuttle blast, fragmentation, and shielding analysis (Volume IV, Part 2,
Appendix A), it is seen that a 1, 8 ecm (0.7 in ) thick titanium shield may prevent primary

fragmentation of the reactor/shield assembly throughout the mission., The shielding weight
involved is highly dependent on the shield design and where it is located in respect to the

reactor,

ML
TOWER

Figure 3-7. Undesirable Shuttle Launch Pad Configuration Due to
Severe Fragmentation Potential

3.2.3° ENVIRONMENTAL PROTECTION (ENCLOSURE) .
The reference ZrH reactor power module contains approximately 170 kg (375 1bs) of sodium-
potassium liquid metal (NaK-78) in the primary and intermediate NaK loops (Reference 3-3).
All NaK loops will be filled before the final acceptance tésting at the factory and will remain
filled throughout all sﬁbsequent operations, This sodium-potaésium liquid metal reacts with
a number of metals, gases, and liquids; including water and oxygen., For this reason, sf)ecial

precautions must be taken to prevent liquid metal fires and corrosive reactions, while the

3-10



reactor power module is within the Shuttle cargo bay,. An:"inert gas blanket" (e, g. Argon,

Helium) coupled with double wall containment should be eleoyed to prevent the presencé of

moisture and ot_her oxygen sources from coming in contact with the NaK éoolant in the event

of a_coolant leak, An added safety precaution involves the sealing off of the cargo bay from

the rest of the S_nuttl_e, : espécia]ly from the LO2 and LH2 vapor boil-off of propellant tanks or

fuel cell storage bottles,

The requirements for an inert gas environmental enclosure are si'gnificantly increased if a
liquid metal NaK coolant is used in the primary heat rejection loop rather than an organic

coolant (i.e.,, Dow Corning 200),

3.2,4 THERMAL CONTROL
As shown is Figure 3-8, the Space Shuttle presents a significant temperature variation_ within
the cargo bay during the mission (Reference 3-4), The orbit tempe_ré.ture regime for unin-
sulated cargo makes freezing of primary, intermediate, and heat rejection loops a strong
possibility NaK freezes at approx. 260°K), The final thermal environment in the cargo bay
may change as Shuttle design evolves; however, there are several approaches available if

coolant freeze up within the cargo bay is considered undesirable.

1) Provide an insulating blanket around the reactor power module,
2) Add a 200-watt radiant heat source within the radiator cavity.

3) Preheat the NaK (and organic) fluids and the lithium hydride shield, and allow this
stored heat to maintain acceptable fluid temperatures.

4) Divert a portion of the Shuttle's waste heat to provide a thermal source,
5) Orient the cargo bay to face the sun with the hatch open during the sun cycle

periods.

An additional potential problem area is heat dissipation from the reactor core after long term
reactor operafion (due to fission product decay); The afterheat generation in a reactor which

has been operated at 125 kWt for five years is given in Appendix B, The curve in Figure B-6
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Figure 3-8, Typical Module Temperature Range Within Shuttle Cargo Bay

represents the maximum heat dissipation required in the cargo bay in order to maintain con-
stant reactor temperature conditions, The decay heat generation of over 1 kWt immediately

after shutdown decreases to less than 0. 5 kWt after two days,

A minimum 2 day waiting period is desirable. Since the afterheat generation is relatively
low several days after shutdown, it is possible that no special reactor/shield heat removal
apparatus would be needed since the heat capacity and natural heat loss from the Shuttle it-

self may be sufficient,

3.2.5 SYSTEM STATUS AND CONTROLS _

Knowing the condition of the reactor power module within the Shuttle cargo bay permits an
assessment by the crew of the "go/no-go™" status of the payload (1) prior to launch, (2) prior
to final rendezvous and docking, and (3) prior to initiating the reentry, final approach and

landing, A detected failure condition, such as a liquid metal or radiator coolant leak, wouid
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eliminate the need for dockmg and subsequent removal of a damaged power module, A de-
tected failure condition of the power module which is deemed a hazard upon landing could re-
sult in the emergency ejection of the power module into a deep ocean area prior to earth
landing. Provisions must be made within the Shuti:le crew compartment for the recording
and/or displey of a maximum of 80 data points (sensors) for maintaining periodic .é.nd, in
some cases, continuous system status of power module integrity, radiation levels, NaK.
'leaks, power module and cargo bay temperatures, etc. In addition to"the monitoring equip-
ment, some 20 separate control signals are required‘to vprox:/ide environmental control -regu-

lation, handliiig, attachment and deployment controls from the Shuttle.
Table 3-1 identifies the number of possible control and monitoring functions required.

3.2.6 ELECTRICAL POWER

Provision for up tc 1 kw of electrical power niay be required by e reectcr power moduie
while being transported by a Space Shuttle. The power requirement is dependent on the de-
sign characteristics and condition of the power module, Up to 0.2 kw may be required to
prevent NaK freeze-up, however the majority of the power required is needed for operation
of coolant pumps for the removal of fission broduct decay heat from a ‘reactor which has just

been shut down,

Table 3-1. Reactor Power System Control and Monitoring Requirements

CONTROLS .
Function *Number Required

Inert gas environment ) 4
Positioning latches 12
Heaters 2
Separation system 2
Auxiliary power system 4
Total 24

SENSORS (DATA POINTS)

Function . *Number Required

Radiation monitors .6
" NaK leaks (pressure monitors) 20
Temperature monitors . 8
Positioning and Handling .18
Auxiliary power system status - 12
Inert gas pressure and composition 8
- Valve positions 6
. Total] 178

*Redundancy accounted for

—— : ns—
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These electrical power requirements can be substantially reduced if (1) the NaK heating re-
quirement is placed on the Space Base rather than on the Space Shuttle (NaK would be heatea
subsequent to mating of the reactor module to the Space Base and prior to reactor start-up),
and (2) a short wait time of two days is observed for thermal cooling prior to placing the shut-

down, spent reactor in the cargo bay.

Electrical power required, could be supplied by batteries that are carried 1nto the cargo bay
as a part of the payload or by the Space Shuttle Electr1ca1 Power System,

3.2.7 ATTACHMENT & HANDLING ,

‘As discussed in Appendix A, the payload retention and deployment system is designed to
accommodate payloads 4.6 m (15 ft) in diameter by a length that may vary from payload to
payload, not exceeding 18.3 m (60 ft). The nuclear reactor module that is to be transe
ported by the Space Shuttle must then be designed with fittings that can mate directly with
the-vari_ous attach points on the Shuttle. If the 90 degree rotation scheme is the selected
mode of deployment, the reactor will have to be fitted with a docking ring that is mated to
the payload adapter located at the end of the Shuttle's flexible tunnel. (Refer to Aﬁpendix
Section A. 1. 3) If the manipulator arm concept is used, the reactor power module must be

equipped with cargo bay attach points and also attach points for the mampulator arms.

Alternate cargo replacement/recovery schemes (transfer by space tug, use of integral pro-

pulsion modules, etc, ) will also require special fittings and attach points,

A typical reactor power module configuration is characterized by the center of gravity near
the reactor/shield end of the module. ~ Radiator design may provide adequate axial structure
strength, but side loading bending moments must be compensated by the attech points; "In the
foliowing subsection a special handling and support fixture is recommended, which would

provide design integration and safety advantages.
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3.2.8 TRANSFER MODULE

One method of niinimizing the design impact and increasing the safety of operatic;ns involving
the power module and the Shuttle is to position the reactor in a "transfer module" which is,
in fum, placed in the Shuttle cargo bay (see Figure 3-9), By using such a transfé’r module,
the power module will not have to be designed with standardized attach fittings that mate
directly to the Space Shuttle, but the reactor will be mounted on the transfer module in the
most convenient way possible, The transfer module is then designed to be compati_bl'e With

the Shuttle cargo bay, attach points, and deployment scheme,

" The transfer module also offers added ease in safely handling the reactor power module, The
power module can be mounted on the transfer module at the manufacture's site and not be re-

moved until the module transfer operations-are initiated in orbit.

A key advantage in using a transfer module is that it not only re;duces the impact on the re-
actor when being transported by the Space Shuttle, but that it reduces the impact on.the
Shuttle when transporting a nuclear reactor power-module; In the previous sections safety
related Shuttle énd power module packaging items and integration requirements have been
identified, such as blast and fragmentation probe‘(:tion, crew radiation shielding, an inert gas
environmental enclosure,double containment, a thérmal control system, various moﬁitoring
and control devices, and an electrical power system.. When a transfer module is 'used,. much
of the necessary ancilliary equipment coqld be incorporated into the transfer module rather
than being mounted to the Shuttle directly. Without a transfer modulé, payload sui)port would
be required from the Shuttle systems. For example, the blast and fraginentation protection
and crew radiation shielding could be made part of the transfer module. Tankage for the
inert gas environmental enclosure and batteries for the électrical power could also be mount-

ed to the structure of the transfer module,

There are, however, disadvantages associated with this concept, The .weight_' of the transfer
module must be included in the total payload weight, This reduces the useful payload weight
that can be launched. Also, the overall dimensions. of the actual payload'énvelope ‘would be

reduced since the transfer module will occupy some of the allowable cargo space,
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3.2.9 DESIGN AND PACKAGING GUIDELINES
A summary of the key guidelines for the design and packaging of_ a reactor power module
within a Shuttle is contained in Table 3-2.

Table 3-2, Shuttle/Reactor Power Module Design and Packaging Guidelines

29

[ Provide mumple and independent radiation momtonng equlpment with instantaneous and recordmg outputs for all mission
phases. .

° Provide multiple and independent system monitoring and control equipment with instantaneous and recording outputs for all
mission phases.

. Provide inert gas blanket and or double containment during prelaunch period (to preclude NaK-oxygen reaction in event of NaK
leak).

. "Provide. blast overpressure and fragmentation protection adequate to assure containment of all radnoactlve material in event of an

accident (critical requlrement for isotopes; may be desirable for reactors).

. Provide fireball protection adequate to assure containment of all radioactive material in event of an accident (critical requirement
for isotopes; may be desirable for reactors). -

, ® - Consider crushup material in cargo bay to minimize damage upon ‘Shuttle land impact. -
. Provide up to 1 kw electrical power (either transfer module or Shuttle).
. Prevent propellant boil-off and other 05 sources from entering the Shuttle cargo bay with the doors closed.
L Consider use of ‘‘transfer module’ integration scheme to reduce and simplify Shuttle mterfaces and to improve safety i in handling

nuclear payloads.

. Provide a free, unobstructed and directed ejection path for the reactor power module in the event of a Shuttle booster or orbiter
explosion on the launch pad.

', Provide for decay heat removal and rédiation shielding if spent reactor is transferred to Shuttle less than 10 days after shutdown,
o Provide certified equipment to handle nuclear payloads.
. Provide certified facilities to: :

[ Store reactor power modules

[ Checkout reactor power modules and components

[ Perform radiological monitoring and control functions

3.3 REACTOR TRANSPORT OPERATIONAL PROCEDURES

The typical mission operations that are involved in transporting a reactor power'module with

the Space .Shuttle are diséussed in this section,
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3.3.1 PRELAUNCH

Upon arrival at KSC, the reactor power module, inside its environmentally controlled trans-
porter, will be taken to the Nuclear Assembly Building (NAB) where it will undergo a series

of prelaunch checkouts, The initial step is to visually inspect for shipping damage. Follow-
ing this, an intensive sequence of electrical continuity and functional tests will be performed,
Fluid loop tests will then be performed to confirm pump operation and loop head flow charac-
teristics, For the Brayton Power Coﬁversion System (PCS) checkout, cold-gas tests will be

performed to confirm rotor lift-off and rotation. For a more detailed description of the pre-

launch activities at KSC, refer to Volume II, Section 5 of this study.

Following these tests, the reactor power module is shipped (in its environmentally controlled
transporter) to either the Vehicle Assembly Building (VAB) or the launch pa_d complex for in-
stallation in the Shuttle cargo bay. Figure 3-10 shows four alternative schemes for installa-
tion of the reactor power module in the Shuttle cargo bay. Schemes A and B depict the powér
module being installed in the cargo bay while in the VAB, whereas schemes C and D show the

installation occurring at the launch pad.

Throughout this phase of the mission, it is important to realize that the reactor is relatively
non-radioactive and personnel can have reasonably good access to the power module, Be-
cause of the relatively non-hazardous state of the reactor, it makes little difference, from a
normal radiation standpoint, whether the reactor is installed in the Shuttle in the VAB or at

the launch pad provided liquid metal systems can be adequately protected. Installation at the
launch pad may, however, be preferable in that this operation can occur late in the countdown,
This approach would reduce the possibility of prelaunch accidents that could involve the reac-
tor and eliminates the possibility of potential nuclear accidents within the VA’].?: and the necessity

of providing the nuclear support plans and hardware for that facility,

3.3.2 LAUNCH/ASCENT
Depending on how the Space Shuttle is mounted on the Mobile Launcher (ML), two launch
modes are possible (Figure 3-11) - one with the cargo bay facing the ML and one with the cargo

bay away from the ML, A current Shuttle launch configuration has the Shuttle cargo bay oriented
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CARGO BAY AWAY FROM MOBILE LAUNCHER

A

Figure 3-11. Alternative. Shuttle Launch Modes
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toward the M1, However, in the event of a laimch pad abort, it is preferable from a nuclear

safety standpoint to have the cargo bay facing away from the ML, This would allow for an

unobstructed path for the reactor module to be ejected out of the cargo bay as a result of a

launch pad explosion,

3.3.3 ON-ORBIT OPERATION
Once the Shuttle has rendezvoused with the Space Bése, ‘the cargb transfer operations are

initiated, A desirable objective is to maintain positive control of the power module at all

times, For the initial launch of a reactor power médule, the operation involves the transfer
of a "clean' reactor power module from the Shuttle to the Space Base with no retrieval of a
post-operational "'spent'" power module, Figure 3-12 illustrates five poséibie modes of

power module transfer to the Space Base:

e Articulation - manipulator arms
,. 90° rotation - flexible tunnel concept
e Translation - scissors platform

® Spacé Tug (in conjunction with either articulation, rotation, or translation); the tug
may be either manned or unmanned,

@  Self-propelled power module (in conjunction with articulation, rotation, or transla-
tion).

For the retrieval of a shutdown, spent reactor, the same schemes as shown in Figure 3-12

can be used except with reverse procedures,

Power module replacement and retrieval missions take on an added complexity since two
reactor power modules must be handled - the replacement power moduie that is brought up
in the Shuttle and the spent power module that is to be replé.ced and either taken up to a high
Earth orbit for disposal or returned to earth, Figures'.3-13 through 3-16 depict various
possible schemes for the power module replacement/retrieval operatio_ﬁ. - The same payload
handling schemes, as shown in Figure 3-12, are used in conjunction with either a '"rotational

docking port' concept or a "temporary docking port' concept..
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The rotational docking port concept features a rotational assembly at the end o_f the power
module boom with twe usable docking ports. In Scheme A of Figure 3-13, the Shuttle hard-
docks with the Space Base (Shuttle docking port located on power module boom), In this
positipn, the shutdown, spent power module is located directly above the Shuttle cargo bay.
The spent module is then rotated 90 degreeé to the side bringing a second usable docking port
into position ab0ve. the cargo bay to accept the replacenient power module, The replacemeht
module is then transferred to the Space Base and docked in place. With this accomplished,

the spent power module is then rotated back into position above tﬁe cargo bay. Once the spent
power moduie has been transferred to the Shuttle and secured in the cargo bay, the Shuttle un-
docks from the Space Base and the replacement power. module is rotated back to the "opera-

tional" position and the reactor startup operation is initiated, -

In Scheme A of Figure 3-14, a similar procedure is followed except there is no direct hard-
dock between the Shuttle and the Space Base. The docking is accomplished through the power
module itself. The spent power module is first rotated 90 degrees to the side, then the Shuttle
slowly moves into position and transfers the replacement module, theri the replacement

module has successfully been docked, the spent module is rotated into pbsition for retreival,

The rotational docking port is also employed in Scheme A of Figure 3-16 to rotate the re-
placement power module to the side prior to the self-propelled module approaching and
docking,

The temporary docking port concept is used in Scheme A of Figure 3-15. In this replacement/
retrieval operation, the Space Tug removes the spent power module from.the operational dock-
ing port and installs it in a temporary docking port on the boom, After the tug has success-
fully transferred the replacement power module to the Space Base, the Tug then refrieves

the spent module from the temporary docking port and transfers it to the Shuttle,

The remaining replacement/retrieval scheme (Scheme B in Figures 3-13 through 3-16) in-
volves the spent power module being released or taken to some defined stand-off distance
while the replacement power module is being transferre_d. Follwing successful transfer of the
replacement power module, and spent power module is retrieved by either the Space Tug or

the Shuttle itself and secured in the Shuttle orbiter cargo bay.
: 3-23



ROTATIONAL DO G POR SPENT MODULE CONTROLLED RELEASE

— OR-—

OPERATIONAL PROCEDURES

1. ROTATE SPENT POWER MODULE FROM 1. SPENT POWER MODULE 1S RELEASED FROM

POSITION '"A' TO POSITION "'B"', SPACE BASE (POSITION "AtY) AND ALLOWED °
TO ASSUME SOME STAND—OFF DISTANCE AT
2, DOCK REPLACEMENT POWER MODULE TO POSITION ''B™',

ROTATIONAL DOCKING PORT AT POSITION 'A'',
2, SPACE SHUTTLE HARD—-DOCKS WITH BASE
3. ROTATE REPLACEMENT POWER MODULE TO ’ AND TRANSFERS REPLACEMENT MODULE TO
POSITION ''C*' AND SPENT POWER MODULE DOCKING PORT (POSITION t1A®),

BACK.TO POSITION "A'",
3, SPACE SHUTTLE UNDOCKS WITH BASE

4, RECOVER SPENT POWER MODULE FROM AND RETRIEVES SPENT POWER MODULE
POSITION ""A'"" AND PLACE IN SHUTTLE CARGO AT SOME STAND—OFF DISTANCE (POSITION
BAY, gy,

5. ROTATE REPLACEMENT POWER MODULE TO
OPERATIONAL POSITION (POSITION "'A'Y), *SPACE STATION SHOWN FOR CONVENIENCE, OPERA—
TIONS WOULD BE THE SAME FOR SPACE BASE,

Figure 3-13. Power Module Beplacement/Retrieval Schemes*
(Direct Shuttle Hard-Dock) '

ROTATIONAL DOCKING PORT SPENT MODULE CONTROLLED RELEASE

OPERATIONAL PROCEDURES

(SAME AS IN SCHEME A, FIGURE 3-13 EXCEPT NO (SAME AS IN SCHEME B, FIGURE 3-13 EXCEPT NO
DIRECT SHUTTLE HARD-DOCK; DOCK AND REDOCK DIRECT SHUTTLE HARD—DOCK; DOCK AND REDOCK
ACCOMPLISHED THROUGH POWER MODULE) ACCOMPLISHED THROUGH POWER MODULE)

*SPACE STATION SHOWN FOR CONVENIENCE, OPERA—
TIONS WOULD BE THE SAME FOR SPACE BASE.

Figure 3-14. Power Module Replacement/Retrieval Schemes*
(Dock Through Power Module)
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1.

2.

3.

4.

OPERATIONAL PROCEDURES

TUG REMOVES SPENT POWER MODULE FROM
POSITION '"A"' TO TEMPORARY DOCKING PORT
AT POSITION "B'",

TUG RETRIEVES REPLACEMENT POWER MODULE
FROM SHUTTLE (POSITION ''C"),

TUG TRANSFERS REPLACEMENT POWER MODULE
FROM SHUTTLE TO OPERATIONAL REACTOR
POWER MODULE DOCKING PORT ON SPACE

BASE (POSITION MAY),

TUG REMOVES SPENT POWER MODULE:FROM
TEMPORARY DOCKING PORT (POSITION ''B'")
AND TRANSFERS IT TO SPACE SHUTTLE,

2,

3,

TUG REMOVES SPENT POWER MODULE FROM
POSITION ""A'* TO SOME s‘rmo—orr DISTANCE
AT POSITION "'B"", :

. TUG RETRIEVES REPLACEMENT POWER

MODULE FROM SHUTTLE (POSITION ''C"),

TUG TRANSFERS REPLACEMENT POWER
MODULE FROM SHUTTLE TO SPACE BASE
(POSITION '*A™),

TUG RETRIEVES SPENT POWE'R.WDULE FROM
POSITION ""B'' AND TRANSFERS IT TO SHUTTLE,

# SPACE STATION SHOWN FOR CONVENIENCE., OPERA—
TIONS WOULD BE THE SAME FOR SPACE BASE.

Figure 3-15. Power Module Replacement/Retrieval Schemes*
(Space Tug Transfer) '
SPENT MODULE CONTROLLED RELEASE

ROTATIONAL DOCKING PORT

OPERATIONAL PROCEDURES

1. SPENT POWER MODULE 1S ROTATED FROM .

POSITION ''A" TO POSITION ''B'',

2. SELF—PROPELLED REPLACEMENT POWER
MODULE |S TRANSFERRED FROM SPACE
SHUTTLE (POSITION *'C"") TO OPERATIONAL
REACTOR POWER MODULE DOCKING PORT
(POSITION MA™).

3. SELF—PROPELLED SPENT POWER MODULE -
’ IS RELEASED FROM ROTATIONAL DOCKING

PORT (POSITION "'B") AND IS TRANSFERRED

TO THE SHUTTLE.

1.

SPENT POWER MODULE IS RELEASED FROM
COPERATIONAL DOCKING PORT (POSITION "A'")
AND IS SELF-PROPELLED TO SOME STAND~OFF
DISTANCE AT POSITION "B,

SELF—PROPELLED REPLACEMENT POWER
MODULE IS TRANSFERRED FROM SPACE
SHUTTLE (POSITION ''C"') TO SPACE.BASE
(POSITION "A™),

SELF-PROPELLED SPENT POWER MODULE IS
TRANSFERRED FROM POSITION "B" TO SPACE
SHUTTLE,

* SPACE STATION SHOWN FOR CONVENIENCE OPERA~
TIONS WOULD BE THE SAME FOR SPACE BASE,

Figure 3-16. Power Module Replacement/Retrieval Schemes*

(Self-Propelled Module)
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Independent of which power module replacement/retrieval scheme may be adopted, two

general ground rules should be adhered to:

e Maintain positive handling control of the power module at all times.,

o' Minimize the crew dose rate (maximum of 150 mrem/day)

Recognizing that the spent module controlled release approach does not maintain positive
handling control of the spent power module, it may prove to be acceptable, from a risk
standpoint if it can be assured that (a) the spent module remains stable when released, (b)
tracking of the released module be maintained, and (c) the cargo transfer devices be capable

of grappling a "free floating" module.

The radiation dose to the Shuttle crew from a shutdown, spent power module (5 years opera-

tion at 125 kWt) in the Shuttle orbiter cargo bay is given in Appendix B, 6,2, With no gamma

shielding for the crew, a minimum wait time (from reactor shutdown to initiation of replace-

ment/retrieval operations) of approximately 10 days is required for the dose rate to go below

the maximum allowable 150 mrem/day,

As presently configured, the MDAC approach to transporting and handling cargo using the
flexible tunnel 90 degree rotation scherhe would be unacceptable from a nuclear radiation
standpoint) for the transport of a spent reactor power >modu1e. By using this scheme the
power module would be placed in the Shuttle cargo bay with the reactor/shield assembly to-
ward the forward bulkhead, resulting in high (>> 150 mrem/day) dose rates to the Shuttle
crew, This scheme, however, could be employed, if a rotational or trunnion mechanism
were. designed on the transfer module to pivot the reactor power module 180 degrees while

it is being rotated either into or out of the Shuttle. The reactor/shield assembly could then
be placed toward the rear of the cargo bay thereby reducing the crew dose rates to acceptable

levels,

In handling and transfer of a shutdown, spent reactor power module from the Base to the

Shuttle cargo bay, the crew locations should be kept within the shadow of the reactor's radia-

tion shield to minimize the dose to the crew and not exceed the dose limit of 150 mrem/day,
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_In examining the NAR and MDAC Shuttle orbiters and their selected cargo transfer mecha—
nisms (manipulator arms and 90 degree rotat1on respectively), it was found (Reference
Appendix B. 6, 2) that the crew locations can be kept within the "shieldmg cone' for all’ cases
except one - transfer of the dual reactor module to the MDAC Shuttle’ orbiter. (assummg the
configuration is that shown in Figure B, 11 of Appendix B), However, a.llowmg for radiation
decay, transfer of the dual reactor module to the Shuttle cargo bay can begin five hours after
reactor shutdown without exceedmg the allowable dose rate to the Shuttle crew, Adequate
shielding (~1.6 cm of tungsten) must then be prov1ded for the crew once the power module is
installed in the cargo bay. As stated prevmusly, this add1t10nal shieldmg would: not be re-
quired if a 10 day wait period was prov1ded It must be recogmzed that’ the reactor type,
shielding, and operatmg power levels and duration affect this data and future missions and

conf1gurat10ns should be treated accordmgly.

3.3.4 END OF-MISSION (DISPOSAL OR RECOVERY)

After the reactor has completed its operational lifetime (or in the event of a non—reparable
system failure), it is necessary to dispose of the spent reactor power module ina way that
will not present a hazard to the earth's populace and ecoloéy This can be accomplished by
either (1) placmg the power module in a h1gh earth orbit, thereby mcreasmg the orbital life-
time of the power module, giving the core fission products adequate time to decay to insignifi-
‘ cant, non-hazardous radiation levels, or (2) returning the power module to the earth's sur-

face. The Space Shuttle is a candidate for either of these disposal modes,

Figure 3-17 shows that the Shuttle has the capability to boost a 13,6 t (30 klb) power module
from a 500 km (273 nm) Space Base orbit to an 835 km (450 nm) d'isposal orbit, Based ona
ballistic coefficient (W/CpA) of 2390 Newtons/m? (50 1b/ft2) for the power module, the orbital
lifetime is estimated to be at least 250 years (Reference 3-1). This represents approximately
9 half-lives of the longest lived fission products (Sr-90 and Cs-137) in the reactor core.
Figure 3-18 shows that to place the reactor module in an 835 km circular disposal orbit re-
quires a AV of approximately 260 m/sec (850 ft/sec). | ' |
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Figure 3-18, Total Space Shuttle Delta V _Required to
Boost Nuclear Payload to High Earth Orbit -
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An alternative to a high earth orbit disposal is to have the Shuttle return the reactor to the

earth's surface. This mode should be given much consideration., The reéults of the risk

evaluation conducted in the terrestrial safety analysis (Volume III Part 3 and Volume IV Part
2 of this study) have shown highest risks to occur during disposal* /recovery. The use of the

Shuttle to return the reactor to earth reduces this risk by at least an order of magnitude.

A typical ground trace for a Shuttle descent/reentry trajectory is shown in Figure 3-19. As
shown, the trajectory carries the Shuttle over large stretches of deep ocean with very little
land mass overfly. This type of trajectory is particularly desirable to minimize any poten-

tial nuclear hazard that could result from a Shuttle failure,

A normal earth landing should impose no difficulties on the reactor power module, The
Shuttle payload attach fittings can be designed to prevent most of the landing forces from be-

ing transmitted to the power module, particularly when use is made of a transfer module.

Upon landing and completion of the roll-out, the Shuttle will be taxied to a cargo removal
area since it is desirable to place the reactor in a nuclear facility with as little delay as
possible, Thorough radiation and liquid metal leak checks will be made immediately. An
unloading crane attached to the transfer module or reactor attach points will remove the
reactor power module with the Shuttle parked in a normal horizontal position, and will pbsi-

tion the module in a transporter for removal to the nuclear facility.

Several safety related considerations are worthy of mention when evaluating the total opera-

tions required for the Disposal/Recovery Phase,

1. There is no need for recovery of the radiator and power conversion systems. In fact,
a liquid metal radiator adds to the non-nuclear hazards during recovery., Techniques
should be developed to recover only the reactor/shield, A separable heat exchanger
permits reactor/shield separation from the radiator, The reactor/shield must be

*Reactor disposal assumes the boost of the power module or reactor/shield into a long life high
earth orbit, whereupon it is allowed to undergo orbital decay and eventual reentry into the
earth's atmosphere, Although subsequent reboosts by a Shuttle are possible, this mode is ' .
beyond the scope of this study. .
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placed further forward in the cargo bay (closer to the crew), Consideration must be
given the additional attach points on the reactor/shield required and the possible in-
creased radiation to the crew due to the reactor's close proximity to the crew com-
partment, '

Should system status and diagnostic data reveal a malfunction in the Shuttle orbiter
or the payload which would present a potential accident situation upon landing, it may
be adviseable to eject the reactor over the deep ocean area, thereby eliminating the
potential nuclear hazard to the general populace,

A spent reactor/shield or entire power module will be radioactive or contain acti~
vated liquid metal, Detection of radiation and liquid metal contamination is re-
quired, Radiation decontamination of the cargo bay may be required as well as
strict environmental precautions taken to avoid liquid metal reactions after landing,
A sealed cargo bay coupled with inert gas purging can reduce the potential reactions
from residual shuttle propellant or high moisture content air,

A more detailed discussion of these and other contingency situatiohs is presented in Section 6.

3.3.5 OPERATIONS GUIDELINES

A summary of the key safety related guidelines for shuttle operations involving a nuclear

reactor power module are contained in Table 3-3.

3.4 REFERENCES

3-1.

3-2,

3-3,
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Table 3-3., Shuttle/Reactor Power Module Operations Guidelines

. Provide support personnel and Shuttle crew training with confirmed procedures in-the use of multiple and independent radiation
monitoring equipment with instantaneous and recorded outputs.

. Provide shuttle crew training with confirmed procedures in use of multiple and independent system monitoring equipment for all
mission phases.

° Provide certified operational plans to

Receive and store reactor power modules.
Checkout reactor power modules and components.
Launch and perform orbital transfer.

Dispose of or recover reactor power modules,

. Provide firé alarm and protection systems, training and procedures capable of supporting hardware containing nuclear material
and liquid metals in

° Nuclear facility
[ Transporter
° Launch pad

° Provide suitable personnel exclusion area at the launch and landing sites {4 km fallback area and approximately 13 km
administrative control zone}. ,

. Provide installation, retrieval, and maintenance procedures that do not require breaking or opening of NaK loops.

. Establish emergency procedures and decisions {contingency plans) for emergency situations.

. Provide and maintain inert gas blanket during pretaunch period {to preclude NaK-oxygen reaction in event of NaK leak).
. Consider use of transfer modules to protect and reduce handling and packaging requirements of nucltear payloads.

. Provide redundant equipment and procedures for nuclear cargo handling.

Prohibit launch during unsatisfactory weather conditions, including moderate to high winds blowing towards populated areas.

. [ Provide recovery gear for use subsequent to prelaunch accident.

. Provide trained impact/recovery team and procedures for:

Recovery

Fire protection
Radiation Control
Decontamination

Y Provide tracking and location capability for early land and water recovery.
(] Minimize overflight of land and continental shelf,

° Provide nuclear cargo transfer operations that do not involve EVA.

[} Provide direct visual or TV coverage of all nuclear cargo transfer operations.
[] Provide positive control of nuclear payload during all handling.

] Minimize the crew and support personnel-dose rate throughout all operations (maximum of 150 mrem/day).

‘‘‘‘‘‘ e e o mreemme e o fee ———==-@—.—_Provide: rendezvous-and-docking-positions-such-that-the-Shuttle-crew -locations-are ‘within-the-shadow-of the-reactor-shield-to
minimize the dose to the crew during docking and replacement operations.

L] Provide procedures for permanent reactor shutdown prior to separation from Space Base.

] Consider allowing at least 10 days after shutdown before enacting Shuttle operations with a spent reactor. If this procedure is not
possible, provide for decay heat removal and radiation shielding if the spent reactor is to be transferred to the Shuttle less than 10
days after shutdown.

. Consider capability of reactor/shield separation from radiator at end of mission disposal or recovery.

[ Provide minimum 100 year orbital lifetime for spent reactor in high earth orbit {250 year orbit is preferred to give 9 half life
decay}.

[ Consider means of long term tracking of the power module {for possible recovery at later date).

. Provide emergency capability and procedures for ejection of the payload over deep ocean area or possible ditching of the Shuttle.

. Provide for emergency recovery of nuclear equipment if jettisoned from Space Shuttle.

. Provide touchdown area remote from inhabited facilities. ,

[ Provide certified unloading, decontamination and liquid metal equipment to handle nuclear reactor power module subsequent to
landing.

$e/€¢-¢




SECTION 4
SAFETY ASPECTS IN THE TRANSPORTATION OF

ISOTOPE REENTRY VEHICLES WITH THE SPACE SHUTTLE

4.1 GENERAL |

The packaging considerations, prelaunch, on-orbit and recovery operations associated
with a Shuttle-transported Isotope Reentry Vehicle (IRV) containing 52 kWt of ‘Pvu-238
isotope fuel are highlighted in Figure 4-~1, Although there are many similarities to the
reactor mission described in Section 3, 0, some vital differences regarding its safety

aspects stand out:

®  The IRV heat source is a source of radiation throughout the mission; specified
crew/heat source separation d1stances must be maintained or radiation shield-
ing provided. : :

¢ The IRV heat source generates thermal energy (constituting a thermal hazard)
throughout the mission; this energy must be removed in such a way that tempera-
tures to equipment and material are not exceeded.

e The specific radioactivity of the Pu-238 (in the IRV fuel capsules) far exceeds
that of the U=-235 in the reactor core prior to reactor full power operation;
extensive precautions must be taken to assure the containment of the Pu-238
during all credible accident environments.

®  No liquid metal hazards exist in this type of power system.

The facts stated -above lead to certain safety requirements in the integration of the isotope-

Brayton system with the Space Shuttle.
® The IRV should be installed in the Shuttle payload bay late in the countdown
sequence,

. Thermal control must be provided to remove the heat generated by the source;
if not passive in nature, redundancy must be provided.

e Blast and ffagmentation shielding must be provided.

o The IRV should be located as far as poss1b1e from the Shuttle propellants
' (explosive sources)
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The design solution that satisfies one of these requirements may complicate s‘olﬁti.on's that
satisfy another, and designs that appear desirable in themselves may lead to undesirable
operational procedures; therefore,‘ the approach to Shuttle trahsport of an isotope-Brayton v
system must be an integrated approach that takes into consideration all of the design, opera-
tional, and safety requirements associated with the Shuttle, the IRV, and the Space Base,

The following sectlons discuss these matters in more detail.

4.2 TRV=ISOTOPE HEAT SOURCE PACKAGING AND INTEGRATION
The packaging and integration of an IRV within the Space Shuttle 1nvolves consideration of a

number of interfaces, and has a direct impact on safety in the transportation of the IRV to
and from earth orbit, ' o

Asg these requirements and assoc{ated design concepts are discussed in subSequent para-~
graphs of this section, it will become apparent that the des‘ign approach followed in meeting
a particular requirement will have a significant impact on safety, oontmgency modes and the
design approachee 'available to meet another fequirement In particular the approach taken
~ to shielding the heat source from potent1a1 acc1dent environments strongly affects the ther-

mal control and handling subsystems, and contmgency modes ava.llable in the event of failures.

4.2,1 RADIATION PROTECTION |

Figure 4-2 presents the radiation environment associated with an unshielded 52 kWt isotope
heat source, The maximum allowable radiation dose from a miclear source. to a crewman
aboard the Space Base or Space Shuttle is 150 mrem /day per study ground rule,. If a cfew—
man is required to be positioned side-on to the heat source, he could remain w1th1n about 2m
of its center for 3 hours or at about 5 m (16, 5 ft) for nearly an entire day without exceeding
the allowable dose, Dose :rates along the plahes perpendicular to the radiating face of the
heat source are somewhat higher, as shown in Figure 4-2. Such an orientation of the heat

. source with respect to the crew should be avoided; or if necessary, limited to only brief

periods during transfer operations.
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Figure 4-2. Isotope Reentry Vehicle Radiation Environment

Based on the above, no shielding is required for the Shuttle orbiter crew in the course of

normal transfer operations, provided that the heat source is located in the Shuttle payload

bay at a distance of not less than 5 m from the nearest crew member, and oriented as shown

in Figure 4-1. An estimated 5.1 cm (2 in. ) of lithium-hydride (LiH) shielding would reduce

the minimum allowable separation distance (150 mrem/day is not exceeded) to approximately
4.1 m (13.5 ft); this distance represents the minimum crew/IRV separation distance pos-

sible based on the reference Space Shuttle configurations,

4,2.2 BLAST AND FRAGMENTATION PROTECTION

Two of the most critical phases of the mission (from a blast and fragmentation standpoint)
are those of prelaunch (after the IRV has been installed in the Shuttle) and launch/ascent.
During these operations, thé potential exists for a Shuttle explosion and fire with accom-
panying blast overpressures and fragmentation environment that could, unless preventive
measures are taken, result in the breaching of the fuel capsules and subsequent release of
fuel.

4-4

!



The potential for such an accidental release of isotope fuel is greatly increased because
of the proximity of the Shuttle orbiter fuel tankage to the IRV when it is installed in the
cargo bay. Appendix A of Volume IV, Part 2 describes the blast and fragmentation en-

vironment in some detail.,

Several approaches can be taken to eliminate or minimize the effects of this environment.

The most effective acﬁon which can be taken is to increase the separation distance between
the IRV and the source of the explosion, The blast overpressure and the fragment velo-

cities are rapidly reduced as the separation distance between fuel tankage and the IRV

increases, To achieve this, the IRV could be transported in a pod mounted externally on

the Shuttle, or it might even be located in the nose of the Shuttle; the added separation dis-
tance between fuel tankage and ieotope payload that these locations provide Will greatly
reduce the effects of the blast and fragmentation environment, thus permitting the use of
lighter and simpler environmental shielding to achieve a desired degree of safety. The
external pod also offers ease of separation, a virtue in ceftain potential accident situations.
The investigatiori of thevfeasibility of such schemes for the location of the IRV on the Shuttle,

and the respective trade-offs, are beyond the scope" of this study.

Although the environmental shielding would be lighter for an externally mounted heat source,
such shielding must be previded in any case. Figure 4-3 illustrates three possible approaches
to environmentai shield design (protection of the heat sOuree capsules from the blast over-
pressure, high velocity fragments, and fireball temperatures that might ensue in the event

of an explosion of the Shuttle main tankage),

The most straightforward desigri is the hemispherical environment shield, a design which
interposes shielding befween the heat source and the shuttle tankage. It permits passive
thermal control to be employed (ae will be discussed in Section 4. 2. 3). The hemispherical
shielding would prove inadequate (1) if there are explosions on the unprotected side of the
heat source, (2) if the heat source could tumble :and thus be reorienfed prior to the passage
of the pressure wave or the fragments and (3) if the unprotected side were slammed against

heavy objects such as parts of the Mobile Launcher tower,




® PASSIVE THERMAL CONTROL o ACTIVE THERMAL CONTROL
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P i LN
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Figure 4-3. Shield Packaging Concepts

As discussed previously in Section 3. 2. 2, a relative location of the Shuttle on the launch
pad which places a Shuttle payload between the source of the explosion and heavy objects,
such as the Mobile Launcher tower, presents a severe secondary fragmentation problem

An unobstructed payload ejection path is a requirement for large isotope heat sources such

as the IRV. An ocean or swamp impact area should be considered,

A second approach is the 47 environmental shield concept also shown in Figure 4-3, Here,
the IRV is completely protected by shielding, While this arrangement offers the maximum
protection from blast and fragmentation, it poses a problem in the removal of isotopé-
generated heat and it is much more difficult to integrate with the Shuttle in a normal mission
since an active, or pumped, thermal control loop is required and handling during ‘il.l‘->01‘bit

delivery and transfer operations is relatively complicated.
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The third approach as illustrated in Figure 4—3'représents a c_ombromise of the first two
concepts. It consists of a shield that nearly encompasses the heét source, but has aﬁ aper-
ture (away from the probable source of explosion) that permits the radiatjon of 'Sufﬁci'ent
heat to maintain acceptable heat source temperatures, This affang_émenf foers .nearly
complete protection to the heat sourc‘e while at the same time simplifying the ihtegration .'

with necessary thermal control and handling functions.

4.2.3 THERMAL CONTROL

One of the large potential hazards that arises when transporting an IRV is the éon‘Stant
emission of heat. The heat source contained in the referenced power system genefates

52 kilowatts of thermal power at beginning of mission and is reduced through décay of the
Pu-238 fuel to 48, 5 kWt at end of mission, This heat energy must be removed to prevent
high temperature oxidation of the refractory metal alloys in the IRV and to keep the heat
source temperature below the ignitibn point of any propellant fumes which may be in the
launch pad area. To achieve this requirement, the heat source is cooled to about 420°K
(300°F) with a flow of cold nitrogen prior to launch. The cold nitrdgen is supplied by Ground
Support Equipment (GSE) located in the Mobile Launcher. ' ' |

During the orbital and reentry phases of the mission, cooling of the heat source must be
accomplished by other means. However, the allowable temperatures afe much highei':
1365°K 2, OOO?F) for the heat source primary radiéting sﬁrface during in-orbit operations,
and certainly somewhat higher during reentry than the 4200K, (3000F) during prelaunch ,
operations since oxidation is no longer a major problem and the fuel loading is substantially
reduced. To maintain allowable temperatures during these operational phases, either a
passive or an active thermal control system can be employed, depending in large bart upon

the type of environmental shielding that has been selected. The basic safety requirements

are independent of the system used, namely that at any time during the mission there is an

emergency back-up for the normal temperature control system which ‘¢éan take over the

cooling function in case of a system malfunction,



Figure 4-4 shows the use of a passive thermal control system used in conjunction with a
hemispherical environment shield, Throughout prelaunch operations, the heat source
would be cooled as previously described.  About eight minutes after lift-off, the Shuttle
cargo bay doors can be opened to permit the heat source to radiate its heat load directly

to space, (See Section 6 for a discussion of contingency operations in the event that the
cargo bay doors cannot be opened, ) In the meantime, the heat source temperature will have
slowly increased, as is shown typically in the curve of Figure 4-5, With the IRV radiating
directly to space, the temperature of the radiating surface will not exceed about 865°K (see
Appendix B), If the Shuttle doors fail to open, the heat source temperature could go as

high as 1700°K (Ref. 4-1) with no emergency cooling capability, however, these elevated
temperatures would not be reached until several hours after launch, Dufing reentry 6pera—
tions, cooling of the heat source to an acceptable temperature of perhaps 6500 or 7000K

can be accomplished by a low temperature nitrogen system similar to that used on prelaunch,
but éarried aboard the Shuttle, A water boil-off system could also be used to reduce tﬁe
heat source temperature. Upon landing, the heat source could once again be cooled by

Ground Support Equipnient.

FOR THERMAL
CONTROL
SYSTEM WIT
DOORS

SHUTTLE

TRANSFER
MODULE

Figure 4-4. Hemispherical Environmental Shield with Passive Cooling
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If a 47 environmental shield is employed, the thermal control system is more complex.

Not only the heat source, but all other components within the confines of the shielding (e. g.,
the IRV recovery gear) must be adequately cooled. This probably will require control to
lower temperatures because of the electronic equipment exposure. The cooling can be
accomplished by a cold gas system, or by a pumped loop, using perhaps an organic fluid
and rejecting the heat to space by means of a radiator mounted externally on the orbiter
(Figure 4-6 shows the radiators mounted on the Shuttle cargo bay doors). Once the Shuttle
has achieved orbit, the shield can be remotely opened and the IRV exposed to permit the
heat source to radiate directly to space (as was_. the case with the hemispherical shield).

For reentry with the 4w shield, the theﬁnal control system must again adequately cool all
of the IRV components once the 47 shielding has been closed, The re-radiating pumped
loop cannot be used during the critical phases of reentry when high Shuttle skin temperatures
exist, VDuring this period either a cold gas system or a water boil-off system must be re-
"lied upon. Suitable controls can permit the pumped loop to act as a water boil-off system

when desired (see Figure 4-7),

SHUTTLE

Figure 4-6. 4w Shield with Active Cooling System
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ngure 4-7, Active Thermal Control Loop

4,2.4 SYSTEM STATUS AND CONTROLS

The IRV is a relatis)ely passive item of cargo throughout a normal mission, The thermal
control system associated with it is the critical system to be monitored because the heat
generated by fuel decay must be dissipated'withdut developi.ng‘ excessive temperattifes in

the heat source or elsewhere in the Shuttle cargo bay. The hu'm_ber of sensors and ,co_nf
trols Will be a function of the types of thérmal control system that is employed and the ther-
mal control system selection is in turn dependent upon ﬁhe enviroﬁmenfal shielding approach,
Table 4~1 has been prepared assuming thgt 4m environmental shielding and an activé pumped

loop is used. In this approach, an estimated 62 data points and 32 control devices are

required.
4.2.5 ELECTRICAL POWER -

The primary requirement for electric power in connection with the IRV is the thermal con-

trol system. The power level is dependent upon the type of ther_'mal‘ contfol system employed.
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For a pumped loop, the power demand is estimated to be 300 watts. Normal operating

time is estimated to be on the order of two to three hours for a normal reentry and landing

so that even with a large power reserve for emergency situations, the energy require-

ment will not exceed two or three kilowatt-hours.

or by the Shuttle electrical power and distribution system,

4.2.6 TRANSFER MODULE

This power could be supplied by batteries

From the preceding paragraphs and from the descriptions of the Space Shuttle and the

isotope power systems in Appendices A and C, it is apparent that the interface between

the Shuttle orbiter and the IRV is extensive.

To simplify the interface, and increase the

safety of handling and transport operations, a transfer module can be employed; it would

be designed to adapt to the Shuttle orbiter cargo bay mounting provisions to provide a self-

contained package for the IRV,

Table 4-1. Isotope Brayton Power System Control and Monitoring Requirements

Controls Sensors (Data Points)
*Number *Number
Function Required Function Required
Thermal Control Loop 6 Radiation Monitors 6
Positioning Latches 10 Heat Source Tempera~ 4
' ture Monitors
Shield Positioner (4w) 4 Cargo Bay Temperature 4
Monitors
Water Boil-off Loop 4 Battery and Power 12
System Condition
Separation/Ejection 4 Coolant Pump Operation 8
System
y Valve Positions 12
Power System 4 Equipment Positions 16
.|| and Status
Total 32  Total 62

*Redundancy Accounted for

4-12




The transfer module concept is illustrated in Figure 4-8. Here, the module safely secures
the IRV in a hemispherical environmental shield, provides cold gas and/or water boil-off
systems for thermal control, stores energy for the operation of an auxiliary electric power
system, includes all necessary sensors for system status monitoring and controls for sys-
tem operation, and is integrated with thé‘_h'andling equipment used during IRV transfer
operations. The interface between the transfer module and the Shuttle is reduced to a
mechanical (mounting) interface and the accommodation of instrumentation and cbntrol leads,

displays and panels.

A possible transfer module function quite different from those identified above, but of
considerable importance in terrestrial safety of transporting.an IRV is the capability of
~emergency ﬁayload -éjec,;t.ioh over deép océan areas should diagnostic data indicate a po-
tential accident situation upon landing. Ejection should occur with the Shuttle doors open,

however '"through-the-door ejection" should be evaluated as an emergency contingency.

TYPICAL LOCATION IN SHUTTLE
SECTION A-A A

.........

—=A \—TRANSFER MODULE

Figure 4-8;. IRV Transfer Module Concept
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4.2.7 DESIGN AND PACKAGING GUIDELINES
A summary of the key guidelines for the design-and packaging of a large isotope heat source
module within a Shuttle is contained in Table 4-2,

Table 4-2. Shuttle/Large Isetope Heat Source Design
and Packaging Guidelines

° Provnde multiple and independent radiation momtormg equipment wlth mstantaneous and recording outputs . for aII mission
phases.
LI Provide multiple and independent system monitoring and control equlpment with instantaneous and recording outputs for all

mission phases.-

[ Consider nuclear payload and Shuttle launch pad posmonmg that produee a directed unobstructed ejection path in event of
faunch pad explosion.

. Provide isotope heat source cooling to 420°K {300°F) or less durin'g prelauh'ch." T
° Provide passive cooling systems, or redundant active systems throughout al'l' pheses of the Shuttle-isotope heat source mission.
. Prevent propellant boil-off and other undesirable gases from enter'ing the cargo bey with the doors closed.
. Provide blast overpressure and fragmentation protectron adequate to assure eontamment of all radroactrve material in event of an
accident (critical requirement for isotopes). -
[ Provide fireball protection adequate to assure containment of all radlo acuve materlal in event of an accident (critical requirement
for isotopes). - :
. Provide approximately 300 w electrical power (either transfer rnodule or Shutt_le).
. Consider use of a “‘transfer module” to reduce and.simplify Shuttle interfaees and to improve safety in handling nuclear payloads.
° Assure maximum separation distance between the Shuttle crew nuclear payload {IRV should be plaoed wrth side-on view to crew
location).
° Provide intact reentry and impact capability. Consider use of crus_h-up materials to minimize damage upon Shuttle land impact.
° Provide certified equipment to handle nuclear payloads.
° Provide certified facilities to:
L] Store isotope fuel capsules o
. Load isotope fuel capsules into heat sources
. Install heat source in IRV )
[} Checkout isotope power systems and oornponents
[ ]

Perform radiological monitoring and control functions . -
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4.3 IRV TRANSPORT OPERATIONAL PROCEDURES

The transport operations involving the isotope reentry vehicle (IRV) are similar to those

of a reactor power module with notable exceptions described in the following paragraphs.

4.3.1 PRELAUNCH

The initial interaction between the IRV and the Space Shuttle occurs when it is installed in
the Shuttle cérgo bay. The heat source consists of a planar array of isotope fuel capsules,
These capsules are loaded into the heat source structure and the heat source in turn is
loaded into the Isotope Reentry Vehicle (IRV) prior to installation in the Shuttle cargo bay
(Figure 4~9). The assembly of the IRV /heat source takes place in a nuclear facility lo-

cated at the launch site at a considerable distance (several kilometers) from the launch pad.

The feature of isotope systems that most distinguishes it from other payloads is the con~
stant production of heat and nuclear radiation. The isotope-Brayton heat source gener-
ates 52 kilowatts of thermal power; this heat must be removed and thé heat source tempera-~
ture must be maintained at 420°K (3000F) or below during the prelaunch period (to preclude
the ignition of substances such as hydrazine that may exist in the launch pad area). The
cooling of the heat source is accomplished with redundant inert gas cooling systems which
are a part of the isotope-Brayton power system Ground Support Equipment and could be

located in the Mobile Launcher tower, Due to the radiation and thermal environment

emitted by the heat source, integration with the Shuttle at the launch pad should occur as

late in the countdown time-line as possible,

A radiation monitoring system is an essential element of the complex that is employed to
launch isotope power systems; such a system will be installed pridr to delivery of the
nuclear payload to the pad. It is anticipated that no restrictions to normal prelaunch opera-
tions will occur with the IRV except in the immediate vicinity of the IRV where exposure

time of technicians will be limited,

Because of its peculiar thermal control and accident protection requirements, it is assumed

that the IRV will be placed in an IRV Transfer Module prior to installation in the Shuttle
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.cargo bay. The transfer module as discussed in Section 4. 2, 6, simplifies tﬁe sfandafd
interfaces to the Space Shuttle and increases thé safety of the handling and transport opera-
tions. In addition, the transfer module can provide blast and fragmentation prbtéc_tiop, '
radiation shielding (if required), and thermal cpntrol for the IRV

The Isotope Brayton Power Conversion Module (PCM) can also be installed in a transfer module
before it is placed in the Shuttle cargo bay. The PCM Transfer Module serves si'mpliy. as.

é device to protect the PCM during hahdling operationé. Depénding on the design configu:
ration of the isotope-Brayton power system, the PCM will be transported with fhe IRV or

in a separate Shuttle launch. It mayi also be possible for the Shuttle to da_rry m_ulfiples of
either or both units, Handling of the RV Transfer Module and the PCM Transfer Module.

éan be accomplished with conventional. handling gear at the launch site, Instrumentation ’

of prime importance required fox'-. transporting an IRV in the Shuttle afé sen‘sbrs. _qu measur-
ing the temperature at selected critical points of the heat source and/or fuel capsules and
sensofs for the preiaunch checkout of the IRV recovery systems, The PCM requirés no

instrumentation,

4.3.2 LAUNCH/ASCENT o

During a normal launch ascent, the heat generated by the isotope fuel is lafgely taken up

by the heat source structure. The temperature of the device increases only slightly from
the 4200K to which it is cooled prior to launqh during the approximétely eight minutes
required to penetrate theb earth's atmosphere, Aft'er this time, 1_:he_ Shuttle cargo bay doors.
can Be opened. The heat source will slowly rise in temperature to its equilibriﬁm tempéra—

ture of 865°K (1100°F) as was shown in Figu_re 4-5.
Throughout the launch ascent phase of the mission, system status and radiation monitoring

equipment shall be operating to inform the crew of the payload's condition and their radia-

tion exposure,
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4,3.3 ON-ORBIT OPERATIONS : .
The IRV will be delivered to the Space Base from the Shuttle following successful rendezvous
operations. Several approaches to delivery, transfer, and recovery are possible; these are

discussed in the paragraphs that follow,

Figure 4-10 depicts four different methods of isotope cargo delivery, The first of these
involves a direct Shuttle dock to the Space Base and subsequent use of a remote handling
system to transfer the tRV from one vehicle to the other. The second approach involves
docking the Shuttle to the Base by rotating the cargo moduie through 90 degrees and then
employing the docking mechanism at the outer end of the cargo module to secure the
vehicles. Transfer could then take place using a special purpose device for removing the
IRV from the cargo bay of the Space Shuttle and installing it on the power system of the
Space Base. A third approach makes use of a Space Tug to deliver the IRV from the Space
Shuttle to the Space Base, Upon the Tug's arrival at the Base, procedures and equipment
similar to those already described would be put to use. A fourth possibility centers around
utilization of a self-propelled cargo module, an adaptation of the crew-cargo module con-
cept that has already been developed in Space Station/Space Shuttle studies. The self-
propelled cargo module is carried within the Shuttle cargo bay, and upon completion of
rendezvous operations, it separates frorh the Shuttle to transport the IRV to the Space Base.
The self-propelled cargo module could be either a manned or unmanned vehicle, and could

use equipment and procedures previously described.

Three transfer schemes associated with the delivery of an IRV to the Space Base are
detailed in Figure 4-11. All three involve the use of manipulators, either general purpose
or specially designed, and in each case, the operations are performed without Extra

- Vehicular Activity (EVA) on the part of either the Shuttle or Base crew.

- Transfer concept (1) employs a general purpose manipulator(s) to transfer the IRV from
the Shuttle to the Base. The manipulator(s) may be mounted on the Space Shuttle (Figure
4-11) or they may be mounted on the Space Base., It is also possible to include manipulators

mounted on both vehicles. The IRV Transfer Module should be equipped with fittings to
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facilitate opening and closing of the module with the manipulators, The IRV itself should
also be equipped with remote handling fittings to permit its removal from the IRV Transfer
’Module and installation in the power system. It is desirable to limit the travel of these
manipulators so that an IRV containing a heat source at equilibrium temperature in space
(~ 865°K) cannot be placed adjacent to either Shuttle or Base surfaces or equipment that
are subject to damage from the relatively high temperature heat source. The manipulators
shall be operéted by Shuttle and/or Space Base personnel who are in direct visual contact
with the equipment being transferred. The general purpoée manipulator(s) can also be used

to transfer the PCM as well as the IRV,

Concept (2) uses a "'special purpose' manipulator or transfér device to remove the IRV

from the IRV Transfer Module and position it in the power system on the Space Base, This
operation is performed after the IRV Transfer Module has been rotated ihto a position 90 |
degrees removed from its normal location in the Shuttle cargo bay, subsequent to docking

of the Shuttle to the Space Base. Functions other than the actual rotation of the IRV must

be performed by mechanisms other than the special purpose manipulators. For example,
the opening or closing of doors or hatches on the IRV Transfer Module could be accomplished
by additional manipulators, or by mechanisms integral to the module. The PCM would be

handled in a similar fashion. Primary control would come from the Shuttle.

The IRV Transfer Module, when used with the special purpose manipulator, could be
designed to index through 180 degrees. With this arrangement, a spent IRV could be stored
in the IRV Transfer Module while a replacement IRV would be transferred from the module

to its operating position on the Space Base power system.

In Concept '(3), an isotope-Brayton Modular Power System (containing radiator, PCM, and
IRV) is transferred from the Shuttle to the Space Base by means of a "'guide rail system'
employing specialized mechanisms that are an integral part of the power system design.
Remote manipulators aid only to the extent of disconnecting electrical cables. Typical

transfer sequences involving the replacement of an IRV and a' PCM are shown in Figure 4~12,
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® ROTATE SPENT

STEP 1

TO DEPLOYED POSITION

® DOCK TRANSFER MODULE

PCM ® ROTATE

STEP 2

REPLACEMENT PCM
TO SUPPORT STRUCTURE

® RELEASE REPLACEMENT
. PCM FROM TRANSFER
MODULE STRUCTURE

& SECURE

STEP 3

® ROTATE & SECURE SPENT _
PCM TO TRANSFER MODULE

® RELEASE SPENT PCM
FROM SUPPORT STRUCTURE

® ROTATE REPLACEMENT PCM
TO DEPLOYED PCSITION

. STEP 4

® ROTATE SPENT PCM
INTO TRANSFER
MODULE & SECURE

STEP 5

® SEPARATE TRANSFER
MODULE '

® ROTATE REPLACEMENT PCM
INTO SUPPORT STRUCTURE
& SECURE

Figure 4-12. Typical Transfer Sequence

4-22




All three of the approaches shown in Figure 4-11 and discussed here have certain features

in common:

e No EVA is required in normal operations.

o All power system assemblies/compohents are secured at all times. No objects
are permitted to ""float'" free in space, nor is a simple tether an acceptable
restraint,

e Transfer operations are performed by crew members of the Space Shuttle and/or
Space Base who are able to observe the transfer directly.

All three approaches appear to be acceptable from a nuclear safety standpoint; however,
further system definition is required before safety related advantages or disadvantages can
be evaluated. '

4,3.4 END-OF-MISSION

At the completion of a specified mission or in the event‘of_ a heat source malfunct_ion that
cannot be repaired, it will be necessary to dispose of the IRV. The Space Shuttle can be
employed to dispose of the IRV in one of two ways: boost into high earth orbit, or return

to the earth's surface,

4.3.4.1 Boost to High Earth Orbit
In the boost to high earth appi'oach, the Space Shuttle would transport the IRV and deploy

- it into an orbit sufficiently high so that the fuel inventory would decay to an insignificant

quantity before reentry into the earth's atmosphere occurred.

The orbital lifetime of an object is a function of its ballistic coefficient, W/ CpA, which
| for the reference IRV minus its shielding is 1420 Newtons/mz' (29.7 lb/ftz). Tablé 4~3
lists various éircular orbit disposal altitudes, the respective IRV orbital lifetimes as
determined from Figure 4-13, and the associated Pu-238 fuel inventories at the time of
reentry into the earth's atmosphere. The minimum allowable elapsed time prior to

reentry is assumed to be ten half-lives of the fuel. For Pu-238, this is approximately
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Table 4-3. Curie Inventory with Respect to Orbital Decay Time
Disposal Orbit Altitude Orbital Lifetime* Pu-238 Inventory** :
(km) (yrs) Ci/Fuel Capsule Total Curies
500 2.8 11, 625 1,511,250
600 10 10,990 1,429,700
700 30 9, 410 1,223,300
800 90 5,900 767,000
900 255 1,640 213,200
1000 660 70 9,100
1020 900 11 1,430
g :

*W/CpA = 1420 Newtons/m2 (29. 7 lb/ftz) h

**11, 880 Ci/Fuel Capsule after 10 yrs operation on Space Base; 130 fuel capsules/IRV

1200
W/C A v
1100~ 960 NEWTONS /M 2(20 LB/FT?)
1000[— o, v
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900 years, even if some of the long half-life decay products are not taken into account,
From the curves of Figure 4-13, itis apparent that the altitude corresponding to a 900~
yr orbit lifetime and a 1420 Newtons/m (29.7 lb/ft ) ballistic coefficient is approx:mately
1020 km (550 nm), In Figure 3-7, shown previously, curves are plotted to indicate that
Shuttle capability is limited to about 650 km (350 nm) at design propellant capacity, and to
835 km (450 nm) at maximum propellant .cé.paeity. This results 1n IRV orbital lifeﬁmes

of approximately 17 years and 135 years, respectively. Although these curves are based
on a payload mass of 3. 6t (30 klb), the performance improvement due to the re&uced mass
of the reference IRV is slight, the shuttle and propellant mass being the dominant factor.
Therefore it is concluded that the Space Shuttle cannot deliver the IRV to a suitable high
d1sposal altitude without shuttle refuelmg The selected means of disposal is to return
the IRV to the earth's surface

4.3.4.2 IRV Return to Earth's Surface

The Descent/Reentry Phase of Shuttle flight 'impose no unusual requirements on Shuttle/IRV

~ integration other than the need to maintain thermal control of the isotope.heat source during
the critical phase of reentry, when the skin wmperature of the Shuttle is so.high'that aux-
iliary cooling is required. From Figure 4-14, it can be seen that the maximum skin teinpera—
ture at the dbrsal area of the delta~winged Shuttle orbiter (Refelrence 4-3) is predicted to _
be 590°K (600°F). From this reference it is estimated that the time at elevated tempera-
ture will be on the order of 33 minutes, The IRV transfer module could eornta.in redundant
water boil-off systems to accomplish this cooling. |

A normal landing presents no difficulties in Space Shuttle/IRV integration. Upon landing
and completion of the roll-out, the orbiter will be taxied to the cargo removal area since
it is desirable to place the isotope heat source in a nuclear facility with as little deley as

is practicable. A radiation and Pu~238 contamination check should be performed prier to

the initiation of any operations inVolving the Shuttle and/or IRV, The water boil-off system

should be capable of providing cooling during this period. Shuttle propellant gases should
be prevented from entering the cargo bay. To remove the IRV Transfer Module from the

cargo bay, a cargo unloading crane is used. Prior to actual removal of the module from
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the Shuttle, inert gas cooling will be introduced to cool the heat source, using the same
0
inert gas cooling systems that cooled the heat source prior to liftoff, Maintaining a 420 K
)
(300 F) heat source temperature will inhibit oxidation of the heat source refractory metal

structure and capsule cladding, facilitate handling operations, and reduce ignition potential.

Removal of the nuclear cargo would be accomplished with the Shuttle parked in a normal
horizontal position. The IRV within the IRV Transfer Module would be placed within a
transporter for transport to a disassembly bay in the nuclear facility at the launch/landing

site,

Abnormal desce’nt and landing situations (where crash potential is high) niay necessitate
the emergency ejection of the IRV onto the continental shelf for recovery or into deep ocean
areas to prevent possible radiological hazards to the general populace, Although frag-
mentation protection is provided, the ejection mode with the cargo bay doors open, or in

contingencies, through the doors, should be a primary safety consideration, (See Section 6).
4.3.5 OPERATIONS GUIDELINES

. A summary of key guidelines for Shuttle operations involving a large isotope heat source

is contained in Table 4-4,

4.4 REFERENCES

4-1 "Preliminary Accident Model Document, ' Volume II, Isotope, MSFC-DRL-160,
Line Item 24, -MDC GO744, McDonnell Douglas Astronautics Company-West,
January 1971, l

4-2 "Nuclear Reactor-Powered Space Station Definition and Preliminary Design, "
Volume II, Operations, MSC-00741 (SD 70-168-2), North American Rockwell,
January 1971. .

4-3 "Draft Space Shuttle - Phase B Systems Study Final Report — Technical Summary,"

MDC E0308, Part II-1, McDonnell Douglas Corporation, under Contract NAS8-26106,
March 1971, '
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Table 4-4. Shuttle/Isotope Heat Source/IRV Operations Guidelines

Provide support personnel and shuttle crew training with confirmed procedures in the use of multiple and independent radiation
monitoring equipment with instantaneous and recorded outputs. .

Provide shuttle crew training with confirmed procedures in the use of multiple and independent system monitoring equipment
with instantaneous and recorded outputs for all mission phases.:

Provide certified operational ptans to:

Receive and store isotope fuel capsules

Load isotope fuel capsules into heat sources
Install heat source in IRV

Checkout isotope power systems and components
Launch and perform orbital transfer operations
Retrieve and recover

Provide fire alarm and protection systems, training and procedures capable of supporting isotope hardware at:
] Nuclear facility
® Transporter
o Launch pad T -

Provide suitable personnel exclusion area at the launch and landing sites (4 km fall back area and 13 km administrative control
zones are adequate).

Establish emergency procedures and decisions (contingency plans) for emergency situations.

Provide and confirm procedures for the cooling of isotope payloads for all phases of the Shuttle mission {no identifiabie failure
modes or provide redundant cooling systems).

Provide transfer modules to protect and reduce the handling and packaging of the large isotope heat source {IRV).
_uqo<im procedures to assure isotope heat source subcooling to 420°K (300°F) or less during prelaunch.

Install heat source in Shuttle at last practicable point in launch countdown sequence.

Consider quick retrieval equipment to remove payload during emergency.

.1320: launch during unsatisfactory weather conditions, including moderate to high winds to populated areas.
Provide recovery gear and procedures for use subsequent to prelaunch accident.

Provide trained impact/recovery team and procedures for:

Recovery

Fire Protection

Radiation Control
Decontamination

Minimize overfiight of land and Continental Shelf

Avoid or limit operations of the crew which place them in the near vicinity of the heat source and in particular those positions
perpendicular to the radiating surface.

;gm:.:anm..ﬂ:mm_,mi. no%.qmaA:_‘o:m:o:ﬁm:,ou@qm:o:m-?axm3:3,o* A‘_mo.quB\ami. i‘lli;l .
Provide for positive control during all isotope handling operations in-space as well as on the ground.
Provide nuclear cargo transfer operations that do not involve EVA,
Provide direct visual or TV coverage of all nuclear cargo transfer operations.
Provide redundant or backup equipment and procedures for nuclear cargo handling.
Consider a shuttle back-up for retrieval operations.
Provide tracking and location aids for early land or water recovery of large isotopes.

Provide procedures for the contingency ejection of the IRV over continental shelf or ocean area prior to landing.

Provide for emergency recovery of nuclear equipment if jettisoned from Space Shuttle into feasible recovery areas (e.g.,
continental shelf).

Consider touchdown area remote from inhabited facilities.

Provide certified removal equipment and procedures to handle large isotopes subsequent to Shuttle landing.




SECTION 5
SMALL ISOTOPE SOURCES

5.1 GENERAL

The.Space Shuttle may be employed to transport small radioisotope devices to and from earth
orbit, Small radioisotope devices are defined here as RTG's or other isotope units with heat
sources rated at 2500 w thermal or less. Typical of such units are the Multi-Hundred Watt
Radioisotope Thermoelectric Generator MHW-RTG), and the Radioisdtope for Thermal
Energy (RITE) heat source for the Integfated Waste Manﬁgeinent System, These two units
are presented pictorially in Figure 5-1, The MHW's application in conjunction with the Space
Shuttle would typically be to power an unmanned deep space probe that is carried into earth
orbit (along with an upper stage such as a Centaur) in the cargo bay of the Shuttle; the RITE
heat source, on the othef hand, miéht be delivered by the Shuttle to the Space Base for in-
stallation and operation as a part of that vehicle's Environmental Control and Life Support .

(EC/LS) system,

5.2 MULTI-HUNDRED WATT RADIOCISOTOPE THERMOELECTRIC GENERATOR
(MHW-RTG) -

The MHW-RTG (Reference 5-1) is-an advanced radioisotope power system now under develop-
ment., It will have a higher power density than the SNAP-19 or SNAP-27 RTG's, will use SiGe
thermoelements, and will produce higher temperatures both at the fuel capsule and at the
generator's external heat rejection s'urfacer‘s. The MHW-RTG is designed to produce 150
watts of electrical power from a heat input qf' 2400 watts, Its salient design features are
presented in Figure 5-2, The MHW-RTG is designed for 'modu.lar‘use; two units can be com-

bined for an output of 300 watts, and so on,

A typical MHW-RTG application is shown in Figure 5-3 where four MHW-RTG's are part of
a Grand Tour Spacecraft, This spac.ecr__.aft, attached to a Centaur upper stage, is installed in
the Shuttle cargo bay for transportafiorl fo. iow earth orbit, The in-orbit operations for such
a Shuttle transport mission are relatively simple, Following orbital checkout of the space-
craft, upper stage, and separation system, the assembly is deployed from the Shuttle, Its
attitude is established, and the upper stage is fired (by command from either the Shuttle or
Ground Control) to place the spacecraft into a planetary trajectofy.
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The interfaces to be considered for such an MHW-RTG application are essentially the same
as those for the IRV, but because the generator(s) is mounted on the outer structure of the
spacecraft instead of on the transfer module, the approach to satisfying all of the interface
requirements will be rather different, Blast, fragmentation, and fireball protection should
be provided for the generator fuel capsule., Shielding around the MHW heat source on the
Spacecraft would result in a significent performance penalty. The required shielding could
be located in the Shuttle cargo bay or, in keeping with the transfer module concept, could be
mounted on a transfer module that contains the spacecraft, the upper stage, and such auxil-
iaries as environmental shielding, Since the MHW-RTG itself probably will have adequate
cooling within the Shuttle cargo bay, the primary emphasis on thermal control will be to
maintain the temperatures of the unmanned spacecraft's components within allowable limits,
Thermal control problems would largely be limited to the Prelaunch Phase of the mission
since the Launch/Ascent Phase takes the Shuttle and its payload into a space environment in
approximately eight minutes, at which time the Shuttle doors can be opened. If cooling of
the MHW-RTG's is required, in the event of a contingency situation, an active cooling system
such as that described for the IRV (Section 4, 2, 3) should be employed., The implementation

of such a system would require more study and evaluation,

CENTAUR (UPPER STAGE)

GRAND TOUR
SPACECRAFT

4 MHW-RTG's

Figure 5-3. Grand Tour Spacecraft Installed in Shuttle




5.3 RITE HEAT SOURCE

Another small radioisotope device that may be transported by the Space Shuttle is the Radio-
isotope for Thermal Energy (RITE)Heat Source which is a part of the Integrated Waste Manage-
ment System (Reference 5-2)., This system, shown in Figure 5-4, is designed to recover
potable water from urine, wash water, and environmental control system condensate, as well

as from solid wastes.

The RITE heat source operates at 1035°K and generates 420 watts of thermal power. Although
reentry protection is required, the design for such protection has not yet been identified be-
cause present development is for a ground test engineering unit, For the purposes of this
discussion, it is assumed that the RITE heat source is equipped with integral reentry heat

protection that will meet all reentry and impact survival requirements.

As other radioisotope fuel capsules, the RITE heat source must be protected from potential
fragmentation and fireball environments that can follow an on-pad explosion of the Shuttle

fuel tankage. Because of the small size of the RITE fuel capsule, the size and weight of the
blast and fragmentation shielding will be minor compared to that required for the IRV, A
transportation cask which facilitates handling (both on the ground and in-orbit) and combines
the functions of providing blast and fragmentation protection, thermal control, and reentry
protection can be designed for use with the RITE heat source., Figure 5-5 shows the RITE
heat source in its transportation cask being transferred from the Shuttle to the Space Base for

subsequent installation in the Base EC/LS system,

The Shuttle provides the prime mode of retrieval of small isotopes. It is expected that during

a Space Base mission and at the end of mission ''close out', isotope heat sources would be

transferred along with other non-expendable cargo to the Shuttle and returned to earth.



sodojosToTpey Jursn wolsAg
I9)ep\ —JUQUIOSBURIY 9)SBA pojeadojul ‘ydoouo) s,)STAyY  °F-G oandi g

TWW09-9L2° AOTIALSYH
S3HONI NI SNOISNIWIQ

310N

MW S — E-VYNIWNTY G3ZINLLY D
MWOZ-MOL-VL

MW 0Z-"¥0Z—d
MKW S—'H 0S—“W

HWO06—1i1—-L1

vIa M (62 -501—WNILLA
V10 1262-v9-%0"d

‘via =9
1292 g

£4 | | e

WNIHLLA SWYHO §9°2F '8£2"°d SLLVM 66°61Y
3INSAVYD LISNVHL 030v0440




LOGISTICS MODULE

(TRANSPORTATION CASK) ~ |

RITE HEAT SOURCE

Figure 5-5. RITE Heat Source in Transportation Cask
Being Transferred to Space Base

5.4 GUIDELINES

The basic guidelines specified for the large isotope heat source apply for smaller isotope
quantities, The blast, fragmentation and fire protection may be an integral part of the cap-
sule design, Cooling requirements during prelaunch of less than 420°K still exist, but the

thermal output may be low enough to negate the need for auxiliary cooling.

5.5 REFERENCES

5-1, '"Multi-Hundred Watt Heat Source Safety Assessment Report', GESP-7052, General
Electric Company, June, 1970, - ‘
"Integrated Waste Management - Water System Using Radioisotopes for Thermal
Energy", Summary Report, Contract No, AT (30-1)-4140, General Electric Company,
September 8, 1970,
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'SECTION 6

CONTINGENCY ANALYSIS

6.1 GENERAL

Abnormal and/or emergency situations involving nuclear payloads could result during the
mission. If remedial steps are not taken in these situations, the mission could be curtailed
and poténtial hazards to the crew, equipment, the general public, and the ecology ‘could result.
The implementation of contingency modes and emergency operatiﬁg procedures could eliminate

or substantially reduce the adverse effects on the mission and the risks to personnel.

The result of a qualitative contingency analysis of Shuttle/nuclear payload transport missions
indicates that the implementation of emergency procedures is effective for three situations:
(1) where remedial actions contain and control the emergency situation and normal operations
can be resuméd, (2) where a diminished operating mode can be established until the normal
operational conditions are reestablished and (3) where cfew and/or equipment abort pro-
cedures can be enacted to effect recovery of the crew and/or safe disposal or recovery of

the nuclear 'Source. Each sifuation is a deviation fr;m the normal mode of operations and

could require unanticipated implementation.

Effective contingency implementation requires careful planning, procedural preparation and

training, which must be performed in parallel with hardware design, development and mission

planning.
Several of the key contingency situations are discussed in the following subsections.

6.2 REACTOR POWER MODULE - SHUTTLE MISSION CONTINGENCIES

6.2.1 LIQUID METAL LEAK DETECTED WITHIN CARGO BAY ON LAUNCH PAD

If a liquid metal leak is detected within the power module while on the launch pad, immediate
safing procedures are required. A careful diagnosis of the nature and magnitude of the leak
is important. Under conditions where liquid metal may have been deposited in the cargo bay,

opening of the cargo bay doors could result in a reaction with moisture laden air and a

potential fire. To prevent this situation, the cargo bay doors should not be opened until 0O,
’ 6=-1



sources have been removed. The booster should be defueled (several hours). During this

time liquid metal fire equipment and fire fighting personnel must be on alert and the cargo
bay compartment purged with a dry N2 or inert gas. In any case, the power module would
not be launched with a known liquid metal leak so repairs and/or replacement are required.
Althbugh a possibility exists of enacting a repair within the cargo bay, it is generally pre~
sumed that the power module would be removed from the cargo bay and transported to a

liquid metal servicing facility.

Should a fire result after the above safety precautions have been implemented, rapid smooth-
ering of the liquid metal sources is important. If there are sections in the cargo bay which
may be ina.ccessible to available liquid metal fire equipment, such sections must be pro~
tected so that no liquid metal could flow into them or provisions must be made for double
containment. Another protective device based on the principle of double containment involves
the use of a positive pressure liner which would be placed around the reactor/shield or the
entire power module prior to or during installation in the cargo bay. This liner could be
designed to contain the leak and also maintain a positive inert gas pressure until the module

is within the controlled environment of the liquid metal servicing facility.

6.2.2 DETECTED FAILURE OF POWER MODULE DURING LAUNCH ASCENT OR
RENDEZVOUS -

System status monitoring and liquid metal leak detectors will provide a means of detectingv
some failures in a power module prior to docking to the Space Base., Failures during ascent
would normally require a termination of the Shuttle ascent boost and a subsequent reentry
and/or landing, preferably at the original point of departure. Early in the ascent phase, it
may be necessary to consider dumping of Shuttle fuel to meet landing weight limits and to
avoid landing with a large potentially explosive fuel load. A normal landiﬁg could be per-
mitted under a majority of the detectable failure conditions. Special unloading precautions '
must be taken, however, if a liquid metal leak has occurred prior to or during landing.

Cargo bay doors should not be opened to the ambient environment until radiation and liquid

metal leak checks and safing procedures are implemented. The containment of liquid metal

within an environmentally controlled liner would permit removal of the power module from

the Shuttle in the ambient environment and minimize potential damage of the Shuttle caused
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by liquid metal reactions. The radiation environment would be low since the reactor has

not undergone full power operation.

6;2. 3 SHUTTLE FAILURE DURING ASCENT

A Shuttle failure during the ascent phase,v but prior to achieving orbit, could result in (1) an
explosion at altitude, (2) a loss of thrust, which could necessitate a ditching at sea or a
landing at an unplanned landing site or (3) a loss of control which may also require ditching

or an uncontrolled crash,

If shuttle failures occur in orbit, the short orbital lifetime (~ 1 year) could allow for a
backup Shuttle to (1) enact rescue of the crew, (2) provide retrieval of the payload, or (3)
provide assistance Ain the repair of the failed Shuttle whereupon the mission could be con-
tinued. These contingency actions increase the probability that the crew and the payload
could be rescued.

When an emergency shuttle landing is to be attempted, consideration should be given to the
possibility of the ejection of the reactor power module into a deep ocean area prior to landing.
Preoperational nuclear hazards of a reactor primarily involve that of an excursion. If
assurance can be given that such an event will not happen, a soft landing should be attempted
and thereby save the payload. A hard landing could rupttire liquid metal components and if
environmental containment is not maintained, a liquid metal reaction could result. Readily

accessible quantities of liquid metal fire suppression material should be provided in the

Shuttle, as this material would probably not be available at an unplanned landing site.

. Radiation monitors should also be available,

6.2.4 FAILURE OF SHUTTLE DOORS TO OPEN PRIOR TO PAYLOAD EMERGENCY
EJECTION

The payload emergency ejection mode during launch or landing may involve the opening of
the Shuttle cargo bay doors. If the doors fail to open, consideration should be given to
ejection through the doors where such an impact on the doors would cause severence of
door hinges or other attachments so that damage can remain isolated from the Shuttle

proper. The design and aerodynamic implications of these situations must be addressed.
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6.2.5 FAILURE TO REMOVE REACTOR FROM CARGO BAY OR TO DOCK TO SPACE BASE
The primary contingency plan should include consideration for repair, if it is found impossible
to remove the reactor from the cargo bay due to failures in the transfer mechanisms or dock-
ing of the power module cannot be completed due to interface problems. If repair is possible,
a backup Shuttle should be available within approximately 12 days (time allowed for hardware
preparation and launch preparation) to provide the necessary logistic and maintenance support.
These operations would necessarily require a Shuttle orbital stay time of up to 20 days. The
Shuttle with its nuclear payload could be docked to the Base, and powered down in the interim
and the Shuttle crew billeted in the Space Base. Radiation limits for the Shuttle crew would
not be exceeded for operations involving a 'clean" reactor. However, operations involving

a spent reactor must be carefully controlled to minimize the radiation doses to the crew.
When in-orbit repairs cannot be affected, the Shuttle should return to its landing site.’

6.2.6 RETRIEVAL - DISPOSAL - RECOVERY OF A DAMAGED POWER MODULE

The Shuttle may be required to dispose of or recover a previously damaged power module,
The action taken is dependent on the extent of damage. It is therefore important that fhe
damagé be known prior to the commitment of the Shuttle so that the proper action can be
taken, If damage‘ is of such an extent that considerable hazards would be presented to the
Shuttle and crew or placement within the cargo bay would be impossible it would be advise-
able tb enact a separate (apart from Shuttle) disposal to high earth orbit. If a disposal sys-
tem were not a part of the power module or the existing disposal system were inoperable,
the Shuttle could be called on to bring up a replaceable or strap-on disposal package. Time
spent in these operations should be minimized as the damaged power module would possibly

remain attached to the Space Base, necessitating a reduction in Space Base power.

In the situations where the Shuttle must be the means of disposal or recovery, the Shuttle
cargo bay could be subjected to liquid metal and possible radiation contamination. The extent -
of potential radiation contamination (activated NaK debris, etc.) should be assessed prior

to commitment of the mission, so as not to exceed the allowable crew dose rate of 150
mrem/day during disposal operations (dose rate is based on yearly average - higher dose

rates could be permitted during shorter orbital stay times).
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A positive pressure liner could possibly be wrapped around the damaged power module prior

to installation in the cargo bay. This procedure could protect the Shuttle cargo bay and pro-
vide safety advantages in the unloading and Shuttle refurbishment operations at the landing site.
In any case, the cargo bay should be designed to facilitate decontaminatioq and minimize Shuttle

turnaround time. Clean unobstructed surfaces should be a design objective.

A poWer module »equippéd with a separable heat exchanger provides the possibility of retrieval
and recovery or disposal of only the reactor/shield assembly. The radiator and internal
components would be jettisoned and allowed to reenter by orbital decay where burnup is

expected.

6.2.7 DISPOSAL FAILURE RESULTING IN SHORT LIFE ORBIT

Short life orbits Qf é power module (nominally 1 to 100 years) resulting from a disposal

failure, occur due to a failure of the Shuttle during disposal or due to a failure in a power

module disposal sfystem. In the former case, the Shuttle can elect to release the power
module in whatev’ex_' orbit was attained and perform an empty cargo bay landing. The

| possibility aléo exists of bringing the power module back to earth in the Shuttle, with the

landing options available as discussed previously.

If the power module should be in a low earth (short life) orbit, possible retrieval action with

a back-up Shuttle could be taken by a reboost to high earth orbit or an earth return, In such
situations, the power module would possibly be tumbling and uncoop_érative satellite retrieval/
grappling techniques would be required. Tracking devices (transponders, beacons, etc.),

on the power module, would aid in location and rendezvous.

6.2.8 SHUTTLE OR POWER MODULE FAILURE CONDITIONS DETECTED DURING
DESCENT FROM ORBIT

Detected failure conditions of the Shuttle which lower safe landing probabilities, or detected
hazardous conditions of the power module within the cargo bay present several contingency
options during the descent trajectory. An evaluation of the radiological risks involved should be

performed. If risks are ‘deemed high enough such that a landing with the payl’oad' should not
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be attempted - two contingency modes exist (1) a ditching at sea with a crew recovery or

(2) the ejection of the payload over a deep ocean area followed by a landing of the Shuttle

and crew. The first mode would possibly result in severe damage or loss of the Shuttle.
Landing of the Shuttle in the second mode could result in a Shuttle crash, particularly if
Shuttle failures existed. In either case, during a safe landing or in a crash, some radio-
active and/or liquid métal contamination could be present, Decontamination should be
pursued where appropriate, realizing that these procedures may be required at alternate
and unplanned landing sites. In mode (1) or (2) where the payload impacts in the deep ocean,

amounts of radiation released should have negligible effects on the general populace.

6.3 ISOTOPE HEAT SOURCE - SHUTTLE MISSION CONTINGENCIES

The contingency modes available in a Shuttle mission transporting an isotope heat source(s)
are similar to those described for a reactor power module, However,no liquid metal hazards
exist due to the absence of a liquid metal inventory. Other notable differences are due to
(1)-the thermal hazard presented by the heat source necessitating special cooling provisions
‘and (2) the potential value and reusable characteristics of the isotope placing added emphasis
on recovery operations. These latter two differences relative to a reactor power module are

emphasized in the subsequent discussion.

6.3.1 LOSS OF HEAT SOURCE COOLING ON THE LAUNCH PAD

Normal cooling of the heat source to at least 420°K is required to eliminate the isotope heat
source as a potential Shuttle propellant vapor ignition source. Loss of on-pad cooling of a
large isotope heat source contained within a Shuttle cargo bay will result in an immediate
rise in heat source temperature. If the Shuttle doors remain closed during the failed
condition, propellant vapor should not enter. The potential for oxidation of the heat source
refractory metals increases as the temperature rises. A maximum design temperature

of approximately 7 OOOK in ambient conditions is suggested. A heat source cooling system
failure with Shuttle doors closed, wbuld result in a heat source temperature rise to 5500K
within a half hour and 7000K in approximately one hour., Repair of the prime cooling system
on the Mobile Launcher or start-up of an auxiliary/back-up cooling system should be accom-
plished in this time frame. Failure to do so would require opening of the cargo bay doors

to permit use of external cooling systems and prevent damage to the Shuttle,
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Draining of propellant tanks may be advisable in this event. Purging of the cargo bay area

with dry N, would also reduce ignition 'potential.-

2

6.3.2 LAUNCH PAD EXPLOSION AND FIRE »

As contrasted w1th a pre-operatmnal reactor, a large isotope heat source constltutes a
potentially large_ radiation hazard should s;gnlflcant amounts of isotopic fuel be released in
a launch pad fire ball. Calculations show (Reference Vol. IV, Part 2) that when récently
developed fuel forms and encapsulation techniques aré-used for certain missions, fuel
release source terms can be kept to a minimum. HowéVer; for .the Shuttle missions, new
design may ha'vé to be developed because of the blast and fragmentation damage potential

which exists. Fuel release preventive measures, such as the addition of protective shielding

and use of a Shuttle launch configuration which permits an unobstructed blast ejection path

~ to carry the heat source or orbiter and payload out of the fireball perimeter, should be

design objectives.

6.3.3 FAILURE OF CARGO BAY DOORS TO OPEN oN ASCENT _
Candidéte_operéting procedures involved with a "passivgly cooléd" heat isource call for the
opening of the Shuttlev cargo bay doors some 8 minutes after launch "cé allow the heat source
‘to radiate directly to space. (This feature may not be available if the heat source were

entirely surrounded by a blast and fragmentation shield as discussed in Section 4. 2. 2,)

If Shuttle doors fail to open when a heat source with an expdsed radiative surface is in the
cargo bay, heat source temperatures would increase similarly to that described for the
Launch Pad situatidn, Section 6.2.1. The requirement for a redundant active cooling sys-
tem internal to the'Shuttle, is identified for the Shuttle return (descent) of the heat source
to earth. During this operation, the Shuttle cargo bay doors are closed (~ 3 hrs prior to
reentry) to permit reentry through the atmosphere. This same inte'rnal cooling sysﬁem can
 be used for back-up cooling on ascent. Ultimate failure to open the doors would necessitate
a return to earth landing and removal of the heat source. " Back-up cooling provisions
~should be capable.of ope_ratmg up to 24 hours. If all cooling fails, temperatures would -
'continue to rise and eventually exceed normal heat source operating temperatures of about

1360°K,causing ultimate damage to the Shuttle. Ejection of the heat source into an ocean



area should be considered if other alternatives lead to reentry burnup or ultimate land

impact and/or crash landing.

6.3.4 RETRIEVAL AND RECOVERY OF A DAMAGED HEAT SOURCE

A damaged heat source may constitute an additional radiation hazard due to possible fuel
capsule fractures with the potential of a release of inhalable isotope fuel particles (fines).
A damaged reentry shield would prevent a successful independent reentry, a backup mode
of recovery. This back-up recovery mode should be particularly avoided if fuel capsule
fractures are present. Retrieval by the Shuttle should be the objective and the prime mode
of recovery. With a failure in fuel capsule containrhent, the resultant radiation due to re-
lease of fines should not be a hazard to the crew, but a thorough decontamination of the

Shuttle cargo bay upon landing would be reqﬁired. Clean, smooth cargo bay surfaces, free

from protrusions and crevices would enhance decontamination procedures. A sealed crew

compartment (separate ECLS) should be a design objective to assure radioactive vapor from

fractured capsules does not enter the compartment.

An intact and controlled heat source reentry and landing must always be an objective. This
is particularly important when fuel capsule failure has occurred. The addition of crush-up
material in the cargo bay would lessen the potential damage due to a hard landing or crash.
A rapid removal of the heat source from a fire after landing and rapid fire suppression will

reduce the potential hazard.

6.3.5 RECOVERY VS. DISPOSAL OPTIONS

Due to the relatively high monitary value of the isotope inventory in a large heat source,
recovery is generally the prime aim during the end of mission mode. Therefore, recovery
provisions such as tracking devices, dye markers, pingers and possible floatation gear are
important safety design features. If reliable recovery techniques are available, emergency
ejection into a Continental Shelf area rather than in the deep ocean can provide quick re-
covery. However, consideration must be given to the potential hazards which may result
from failure to recover the heat source, such as the contamination of fishing areas and the

resultant risk to the general public,
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6.4 DESIGN AND OPERATIONAL GUIDELINES FOR CONTINGENCY PLANNING

A summary of the key guidelines for implementing contingency plans for the Shuttle transport

of nuclear payloads is contained in Table 6-1.
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Table 6-1. Shuttle/Nuclear Payload Guidelines for
. Contingency Planning

GENERAL

(] Provide capability to defuel the Shuttle in nuclear emergencies on the faunch pad.

. Provide dry ZM purging capability of the Shuttle cargo bay volume while on the launch pad.

[} Provide capability of detecting and alerting the Shuttle crew of nuclear payload failures which occur during transport.

L) Provide unobstructed blast ejection path for nuclear payloads on the launch pad (particularly important for isotope payloads).

o Minimize radiation dose to crews performing contingency operations {maximum of 150 mrem/day from nuclear sources should be
maintained).

[ Consider use of a back-up Shuttle to support repair of a failed Shuttle or transfer or retrieval of the payload in orbit for the
continuance of the mission.

. Provide contingencies for Shuttle orbital stay times of up to 20 days to allow for repairs to be made.

. Where in-orbit repairs of interfacing non nuclear hardware (transfer mechanisms etc.) are unsuccessful, the shuttle and payload
should return to earth.

L] Consider feasibility of uncooperative ‘‘tumbling’”’ power module retrieval with Shuttle.

. Provide tracking and recovery devices on nuclear payloads.

[ Where detected Shuttle failures indicate reduced successful landing probabilities, ditching at sea or payload ejection should be

. considered.

L Consider payload ejection through cargo bay doors if doors cannot be opened.

[ Consider dumping of excess Shuttle propellant prior to landing to minimize explosive potential.

[} Provide Shuttle radiation and liquid metal decontamination capability at the launch and landing site.

] Provide a clean, smooth surface cargo bay to facilitate decontamination, and minimize the time required.

REACTOR POWER MODULE

Provide double containment of liquid metal components where feasible.

Consider use of a inert gas positive pressure liner for encasement of all or portions of a reactor power module - considered
particularly important for the in-orbit retrieval and landing site removal of a damaged power module.

Provide capability of detecting and alerting the Shuttle crew of a liquid metal leak which would render the power module
inoperable and provide potential hazards within the Shuttle cargo bay.

Consider provision of liquid metal fire suppression material within the Shuttle.
Consider capability to install a replaceable or strap-on reactor disposal system by the Shuttle crew.

Consider a Shuttle return of only a redctor/shield by a design which permits in-orbit separation of the radiator and other
components.

Consider reactor reboost capability to a new long-ife orbit by the Shuttle.

Provide a controlled environment liquid metal safing capability at launch and landing sites (reduction or elimination of Ow
sources).

Consider emergency ejection of reactor into deep ocean area during ascent and landing.

= —— -ISOTOPE_.HEAT_SOURCES - o e e

Provide a rapid response back-up isotope cooling system at the launch pad which does not require opening of the Shuttle doors.

Provide capability to reduce ignitable propellant fumes around cargo bay (i.e., drainage of propellant tanks and or purging
immediate payload area).

Provide a redundant active isotope cooling system within the Shuttle cargo bay to be operable on ascent and return/reentry with
at least 24 hours emergency operating time.

Provide for Shuttle retrieval and recovery of a heat source with a damaged shield or fuel capsule fractures.
Consider emergency ejection of isotope-Brayton heat source onto continental shelf areas during ascent or landing.
Consider provision of floatation gear for an Isotope-Brayton heat source (possibly time limited).

Provide a crush-up structure within the Shuttle cargo bay for reduction of isotope fuel capsule damage for the case of a crash
landing.

Provide capability for the rapid removal of a heat source from fire emergencies upon landing.




SECTION 7
TERRESTRIAL SAFETY SUMMARY

7.1 GENERAL

The purpose of the terrestrial nuclear safety analysis is to identify and characterize the
nuclear hazards to the general populace associated with the Space Shuttle trénsport ofa
zirconium hydride reactor power module and an isotope-Brayton power system to and from
the Space Base. The primary objective of the analysis is to evaluate the extent and impact
of the identified nuclear hazards on the general earth's poplilace and on supporting facilities.
This section contains a summary of the analysis. Detailed analyses and results are pre-

sented in Part 2 of this Volume,

The potential accidents that may occur during the Space Shuttle nuclear payload transport
to and from the Space Base are shown in Figure 7-1. The analysis has shown that the
transportation of nuclear hardware by the Space Shuttle results in a low risk to the general

populace. The highest risk accidents for each mission phase are blocked in on the figure.

For the reactor power system, the analysis assumed the Disposal Phase to involve the re-
actor module being boosted by means of the Shuttle to a high altitude disposal orbit. In the
" case of the isotope-Brayton system, the Disposal Phase consists of the return of the
isotope reentry vehicle (IRV) with the Shuttle to the landing site. These disposal modes

were selected to analyze both modes of disposal employing the Shuttle.

The Space Shuttle launch and descent trajectories are shown in Figure 7-2, Most of the
launch trajectory prior to orbit insertion is over water, except for a brief land overflight
of Nova Scotia and Newfoundland. The descent trajectory for a KSC landing, is also over

water except for land overflight of the southernmost part of Mexico and central Florida,

7.2. REACTOR TERRESTRIAL SAFETY ANALYSIS

For the reactor risk evaluation, two approaches are used: (1) Dose Guideline and (2) Linear
Response. In the dose guideline approach, all individuals exposed to the dose guideline

value or above are considered exposed. This risk approach results in the number of
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exposures from an accident, but does not continue on to the biological end point to indicate
the number of resulting injuries, The linear reéponse approach is based on the hypothesis
of a linear relationship between biological effect and the amount of radiation dose which is

supported by the latest existing data on human and mammalian radiation response.

The reactor accident evaluation and relative risk for each of the mission phases is summarized
in Figure 7-3. The overall mission risk is low, The dominant risk of the entire mission oc-
curs in the Reactor Disposal Phase and results following a successful boost to the 835 km

(450 nm) disposal orbit., After a 250 year orbital decay, land impact may result in destructive
excursion (2.7 x 10_3). Although the core fission product activity is substantially decayed
after 250 years, the probability of land impact is vhigh (2.7 x 10-1). The high land impact prob-
ability coupled with the probability of a destructive excursion (1 x 10-2) is primarily responsi-
ble for the resulting exposure index.

(

The risk analysis summary for the Shuttle/Reactor payload mission (Figure 7-3) indicates

the exposure indices for each phase of the mission using the linear response and the dose
' guideline approach. The two risk analysis approaches result in the same relative phase

risk ranking; the Disposal Phase being dominant. The Disposal Phase risk essentially
accounts for the total mission risk. Also indicated is the hypothetical mission risk assuming
perfectly reliable Shuttle reboosts to long-life orbits. Analysis has shown that a Shuttle
orbiter recovery and return to land would reduce the risk significantly (approximately one

order of magnitude as indicated in Figure 7-3). Permanent reactor shutdown prior to dis-

posal orbit insertion and prevention of reactor excursions would also contribute to reducing

the risk. There would essentially be zero risk associated with the Launch/Aséent Phase if

reactor excursions can be prevented.

The linear response method results in an exposure index value in the Prelaunch Phase while
the dose guideline method does not. The linear response model considers éxposures to zero
dose levels and therefore results in an exposure index value based on some probability of

injury event at low radiation levels, The linear response method may also be used to indicate
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the degree of injury. By selection of the proper radiation exposure threshold, the number
of acute exposures in which clinical symptoms of the radiation exposure are evident, can be

determined,

7.3 ISOTOPE TERRESTRIAL SAFETY ANALYSIS

For the isotope-Brayton risk evaluation, only the dose guideline approach is utilized because

data on the response from deposited plutonium in the lung as a function of radiation level is
not available. Therefore, dose guideline values for the plutonium affected organs (lung,

liver, bone and whole body) are used in the evaluation,

The aging effect on the isotope reentry vehicle (IRV), fuel capsules, and the plutonium fuel
after ten years of use on the Space Base is considered to have a significant impact on safety.
However, recent data appears to indicate that aging effects may not be as pronounced as
previously assumed and a reduction of the fuel release source terms may result. The
assumed degradation would reduce the IRV and fuel capsule survival capability. This factor

accounts for the higher failure probabilities for atmospheric reentry accident environments.

A summary of the isotope-Brayton accident evaluation and relative risk is presented in
Figure 7-4. The overall mission risk is low. The dominant risks in the isotope-Brayton
accident evaluation occur in the last two phases, i.e., IRV transfer to Shuttle and Shuttle
descent and reentry. These phases involve the handling of an IRV which has operated for
ten years on the Space Base. The aging effects on the IRV system results in higher failure
probabilities and plutonium release source terms. Thus, the exposure indices involving

the aged system are higher than those for a new system just launched.

The risk analysis summary (Figure 7-4) for the Space Shuttle/isotope-Brayton nuclear
payload mission shows that the IRV Recovery (i. e., descent and reentry) Phase accounts
for practically the entire mission risk (assuming aged fuel). Figure 7-4 indicates that up

to a three order of magnitude reduction in mission risk may be achieved assuming no ad-

verse aging effects on the isotope system. Particular emphasis on safeguards is therefore
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required in the final mission phases to improve mission safety.

7.4 LAUNCH/LANDING SITE ABORT EVALUATION

A Shuttle launch from KSC with a 39 or 45 degree launch azimuth for a Space Base rendezvous

mission presents a low risk to the general public. Missions requiring polar or near polar

orbits require a launch from the Western Test Range to avoid land overflight.

Landing site location for a Shuttle containing a nuclear paylbad must consider the potential

hazards from the release of radioactive materials should an accident occur. An accident

may occur during a de-orbit approach or on landing.

For launch or de-orbit approach, the offsite land traversed and population density in the
approach corridor should be minimized. Should a Shuttle abort occur during launch or

final approach and landing, ejection of the IRV or Shuttle ditching at sea should be considered.

The landing and launch site should be at the same location because similar equipment,
facilities and trained personnel are required to support both operations. Because of
weather conditions or possible Shuttle orbiter propulsion or guidance and control problems,
alternate landing sites are required. For both low inclination and polar orbit returns, the

preferred alternate landing site is WTR since the descent approach is entirely over water.



APPENDIX A
"REFERENCE SPACE SHUTTLE

A.1 GENERAL

This section describes the reference Space Shuttle orbiter and booster used in the safety
analysis and the reference Space Shuttle mission. The data presented is based on NASA
Space Shuttle Phase B studies (References A-1, 2), It is assumed that the nuclear payloads ‘
that are considered in this study can be launched aboard the Space Shuttle, whether or not

the total nuclear system weight exceeds the current Shuttle paylbad limitations.

A.2 DESCRIPTION

The launch configuration consists of two separate vehicles - a booster which provides the
initial lift-off thrust, and the Space Shuttle orbiter which separates from the booster after
first stage thrusting is complete and inserts the payload into earth orbit, As a result of

" NASA Phase B studies completed in early 1971, two reference launch conﬁgurationsA have
been identified and are illustrated in Figure A-1. The upper drawing shows the NAR selec-
ted design while the lower drawing depicts that of MDAC.

Both Shuttles have a delta-wing design for high cross-range capability, whereas the reference
boosters are of contrasting designs. NAR has selected a delta-wing booster, while the MDAC
booster is characterized by an aft-mounted swept wing. The propellant loading in both designs

is similar, each employing liquid oxygen and liquid hydrogen as the main propellants.

The nuclear payload to be delivered to the Space Base is placed in the Shuttle's cargo bay.
The maximum allowable payload envelope is the same in both the NAR and MDAC designs -
4.6 m (15 ft) in diameter by 18.3 m (60 ft) long.

The following few pages briefly describe the Shuttle and booster vehicles. Major differences

between the NAR and MDAC designs that affect nuclear safety will be indicated. In order to
perform the study, where possible, the features of both launch configurations have been

combined into a single system.
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A.2.1 SHUTTLE CONFIGURATION _

The NAR and MDAC Phase B Shuttle configurations are shown in Figures A-2 and A-3, respec-
tively. It is important to note in both designs, the proximity of the cargo bay and primary
propellant tankage. In the NAR design, the cargo bay is located more or less on top of the
tankage, whereas MDAC has positioned theAcargo bay down amongst the tankage(tankage
surrounding the cargo bay on practically three sides). From a nuclear safety standpoint,

the proximity of cargo bay and tankage is highly undesirable in the event of a Shuttle explosion
and fire (Section A.3). In addition, the positioning of the cargo bay with respect to the pro-
pellant tankage can have a significant effect on the crew radiation dose rate from a shutdown,

spent reactor module in the cargo bay (Appendix B).

Contrasting cargo transfer schemes are used in the two designs. NAR has selected general
purpose manipulator arms to transfer payloads, whereas the MDAC approach is to use a 90

degree rotation scheme to dock the payload to the Space Base.

The NAR Shuttle has two crew locations - the manipulator operator's station and the pilot's
cockpit, located approximately 2.3 m (7.5 ft) and 16.6 m (54.5 ft) forward of the cargo bay,
respectively. The MDAC Shuttle has only one crew locaﬁon, the pilot's cockpit, located
6.1 m (20 ft) forward of the cargo bay. |

A.2,2 PAYLOAD ACCOMMODATION

The cargo bay is defined as a clear volume for a 4.6 m (15 ft) diameter by 18.3 m (60 ft).

long cylindrical payload. The payload retention system in the NAR Shuttle is designed to
accommodate payloads 4.6 m in diameter by a length that may vary from payload to payload.
The forward attach fittings are designed to take the axial, vertical, and side loads that may be
imposed on the Shuttle and payload. The side load is taken on one side only so that unpredicted
Shuttle or payload deflections are not introduced into the attach fitting. The aft end of the
payload is supported by a single fitting on the Shuttle centerline. The aft fitting accepts
vertical loads only and is designed to accommodate thermal or structural deflections in the
lateral direction. For payloads less than 4.6 m in diameter, a series of adapters and pallets

are available.

- A-3
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In the MDAC configuration, two trunnion fittings located in the center of the payload bay react
loads in all directions except laterally. The shear fitting located at the € of the bay bottom
reacts side laods and yaw moments. The two forward fittings react roll and pitch moments
and vertical loads. The latching system is actuated by redundant actuators located in the air-

lock. Backup to this actuation is by manual operation from inside the airlock.

Any nuclear payload that is to be transported by the Space Shuftle must be designed to fit with-
in the defined payload envelope. .An additional Shuttle constré.int limits the envelope of the
payload's center—of—gravity as shown in Figure A-4. The allowable payload centers of gravity
vary with payload mass and are constrained by the aerodynamic centers of pressure. The
Figure is applicable for these constraints for a maximum Shuttle payload mass of 11.3 t

(25 klbs).

Superimposed on the chart are ranges of typical reactor module and isotope reentry vehicle
(IRV) masses. Positioning of a reactor module in the cargo bay is more con'strainin_g than

positioning an IRV due to the heavier masses involved with reactor modules.

The NAR Shuttle design imposes few, if any, ‘constraints on the positioning of nuclear payloads
in the cargo bay. However, positioning of the nuclear payloads is more critical in the MDAC

Shuttle since the payload C.G.'s are largely constrained to the forward half of the cargo bay.

A.2.3 PAYLOAD HANDLING AND DOCKING |

In the NAR Shuttle, the functions of payload deployment, payload retrieval and docking are
accomplished through the use of a pair of manipulator arm assemblies. The mahipﬁlator
arms are located on either side of the personnel-to-payload access tunnel and are stowed along
the payload bay to provide a clear volume for the payload of 4.6 m in diameter by 18.3 m lohg.
Each arm has six degrees of freedom, plus at least one degree of freedom for the tool located
at the end of each arm. A cargo specialist station is located in the personnel access tunnel
with visibility provisions for line—of-sight‘viewing of the manipulator operation. The direct
vision is augmented by closed circuit TV with cameras mounted on the manipulator arms and

in the cargo bay to provide visual check of the payload stowage latching and unlatching.

A=B
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The total PHDS (Payload Handling and Docking System) comprises two manipulator arms, a
docking adaptor, a manipulator operator station, an airlock docking port, a payload retention
system, and a closed-circuit TV system to augment direct vision capability and provide

visibility for close tolerance operation out of direct view from the cargo specialist.

The manipulator operation is designed basically as a manually operated system with final

stowage or initial deployment operations designed as programmed events.

Docking is accomplished through the use of the payload handling and docking system.

The manipulator arms of the PHDS are used first to deploy a docking adaptor (if required)
and then to attach this adaptor to the other stabilized body. Just prior to physical acquisition,
the stabilization systems of the target must be deactivated. The manipulator arms then draw

the two bodies together to a hard docked configuratioﬁ.

Removal of the docking hardware in whole or in part is not required in order to facilitate
transfer through the docking port. The docking port is located on the top centerline of the

Shuttle aft of the crew and passenger compartment and is externally accessible at all times.

In the MDAC Shuttle, payload deployment, retrieval, and docking are accomplished by a
rotation scheme using a flexible tunnel concept as illustrated in Figure A-5. Payloads are
deployed 90 degrees out of the cargo bay by redundant actuators located in the airlock. The
payload is supported (for docking loads) in the deployed position by simple over ceﬁter struts -
similar to landing gear drag struts. The struts are locked over center in the deployed position
by springs. The over center mechanism is unlocked by cables actuated in thé airlock. Deploy-

ment actuation is backed up by manual actuation from the airlock. .

The payload release and docking mechanism consists of a square docking frame shpported on
eight extenable shock attenuators. The attenuators/actuators are extended and retracted by
redundant nitrogen sources. They are capable of retracting payloads (after docking, capture)
to engage structural latches for subsequent pressurized crew/cargo transfer and pa_yload

stowage in the cargo bay for payload return to earta.

A-8
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The flexible tunnel allows for transfer of personnel from the Shuttle to the payload in either

the stowed or deployed positions without interrupting the tunnel pressure seal.

A.2,4 BOOSTER CONFIGURATION

The NAR and MDA C Phase B Shuttle booster configurations are depicted in Figure A-1. Both
boosters consist of 10 m (33 ft) diameter cylindrical tanks to contain the launch propellants
and to serve as the structural backbone of the vehicles. The NAR booster is a delta-wing
configuration, whereas the MDAC booster is characterized by an aft-mounted swept wing.
The propellant loading in both designs is similar, each employing liquid oxygen and liquid

hydrogen as the main launch propellants.

For the vertical launch, mated with the Space Shuttle, the booster thrust is provided by 12 main
propulsion engines, with a nominal thrust of 2. 44 x 106 Newtons (550 klbs) per engine, that

are arranged in the aft end of the vehicle.

Control of the vehicle during powered ascent is provided by gimballing the main engines for
thrust vector control and by using elevons for addition roll control. Subsonic cruise thrust
for flyback after a space mission is providéd by air-breathing engines. These -engines are

normally stowed within the wing and body structure envelope during vertical flight and reentry.

The booster incorporates a mating and separation system on its top surface to supporf the

Shuttle during vertical flight and to perform the separation of the two vehicles.

A.3 REFERENCE MISSION
The overall mission profile of the Space Shuttle is shown in Figure A-6. Lift-off and the first

3-1/2 to 4 minutes of the Shuttle flight are accomplished by utilizing the liquid oxygen/hydrogen .
rocket engines of the booster. Atan altitude of approximately 69 km (225 kit), the Shuttle

and booster separate. The booster engines are shutdown and the booster glides back through
the atmosphere. Following reentry, jet engines on the booster are deployed and started, and

it cruises back to a runway much the same as a conventional jet transport would do.

A-10



While this return of the booster has been taking place, the Shuttle engines are ignited for
injection into earth orbit. Once it achieves orbital conditions, it is then maneuvered to the
correct orbit altitude and inclination for performing its primary mission. After mission
completion, auxiliary propulsion rockets on the Shuttle are fired and the Shuttle is decelerated
and enters the atmosphere. Following the reentry maneuver, jet engines on the Shuttle are used
to power it to the landing site. The Shuttle is configured to permit>it to be maneuvered
aerodynamically over great distances during the reentry. This capability will permit the use

of the original launch or alternate landing sites for the final landing approach

TERMINAL RENDEZVOUS
500 km (270 nm) ORBIT
550 INCLINATION

DOCK  uNDOCK
IN-ORB 1T ‘RETURN PHAS ING

DEORBIT

CIRCULARIZATION
185 km (100 nm) ORB IT
550 INCLINATION

'PARKING

ENTRY
INSERTION

93 x 185 km _
(50 100 nm) ORB IT

STAGING
MAXq

- BOOSTER
REENTRY

TRANSITION

START

CRUISE LANDING

LANDING

Figure A-6. Space Shuttle Flight Profile

A.3.1 ASCENT OPERATIONS

Ascent operations consist of four phases: launch initiation, mated ascent, staging and solo
Shuttle ascent to initial earth orbit, nominally 93 x 185 km (50 x 100 nm). The launch
initiation phase starts when the mated booster/Shuttle is ready for launch. When the booster ,
engines are ignited, the thrust builds up to 50 percent in about three séconds. It is held at
that level for 1/2 second to assure that all engines are operating within normal limits, and

then advances to the level providing T/W = 1 when the hold-down mechanism is released
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(approximately T + 8 seconds). Failure of the engines to perform normally at any point in

this sequence results automatically in initiation of shutdown.

The Shuttle subsystems are all readied, prior to and during the launch sequence, for immediate
use i}l attempting any preplanned abort procedures that may be necessary throughout the launch
initiation and mated ascent phases. In particular, the Shuttle is always ready to fire its main
propulsion system and separate from the booster when an inﬂ_ight abort is commanded by the

booster or Shuttle crew.

The mated ascent phasé starts with lift-off and ends with the initiationof staging. The Shuttle
functions during the mated ascent do not impact the performance of the mated ascent. The

Shuttle is simply maintained in readiness for an.abo‘rt and normal staging to follow. The functions
of the booster and Shuttle crews are essentially the same: the monitoring of their respective

subsystems' operation and the maintenance of readiness to respond to an abort situation.

Staging is initiated by a signal indicating impending propéllant depletion (booster propellant
depletion occurs approximately 210 seconds after lift-off) and is considered completed when the
two vehicles have physically separated. The staging and separation are performed automatically, '

and thus, the booster and Shuttle crew functions are basically limited to monitoring.

Immediately, upon receipt of the depletion signal, the Shuttlé engine start sequence and the
booster engine throttling are initiated. The Shuttle engine thrust is built up to a 50 percent
level and held there until booster engine cutoff is initiated, and the separation system activated.
The Shuttle engine thrust is increased to 100 percent at approximately 3.5 seconds. At 4

seconds, the physical separation occurs.
After staging, the Shuttle performs operations to take it to a 93 by 185 km (50 by 100 nm)

injection trajectory. Engine cutoff will be initiated by a signal from the guidance, navigation,

and control (GN&C) subsystem when the proper orbit insertion velocity is reached.

A-12



In case of one Shuttle engine failure, the remaining engine will operate at an emergency
power level and, in conjunction with the orbit maneuvering engines, will provide orbit in-
jection or once-around abort capability. In addition, the attitude control propulsion system
(ACPS) provides roll control while the remaining operating engine controls the Shuttle in
pitch and yaw.

During Shuttle ascent, the Shuttle crew monitors the status of all subsystems for high, low,

and nominal readings to provide a real-time system performance assessment.

A.3.2 RENDEZVOUS OPERATIONS

Rendezvous operations start immediately after insertion of the Shuttle into the initial 93 x185 km
orbit. The Shuttle is in command and control during the rendézvous. Two-way -duplex voice
communication is provided between the Shuttle and the Space Base. The Shuttle will provide
signals for range and range rate measurement, and will be capable of transmitting and receiv-
ing data from the Space Base. The Space Base will be capable of transponding the tracking
signal generated by the Shuttle. Both Shuttle and Space Base will have external lighting to

aid in rendezvous station-keeping and docking.

To rendezvous with the Space Base, a series of phasing and orbit transfer maneuvers are

required. Two types of phasing are possible: catch-up phasing, and catch~back phasing.

For the catch-up technique, a shorter orbital period (faster angular rotation) is achieved in
an orbit lower than that of the Space Base, causing the Space Base to back up felative to the

Space Shuttle.

The catch-back technique requires the expenditure of AV to establish a high orbit with its
period greater than that of the Space Base. The catch~-back technique would be used when
the time saved (as compared with catch~up) is worth the cost of AV paid in reduction of pay-

load. This is applicable in the rescue mission, for example.
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The actual rendezvous maneuver starts with the terminal phase initiation (TPI) burn, which
puts the Shuttle into a 482 km x 502 km orbit. The final rendezvous braking maneuver is
shown in Figure A-7.

A.3.3 ON-ORBIT OPERATIONS
All maneuvers in the vicinity of the Space Base are performed with the attitude control pro-
pulsion system. Typical nuclear payload transfer operations are discussed in Sections 3. 3.3

and 4. 3.3 of this volume.

When the nuclear payload transfer operations are cothpleted, the Shuttle undocks from the
Space Base, separates to a safe distance, and begin‘s its deorbit burn (or boost to high earth

orbit). During on-orbit station-keeping, thév'Shuttle will fly a slow roll for thermal control.

r, = 460M (1500 FT) ‘TARGET ORBIT

r, = 150M (500 FT)

GATE 3

GATE 4 Vv, s 3 M/SEC
V s 1.5 M/SEC GATE 2
4 (10 FT/SEC) )
= M (6000 FT
(5 FT/SEC) v, 56 M/SEC L= 1830M ( )

(20 FT/SEC) GATE 1 ‘
V)= 9 M/AEC T NTERCEPTOR ORBIT
(30 FT/SEC)

NOTE: BRAKING GATE AV'S APPLIED ALONG LINE-OF-SIGHT -

Figure A-7. Final Rendezvous Braking Maneuver
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A.3.4 DE-ORBIT AND REENTRY OPERATIONS

The high cross-range (HCR) delta~wing Shuttle reduces the requirement for deorbit phasing
maneuvers, That is, the vehicle will have the aerodynamic capability to fly to the primary
(or selected alternate) landing site without orbital period adjustments. At least two oppor-

tunities are available during any 24-hour period to land at the primary (launch) site.

The deorbit and reentry mission phase begins with computation of the deorbit burn initiation
time from inputs of Shuttle position, orbital parameters, lahding site location, and predicted
reentry ranging characteristics., The vehicle is oriented to the proper burn attitude shortly
before OMS (Orbit Maneuvering System) engine ignition. Engine burn duration (AV) is' a
function of the orbital altitude and the desired reentry conditions. - After engine shutdown,

the Shuttle is rotated to a reentry attitude corresponding to the lateral range requirement.

" “The reentry maneuvers are classified in two categories: reentry phase and terminal phase.
During the reentry phase, the 6bjective' is to reach trajectory coordinates near the landing
field at an altitude of approximately 15 km (50 kft). During this period, maneuvering com-
mands are executed by the control system using aerodynamic surfaces and the attitude con-
" trol propulsion system for attitude control. At completion of the reentry phase, the Shuttle
performs terminal phase maneuvers to reach the final approach targeting coordinates at an

approximate 3.7 km~(12 kft) altitude.

A.3.5 SHUTTLE APPROACH AND LANDING OPERATIONS

The final approach is initiated at approximately 3.7 km (12 kft) above the runw'ay altitude
when the vehiéle is 18.5 km (10 nm) from the runway. At the start of final approach, the
landing gear will be lowered and the speed brakes set at approximately 30 percent to permit
the Shuttle to achieve an approach glide path angle of approximately 12 degrees. The flight

crew will verify automatic landing system status.

The Shuttle's landing velocity will be approximately 306 km/hr (165 knots) at runway contact
with a sink rate of apbfoximately 1.5 m/sec (5 ft/sec). The Shuttle's ground rollout distance
is approximately 1.4 km (4500 ft) for a dry-runway and approximately 2.8 km (900'0 ft) for a
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wet runway. Since this latter figure is not compatible with the requirement to land on a
3-km (10,000 ft) runway, a drag parachute is to be utilized. The drag chute will allow the

Shuttle to land on wet runways with rollouts comparable to dry runways without a chute.

When flying with airbfeathing engines, in the event that the landing cannot be safely accom-
plished on the first approach, a bowered go-around will be initiated. The go-around will be
performed under visual flight rules and conditions, keeping the runway in sight. The vehicle
will perform a climbing turn and follow a race-track pafterﬁ to intercept the approach glide
slope 2.8 km (1.5 nm) from the runway. The go-around distance is approximately 28 km

(15 nm).. From the point of glide slope intercept, the final approach and landing are identi-

cal to that previously described.

A.4 SHUTTLE INDUCED ENVIRONMENTS

While being transported by the Space Shuttle in the cargo bay, the nuclear payloads. are sub-
ject to various Shuttle induced environments - both normal and accident. Figure A-8 sum-

marizes these Shuttle induced environments within the cargo bay.

Except for the postulated temperature range to which‘a nuplear- payload may be exposed while
“in the cargo bay, the normal Shuttle environment (Table A-1) is no more severe than that

of other typical launch vehicles such as the Titan III-C, INT-21, or Saturn V. Shuttle
payloads may be exposed to a broader range of temperatures due to the proximity of tankage

containing cryogenic propellants.

In the event of a launch pad Shuttle explosion, payloads are subject to severe blast over-
pressures. This is due to the proximity of the cargo bay and tankage. Figure A-8 shows
the expected reflected pressures (PR) and side-on overpressures (PS) as a function of
assumed explosive yield and distance from the center of the explosion (R) for a booster
explosion and/or Shuttle explosion on the launch pad. It is important to note that the blast
overpressures are approximately the same for either a booster explosion or an explosion of

the Space Shuttle. Also plotted are the blast overpressures resulting from a launch pad
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explosion of the INT-21 launch vehicle (Reference A-3). As indicated, an explosion of the
INT-21 results in much lower blast overpressures (one order of magnitude) due to greater

payload-tankage separation distances.

Figure A-9 shows the estimated worst case blast environment during Shuttle reentry (see

Vol. Iv, Part 2, Appendix A).

Following a launch pad explosion, the nuclear payload may be engulfed in the resultant
fireball. Figure A-8 compares the estimated Shuttle fireball environment with that of
the Titan III-C, Solid; Titan III-C, ‘Liquid; INT-21; and the Saturn V. As indicated, the
expected thermal énvironment should be somewhat less severe than thaf of the INT-21 or

Saturn V.,

Also shown in Figure A-8 are the loads Shuttle payloads should be designed to withstand

-in the event of a Shuttle crash landing.
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APPENDIX B
REFERENCE REACTOR POWER MODULE

B.1 GENERAL

This appendix describes in relative detail the reference zirconium hybride (ZrH) reactor

power system and various packagmg conf1gurat1ons that enable the powerplant to-be transported
in the Space Shuttle cargo bay. The major reactor induced environments that can have a

significant effect on Shuttle integration and transport are also discussed.

To be transported via the Space Shuttle, the reactor power module must be designed to fit

within the 4.6 m (15 ft) diameter by 18.3 m (60 ft) length. The reference Space Base ZrH

reactor power module is not ""Shuttle compatible". Thereque, the reference ZrH reactor-

Brayton power system for the Shuttle nuclear safety Study is that identified in previous Space

Station Phase B Studies (References‘B—lA, 2 & 3). The major differences b,_etw"een the Space

Base and‘Space Station reactor power system configurations are (1) larger heat rejection
surface area in Space Base cb_nfiguration (would require either a deployable radiator or
multiple Shuttle launches),. and (2)- somewhat léss radiation shielding in Space Station con-

figuration.

The basic ZrH reference reactor has been designed to operate at a maximum of 600 kWt.
| However, for purposes of the Shuttle nuclear safety study, the reactor thermal output is
assumed to be 125 kw meeting the Space Statlon delivered electrlcal power requirement of

approx1mate1y 24 kWe.

Typical reactor power module configurations designed to be "Shuttle compatible' are shown
in Figure B-l; The top ;:onfiguration is a single module reactor power system assembly.

The ZrH reference reactor, equipment gallery, and shadow shield assembly are located in
the conical structure on the left. The module is 4.6 m (15 ft) in diameter and 18.3 m (60 ft)
long with the cycle waste heat radiator covermg all but a 0. 61-m (2 ft) section of the aft
cylindrical segment of the module. The mamtamable equipment compartment and the Brayton

cycle power conversion units are located at the base of the power module.
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A second configuration is a dual module reactor power system assembly with separately
Shuttle launched reactor and Brayton modules. The reactor module is non-pressurizable,
4.3 m (14 ft) in diameter, and approximately 12.2 m (40 ft) in length. This module houses
the nuclear reactor assembly and its shielding. Associated equipment located within this
module includes the Brayton heat exchangers, pumps, gas and water piping, intermediate
NaK loop piping, augmented shield tank, and a ballast fank* provided for artificial-g

operation.

The Brayton module is a cylinder approximately 18.0 m (59 ft) in length and 4.3 m (14 ft)

in diameter. It provides part of the separation distance required for radiation safety between
the Space Station and the reactor module. This module contains a generator room approxi-
mately 3 m (10 ft) in length, designed for limited occupancy in a shirtsleeve environment.
This room contains an EVA hatch, Brayton power conversion unit, heat rejeéction loop com-
ponents and controls, and provides access to the RCS engine quads. It also provides tem-

porary storage area for personnel provisions when occupied.

A third possible configuration could employ either of the two conﬁgurétions just discussed
in conjunction with a '}separable heat exchanger'. The separable heat exchanger permits
separation of the reactor, with its primary liquid metal coolant loop, from the power con-
version module and its secondary liquid metal coolant loop, without breaking any liquid
metal coolant lines. The separable heat exchanger concept has several inherent advantages
over the integral heat exchanger. It allows for the modular approach to transporting and
handling of reactor power systems. If payload launch weight becomes a very limiting
Shuttle imposed constraint, the separable heat exchanger concept will allow the reactor
power system to be launched separately - one launch for the basic module containing the
power conversion equipment, radiators, intermediate NaK loop, and associated support
structure, and a second Shuttle launch for the reactor/shield/separable HX assembly.
Launching in this fashion will allow the nuclear payload to more easily meet the Shuttle
payload C.G. constraint. It should facilitate ground handling pfocedures, and if launched

*This tank uses water for ballast. It is filled after mating to the Space Station (from water
generated by fuel cells) and dumped prior to disposal.




in this fashion, other Space Base-bound cargo may be placed in the Shuttle cargo bay since
the reactor/shield/separable HX assembly will occupy only a portion of the allowable pay-

load volume and the low reactor radiation level should not be hazardous to most cargo.

In addition, if the selected means of reactor disposal is boost to a high earth orbit, the
higher ballistic coefficient (W/ CDA) of the reactor/shield configuration as compared to
that of the entire reactor power module means considefably_ longer orbital lifetimes for a
given disposal altitude. This means that the fission products generated during operation

aboard the Space Base will be allowed to decay to even lower insignificant levels.
Although the reactor power modules can be configured differently, the basic subsystems
are essentially identical. A discussion of the major subsystems follows. Significant

differences between the contrasting configurations will be pointed out during the discussion.

B.2 REACTOR AND NAK LOOPS

Figure B-2 shows a cutaway of the reference ZrH reactor that has been under development
by Atomics International under the AEC's Zirconium Hydride Reactor Program. The design
is similar to that of the SNAP-8 reactor, but has a slightly larger core and an internally
cooled reflector siutable for operation within an enclosed shield. Ten cylindrical BeO con-
trol drums with neutron-absorbing material on one side are installed in dry wells, the

outer surface of which are cooled by the NaK (a eutectic mixture of sodium and potassium)
which enters the bottom annular plenum through four inlet nozzles. The NaK flows upward
around the dry wells and fixed reflector elements into the upper plenum, downward through

the core to the lower plenum, and out through four exit nozzles.

The reactor core consists of a triangular pitch array of 295 fuel elements and has a 29-cm
(11.4-in) diameter. The control drums have neutron-reflective material on one side and
absorber material on the other. The reactor is controlled by drum rotation, which varies
the amount of neutron reflection into the core. Since control drum cooling is provided1
internally and the neutron-absorber material minimizes the sensitivity of the reactor to

backscattering from outside the control drum region, the 47 shield can be located directly

adjacent to the reactor.
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The fuel element (Figure B-3) consists of an alloy of 10.5 percent (by weight) fully enriched
uranium in zirconium, which is massively hydrided to provide neutron moderation. The
hydrogen content of the fuel is 6.3 x 1022 atoms per cm3 which is about the same as in

cold water. The fuel rod is contained within a 0.038-cm (0.015-in) thick nickel alloy claddiilg
tube, which protects it from the NaK coolant and contains the fission products and hydrogen
moderator. Because of the significant permeation rate of hydrogen through the bare cladding,
a thin glass barrier is fused to the inside of the cladding tube. Small clearances are pro-

vided between the fuel rod and cladding to allow for radiation-induced growth of the fuel.

The control drum is 11.4 cm (4.5 in) in diameter by 45.7 cm (18 in) and consists of BeO
reflector material fastened to a neutron-absorbing metal (Ta-10W) which also serves as

the main structural member. The drum is supported by self-aligning ball-and-socket-type
bearings. The control-drum shaft and the bearing socket are coated with flame-sprayed
alumina to provide a low-friction surface when in contact with the solid graphite ball. Drum
rotation is produced by a stepper motor operating through an integral 6:1 gear set. When
the drum is in the fully shutdown position, the gear teeth are disengaged by an electrical

cam lockout device to prevent drum rotation resulting from launch acceleration.

All parts of the containment vessel and associated struéture are of 316 stainless steel.

At Brayton cycle design conditions, the NaK enters the lower vessel plenum at 867OK
(11000F)>through four 3.8-cm (1.5-in) inlet lines. It flows upward in the area between
the control drum dry wells, turns 180 degrees, flows downward through the core, and
exists at 922°K (12000F) from the outlet plenum. A minor amount of heat is transferred
between inlet and outlet coolant through the ﬂow—dividit_lg cylinder. Thus, the NaK mixed-
mean outlet temperature from the core is a few degrees hotter than the témperature of the

NaK from the pressure vessel.

The reactivity control system for this reactor has been tailored to provide 125 kWt at a
9220K coolant outlet temperature for at least ten years. Sa'marium-149.‘ and europium-151
burnable poisons will be employed to restrict the available excess reactivity to the band

limits described in Figure B-4. Such limits assure the necessary excess required for this
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Figure B-3. Reference Fuel Element



extended period of operation and retain the needed control reactivity to assure startup and

~ safe shutdown with one disabled control drum at any time.

The initial excess reactivity drop shown in Figure B-4 repres_ents the normal xenon, hydro-
gen redistribution, and temperature and power decrements occui‘ring at starttip. The in-
creasing excess reactivity trend that follows occurs because the worth of burnable poisons

in the core ié decreasing at a greater rate than the worth decrefnent due to uranium depletion,
hydrogen losses, and the accumulation of fission product poisons. " As the burnable poison
loading becomes depleted, the worth of the above core depletion actions predominate and

force the excess reactivity to decline and approach zero.

THERMAL POWER = 125 KW _
REACTOR OUTLET TEMP = 9220K (12000F)
COOLANT AT = 3119k (100F)

6l— o EXPECTED OPERATING
BANDW IDTH

EXCESS REACTIVITY ($)
-3

REFERENCE B -1

0 | l | | | |
0 2 4 6 8 10 12 14
TIME (YEARS)

Figure B-4. ZrH Reactor Reactivity - Lifetime Characteristics

Additional reactor design and performance characteristics are presented in Table B-1.



Table B-1. Reference ZrH Reactor Design and Performance Data

(Reference B-1)

Item Requirement
Reactor thermal output 125 kWt
Reactor coolant outlet temperature 922°K
Reactor coolant temperature rise 311OK
Operational lifetime 10 years
Number of fuel elements 295
Fuel element length 42.5 cm

Fuel element outside diametér
Clearance between fuel elements
Core diameter |
Cladding material

Hydrogen barriér material

Fuel, hydrogen content

Fuel, uranium content
Fuel-to-clad gap width
Number of active conti;ol drums
Control drum materiav’ils
Reactor vessel outside diameter

Reactor vessel height

1.470 to 1.525 cm

- Variable
.29 cm

" Incoloy 800

SCB-1
22 H atoms

3
cm

6.3x10

10.67%
Variable

10 _
BeO/Ta-10W
55.9 cm

74.5 cm




Thermal energy is transferred from the reactor to the Brayton-cyc'le power conversion
loops by circulating NaK within a primary and intermediate loop.  Heat is transferred
from the primary to the intermediate loop by means of a NaK-to-NaK heat exchanger.

There is approximately 170 kg (375 pounds) of NaK in the reactor power system.

B.3 BRAYTON POWER CONVERSION UNIT (PCU)

The turbine, alternator, and compressor are mounted on a common shaft and comprise-

the Brayton Rotation Unit (BRU). This shaft is supported by gas bearings during rotation.

The cycle working fluid, a helium-xenon gas mixture, accepts heat from the NaK-to-gas
heat exchanger of the intermediate loop. " Loop flow rate is modulated by a gas management

system.

'The turbine converts cycle heat to shaft power, which is used to turn the alternator and
compressor. . The cycle working fluid flows from the'ﬁurbine through a recuperator trans-
ferring heat to gas flowing from the compressor. Cycle waste heat is rejected to space
by an organic liquid radiator. The HeXe mixture flows from the compres'so’r‘through the

~ recuperator to the NaK-to-gas heat exchanger, completing the cycle.

Three redundant PCU's are required with either one workiﬁg while the remaining two are
on standby, or two working with one standby unit. In either case, the Space Station require-

‘ment of net conditioned output of approximately 25 kWe ‘must be met.
In the dual module "rea'cﬁor power sysfeni assembly, the Bré.ytoh power conversion module
is packaged in the Brayton module with the Brayton NaK-to-gas heat exchanger located in

the reactor module. Thé "broken' gas ducts are connected during the doéking sequence.

B.4 HEAT REJECTION

Waste heat is rejected from the Brayton power conversion loop to the heat rejection loop
(HRL) via a gas-to-organic coolant (Dow Corning 200) heat exchanger. The radiator panels

are attached around the circumference on the cylindrical structure. The radiator is located

. B9



around the circumference of the Brayton module in the dual assembly. In both candidate

reactor power system configurations, the radiating area is 186 m2 (2000 ftz).

B.5 RADIATION SHIELD

A major difference in the two candidate reactor power module configurations is in the
nuclear radiation shielding designs. The basic solid shield design is the same for both

the single and dual ;riodule configurations. This represents the minimum amount of nuclear
radiation shielding/fequired to limit the direct radiation dosc rate to 150 mrem/day in all
areas occupied by the crew.

/

However, in thc dual module reactor power.S'y'stem config'uration, an aug'mented water
shield is addedl to reduce this direct radiation dose to 1nhab1table areas to 20 mrem/day.
This was done for two reasons: (1) to achieve greater flex1b111ty in operations and mission
planning by increasing the total crew stay—tlme to 180 days* or greater throughout the entire
fhght box, and (2) to increase the engine room occupancy t1me to six hours (increasing the

t1me available for Brayton equipment mamtenance)

Figure B-5 shows a cutaway view of the basic reactor/solid shield asscmbly and identifies
the shield materials used in both reactor power module configurations. The solid shield
consists of an inner Ta-10W gamma ray shield W'hich. completély surrounds the reactor.
Surrounding.the Ta-10W is a LiH neutron shield. This shielding reduces the side dose
for rendezvous to 60 rem/hr at 30 m (100 ft), and reduces the neutron dose sufficienf;ly to
prevent activation of the NaK in the intermediate loops. In the Space Station end of the
reactor, there is a depleted uranium (8 percent molybdenum by weight) shield followed by
a LiH neutron shield. These two sﬁields form a galléry for mounting primary loop com-
ponents. In addition, they further reduce the radiation level from the reactor and from .

radioactive NaK in the primary loop to an acceptable level.

*A dose rate of 150 mrem/day from the nuclear reactor permits a total crew stay time of
only 180 days for orbits within the geomagnetm sphere and at high inclinations outside the
South Atlantic anomaly.
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(LiH)

(LiH)

o REFERENCE ZrH REACTOR DESIGN
o THERMAL POWER = 125KW
o REACTOR OUTLET TEMPERATURE = 922%K
o COOLANT T-=311%
¢ SOLID SHIELD
o WEIGHT = 4960KG
¢ DOSE RATE = 150 MREM/DAY @ 62 METERS

Figure B-5. Reactor/Shield Assembly

B.6 WEIGHT SUMMARY

Detailed weight breakdowns of the candidate reactor power module configurations are pre-

sented in Tables B-2 and B-3. Table B-2 is a summary of component and subsystem weights
for the single reactor module configuration, while Table B-3 presents the weight summary

for the reactor and Brayton modules of the dual module configuration.

B.7 REACTOR INDUCED TRANSPORTATION HANDLING ENVIRONMENTS

Two reactor induced environments are of concern when transporting a reactor power

module via the Space Shuttle - thermal and nuclear radiation.
B.7.1 THERMAL ENVIRONMENT

The afterheat generation in a reactor which has operated at 125 kWt for five years is

given in Figure B-6. This represenfs the fission product decay heat after reactor shutdown.
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Table B~2, Component Mass Summary - Single Reactor Module Configuration

(Reference B-3)

Assembly Mass Distance
(kg) from Aft End
(m)
Reactor 748 17.4
Primary Loop 217 16.8
Ducting : 30
Expansion Compensators (3) 35
Helical Induction Pumps (2) 147
Insulation 3]
Intermediate Loops 616
Ducting 254 9.4
Expansion Compensators (4) 47 15.8
Helical Induction Pumps (4) 295 6.1
Insulation 20 . 9.4
IHX 59 16.8
BHX (3) 204 2.4
Structure 227 7.0
Docking Adapter 91 0
Radiation Shield 4051 16.8
Radiator 1239 7.0
Fins 277
Tubes and Fluid 124
Armor 357
Structure 454
Manifolds 29
HRL Pumps and Valves 44 0.3
Power Conversion Units (3) 2531 2.4
BRU's 612
Recuperators 313
Coolers 463
Ducting 259
Gas Management Systems 170
Plumbing and Wiring 102
Structure and Insulation 612
Controls and Auxiliaries . 431 0.6
Motor Start Equipment (2 units) 68
Electrical Control Package 75
Cold Plate o 39
Parasitic Load Resistors 102
Reactor Control and Wiring 113
Pump and Control Power Conditioning 34
and Transmission .
Total NRM 10, 327 10.5
EOL Disposal System 1,474 0.6
Total NRM with EOL Disposal System 11, 801 9.3
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Table B~3. Component Mass Summai‘y - Dual Module Reactor

Power System (Reference Be-l).

-Assembly

Mass (kg)

Installed in Reactor Module
Reactor ' 748
Reactor support structure & containment 82
Primary Loop
Ducting A 24
Expansion compensators (3) .35
HIP (2) ' 147
Insulation 3
Intermediate loop '
Ducting . 245
Expansion compensators (4) 47
HIP (4) 295
Insulation 24
THX 29
BHX (2) 48
“Control and wiring 113
Radiation shield (solid)* 4964
Total 6805
Installed in Brayton Module
PCU's (3) 1878
PCU controls & auxiliaries (3 sets) 418
Parasitic load resistors (2) 45
Radiator fin, tube, armor & fluid 683
Radiator manifolds 29
HRL auxiliaries 44
g _ : Total 3096
Total electrical generating assembly 9901

*Shields dose plane (62 m) to 150 mrem/day
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B.7.2 NUCLEAR RADIATION ENVIRONMENT ‘

Two Space Shuttle configurations are identified in Appendix A, e:ach having an allowable
cargo bay payload envelope that is 4,6 m (15 ft) in diameter and 18. 3m (60 ft) long. Figure
B-7 shows the crew locations and the ailowable payload center of gravity locations. As
shown in the figure, the NAR Shuttle version has two crew locations: the pilqt's cockpit
which is approximately 16.6 m (54.5 ft) forward of the cargo envelope and the manipulator
opérator's station which is apﬁrqximately 2.3 m (7; 5 ft) fofWard of the cargo envelope. The
C.G. of the 6.8 t (15 klb) dual reactor module must be at least 0,61 m (2 ft) aft of the

cargo bay forward bulkhead reference while the C.G. of the 11.8 t (26 klb) single reactor

module must be between 3.4 m (11 ft) and 14.3 m (47 ft) aft of the cargo bay forward bulk-
head reference. -

The MDA C Shuttle configuration has only one crew location which is essentially the pilot's
cockpit located approxiniately 6.1 m (20 ft) forward of the cargo envelope. The C.G. of the
dual reactor module must be iocated ih the forward 16. 1m (3“3 ft) of the cargo envelope while
the C.G. of the single reactor module must be located in the front half of the allowable cargo

envelope.

The preferred orientation of the reactor modules in the Shuttle, from the viewpoint of
minimum dose to the Shuttle crew, is ‘wlith the reactor end of the module placed aft in the
cargo bay. With this orientation, the thickest section of the reactor shield lies between the
reactor and the crew. Figure B-8 shows the preferred locations for the reactor modules in
the NAR Shuttle, and Figure B-9 shows the preferred locations in the MDAC Shuttle. In the
NAR concept, the reactor modules can be placed in the Vefy rear of the cargo envelope,
thus providing maximum distance b.etween‘the‘crew and reactor (i.e., 19.7 m (64.5 ft) to
the manipulator operator and 34 mv (111.5 ft) to the crew 6ockpit). The same is true for
the reactor modules in the MDAC Shuttle. Although C.G. considerations preclude placing
the dual reactor module in the aft end of the MDAC Shuttle (the C.G. of the dual reactor
module is approximately 10 4 m (34 ft) from the front end of the_ cargo envelope even though
Figure B-7 shows that it must be in the front 10.1 m (33 ft) for propér Shuttle balance), the
discrepancy of approximately 0.3 m (1 ft) is ignored since there appears to be no reason

why the dual reactor module length cannot be decreased by 0.3 m to meet the C.G. constraint.
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Figure B-7. Crew Locations and Allowable Cargo C.G. Locations for Space Shuttle .
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Figure B-10 presents plots of the dose rates to the Shuttle crew from a spent, shutdown
reactor for the various combinations of reactor module.and Shuttle configurations shown

in Figures B-8 and B-9. The dose rates are given as a function of time after shutdown from

a power level of 125 kWt and 5 years of continuous operation. The two top curves, labeled

A and B, correspond to the manipulator operator's station and the pilot's cockpit, respectively,
in the NAR Shuttle, while curves C and D correspond to the dual reactor module and the

single reactor module arrangements, respectively, in the MDAC Shuttle. In the NAR

Shuttle, over 99 percent of the crew dose rate is due to radiation which leaves the side of

the reactor shield and is scattered to the crew compartments by Shuttle equipment. In the
MDAC Shuttle, radiation scattering accounts for approximately 97 percent of the total dose

rate.
The dose rates are considerably higher in the NAR Shuttle for two main reasons:

1. The solid angle of leakage radiation intercepted by '"solid" Shuttle components
is about 3 times larger in the NAR Shuttle. Air breathing engines and other
equipment surround 3 sides of the cargo bay in the NAR Shuttle while this type
of equipment is placed forward of the cargo bay in the MDAC Shuttle.

2. The average distance from the reactor centerline to the scattering surface is
only approximately 3.66 m (12 ft) in the NAR Shuttle compared to approximately
6.1 m (20 ft) in the MDAC Shuttle. The shorter distance and resultant smaller
scattering angle in the NAR Shuttle increases the radiation flux at the crew stations.

In handling a shutdown, spent reactor prior to loading in the cargo bay, it is desirable to
keep the crew locations within the shadow of the reactor's radiation shield. In examining
the NAR and MDAC Shuttles and their selected cargo transfer mechanisms (manipulator
arms and 90 degree rotation, respectively), it was found that the crew locations can be

kept within the ''shielded cone' for all cases except one. As shown in Figure B-11, the
pilot's compartment is just outside the shield's shadow of the dual reactor module when

it is being loaded into the MDAC Shuttle. The direct dose rate from this configuration is
presented in Figure B-12 where it is compared with the dose rate from the same module
installed in the cargo bay. The direct dose rate from the deployed module is only 15 percent

of the dose rate from the installed module. The elimination of the scattering component
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more than offsets the increase in direct dose rate. Transfer of the dual reaétor mo‘dule
.to the MDAC Shuttle can begin five hours after feactor} shutdown Without eXceedihg the

allowable dose rate to the Shuttle crew.

10

C NOTE: REACTOR HISTORY - 5 YEARS OF OPERATION AT 125 wt

1.0

j’!lvﬁll

DOSE RATE REW DAY

- MAN IPULATOR OPERATOR STATION-
NAR SHUTTLE - EITHER REACTOR MODULE -

B - PILOTS COCKPIT - NAR SHUTTLE -
EITHER REACTOR MODULE

C - CREW COMPARTMENT - MDAC SHUTTLE- -
DUAL REACTOR MODULE

D - CREW COMPARTMENT - MDAC SHUTTLE -
SINGLE REACTOR MODULE

L
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Figure B-10. Crew Dose Rate in Shuttle Carrying and Shutdown
Reactor in the Cargo Bay for Preferred Rearward Orientation

Some of the ha_ndling schemes for transferring the reactor powe_f module from the Spéce
Shuttle cargo .bay to the Space Base and vice irersa,- may require the reaétor end of the

power module to be placed toward the front end of the cargo bay. Figure B-13 illustraté_s

the possible placement of the reactor modules in the NAR Shuttle for the forward reactor
orientation. The upper sketch in Figure B-13 shows the location of tﬁe dual reactor module
for maximum separation of crew and reactor; approximately 9.3 m (30. 5 ft) to the manipulator
operator's station and 23.6 m (77.5 ft) to the pﬂot's cockpit. " The rﬁiddle sketch of the same
figure shows the most forward location of the dual reactor module which meets C.G. con-
straints. The crew-reactor separation distances are 3.5 m (11.5 ft) and 17.8 m (58.5 ft)

to the manipulator operator'é é’tétidﬁ and cockpit_, reépedtively. The. only. poSsible place-
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Figure B-11. Dual Reactor Module Deployed from MDAC Shuttle
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ment of the single reactor module in a forward reactor orientation is shown by the lower
sketch of Figure B-13. The crew-reactor separation distances are: 3 2 m (10 5 ft) and

17.5 m (57.5 ft).

DUAL REACTOR MODULE

FWD w—— L2ZM
M wen

1€l RORON

DUAL REACTOR MODULE

By

SINGLE REACTOR MODULE

F1gure B-13. Reactor Locations in NAR Shuttle Cargo Bay
for Forward Reactor Orientation

Figure B-14 shows the possible installation locations of the reactor modules in the MDAC
Shuttle for the forward reactor orientatiéh. The crew-reactor separation distances are -
13.1 m (43 ft) and 7 m (23 ft) for the two possible dual reactor module locations shown

in the two upper sketches in Figure B-14. The single reactor module installation is shown
in the lower sketch even though its C. G. location ié approximately 0.3 m (1 ft) aft of the
allowable limits of the MDAC Shuttle for the forward reactor orientation. If so desired,
there should be no reason why the C.G. location cannot be shifted forward to allow for this

type of reactor orientation in the cargo bay.
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Flgure B-14. Reactor Locations in MDAC Shuttle Cargo Bay
for Forward Reactor Orientation

The crew dose rates resulting frOm ferward orientations of the revactov‘rvmodule ih the
Shuttle cargo bay are presented in F1gure B-15as a functlon of crew- reactor separat1on
distances. The dose rates are between 10 to 200 times greater than the dose rates for

the prefe.rred rearward reactor: orientation. W1thout'add1t10na1 shielding, this conf;guration

would be unacce'ptable.

During preiaunch and launch/ ascent, the dose rates to the Shuttle crew and ground persoﬁnei
from a 'clean' reactor present a much reduced radiation env1ronment from that just dis-
cussed. It is assumed for this study that a new reactor module will be cr1t1cal1ty tested
at 100 watts for approximately 12 days for nuclear checkout purposes-. It is also assumed

~ that this checkout will be completed 60 days prior to launch of the reactor. The dose rate
to ground personnel working near the reactor module_du_ring the prelaunch period and the
Shuttle crew during launch can be detérmined from the curve in Figure B-16. This curve

shows the dose rate at a 6.1 m (20 ft) distance from the reactor as a function of time after

shutdown from the low power criticality test conditions. Thé dose rates are in the directien
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Figure B-15, Crew Dose Rate in Shuttle Carrying a Shutdown
Reactor in the Cargo Bay Forward Orientation
of the Reactor

~ of the top and sides of the reactor where the shield is the thinnest, Dose rates in the
direction of the thick part of the shield would be less than one percent.of the values shown in
Figure B-16, One hour after shutdown, the 6,1 m dose rate is less than the 150 mrem/day
allowed for Space Base occupants, At the time of launch, the reactor' module has vb’een shuf-
down for 60 days and the .6.1m dose‘rate is a negligible 0,4 mrem/day. The dose rate at
the shield surface at this time is about equal to the allowable dose rate of 150 mrem/day.
Thus, low power criticality testing of the reactor module will not hémper ground operations

prior to launch,
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Figure B-17 compares the dose rate following criticality testing of the reactdr, at any

time after shutdown and any location, with the dose rate follovﬁhg 5-yr operation at 125 kWt.
The data can be used to determine the dOse rates to the Shuttle crew from‘the installation

of the ''clean" reactor module in the cargo bay by employing the following equatiOn_: _

DC (6.1 x)
DC (6.1 x 60)

DC (r, x) = DO (4, x-60) * DR (x-éO) .

where:
DC (r; xX) = dose rate from ''clean' reactor at location r (expressed in meters) and
time x (expressed in days) after shutdown, :
DO (r, x) = dose rate at location r and time x after shutdown from a "spent" reactor
which has been operating 5 years at 125 kWt, :
DR(x) = dose ratio of Figure B-17 at time x after shutdown

An example will best illustrate the method. A clean dual reactor module is installed in

the NAR Shuttle in the forward reactor orientation with the reactor 3.5 m (11.5 ft) from

the manipulator operator's station. The Shuttle is ladnched_ and reaches the Spec__e Base

65 days after the low power criticality test period of fhe reactor was ended. Wha_t is the
-dose rate to the manipulator operator during transfer:of the clean reector to the Space

Base ? The applicable equation is:

DC (MOS, 65) = DO (MOS, 5) - DR (5) .7 g’%%%,‘?
and

DO (MOS, 5) = 300 rem/day from Figure B-15

DR (5) = 2.5 x 10™* from Figure B-17

DC (6.1, 65)=0.38 mrem/day from Figure B-16

DC (6.1, 5)= 9 mrem/day from Figure B-16
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Performing the required arithmetic, the dose rate to the manipulator operator is found

to be only 3.16 mrem/day. This represents approximately two percent of the 150 mrem/

day maximum allowable dose rate.

B.8 REFERENCES

B-1

"Nuclear Reactor-Powered Space Station Definition and Preliminary Design," :
MSC-00741, (SD 70-168), Volumes I, II, and III, North American Rockwell,
under contract NAS9-9953, January 1971. '

'""Nuclear Reactor-Powered Space Station Preliminary Performance Specification, "
MSC-02451 (SD 70-527), Volume I, North American Rockwell under contract
NAS9-9953, November 1970.

Reactor Power System Design Document', MDC G0750, Volumes I and IT
McDonnell Douglas Corporation under contract NAS8-25140, December 1970.

B-27/28



APPENDIX C
REFERENCE ISOTOPE BRAYTON POWER MODULE

C.1 GENERAL

For the purpose of this nuclear safety investigation, an isotope-Brayton power system was
used. Itis potentially very flexible in application and, therefore, may be found suitable for
a number of futux;'e missions involving power requirements from 3 kWe to 30 kWe. These
missions will in all likelihood involve the Space Shuttle to transport the isotope-Brayton
power system to low earth orbit, and may also use the Space Shuttle to return the isotope
heat source to the earth's surface. This appendix describes in relative detail the reference
isotope~Brayton power system and how it may be configured for Space Station/Space Base
applications. The major isotope heat source induced environments that can have a signifi-

cant effect on the Shuttle integration and transport mission are also discussed.

Three variations of the Shuttle-integrable 25 kWe isotope-Brayton power system concept
have been proposed as illustrated in Figure C-1: the engine-room concept (MDAC), the
power boom concept (NAR), and the modular concept (GE). In the ""engine room' approach,
the system is housed in a 10 m (33 ft) diameter cylinder, 4.6 m (15 ft) long.v Three power
conversion modules are provided: two operating, and one spare. These are rail-mounted
so that either operating power conversion module can be replaced by the spare as required.

This system uses two isotope heat sources.

The ""power boom' configuration is 14 m (46 ft) long, 4.3 m (14 ft) in diameter, employs

two heat sources, and contains four power conversion modules (two on line, two redundant).
In this system, the gas is ducted the length of the system to provide separation distance be-
tween the heat sources and the power conversion modules, thereby attenuating the radiation

level at the modules and permitting in-flight maintenance.

The modular power system is 6.1 m (20 ft) in diameter and 12,8 m (42 ft) long. Its radiator
has been divided into segments so that the power conversion module and corresponding
radiator segment are contained in one structure. The system shown here contains four heat

sources and four power conversion modules, but it could be configured of 2 to 6 units of each.

C-1



HLONTT W 877
43LINVIQ W T

W

<
AN _
/NN 00
ﬂ//////// 3...4/ A / ,.
m y N ll' '\ N N
S ({4 e AV A O >
RS X (@ 2 N
A N v
W S\ / HLONTT W pT
/5&", R .f —) .
N\ = BN ep N §<_ Q w M q
& iV / HIONTTW 9y o, dild

N Y/ walawvio w ot 3 .




The common nuclear componént to be found in each of the threesystems is the Isotope

Reentry Vehicle (IRV).
The following sections will descr1be the engine room concept in deta11 (see Reference C- 1)
and will 1ndlcate the key features of the power boom and modular approaches and how they

differ from the eng;me room,

C.2 SYSTEM DESIGN FEATURES

The function of an: Electrlcal Power System (EPS) is to generate transm1t conditlon, con-
trol, and d1str1bute electric power to the Space Station/Space Base power-consummg subsys-

- tems and experiments (as reqmred) for a mission duratlon of at least 10 years. ';

The engine_room isotope-'-Brayton power system conﬁgnration consists(of"two-independent
units, each of which contains an isotope heat source housed in an isotope reentry vehicle
(IRV), a heat source heat exchanger (HSHX) connected to a power conversion system (PCS),
primary and secondary radiators, nuclear radiation shielding,' and suitable controls,
connections, and mounting devices. A single is_otope—Brayton'unit is shown schematically
in Figure C-2, Two of these plus a spare PCS go to make up the reference s’y'stem. The ‘
- PCS/heat exchanger modules are‘ mounted on'raile so the spare. module can be positioned to

operate with either heat source.

The system design features radiative transfer from the isotope heat source arr‘a;lr'totl'ie
Brayton cycle HSHX, This arrangement permits PCS module replacernent without :c_utting |
high-temperature lines, It also makes possible a simple, highly ‘-reliable eeparaﬁon-'system
for use in jettisoning the IRV in the event of an on-pad or launch abort. and in other emer-
gency situations. The PCS/heat exchanger module has been designed to permit rapid, easy

replacement of a failed unit.

The output of the power source assembly group is 29.8 kWe of '_1200 Hz, 120/208.vac, three-
~ phase electrical power delivered to separate source buses. In addition to the 29. 8 kWe total

of electrical power, which corresponds to 25 kWe average available at the AC and DC load

' C;3



buses, 4.0 kW of thermal power (2.0 kWt from each heat source) is extracted as waste heat

at 394°K 2 SOOF) for use by the EC/LS subsystem.
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Figure C-2. Typical ISotope?Bijaytbn System

Table C-1 is a summary of the system characteristics for the complete 25 kWe power sys-

tem. At the operating temperature ratio of 0.262, the power conversion efficiency (ratio of

PCS heat input to net unconditioned power) is 32 percent. The upper temperature is limited

to 1144°K ( 1600°F ) by the heat source, and the minimum cycie temperature of 311°K

(IOOOF) is established by the sink temperature of 2670K (200F) and the radiator area.

The mass of the sysfem is estimated to be about 6350 kg | (14 klbs) at launch, as shown

in the mass schedule of Table C-2.



Table C-1. Isotope/Brayton Cycle PCS Characteristics

Net conditioned power
. Conditioning and distribution loss -
Net raw power

PCS module rating

Isotope heat source rating (2 at 48. 5 kwt)

Cycle heat input
Heat leakage

Power conversion efficiency
(14.9 kwe/46. 5 kwt)

Radiator

Dééign sink témperature

PCS working gas | _

PCS turbine inlet temperature

PCS compressor inlet temperature
IRV diameter o

Crew dose rate

25 kwe* at 1200 Hz

4.8 kwe
29, 8 kwe
14.9 kwe

97 kwt EOL** (104 kwt BOL)

(46. 5 kwt)
(2. 0 kwt)
320 .

172 mz’
267°K
Xe-He
1145°K
310°K

. 2,21 meters

- 25 rem/6 mo

*4,0 kwe bonus for experiments, waste heat provides 4.0 kwt to EC/LS,

**Py~238 age is 11, 0 years.

Table C-2, Pu-238 Brayton Mass Summary

System

Mass (Kg)

Heat source (2 at 776) 1552
IRV (2 at 340) 680
Shielding (2 at 680) 1360
Brayton cycle PCS (3 at 453) 1359
PCS electrical and support (2 at 125) 250
Heat rejection and radiator . 788
Structural-mechanical integration 454
Power source subtotal

| b443




C. 3 IRV/HEAT SOURCE

The isotope-Brayton power system contains two IRV'S, each containing heat sourceé rated
at 52 kWt at beginning of life (BOL). The heat source contains 130 individual capsules each
generating 0.4 kWt (BOL). The purpose of the IRV is to achieve thermal integi‘ation with

the PCS and to assure intact reentry disposal for abort.

The IRV design is an adaptation of the AVCO design. Exploded views of the IRV with the
heat source are presented in Figures C-3 and C-4, The AVCO version is shown; the

- present design is similar with the exception of hexagonal fuel capsules and the absence of
‘a cover plate, since the capsule cladding can withstand the reentry heat loads. 'Operating
characteristics of the IRV heat source baseline design are summarized in Table C-3. Mass
of the IRV heat source components are summarized in Table C-4, The heat source mass
is 775 kg ( 1710 lbs ), the IRV mass without heat source is 340 kg (750 lbs), and the IRV
reentry mass is 1115 kg (2460 lbs ), for the reference 221 cm (87 in ) IRV design,

The IRV is a 60-degree half-angle, blunt cone configuration 221 cm (87 in ) in diameter and -
114 cm (45 in ) deep. The aft section has a canted and perforated "fence' or flare to pre-
“vent backward feentry of the IRV /heat sdurce'. 'Resuifs 6f aéfodynémic 'testing étiAmes 1nd1— |
cate a high relaibility associated with performance of the fence. The IRV is protected dur—
ing reentry by a low-density ablator. ‘Location aids are mounted on the vehicle to assist in

tracking and recovery. A ballute located around the periphery of the IRV limits terminal
velocity to about 15 m/sec (50 ft/sec) before impact. The IRV terminal velocity is 81 m/sec
(265 ft/sec) without ballute deployment.

The heat source consists of a 173 cm (68 in ) diameter planar array of the 130 hexagonal
fuel éapsules mounted on a refractory metal support plate. A refractory truss attaches the
heat source to the aluminum honeycomb aeroshell of the IRV. Low-conductivity vacuum

multifoil insulation is used to minimize heat loss to the IRV structure.
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VTable C-3. Heat Source and IRV System Characteristics (Reference C-1)

Heat source

52 kwt (BOL)

Thermal rating

Isotope fuel PuOg SSC
Pu-236 impurity 1.0 ppm
Heat source diameter 1.73 m
Heat source radiation area 2.3¢ m2
Average fuel operating temperature 1310°K

Thermal storage material
Thermal storage requirement

Graphite, BeO
60 min for 1310°K

time and temperature rise®) to 1645°K
Isotope capsule :
Type PRD vented
Number of capsules 130
- Thermal rating 400 w (BOL)
Structural materials Refractory
Heat shield Graphite
-Length 17.1 cm
Width 8.9 cm (flats)
Mass 4,0 kg
Vent release time, minimum ® Unspecified

Reentry vehicle

IRV diameter 2,21 m ref. (2.34 m predicted)
IRV hypersonic (continuum) W/Cp, A©) 1530 Newtons/m?2 (32 1b/ft2)
IRV impact velocity without ballutes(c) 81 m/sec

Impact attenuation Intact plate concept

Shield
Neutron yield - 5,000 n/sec-gm Pu-238
Shielded dose rate/IRV at 20 ft 7.7 mrem/hr
Materials (neutron/gamma) LiH/U
Internal diameter 2.26 m ref. (2.39 m predicted)
Integrated crew dose from IRV systems 25 rem/6 mo

U Thickness (3.5 yr/11 yr)
LiH Thickness (3.5 yr/11 yr)

None/0.51 cm
12,7 ecm/20.3 cm

(@) Common requirement with previous Avco study
(b) Based on pressure relief prior to 1% maximum creep in T-111 shell
(c) Zero angle of attack




Table C-4. Heat Source and IRV Component Mass** (Reference C-1)

Assembly Mass
Heat source 776 kg
Fuel capsules (130 at 4. 0 kg) 525
Fuel (400w, SSC) (1. 36)
Structural shell (0. 84)
Liner, oxidation barrier, etc. (0. 34)
Graphite heat shield (1.41)
Total ' (3. 95)
Heat source plate 45
Support structure 20
Insulation ' 23
BeO2 heat sink 163
Reentry vehicle 340 kg
Heat shield on cone 160
Bond ' 3
Fence structure : 11
Fence heat shield ‘ 64
Aeroshell structure 51
Ballute and flotation aids - 43
Recovery Aids , 9
Shielding* 680 kg
U—23":8 gamma shield - None 4
LiH neutron shield (including can _ 680
and insulation)
Total heat source/IRV mass 1796 kg
*Criteria: 25 rem/6 mo., 2.1 m exclusion distance, 1.0 ppm Pu-236, 3-1/2 yr
fuel age -
**Mass shown for reference design
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Flat sides of adjoining capsules touch each other, and are perpendicular to the heat source
plane. This presents two surfaces (canted 150 degrees from 4each other) for radiation to

the conversion system with a planar area of 23,400 cm2 (3630 in 2). Assuming a collector
temperature of 11700K (1650 OF) and a graphite emissivity of 0, 85, the emitter surface of
the heat source is about 1255°K (.1800 oF) in normal operation. The average shell tempera-
ture is about 1295°K ( 1950 0F) assuming a 0.254 cm (0. 10 in ) RPG insulation layer. The
peak fuel temperature is calculated to be about 1340'°K- (1900 0F) and the average fuel tem-
perature is just under 1310°K ( 1900°F).

Transfer of the heat from the isotope heat source to the Brayton cycle heat exchanger is
accomplished by direct radiation to facilitate both PCS removal and emergency cooling.
The HSHX configuration is a tube-fin-spiral involute, two-pass type of heat exchanger.
The primary heat exchanger receives radiation on an equal area fx_'om the heat source. In
case of malfunction of the primary PCS, the IRV is rotated to the heat dump mode while
the PCS um't is replaced.

The IRV fuel capsules are SNAP-19 intact-impact heat source capsules rated at 400 watts
Beginning-of-Life (BOL). The capsule design is shown in Figure C-5. The fuel is a solid-

solution cermet,

C.4 POWER CONVERSION SYSTEM (PCS)

The PCS converts heat source thermal energjr fo electricity. In the Brayton cycle conver-
sion system, this is accomplished in a closed loop, hermetically sealed, and thermally
coupled to the heat source and heat rejection systems by heat exchangers. The Brayton
cycle system is a recuperated Brayton cycle using a helium-xenon mixture in the ratio 39
percent He and 61 percent Xenon by weight to yield a fluid molecular weight of 83.8. The
fluid is heated in vthe HSHX by radiant coupling to the IRV heat source. The diameter of the
HSHX is about 173 cm (68 in ).

C-11
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The temperature of the fluid leaving the HSHX is 1145°K ( 16000F). the maximum cycle and
turbine inlet temperatures. The Combined Rotating Unit (CRU) has radial flow turbine and
compressor wheels mounted at each end of a Rice alternator. The CRU is supported by
hydrodynamic bearings, using the high-pressure (3.7 x 105 Newton/mz) working fluid bled
from the compressor discharge for the bearing. Auxiliary cooling is provided for the

alternator housing.

The heat rejec_:tion heat exchanger and recupterator heat eXchanger areA combined in a single
integral assembly called the Brayton heat exchanger unit (BHXU). The recuperator section
of the BHXU is a gas-to-gas counterflow type heat exchaﬁger. Platefin surfaces or sand-
wiches are used for both gas flows. The core is formed by alternate stacking of the hot
(turbine exit to heat rejection heat exchanger entrance) and cold (compressor exit to heat
source heat exchanger entrance) gas flow sandwiches. The waste heat exchanger is a liquid
(FC-175) to gas (He-Xe) cross-counterflow arrangement. There are several liquid passes

" back and forth across a single gas flow path, The core of the waste heat exchanger also

uses ‘plateﬁn sandwiches for both the liquid and gas.

The gas management system consists of a helium supply tank, a regulator, and injection
valve, The system furnishes makeup helium in the event of leakage and jacking gas for the

bearings during startup.

Startup is provided by a motor-generator set energized by the Space Station/Space Base
batteries. The motor-generator set provides power to the PCS alternator which acts as a
motor to furnish the shaft power to the turbine and compressor during startup. Startup can
be effected in less than 5 to 10 seconds with the CRU unloaded, A negligible amount of

energy is required to bring the machine to self-sustaining operation.

A PCS mass summary is given in Table C-5, Additional sﬁpport equipment is required for
PCS monitoring control and startup. The mass of this equipment is 250 kg (550 lbs) (Table
C-6) not including equipment, such as the monitoring panel, rectifiers, and batteries for

startup, which are common with other systems on the Space Base.
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Table C-5. Brayton PCS Mass Schedule

Total No. Unit Mass System Mass

Component Description of Units - (kg) (kg)
CRU 3 57 170
BHXU and EC/LS heat 3 206 615
exchanger
Electrical harness 3 71 34
Heat source heat 3 109 327
exchanger and duct
Structure and insulation 3 69 208

Total CRU 452 1354

(Reference C-1)

Table C-6., PCS Support Equipment Mass Schedule

" Total No. Unit Mass System Mass

Component Description of Units (kg) kg)
Inverter 4 7 27
Signal conditioner and 2 9 78
speed control
Voltage regulator- 2 34 68
exciter
Cold plates 8 5 36
Parasitic load resistors 2 27 54
Gas management and 2 23 45
startup . -

105 248

C-14
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C.5 HEAT REJECTION

Primary and secondary radiator sections are used for the Brayton power source system.

The primary section rejects 26,75 kWt/module to an apparent sink temperature of 267°K
(20°F); the secondary section rejects 2, 55 kWt/module to the same sink. The primary
radiator rejects the thermodynamic waste heat from the cycle and the secondary radiator
cools the alternator and electronic control components. The area of primary and secondary
radiator to support each PCS heat rejection is 86 m2 (925 ftz). The radiator uses aluminum
tubes placed circumferentially around the vehicle with the vehicle skin as the radiator fins.
The 2 kWt difference between the waste heat produced by the PCS and that rejected by the
radiator is used for EC/LS functions such as desorbtion of silica gel beds and CO2 molecular

sieves,

" Mass of the heat rejection system (Table C-7) includes nominal redundancy for reliability
and wearout during the 10-year mission life. The radiator is also sized for an a/e degra-

dation to 0. 39.

Table C-7. Mass Schedule for Isotope Brayton Cycle
Heat Rejection System

Component Mass Unit System Mass
Description No. Required (kg) kg)
Accumulator 4 5 18
Pump-motor- 4 4 15
assembly
Plumbing 2 54 109
Fluid inventory 2 36 73
Primary radiator* 4 Loops (1 Fin) - 476
Secondary radiator* 4 Loops (1 Fin) - 98
Total liquid 789
cooling system
*Four Loops, two on-line and two standby; all sharing a common fin

(Reference C-1)
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C.6 RADIATION SHIELD

The isotope shields are sized to yield a total integrated crew dose of 25 rem/6 months from
two isotope heat sources. The shield performance data and dimensions are listed in Table

C-3 and the weight is Summarized in Table C-4, All manned compartments of the Base are
within the shadow shield of the IRV. It is constructed of lithium hydride encased in a 0. 254

cm (0.1 in ) thick stainless steel containment can.

At launch, the heat source shield contains 12.7 cm (5 in) of LiH to meet the dose criteria
for the first 2-1/2 yrs of operating life. After 2-1/2 yrs, an additional 7.6 cm (3.0 in)
of LiH and 0. 51 cm (0.2 in) of depleted uranium is delivered by the Space Shuttle to meet

the dose criteria for the remainder of the 10-year mission.

The design of the 680 kg (1500 1b) IRV shield for the isotope-Brayton system was influenced

by a number of factors, in decrasing order of signiﬁcarice, as follows:

e Allowable crew dose from the isotope system.

e Initial shield design for an intermediate isotope age.
e The large planar source geometry.

e Buildup of impurities in the Pu-238 fuel.

e The expected crew residence time.

e Separation distance.

e Fuel block power.

The effects of the above elements are discussed in Reference C-1,
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C.7 ISOTOPE INDUCED TRANSPORTATION AND HANDLING ENVIRONMENTS

C.6.1 RADIATION
Figures C-6 and C-7 show the neutron and photon isodose curves, respectively, for the un-

shielded 52 kWt (BOL) heat source.

The heat source geometry was based upon the heat source described in Reference C-1.

The heat source was assumed to consist of 52 kWt of 238PuO2 in the form of a disc 173 ecm

(68 in ) in diameter.

The radiation source terms are based upon the following data:

2
Neutron source - 5 x 103 n/sec-gm- 38Pu

236Pu content - 1 ppm

Gamma source - assumed 11 year old fuel, source terms taken from Reference C-2.
The radiation calculations are based upon the following assumptions:

e No neutron absorption within the heat source.

e Photons with energies below 0.5 Mev were completely absorbed within the
heat source,

e No photon absorption within the heat source for photons with energies above
0.5 Mev. '

e The ratid of the dose rate along the disc axis to the dose rate in the radial
direction was taken to be 3 in the neutron case and 10 in the photon case.

e A cos (a9) distribution was assumed for both neutron and photon;dose rates
where 0 is the angle with respect to the Z axis in a cylindrical coordmate

system with origin at the heat source center.

The Z axis is along the disc source axis. (See Figure C-8.)
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The neutron and photon dose rates were assumed to follow the relationship.

D0 Cos (aB)

2
R

D =

The parameter "a'' was chosen to satisfy the axial to radial dose rate ratios discussed
above. The pai'ameter Do was evaluated by requiring that the number of particles passing

through a closed surface about the source was equal to the source strength.

The resulting equations were:

Dn,

"2
(2.8 x 106) cos (0.7828)/R mrem/hr

= (2.25x 106) cos (0.936 6)/R2 mr/hr

w)
|
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These equations are meant to apply for R> 915 cm (3 ft) to insure that for 6 = 900 the dose

point lies outside of the heat source.

C.7.2 THERMAL

An estimate was made of the temperature of the heat rejection surface for the case of pure
radiation heat transfer and for radiation plus convection. In each case, 5.3 x 104 watts

were to be rejected from one side of a horizontal disc 173 cm (68 in) in diameter. In the pure
radiation case, the sink temperature was set at 267 °x (ZOOF) and in the radiation plus con-
vection case it was set at 294°k 7 OOF). The convection was assumed to take place in 204°K

(70°F) air.

The pure radiation case resulted in a surface temperature of 865°K-(11000F) and when con-

vection was added the surface temperature dropped to 810°K (IOOOOF).

C.8 ALTERNATE CONFIGURATIONS

C.8.1 POWER BOOM

A variation of the engine room isotope-Brayton power system concept is the '"Power Boom"
concept (Ref. C-3) as shown in Figure C-1. Here, the isotope-Brayton assemblies are in-
stalled in a power boom 4,3 m (14 ft) in diameter and 14 m (46 ft) in length. Two 47.2 kWe
heat sources are employed, each providing heat to a Brayton power conversion unit, Two
power conversion units are connected in parallel to each heat source; normally, the first of
these power conversion units is operating and the second is redundant. This approach re-
quires no shielding to meet the 150 mrem/day maximum allowable dose rate to the crew.
For equipment maintenance operation in the boom hoWever, water augmentation shielding

is provided. The 4.7 t (10.4 klbs) of water is delivered in a supplementary Shuttle launch,

This system is designed to facilitate repair and replacement of equipment in the power
source. The power conversion units are located at the base of the boom where they can be
worked on in a shirtsleeve environment. At the other end of the boom, compartment covers

are provided for heat exchanger replacement; the hinged IRV's are deployed to the heat dump
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made up of a Brayton engine module, a heat source heat exchanger, and a radiator which is
configured to become a segment of the cylinder that the entire system forms. The outstand-
ing attribute of this concept is its exceptional flexibility, both of design and operation. In
addition to this, the modular concept is compact in size, compatible with Space Station/

Space Base operations, and has a potential for highly reliable operation.

‘ An explpded view of the system is shown in Figure C-9; it illustrates how the PCM's and
IRV's are supported by the primary support structure. The four-module system illustrated
here is approximately 12,8 m (42 ft) long and 6.0 m (20 ft) in diameter; it weighs a total of
9300 kg (20,500 lbs), including 230 kg (500 lbs) of shielding on the primary support structure.

The mass breakdown for the system is shown in Table C-9.

Table C-9. Isotope-Brayton Modular Power System Mass

Assembly Mass
IRV's (4 Required at 1205 kg each) 4820 kg
PCM's (4 Required at‘944 kg each) 3775 kg
Primary Support Structure 705 kg
Total 944 kg each) 9300 kg

The system briefly described here delivers 25 kWe to the Space Station/Space Base bus,
developed from four heat sources containing a total inventofy of 115, 6 kWt of Pu-238. The
modular system can be designed with any number of modules from two to eight, depending
upon the system characteristics the power system designer wishes to emphasize. Figure
C-10 indicates how selected power system characteristics vary with a change in the number

of modules.
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position, and the covers are installed to provide a seal for a shirtsleeve environment during

the heat exchanger replacement operations.

The following components of the power source are listed as in-flight replaceable units:

- o IRV's (including heat sourceS) (1896 kg ea.)
e Heat Source Heat Exchangers (75 kg ea.)
e Power Conversion Subassembly (88 kg ea.)
(BRU, Recuperator, Cooler, and Ducting) '
e Gas Management Subassembly 45 kg ea.)
e Coolant Pump and Accumulator (15 kg ea.)

A mass summary of this system is presented in Table C-8. This system is composed of

components and subassemblies all of which can be accommodated by the Space Shuttle.

Table C-8. Mass Breakdown for Power Boom Concept

Component Mass_(kg)
HSRV | 1896
Heat Plenum 113
Power Conversion Unit(s) 1152
Radiator ' 376
Cooling System Components 59
Emergency Cooling _ 91
3687

C.8.2 MODULAR
Another alternate concept is the Isotope-Brayton Modular Power System (Ref. C-4). It con-

sists of four isotope heat sources in IRV's, each coupled to a power conversion module (PCM)
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OVERALL SYSTEM

NUMBER OF  SYSTEM FUEL LOADING  RELATIVE SYSTEM
MODULES  MASS (KG) EFFICIENCY (%) (KWy) COST
2D 8010 21.3 %9 0.92
3. 8485 25.6 105.9 0.95
4D 9305 23.4 115.6 1.00
5& 10,135 218 124.0 1,05
6 10,885 20.7 130.8 111
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CONVERSION FACTORS
INTERNATIONAL TO ENGLISH UNITS

International Conversion Factor
Physical Quantity Units English Units » Multiply By
2
Acceleration m/sec ft/sec2 . 8,281
Area m ft2 10.764
in2 1550.39
, 2 3 -2
Density Kg/m 1b/ft 6.242 x 10
1b/in3 3.610 x 10~
Energy Joule Btu 9.479 x 1074
Force Newton 1bf 2.248 x 1071
Length m ft 3.281
: -4
nm 5.399x 10
Mass Kg Ibm 2.205
9,488 x 107%
Power watt: Btu/sec .
Btu/min 5.691 x 1072
Btu/hr 3.413
Pressure Newton/ m? Atmosphere 3.413
1bf/in2 1.451 x 1074
1bf/£t2 2.088 x 102
Speed m/sec ft/sec (fps) 3.281
Temperature K F (9/5 - 459.67/tK)
. 3 4
Volume m3 in 6.097 x 10
£t3

35,335



GLOSSARY OF TERMS

Abort

Accident

Airborne Material

Breached

Contamination

Control Drum Motion
Core Compaction
Cover Gas

Credible
Criticality
Critical Mass

Cumulative Probability
Damaged
Decontamination

Destructive Excursion

Disposal

Distributed Material
Dose Guidelines

Dosimetry

Bulk Damage (Radiation)

Disassembly/Disassembled

Premature and abrupt termination of an event or mission because of existing or imminent
degradation or failure of hardware. (In the safety analysis, no distinction is made between
an accident and abort.)

An undesirable unplanned event which may or may not result from a system failure or mal-
function.

Radioactive gases, vapors and particulates released to the air.

Fuel elements, coolant loops, pressure vessel, core, or radiation shield are (a) physically
torn by thermal or mechanical stresses, (b) cut open by fragmentation or (c) split open by
internal pressures. :

Radiation causing atomic displacement in semiconductor devices - sometimes commonly
referred to as '"crystal' damage.

A condition where a radioactive material is mixed or adheres to a desirable substance or
where radioactivity has spread to places where it may harm persons, experiments or make
areas unsafe,

Rotation of the control drums or drum toward or away from the most reactive position within
a reactor, (As used in safety analysis results in a reactor excursion.)

The act of increasing the density of the core which results in increased reactivity and possible
criticality.

A gas blanket used to provide an inert atmospheric environment around hardware to minimize
potential reactions which can give rise to accident situations.

An event having a relative or cumulative probability of occurence of > 10'12.

The act of obtaining and sustaining a chain reaction,

The mass of fissionable material necessary to obtain criticality,

Sometimes referred to as ""Mission probability” is the overall probability of a sequence of
events occurring (product of "relative probabilities' of the individual events along a path of
an abort sequence tree),

Same as "Breached".

The removal of undesired dispersed radioactive substances from material, personnel, rooms,
equipment, air, etc. (e.g., washing, filtering, chipping).

An excursion (safety analysis assumes ~ 1'00 MW-sec) accompanied by a complete disassembly
of the reactor, a prompt radiation emission and release of fission product gases, vapors and

particulates,

Nuclear hardware (e.g., reactor) which has been violently broken or separated into parts and

' not capable of forming a critical mass.

The planned discarding or recovery of nuclear hardware.

The spread of nuclear fuel and radioactive debris on the earth's surface following impact or
destructive excursion,

Established radiation levels used in the nuclear safety analysis for evaluating number of
exposures and in determining operating limits and boundaries,

Techniques used in the measurement of radiation,
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GLOSSARY OF TERMS (CONT)

Dynamic Interference

Early Reactor Disposal

Electrical Power System

End of Mission
Excursion
Exposure Limit
Fission Products

Fuel

Fuel Elemént/Capsule
Fuel Element Ablation

Fuel Element Burial
Gallery
Ground Deposited Particles

Hazard

Hazard Source

Immediate Reentry

Impact in Deep Ocean

Impact in Reservoir

Impact in Water Containing
Edible Marine Life

Intact Reentry/Reactor

Integrated/Cumulative Dose

Interfacing Vehicle

An experiment radiation effect where the flux rate above some threshold (a fraction of the ex-
periment signal-to-noise ratio at maximum sensitivity, for electronic detectors) causes
noticeable degradation of data quality.

Attempted disposai of the reactor prior to its successful completion of 5 years operational
lifetime,

All components (heat source, regulation, control, power conversion and radiators) necessary
for the development of electrical power. The reactor electrical power system includes all
hardware associated with the Power Module with the exception of the Disposal System,

Generally associated with the termination of the mission or flight. Is also used to define those
activities involved with disposal and recovery of hardware after intended lifetime,

A rapid and usually unplanned increase in thermal power associated with the operation of a
power reactor.

Total accumulated or time dependent radiation exposure limits 1mposed on personnel by regula-
tory agencies or llmns which preclude equipment damage.

The nuclides (quite often radioactive) produced by the fission of a heavy element nuclide such
as U-235 or Pu-239.

Fissionable material in a reactor or radioisotopes in a heat source used in producing energy.

A shaped body of nuclear fuel prepared for use in a reactor or heat source Common usage
involves some form of encapsulation,

Fuel element clad and/or fuel removed by reentry heating, releasing fission products to the
atmosphere,

Individual fuel elements beneath the ground' surface completely covered by soil.
The compartment of the reactor shield which houses the major primary loop compohents.
Particles deposited on the ground from radioactive fallout.

An existing situation caused by an unsafe act or condition which can result in harm or
damage to personnel and equipment.

The location and/or origin of the hazard.

Very early reentry of the reactor (e.g., misaligned thrust vector which causes firing of the
reactor disposal rockets toward earth resulting in 1-2 day reentry).

Reentering and/or impact of nuclear material in the ocean, beyond the Continental Shelf where
contamination of the food chain is extremely remote.

Reentering and/or impact of nuclear material in reservoir containing potable drinking water.

Reentering and/or impact of nuclear material on the Continental Shelf or in a body of
water such as a lake, river or stream where contamination of the food chain is likely,

A nuclear system that retains its integrity upon impact and in the case of a reactor is capable
of undergoing an excursion,

The total dose resulting from all or repeated exposures to radiation,
Any defined module, spacecraft, booster or logistic vehicle which may have an interaction
with the Manned Space Base.

1
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Ionization Damage

Land Impact

Loss of Coolant

Mission Support

Moderator

NaK-78

No Discernible Hazard

Non-credible

Non-destructive Excursion

Normal Operations

Over Moderation

Permanent Shutdown
Poison

Power Module

Premature Reentry

Pre-poison

Prompt Radiation

Quasi-Steady State

Radiological Consequences

Radiological Hazards

Radiological Risk

Random Reentry

Reactivity

Radiation causing surface damage in materials (e.g., the fogging of film).

Nuclear hardware which fmpacts land at terminal velocities following reentry and lower velo-
citles during prelaunch or early in the launch/ascent phase.

Loss of organic or liquid metal coolant in reactor coolant loops due to failure/accident.

Supporting functions provided the Space Base Program by ground personnel and interfacing
vehicles throughout all mission phases.

Material used in a nuclear reactor to slow down neutrons from the high energies at which they
are released to increase the probability of neutron capture: Water and hydrogen are modera-

tors in a thermal reactor.

An alloy of sodium (22% by weight) and potassium (78%) used as a liquid metal heat transfer
fluid,

Represents no hazard to the general populace.

An event having a relative or cumulauve probability of occurrence of < 10 12. Considered -
not worthy of concern.

A temperature excursion which may rupture the primary coolant loop and release fission pro-
ducts to the environment but - leaves the reactor shield essentially intact.

Planned and anticipated mission activities and events.

Immersion of reactor in an hydrogenous medium (moderator) resulting in mcreased neutron
reflection into the core causing a reactor excursion,

Enacting provisions which preclude reactor criticality under all foreseeable circumstances.
A material that absorbs neutrons and reduces the reactivity of a reactor.

The complete reactor/shield, radiator, power conversion system and disposal system unit as
provided on the Space Base.

Any reentry of the reactor from Earth orbit with orbital lifetimes less than the planned (1167
year) orbital decay time of the 990 km disposal altitude,

A polson which is added to the reactor fuel for purposes of controlling reacticity. Sometimes
referred to as "burnable poison',

The neutron and gamma radiation released coincident with the fission process as opposed to the
radiation from fission product decay, Commonly associated with an excursion event,

A term used to describe the condition when a reactor periodically goes critical and then sub-
critical due to water surging in and out of the core.

The radiation exposure effect on personnel and the ecology from a radiation release accident or
event.

Hazards associated with radiation as differentiated from other sources.

The term used to define the average number of people anuclpated to be affected by radiation
in a given mission or phase thereof.

The uncontrolled non-directed reentry of a vehicle from orbit.
A measure of the departure of a reactor from critical such that positive values correspond to

reactors super —critical and negative values to reactors which are sub—crmcal (Usually ex-
pressed in multiples of a dollar.)
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.Reactor Fails to Survive Reentry

Reactor Survives Reentry

Reactor/Shield

Relative Probability

Repair/Replacement

Ruptured
Safety

Safety Catastrophic

Safety Critical

Safety Marginal

Safety Negligible

Scram System

System Safety

Space Base Program

Space Debris

Space Shuttle

Source Terms

Tracer

Reactor/shield is completely disassembled by reentry heating, releasing individual fuel ele-
ments and structural debris to the atmosphere.

Reactor is not disassembled by reentry heating; radiation shield may be damaged.

A system containing the reactor, control drums, gallery and surrounding LiH and Tungsten
shield.

Probability of the occurrence of a particular event given a defined set of choices.

Consists of (a) physically repairing all faulty systems, or (b) complete replacement of the
faulty system(s).

Same as "Breached".
Freedom from chance of injury or loss to personnel, equipment or property.

Condition(s) such that environment, personnel error, design characteristics, procedural
deficiencies, or subsystem or component malfunction will severely degrade system perform-
ance, and cause subsequent system loss, death, or multiple injuries to personnel (SPD-14),

Condition(s) such that environment, personnel error, design characteristics, procedural
deficiencies, or subsystem or component malfunction will cause equipment damage or per-
sonnel injury, or will result in a hazard requiring immediate corrective action for personnel
or gystem survival (SPD-1A).

Condition(s) such that environment, personnel error, design characteristics, procedural
deficiencies, or subsystem failure or component malfunction will degrade system perform-~
ance but which can be counteracted or controlled without major damage or any injury to
personnel (SPD-1A),

Condition(s) such that personhel error, design characteristics, procedural deficiencies, or
subsystem failure or component malfunction will not result in minor system degradation and
will not produce system functional damage or personnel injury (SPD-1A).

A separate, possibly automatic, mechanism used to rapidly shut down a reactor,

The optimum degree of risk management within the constraints of operational effectiveness,
time and cost attained through the application of management and engineering principles
throughout all phases of a program,

All aspects of the Space Base mission including all prime and support hardware and personnel
both on the ground, at sea or in orbit, which are required throughout all mission phases.

Uncontrolled radioactive or non-radioactive man-made objects in space; these objects may
present collision and radiation hazards to earth orbital missions,

The manned vehicle used for the transportation of cargo to and from earth orbit. A sepa-
rately launched vehicle (booster) on which the Shuttle is placed provides the initial first
stage thrust.

Characterization of a radiation hazard with regard to (a) location, (b) magnitude, and
(c) exposure mode.

Material in which isotopes of an element may be incorporated to make possible observaﬁon
of the course of the element through a chemical, biological or physical process.

vV/VI
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