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FOREWORD

This Aerospace Technical Report has been prepared to describe
the Aerospace Vehicle Synthesis Program which has been used to support
Space Shuttle costing activities by NASA Manned Spacecraft Center (MSC)
and which has been provided to MSC to expedite their costing efforts. The
computer 'prograrn permits the assessment of various Space Shuttle con-
figurations and variations of significant design parameters such as payload

weight, velocity increments and propellant specific impulse.

Included in this report are the subsystem weight'equations and some
discussion of their derivation, a description of the program logic, and a
delineation of the program output. In addition, a sample program print-out

is provided.
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I. INTRODUCTION

The AerospacelVehicle Synthesis Program (herein referred to as
the VSP) has been programmed to simulate a Space Shuttle vehicle on the
computer in such a manner that the effects of various changes such as
payload weight, orbifai velocity increments, etc,, can be determined.
Similar programs have been used at The Aerospace Corporation for the
last five years to detefmine optimum vehicle configurations (e.g., minimum
weight).” Recently, the programs have also been used as costing tools to

determine minimum cost vehicle designs.

In 1969, one of these Vehicle Synthesis Programs was described
to personnel at the Marshall Space Flight Center (MSFC) who subsequently
used it as a base to establish a larger program of their own. Later in that
year, this program was shown to the Manned Spacecraft Center (MSC).
The MSC personnel were interested in the program because of its adapt-
ability to cost sensitivity studies being conducted by the Operations Analysis
Branch. During the last two years, weight and size data fran the VSP
have been provided by The Aerospace Corporation to MSC for about 20
Space Shuttle configurations. In FY 72, the MSC Operations Anélysis
Branch decided that the task should be handled in-house and requested that
a description of the VSP be prepared so that they could become familiar
with the program at NASA/MSC. They selected the VSP because it can be
maintained by one man with only occasional assistance from outside groups
such as trajectory analysis and propulsion. This document has been

written in response to that request.



II. BACKGROUND

The computer f)fogram described herein has evolved as a result
of many revisions to a program originally written in 1965 for manned
reentry vehicles. Due to the uncertainty of future manned reentry vehicle
configurations, the program was written to assess the weight effects of
major configuration changes such as variations in hypersonic lift-to-drag
ratios from 0.25 to 3.0. The logic in the program provided for proper
placement of internal equipment, payload and ballast to maintain center
of mass control. In addition, the vehicle geometry was monitored to assure
adequate internal volume and to maintain consistency between the vehicle
planform area loading and the thermal protection structure subsystem

which is a function of this pai'ameter.

As time passed and Space Shuttle configurations became more defini-
tive, the program was simplified with regard to the items discussed above,
which require a considerable amount of logical programming. In.addition,
the program was expanded to provide more detailed subsystem weight data.
This modified version of the program was essentially written for a single

Space Shuttle configuration and is described in this report.



III. DISCUSSION

A, VEHICLE DESCRIPTION
The two-stage Space Shuttle now under consideration by NASA

cdnsists of a drop-tank orbiter using LOZ/LH2 propellants, which is
boosted by twin solid propellant rocket motors. The orbiter and booster
rockets thrust simultaneously until the solid rocket motors are depleted.
The orbiter continues thrusting after booster sféging until the desired
orbit is achieved. Recovery of the expended solid rocket motors from the

ocean is being considered. '

Prior to the selection of this configuration, the following alternate

booster configurations were analyzed using the VSP:

1, LOZ/R_P or LOzlPropane fuel, single tank, series burn.
2, LO, /RP or LO,/Propane fuel, twin tanks, parallel burn.
3. Solid propellant rocket motor cluster, series burn.

B. VSP PURPOSE

The function of the VSP is to determine changes in vehicle size and

weight that occur when certain vehicle parameters are varied. The most

commonly 'varied parameters are:

1, Payload weight

2. Payload bay volume

3. Drop tank weight factor (tank weight/propellant weight)
4, Propellant specific impulse _

5. -Contingency factor (weight growth allowance)

The computer program is written to produce Space Shuttle weight
and size data that are consistent with the variations in the parameters

noted above as well as with specified design and performance criteria.



IV. PROGRAM DESCRIPTION

A, ITERATION LOGIC

As in most vehicle synthesis programs, many of the subsystem

weight relationships contain the total vehicle weight as a parameter and
iterative methods are used to obtain convergence. Iteration procedures
are also used to match the Space Shuttle performance requirements.

In particular, the total velocity increment required to achieve a specified
orbit is achieved by varying the booster propellant weight. The velocity
split between the two stages is held constant by varying the orbiter pro-
pellant weight.,

Briefly, the program logic is as follows:

L, Determine the orbiter weight based on an assumed velocity
increment ( A V) requirement. ‘

2. Determine the booster weight based on an assumed booster
propellant weight. ,

3. Determine the total AV achieved by both stages. The booster

and orbiter action times are simultaneous until booster burn-
out.

4. Iterate the booster propellant weight until the required total
AV is achieved.

5. Return to the first step and increase (or decrease) the orbiter

A V until the required AV split between the booster and
orbiter is achieved.

6. ‘When the specified criteria are met, the results are printed.

A flow chart showing the program general logic is shown in Figure 1.

B. WEIGHT ESTIMATING EQUA TIONS
A ground rule specified by NASA was that the weight equations be

based on contractor weights. The VSP is currently written to accommodate

-4.
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that request. This was accomplished by simplifying the statistically
developed parametric equations originally derived for the program. For
example, the wing weight equation was originally a function of vehicle
weight, load factor, and wing area, span and thickness. Because the
wing geométry is now well defined and contractor weights are to be used,
the wing weight equation was simplified to a function of wing area and the
unit weight reportéd by the contractor. However, the program cah also
be operated using the original equations. These equations are described
in the following text, Further discussion is provided in Reference 1 which
discusses these equations with rega.rd to a two-stage fully recoverable

earth orbit shuttle. A symbol definition list is given on page 21.

1. . STRUCTURE AND THERMAL PROTECTION SUBSYSTEM

The structure and thermal protection subsystem equation is
based upon a relationship developed to support various Air Force studies
concerned with maneuverable upper stagé's and maneuvering spacecraft.
This correlation analysis is depicted in Figure 2. The prime variables in
this equation are wetted area (SW), planform area loading (W/S) which
accounts for peak heating and structural loads, and reentry lift-to-drag
ratio (L/D) which reflects the total heat integral.

The structure and thermal protection subsystem includes
the external high temperature material, the surface support stfucture,
internal insulation, supports, and all of the vehicle internal structure,
The effect of vehicle size (SW) on the subsystem weight per unit area
has not been determined, but examination of cargo aircraft fuselage
weights indicates that increases in area yield increased unit weights. It is
possible that this influence may also exist in lifting reentry vehicle
structures and, therefore, should be investigated.

The correlation equation provided in Figure 2 is based upon
reentry vehicles that were designed and in some cases developed during
the 1962-1966 time period. A separate Aerospace Cbrporatibn design

study indicated that certain spaceborne subsystem weights have been
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reduced by about 1.5 percent per year between 1955 and 1965, primarily
due to improvement in design. As a result of this study, it was decided
to reduce the weight represented by the weight equation at the same rate.
This was accomplished by reducing the equation coefficient approximately

9 percent for the period between 1964 and 1970. The resulting equations

are:
w_, =1.647(5_)w/s)’-*n/D)0-2
st w : .
64 '
w . =1.497(s_)w/s)? 4w/p)°-2
st ' w
70
where W = structure and thermal pfétection system

5tog ~weight, 1b., 1964 technology

W, = 1970 technology
70
2, ROCKET MOTOR THRUST STRUCTURE

The thrust structure used to distribute loads from the ascent
motors into the basic' vehicle structure is considered to be a separate com-
ponent. It is not included in the structure and thermal protection subsystem
(TPS) since no similar item was included in the empirical data used for the
weight correlation analysis of the structure and TPS.

The weight estimating equation for the thrust structure was
developed by correlation of launch vehicle data such as the Saturn stages, '
Centaur, etc. This correlation is shown in Figure 3. In addition, a design
was established and structurally analyzed for a thrust structure appropriate
for a stage-and-ohe-half concept. The weight of this truss was found to be
slightly heavier than weight predicted using the weight correlation, but it
was close enough to support the validity of the equation. The stage-and-
one-half point is shown in Figure 3 for reference. The thrust structure

weight (Wts) from Figure 3 is:
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1.128

ts = ’0’00071(Fv) |
where FV = total vacuum thrust carried by thrust structure, lb.
3. WING

Weights for wings are based upon the theoretical wing area
(including the area across the fuselage), vehicle landing weight, load factor,
wing structural semiL span, and root thickness. A correlation equation for
fixed aircraft wing weight (Ww ) is supplied in Figure 4 in which only fixed-

wing aircraft are plotted.

. ( 0.66
W)Q\J bXS :
w, = 1270|~-4 o 9‘”’)' | (Fixed Wing)
f (t.) (107) A
T

where Wy = landing weight, 1b.
N'z = load factor
b = stxjuctural span, ft.
Swi = theoretical wing area, ft.2
tr = thickness at root, ft. ‘

4, LANDING GEAR

The landing gear weight equation is based upon a correlation
analysis of aircraft data shown in Figure 5. It will be noted that both
wheel- and skid-type landing gears are correlated on the figure. The

wheel type gear weight (ng) equation is:

5. 0.875
Wy, = 85.4 (st 10™°)

-10-
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5.  ROCKET MOTORS
The weight of the rocket engine used for the ascent phase
consists of two parts, the thrust chamber (Wtc.) and the turbopump assem-
blies (tha) Weight_s.: Weight equations for these two componen'ts were
developed using existing engines. The correlations are shown in Figures

6 and 7. The resulting equations are:

. F 0.876 0.293 1'3A61
W, =0.0176| — d + 366
tc 0.523
(P,)

. ‘- .0.783,  .0.564

tha— 2.18 (WP/P) (PC) -
where Fv = vacuum thrust, 1b.

€ = expansion ratio
Pc = chamber pressure, psi

Wp/f3= propellant volume flow rate, ft. 3/sec.

When these two equations are combined and reduced to a
simple equation by substituting values for the variables planned for the

Space Shuttle, the equation for the rocket motor weight (Wrm) becomes:

W = 0.012 F_ -
rm v

However, since fhis equation is based upon empirical motor
data with chamber pressures limited to 1000 psi instead of the 3000 psi
criterion planned for the shuttle vehicle, a weight scaling law quoted by the
engine manufacturer can be considered. As this equation yields a lower
weight than that of the correlation equation, substaﬁtiation of that scaling
law should be conducted as; part of continuing studies. The manufacturer's

scaling law is:

W =0.01lF
Irm Vv

-13-
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6. 'ROCKET MOTOR GIMBAL
The weight of equipment uséd to gimbal the rocket motors

is expressed by:

w . = 0.0007(F /W _ )W
gim v
o o o
where Wg = orbiter gross weight, 1b.
(0]
7. PROPELLANT TANKS

Weights of propellant tanks are expressed in the following
weight terms: ‘ | '
Non-Integral Tanks (40 psi Pressure) -
w =0.04 W
: P

t
ni
8. PROPELIANT DISTRIBUTION SUBSYSTEM
Propellant plumbing, fill and drain, utilization equipment,
. etc., are included in the relationship:
W_ =0.015W
P

Pgq
where Wp = orbiter propellant weight, 1b.

9. SURFACE CONTROLS (ATMOSPHERIC)
WSc =0,0156 Wy o

10. REACTION CONTROLS (SPACE)
w =({0.017 W,)+0.156 W .
rc f4 v rcsp
. . 0 o
where Wrcsp = orbiter reaction control propellant weight, 1b.
o ‘
11, ELECTRICAL POWER(FUEL CELLS, INVERTERS, ETC.)
w = 21N+ 3ND + 32D + 0.002 W+ 2200
€P, ' o
where N = number of crew rnembe:s

D

number of days in orbit

-16-



12. POWER CONVERSION AND DISTRIBUTION

Wpc = 10 (¢2) + 500

where £ = orbiter length, ft.

15. AVIONICS AND ONBOARD CHECKOUT EQUIPMENT

Orbiter: W = 4500 1b.
av,

14, . ENVIRONMENTAL CONTROL AND LIFE SUPPORT (ECLS)

Crew: Wec = 66N + 26ND + 600
m
o
Equipment: Wec = 5D + 3000
€o
15. PERSONNEL PROVISIONS (SEATS, ETC.)
W__ = 170N
. PP
16. CREW (INCLUDING SUITS)
W _ = 240N
c .
17. LAUNCH PROVISIONS (PAD SUPPORTS)
W[ = 0.0007 W lo ‘
Py
where Wlo = Space Shuttle lift- off weight, 1b.
18. SEPARATION EQUIPMENT (BETWEEN ORBITER AND BOOSTER)
w = 0.012 Wy
sey o
where Wb = booster burn-out weight, 1b.
°b
w = 0.0025 W
se
o : o
19. PROPELLANTS (USABLE)

(a) Rocket Motor Propellants

Orbiter: discrete
Booster: solved by computation

(b) On Orbit Maneuvering and Reaction Control System Pro-
Pellants '

Based on velocity requirements
(c) Electrical Power Reactants (Fuel Cell)

w = (0.004 x W_ )+ 2000
epf, €o

-17-



(d) Thrust Decay Propellants

W, . =0.0018 (F_ /W _ )W
tdp *y go) 8o

(e) Residual Fluids
W =0.008W
r P

20, CONTINGENCY
A weight contingency must be included in early weight esti-
mates for inevitable weight growth and for ornifted features (such as pad
and ascent abort capability). A contingeﬁcy weight of at least 10 percent
of the stage inert weight is required for the systems used in the Shuttle

Vehicles .

-18.



V. EXAMPLE CASE

An example éase of a solid propellant boosted, drop tank orbiter is
presented herein primarily to delineate the type of results produced by
the VSP., A VSP printout is provided in Appendix A. In examining the
compﬁter printout, it should be remembered that the VSP is a revision of
a more complex program which was written to analyze two-stage Space
Shuttles for which both stages were fully recoverable. Therefore-, the
weight data for the booster are in considerably less detail than that indi-

cated by the nomenclature.

In general, the results are self-explanatory but some items require
discussion. The first line at the top of the printout shows a '"run' number
which merely identifies the particular case being analyzed and also six
input items which can be varied. The first input item is the orbiter payload
weight in pounds. For the example case, three payload values were used:
25,000; 45,000 and 65,000 pounds. The next five input items are multiply
factors which permit the variation of the indicated parameters. These
were not varied in the example case. The orbiter drop-tank inert weight
produced in the program can be varied by changing the ''tank'' value from
1.00 as shown, to 0.95 for example. This results in a tank weight five
percent lighter than the equation value. Similarly, the orbiter specific
impulse ("ISP'"), booster and orbiter weight growth contingency, and

payload volume can be varied.

The next line of print is more identification of the vehicle. SRM
RATO is solid rocket motor, rocket assisted take off. HERNDON is a °
configuration designator. S/A is used to indicate the state-of-the-art
improvement factor represented by the structure weight specified by the
contractor. This is not currently used in the booster part of the program.
The 0.83 value indicates that the contractor's structure weight estimate

for the orbiter will require a 17 percent weight reduction over 1970

-19-



technology to achieve the reported weight. The last number in this line,

15.60, is the payload bay geometry: diameter 15 feet, length 60 feet.

The remaining data are presented in two columns; one for the booster
and the other for the orbiter. The units of measure are feet and pounds

as applicable.

Adjacent to some of the headings, some numbers will be noted.
For example, next to '"Body Group, Integ Tank,'' there are two numbers:
1.806 and 0.000. These numbers and those in similar locations were
developed for a particular cost model and have no effect on the weight
data. They are not discussed herein, but in general, indicate numbers of

engines, numbers and volumes of tanks, etc.

It should be noted that these results are based on contractor weights

and are not necessarily approved by The Aerospace Corporation.

-20-



SYMBOLS

Wing structural span, ft.

D Number of days' on orbit
€ Rocket motor nozzle expansion ratio
Fv Rocket motor vacuum thrust, 1lb.

L/D Reentry lift- dré,g ratio

N Number of crew

Nz Load Factor -

Pc Chamber pressﬁre, psi

p Propellant bulk: density, 1b. /ft. 3

Sw Wetted area, ff.z

Swi Theoretical win.g projected afea ft.z
tr | Wing thicknesé ét root, ft.

Wa,vo Avionic (orb_ite.r) weight, 1b.

WC Crew weight, 1b.

‘ Wece0 Orbiter equipment environmental control system weight, 1b.

WecmoOrbiter crew environmental cont.rol system weight, b,
WepO Orbiter electrical power supply weight, 1b.

Wepf0 Orbiter electrical power fuel weight, 1b. |

Wg Gross weight, 1b.

WgO Orbiter gross weight, Ib.

ng_mO Orbiter motor gimbal weight, 1b.

Wy  Stage landing weight, 1b.

W.zpb Booster launch provisions weight, 1b.

-21-



SYMBOLS (CONT'D.)

Wp Propellant ﬂéw rate, 1b./sec.

Wp Orbiter propelvlant.weight, 1b.

Wpc Power convérsion and distribution weight, 1b.

Wpd . Propellant diétribution weight, 1b.

Wpp Personnel p1"ovision equipment weighf, ib.

Wr Residual prdéellants , 1b.

Wre Reaction control system weight, orbiter, lb.
WrcspoReaction contf§1 system propellant orbiter, weight, Ib.
Wrm Rocket motor a's sembly wéight, 1b.

W/S  Planform loading at reentry, lb. /~ft.2
Wsc  Surface contrbl (aerodynami{:) system weight, 1b. .
Wse Separation equ&pment weight, booster, 1b.

b

Wseo Sreparation equipment weight, orbiter, lb.

Wst Body structure and thermal protection system weight, 1b.

Wtc Rocket motor thrust chamber weight, 1b.

Thrust decay propellant weight, 1b.

Wtdp

W’cni Nonintegral propellant tank weight, 1b.

Wlo Total weight boosted by rocket motors, '1b.
tha Rocket. motor turbopump assembly weight, 1b.
Wts Thrust structure weight, 1b. |

W_. Fixed wing weight, Ib.
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