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SYMBOLS

a Two-dimensional lift-curve slope

a Acceleration vector in inertial space

a , a , a Terms in perturbation expansion of x,

a
o2'

 a3i ' a4i' asi' aei Quantities used in the solution of the

0(e) equations

a_, a , a Components of a in 1, j, k directions,
A y 2 f* ** *̂  **

respectively

A Tip loss coefficient

A
0 Amplitude in the solution of 0(e )

perturbed equations

AQ, A Modified values of A as defined in Section 5

A. Value of A at ty = 0i o o
AF1T' AL1T' AT1 Generalized aerodynamic forces in flap, lag,

and feathering equation when the torsional

degree of freedom is included in the analysis

AT•i \,. Generalized aerodynamic force in the ith lagging

and flapping mode, respectively

b Half-chord nondimensionalized with respect to R

b , b , b Terms in the perturbation expansion of x

, 329
bg = — — Pitch-angle combination used in inflow calculation

B Tip-loss coefficient
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B Generalized masses defined in Appendix M

c Chord of the blade

c , c,., c , c , Quantities defined in Eqs. 3.25 and G.79

C7' Cll' °17' °12

ThC
T = - - - Thrust coefficient

12

- -- — Horizontal- force coefficient

C Defined in Appendix F.3

C Profile-drag coefficient
o

C. Element of a matrix required for calculation

of the static quantities, defined in

Eqs. N.10-N.12

C. Quantity defined in Appendix B

C(k) Theodorsen's lift deficiency function

C Coefficient of proportionality in derivation
P

C Drag coefficient associated with equivalent

flat-plate area of the helicopter

d , d , D , D , D , D Quantities defined in Appendix H used for
.X 4b X *• A. £

Cases C and D

dF Elemental centrifugal force used in Appendix Kc

dF Component of dF in the y directioncy . c

14



dM ' Propeller moment per unit span used in
prop.

Appendix K •

D Defined in Appendix F.3

D Parasite drag, due to equivalent flat-plate

area

DTOT • • 7otal drag

e Distance at root between elastic axis (E.A.)

e See Fig. 1

e Distance between area centroid of tensile
A

member and E.A.

E Defined in Appendix F.3

E , , E _ > E , , E _ Expressions associated with the elastic couplingcl c2 , cl c2 r -3

effect, see Appendix L

(El) Bending stiffness in flapwise direction

(El) Bending stiffness for inplane bending

Equivalent flat-plate area

F Static nonlinear part of the flap equation, Eq. N.I3
SN : '
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F , , F , F Functions and quantities used in the perturbation

solution for Case D
it
Fj Quantity defined in Appendix F

F (̂  , 8 ), F (9 , i|> ), Functions used in the perturbation scheme

F (y , 6 , a , b ), - defined in relations (G.10, G.ll, G.15,
1 O C± O O

P2(*o' aof'bo* G.49, G.50)

F Flapping coefficients.defined in Appendix C

F Nonlinear part of the flap equation, Eq. o.4

F**, F* , F , F , Flutter derivatives associated with the flap
\2 *2 2 1̂

equations defined in Appendix N; superscripts
F** F*. F -d> ' <!>' <*>

A^and I on''these quantities denote the aero-

dynamic and inertia part, respectively

9 Acceleration of gravity

g Value of g? at 9 = 6o I c

O
g ,, g 2 Terms in the perturbation expansion of g

o
g. Static value of generalized first flapping

coordinate for M = 0 -

•VQ
g. Static value of generalized first flapping

coordinate for p ? 0, used in trim calculation

g, , g. Cosine and sine components of "flapping

-<coefficients" for the hingeless blade

g(x) Function determining spanwise variation of A
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g Generalized coordinate, kth normal flapping mode

g , g Defined in Eqs. 3.25, damping coefficients

gol' gD2' gD3 Equivalent damping terms in flap lag and

feathering degrees of freedom defined in

Appendix N.

gD!0' gD20 ValUSS °f gDl and gD2 at 9 = 9C

9r-T*» 9r.r Dimensional structural damping coefficient
or a Li

in flap and lag, respectively

G Quantity defined in Appendix F -

O ' "" ' ';•'••.'. " : • ' '• '• '
h Static value of generalized first lag

h Generalized coordinate, mth normal inplane
m

H Horizontal force : '

H , , H _, H Functions and quantities used in perturbation
01 o2 o

solution for Case D

H (\i> ,8 ) , H (4» ,0,), Functions defined in Appendix G
o o c o o 1

VVV ao- V'
H (ty ,6 , a , b )
2 O C O • O
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i» j» k, i., jn, k, Unit vectors for the various coordinate
• V n s ' M A t ^ W . L ' v J . . .

i0, j_, H_, systems defined in Section 8.3.2.
r*£ o/^ f*£

I, , I_» ^-a' J?1 » ̂ l' £->'*/l n/2 «/3 *» 1 -v 2 ^3

K , K , K.
,̂1 ~2 -/•»

i^, i Quantities used in the calculation of the

divergence boundaries

I = — = Inertia ratio

I Polar moment of inertia of the whole blade
o • , . . . .

I ,(- Mass moment of inertia of elastic part of the
b

blade about its root, defined in Appendix B

I Feathering moment of inertia of the whole blade

I Equivalent feathering moment of inertia, Eq. 9.26

J.. (ty , 6 ) f Functions defined in Appendix G

fc Polar radius of gyration of cross-sectional mass
P

about its center of gravity

K (^ , 0 ) , K (\l> , a ) Functions defined in Appendix G
X O C| ^ O O

K^ Equivalent torsional stiffness, Eq. N.23
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E E' E

K. Torsional spring representing control system

stiffness

I Length of blade capable of elastic deflection

L Lift per unit span from unsteady two-

dimensional wing theory

L , L Linear differential operators defined in

Appendix G

L . Lagging coefficients defined in Appendix C

L Aerodynamic loading vector per unit span
<v A '

L Quasi-steady part of L

L nonlinear part, of lag equation, Eq. O.5

I, ,.-•-- Static nonlinear part of lag equation, Eq. N.14

L , L ,L Aerodynamic force per unit length in the y, z, and

x directions, respectively, in the presence of

the torsional degree of freedom

L , L Components of L in J_ and K directions
z Y ~A *• 2. ~ 2.

L Lift of the whole rotor

19



L**, L* , L , L , Flutter derivatives associated with the lag
Al Al AT AO

' Lcb' Ld> equation, defined in Appendix N; subscripts

A and I on these quantities denote the aero-

dynamic and inertia part, respectively.

m Mass of blade per unit length

m Total mass of helicopter

M .v :. Aerodynamic moment per unit span from unsteady

two-dimensional wing theory

M Component of aerodynamic torque loading pera

unit length in the i direction

M , M. Pitching and rolling moment, respectively,

for one blade

M , Mn Average values of M , Mn per revolutionma Xa • _ . m X

M , M0 Pitching and rolling moments on the whole rotor
mr Xr

M Moment vector about point represented by pitch

bearing per unit length of the blade

M Component of M about feathering axis i axis

M Component of M in the I direction
X2 ~A ~ '

M Aerodynamic moment loading about E.A.
t>t A

iM , M Generalized mass for the ith lag->or flap mode,
i». r\

respectively; defined in Appendix B
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M Total bending moment at blade root
R •

M Total feathering moment about feathering
i • t • t\ •'

axis at blade root

M(A) Matrix defined in Appendix G

(M ) ., (M ). Defined in Appendix B
Y imr

Number of blades

N (a , b ), . Functions defined in Appendix G
l o o .

N2(V bo' ai' bl)

p General complex frequency

p Total loading vector per unit length
<v

P, i P_ -.. p.,n Quantities used in the perturbation method

defined in Appendix G
• j * - • ' - . . .

p , p , p Resultant total loading per unit length in

the x,y,z directions, respectively

P T» P T» P'T Resultant inertia loading per unit length

in the x,y,z directions

P. Quantity defined in Appendix B
ikm
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q. Resultant torque loading per unit length in the

feathering axis direction (i.. direction, Fig. 29)
** A

q, q , q ' Resultant torque loadings per unit length in the

x, y, z directions, respectively

Q. (a , b ) , Functions defined in Appendix Gl o o

Q2(V bo' ai' bl}

r Position vector ,of blade cross-section center of
R

gravity, in the deformed state, in the rotating

coordinate system ..

r , Position vector of a point on the blade elastic

axis in the deformed state

R Blade radius

[R. ] ... [R.J Various coordinate transformation matrices
L o

defined in Appendix I

s Variable associated with phase-plane analysis

s , s . Roots of characteristic equation for linearized

phase-plane analysis

S. . Elements of a matrix associated with the ealcula-
^D

tion of the linear static equilibrium position of

the blade
22



Time

T Tension in the blade in the x direction

T , T , T ' Coefficients defined in the equations

T, Thrust of the rotor
h

T Nonlinear part of the torsional equation, Eq.

T Static nonlinear part of the feathering equation,
hu4

defined in Eq. N.15

T , T , T Quantities defined by Eqs. M.19 through M.21

T** , T** , T** Quantities used in the nonlinear equations

defined in Eqs. O.I through 0.3)

T**, T* T Flutter derivatives associated with the
Xl Xl Xl

feathering equation, defined in Appendix N.
T**, T* , T
Y Y YA2 A2 A2 Superscripts A and I on these quantities denote

T**, T*, T, - the aerodynamic and inertia part, respectively

u, v, w x,y,z displacement of a point on the elastic

axis of the blade

u, v, w Displacements of a point on the elastic axis

in the x,y,z directions, respectively, when

$ = 0

U Airstream velocity with respect to the blade

at station x.

U Airflow velocity vector relative to the blade
fV

at station x
o

U . Component of U perpendicular to x-y plane
P

(hub plane), positive downward (Fig. 2)
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U Component of U in the x-y plane tangent to a

circle having a radius x

uv » u« • v<7 Components of U in the I_, J_ and K
X2' Y2 2 ~ ~

directions, respectively

v Elastic part of the displacement of a point
e

located on the elastic axis of the blade in

the j direction, defined in Fig. 27a
«*

-v 2 Elastic displacement of a point on the elastic

axis used in Appendix I

v. . Induced velocity

v Amplitude ratio at critical condition, Eq. 5.23

v Velocity of a point on the elastic axis of the
EA

M

blade

V Velocity of forward flight of the whole rotor

V •• Velocity of air
£1 '

w Elastic part of the displacement of a point

located on the elastic axis of the blade in the

k direction, approximately. See Fig. 27a.

W
e2 Elastic part of the displacement of a point on the

elastic axis used in Appendix I

x,y,z Rotating orthogonal coordinate system (Fig. 1)
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x = x - e Running spanwise coordinate for part of the
o 1 •

blade free to deflection elastically; x - same,

dummy variable

x ,y ,z Coordinates of the blade cross-sectional center

of gravity in its deformed position

x Blade cross-sectional mass center-of-gravity

offset from the elastic axis, shown in Fig. 28.

Positive for e.g. before E.A.

x Blade cross-sectional aerodynamic center offset
A

from elastic axis, shown in Fig. 28. Positive

for A.C. before E.A.

X , X , Coefficients in perturbation expansion of X
L 2. H

X Coupling term in flap equation

Xu Value of X at 6 = 6
H - • • „ H . . C

o - • -' ' •

X(£,,ri) Function used in phase-plane investigation

of condition for suppressing secular terms

Y , Y Coefficients in the perturbation expansion

°fYG

Y Coupling term in lag equation
G

Y Value of Y^ at 6 = 6
G G co

25



Y(£,n) Function used in phase-plane investigation

of condition for suppressing the secular terms

Greek Symbols

a, ,a0,ot,,a Quantities defined in Appendix G
2. & J 3 . .

a Angle of attack of the whole rotor
R,

3 Inclination of feathering axis with respect to

the hub plane measured in a vertical plane,

.•-- (angle of built-in coning, shown in Fig. 27a

$,$_,$,, S.. Quantities defined in Appendix G

$ Angle of preconing, shown in Fig. 27b
P

bR5
y Locke number (y = 2p-r—)

b

v mth inplane bending mode
m

Y Flight path angle with respect to horizontal

6 Quantity used in phase-plane investigation

of condition for suppressing secular terms

e Perturbation parameter

e Perturbation quantity in uniformly valid expansion
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e Symbolic quantity having the same order of

magnitude like the displacements v and w

£, n " Coordinates attached to the blade cross section

origin located at elastic axis, r| coincides with'

the blade chord, 5 perpendicular to the blade

chord, shown in Fig. 28. r| also used in the

phase-plane investigation for suppressing the

secular terms.

^n /rh ?/r^i '̂ 9? Coefficients in the perturbation expansion of

damping - ' • ' . ' ' '

r̂ d) r\1 at x~o = 1

H,(1) Quantity defined in Appendix F

r), kth flapwise normal bending mode
JC ' . . . ; . . . , . ,_

T\ „ »H,.T Structural damping coefficients defined in
SF. Sit.
1 1

Appendix B ' . ,
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6 Pitch angle measured from x,y plane

6 Critical value of collective pitchc

61 ,6 Coefficients in perturbation expansion of 8

6 Constant part of collective pitch
o

6,9 Cyclic pitch component/ multiplied by cos ty
iC J.S •

sin ij/, respectively

<„„. K., , Constants defined by Eqs. G.80 and G.81
zoi. > 2A1

<. ,K ... < .Quantities used in the perturbation method

defined in Appendix G

/CX - / T Value of inflow ratio in hover

X Approximate expression defined in Eq. D.9

X • Inflow ratio, induced velocity over disk,

positive down, nondimensionalized with

respect to ftR

X., = X g(x) first cosine component of X

X". Constant part of X..

X Steady state part of X constant over disc
o

X Value of X at critical conditionoc o

X ,X Coefficients in perturbation expansion of X

VI Advance ratio

VI ,P, Coefficients used in the perturbation expansion
o 1

of the advanced ratio

2S



V : Quantity of order one, or less, used to

characterize the closeness of 01 to — or 1
c 2

V ,V , .... V Coefficients of the characteristic equation

used in Section 10

£ Coordinate used in the phase plane investigation

of the condition for suppressing the secular term

£ Defined in Appendix H

TT,,IT Quantities used in the derivation of the conditions

for suppressing the. secular term

p Quantity associated with limit cycle amplitude

used in the investigation of the condition for

suppressing the secular term
v • • - • ' , • • i

p Value of p at i^ = 0 ;

o • • . o

P0 . Value of p for stable, limit cycle
)C • C • . • - - : " . . . . . " -

p -.Density of air

p(x,n) Mass of blade per unit area used in Appendix K

J3
a = ——— Solidity ratio

<j> Quantity used in phase plane investigation of

condition for suppressing the secular term
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X2»X2 Quantities defined in Eq. 5.95 and page

Xj/X2 Amplitudes of oscillation about equilibrium

position for flap and lag, respectively

4> Azimuth angle of blade (ty = Qt) measured

from straight aft position

\l> ,1̂  , ... ip Time scales used in multiple time-scale

expansion

t») Flutter frequency

(U) ) _ Flutter frequencies used in the completec J.1 f.

linearized flap-lag-pitch problem

(*) ,u) Natural frequency of the ith flap or lag mode
r 1 U. .

<*)_,„,(*)T .„ Nonrotating flap and lag frequencies,
rxN LIN

respectively, nondimensional with respect to

0) Q,o) Unperturbed value of first flap and lag

natural frequency, respectively

Speed of rotation
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Special Symbols

( ) Nondimensionalized quantity unless otherwise

stated, lengths associated with elastic

bending properties, nondimensionalized with

respect to i; all others with respect to R;

frequencies with respect to fl; mass properties

with respect to I,

( ) ' Differentiation with respect to xo

*
( ) Differentiation with respect to ty

( )* Complex conjugate of the quantity in brackets

*
(**} Derivative of the product in the bracket

( ) , ( ) Subscripts R and I denote, respectively, the
R X

real and imaginary part of the appropriate

quantity

( ) The symbol ̂  beneath a quantity denotes a<\,

vector or a matrix

( ) Denotes the inverse of a matrix

T[ ] Transpose of a matrix [ ]
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SECTION 1

INTRODUCTION

1.1 • General

A helicopter blade in forward flight is exposed to a severe aeroelastic

environment. Periodic, unsteady airloads act upon the blade due to a combina-

tion of forward flight and rotation of the blade. Strong inertia, including Cori-

olis forces, due to the relatively large speed of rotation further complicate the

problem. Therefore, the aeroelastic stability and the response of the blade

are of extreme importance for both flutter calculation and vibration level

estimation. Vibration level predictions are required for both the linear and

the nonlinear range of blade motion in order to evaluate the fatigue life of
*

the blade and the blade supporting structure. The nonlinearities are those

arising from the inclusion of moderately large deflections in the inertia and

aerodynamic loading terms. Therefore, during the last thirty years, a con-

siderable amount of work associated with helicopter blade dynamic and aero-

elastic problems has been done.

A good review and an elementary description of the various dynamic and

aeroelastic problems associated with VTOL vehicles, in general, and helicopter

blades, in particular, have been given recently by Loewy in Ref. 32. A con-

siderable amount of the work done up to 1964, in the general area of heli-

copter blade dynamic response and flutter, has also been reviewed with a

considerable amount of detail by Bielawa (Ref. 35). In this report, no at-

tempt will be made to repeat 'the reviews given in Refs. 32 and 35. The only

references cited will be those pertinent to the problem being treated.

This report is divided, essentially, into three distinct and almost

independent parts:

(a) The first part, composed of Sections 1 through 7, deals with

the somewhat controversial problem of flap-lag-type instability

of torsionally-rigid, hingeless helicopter blades. This type

of instability is analyzed in the nonlinear range of blade
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motion in both hover and in forward flight. The main purpose

of this part is the identification of the physical mechanism

of the instability and the determination of the respective

roles of the forcing function, parametric excitation, and non-

linear coupling in affecting the coupled flap-lag response.

(b) The second part, composed of Section 8, presents a con-

sistent derivation of the general nonlinear equations

of motion for a hingeless helicopter blade, having flap-lag

and torsional degrees of freedom. The torsional degree of

freedom is represented by elastic root torsion; thus dis-

tributed torsion and built-in twist are not treated. All

second-order terms (in terms of the displacements) in the

flap and.lag equations are retained, while third-order terms

are neglected. In the feathering equation, some important

nonlinear effects are included by retaining third-order terms.

The main purpose of this section is to emphasize the various

approximations involved in obtaining the elastic, inertia,

and aerodynamic loads.

Hopefully, these equations will serve as a starting point for

future work in this field.

(c) The third part, Sections 9 through 11, is devoted to the

investigation of the stability of coupled flap-lag-pitch

blade motion. This treatment is limited to the case of

hovering flight. Due to the novel aspects of the various

effects included in the equations of motion, both divergence

and flutter boundaries had to be. obtained from the linearized

equations of motion.

The main purpose of this part is to illustrate how the

stability boundaries obtained in the first part of this

report are affected by the addition of the torsional de-

gree of freedom.

Each part of this report will have its own introductory section in which

the pertinent literature will be surveyed.
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1.2 Introduction to the Flap-Lag Stability Problem

1.2.1 Brief Review of Past Work

In the first part of this report, the flap-lag-type instability of

torsionally-rigid hingeless blades in the nonlinear range of blade motion

will be treated. This problem was first treated by Young (Ref. 1) with a

restrictive analytical approach. Modal equations of motion were obtained,

but the numerical results were evaluated for a blade represented by a cen-

trally-hinged, spring-restrained, equivalent model. Young concluded that the

triggering mechanism of the flap-lag-type instability is the lag degree of

freedom.

Hohenemser (Ref. 2) treated the same problem, using a somewhat uncon-

ventional numerical integration scheme. Due to the various approximations

made in Ref. 2, the results presented there are of a qualitative nature.

A good treatment of the linear stability of the blade in^hover has

been made recently by Ormiston and Hodges (Ref. 3). In this work, both the

centrally-hinged, spring-restrained and modal-elastic representation of a

hingeless blade were used. Stability boundaries for the linear case were

obtained.

The linearized equations of motion in flap lag, at high values of ad-

vance ratio, were treated by Hall (Ref. 4). Using a rigid, offset hinged,

spring-restrained representation of'the blade, multivariable Floquet theory

was applied to investigate the stability of blade motion. Reverse flow ef-

fects were included. The trim conditions associated with the variation of p

were vaguely mentioned without specifying what they-were or how they were

satisfied. The primary purpose of the Ref. 4 work was the investigation of

the blade response in the presence of a simple control system; a stability

investigation in the aeroelastic sense was not intended.

The flap-lag instability .and response for both articulated and hinge-

less blades was also treated by Elman (Ref. 5). Reverse flow and stall ef-

fects were included in this work. Unfortunately, the description of the theo-

retical part of this work was very brief.
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The transient nonlinear flap-lag motion of a fully-articulated rotor

blade was also treated by Jenkins in Ref. 38. Reverse flow effects were in-

cluded; two-dimensional stall and compressibility effects could also be ac-

counted for, but were not used in the numerical calculations. The equations

of motion were solved using direct numerical integration. The physical ex-

planation of the mechanism of the instability was not attempted due to the
•

purely numerical nature of this work.

The perturbation method in multiple time scales (Ref. 6) has been

first applied to the nonlinear flap-lag problem by Tong (Refs. 7 and 8).

1.2.2 Objectives of the Present Study

A preliminary study of the nonlinear flap-lag probem has been made in

Ref. 41 using numerical integration. The main purpose of Ref. 41 is to gain

some physical insight into the problem before applying the perturbation method.

In the present report, a consistent system of equations representing

the flap-lag motion of a hingeless elastic blade with moderate nonlinearity

has been derived. Modes are assumed and the spatial variables are eliminated,

using Galerkin's method. The resulting system of equations is solved using

the perturbation method in multiple time scales (Refs. 7 and 8). For some

cases, results were also obtained by direct numerical integration.

The effect of forward flight is studied with the additional require-

ment that the helicopter should be in trim, i.e., the thrust coefficient is

kept constant during the increase in the advance ratio; thus the effect of

forward flight on a fixed configuration can be obtained. The effects asso-

ciated with the trim requirement were disregarded in the other works dealing

with forward flight, except, possibly, in Ref. 4.
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SECTION 2

BASIC ASSUMPTIONS

The rotor blade can be considered to be a thin flexible beam attached

to the hub at its inboard end and free at its outboard end. Figure 1 describes

the geometry of the problem. «

The large deflections will have only a small effect on the tension in

the blade due to elastic effects, because one of its ends is free (in fact it

can be shown that this is a third-order effect in terms of deflections); there-

fore, a linear treatment of the elastic restoring forces can be considered ade-

quate. Such a theory has been derived by Houbolt (Ref. 10). It is very similar

to the usual engineering beam theory.

It is assumed that the blade is initially straight, with its elastic

axis coincident with the x-axis. The blade is torsionally rigid. It has a

pitch setting of 8 and it can bend in both the y and the z directions. The

cross section of the blade is assumed to be symmetrical about the major prin-

cipal axis.

A quasi-steady two-dimensional aerodynamic strip theory is used as

justified by Miller (Ref. 11) and apparent mass effects are neglected. This

means that in the usual unsteady aerodynamic expressions, Theodorsen's lift

deficiency function C(k) =1. Stall, compressibility, and reversed flow ef-

fects are neglected; thus, the aerodynamic load is applicable to moderately

large advance ratios.

Periodicity and spanwise variation of rotor inflow is restricted to the

first cosine component:

0 I (2.1)

In deriving the equations of motion, an x, y, z coordinate system (see

Fig. 1) rotating with the shaft of the helicopter and attached to the blade is

used.
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SECTION 3

THE EQUATIONS OF MOTION

3.1 Brief Derivation of the Equations of Motion

A brief derivation of the equations of motion is given below. A more

complete and detailed derivation is given in Sec. 8. The equations of dynamic

equilibrium of a blade undergoing only bending' in flap and lag can be taken

from Ref. 10:
-.2

- 1 7=/>
J

i r f l ' * JJ ™?

(E1]* COSV£ - Ti> C°*6J- £• [«*•)£ 1'f,

where p and p , which are given in Eqs. 3.3 and 3.4, include the pertinent

aerodynamic and inertial forces.

For present purposes, it is assumed that- the elastic axis, area cen-

troid, aerodynamic center, center of gravity, and feathering axis of the blade

are all coincident. The offset between these points in the cross section of

the blade is important only when one considers the torsional degree of freedom

also.

For moderate angles of pitch setting, the elastic coupling due to pitch

setting was neglected. This effect was included in the coupled flap-lag pitch equa-

tions treated in the last part of this study. Reference 3 illustrates, in detail,

the importance of this effect, which is strongly stabilizing. As pointed out in

Appendix L, a consistent treatment of this effect requires a more sophisticated

treatment of the elastic mode shape than the one used in this study. Therefore,
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the elastic coupling will be neglected in order to be able to study conveni-

ently the destabilizing aerodynamic and inertial flap-lag coupling terms. In

a practical sense, this assumption is a limiting case of reduced elastic

coupling which can occur for hingeless rotor blades with nonuniform stiffness

distribution.

f(eiL t»l- "L [T(X.) w 7=
l L 1 -aaJ no L J n0J

*\ /- "*_ fT(*9) Dv 7=
tec* J T>y0 L ' v?0 J -

(3.2)

The loading terms in the z and y direction, with nonlinear ities accurate up to

third order in displacements can be written as

**
mw -

îf **7 jt
V -(Co + v) +2U J -$SLJl V (3.4)

<3-5)

The last terms in Eqs. 3.3 and 3.4 represent viscous-type of structural damping.

The boundary conditions for a hingeless blade can be taken as

(3.6)

Next, in order to apply Galerkin's method, the displacements u, v, w of the

beam are expressed in terms of the normal modes of the beam in flap and lag
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(3.7)

V-- t Ŷ (.X>) »™tt) (3.8)

f & -» •* i

2 «^ L \ ok^ / i»..«,. / / (3.9)

Equation 3.9 represents the shortening effect or inboard movement of a

mass point on the blade due to bending, under the assumption that the blade is

inextensible.

Note,'that whenever repeated indices are used in this report, the summa-

tion convention is always implied, unless otherwise stated.

The substitution of Eqs. 3.7 through 3.9 into Eqs. 3.3 through 3.5 and

3.2, together with the application of Galerkin's method on the resulting system

of equations, yields after a considerable amount of algebraic manipulation

(3.10)

. L- + vu o7u- A,= [2 Sc~r -

(3.11)

In obtaining Eqs. 3.10 and 3.11, the boundary conditions, Eqs. 3.6, and

the orthogonality relations for rotating beams, given in Appendix A have been
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used. The various quantities M . , P.. ... etc., used above are defined in

Appendix B and represent generalized masses.

Next, the aerodynamic loading terms will be evaluated. The loading

term in the z-direction can be obtained from Miller and Ellis (Ref . 11) or

from Bisplinghoff (Ref. 12) .

The aerodynamic load in the y-direction (see Fig. 2)

where the velocities U , U can be written as

(3.15)

The expressions for the aerodynamic loads given above represent aero-

dynamic loads, for moderate angles of collective pitch 6. The nonlinearities

originating from these expressions are due to the retention of the second-

order terms due to large deflections in the appropriate relations for U U ,

U*, and Up.

The reference plane used in evaluating relations in Eqs. 3.12 through

3.15, for a hingeless blade, is the hub plane. Therefore, in an exact formu-

lation, the terms associated with the cyclic pitch variation should also appear

in these equations. Keeping in mind that the primary aim of this report is

the evaluation of the nonlinear effects associated with large displacements,
*

and the determination of the respective roles of parametric excitation and

forcing due to forward flight, it was decided to treat the effect of cyclic

pitch variation only in a later part of this investigative effort which will

also include the torsional effects.

•*Note that in this study, the term parametric excitation, stands for the effect
of the time dependent coefficients in the equations of motion.
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The substitution of Eqs. 3.7 through 3.9, 3.14 and 3.15 into Eqs. 3.12

and 3.13 will yield the appropriate expressions for L and L . A further inte-

gration will give the generalized aerodynamic loads required for Eqs. 3.10 and

3.11:

f*
= -J*— I Uy

' J 3 C

(3.1?)

The complete expressions for A . , A . are given in Appendix C where the
1 20 1 19

various flap coefficients F . . . F and lag coefficients L . . . L are also

defined.

Using Eqs. 3.10, 3.11, 3.16, and 3.17, the final form of the general

equations of motion, for an arbitrary number of modes, can be written in

compact form

i = 1, 2, --- , N (3.18)

C k* + Jsu

i = 1, 2, ... , M (3.19)

3.2 Equations of Motion for the Two-Mode Case

The solution for the system of equations derived in the previous section

for an arbitrary number of modes is very difficult and complex. Therefore, in

this report only one elastic mode in each degree will be considered.

The static equilibrium condition in hover (y - 0, with all time deriva-

squal to zero)

state of the system.

o o
tives equal to zero) denoted by g , h , will be used as the natural equilibrium
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(3.20)

In the following, the lower indices on the various L and F coefficients

will be dropped. By expressing

r?/'*'
.0 _, (3.22)

and considering only the case X— =0, Eqs. 3.18, 3.19 and 3.20 through 3.22

become

C,

(3.23)
r^u.-rtrcos±<f+^ ' ( ̂  f A-, /•»•"«- ̂  ' j

t .-I., ,^> -

4

« X2 JJ-

(3.24)
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In the lag equations, terms proportional to (C /a)y have been neglected

because they are small quantities. The various quantities used in the last two

equations are defined below.

JL
2 I

C / / =

(3.25)

~[- MLI

l=
J

c^ LIH+c7 L'* \0 e

XH =
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The equations above are a coupled nonlinear system of Hill-type equa-

tions under the influence of periodic forcing. The periodicity of the coef-

ficients of the equations and the periodic forcing are due to forward flight.

The terms g and g represent the damping present in the system. The

damping is partly of aerodynamic origin and partly from structural damping.

The damping in the lag degree of freedom is very small; therefore this is

the potentially unstable mode.
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SECTION 4

SOLUTION FOR THE LINEAR SYSTEM IN HOVER

For the case of hovering flight y = 0, when Eqs. 3.23 and 3.24 are

linearized, the resulting system of equations is simply:

«•*• *

**

The critical condition for the complete system (Eqs. 3.23 and 3.24)

will be given by the flutter or critical condition of linearized system

(Eq. 4.1}. The flutter condition is characterized by the existence of a small

amplitude oscillation for Eqs. 4.1. Assuming the solution in the form

(4.2)

Substitution of Eq. 4.2 into Eq. 4.1 yields the following characteristic equa-

tion

(4.3)

For a small value of 9, the root of Eq. 4.3 has Real (p) < 0 and the

solution is stable. For the critical value 0 = 0 , the system is neutrally

stable. For 0 > 0 , at least one of the roots of Eq. 4.3 has Real (p) > 0

and the system is unstable.

At 0 = 0 , there are two solutions to Eq. 4.3 such that p is imaginary
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Then by setting equal to zero the real and imaginary parts of Eq. 4.3, the

following relations are obtained

* 9M *» - (4

and

\ 4 •

Equations similar to Eq. 4.4 and 4.5 have also been obtained by Ormiston

(Ref. 3) and Tong (Ref. 7).

From Eqs. 3.25 it can be seen that g 0̂, X , Y are all functions of 9
u2. H G

and X , while X is also a function of 9. As shown in Appendix D, the rela-
o o

tion between the inflow and collective pitch is given by

j£ / r*> *.- - - - (4.6)

(4.7)

Therefore, from Eqs. 4.4 and 4.5 the critical value 9 can be determined.
c
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SECTION 5

PERTURBATION SOLUTION IN THE NEIGHBORHOOD OF THE CRITICAL CONDITION

5.1 The Multiple Time-Scaling Technique

The multiple time-scaling technique is an extension of the two variable

expansions introduced by Cole (Ref. 6), Cole and Kevorkian (Ref. 13) and

Kevorkian (Ref. 14).

In the use of a perturbation method, one may encounter terms of type

t sin t, t cos t, which means that the solution will be unbounded for t •*• °°.

These terms (which show the singular nature of the problem) are called secular

terms: from a physical point of view one does not expect unbounded solutions;

from a mathematical point of view, it means that the perturbation series break

down for large t. By introducing an additional time scale, t = et, where e

is some small positive parameter, the original differential equation is changed

into what is formally a partial differential equation. This can be exploited

in various ways to examine how the solutions grow and how to suppress the

secular terms. The multiple time-scaling technique is a further generaliza-

tion of the two time-scale expansions (Ref. 15) by introducing additional

time scales t = e t to achieve greater flexibility. In particular, all pos-

sible secular terms can be avoided and a uniformly valid asymptotic expansion

in the time domain is obtained.

The multiple time-scaling technique has been extensively used in treat-

ing the nonlinear panel flutter problem (Refs. 16 through 18). It has been

applied first to the nonlinear helicopter blade-flutter problem by Tong (Refs. 7

and 8).

5.2 The Perturbation Expansion

Let £ > 0 be some small parameter representing the perturbed state of

the system relative to the critical condition denoted by subscript "c". The

following expansion can be established in the vicinity of the critical con-

dition. Let
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- £

(5.1)

be the expansion of the dependent variables.

The various other parameters of the problem can be expanded as

'4
c 4 /*.,£. +• •

B *

(5.2)

Vl- -+ . . .

— 2

1/2
This particular expansion scheme has been chosen so that the 0(e ) per-

turbed equations will be a system of ordinary differential equations with con-

stant coefficients.
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In addition, the multiple time scales will be introduced, using the

following relations

v = £my
'm m = 0, 1, 2, ... (5.3)

where the \ii ' s are chosen as the new independent variables. Then
m

C )= «L- l_
oii- "

** J2. z

( ) = Z— = i__ +2.Z -̂ —̂  +... (5.4)

Some of the perturbed parameters in Eq. 5.2 are not independent, being

related to 9 or 0 . The various pertinent relations are given below.

Be

= 32 (9c
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ooi -

(5.7)

21

In a similar manner, expressions for X , X , gno» Y»» ̂ oo' etc-» could
4b fc U ̂ ^ £ £

also be evaluated. These expressions would be important only if one would
3/2

consider expansions of order higher than 0(e ) and will not be required in

this report.

It is important now to associate the mathematical perturbation parameter

e, which represents basically the ratio between the two time scales used in the

problem, with physical parameters affecting the rotor blade dynamics. For this

purpose, a distinction between the two cases must be made:
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Case 1; Hovering Flight — y = 0 (i.e., y = 0)

From Eqs. 5.2 through 5.7, it can be seen that 6 has been undetermined

and is, in fact, a free parameter. Without loss of generality, it can be taken

as 8 = ± 1> so that

(5.8)
a,

i.e., for this case, the perturbation parameter £ is equal to the absolute

value of the difference between the actual collective pitch setting of the

blade in the flight condition being investigated, and the critical value of

the collective pitch 0 .
c

Case 2; Forward Flight — y ? 0 (i.e., y ? 0, or y, / 0)

For this case, one may have £ associated with It. Depending on the

of w , c
c

U0 = 0. Thus

value of w , one can have either: (a) y = 1 and y = 0 or (b) y = 1 and
c o i l

. . 1/2(a) y = e '

or
(b) y = e

which will be discussed in detail later.

For the cases with forward flight, Eq. 5.6 is no longer valid. For

these cases , the inflow is evaluated from the usual relation given in Gesow

and Myers (Ref . 19)

>o *LL-t<toi, oLR +
 CT __

while A and 6 are evaluated from

A , - ^o~ Aoc
(5.10)
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5.3 The Perturbed Equations of Motion

Substituting Eqs. 5.1 through 5.4 into Eqs. 3.23 and 3.24 and requiring

terms of the same order in £ to satisfy Eqs. 3.23 and 3.24 separately yields

the somewhat lengthy system of equations written out in detail in Appendix G,

Eqs. G.I through G.3. This general system of equations is specialized below

according to the various cases mentioned in the previous section.

For hovering flight, p = 0 (i.e., y = U, = 0) , Eqs. G.I through G.3
o 1

reduce to:

Equations of 0 (e ) :

i f ^ (5-U)L2 (a«>, b«) = o
Equations of 0 (e) :

*.,(**,&,) = 3 f («•,*>•)
(5*12)

Equation of 0 (£ ) :

L« f *!,*>!) =
(5.13)

l~ ^

where the operators L , L and the expressions Q , N , Q and N are defined

in Eqs. G.4 through G.9 of Appendix G.

1/2
For the case of forward flight with \i = \i £ (y = 0) , the equations

are:

1/2
Equations of 0(e ):

v (5.14)
.o o ' c /de)

Equations of 0(£):

L, (*i^)=/i9F
:4(i'0lOc,a.oll>.)

(5.15)

I / I \L. j [ Oil, 01 ] -
^ * I *
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3/2
Equations of 0 (£ ) :

Li (ai.̂ ŝ o Fi WoGc

where the expressions F , H , F , J , H, , K, , F^, J . H , K0 are defined in
o o l i . 1 1 2 2 2 2

Eqs. G.10 through G.18 of Appendix G.

are:

For the case of forward flight with p = y e (y =0), the equations

Equations of 0 (e ) :

L| (ae,b0) =0
(5.17)

Liido^o] -0

Equations of 0 ( C ) :

L, (^Mr/iiMfcA) +Qi (ao,t>e)
/ (5.18)

3/2
Equations of 0(e ):

y I I ([0 ,*C, d'ofio ) ~f~Qz ( aO,l>Of d^Pf f

(5.19)

,M =/, H, (̂ 0} ec ,40,60) + A/2 (a.,1,0, a*,

In Eqs. 5.11 through 5.19, the terms F , H , J,, K, represent forcing
o o 1 1

functions; F , F , H , H represent parametric excitation functions, while
X ^ J. ^

Q.,, N-, Q , N represent nonlinear coupling.

5.4 Solution of the Perturbed Equations and the Conditions
for Suppressing the Secular Terms

In this section, the equations derived previously will be treated in

detail. For convenience, the various cases will be classified in the follow-

ing manner:
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Case A — Hovering flight p = 0 (i.e., ]J = u = 0)o 1
1/2

Case B — General forward flight case, U = M eo
(i.e., y, = 0) and u> ? 1/2 + ev or u> ^ 1 + ev

1 c c

Case C — Forward flight case, with u) = 1/2 + ev, for this case

p = V^e (i.e., MQ = 0)

Case D — Forward flight case, with w = 1 + ev, for this case
1/2 C

U = UQe (i.e. , JJ^ = 0)

In these relations v is a quantity of order one or smaller, which will

be specified in the analysis. The reason for this classification will become

apparent within the context of this section.

5.4.1 Solution for Case A

This case represents hovering flight (H = 0). The equations which must

be solved are Eqs. 5.11 through 5.13. First, the solution to the equation of
1/20(e ) will be obtained. As represented by Eq. 5.11, these equations are

identical to the linear system (Eq. 4.1), treated previously in Section 4.

Since the damped branches are stable, only the harmonically oscillating

branches must be considered, which can be represented by

(5.20)

where ( )* denotes the complex conjugate; A is a function of ty,,ty^, ... , etc.,o \. -2.
but not of (^ . In analogy to Section 4, the values of w and 0 are determined

from

uo

(5.21)
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(5.22)

The quantity v , determined from Eqs. 5.11 is given by

v* X HO MC. _ (5>23)

This quantity represents the ratio between the flap and lag amplitudes. It

can be shown that

N-\f- ~ (5.24)

Next, the equations of 0(e) must be solved. The solution of Eqs. 5.12

is composed of two parts: the solution of the homogeneous system and the par-

ticular solution which is obtained by the method of undetermined coefficients.

The homogeneous solution would have importance only if the equations of 0(e )

were also considered. This being not the case, the particular solution

would be sufficient. Then

(5.25)

where the quantities a2, 02/ a.̂ , 6 are defined in Eqs. G.19 and G.21.

Finally, the 0(e ) equations are treated, substituting Eqs. 5.20 and

5.25 into Eq. 5.13 and using Eq. 5.26

/ t'co t \ f D *•'<* "0

(5.26)

yield the following relations
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(5.27)

(5.28)

where the quantities p , p2, P3» p , p , and p are defined in Eqs. G.21 of

Appendix G. The terms plc, p.. in Eqs. 5.27 and 5.28 represent the nonlinear15 ID
coupling terms.

5.4.2 Solution for Case B

This case represents the general forward flight case p = y £ and

LJ 7* 1/2 + ev or u> ^ 1 + ev.c c

The solution to Eq. 5.14 (0(e )equations) is given by Eq. 5.20 with

an additional part representing the particular solution. Thus,

(5.29)

where a , b are defined in Appendix G.

The solution to Eq. 5.15 (0(£) equations) is given by
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(5.30)

where the a^^, h^, a^, b^, ai5, t>15, a3, 33 , a16/ b^ are given in Eqs. G.31

through G.35 of Appendix G.

Finally, when Eqs. 5.29 and 5.30 are substituted into Eqs. 5.16

[0(£ ) equations] lengthy expressions occur which can be written as

-f...
J (5.31)
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^ -f L*-y ̂  +

-' (5.32)

where the quantities p , p are defined in Eqs. G.44 and G.45 of Appendix G.

5.4.3 Solution for Case C

This is a forward flight case with u> = 1/2 + ev and M ̂  0 where V is
c

a quantity of 0(1) or smaller which will be specified later. From Eq. 5.30

it can be seen that the expressions for a,-,/ t> (and their conjugates) be-

come very large for w = 1/2 + ev, because M(l - u ) of Eq. G.32 is near
C r^i C

singular. This situation can be corrected by requiring that y =0, then

y = ye. For this case, the solution is obtained by solving Eqs. 5.17 through

5.19. Proceeding analogously to the previous cases, the solution to the

0(e ) equation is again given by Eq. 5.20, while the solution to the 0{e)

equations, Eq. 5.18 is given by

e *'+ A.(A.)*l"3t +

(5.33)

where the quantities a , B, are defined in Eq. G.46.

The substitution of Eqs. 5.20 and 5.33 into Eq. 5.19 yields
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tCue<&

, ,* t -co , . c
f>5 (Ac) e + (....) e

(5.34)

(5.35)

The quantities p and p defined in Eqs. G.47 and G.48 are associated
b 6

with parametric excitation.

5.4.4 Solution for Case D

1/2This is a case with forward flight y = y e (y, = o ) and
o 1

w = 1 + £V. From the solution of the general forward flight case, Eq. 5.29,

it can be see that the expressions a . arid b will be nearly singular. This
oz o2

situation can be corrected by assuming that the expressions associated with

the forcing F (\i> , 6 ) and H (\1> , 0 ) , Eqs. G.10 are mathematically quantitieso o c o o c
of 0(e) which physically means that at the flight condition being investigated

6 and g are small quantities or in other words flight at low values of C .
c o T

Then, from Eqs. G.10

) •=. c, \ ' vi -""• jo — i oz "~vjYo I ~ *~ ' ° l loi ~CJ - (5 36)
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-£Hc...
(5.37)

where F , , F^ . H ,, H _ are defined in Eqs. G.49 through G.52, and it is re-
ol 02 ol o2

quired that these quantities be all of order one.

The equations which must be solved for this case are:

1/2
(a) Equations of 0(e ) as given by Eq. 5.11

(b) Equations of 0(e) as given by Eq. 5.15

3/2
(c) Equations of 0(e ) as given by Eq. 5.16, except that in this

case, the term y F (\J> , 9 ) replaces y F (8 , ii> ) and y H (ii» , 6 ) replaces
o o o c o o l o o o o c

y H (ijf , 0 )
o o o 1

The solution to thi& system of equations is given by Eq. 5.20 and

4-

(5.38)

where the quantities a , b , a , b , a , b , a..., b are equal to the
1J -LJ 14 J.4 lb 15 J.D ID

same quantities without the bar, when a „ = b =0. For convenience, the
_ _ _ o2 _ 02

quantities p through p and p through p are given by Eqs. G.53 through
XX X4 X / • £.\j

G.60.
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The substitution of Eqs. 5.20 and 5. 38 into the modified equations

(Eq. 5.16) yields:

J (5.39)

tl"' .

- - • 1

(5.40)

where p , p are equal to p , p when a = b = 0, and the quantities

through p are given in Eqs. G.61 through G.68,
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5.4.5 Conditions for Suppressing the Secular Terms
for the Various Cases Considered

In this section, a general condition for suppressing secular terms of

type y e ° will be derived. As shown below, the condition for suppressing

secular terms can be obtained from a relatively simple consideration.

A general case in which secular terms would appear, can be formally

written as

(5.41)

i * f a,, W =*

The solution to Eqs. 5.41 can be written as

*,

(5.42)

From Eqs. 5.41 and 5.42

-y*

II -10

It has been previously shown in Section 4, that the matrix of the coef-

ficients in the last equation vanishes. Thus, these equations are not inde-

pendent of each other and the first row of the matrix must be proportional to

its second row, denoting the constant of proportionality by C :

Cp = Jh_ _

From Eqs. 5.43 and 5.23

(5.43)

= o (5.44)
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As shown below, taking the appropriate combination for TT and ir ,

Eq. 5.44 will give the required condition for suppressing the secular terms

for the various cases considered.

Cases A and B

Case B which is the general forward flight case with ui ̂  1 + ve or
1/2 C

u ? 1/2 + ve and y = |u e , will also include Case A as a particular case,
c o

From Eqs. 5.31 and 5.32

7/7- h'
(5.45)

fAo2-

From Eqs. 5.44 and 5.45, the condition for suppressing the secular term

can be written as

.46)

For the case of hovering flight, Case A,y =0, ( y = 0 ) and

Eq. 5.46 reduces to

(5.47)

Evidently, Eq. 5.47 is not subject to the flutter frequency limitation

of Eq. 5.46.

The quantities K , K , K , K are defined in Eqs. G. 69 through G.72.
1 2 3 6

Case C

For this case, u = 1/2 + ev and y = u,e. Where V is of order one or
c 1

smaller, it can be shown that
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(5.48)

For this case

. % u/
L

(5'49)

and from Eqs. 5.44 and 5.49, the condition for suppressing the secular term is

(5.50)

where < is given by Eq. G.73.

Equation 5.50 can be rewritten in a more convenient manner after chang-

ing the dependent variable. Let

o-° (5.51)

Then Eqs. 5.50 and 5.51 yield:

Ay *7 <5-52)

where

/̂  = /C2ftV (5.53)

It should be mentioned that a case u) = 2 + ev could also have some
c

practical importance, when the harmonic components of the inflow are considered
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together with cyclic pitch variations. In the present report, these effects

will not be considered. A partial treatment of this case can be found in

Ref. 8.

Case D

For this case, the flutter frequency is close to the forcing frequency

u) = 1 + EV and u = u e . It can be shown that
c o

(5.54)

From Eqs. 5.39 and 5.40, it is clear that many terms will contribute

secular terms. In addition to e1^0, terms of type e
l(2~wc>Yo and -a"

1 (1~2uJc)

will also yield secular terms. For this case

Tfy

/>

u . +
'

*

(5.55)

From Eqs. 5.44 and 5.55, the condition for suppressing the secular term

can be written as
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d4o _ ^

[ 3
*x

L

(5.56)

where the quantities < , K , K , ic , and/C10 are given by Eqs. G. 74 through

G.78, while K is equivalent to < with a = b = 0.6 6 o2 02

Equation 5.56 can be rewritten in a more convenient manner by changing

the dependent variable.

Let

A0 --
(5.57)

Then Eqs. 5.56 and 5.57 yield

2. / ~ « *

no iv/o (5.58)
' /

where

Kj = K.,+LJ (5.59)
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5.5 Stability Analysis and Blade Response Amplitudes
for the Various Cases Considered

In this section, the amplitudes of blade response will be determined,

and the stability of the motion will be investigated for the various cases

considered in the preceding sections. The stability will be investigated

using the conditions for suppressing the secular terms, while the amplitudes

of blade response will be determined by taking appropriate combinations of

the solutions to the perturbed equations of motion.

5.5.1 Case A, Hovering Flight

For this case, y = 0 and the condition for suppressing the secular term

is given by Eq. 5.47. Equation 5.47 can be solved in closed form, taking the

solution in the form of (Refs. 17 and 7)

(5.60)

where both p and 4> are real.

Substitution of Eq. 5.60 into Eq. 5.47 yields

If - *• a* * p
3

—J. - KiK£+ K^f (5>61)

(5.62)

where the subscripts R and I denote, respectively, the real and imaginary part

of the appropriate quantity.

The solution of Eq. 5.61 can be written as:

(5.63)

From Eqs. 5.62 and 5.63, the solution for <f> can be written as
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(5.64)

where the quantities p , <j> are the values of p and <j> at ^ =0.

For the case of hovering flight, the solution is given by Eqs. 5.20,

5.25, 5.1, 5.63, and 5.64.

(5.65)

For the case of hovering, from Eq. 5.8, the perturbation parameter e is

e = 16 - 0 |, so that the blade response depends only upon the collective

pitch setting.

The stability of the blade response can be investigated using Eq. 5.63.

The following four cases can occur.

Case 1: K > 0 and K > 0
2R 3R

At Uj = 0, p = p , at some finite time, the denominator of Eq. 5.63
1 o

approaches zero. That is p -»• °°. This clearly represents an unstable case.

2
Case 2; If both K < 0 and < < 0, p -»• 0 as ty -»• °°. This clearly

represents a stable situation.

Case 3: If K > 0 and K < 0, the exponential terms in Eq. 5.69 tend

to zero and

6-8



(5.66)

This case represents a stable limit cycle oscillation.

Case 4; If K < 0 and K > 0,1

Denoting j, __ J_ .̂

Eq. 5.63 can be rewritten as

'5-">

from the last expression for

L - ±. +0
z z (5.68)

The system is unstable and for

J_ - JL >0 (5.69)

^
the system is stable.

From Eqs. 5.66 and 5.68 for

z

the system is unstable, and from Eqs. 5.66 and 5.69 for

the system is stable.

Thus, in this case, the stability is conditionally dependent upon the

relative magnitude of the initial value of p when compared to p.
O JC * C •

From Eqs. G.69, G.70, G.24, G.25, and 5.7, it is clear that K is
'v 2R

linearly proportional to 0. . That is, the origin (A ^ 0) is unstable above
1 o

the critical condition (6 > 0) and stable below the critical condition (6 < 0)
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5.5.2 Case B — The General Forward Flight Case

In the general case with forward flight, y = y e (y = 0) without

any loss of generality y can be taken as y =1. Thus, in this case, the
0 2 °

perturbation parameter is e = y . The flutter frequency for this case can have

any value except u> jt 1/2 + ev or w ? 1 + ev.
c c

The condition for suppressing the secular terms is given by Eq. 5.46.

The solution of this equation is identical to the solution of Eq. 5.47 with
2 2

6 + y 6, replacing 6_. In analogy to Eq. 5.63, p can be written as
z o o 2

(5.70)

The various cases for which the stability of the response was investigated

in the previous section remain unchanged and are summarized below:

2
Case 1; K + K^ u > 0 and K > 0 — the system̂  is unstable

- 2R 6R O 3R

2
Case 2; ,<_„ + y <.._ < 0 and K < 0 — the system is stable
-~~~̂ ~̂ 2R O 6R 3R

2
Case 3; K + y < > 0 and K < 0 — stable limit cycle oscillation
~~~""̂ "~"~~ 2R O oR 3R

with i—

Po - -I / ̂ 7
Jg £ — \l

2
Case 4; K _ + y K < 0 and K > 0 — this system is conditionally
———~~~ 2R O oR 3R

stable

Thus for

Jo "~ J€-c. the system is stable

and for j> "*• > P̂  the system is unstable
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From these relations it is clear that the forward flight can influence

the stability through the magnitude and sign of K,D. In addition to this
uR

effect, forward flight can also affect the stability of the system by influenc-

ing <2R-

From Eqs. G.22, G.23, G.24, and G.70, it is clear that K is dependent

only upon the critical conditions and K (with r), =0) is composed of two parts,

one proportional to 6 and one proportional to A .

, (5>72)

where K
2Qi

 and K2Xl are 9i-ven *n E^l3- G.80 and G.81. Thus K can be written

as

R7, f [̂ z\,)̂ i - ">z*\*"9"'l (5.73)

In forward flight 0 must be evaluated from Eq. 5.10. The flight condi-

tion is determined by a fixed value of C and a known value of y. For a given

flight condition, the values of 6 and ot are evaluated using an approximate
R

trim calculation described in Appendix F. These determine 9 by Eq. 5.10.

Thus, a change in M, at a fixed value of C , results in a change of 9 and A ,

which has a considerable influence on both the stability and response of the blade.

From Eqs. 5.1, 5.29, and 5.30, the blade response for this case can

be written as

(5.74)
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As can be seen from this equation for the lower order terms (multiplied

by y) , only the nonlinearities and the forcing have an effect, while in the

higher order terms (multiplied by y ) , the nonlinearities, the parametric ex-

citation, and the forcing will all have an influence on the blade response.

5.5.3 Case C — Forward Flight with Dominant Parametric Excitation

For this case, the flutter frequency 0) = 1/2 + ev. As shown before

in this case, y = y,e (y = o) and y, can be taken as y, = 1. Therefore,
1 • o ' 1 1

the perturbation parameter e = y. The condition for suppressing the secular

term for this case is given by Eq. 5.50 or Eq. 5.52 which cannot be solved in

closed form. Conclusions regarding the behavior of A can be reached without

actually solving Eq. 5.52 by using a phase plane analysis as described in

Refs. 21 and' 22. This method was applied to a similar problem by Tong (Ref . 7)

and Kevorkian (Ref. 14) . Suppose A can be written as

(5-75)

From the last relations and Eq. 5.52

(5.76)

A singular point occurs when both expressions in Eq. 5.76 vanish

simultaneously; thus a singular point occurs at £ = n = 0, then p = 0.

According to Minorsky (Ref. 21), the investigation of the behavior of

the equations near the origin can be limited to the linear system which can

be written as

31
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7(.
(5.77)

A proof which justifies the neglection of the higher order terms in

Eq. 5.76 can be found in Minorsky (Ref. 21). As shown in Ref. 21, the

stability of the system in the vicinity of the singular (or equilibrium point)

can be qualitatively determined by using the characteristic equation

(5.78)

The solution of this quadratic equation for S yields

which is also equivalent to

l \
(5.79)

According to Ref. 21, for distinct roots of Eq. 5.79, the following

cases can occur:

(I) S , S real of the same sign. The singular point is a node

which is stable if S , S are negative and unstable if they

are positive.

The roots are real if U,.> ̂ o

same sign if

' They wil1 have tne
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or

From the last two relations, the singular point is a node when

(5-80)

The node is stable when K__ < 0, and is unstable if < > 0. Recall
dCiV ***

that _

H.z= ki + rt

Therefore the node is stable when K < 0 and is unstable when <2R > 0.

(II) S , S are of opposite sign. The singular point is a saddle
.L *•

point and the equilibrium is always unstable. This will

occur when

or when

(III) If S , S are complex conjugates, the singular point is a

focus. For this case, the stability of the singular point

is determined by Re(s). If Re (s) < 0, the focus is stable;

if Re(s) > 0, it is unstable.

The roots S^ , S are complex conjugates if

(5.82)

For this case, Eq. 5.79 can be rewritten as

2 . ,*
(5.83)
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The stability depends upon the real part of S :

If K < 0, the focus is stable
zR

If < > 0, the focus is unstable
2R

It has been shown by Tong (Ref. 7) that additional singular points be-

sides the origin can exist. These will have a relatively minor influence on

the considerations which will be given below; therefore, these additional

singular points will not be written out in detail.

In the analysis given above, the behavior of Eq. 5.52 has been analyzed

in the vicinity of the singular (or equilibrium point) . Another item of major

importance is the determination of the conditions for the existence of closed

trajectory curves (or limit cycles) of Eq. 5.52 in the £,n-plane. For this

purpose, the Poincare-Bendixson theory can be used (Ref. 21) . In order to

apply this theory the following quantity must be defined.

- -ax ,
(5'84)

From Eqs. 5.76

>j
(5.85)

and

V =2 (K7* + 2«toS .
(5.86)

From Green's theorem

(5.87)
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According to the Negative Criterion of Bendixson, if V does not change

sign (or vanish identically) with a region D of the £,r|-plane, no closed

trajectory can exist in D.

Therefore, the following possibilities exist:

(a) If K9R
K-}R

 > 0 (they have the same sign, p > 0)

This means that V cannot change sign or vanish and the

integral (Eq. 5.87) cannot be zero. Therefore no solu-

tion of Eq. 5.52 can form a closed trajectory in the

£,r)-plane.

(b) If K__KOT5 < 0 (i.e., they have different signs)2R 3R

From Eq. 5.86

V =
f - z \

•) Ls I

2 — '
for p < -(< )/(2K ), V will not vanish and Eq. 5.52 can

2R 3R
have no solution which forms a closed trajectory in this

region. Therefore, if there exists (the negative criterion

of Bendixson does not guarantee existence) a solution of

Eq. 5.52 which does form a closed trajectory in the £,n-plane,

its mini

satisfy

its minimum radial distance from the origin, p . mustmm

P ^ - •*•*
mCn

The upper bound of p . can be estimated when rewritting

Eq. 5.52 in polar coordinates.

~
Let / 4 o = f + < > 7

and

from these and Eq. 5.52
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(5'90)

The upper bound will be estimated without making use of Bendixson's

negative criterion. The quantity p is always positive. Therefore, the right

hand side of Eq. 5.90 will be mono tonic and will not change sign outside of

the range

IKS]

From this relation, if Eq. 5.90 has a solution in the form of a closed tra-

jectory in the £,n-plane, its radial distance from the origin must be bounded

by Eq. 5.91.

The last bounds, Eqs. 5.91 and 5.89, can be combined to give a bound

on the limit cycle amplitude, if it exists.

max _

V
Note that in both cases considered above, p is a monotonic function of

For large amplitudes (i.e., large values of p) , the behavior of p can

be approximated by

3/> ~ <K p3
^T ~ ^3*J . (5-93)

From Eq. 5.93, if K < 0, p will monotonically decrease in the region
jR

of large amplitudes; i.e., the solution will converge to a limit cycle if it

exists , or to a stable equilibrium point (or singular point) . Therefore , this

represents a stable situation.

If K > 0, will monotonically increase in the region of large ampli-
•jR

tudes; i.e., the blade is always unstable, if the disturbance is large enough.

From Eq. G.71, it is clear that K depends mainly upon the nonlinear coupling
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of the system, so that the nonlinear coupling is the decisive factor at large

disturbances. From Eq. G.73, it can be seen that K depends upon both the

parametric excitation and nonlinear coupling with response due to forward

flight. Therefore, on the basis of this approximate analysis, it can be con-

cluded that the location of the singular points and the magnitude of the

limit cycle oscillation (if it exists) will depend upon the parametric

excitation and nonlinear coupling.

In addition to the effects discussed, a change in the forward flight

velocity with Cm fixed will affect K by changing 9 , and A according to Eq.5.72
T £R J. J.

discussed in the previous section. Therefore forward flight will considerably

influence the stability of the system and it will also affect all of the bounds

obtained for the limit cycle amplitude in this section.

The amplitudes of blade response can be obtained from Eqs. 5.1, 5.20,

and 5.33.

(5.94)

Due to the convenient form of the solution (Eq. 5.94), it is possible to

rewrite Eq. 5.52 in terms of the actual physical quantities associated with the

problem in a manner described in detail in Subsection 5.5.4.

Let ~ IL, - ih „ JvJ'/',

Then Eq. 5.52 can be rewritten as

(5.52a)
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When considering only the linear part of this equation which is equiva-

lent to Eq. 5.77, the last term in Eq. 5.52a can be neglected. Consequently,

the characteristic equation (Eq. 5.79) can also be rewritten in terms of the

physical quantities as

(5.79a)

The solution of the linearized system is the same as the one derived in

Appendix H for Eqs. H.2 and H.3, and can be written as

.
where D and D are equivalent to D , D used in Appendix H when K = 0 and
2 1 2 6

y K is replaced by y< in the appropriate relations. As is shown in

Appendix H, A for the linearized system can be written as

A.. Li
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5.5.4 Case D, Forward Flight with w = 1 + ev
c

This is a case in which the flutter frequency is close to the forcing

frequency. Since the system is being excited at its resonance frequency, the

amplitudes of blade response can be expected to occur at moderate levels only

when the excitation is assumed to be small (see Section 5.4.4). The excita-

tion is represented by yF (fy ,0 ) ;MH ((/) ,6 ) where F , H are given by
o o c o o c o o

Eqs. 5.36 and 5.37. In most cases considered,6 cannot be assumed to be too
G

small (see Section 7). Therefore, it will be necessary to assume that the

solution derived in this section is valid for small values of the advance

ratio y and small values of C .

For this case, a complete phase-plane analysis similar to the one per-

formed in the previous section is possible, but cumbersome; therefore a some-

what different approach will be used. Using Eqs. 5.1, 5.20 and 5.38, the solu-

tion for this case can be written as

CUJc'/b-Z

+

(5.94)
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Due to the convenient form of the solution for this case, it is possible

to rewrite Eq. 5.58 in terms of the actual physical quantities associated with

the problem. For this purpose, it is convenient to define a quantity

*>-X/

^= 6 Ao (5.95)

where A is given by Eq. 5.57. Thus, the first-order solution for the lag

motion, according to Eq. 5.94 is given by

-N^ .

= 2 Rea.t(%2} -It'*- Rea.e(A0j
(5.96)

Using Eqs. 5.59, 5.72, and 5.73 together with

Coc= 1+ fep

the following relation can be written

/'"' (5.97)

1/2
Using Eqs. 5.95 and 5.97, together with y = \i e and ̂  =.e^ , Eq. 5.58

can be rewritten in terms of the physical quantities

u.

(5.98)

2 — *
In the last relation, the term <,X9 (X) is ̂

ue to the nonlinear coupling
3 ~. *

of the flutter mode, while the term p[K (X-) + K
1r>X0] X-, is

 due to t"6 non-
8 2 JLO 2 2

linear coupling of the flutter mode and the parametric excitation. The solu-

tion of Eq. 5.98 in closed form is required in order to investigate the non-

linear response of the blade. Due to the complex form, Eq. 5.98, this would
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_ very E ~ p l i ~ a f e d ;  therefore, the linearized Eq* 5.98 as given by 

E ~ -  5.99 will be treated firs+.- 

d Let X ,  - f +i7 

the, the real and imaginary Parts of Eq* 5.99 yield a system of two first- 

order differential  equations: 



The solution to Eqs. 5.101 and 5.102 can be found in Ref. 22, and it

is analogous to the treatment given to Eqs. 5:77 in Subsection 5.5.3. For the

sake of completeness, the solution of these equations is given in Appendix H.

The solution of the homogeneous linearized system is given by Eqs. H.6

and its stability depends upon the roots of the characteristic equation:

(5.103)

.on is stable if Re (S ) and Re (S ) < 0, and the sta

boundary is given by

The linearized solution is stable if Re(S ) and Re (S ) < 0, and the stability

O (5.104)

The solution to the complete nonhomogeneous equations is given by

Eq. H.14. From this relation, an approximate relation for A can be written as:

A - J . e * , t + i ^.

It is important to note that due to the nonhomogeneous form of Eqs. 5.101 and

5.102, the flutter mode for this case will always be excited. This is also

evident from Eq. 5.105.

As mentioned in Subsection 5.5.2, for trimmed forward flight with a

fixed value of C , the variation of y will strongly affect the quantity

(0 - 6 ) and (X - \ ). Thus, the stability boundary represented by Eq. 5.104
c o oc

will be strongly dependent upon the advance ratio.
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SECTION 6

UNIFORMLY VALID SOLUTIONS

6.1 Uniformly Valid Expansion

From the numerical results obtained, which will be discussed in detail

in the following section, it is clear that the cases of practical interest will

occur at values of collective pitch 0 < 0 . Therefore, it is important to ex-
C

tend the validity of the solutions obtained in the previous sections (which

are valid near the critical condition) to a region which extends below the

critical condition.

This problem is discussed in detail in Ref. 8 where a conventional

method (Ref. 6) for matching asymptotic solutions near and below the critical

condition is used.

The matching is achieved by using an additional small parameter e which

has the following properties:

. ~ - f
I » £ >0 and _fc_ <:< i

e
e is related to the parameters of the problem by Eq. 6.1:

0-<9c = _ £
~f (6.1)

The last equation can be also rewritten as :

(6.2)

In the cases with forward flight, the perturbation parameter e can be

associated either with e = u (Cases B and D) or with e = y (Case C) .

From the numerical results presented in Section 7, it is clear that in

trimmed forward flight at fixed C , the range of variation for J9 - 0 | is
J. C

while the range of variation for y can be taken as
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^ • 3

Then for Cases B and D

-/ (6.3)
*/

,
and the requirement that e < 1 may not be satisfied for certain combinations

of C and u.

For Case C

0-0c 0, (6.4)

Therefore, for this case, the uniformly valid expansion will be correct for

y < 0.15, approximately.

If the expansion near the critical condition and below the critical

condition are denoted by subscripts "n" and "b", respectively, the requirement

for matching the solutions is (Ref. 8):

A / /*,
*lL / X^Ji

^ - - (6.5)

as e, e -*• 0 with ty fixed, for a = 1/2, 1, 3/2 and the uniformly valid ex-

pansion can be written as

*1
•M > - ) ̂  / (6-6)

common

where the last term in Eq. 6.6 is the common part in the expansions
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and

6.2 Uniformly Valid Solutions for the Various Cases Considered

The uniformly valid solutions for the four cases considered in

Section 5 can be easily obtained.

Case A, Hovering Flight (p = 0)

For this case, the solution below the critical condition is

,-/ while /Y f is given by Eqs. 5.65.

According to Eq. 5.72, K is linearly proportional to 9 , below the

critical condition 6 = 6 - 6 and is a negative quantity. For this case,

the last term in Eq. 5.47 can be neglected and its solution can be written as

Ao-A^-e. ' (6>7)

where A. is a constant determined from the initial conditions. The solution

will be exponentially decaying below 6 and Eq. 6.5 is satisfied.

Case B, General Forward Flight Case

1/2As mentioned before, for this case V = e and the flutter frequency

can be arbitrary, except w = 1/2 + ev or c») = 1 + ev. According to Subsection
C C

5.5.2 for 6 < 6 and y < 0.3, Eq. 5.46 represents an exponentially decaying

function. For this case A can be approximately taken as

A0 = Ac *• (6.8)

The solution f or « •< 1 is given by Eq. 5.74. The solution below the critical

condition, with Eq. 6.8, will be composed only of the parts of Eq. 5.74 which

are independent of A . These parts will match and Eq. 6.5 will be satisfied.

From Eqs. 6.6 and 5.74, the uniformly valid asymptotic expansion can be

written as

i
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(6.9)

Equation 6.9 is similar to Eq. 5.74. The only difference is that for

Eq. 6.9, the various quantities aQ2/ t>o2'
 a2' $2' a!3 ""*' *Ho YGo' **"' etc" '

must be evaluated at the actual value of 6 and X as determined by the trim
o

calculation, instead of evaluating them at the critical condition.

Case C, Forward Flight with Dominant Parametric Excitation

For this case, the flutter frequency is U) = 1/2 + ev and y = e.

Below the critical condition A can be taken as given by the last equation

on page 46. The flutter mode is not excited and will be a decaying oscillation.

Thus, the solution below the critical condition will be independent of A and

will match the appropriate part of J ̂< 7 , satisfying Eq. 6.5. From Eqs. 5.94J ̂ < 7

I *z

and 6.6, the uniformly valid expansion can be written as
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f = 2 * * £ > !

(6.10)

As pointed out in Subsection 6.1, Eq. 6.10 is valid for 0 < y < 0.15.

In Eq. 6.10, the various quantities a. , & , a , 3,» ot, » 3, » ... / etc. must

be evaluated at the values of 6 and X as determined from the trim calculation.
o

Case D, Forward Flight with u> = 1 + EV '

1/2
For this case u = e u and u =1. Below the critical condition A

o o o
can be approximately determined from Eqs. H.14 and H.15 given in Appendix H

and the solution for ill is given by Eq. 5.94. As pointed out previously

in Subsection 5.5.4, for this case, due to the nonhomogeneous form of Eqs.

5.101 and 5.102, the flutter mode will always be excited; therefore, the

matching procedure is no longer simple. The solution /*/ / can be
&l

obtained only by solving Eq. 5.98 which is difficult to obtain in closed

form; therefore / %i 7 cannot be evaluated. It can be concluded,
I TC%j common

therefore, that a uniformly valid expansion for this case is difficult to.

obtain analytically. Therefore, this case can be handled most conveniently

by direct numerical integration. As mentioned in Subsection 5.5.4, the analyti-

cal treatment for this case is correct only for small values of the harmonic

forcing which implies low values of v>(i.e., 0 < y < 0.20) Therefore, direct

numerical treatment of this case will have the additional advantage of not

being limited to small values of M and C .
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SECTION 7

RESULTS AND DISCUSSION

7.1 Numerical Quantities Used in the Calculation

In this section, the numerical values of the various quantities used in

the computation of the results are given:

(1) Mass distribution was taken as a constant along

the blade span

(2) C, = 0.010 in all of the calculationsa
o

(3) Lift-curve slope, a = 21T
2

(4) Equivalent flat-plate area was taken as f/TTR = 1/100

unless otherwise stated. This value of f results in

C =0.01. This quantity is typical for modern well-

designed helicopters

(5) The mode shape in flap is the same as the mode shape in lag;

both were approximated by the first nonrotating mode shape

which can be approximately written as

J~'"'
(7.1)

This relation was taken from Ref. 12.

Equation 7.1 satisfies all of the boundary conditions of the

problem. As pointed out by Bramwell (Ref. 20), to get the correct

first rotating flapping mode shape of a hingeless blade, as many

as six or more expressions of type Eq. 7.2 should be combined:

(7.2)

Approximation (Eq. 7.1) to the mode would have influenced the re-

sults to a certain degree if the rotating flap and lag frequencies

were calculated by using the (El) , (El) , and m distributions.y z
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In fact, in all of the calculations, the values of u) , w were
Fl LI

selected so as to give a certain u , or 6 and the mode shape
c c

was kept constant during all of the calculations.

(6) The flap and lag coefficients, F1, L1 defined in Appendix C (and

mass quantities defined in Appendix B) were numerically evaluated

using a seven-point Gaussian integration. This integration scheme

is accurate up to polynomials of degree 13 (Ref. 25). The weights

for Gaussian integration were taken from Ref. 26. The numerical

values for these coefficients for SL/R = 1.0 and A = 0, B = 1 are

given in Table 1.

(7) The quantities C , D , F , G , n,d) used in the trim calculation

described in Appendix F were evaluated using the approximate equa-

tions given for them in Ref. 20. The approximations of these rela-

tions in Bramwell (Ref. 20) are based upon a concept of an equiva-

lent rotor with an elastic hinge offset and are sufficient for

trim calculations. The concept of equivalent hinge offset employed

by Bramwell is not similar to Young's more widely used concept of

equivalent blade because its value is associated only with the fre-

quency (Ref. 27).

(8) The range of thrust coefficients used in the calculations is

0.005 < CT < 0.015. The practical range is 0.005 < CT < 0.01.

The range 0.005 to 0.015 was selected so as to include cases which

could occur during violent maneuvers or gusts.

(9) The range of frequencies for flap was taken between

1.05 < WFI < 1.6

For lag, the range was selected as

0.8 < u5_ < 1.5
LI

For most cases devoted to studying the flap-lag-type of

instability, the lag frequency was taken as greater than one to

avoid the possibility of air or ground resonance (Ref. 28). A

limited number of cases with lag frequencies below one were

studied in Ref. 9.

(10) The range of Locke numbers was taken as
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All calculations were performed for either y = 5, or y = 10.

The Locke numbers more representative of a hingeless helicopter

blade are 7 < y < 10 (Ref . 28) .

(11) Unless otherwise stated, the solidity ratio in all of the calcu-

lations was taken as

a = 0.05

(12) The range for the structural damping in the calculations was

taken as

This range is sufficient to clearly illustrate the effect of

structural damping. In some modern elastomeric bearings, the

value of the structural damping can be as high as 0.05.

7.2 Description of the Methods Used for Obtaining Numerical Results

The results presented in this section were obtained by two distinct

methods:

(a) The expressions obtained by solving Eqs. 3.23 and 3.24 by

the perturbation method were programmed on a computer, to

obtain the analytical, solution in numerical form.

(b) For a certain number of cases, the solutions were obtained

by direct numerical integration of Eqs. 3.23 and 3.24, using

the predictor-corrector method (Ref. 29) .

The reason for numerical integration was twofold. First, it served as

a convenient way to check the solutions obtained analytically. Second, in some

cases, the two methods were complementary to each other; i.e., by knowing the

solutions from numerical integration, it was easier to derive them in analytical

form.

It should be mentioned that the a priori knowledge of the limit cycle

amplitude as obtained from Eq. 5.66 was extremely helpful in obtaining the limit

cycle by numerical integration. Specifically, the low damping in lag and the
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the time scale ty = eip in which the amplitude growth is represented, combine

so that the time required to reach a limit cycle can be of order U; = 600, ifo
the initial conditions are not close to the limit cycle value of the amplitudes.

This can be shown analytically, also. This effect would preclude the use of

numerical integration for obtaining limit-cycle amplitudes in hover without

a priori knowledge of the value of the limit-cycle amplitudes.

Finally, it is of interest to note that the predictor-corrector method

is equivalent in accuracy and computing time to the fourth order Runge Kutta

method. At first glance, it appears that the predictor-corrector method should

be more efficient in terms of computing time because it requires one half the

number of points per interval of integration as the Runge Kutta method. As

pointed out by Lapidus (Ref. 30), the numerical stability of the predictor-

corrector method for linear problems is worse than that of the Runge Kutta

method by a factor of two (approximately). Therefore, in order to obtain the

same accuracy, twice as many intervals are required in the predictor-corrector

method. This effect will cancel the apparent advantage of the predictor-corrector

method due to the smaller number of points per interval. For a nonlinear analy-

sis, this situation will be somewhat modified, but numerical experiments per-

formed indicate that the two methods are essentially equivalent in computing

time when requiring the same amount of accuracy.

7.3 Results for Hovering Flight

7.3.1 Stability Boundaries in Hover Without Structural Damping

From the solution to the linearized problem, described in Section 4,

with no structural damping (ri „, = n_Tl = 0), stability boundaries resemblingSF J. SLJ.

ellipses can be drawn. The value of 9 specified on the curve is the value

of collective pitch above which the linear system becomes unstable in hover.

The unstable combinations of u> and U) are given by the area inside of
F J. lii.

the curve.

Figures 3 and 4 show the stability boundaries with the inflow evaluated

from Eq. 5.5 for hingeless elastic blades with F , L as given in Table 1. The

limit cycle amplitudes which would occur when crossing into the post-critical

range 6 > 6 were calculated using the equations and the criteria given inc
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Subsection 5.5.1. The dotted part of the stability boundaries represents combi-

nations of flap and lag frequencies such that unstable limit cycles occur. In

order to check upon this prediction of stable and unstable limit cycles, three

points along the stability boundary (Fig. 4, 6 = 0.20), denoted by a, b, .c

in Fig. 4 were also checked by numerical integration. The results are shown

in Figs. 5, 6, and 7. Figures 5 and 6 indicate the stable limit cycles, while

Fig. 7 shows an unstable limit cycle.

From Figs. 3 and 4, it is clear that by increasing Y> tne unstable

areas enclosed are considerably increased.* The inner curve 9 = 0.175 in

Fig. 4 shows approximately the minimum value of 6 for y = 10 below which

no instability can occur.

Figures 8 and 10 show the appropriate stability boundaries for the

elastic blade where the inflow as represented by Eq. 5.5 is replaced by the

inflow calculated from Eq. 7.3.

16 a C (7.3)

This inflow relation is equivalent to taking the induced velocity at 3/4R

of the blade as representative of the constant induced velocity over the whole

disc. As pointed out in Appendix D, this assumption gives values of C which

are not in agreement with those given by momentum theory. The use of Eq. 7.3

in the computation of the stability boundaries decreases the size of the un-

stable areas enclosed by the stability boundaries. The physical explanation

for this effect is clear if the effective angle of attack defined as

„.„,
is considered, as the physically meaningful quantity.

Stability boundaries given for Y = 5 and Y = 10 can also be considered to be
representative of the lift deficiency function of C(k) = 0.5 (with respect to
Y = 10). (C(k) for this case is not frequency dependent (Ref. 31)).
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Equation 7.3 yields higher values of X than Eq. 4.6 for the same value

of 6; therefore, from Eq. 7.4 it is clear that the use of this inflow relation

yields lower values of a, resulting in a system which is more stable than in

reality.

Finally, if Eq. 7.3 is replaced by the assumption that constant induced

velocity is that which would be obtained by taking the angle of inflow at

3/4R as representative of the blade, the following relation for A is obtainedo

42. L V Q.C J (7.5)
Of the various inflow relations (i.e., Eqs. 5.5, 7.3, and 7.5) the highest

value of inflow, for a given value of pitch setting, is obtained from Eq. 7.5.

A typical stability boundary obtained using Eq. 7.5 is shown in Fig. 9. Com-

parison of Figs. 4, 8, and 9 shows that this assumption results in a further re-

duction in the unstable area inside the stability boundary.

Figure 10 shows the comparison of the stability boundaries obtained by

considering the elastic blade as modeled in this report and comparing it to the

centrally-hinged, spring-restrained blade for which the stability boundaries

were obtained by Onniston and Hodges (Ref. 3). Only the case y = 5, 6 =0.20
c

is considered. As seen, the elastic modeling of the blade results in a slight

increase in the unstable area inside of the stability boundary, while at the

same time the location of the whole ellipse is shifted in the u) , u) plane.
F1 LI

Comparison of the two stability boundaries given in Fig. 10 reveals a

significant effect of the mode shape in shifting the stability boundaries.

This result implies that a hinge offset should be included in the centrally-

hinged, spring restrained rigid blade model of the elastic hingeless blade.

7.3.2 The Effect of Structural Damping on the

Stability Boundaries

Figures 11 and 12 show the effect of structural damping in lag on the

value of 6 for the following four cases:
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As seen from these curves, the structural damping has a very strong

effect on the value of 0 . The increase in 6 due to the addition of ri , is
c c SLl

very strong for small additions of structural damping and levels off around

^n T , = 0.015. This is mainly due to the low value of C, /a.SLl d
o

The effect of the structural damping on the stability boundaries

is very important because it raises the values of 6 beyond practical

values of collective pitch, and consequently (see Fig. 4) it raises the mini-

mum value of 6 below which no instability in the linear sense can occur.
c

The amount of structural damping in flap has no effect on the value of

9 , except that it changes the third significant figure in 6 , within

C

7.3.3 Limit Cycle Amplitudes

For the cases where stable limit cycles exist, see Figs. 3 and 4. The

limit-cycle amplitudes can be obtained from Eq. 5.66.

From Eq. 5.65, for values of e, e/0 < 1, the maximum values of x, / X?

at their limit cycle value can be obtained approximately from

where P0 is given by Eq. 5.66 and
x* • c •

(7.6)
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A typical limit-cycle amplitude- response curve as obtained from Eq. 7.6

is given in Fig. 13 and is indicated by the full lines.

In order to check the results obtained from the perturbation method,

these results were also obtained by numerical integration. As seen from Fig. 13,

the agreement between the results is quite good.

Figure 14 shows the effect of the structural damping on pn for a
x>.c.

typical case. As can be seen, the decrease in p. starts to level off
^ *"C'

around n = 0.015.

To illustrate the effect of the structural damping on the location

and steepness of the limit cycle, amplitude-response curves, the points cor-

responding to n , = 0, n = 0.0025 and n , = 0.00625 of Fig. 14 are plotted
SXiJ.

in Fig. 15. These curves were calculated using Eq. 7.6. As seen from Fig. 15,

the structural damping changes drastically the location of the limit-cycle re-

sponse curves. Increasing the value of r\ tends also to reduce the steepness
SUJ.

of the limit-cycle-response curves.

The steepness of the limit-cycle-response curves is an indication of the

stabilizing effect of the nonlinearities of the system. It also indicates how

far 6 can be exceeded before the amplitudes of response become too large to be

of any practical value. From the results presented in this section, it can be

seen that the limit-cycle amplitude response curves are quite steep. This

means that the nonlinearities in the system are weak and their stabilizing effect

is not strong enough to reduce the amplitudes of limit-cycle response to practi-

cal levels once the critical condition is exceeded.

7^4 Results for Forward Flight

7.4.1 Trim Curves

As pointed out previously in this report, the effect of forward flight

can be correctly investigated only when considering the behavior of the rotor

at a fixed value of C while varying y. This can be accomplished by requiring

that the rotor be in a trimmed condition. Using the trim procedure described

in Appendix F, a subroutine which calculates the trim conditions has been in-

corporated in the two computer programs (one using numerical integration and
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one using the analytical expressions of the perturbation method).

A typical set of trim curves for u) =1.20 and two typical values of

C are shown in Figs. 16 and 17. It is clearly evident from these figures

that an increase in y is always first accompanied by a decrease in 6 and X
o

up to ̂  y = 0.2, after which 6 increases quite rapidly.

7.4.2 Effect of Forward Flight from Numerical Integration

Before starting to discuss the results obtained from the use of the

perturbation method, it is instructive to look at a typical case in forward

flight which has been solved by numerical integration.

The results showing the amplitude response for trimmed flight at

C = 0.00,6 are given in Fig. 18 for various values of y. The range applicability

of the analysis done in the present report is

0 </(, •£ -30

For the case considered, the 6 < 0 ; therefore, the system is below

critical and the amplitude grows with increasing y. The quantity (x,)

plotted in the amplitude response curves is defined by

,- %trncn
' — (7.7)

It is necessary to use Eq. 7.7 because the natural equilibrium condition

defined by Eqs. 3.20 and 3.21 is defined for y = 0. Therefore, the equilibrium

position about which the blade will oscillate in reality will be a function of

y. This effect is very small in lag (therefore only the max. value of X2 ^
s

plotted), but considerable in flap. As seen from Fig. 18, the increase in for-

ward flight speed increases the amplitudes of response. Below the values of y

the appropriate values of 6 are given for trimmed flight at fixed C . At

y = 0.1, 6 is much lower than 6 and the blade response is moderate, and

(xl)av>X2-

For y = 0.4, 9 = 0.2936 which is only 5% less than 0 ; therefore, the

typical behavior of the lag degree of freedom near the critical condition mani-

fests itself by a sudden growth in x_.
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7.4.3 Effect of Forward Flight on Case B

This case represents the general forward and flight case with y = e

and 0) ? 1 + ev or u> = 1/2 + ev. For this case two possibilities exist:
c . c

(1) The. combination of CT, y and the structural damping in

lag HSII result in a flight condition for which the col-

lective pitch is below critical (i.e., 6 < 6 ). The blade
c

response is given by Eqs. 6.8 and 6.9. This case repre-

sents essentially the forced response of the system be-

cause the flutter mode is a decaying oscillation. The

flutter mode is a decaying oscillation because

= M
is usually a relatively. large negative quantity.

(2) The combination of C , -y and low or zero structural

damping can result in a flight condition for which

0 > 0 . In this case , the blade response is de-

termined from Eqs. 5.74 and 5.70. The stability in

this case will be determined by K2R, <3R, and <6R.

As shown in Subsection 5.5.2, the quantity which de-

termines the stability is

Stable limit-cycle oscillations can occur when
2

<-„ +y Kc_ > 0 and K__ < 0. The quantity in Bq. 7.9
"t O oR jR
is strongly dependent upon the trim condition through

the variation of 6 = (8 - 8 )/y2 with forward flight.1 c
The amplitude growth in this case occurs in the time

2
scale fy = eij> = y ty. The quantity A governing the

postcritical amplitude response can be written in the

following functional form as

,

(7.9)
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The two possibilities mentioned above are illustrated by the numerical

results given below. A representative case was chosen with the following

properties .

"PIO = "FI = 1'175

0) ,„ = oo . = 1.33319L10 Ll

0) = 1.32641 0 = 0.357523c c

Y = 10, a = 0.05, C =0.01, a = 27T
o

C = 0.012Dp

CT = 0.01

For this case, due to the presence of the structural damping 9 < 8 ,
c

Figure 19 illustrates the blade response at fixed C as a function of y.

At four values of y(y = 0.1; 0.2; 0.25; 0.32) the values of the collective

pitch 6 as obtained from the trim calculation are also given. The dotted

lines in Fig. 19 represent the results obtained by using Eqs. 6.8 and 6.9.

The flap and lag amplitudes were taken as the maximum values occuring between

250 < ̂  < 350, the quantity (X,) is defined by Eq. 7.7. Due to the re-

marks concerning the validity of the uniformly valid expansion made in

Subsection 6.1, the same curves were also calculated by direct numerical in-

tegration. The results from the numerical integration are given by the full

lines in Fig. 19. The agreement between the two sets of curves is quite rea-

sonable.

In order to show that Eqs. 6.7 and 6.8 represent correctly the time

history of the blade response, the time history for the blade response at

y = 0.25 was obtained by numerical integration and is given in Fig. 20.

Figure 21 represents the same blade response history as given by Eqs. 6.7 and

6.8. The two sets of curves are quite similar.*

Figure 22 shows the blade response amplitudes as evaluated from Eqs.

1 6.8 for (

response levels.

6.7 and 6.8 for C = 0.0078. As can be seen, decreasing C. reduces the blade

*
From a mathematical point of view, the results of the numerical integration should
be harmonically analyzed, and the coefficients for a , b , a. , b , ... , etc.,

should be obtained. These should then be compared to the same coefficients as ob-

tained from the perturbation method.
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Considering the same case for which the relevant quantities were

given above, with structural damping set equal to zero (n_ „, = noT , = 0) , theor J.

blade response in the poster! tical range (6 > 0 ) can be considered. Removal

of the structural damping results in a new value for the critical value of

the collective pitch 6 =0.20 (see also Fig. 12). The blade response ampli-

tudes are given in Fig. 23 for C = 0.0078. The curves given in Fig. 23 were

evaluated using Eqs. 5.70 and 5.74. As can be seen, the postcritical region

is characterized by large amplitudes in lag. Although this is a stable limit

cycle oscillation, the amplitudes in lag are so large that the results do not

have any practical significance. By comparing the blade response at 6 < 6
C

with the response at 6 > 6 (Figs. 19 and 23) , it is interesting to note that

below the critical condition the amplitudes in flap are usually larger than

in lag. While in the vicinity of 6 and above it, the lag amplitudes are

much larger than the flap amplitudes.

Comparing Fig. 22 to typical blade response in hover. Fig. 13, it is

seen that forward flight tends to reduce ( |x~,l )/( IXi I )-

The effect of trim at fixed C on the stability of the blade and the

amplitudes of the blade response are illustrated by Figs. 24 and 25.

Figure 24 shows a plot of the quantity defined by Eq. 7.9. As can be seen,

this quantity is considerably affected by u. Figure 25 shows a plot of

P0 as calculated from Eq. 5.71. This quantity which determines the magni-
At » C •

tude of the blade response is also considerably affected by the U through the

requirement of trim at fixed C .

7.4.4 Effect of Forward Flight on Case C

The flutter frequency for this case is GJ = 1/2 + ev and p = £.

In this case, parametric excitation will be the predominant effect.

From the stability boundaries given for y = 5.0 and Y = 10 (Figs. 3

and 4) , it is clear that the value of 8 , even with r> , = H^T, = 0 for thisc SF1 SL1
case will be so high as to have almost no practical value. Adding a small

amount of structural damping (r) = 0.005) will increase 6 even further.
C

Thus it appears that the cases of interest would be 9 < 6 , which would re-
c

quire the use of the uniformly valid expansion. As mentioned in Subsection 6.1,
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the validity of this expansion is good for y < 0.15. For such low values of

forward flight, it is doubtful whether parametric excitation could have a

significant effect.

As shown in Subsection 5.5.3, the solution for this case is given by

Eq. 5.94. It has been shown that in the vicinity of the origin, the stability

is governed by the real part of s where s is given by Eq. 5.79a, page 46.

When Real (s.,) < 0, the system is stable and for Real (s,} > 0 the system is

unstable. Also due to the homogeneous form of the linear part of Eq. 5.52,

the flutter mode below the critical condition will not be excited, it is also

shown in Subsection 5.5.3, that if a closed trajectory (limit cycle) exists

its distance from the origin will be bounded by Eq. 5.92. Also, for stability

in the nonlinear range, it is required that K < 0. It has also been shown,
jK

by applying the perturbation method in the neighborhood of the critical con-

dition, that the location of the equilibrium point and the magnitude of the

limit-cycle amplitude (if it exists) will depend upon the parametric excita-

tion. The blade response up to the first order can be approximately written

as

A A
(7.10)

Due to the large values of 9 for this case, no numerical results are

given since they would be impractical.

7.4.5 Effect of Forward Flight on Case D

1/2
The flutter frequency for this case is u = 1 + ev and y = e

In this case, parametric excitation has an effect, but the forcing will be pre-

dominant because the system is excited very close to its resonant frequency.

Near the critical condition, the flutter mode is determined by Eq. 5.58

or Eq. 5.98. The stability of the system near the origin depends upon the sign

of Re(s,), for Re(s,) > 0 the system is unstable and when ReCs^ < 0, the system

is stable. The linearized system is nonhomogeneous, Eqs. 5.101 and 5.102.
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Therefore the flutter mode is always excited the same is true for Eq. 5.98.

The solution for this case is given by Eq. 5.94, and up to the first order,

the lag motion can be approximated by

Xzr 2^ leal [ Aofe-Bf^ Xo-Xoc
* ' X

It should be noted that the analysis for this case was performed with the

assumption that C and p are small.

For numerical calculations, a representative case with the following

properties was chosen:

WF10 = ̂ 1 1'2°

U) = w = 1.03861
L10 LI

U) = 1.04146 6 = 0.20
c c

Y = 10, a = 0.05, C = 0.01 a = 2lf
o

0.012

CT = 0.0080

For the value of C chosen above 6 > 0 .

Numerical results for this case can be obtained either by integrating

numerically Eqs. 5.58 or 5.98, and then making use of Eq. 5.94, or by using

the numerical integration program. For convenience, the second method was

used. The results showing the blade response amplitudes are given in Fig.26.

As can be seen, this case is characterized by large amplitudes of blade re-

sponse which become very high even for moderate values of forward flight.

Therefore, flutter frequencies u> close to w =1 should be avoided in practice.
C C

Numerical integrations done for this case indicate that the special ex-

pansion used for Case D, and physically characterized by the beating phenomenon

as represented by the term e~lVJJ °̂ in Eq. 5.105 (or in Eq. 5.57) , is valid up

to the advance ratios of y < 0.2.
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SECTION 8

GENERAL EQUATIONS FOR NONLINEAR, COUPLED FLAP-LAG-PITCH

MOTION OF HINGELESS HELICOPTER BLADES

8.1 Introduction

Although research in the field of aeroelastic problems of helicopter

blades, both hingeless and articulated, has been going on for a considerable

amount of time (Ref. 32), a complete set of consistently-derived equations

for nonlinear, coupled flap-lag-pitch motion of hingeless (or even articu-

lated) helicopter blades is not available in the literature. The author be-

lieves that the lack of these equations has acted as an obstacle in the de-

velopment of reliable analytical methods for predicting rotor blade stability

in the range where the amplitude of the blade motion is large, because most

of the work in this field was restricted to solving a special system of equa-

tions derived under a particular set of simplifying assumptions. Thus, the

basis for a meaningful comparison of the results obtained by various re-

searchers was not available and the comparisons were usually of a qualitative

nature.

It is instructive, therefore, to review the various systems of equa-

tions available in this field. In this review, both the linear and nonlinear

equations of motion will be considered.

The best system of equations is the one derived by Miller and Ellis

(Ref. 11). This system of equations, which was derived in order to treat

linear blade response problems, identified all of the important physical

effects associated with the coupled flap, pitch and lag motion of the blade.

Another advantage of this derivation is that it also considered distributed

torsional effects and some finite displacement effects, like effects due to

large coning angles. Another useful device used in this derivation was the

modeling of the blade by a concentrated mass at the blade e.g. offset by a

distance x from the elastic axis. Finally, the last advantage of this deriva-

tion is its clear treatment of the derivation of the aerodynamic loads.

Chronologically, the next system of equations was derived by Houbolt
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and Brooks (Kef. 10). The purpose of the authors in Ref. 10 was to derive

a linear system of equations for coupled flap-lag-pitch motion; as such,

their derivation was quite successful. They succeeded in deriving an engineer-

ing beam-type theory for treating the elastic deformation in flap-lag and

torsion of thin elastic rotating beams in a consistent manner. The linear

inertia loads were also consistently and systematically derived. However,

the Coriolis inertia load, due to the elastic shortening effect, was not in-

cluded in their derivation. An additional point in favor of the Houbolt

and Brooks (Ref. 10) derivation is that it contains some of the elements re-

quired for extending the derivation into the nonlinear range. Their treatment

includes finite, spanwise varying,'built-in twist and offset between the blade

elastic axis and the line of cross-sectional centers of gravity. However, in

these equations no provision was made for treating built-in coning and the

aerodynamic forces were not treated. The system of equations derived in

Ref. 10 has been used in a number of papers dealing with blade flutter.

The equations of motion derived in Ref. 10 have been extended by

Lemnios in Ref. 33 to include the Coriolis force in the chordwise direction

due to flapwise bending (elastic shortening effect, see Eq. 3.9). In addi-

tion, the aerodynamic terms of the equations of motion were treated in detail

in Ref. 33. The only nonlinear effect taken into account by Lemnios is the

elastic shortening effect, while many other second-order effects associated

with the inertia-loading terms have not been considered; thus, his equations

are not consistent. In Ref. 33, only the offset between the elastic axis and

the blade center of gravity was considered. Built-in twist and distributed

torsion were both treated.

A further improvement of the equations of motion derived by Houbolt

and Brooks (Ref. 10) was made by Pizialli (Ref. 34). This system of equations,

although still limited to the linear range, had the following improvements:

1. Built-in twist as in Ref. 10

2. Noncoincident and nonstraight cross section; e.g.,

centroid and elastic axes which do not pass through

the rotor axis of rotation.
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3. Details of articulation such as to include:

(a) Root elastic boundary conditions

(b) Radial and chordwise hinge offsets

(c) Hinge inclinations

(d) Pitch axis offset and inclination

Another system of equations of motion has been derived by Bielawa

(Ref. 35). These were derived for the purpose of investigating the higher-

order effects due to both elastic root torsion and distributed elastic torsion

in the spanwise direction. In order to simplify matters, the location of the

blade elastic axis, the blade center of gravity, and the blade aerodynamic

center were assumed to be coincident in each cross section of the blade;

thus a large number of second-order effects vanish. Large elastic displace-

ments in flap and lag were assumed.' On the other hand, the Coriolis loads

due to the blade shortening effect were neglected. The effect of large dis-

placements on the aerodynamic loads was not carefully treated. Thus, no

clear picture of the various approximations involved could be obtained from

Ref. 35. The main contribution of Ref. 35 is a careful and detailed treat-

ment of the various torsional effects. Thus, this work, too, suffers from

a certain amount of lack of consistency.

Finally, another detailed linearized version of the coupled flap-lag-

pitch equations of motion has been derived by Arcidiacono (Ref. 36). The

equations of motion were derived for linearly twisted rotor blades. The

motions include flapping and lagging for the articulated blade, as well as

flatwise, edgewise, and torsional deformations for the articulated and non-

articulated blade. Fully-coupled aerodynamic forcing functions were also

derived based on quasi-steady aerodynamic theory. These differential equa-

tions of motion were also expanded in terms of the uncoupled vibratory nodes

of the blade.

In this section, an attempt will be made to derive, consistently and

systematically, a system of equations of motion for coupled nonlinear flap-

lag-pitch motion of hingeless helicopter blades.

The equations will be carefully derived so that the various approxima-

tions involved in obtaining the elastic, inertia and aerodynamic loads will
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be made clear.

It is of importance to note that for a hingeless blade, the equations

of motion are more complicated than for an articulated one. The reason is

that for a hingeless blade, the only physically meaningful reference plane

is the hub plane. In this reference plane, the angle of pitch setting cannot

be taken as a fixed quantity in time, but will be a time-dependent quantity

due to the presence of the cyclic pitch. Due to this effect, additional

inertia terms will appear in the equations of motion.

For the particular case of an articulated blade, where for convenience,

blade stability analyses are usually performed in the no feathering plane,

the general equations derived in this section will still be applicable by
* **

setting 0=8=0 and replacing the elastic hingeless mode shapes by appropriate

mode shapes for an articulated blade.

In the equations which will be derived, only elastic root torsion will

be treated and no provision for built-in twist will be made. Small angles of

built-in coning will be included in the analysis. The arguments for neglect-

ing higher 'order nonlinear effects will be stated and consistently applied to

obtain the final form of the equations of motion in a general -form.

8.2 Basic Assumptions

The assumption used in the derivation of the equations of motion will

be given below. For convenience, they are divided into three groups:

A. Geometrical Assumptions

These are assumptions regarding the geometry of the blade and its

attachment to the hub.

(1) The elastic blade is attached to the hub at some offset

distance e1 from the axis of rotation (see Fig. 27)

(2) At its root, the blade can have a built-in coning

angle 3 • In addition, the feathering axis can have

an inclination $ (measured in a vertical plane)

with respect to the hub plane. It is assumed that

these angles are sufficiently small so that the

assumptions sinS=8, cos3=l (and the same for 3 )

are valid, unless otherwise stated.
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(3) The feathering hinge is inboard of the "virtual"

flap and lag hinge (see Figs. 27a and 27b)

(4) The blade is initially straight. There is no angle

of built-in twist.

(5) The cross sections of the blade are assumed to be

symmetrical about the major principal axis (see

Fig. 28).

(6) The equations will be derived in such a manner as to

enable the following choice in the location of the

elastic axis (E.A.), aerodynamic center (A.C.), axis

of twist [(A.T.) or feathering axis] and blade cross

section C.G. (C.G.):

(a) E.A., A.C., A.T., coincident with C.G. offset.

(b) E.A. and A.T. coincident, both offset with

respect to A.C. and C.G. which are coincident.

B. Elastic Assumptions

. These are assumptions regarding the elastic properties of

the blade and its deformations.

(7) During the deformations, cross sections are assumed to

remain plane and normal to the elastic axis.

(8) Shear is neglected.

(9) The Blade is a thin flexible blade attached to the hub.

(10) The blade can bend in two directions normal to the

elastic axis.

(11) The blade is torsionally rigid, except at the hub.

The twisting of the blade is represented by a root

torsion denoted by $.

(12) The deflections of the blade are moderately small so
2

that terms of 0(£n) can be neglected when compared

to 1. (£ being the order of magnitude of the de-

flection.) With this assumption, it is sufficient

to retain only the linear and the second-order non-

linear terms in the equations of motion. All third

order terms can be neglected.
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(13) Only a linear treatment of the elastic restoring forces

will be considered; i.e., large deflections will have

only a small effect on the tension due to elastic ef-

fects in the blade since one of its ends is free. This

assumption is consistent with neglecting terms of 0(e ).

C. Aerodynamic Assumptions

These are the assumptions made in calculating the airloads acting on

the blade.

(14) Two-dimensional quasi-steady aerodynamic loads

are used.

(15) Apparent mass effects in the aerodynamic loads

are neglected.

(16) Stall, compressibility and reversed flow effects are

neglected; thus, the aerodynamic loads are valid for

y £ 0.3.

8.3 Displacements, Coordinate Systems, and Coordinate

Trans formations

8.3.1 Sample Displacement Fields

In the present analysis, the feathering axis of the blade will be

assumed to have an orientation given by an angle 3 with respect to the hub

plane (see Fig. 27a). Therefore, it is important to define sample dis-

placement fields which can be used latter with the general equations of

motion, carefully and in detail.

A. First Displacement Field

Consider first the case where there is no elastic root torsion. The

geometry for this case is shown in Fig. 27a. The required quantities are the

displacements of a point A (A1 in deformed state) located on the elastic axis

of the blade. For this purpose, only the hub plane coordinate system, attached

to the blade and rotating with angular velocity i2 is required. According to

assumption (4) Subsection 8.2, the initial position of point A on the elastic
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axis coincides with the x-axis. Also note that in its undeformed state, the

blade cross section at A has a collective pitch setting of 6. From the

geometry of Fig. 27a*

VJ = X0 Smp -»- W€ COS/3 (8>1)

V = V€ (8.2)

x°
U = ~ We S.™_Xo, -cos/3) -1 ?^\ /^ ^ (8.3)

r
/3) -1 \ \ (?̂ \* + /^ V 1 ̂

3X| ' \* X|/ -*o

Now assumption (2), Subseciton 8.2, will be used. Thus

W = X0/J +• W« (8. la)

V = Vg (8.2a)

U = -v».f - X.A. - J- | fflV.01 4-r̂ .ê l ̂ .,. (8.3a)

In Eq. 8.3, all quantities are small second-order quantities, there-

fore the approximation cos 6 = 1 is not permissible. The last term in Eq. 8.3

is the elastic shortening effect, also given in Eq. 3.9. The quantity w is

measured perpendicular to the real position of the undeformed blade (see

Fig. 27a).

Finally, the displacements due to the root torsion will be taken into

account. The assumption will be made that the torsional displacement occurs

after the elastic flap and lag displacements (i.e., w , v ) have occurred.

If the torsional displacement around the feathering axis is $ (see Fig. 27a),

then the displacements due to torsion are (<i> is a small angle)

(8.4)

v.

Note that the inextensibility assumption is used in Eq. 8.3. In general, this
is not absolutely necessary.



Thus, the total displacements of a point on the elastic axis of the blade can

be written as

W = W * WT = XD

(8.5)

V = -\r + -\rT = Ve - Wc <$

\J = -We a
I

It is important to realize that if the elastic flapping and lagging

displacements are not assumed to occur before the root torsional elastic dis-

placement, then the additional displacements due to the coupling between

the steady-state elastic flap and lag with $ will have a different form.

B. Second Displacement Field

Another possible displacement field is one in which the feathering axis

has an orientation determined by the angle 6 with respect to the hub plane,

while in addition, the blade has a built-in preconing angle given by 3 with

respect to the feathering axis. This displacement field is schematically

shown in Fig. 27b.

From considerations identical to those applied in the previous sample

displacement field

Au

1>U<>\*- 1

axTJ J
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W = X

Again, the displacements due to torsion are given by

(8.6)

VIT - %$
(8.7)

Thus, the total displacements of a point on the elastic axis of the blade

is given by

u = u =- -

2J L. U*.

We

]J

p ( ̂ ^ (8.8)
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In Eqs. 8.7 and 8.8, the relation

has been used. For the particular case of 3 =0, Eqs. 8.8 reduce to Eqs. 8.5.

8.3.2 Coordinate Systems and Coordinate Transformations

In order to handle, in a convenient manner, the various inertia and

aerodynamic loads derived in this section, the vector method will be used.

As will be seen below, six different coordinate systems are required to

describe the various quantities. These are:

1. The hub plane coordinate system, shown in Fig. 27a rotating

at constant angular velocity with the blade. The z-axis

coincides with the axis of rotation; the x-axis coincides

with the assumed initial position of the elastic axis

and the y-axis is perpendicular to the x-z plane. The

unit vectors of this coordinate system are denoted by i, j, k.
*V r+* f-*r

2. A second coordinate system shown in Fig. 29a. Its unit

vectors are denoted by i , j , fc . The i, unit vector
--1 -cl -vl «-l

coincides with the orientation of the feathering axis,

the j, j axes are parallel and k. is perpendicular to
** A, -L »V J.

i and j .
»*1 *£ 1

3. A third coordinate system with unit vectors i , j , k
*v2 ~2 ~2

is shown in Fig. 29b. It is obtained by rotating the

i , j , k system by an angle 6 + * around the i, axis.
"V -L /̂l /vX /*• 1

4. A fourth coordinate system with unit vectors I , J , K
~1 *"1 ~1

is defined in Subsection I.I, Appendix I.

5. A fifth coordinate system will be attached to the cross

section of the blade at its elastic axis. It moves with

the cross section as the blade deflects. The unit vectors

for this system are: I. tangential to the deformed elastic
-̂ 2.

axis of the blade; £2, normal to the deformed elastic axis

and parallel to the hub plane, and K normal to I and J .
-\,2 ,̂2 „, 2
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The projections of these unit vectors, at a point P

on the elastic axis, are schematically shown in Fig. 27.

6. A sixth coordinate system similar to the previous one

and rotated about the I axis by an angle 6+0. The unit

vectors are I., coincident with !„; Jo coincident with,-w 3 ~2 /~°
the blade chord, and K_ normal to I, and J_. These unit

~3 ~3 —3
vectors are schematically shown in Figs. 27 and 28.

According to the proof of equivalence of rotations given

in Appendix I, within the approximations inherent in the

various coordinate transformations, the unit vector J
'•'j

can be considered a good approximation to the blade-chord

orientation in space after the deformations have occurred.

The relations between the various coordinate systems are given in

detail in Appendix I.

8.4 Derivation of the Inertia Loads and Moments

8.4.1 Derivation of the Inertia Loads in the x,y,z

Directions

The inertial loads will be derived using the blade model shown in

Fig. 28. The blade is assumed to be represented by its mass-per-unit

span m, concentrated at the blade cross section C.G., and offset by a dis-

tance x from the elastic axis. This model, used first by Miller (Ref. 11),

is much more convenient than the distributed mass used by Houbolt (Ref. 10).

On the other hand, care must be taken to correct the propeller moment and

the rotational inertial term in q , by the missing cross-sectional polar
X

moment of inertia.

Let x, y, and z denote the undeformed position of the cross-sectional

blade C.G., while its position in the deformed state will be given by x , y ,

and z . Then the following relations can be written:
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e,
(8.9)

X, = (8.10)

= -v (8

= vl

Note that the blade cross section is not in the y-z plane, but is

normal to the elastic axis. Only the E.A. point is in the y-z plane. This

is the reason for the last two terms of Eq. 8.10. In addition, it will

always be assumed that 4> is small, so that

= COS©- -
(8.13)

From Eqs. 8.10 through 8.12, the position vector, the blade center of

gravity in the deformed position is given by

= c x. +• (8.14)

From elementary mechanics (Ref. 37), the acceleration in inertial space

can be written as
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Due to steady rotation, the third term of Eq. 8.15 is zero. From the

geometry 8/8x = 3/8x , using Eqs. 8.14 and 8.15,
o

«, = L (X, - X.rf * 2^SI) + f - ^ -2X

From Eqs. 8.15 and 8.10 through Eq. 8.12:

f t , ^ t C / - ^ X X

- z - -» -$) J y

1 y lr - X COS I U T <£ ;i <7 T <+• | -X.
0

* [v - Xr coS(fr*$) J + 2ii [6 -
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- f£ XtCO*(fr+$J(& + $) J

(8.16)

The components of the acceleration in the x,y,z directions, respec-

tively, can be obtained from Eq. 8.16.After substituting Eqs. 8.13, the

complete expressions for a , a , a are given in Eqs. J.I through J.3 ofx y z
Appendix J.

From the form of these expressions, it is clear that a considerable

number of terms are negligible. The considerations for neglecting terms are

given below.

Denoting the order of magnitude of the displacements by 0(e ):
•* D

1. v,w and their derivatives are of 0(e )

2. u from Eq. 8.6 is usually a second-order

quantity; thus, u ̂  0(e )

3. 9 is usually a small quantity (0 < $ < 3°) ; thus is

usually 4> < 3v/3x , 3w/9x
3 ° 2 °2 * 2 **

Therefore 0(e ) < * < 0(e ). Thus, <&$,$ ,**

can be considered negligible when compared to other

second-order quantities

4. It is reasonable to assume that the order of magnitude of
Of

sin 9 = 0(e ). Thus
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5. From the first part of this report it was found that the

cyclic pitch is usually bounded by 9 < 0.5 9 , where 9 ,
o o

is the constant collective pitch setting. Thus, it is
2

reasonable to say that the order of magnitude of 9 (8w/3x),

9 w is given by:

6. From the first part of this report, it was found that in

the vicinity of the critical region (6 = 9 ) , the lag

displacements were 3 to 5 times larger than the flap

displacements. Therefore, when neglecting terms in the

following equations, it will be usually assumed that

v si*n Q- = W

ir COS (^ > W

All quantities, which according to considerations 1 through 6

above are of 0(£ ), will be neglected, unless otherwise stated.

Neglecting almost all 0(e ) in Eq. J.I, the inertia load in the x-

direction will be given by

P = -™«-x "fr (8.17)
XI *

[Because L (see Eq. 8.56) is assumed to be zero]

From Eqs. J.I and 8.17, using the nondimensional time derivative,

Eq. 8.18 is obtained

= -»,ji*ry - (x. tc,*
xr L

J

117



V
J

(8.18)

In the last expression, the first two brackets [ ] and { } represent

the linear inertia load which was also obtained by Houbolt (Ref. 10). The

second { } bracket represents the nonlinear terms, while the last { }bracket

represents the additional inertia load due to the presence of cyclic pitch.

It should be emphasized that a considerable number of terms in Eq. 8.18 are

still negligible. These are retained for the sake of generality.

In a similar manner, neglecting the 0(e ) terms of Eq. J.2, the inertia

load in the y-direction will be given by

From Eqs. 8.19 and J.2:
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(8.20)

Again, the first group of terms in Eq. 8.20 are the linear terms

identical to Houbolt's (Ref. 10) . The other two groups are the nonlinear

terms and those due to cyclic pitch.

The total load per unit span in the y-direction is given by

Similarly, using Eq. J.3 and

p = -^a?
' (8.22)

the inertia load in the -z-direction is obtained

b = — m_J£. I W +• X f v.f.4 "i "• "x -w v ^ a. -• / ( 8 2 3 )
/ZZ

The total load per unit length in the z-direction is given by

p = L*r+T2I (8- 24)

It should be emphasized that the total loads are always assumed to be

acting at the elastic axis of the blade cross section. In reality, the
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inertia loads act at the blade cross section center of gravity. Therefore,

at the elastic axis, these loads will also generate a system of inertia

moments .

8.4.2 Derivation of the Feathering Moment at

the Blade Root

In deriving the feathering moment due to the complete system of loads

acting on the blade, the various moment arms must be carefully considered.

According to assumption (3) , Subsection 8.2, the pitch bearing (or the

feathering hinge) is inboard of the "virtual" flap or lag hinges. Geometri-

cally, its location will be taken at x = e, (or x = 0) .
1 o

In writting the moments, the i, , j,, k, coordinate system defined in~1 ~L ~1
Subsection 8.3 is useful. From Eq. I.I, assuming that 3 is small

i

«-, - >, A
-V *** I

A (8.25)

The moment vector about the elastic axis in the hub plane coordinate

system is

as

or

From Eqs. 8.25 and 8.26

+fji. * W^ <8-27)
**

The total loading per unit length at the elastic axis can be written

' * (8.28)

(8.29)
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The position vector of a point on the elastic axis of the deformed

blade, with respect to the pitch bearing, can be written as (see Fig. 27a)

(8.30)

•N/

Or using Eqs. 8.25

(8.31)

The moment of the loads given by Eq. 8.29 about the point represented

by the pitch bearing is given by

(8.32)

The required moment about the feathering axis at the blade root is

given by the i component of Eq. 8.32

(8.33)
I IN " ' I

iJ

The total feathering moment will be given by

{8-34)

where

In order to evaluate the feathering moment, the quantities

are required. The derivation of these quantities, together with the various

approximations involved, is given in Appendix K.

From Eqs. K.6, K.10, K.14, 8.35 and 8.34,. M can be written in
X. • E • /* •

i t s final form. Note that between 0 < x < e , , L , L , u , v , w , k , x , and m
1 E T y - r m l

are all zero. Thus
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T

(8.36)
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where I is the feathering moment of inertia of the blade

<8.37)

and

I
T = Tm ̂ «Cx (8.38)
^U I o Oo

o •

Thus,

*o ~ I- (8.39)

8.5 Derivation of the Aerodynamic Loads

8.5.1 Approximations Made in Deriving the Airloads

The purpose of this subsection is to show the various approximations

involved in evaluating the aerodynamic loads acting on a section of the

blade. In calculating these loads, assumptions (13) through (15) of Sub-

section 8.2 will be used.

Consider the deformed position of the blade in the hub plane coordi-

nate system (x, y, z system, see Figs. 27 and 28). The position of the

elastic axis is given by the position vector

/
(8.40)

For air-load calculation, the displacement u in the axial direction

(which is a second-order quantity, anyway) is unimportant and will be neglected

in this treatment. Thus

+ w/kV + W/fe (8.41)
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The velocity of this point (the elastic axis) , can be written as

VEA = I1E +
 W x *£ (8.42)

•v ~ *• /v ^

Or, using Eq. 8.41

From the geometry shown in Fig. 2, the velocity of the air in the hub

plane coordinate system is given by

V = AlJLRCOSyi -M/l/U'-H^J- - -fltf> (8.44)AlJLCOS -M7 ~ >
(Note that in this report the induced velocity is positive down.)

From Eqs. 8.43 and 8.44, the flow relative to the blade at the elastic

axis is given by

~ ~* ** ~ LI
(8.45)

In order to transform the flow relative to the blade, as given by

Eq. 8.45, into a physically meaningful form, it is convenient to use the

I_, J_, K- attached to the elastic axis of the blade and defined previously
~2 ~2 ~2
in Subsection 8.3.2.

Note that it is important to use this coordinate system because accord-

ing to assumption (7), Subsection 8.2, the cross section of the blade is

normal to the elastic axis. In this plane, the instantaneous geometric angle

of pitch is given by the angle between the vectors J and jJ or (6+$).

From the relation between the various unit vectors, Eqs. 1.5, the

following relation can be written.

-ax
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(8.46)

From Eqs. 8.45 and 8.46, the flow relative to the blade can be expressed

in terms of the I_, J_, K_ system. Thus
~2 ~2 «~2

u - i

J, -i-JlR.c« t - vA - Rsit''V|/ - * - -^ (x'+ «•) J

(8.47)

or

u = u i f u' jx + u_ krt (8.48)
^ . l /vl Yt ^ ri rs/

For convenience, a picture of the blade and flow geometry resulting

from these considerations is given in Fig. 30.

The total load on the blade can be written symbolically as

From two-dimensional quasi-steady aerodynamics, it is well known

(Ref. 11) that the quasi-steady lift at the aerodynamic center (c/4 point)

is due to the angle of attack at the rear neutral point (3/4 c). At the rear

neutral point the induced velocity can be written as

"—" """ A . )(***)
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Thus

V

Where the following approximations were made in writting Eqs. 8.50 and 8.51

i.e., the angle of inflow is small and

if (V *»M t

both of which are reasonable approximations. Also, the û  component of the

velocity parallel to the blade deformed elastic axis will have no effect on

the aerodynamic loads.

Prom Eqs. 8.49 and 1.5, L can be rewritten in the i , j, k coordinate
A *v X f^f *\s

system. Thus

According to the symbol convention of this report, L can also be
A

written as

I = L L -»-i LM + y k i _UA ^ XT <f ifrm A ~ £ ̂ XT^ ''̂T
 T '^ ̂Er (8.53)

Comparing the last two equations, it is clear that
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(8.54)

(8.55)

It should be noted that Eqs. 8.54 through 8.56 are a direct result of

the approximations inherent in the coordinate transformation, Eq. 1.7.

In the present report, the quantity L will be neglected in the calcu-
XT

lation of p because it is a small quantity when compared with the centrifugal

force acting in the opposite direction. This is a nonconservative assumption

because the L load per unit length tends to reduce the stabilizing effect
" *

of the centrifugal force.

Finally, the aerodynamic moment along the I direction can be symboli-
^** £

cally written as

nA = MI, (8-57)
£. *̂

From Eqs. 8.57 and 8.46

These two moments in the j, k direction will introduce additional small

bending moments in the flapwise and chordwise directions. These will also be

neglected in the present report. Thus, the aerodynamic moment can be written

as

Mfl = Mx L - MA t (8.59)

Finally, approximate expressions for the velocity components, as given

by Eq. 8.47, are required. Consider Eq. 8.47: u is not required in this

analysis and will be left unchanged. For low values of y [ assumption (16)
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of Subsection 8.2], the first two terms in the expression for u can be con

sidered small when compared with the other terms. Thus

and

so that

*
Similarly, in the expression for u , v(3w/9x)i2 < wft and will be

Ẑ
neg lected so that

u ~ -^

Comparing Eqs. 8.60 and 8.61 with Eqs. 3.14 and 3.15, it can be seen

that they are identical. Thus

(8.62)

8.5.2 Derivation of the Aerodynamic Loads and

Moments per Unit Span

Originally, it was intended to derive the air-laods per unit span in

a general form and use the quasi-steady assumption (assumption (14) , Sub-

section 8.2) C(k) = 1 only in the actual numerical calculation. Unfortunately,

the presence of the cyclic pitch, constant pitch, and time dependent motion at

flutter frequency would require a formal splitting of the aerodynamic loading

into these three distinct groups. Thus, in order to remove this unncessary

complication, it was decided to invoke the quasi-steady assumption right at

the beginning.

In order to clarify the various assumptions associated with the

quasi-steady approximation and neglecting the apparent mass effects , the
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results of two-dimensional unsteady aerodynamics will be given below. For the

case of a two-dimensional airfoil, in unsteady motion, determined by a time-

dependent angle of attack a and a downward displacement of the elastic axis h,

(see Fig. 8.1), the unsteady load and moment per unit span can be written as

(Ref. 12}

FIG. 8.1

f
where L is the quasi-steady lift given by

- " a J (8.63)

(8.64)

129



and

(8.65)

Here the assumption has been made that the aerodynamic center is at C/4.

Setting C(k) = 1, as justified in Ref. 11, and neglecting the apparent mass

terms associated with h and a yields

1- x.)

M = .j -• -' - - — — vj"

(8.67)

where x, = x,/bR.
A A

* *
Replacing h = - U , V = U , a = 6 + $ and a = 6 + $ = ii(6 + $)

XT A X

Eqs. 8.66 and 8.67 become (for small angles of inflow)

J.69)

Finally, the loading in the y-direction can be obtained from Fig. 2

V?
T (8.70)

hr=-~p L8-j*>*c^

In Eq. 8.70 it is implied that
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, -i r ?tan —r- =
fr

and

From Eqs. 8.68 and 8.70

(8.71)
' J

8.6 The Equations of Motion

8.6.1 The Elastic Restoring Forces

According to assumption (13) Subsection 8.2, a linear treatment of the

elastic restoring forces will be considered sufficient. Such a treatment has

been derived by Houbolt and Brooks (Ref. 10). In writing the equations of

equilibrium for the beam element, another convenient assumption will be made,

following Ref. 10. It will be assumed that the element is cut by slices

perpendicular to the hub plane. This assumption is one of convenience (in

calculating the loads and moments, it was always assumed that the cross

section is normal to the elastic axis), and will have a negligible effect on

the results. Finally, in the beam equilibrium equations in the y and z-

directions, the terras 3q /3x , 3q /3x will be neglected. Thus the equations
y o z o

of equilibrium can be written as

-ax.
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Note, that only the elastic deformation contributes to the elastic
s

energy of the system. Therefore v , w defined in Fig. 27 are used in
e e

Eqs. 8.72.

The elastic restoring moment about the feathering axis can be assumed
2

to be represented by a spring constant K, = Jr u> .
9 J o

8.6.2 Blade Equations of Motion

The equation of motion in the z-direction is obtained by combining .

Eqs. 8.72, 8.23, and 8.68.

The equation of motion in the y-direction is obtained by combining

Eqs. 8.72, 8.20 and 8.71.

The feathering equation of motion can be symbolically written as

.. (8.73)

where M is given by Eqs. 8.36, 8.68, 8.69, and 8.71.
•L • A • f\ •
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SECTION 9

NONLINEAR AND LINEARIZED EQUATIONS FOR THE COUPLED FLAP-LAG-PITCH

MOTION OF HINGELESS BLADES IN HOVERING FLIGHT

9.1 Introduction

In this section, the general equations of motion derived in the previ-

ous section will be specialized to the case of coupled flap-lag-pitch motion

in hovering flight. Using Galerkin's method for the spatial variable, the

partial differential equations will be reduced to a system of nonlinear ordi-

nary differential equations. In this process, no attempt will be made to in-

clude an arbitrary number of elastic modes (as was done previously for the

case of flap lag); thus only one elastic mode for each elastic degree of

freedom (i.e., flap and lag) will be used. Due to the considerable amount of

algebraic manipulations involved, this process of reduction is given in a

most concise form possible. Where details are required, they are given in

the various appendices.

Based on physical reasoning, it is shown that the nonlinear effects

in the feathering equation must be treated in a different manner than those

associated with the flap and lag equations. Therefore, the treatment of the

flap and lag equations is separated from the treatment of the feathering equa-

tion .

The resulting system of coupled ordinary differential equations is

linearized about a natural equilibrium position, which is taken to be the

equivalent linear steady-state position. In this process, various nonlinear

effects are transformed into coupling effects. Thus the linearized equations

contain many new terms when compared with those which would have been obtained

from a purely linear treatment.

Next, the linearized equations of motion are transformed into a system

which can be conveniently solved by defining various flutter derivatives

(Refs. 11 and 39).

Finally, by adding the nonlinear terms to the linearized equations of

motion, the complete coupled nonlinear equations of motion are written in a
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form suitable for numerical integration.

9.2 Assumptions Made in Reducing the General Equations

In order to reduce the number of terms in the general equations, some

assumptions must be made. These assumptions, given below, are only a matter

of convenience, and will have little effect on the mechanism of instability.

(a) In order to simplify the inertia loads, it is assumed that

the offset between the elastic axis and the blade cross-

sectional center of gravity is zero, i.e.,x=0.

(b) The distance e between the area centroid of the tensile
A

member and the blade elastic axis is also taken as e, = 0.A

(c) In order to describe the displacements of the blade, dis-

placement field B, given by Eqs. 8.8 and shown in Fig. 27b,

will be used.

(d) It is assumed that the flap and lag motions of the blade

can be represented with a sufficient degree of accuracy

by using one elastic mode in each of these degrees of

freedom; thus

(9.1)

(See Figs. 27a or 27b for the definition of w , v .)
e e

The mode shapes used in Eqs. 9.1 represent the appropriate

mode shapes of a rotating beam without the effect of elastic

coupling, i.e., at 9 = 0.

(e) The boundary conditions for v , w are taken as the usual
e e

ones for a hingeless blade, i.e., Eqs. 3.6 are assumed to

apply to v , w replacing v and w.
e e

(f) The angle of preconing 3 and the built-in coning angle
P

of the feathering axis 3 are assumed to be small.
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9.3 The Equations of Motion in Flap and Lag

From Eqs. 8.8 and 9.1, the displacement field can be written as

. *('-•)* "•* J ̂ . (9.2)

(9.3)

w = Xx»(fl+/O + U1.I, - X*,Y,$ (9.4)

From Eqs. 8.17, 8.18, 8.20, 8.21, 8.23, and 8.24, assuming that x = 0,

the loads can be written as

p = - 21 = --»,5l* |"If - (*„+€, + *; - 2-^J (9.5)
Iw ^Y_ •—

P
o

(9.6)-

a** o *. fa T\_ ) -»̂ . r» uf — Oi ±L VJ« \y-f)

where the effect of a viscous type of structural damping has been included in

the last two relations. Note that only the elastic part of the displacement

will dissipate energy through structural damping.

Denoting the elastic coupling effect by EC and EC as defined in

Appendix L by Eqs. L.3 and L.4, and using the assumption that e = 0,
f\

Eqs. 8.72 can be rewritten as

-<>] (9.8)
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(9.9)

Substituting Eqs. 9.2 through 9.7 into Eqs. 9.8 and 9.9 yields a

system of equations on which Galerkin's method is applied. The application

of Galerkin's method consists of the following steps:

**
(a) The u , u terms occurring in Eq. 9.5 are neglected.

2 —(b) The flap equation is multiplied by r\ I dx and the terms

associated with the inertia and elastic forces are inte-

grated between x = 0 and x = £, while the aerodynamic
o o _ _ _

loading terms are integrated between x = A and x = B,

where A and B are the tip loss factors.

(c) The resulting equation is nondimensionalized by
2

dividing by I Si .
b

2 —
(d) The lag equation is multiplied by Y I dx , then steps

(b) and (c) , described above, are repeated.

The algebraic process detailed above is straightforward and elementary;

therefore, the details of the algebraic manipulation will not be given. The

equations of motion obtained from this process for the flap and lag degrees

of freedom are given in Eqs. 9.10 and 9.11, respectively.

-»,* r . n. \ . c: l~ •*. u
^FIT
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* *

(9.11)

8A

In the derivation of Eqs. 9.10 and 9.11, the orthogonality conditions

for rotating beams, Eqs. A.2 and A.4 have been used. It should be mentioned

that Eq. A.4 should be modified to account for the effect of the total

coning angle (8 + 3 )- As shown in Ref. 23, this effect will increase the
^ —2 2

rotating lag frequency OJ by an amount 1/2(3 + 3 ) . In the present treat-
JjJ. jp

ment this small correction term will be neglected.

The quantities E , E appearing in Eqs. 9.10 and 9.11 are the elastic
C.L C ̂

coupling effects. These quantities are defined in Eqs. L.16 and L.17 (or L.5
~""dLand L.6). The quantities B appearing in Eqs. 9.10 and 9.11 are generalized

mass terms defined in Appendix M.

The quantities A^1T and A are generalized aerodynamic forces in flap

and lag, respectively, defined by

(9.12)
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6

- ^ I ) v- —- L«T a.

Next, the aerodynamic loading terms A and I-P w -̂̂ ^ b6 evaluated.

The aerodynamic loads L and L are given by Eqs. 8.68 and 8.71, while the
Z J- JT

relations for U and U are given by Eqs. 8.60, 8.61, and 8.62. For hover,

= 0, and

U = W.TI * SI

(9.15)

Substituting Eqs. 9.2 through 9.4 into Eqs. 9.14, 9.15, 8.68, 8.71,

9.12, and 9.13 and performing the required integrations yields:

(9.16)
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and

+• Q —

(9.17)

The quantities L , F used in Eqs. 9.16 and 9.17 are defined in

Eqs. C.I and C.2.

In all of the equations associated with the flap and lag degrees of

freedom, most third-order terms have been neglected. Also, some small

terms multiplied by C /a have been neglected.
o

9.4 The Feathering Equation of Motion

9.4.1 The Higher Order Terms in the Feathering Equation

In treating the feathering equation, it is important to realize that

the third-order inertia terms in this equation can be of importance and are

non-negligible. The reason for this is clear when the general form of the

feathering equation is considered. From Eqs. 8.36 and 8.73, where x = 0,

the feathering equation can be simply written as

) 1
'I

(9.18)
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The left-hand side of this equation is multiplied by the feathering

moment of inertia of the blade which for the case of x = 0 is a small quantity.

It can be easily shown that after the integrations, all of the quantities on the

right-hand side of Eq. 9.18 are multiplied by the flapping (or lagging) moment

of inertia of the blade I , or by similar generalized mass quantities which

are of the same order of magnitude. The ratio of I. /I =* 1000 for most hinge-

less blades. Thus, the small nonlinear inertia and aerodynamic terms on the

right-hand side of Eq. 9.19 are multiplied by a large quantity and their in-

fluence on the stability of the torsional degree of freedom could be con-

siderable. This has also been found in Ref. 11. Great care is, therefore,

taken in treating these terms in this derivation and none of the potentially

important terms are neglected. On the other hand, all fourth-order terms or

terms of equivalent magnitude will be neglected.

9.4.2 Final Form of the Feathering Equation

The final form of the feathering equation can be obtained by substi-

tuting Eqs- 9.2 through 9.4, 8.68, 8.69, 8.71, 9.14, and 9.5 into Eq. 9.19.

After performing the required integrations, which are straightforward, and
2

dividing the result by I ii

using sin 6 = 6, cos 6 =" 1]

2
dividing the result by I ii , the following final result is obtained. [Also,

« L i«* -

where A is given by

(9.19)
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(9.20)

In writting the last equation, the assumption sin ©="6 , cos©~1.o

has been used. The quantities T , T , T used in Eq. 9.20 are defined by

Eqs. M.19 through M.21.

9.5 Linearization of the Equations for Coupled Flap-Lag-Pitch Motion

9.5.1 Determination of the Static Equilibrium Condition

The complicated system of nonlinear differential equations obtained in

the previous sections will be linearized about the static, linear equilibrium

condition. Denoting the static equilibrium position in flap, lag, and torsion

by g , h and 5 , respectively, the dependent variables can be written as
1 1' o
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(9.21)

f 0
o o

It is important to note that the quantities g , h , although similar

in nature to those given by Eqs. 3.22,will have different values and will be

given by different algebraic relations due to the presence of the torsional

degree of freedom.

Setting all the dynamic terms equal to zero in Eqs. 9.10, 9.11, 9.16,

9.17, 9.19, and 9.20, and substituting Eqs. 9.21 in the resulting equations

gives (after some algebraic manipulation) the following system of equations,

which for convenience is written in matrix form

'13

LSN

'SN

(9.22)

where the quantities S. ., F , L , T , and C. . are given in Eqs. N.I
13 SN SW SN 1J

through N.15.

The quantities F , L . T represent the static nonlinear quantities
OiM oN oRI

in the flap, lag, and feathering equations. The linear static equilibrium

condition about which the equations of motion are linearized will be defined

as that obtained from solving Eq. 9.22 with the nonlinear terms set equal to

zero, i.e.,

(9.23)
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9.5.2 The Linearized Equations

Using the static linear equilibrium conditions, determined in the

previous section, the linearized equations can be obtained by substituting

Eqs. 9.21 into Eqs. 9.10, 9.11, 9.16, 9.17, 9.19 and 9.20. In this process

only the linear terms in XT/ X2'
 and $ wi-11 be retained. The linear steady

state part of the equations will vanish due to Eqs. 9.23, and the nonlinear

part of the steady values will be tacked onto the nonlinear equations, which

will be treated in the following section. After dividing the flap equation by

Mp , and the lag equations by M the linearized flap and lag equations can

be written in the following convenient manner.

*f * f f + F

** _ * , — 2. \ . . . **
1 X +
W 4

'+ L +L

(9.25)

The quantities PJ*f FJ F FJ*, FJ, F^ and L-, LJ , L LJ*, LJ,

L, are flutter derivatives associated with the flap and lag equations, re-

spectively. These quantities are defined in Eqs. N.16 and N.17. The quanti-

ties g , g represent equivalent damping terms in the flap and lag equations

given in Eqs. N.16 and N.17 (the last equation in each group). These are

partially due to structural damping and partially due to aerodynamic damping.

Finally, it should be mentioned that in this process of linearization, while

the quantity 4> has been replaced everywhere by $+<{>, the inflow ratio X has
o o
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been left unchanged and is calculated from Eqs. 4.6 and 4.7. Physically,

this approximation means that the linearization has been performed in such a

manner as to allow small variations in the thrust coefficient.

Next, the feathering equation is linearized. In this case, due to the

algebraic form of the equation obtained, it is convenient to divide the equa-

tion by the quantity I (see Eqs. N.18 and N.19)
E

I = I ~ Tt£ (9.26)E t£

Physically, I represents the increased moment of feathering inertia of the
E

blade due to the blade elastic axis displacement from the feathering axis.

Thus the feathering equation can be written in a convenient form by

** — * "£•„•- -r- ̂

t^ Y "KEt ' Tv,̂

(9.27)

where the quantities T**, T* , T , T**, T* , T represent the flutter
1 1 T 2 2 2

derivatives for the feathering equation. While g is the equivalent damping

in feathering, it is of aerodynamic origin only, and K is the equivalent

spring in the feathering degree of freedom. These quantities are defined

by Eqs. N.24 and N.41. .

9.6 Nonlinear Equations for Coupled Flap-Lag-Pitch Motion

The nonlinear equations for coupled flap-lag-pitch motion can be

easily obtained by using the linearized equations of motion obtained in the

previous section. The nonlinear parts of Eqs. 9.10, 9.11, 9.16, 9.17, 9.19,

and 9.20 are extracted, the nonlinear steady-state parts from Eq. 9.22 added,

and the resulting relations added to the linear system, Eqs. 9.24 through 9.27,

obtained in the previous section. The final form of these equations is given

below.
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tt +
f

V-

* Fr t
(9.28)

(9.29)

( T - TV| ) V, - (r^ - T^t ) 7C%
t + ( i - T )

(9.30)

where the quantities FNJ/ 1^, TNI/ T*J , T*J T** are defined in

Eqs. O.I through O.6.

Note that all second derivatives are written on the left-hand side of

Eqs. 9.27 through 9.29. This form is necessary for the numerical integration

of these equations.
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SECTION 10

STABILITY OF FLAP-LAG-PITCH MOTION IN HOVER

10.1 Introduction

10.1.1 Brief Review of Past Work

In this section, the stability of flap-lag-pitch motion will be in-

vestigated using the equations obtained in the previous section. Both static

stability or divergence and dynamic stability, or flutter will be considered.

When searching in the available literature for previous investigations in

this area, one finds that the complete three degree-of-freedom problem has

not been investigated before.

The most extensively investigated case has been the case of flap-pitch

motion which is similar to the classical flutter problem associated with

fixed wing aircraft. For this case, both flutter and divergence in hover

have been investigated by Miller and Ellis in Ref. 11. They concluded that

the important parameter of the problem is the offset between the blade cross-

sectional center of gravity and the aerodynamic center. Both flutter and

divergence boundaries were plotted as a function of this parameter. The im-

portant effect of preconing on both flutter and divergence has also been

pointed out in Ref. 11.

The flutter boundaries in flap pitch for hovering flight were also

obtained by Daughaday, OuWald and Gates in Ref. 42. Their results were in

general agreement with those of Ref. 11. Divergence boundaries were not

presented in Ref. 42. The flutter boundaries obtained support, the claim

made in Ref. 11, that quasi-steady aerodynamics yields conservative flutter

boundaries. The experimental results obtained in Ref. 42 seemed to indicate

better agreement with quasi-steady aerodynamics. Furthermore, it was found

in this work that flutter could occur when the mass and aerodynamic centers

were coincident with the elastic axis; this was found to be due to gyroscopic

coupling between torsion and flapping.

It is interesting to note, therefore, that no investigation of the
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static or dynamic stability of the complete flap-lag-pitch motion in hover

has been undertaken up to the present. In particular, the various effects

of feathering axis orientation with respect to the hub plane, preconing,

collective pitch setting combined with elastic coupling, and inplane stiffness

of the rotor on the divergence boundaries has not been investigated.

Finally, it is worthwhile to mention briefly a few other papers which

have a connection with the coupled flap-lag-pitch problem. The pitch-lag

problem in hovering of an articulated blade has been excellently treated by

Chou in Ref. 43. Chou identified the mechanism of instability as due to

pitch changes caused by lag motion; the coupling between these degrees of

freedom was due to rotor head geometry. Stability criteria for hovering

rotors were obtained.

The aeroelastic stability of helicopter rotors in hovering flight was

studied by Zvara in Ref. 44, both theoretically and experimentally. The main

purpose of this work was to determine the relative merits of the various aero-

dynamic theories as applied to different rotor configurations. Cantilevered,

articulated, and teetering blades were evaluated. Only the flap-pitch

degrees of freedom were considered.

Perisho (Ref. 45) treated the flap-pitch motion in forward flight,

including the effect of reversed flow. Blade response curves were obtained

•using numerical integration. Stability boundaries and divergence boundaries

were not explicitly obtained, although some of these boundaries are indicated

on his curves. Bielawa (Ref. 35) treated the complete flap-lag-pitch problem,

considering mainly second-order effects due to distributed torsion, together

with the effect of time-dependent coefficients. Stability in hovering flight

and divergence boundaries were not considered by Bielawa.

Recent flutter analyses seem to be devoted to considering some effects

while neglecting other effects, usually of equal importance. Representative

examples of this trend are found in a recent paper by Stammers (Ref. 46),

where the effect of the periodicity of the coefficients was investigated using

a regular perturbation method. The Coriolis effects in the flap-pitch equa-

tions of motion were neglected, reversed flow effects were also neglected,
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and inertia terms associated with the feathering equation did not include all

of the important effects. In this paper divergence boundaries were obtained

as a function of the blade center-of-gravity elastic axis offset, and flutter

boundaries were also obtained. Another example of this trend is in Ref. 47

where the effect of the wake in forward flight on the blade stability is

treated by extending Loewy's aerodynamic theory (Ref. 48) to forward flight

while neglecting the effect of periodic coefficients and reversed flow at

advance ratios of 0.3 < M - 0.8. The inertia characteristics of the blade

in Ref. 47 were represented by taking the tip cross section of the blade as

a typical cross section of the problem. In this case, stability boundaries

for forward flight were obtained. Again, only the flap-pitch degrees of

freedom were considered.

10.1.2 Objectives of the Present Study

In the present study, using the linearized equations of motion, the

divergence of the coupled flap-lag-pitch motion will be investigated first.

The effect of preconning, elastic coupling, feathering-axis orientation with

respect to the hub plane, and inplane stiffness of the rotor on the divergence

boundaries will be shown.

Next, the flutter, or dynamic stability of the linearized system of

equations (Eqs. 9.24, 9.25 and 9.27) will be considered and stability

boundaries similar to those obtained in Section 7 will be given.

10.2 Divergence Boundaries

10.2.1 The Linearized or Approximate Divergence Boundary

A linearized approximate divergence boundary can be immediately ob-

tained from Eq. 9.23 by requiring that det |s. .| =0. The divergence bound-

aries obtained from this requirement are similar to those of Ref. 11. They

are characterized by the property that the divergence boundary is independent

of the values of the quantities g, , h, , and $ which represent the linear
1 1 o

static equilibrium condition of the blade.

From Eqs. N.I through N.9, it is easy to see that the only element of

the [S. . ] matrix which contains w explicitly is S . Therefore from the
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requirement that det |s. .|= 0, the following relation can be written

where

f
(10.1)

~ S,t S»i

(10.2)

i _
(10.3)

where S.. is given by Eqs. N.I through N.9. From Eqs. 10.1 through 10.3, the

approximate or linearized divergence boundary can be easily calculated.

10.2.2 The Exact Divergence Boundary

The exact divergence boundaries are obtained by including the effect

of the static equilibrium condition of the blade (i.e., g , h , and $ ).

Mathematically, the exact condition for the divergence can be shown to be

given by the following relation:

/

5,,-

13

(10.4)

= 0
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This requirement is identical to setting V = 0 (where V is derived in the

next section).

10.3 The Flutter Boundaries for the Linearized System

The flutter boundaries can be obtained from the solution of the

linearized system as represented by Eqs. 9.24, 9.25, and 9.27. The solution

to this system of equations is given by

Substitution of these relations into the linearized equations of motion yields

the characteristic equation, Eq. 10.6, given on the next page. This equation

can be expanded to give a sixth order equation which can be written as

(10.7)

where the coefficients v_ , ... , v are given in Appendix P, Eqs. P.I through
6 o

P.7.

At the flutter condition

J3 » I Wc (10.8)

Substituting Eq. 10.8 into Eq. 10.7 gives two equations, one for the

real and one for the imaginary part of Eq. 10.7.

From the real part
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=0
(10.9)

From the imaginary part

or

=0

Vs.OJt' - VSOJC + \/, = v (10.10)

2
The last equation is a quadratic in U) which can be easily solved; thus

KL - 2 ~ ^ ( 1 0 . 1 1 )

From Eqs. 10.11 and 10.9 the flutter boundaries can be obtained.

10.4 Flap-Pitch Stability Boundary

In the presentation of the results, it will be useful to have stability

boundaries for flap-pitch motion similar to those obtained previously for

coupled flap-lag in Section 4. Therefore, the stability boundary for flap-

pitch motion will be derived below. From Eq. 10.6

Frl
= o

(10.12)

In analogy to Section 4, at the flutter condition p = iw and the

imaginary part of the characteristic equation (Eq. 10.12) yields the appropri-

ate relation for the flutter frequency

Ff (10.13)
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The real part of Eq. 10.12 yields

-2 _~

/"u> + ojc F£ I *• =OT f ^t

The simultaneous solution of Eqs. 10.13 and 10.14, with an appropriate

relation for the inflow ratio, yields the critical value of the pitch setting

8 at which pitch-flap flutter occurs for a given torsional stiffness 0) .
c ^ o
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SECTION 11

RESULTS AND DISCUSSION

11.1 Numerical Quantities Used in the Calculation

Most numerical quantities used in the calculations are identical to

those given in Section 7.1 unless otherwise stated. For all flap-lag-pitch

calculations x =0.

In the calculation of the divergence boundaries, the following geo-

metrical blade properties were used:

Y = 8; O = 0.08; b = 0.0313; I = 0.0013

These properties are close to those of the Boelkow M105 4-bladed hingeless

rotor.

In the calculation of the effect of the torsional degree of freedom on

the flap-lag-type of instability, the previous values for y an^L a' used in

the flap-lag calculations had to be used again. Thus, for this case

Y = 10; a = 0.05; b = 0.025; I = 0.001

In the calculation of the effect of lag on the flap-pitch instability,

the same values of Y/ O» b and I were used as for the divergence boundary cal-

culations .

For convenience, the inflow for all cases calculated was taken from

Eq. 7.3.

11.2 Static Stability Boundaries

11.2.1 Approximate Divergence Boundaries

For convenience in numerical calculations, only the linearized or

approximate divergence boundaries, defined in Subsection 10.2.1, Eq. 10.1,

were evaluated. Conceptually, these approximate stability boundaries are

similar to those evaluated by Miller (Ref. 11). Equation 10.11 includes up

to the first order, the destabilizing feathering moment due to the drag

*In all coupled flap-lag-pitch calculations the structural damping in the flap
and lag degress of freedom 17 -'"Isû O • Tne sructural damping in the
feathering degree of freedom was always assumed to be zero.
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acting through the initial deflection (static) in flap together with the

stabilizing feathering moment due to the lift acting through the initial

deflection (static) in lag.

Figure 31 is a typical divergence boundary of this type. The blade

cross sectional center of gravity and the elastic axis are taken to be coinci-

dent-

Thus, x represents the aerodynamic center—blade cross sectional

center-of-gravity offset. As can be seen from Fig. 31, the rotating-lag

frequency (or chordwise stiffness of the blade) has a considerable effect on

th£ divergence boundary because it changes the effective moment arm through

which the lift produces a stabilizing feathering moment. As can be seen,

changes in to between 1 and 2 have the greatest effect. It is clear from
L»l

Ficj. 31 that the soft inplane hingeless blade has superior divergence charac-

teristics.

Figure 32 shows the effect of collective pitch setting 6 on the approxi-

mate divergence boundaries. These plots indicate that at lower collective

pitch setting the blade is statically more unstable. Physically, it expresses

the fact that the stabilizing moment due to lift is approximately proportional
2

to 0 i while the destabilizing moment due to drag is proportional to a power

of 9 somewhere between 1.5 and 1.2. Calculations made for pitch flap with the

exact divergence boundary (nonlinear) show that increasing 0 could be de-

stabilizing.

Figure 33 shows the destabilizing effect of the preconing, which has

also been indicated in Ref. 11. From this plot it is clear that preconing

has a strongly destabilizing effect on static stability.

Figure 34 shows the effect of feathering axis orientation 3 with re-

spcct to the hub plane, measured in a plane perpendicular to the hub plane.

Again, this is a destabilizing effect, similar to 3 , but not as strong.

The effect of elastic coupling is stabilizing. Figure 33 was recalcu-

lated, including elastic coupling; it was found to be stabilizing, but only to

a minor degree. The effect of elastic coupling is dependent upon the combi-

nation of flap and lag frequencies. Therefore, for some other combination of
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these quantities, the effect could be stronger.

11.2.2 The Exact Divergence Boundary for Flap Pitch

In order to illustrate the considerable difference between the approxi-

mate and exact divergence boundary, these two are given in Fig. 35. The exact

divergence boundary for flap pitch is treated in Appendix R, and the appropri-

ate curve was calculated using Eq. R.5.

As can be seen from Fig. 35, the exact divergence boundary is approxi-

mately 33% higher than the approximate linear divergence boundary. Additional

cases for different values of collective pitch setting 0 were also computed

and the same difference between approximate and exact boundaries was observed.

It is of interest to compare the initial static values of g ,4> evalu-

ated at the exact divergence boundary and compare them with the values result-

ing from Eq.9.23.

For the x =0.04 point of Fig. 35
f\-

(<i> ) = 0.04919 (g°) = O.lOll
o exact 1 exact

(tfK. = 0.0623 (<!?),.- = 0.1117o linear 1 linear

The flutter calculations are dependent upon the initial values g ,$ ;

thus, the exact calculation of these quantities, can have an effect on the re-

sult of the flutter calculation.

11.3 Flutter Boundaries

11.3.1 General

The purpose of this section is twofold. First, it will show the

effect of the addition of the torsional degree of freedom on the flap-lag-

type of instability treated in the first part of this work. Second, it will

show the effect of the addition of the lag degree of freedom on the flap-pitch

type of instability as evaluated from Eqs. 10.13 and 10.14.

The coupled flap-lag-pitch stability boundaries are evaluated from

Eqs. 10.9 and 10.11 using a computer program which searches and iterates for

the flutter points occurring between 0 < 9 < 0.5 for a given combination of
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flap, lag,and torsional frequencies. This program also continuously checks

the value of V , evaluated using the linear static equilibrium condition, for

the occurrence of divergence.

The coupled flap-pitch stability boundary is evaluated using Eqs. 10.13

and 10.14 by a separate program which searches and iterates for the value of

(jj at which flutter occurs at a given collective pitch setting 9. This pro-

gram evaluates only the upper branch of the stability boundary.

11.3.2 Effect of Torsional Degree of Freedom on the

Flap-Lag-Type of Instability

In order to illustrate this effect, the following cases are considered:

Case 1 (a) u = 1.175; w = 1.075764
Fl LJ.

(b) uL, = 1.175; <J . = 1.28303
F1 LI

Case 2 (a) oL, =1.25; w , = 1.11966
F1 LI

(b) UFI = 1.25; ULI = 1.39403

Note that all cases plotted are calculated without the effect of elastic

coupling.

Cases 1 and 2 correspond to the appropriate points on the stability

boundary given in Fig. 8 for 0 = .20. Point (a) is on the lower branch
c

while (b) is always on the upper branch.

Figure 36 shows the effect of torsion on Case 1(a). At a high

value of w (0) = 100), this simulates a torsionally rigid blade; for this
o o ,

case, 6 = 0.2068 which compares well with the value 0 =0.20 obtained from
c c

the flap-lag calculation. As the torsional stiffness is gradually decreased,
— -\,

the value of 0 is slowly increasing. In the vicinity of U) = 32, 0 in-
c o c

creases sharply. At some very high value of 6 divergence occurs. Thus, the

effect of addition of the torsional degree of freedom is stabilizing for the

lower branch of the flap-lag stability boundary shown in Fig. 8.

When the same process is repeated for the upper branch of the flap-lag

stability boundary, Case l(b), it is seen from Fig. 37 that the value of 9

*
A limited number of additional cases will be considered in Ref. 9.
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is continuously decreasing and at W = 5, it reaches a value of 0 = 0.047.
o c

Thus, the addition of the torsional degree of freedom is strongly de-

stabilizing for the upper branch of the flap-lag stability boundary.

During this process, the flutter frequency remains fixed for both the

upper and the lower branch of the stability boundary, and is approximately

equal to the lag frequency.

For the sake of completeness, two additional points on the flap-lag

stability boundary were considered. These are Case 2(a) and Case 2(b); the

results are shown in Figs. 38 and 39. Again, the torsional degree of freedom

is destabilizing for the upper branch and stabilizing for the lower branch.

11.3.3 Effect of Lag Degree of Freedom on the

Flap-Pitch-Type of Instability

In order to evaluate this effect, a pitch-flap stability boundary is

required; this boundary is shown in Fig. 40. As can be seen, the pitch

setting is strongly destabilizing.

in Fig. 41, the flutter frequencies associated with the stability

boundary shown in Fig. 40 are given. It is of interest to note that the

flutter frequencies in pitch-flap are usually lower than 01 .

A representative point on the flutter boundary (Fig. 40) with

6 = 0.20 OJ = 7.8125 uL. = 1.2c o Fl

will be used to investigate the effect of adding the lag degree of freedom.

The results of adding the lag degree of freedom are shown in Fig. 42.

For (o =20, which represents a blade with the lag degree of freedom
IjJ.

effectively suppressed, G = 0.197, which is quite close to 0 =0.20. De-
C C

creasing the lag stiffness of the blade gradually reduces the value of 0 .

The flutter frequency during this process is shown in Fig. 43. It is in-

teresting to note that during this gradual decrease, the flutter frequency is

essentially the flap-pitch flutter frequency.

In the vicinity of to = 5.0, where the rapid dip in the value of 0
LJ. c

occurs, the nature of the instability changes; it becomes a flap-lag-type of
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instability and the flutter frequency is very close to the lag frequency.
— '"V/

At u> , = 2.25, 0 attains a minimal value of 6 =0.04. This region is
LI c c

obviously identical to the region of low 9 's shown in Figs. 37 and 39.
— -V c

In the vicinity of co = 1.1, a rapid growth in the value of 6 occurs, and
LI c

no flutter occurs below OJ < 1.0. This seems to indicate that the soft in-
JjJ. —

plane hingeless blade seems to have the best coupled flap-lag-pitch flutter

characteristics. This apparent advantage of the soft inplane hingeless blade

should be considered within the limitation of the analysis performed in the

present study. The various other instabilities associated with this type of

blade such as ground resonance, air resonance,and instabilities due to positive

preconing, were not considered and could be major design problems in the con-

struction of a stable hingeless rotor system.

For a few cases, the effect of elastic coupling on these stability

boundaries was investigated. It seems that the elastic coupling is sufficient

to eliminate most of the unstable regions, except the unstable region in the

vicinity of U) = 2.5 shown in Fig. 42.
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SECTION 12

SUMMARY OF RESULTS AND CONCLUSIONS

12.1 Conclusions for Coupled Flap-Lag Motion

Conclusions for Hovering Flight

1. In the vicinity of the critical condition (6 >_ Q ), when flutter

occurs, the amplitude of flap motion is much smaller than that

for lag. This is due to the fact that the lag mode is the poten-

tially unstable mode, due to its low damping. In this region the

ratio of lag over flap amplitudes can be between 5 to 10.

2. The structural damping in flap has no effect on the stability of

the system. On the other hand, a small amount of structural

damping in lag (n ,= .5% of critical damping) is sufficient to
SL1

stabilize the potentially unstable lag mode by raising the values

of the critical collective pitch setting 6 above values which
c

could occur in practice. According to Ref. 3, the elastic coupling

effect is also sufficient to eliminate most unstable areas inside

the flap-lag stability boundary. In an actual hingeless rotor, these

two effects will always coexist, indicating that the flap-lag sta-

bility problem may be readily avoided in an actual rotor design.

3. The limit-cycle-amplitude-response curves in lag are steep and the

limit-cycle amplitudes are large. This means that the nonlinearities

in the system are weak and they cannot stabilize (in a practical

sense) the response once the linear-stability boundary is exceeded.

4. Combinations of flap and lag frequencies, corresponding to the

region of unstable limit cycles in the stability boundaries (Figs. 3

and 4), should be avoided in the design of hingeless helicopter

blades, because for this case a blade stable from a linear point of

view can become unstable, if it encounters a disturbance which is

large enough.
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5. The structural damping in lag tends to reduce the limit-cycle

amplitudes in lag and it also reduces the slope Ox~/36) of the

limit-cycle-amplitude-response curves in lag (see Figs. 14 and

15).

6. In the neighborhood of the critical condition (9 > 8 ), the
c

value of Kon» defined in Eq. G.71, determines the behavior ofJR

the blade motion in the large amplitude range because the sign

of 8JA \/ty. is the same as for K when JA | is sufficiently

large. Therefore, a large positive K represents a strongly
oR

destabilizing nonlinear effect. It is undesirable to have a

blade with a positive K because in this case instability can
3R

always be excited, if the disturbance is sufficiently large.

In violent maneuvers or in strong gusts, such large distur-

bances may occur in practice. The value of K is independent
jR

of the advance ratio and is a complicated function of u> , ̂P1O»

•W V etc-
7. in hovering, for 6 > 6 and K < 0, the limit-cycle amplitude

C 3R
for lag motion is approximately given by

2

while the limit-cycle amplitude in flap is given by

h**]*I KZR J

8. Figure 10 shows that the effect of using the approximate

centrally-hinged, spring-restrained rigid blade mode of

the elastic hingeless blade is to significantly shift the

region of flap-lag instability to lower values of blade

frequency. This indicates that the use of the exact ro-

tating mode shape could be of importance in the calcula-

tion of flap-lag stability boundaries.

9. The flutter frequency of flap-lag oscillations is very close

to the lag frequency w . Therefore, for practical purposes,
LI

the lag frequency can be taken as equivalent to the flutter

frequency.
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Conclusions for the Forward-Flight Cases

10. When the rotating lag frequency of the blade is

not in the vicinity of the 1/2 or 1, the time de-

pendent coefficients (or forward flight, li) in the

equations of motion has only a forcing function type

of effect. Thus, the time dependent coefficients

will not have any influence on the stability of the

system for this case and for the range of advance

ratios considered in this study (0 < y < .3).

11. Below the critical condition (6 < 6 ) for all cases,
c

the flap amplitude \ , in forward flight, is larger

than the lag amplitude X-,- At approximately 0.16
^ C

below critical the lag amplitude starts to grow, and

for 6 > 6 , the lag amplitudes are much larger than

the flap amplitudes. In order to eliminate large oscil-

lations in lag, it is reasonable to design the blades in

such a manner that no angle of collective pitch inside

the flight envelope should ever exceed 0.70 .c

12. Due to the large amplitudes of vibrations in lag which can

occur in both hover and forward flight, the fatigue life

of the blade for inplane vibration could possibly be an im-

portant criterion for hingeless blade design.

1/2
13. For the general forward flight case, Case B (p = e , \i =1,o

to 7* 1/2 + ev or to ? 1 + ev) , the blade response and stability
c c •

2 2
in the neighborhood of 6 is determined by M K._ + K.̂ IO - 6 )

c o 6R 2R c

(A - X )/M ] and <_„. When the first of these quantities is
o oc 3R

positive and K < 0, stable limit-cycle oscillations occur.
•SR

The flutter mode in this case has the functional form of
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14. Case C (y = e, y, = 1, y = 0, u = 1/2 + ev) . In this case,
1 o c

the parametric excitation is predominant. Up to the first

order, the amplitude of the lag motion, near the critical con-

dition, can be approximated by

Rial FAo £± )]
J

•u
Near the origin (A =0), the stability is determined by Re(s )

(s is given by Eq. 5.79a on page 46). For Re(s ) > 0, the

system is unstable and for Re(s..) < 0, the system is stable pro

vided K_._ < 0.
JK,

1/2
15. Case D (y = e , y = 1, y, = 0,co = 1 + ev) . The parametrico 1 c

excitation has an effect but forcing is predominant because the

system is excited very close to its resonant frequency. Up to •

the first order terms , the lag motion can be approximated by

The stability near the origin (A =0) depends upon the sign of
o

Re(s ). Where s is given by Eq. 5.104, the system is stable for

Re(s ) < 0 and is unstable when Re(s ) > 0. For y > 0.25, this

case is usually characterized by large amplitudes of blade re-

sponse. Therefore, the lag frequency range of 0.88 < u < 1.12

should be avoided in the design of hingeless helicopter blades.

16. The important nonlinear terms in Eqs. 3.23 and, 3.24 have been

identified. The strong destabilizing term in Eq. 3.23 is
13*2

C (i/R) QF x . When neglecting this term, the regions of un-

stable limit cycles in Figs. 3, 4, and 8 vanish completely.
18*2

The term - C (£/R)L X-, i-n Ecl- 3.24 is stabilizing. When neglecting

this term the regions of unstable limit cycle grow and cover

approximately 60% of the stability boundary. Thus, it is danger-

ous to neglect nonlinear terms when investigating the nonlinear

blade stability problem.
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17. por an forward-flight cases, the stability and the amplitudes

of blade response are considerably affected by the requirement

of trimmed flight at fixed C . Flutter and blade response cal-

culations, which neglect this effect when evaluating the effect

of forward flight, have a doubtful validity.

12.2 Conclusions for Coupled Flap-Lag-Pitch Motion

1. From the numerical calculations performed it was

found that the results associated with the

stability of the coupled flap-lag-pitch system

are quite sensitive to the numerical values of the

coefficients in the feathering equation. The

various quantities F* U; j B^ îî o * ̂ "Vin ' etc'

are dependent on the assumed mode shape, consequently

the use of the exact mode shape of the blade (corresponding

to the actual load distribution) may be important for certain

flight conditions. Similarly the use of the exact, span-

wise varying, inflow could also effect the results. These

effects, can also combine to modify the static equilibrium

position of the blade, thus affecting both the divergence

and flutter boundaries. Use of an additional elastic mode

in the flap degree of freedom could also be important.

Therefore, the results and conclusions, presented below,

should be considered as subject to certain limitations due

to the fact that the various effects mentioned above have

not been included in the analysis.
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2. From the approximate static stability boundaries given, it is

clear that the aerodynamic center-blade elastic axis (e.g.

in reality) offset is a destabilizing effect. Similarly the

effect of preconing (3 ) and blade feathering axis orienta-

tion with respect to the hub plane ( 3) are also destabilizing.

The strongest destabilizing effect seems to be the preconing.

3. The lag degree of freedom has an important effect on static

stability because the deflections in lag generate an effec-

tive moment arm through which the lift produces a stabiliz-

ing feathering moment. Thug, a soft inplane hingeless

blade has much better divergence characteristics than a blade

which is stiff in the chordwise direction.

4. Conceptually, the approximate linear divergence boundary is

not the correct divergence boundary of the system. For the

small number of cases considered, the approximate divergence

boundary seems to be nonconservative.

5. The addition of the torsional degree of freedom has a

stabilizing effect on the lower branch of the flap-lag

stability boundaries (Figs. 3,4, and 8), while it is

destabilizing for the upper branch. Thus, the upper

branch of tiie flap-lag stability boundary should be

avoided in the actual design of rotor blades.

6. The addition of the lag degree of freedom with w > 1.2
LI

is destabilizing for the coupled flap-pitch motion.
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8. With rotating lag frequencies of u < 1.1, the coupled

flap-lag-pitch motion is quite stable. Thus, the soft

inplane rotor with a rotating lag frequency in the

vicinity of Wj, = 0.75 (midway between .5 and 1.0) seems to be

the best from both the divergence and flutter point of view.

This apparent advantage of the soft inplane hingeless blade

should be considered within the limitation of the analysis per-

formed in the present study. The various other instabilities

typical of this configuration were not considered (see

page 159).

9. Due to the strong effect of the initial deflections

g°, h°, $ on both the static and dynamic stability

boundaries of the blade, flutter-divergence interactions

could easily occur.

10. When including the third order inertia terms in the feather-

ing equation it has been found that it is also necessary

to include a considerable dumber of third order terms, as-

sociated with the aerodynamic loads (because they are of the

same order of magnitude). This is required in order to rep-

resent correctly the behaviour of the blade. It should be

pointed out, that this conclusion may be modified by the

considerations given in the first conclusion of this section.

11. Based upon this work, a parametric investigation aimed

at determining the optimum configuration for a hingeless

blade seems feasible.
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TABLE 1

Numerical Values of F\ L* Coefficients Defined in Appendix C

Flap
Coefficient

F1

F2

F3

4
F
5
F
6
F
7
F'
Q

F

F9

F10

11
F
12
F
13
F J

14
F
15
F
16
F *
17
F1'
18
F

F19

F2°

Numerical Value
(Nondimensional)

0.2253962

0.2888881

0.3999991

0.0

0.0

0.3716033

0.4999981

0.2059954

0.2567891

0.2059954

0.2567891

0.0

0.1901494

0.3333313

0.1901494

1.0000000

0.5000000

0.3333333

0.4222209

0.7428541

Lag
Coefficient

L1

L2

L3

4
L
5
L
6
L
7
L
8
L

L9

L10

11
I.
12
L
13
L
14
L
15
F
16
F
17
F
18
F

F19

Numerical Value
(Nondimensional)

0.2888881

0.3999991

0.0

0.2253962

0.0

0.0

0.2059954

0.2567891

0.0

0.3716033

0.4999981

0.0

0.2567891

0.2059954

0.0

0.3333315

0.3333313

. 0.1901494

0.1901494

Values for the Pertinent Generalized

~ = .8148114

= .8148114

= .8148102

1;L1 = .8148102

111

Mass Quantities Defined in App. B

~ = .7703672

= .7703672

C = 1.199996
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NUMERICAL VALUES OF

TABLE 2

COEFFICIENTS DEFINED IN APPENDIX M

Coefficient

B1

B2

B3

B4

B5

B6

B~?

B9

B10

B11

i"12

B13

B14

B15

B16

i"17

Numerical Value

. 8666655

.9037014

.7703676

.7703676

.8666654

.9037012

.7703671

.7703676

.9037012

.8666654

.8666642

.8666642

1.1999960

1.5000000

.9037001

.9037001

.8148102

.8148102

.333333

.500000

.250000
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DEFORMED BLADE

UNDEFORMED BLADE

FIG. 1 GEOMETRY OF UNDEFORMED BLADE AND DEFORMED BLADE
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DIRECTION OF FLIGHT

INDUCED DRAG

TOP VIEW
OF BLADE

HUB PLANE

-y PLANE]

FIG. 2 VELOCITIES IN PLANE OF THE BLADE AND GEOMETRY FOR EVALUATION OF L
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0)
LI

1.6

Denotes Region of Unstable
Limit Cycles

Denotes Region of Stable
Limit Cycles

1.5

1.4

1.3

1.2

1.1

1.0

'SFl 'SLl

Inflow Calculated from
Eq. 5.5

0.9

0.8 1.1 1.2
.1 fc. (i).

1.3 1.4 1.5
Fl

FIG. 3 STABILITY BOUNDARIES FOR VARIOUS VALUES OF 0 Y = 5c
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4 "LI

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8 i I

Denotes Region of
Unstable Limit Cycles

Denotes region of
Stable Limit Cycles

- n
SLl

- 21T

• 0.05

Inflow Calculated from Eq. 5.5

1 i

1.2 1.3 1.4 1.51.0 1.1
FIG. 4 STABILITY BOUNDARIES FOR VARIOUS VALUES OF 0 Y
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Note; Xj» X2
 are flaP and Ia9 deflections, about the equilibrium

position, at blade tip nondimensionalized with respect to the

blade length

.50-1

.40-

* 209

1.325

150 200

FIG. 7 UNSTABLE LIMIT CYCLE OBTAINED BY NUMERICAL INTEGRATION

FOR POINT FIG. 4
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LI

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

Denotes Region of
Unstable Limit Cycles

Denotes region of
Stable Limit Cycles

= 10

= 0.01

= 2TT

= 0.05

n'SFI 'SLl

Inflow Calculated from Eq. 7.3

1.1 1.2 1.3 1.4 1.5 Fl

FIG. 8 STABILITY BOUNDARIES FOR VARIOUS VALUE OF 9 WITH
INFLOW RELATION CALCULATED FROM EQ. 7.3 ,°
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LI

1.5

1.4

1.3

1.2

1.1

1.0
Remark:

Inflow calculated from
Eq. 7.5

Region of unstable limit
cycles is not shown

to,
Fl

1.0 1.1 1.2 1.3 1.4

FIG. 9 TYPICAL STABILITY BOUNDARY WITH INFLOW RELATION
CALCULATED FROM EQ. 7.5
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U)
LI

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

Stability boundary
taken from Ref. 3

Stability boundary
for elastic blade,
using inflow given
by Eq. 7.3

Y

C
c

a

0

H,

- 5
= 0.01

= 21T

= 0.05

SF1

-L.

1.1 1.2 1.3 1.4

FIG. 10 COMPARISON OF A TYPICAL STABILITY BOUNDARY FOR CENTRALLY
HINGED SPRING RESTRAINED BLADE MODEL WITH THAT FOR
HINGELESS ELASTIC MODEL
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PIG. 16 TOPICAL TRIM CURVES FOR Cm - 0.005
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.15
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FIG. 17 TYPICAL TRIM CURVES FOR C,

190



Note; X,• X3
 are flap and lag deflections, about the

equilibrium position, at the blade tip nondimen-

sionalized with respect to the blade length

- 1.139939; 8 = 0.315614
c c

, O = 0.05, C = 0.01, a » 2TT

0.1628 .0.1623 0.2014 0.2936

FIG. 18 AMPLITUDE RESPONSE IN FORWARD FLIGHT
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0.5 '

0.4

0.3

0.2

0.1 '

Note: X ' X-> are flaP aild lag deflections, about the
—•"̂ "̂• 1 2 *

equilibrium position, at blade tip nondimension-

alized with respect to the blade length.

CASE B, = 1.175, U)L1() = 1.33319, 0.01

= H = 0.005, 6 = 0.357523, to = 1.3264
SLX c c'SFl 'SL1

numerical integration

perturbation

C _ = 0.012, f ° = 0.05, C = 0.01, a = 2ir

-4- -»
e (trim)

0.267 0.255 0.266 0.296

FIG. 19 AMPLITUDE RESPONSE CURVES IN FORWARD FLIGHT, COMPARISON

OF RESULTS FROM PERTURBATION AND NUMERICAL INTEGRATION

AT SUBCRITICAL CONDITIONS.
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0.4

0.3

0.2

0.1

Note; X-i » X2
 are flaP and ia<3 deflections, about

the equilibrium position, at blade tip non-

dimensionalized.with respect to the blade

length.

C = 0.0078

All other data the same as for Fig. 19

0.1 0.2 0.3

-t- 0 (ifCm)
0.210 0.2037 0.237

FIG. 22 EFFECT OF C ON AMPLITUDE RESPONSE IN FORWARD FLIGHT
T
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0.3

0.2

0.1

Note: x » X are flaP and Ia9 deflections, about the equilibrium

position, at blade tip nondimensionalized with respect to

the blade length.

CASE B, uL, = 1.175, Ur1 = 1.33319, u) = 1.3264Fl 1*1 C

v, X2 nspi = nSL1 = o, 6c = 0.20

C = 0.0078

C = 0.12, C, = 0.1, a = 2TT
Dp d

Y = 10, O = 0.05

0.1 0.2 0.3

0.243 0.236 0.210 0.2037 0.237

6 (trim)

FIG. 23 AMPLITUDE RESPONSE CURVES IN FORWARD FLIGHT, POSTCRITICAL

REGION (FROM PERTURBATION METHOD)
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CASE B

0.40

0.30

0.20

0.10

= 1.33319

1.3264

= 0.012; C, = 0.01; O = 0.05; Y = 10;

A

| « I—

0.243 0.236 0.21

-J- •4-

0.204 0.237

9 (trim)

FIG. 24 EFFECT OF FORWARD FLIGHT, WITH TRIM AT FIXED CT, ON

THE QUANTITY K + U <&R
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4.0

3.0

2.0

1.0

CASE B

All data the same as for Fig. 24

H 1 1 1 1
o.i 0.2 0.3

0.243 0.236 0.21 0.204
4-

0.237

6 (trim)

FIG. 25 EFFECT OF FORWARD FLIGHT, WITH TRIM AT FIXED C ,
T

ON p. (CALCULATED FROM EQ. 5.71)
x>. c •
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N.ote; XJL* X2 are flap and lag deflections, about the equilibrium

position, at blade tip nondlinensionalized with respect to the

blade length. .

0.6

0.7 +

0.6

0.5

0.4

0.3

CASE D, u) -1.2, » 1.03861

= 1.04146, 9 = 0.20
c c
CT-. o.ooao, nSLl ' °
Y » 10, O » 0.05, C, = 0.01

d
o

a - 2ir, C = 0.012
Dp

0.1 0.2 0.3

0.248 0.241 0.215 0.205 0.207 0.219

FIG. 26 AMPLITUDE RESPONSE CURVES, IN FORWARD FLIGHT, FOR CASE D,

IN POSTCRITICAL REGION (FROM NUMERICAL INTEGRATION)
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DEFORMED BLADE

RIGID HUB
REAR VIEW

REAL POSITION
OF UNDEFORMED

.BLADE

ASSUMED POSITION
OF UNDEFORMED

BLADE FOR INERTIA
LOAD CALCULATION
[ASSUMPTION (4),
SUBSECTION 8.2]

TOP VIEW

DEFORMED BLADE

UNDEFORMED BLADE

FIG.27a DISPLACEMENT FIELD WITHOUT ROOT TORSION AND WITHOUT
PRECONING (6 =0)
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REAR VIEW

TOP VIEW

FIG. 27b. DISPLACEMENT FIELD WITH PRECONING; t>

WITHOUT ROOT TORSION
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POSITION OF BLADE CROSS SECTION
AFTER THE DEFORMATION

CROSS SECTION LOCATED AT SPANWISE
STATION x = x 4- e

o 1 ,

POSITION OF
BLADE CROSS SECTION BEFORE DEFORMATION

FIG. 28 BLADE MODEL AND POSITIONS OF THE CROSS SECTION
BEFORE AND AFTER THE DEFORMATION
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/. -M'
j» J parallel both in the x,y plane)

(b)

FIG. 29 GEOMETRY OP COORDINATE SYSTEMS
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FIG. 30 BLADE GEOMETRY FOR AIR-LOAD CALCULATION
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10

8 -

4 -

2 ~

-.00

Elastic axis, blade e.g. coincident

Y = 8 O = 0.08 b = 0.0313

9 = .15 C , /a = 0.00159
d
o

3 = 3 = 0 i = .0013
p

No elastic coupling

.04

(0. =5

.20

FIG. 31 EFFECT OF AERODYNAMIC CENTER ELASTIC AXIS OFFSET AND
LAGWISE BLADE STIFFNESS ON THE APPROXIMATE DIVERGENCE
BOUNDARIES
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10 -I

-.00

Elastic axis, blade e.g. coincident

wpl = 1.2 o)Ll =1.1 i = .0013

b = 0.0313 O = 0.08 Y = 8

C /a = 0.00159 3=3 =0
o P

No elastic coupling

FIG. 32 EFFECT OF AERODYNAMIC CENTER ELASTIC AXIS OFFSET AND
COLLECTIVE PITCH ON THE APPROXIMATE DIVERGENCE
BOUNDARIES
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10

4-1

Elastic Axis Blade e.g. Coincident

x" = 3 = 0 C /a = 0.00159
A d

o

Y = 8 a = 0.03 b = 0.0313

"LI

No Elastic Coupling

I = .0013

FIG. 33 EFFECT OF PRECONING B AND PITCH SETTING 6 ON THE
P

APPROXIMATE DIVERGENCE BOUNDARIES
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10

8 -

6 -

4 -

2 -

Elastic Axis Blade e.g. Coincident

x = 3 = 0 C, /a = .00159
A p d

Y = 8, O = 0.08, b = 0.0313

"F1 =1.2 WLI =1.1 i = .0013

No elastic coupling

-.00

T

.04 .03 .12 .16 .20

FIG. 34 EFFECT OF FEATHERING AXIS ORIENTATION WITH RESPECT TO
HUB PLANE 3 AND PITCH SETTING 0 ON THE APPROXIMATE
DIVERGENCE BOUNDARIES
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APPENDIX A

ORTHOGONALITY CONDITIONS

The orthogonality condition for a rotating beam vibrating out of the

plane of rotation can be obtained following Bisplinghoff (Ref . 12)

j ' (A.I)
**W

when i ^ k and

rj~ / ,V"V liJ "**"•/„ " ' Y«-7 l Jx0
(A.2)

,. * /' ^L .- a*
-. COc

when i = k.

For a beam vibrating in its plane of rotation, the orthogonality con-

ditions are (Ref. 23)

s /'
i \ KlY T otto =0

J0 ffmHn,

(A. 3)

when m ^ n and

when m = n = i (A.4)

These relations also determine u> and 0) .
F X Lx
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APPENDIX B

COEFFICIENTS ASSOCIATED WITH GENERALIZED MASSES AND DAMPING

IL-L-
* Jo

C, = *

tr! (1-

The nondimensionalized viscous-type structural damping coefficients are

( rnXo
Jo

Jl f m,Xo ofx.

where n . and n . represent the fraction of critical damping associated with
SFi SLi c

the ith mode in flap or lag.
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EXPRESSIONS ASSOCIATED WITH AEm C IN FLAP ISbG 

Note that all integrals are perf between khe Bower limit W and 
- 

the upper limit B, A and B represat the tip loss facitors- 



*° J I^

f"--

ii C

•/

The quantities A^, . , A are defined by the following relations
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APPENDIX D

INFLOW RELATIONS

D.I Inflow Relation in Hovering Flight

Extended blade element theory (Ref . 19) gives the following relation

for the induced velocity

dlt 4t> i\J W J (D.I)

Thus, constant induced velocity over the whole rotor area is compatible,

with a twist variation inversely proportional to x. In the present report only

constant values of collective pitch will be considered. Therefore, an ex-

pression for the constant inflow will be derived in such a manner that it repre-

sents a weighted integral of the varying inflow, resulting in the correct value

for the thrust coefficient.

From blade element theory with constant induced velocity

T"Z (3 I / (D.2)

Also, from blade element theory

O I

/ (D.3)

From Eqs. D.I and D.3

J f c
f l3~~Jo ~i& (D.4)

Evaluating the integral in Eq. D.4 yields:
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(D.5)

From Eqs. D.2 and D.5

(D.6)

(D.7)

where

The advantage of relation D.6 when compared to (D.7)

^9 = *£ [\l j+ M & - I I
fa IV 1f(r J

is due to the fact that, for a given C , Eq. D.6 agrees to within

*v 4% with X = / C/2, while Eq. D.7 gives a discrepancy of "\> 20%.

D.2 Inflow Relation in Forward Flight

In forward flight, the constant part of the inflow can be obtained from

the well-known relation given in Ref. 19

(D.8)

For a given value of C and y, X can be obtained from Eq. D.8 by

solving a quartic equation. This has been done by using a simple iterative

process on a digital computer.

In practice it has been found that it is possible to replace Eq. D.8

by a simpler relation which provides a reasonable approximation for X in the

range of advance ratios (0 < y < 0.3) and thrust coefficients (0.005 < C < 0.015,

for flutter) considered.

For low values of y, y % 0, X = X = /C/2. For the value of y ̂  0.3,

it has been shown in Ref. 24 that

224



Therefore, an approximate relation which would be good at the endpoints can

be written as

i/~ i Cr

Using this expression, A can be approximated by

(D.10)

Expression D.10 can be considered to be an approximate solution to the

quartic (D.8) . The maximum error due to the approximation occurs at M = 0.05

and is 7%, at ]i = 0.1 the error is 2.5%, at y =0.15 the error is less than

0.8% and afterward (D.10) is equal to (D.8) up to 3 significant digits.

Therefore, Eq. 8.10 was used instead of solving Eq. D.8 by iteration

for every case considered.

Note that A in Eq. D.9 is calculated from A = /Cf/2 .

225



APPENDIX E

THRUST COEFFICIENT FOR A HINGELESS BLADE IN FORWARD FLIGHT

In this appendix, the thrust coefficient of a hingeless rotor will be

derived. All quantities are referred to the hub plane. According to

Bramwell (Ref. 20), the motion of the blade as represented by one elastic

mode is sufficient for the derivation of the thrust coefficient. The contri-

butions due to lagging velocity in U and U will be neglected.

With these assumptions and Eqs. 3.7, 3.8, 3.14, and 3.15, the velocity

components U and U can be written as

(E.I)

Ur= "1,*. [ M-i*"Y~T n I (E.2)

From Eq. 3.12

fit!
rib

MT ~o "A 2.TT >"> ̂ A Urj (E.3)

Assuming a cyclic pitch variation given by

(E.4)

the corresponding flapping motion can be represented by

f* t

(E.5)

The substitution of relations E.I, E.2, E.4, E.5 into E.3 yields,

after a considerable amount of algebraic manipulation,
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2. I /? / / 3
+ u
/

(E.6)

— i, — 'x,
For A = 0, B = 1.0, by integration by parts

A
3 f^j

From its definition F ^-0.5, therefore, the last term of Eq. E.6 is

negligible, and the thrust coefficient is given by

Q^ I
J (E.7)

where the quantities F , F , F are defined in Appendix C.

Equation E.7 agrees with the corresponding equation given in Ref. 20.
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APPENDIX F

APPROXIMATE TRIM EQUATIONS FOR A HINGELESS ROTOR

F.1 Assumptions and Basic Equations

In this appendix, an approximate method for calculating the value of

collective pitch 6 and the appropriate values of a , 6 , 0 for a given
O R J.C Is

flight condition will be described. The flight condition is determined from

the values of C and \l which are assumed to be known.

The method of calculation is based upon the following assumptions:

(1) The helicopter is in steady level flight.

(2) Pitching and rolling moments on the rotor are

equal to zero.

(3) The rotor hub and the helicopter center of gravity

coincide, i.e., the whole aircraft is represented

by a point mass coinciding with the hub.

(4) The cyclic pitch variation is assumed to be given

by Eq. E.4 and the corresponding flapping motion

is given by Eq. E.5.

(5) The angle a is small. Then sin a = a , cos a = 1.
R R R R

The geometry of the problem is given in Fig. F.I.

The equations of equilibrium, tangential and normal to the flight path,

can be written as

m,r ~ mT<J en- nr (F.

From assumption (2) , the moment equilibrium in pitch and roll yields

Mmr=<? (F.3)

Mtr-0 (F.4)
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VERTICAL

FIG. F.I GEOMETRY FOR TRIM CALCULATION
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These four equations are sufficient to determine the four unknowns

9 , a , 9, , and 9, .o R Ic Is
» •

From assumption (1) , Y = Y = ° V = 0, and Eqs. F.I and F.2 reduce to

° (F.5)

From Fig. F.I

• / ~ -r , (F'8)L = T cos oi.fi,

The drag of the helicopter can be represented by using the equivalent

flat-plate area

With these relations and assumption (5), Eq. F.5 can be rewritten in coef

ficient form

. Cr

In order to solve the problem, the quantities C , M , M- must beH mr x>.r
evaluated.

F . 2 The Pitching and Rolling Moments

Neglecting the Coriolis forces, Eqs. 3.1 and 3.3 yield
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By integration, the moment at the blade root due to aerodynamic, centrifugal

ca

e
/i _ n^~ 2l i*/ _- .!)£... / »^ J %x

(F.12)

and inertia forces can be written as (for S, = R, x = x, and e =0)
• o 1

Using one elastic mode given by Eq. 3.7, Eqs. F.ll and F.12 yield

(F.13)

From the free vibration problem equation (A.2)

(F.14)

From Eqs. F.13, F.14, and D.15

^ (p.15)

According to Fig. F.2 below, the pitching and rolling moments are ob-

tained from M by a simple vector decomposition.
R

M,

keade

FIG. F.2 BLADE ROOT MOMENT DECOMPOSITION
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Mf-ill- (F.16)

For trim purposes, the average values of these quantities, per revo-

lution, are required.

f iT_1 I MH(O.̂  ) Co^ty d^
2J Jo (F.17)

/2j \
* J. ( M*(0,+)SLn

2/T Jo

From.Eqs. F.17 and F.15

(F.18)

2-

Equation F.18 represents pitching and rolling moments due to one blade,

for rv blades

mr m* (F.19)

Thus, Eqs. F.3 and F.4 are equivalent to the requirement that

F.3 Flapping Coefficients

The so-called "flapping coefficients" are obtained from the steady-state

solution of the flap equation when the Coriolis forces, damping and displace-

ments or velocities, due to lag motion, are neglected. In the analogy to

previous derivations, only one elastic mode is used. From Eq. 3.18

232



— **

With X = 0, from Eq. C.3

- /?•- ̂  G

* T
(F.22)

Substituting Eqs. E.14 and E.15 into Eqs. F.21 and F.22, together with the

requirement that the coefficients of the constant term, cos 4>-term and

sin î term should be equal to zero, yields the following equations:

(F.23)

From the cos y-term:

(F-24)
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From the sin i/̂ -

4 -A

(F.25)

Using Eq. F.20, taking (i/R) = 1, A = 0, if = 1, m = const., Eqs. F.23

through F. 25 can be rewritten so as to be similar to the equations given in

Bramwell (Ref. 20)

(F.26)

(F.27)

where

{r.29)

and

F6= Jl_ IF9

2 2.
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From Eqs. F.26 through F. 28

~0

(F.30)

F.4 The Horizontal-Force Coefficient

The horizontal force per unit span is given by the following relation

where $ = arc tan (U /U ) = U /U .

Using Eqs. 3.12, 3.13 and 3.7, the average horizontal force per revolu-

tion can be written as
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8 /i*

- a.

The substitution of Eqs. E.ll, E.12, E.14, E.15 and F.20 yields, after a

considerable amount of algebraic manipulation:

CH- d.

18 19where F and F are defined in Appendix C.

For consistency with the previous section, let

; A*O ' a-/
RI ? '

and introducing the usual correction for radial flow effects, Eq. F.35 can be

rewritten as

<[«:[e0

(F.36)

19 20
where F , F are given in Appendix C.
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F.5 Trim Calculation

From Eqs. F.10 and F.36

(F.37)

In Eq. F.37, 0 is given by Eq. F.30. C is given by Eq. E.17 and
XS <i

Xo is given by Eq. D.lO.

This system of equations is solved by an iterative process on a digital

computer. First 0, a are obtained and from their value 6 , 0 , and X are

also evaluated.
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APPENDIX G

DEFINITION OF THE VARIOUS EXPRESSIONS, EQUATIONS, AND QUANTITIES
USED IN THE PERTURBATION METHOD

Note that almost all of the expressions given in this section have been checked
using the FORMAC algebraic manipulative program.

1/2
Equation of 0{e ' ):

Lj (0.0, l>0) - LVO FO(̂ OÎ C]

I (G.I)
/
L-7 (<K.O.

£. §

Equations of 0(£):

/ /• ;L ^ I ait b.

.fc)
(G.2)

,< H

Equations of

L, C6 L

1*0

" (G.3)
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The operators L1, L2 are: 



1 N o t e  that starting with Eq. G.10, the t e r m  L (C )/a will be neglected i n  
d 

a11 of the calculations. 0 .  

2 A,, Cr L" a0 cos y 0 



(G. 18) 

where 

2 
a F,O - A'S i jnro fl - X H O ~  A 1 (6.20) rV 2 
- ./,;A kLIO 

(G. 21) 

(G. 22) 

(G. 23) 

(6.24) 



~ c -iajc d 2. -tft'cuc <*3 4- 3,icuc £2(v,) J

;.26)

(G.27)

fa-

ho

Cz Fb -L&C F' C2 +± \ocCiF

(G.28)

(G.29)

, = 2^

= 2

(G.30)

(G.31)

(G.32)

J

(G.33)
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= M-'(Z)
w * *

fit
where p^ through p 4 and p through p are given below:

J.

(G.36)

C

'c6i -£(+,

- 2

19

o ' (G.37)

\F -aeia,cF C
/

+ C CLoi <^cCv -29c^0 i(4jcF C t l ^ \ + ± L0>c dJt \ pWq

-ItotVCtF'-J. v, c,F6 . coc F"cz f
2 •) (

'o

(G.38)

fK
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//

c7

««

(G.45)

"\ ^-

tf

'V - 'J. [*! J ^ L1-1*" "C-AOC i--) t^r~ ( /
(G.46)

., . c.

tH(vr)Cei,(ioc-i')

,«. ^ ec L"

-}<<<•*«*<*)'•><»(*•,)•
where C is given by G>7g Z
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r _ Cz( Z/^0c-
I ~

£
01

(G.49)

(G.50)

(G.51)

(G.52)

Cu-Ct IFo i
R * 2

If

' ^ J. Vr^c C6L

l7

c (G.53)

(G.54)

'£]#c (G-55)

(G.56)

f ~ If L *• If
(G.57)

(G.58)
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(G.59)

(G.60)

(G.61)

"-C6 L\.c

(G.63)

IT,
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£

<G.65>

(G.66)

(G.67)
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L'7c

L JL 4-
fi

/C| * - f

- - f/'/r ^ ^r» f v* Xwo J / AT,

Z6 ) /

jw*

10

(G.68)

(G.70)

(G.71)

(G.72

(G.73)

(G.75)

(G.76)
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(G. 78) 

(G. 79) 

13 + xiioiwc[-L,L. 8,+ c2cy  F ' ~ ~ - Z ~ C , L * ) ]  (G. 81) 



APPENDIX H

THE SOLUTION OF EQUATIONS 5.101 AND 5.102

For convenience, Eqs. 5.101 and 5.102 can be rewritten as

where

and

5o =

(H.l)

(H.2)

(H.3)

(H.4)

(H.5)

The homogeneous system is given by Eq. H.I with £ = T) =0. The solution
o o

of the homogeneous system denoted by subscript h can be written as

(H.6)
s'

252



where D and D are arbitrary constants and

^ s<- (dt+jS
(H. 7)

(H.8)

and S , S are the roots of the characteristic equation given by
1 2

(H.9)

Therefore

)zfĉ
(H.10)

The particular solution of Eq. 5.103 is given by

(H.ll)

A

A - (d<+/SKn) (d<
The complete solution is given by

*'*'**>

so that from Eqs. H.6, H.13, and 5.100, the solution can be written as
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(H.14)

and

CH.15)
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APPENDIX I

COORDINATE TRANSFORMATIONS AND PROOF OF THE EQUIVALENCE OF ROTATIONS

I.I Coordinate Transformations

In this section, the various coordinate transformations for the various

coordinate systems mentioned in Subsection 8.3.2 will be given, together with

the various approximations involved.

The relations between the i, j, k unit vectors and the in , j,, k, unit*** * * * "*1 n*l. **>1
vectors is shown in Fig. 29a.

A

tosfl ° n 4
**J

(I.I)
The relations between the i , j , k. and the i , j , k coordinate

systems (see Fig. 29b) is given by

cos/a -i-

V J

(1.2)

The last two coordinate transformations are orthonormal. Thus, the
T T

inverse transformations can be obtained by using [R (3)] and [R (6,$)] ,

respectively.

If one assumes that the undeformed blade coincides with the i direc-

tion, the position of the elastic axis in the deformed state can be specified

by two displacements v , w [in the y_ and z directions, respectively, and

for simplicity u = 0]. These displacements for the same loading conditions
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will be related to v , w (see Fig. 27) by
e e

Then for

an

(1.3)

a.*

a coordinate system I , J , K can be defined.

A coordinate system I , J , K can be attached to the cross section

of the of the deformed blade at the elastic axis such that I is tangential

to the deformed elastic axis, g coincides with the chord and K, is normal

to both I and J .
— .1 -v 1

For

(1.4)

Also, for 3 small: 8/3x = 3/9x̂  = 3/3x .
^ O

In the inverse transformation, it will be assumed that
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Then the inverse transform is again given by using

Finally, the pertinent relations for the transformation between the

i, j, k, I_, J . K . and I , J.., K_ systems defined in Subsection 8.3.2 are
•*• -C "* ~2 ""2 •* 2 -v 3 ~3 -̂ 3
given below

f \

_.

^ i

fr
=

1 w IT
1 0

jlr ° A_

-

^ ^I

i
^^J-V

(1.5)

Is"

Js

K,
X ^,

-

1

0

0
—

0

(1.6)

In the inverse transform of Eq. 1.5, again it will be assumed that

<yĵ rn 4.^4 i * (1.7)

It is important to note that unless this assumption is made on the

various coordinate transformations involving slopes, the nonlinear problem
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becomes almost untreatable.

1.2 Proof of the Equivalence of Rotations

In this subsection, it will be shown that with the assumptions that

0, $ are small and that

1 (1.7)

The final orientation of the blade cross section in space will be independent

of the order in which the deformations occur. It will also be shown that it

is immaterial if the rotations 6 and $ of the cross section take place about

the feathering axis (i, axis), i axis or the !„ axis.~1 -v ,̂2

First, let us assume the following hypothetical displacement patterns:

(1) The undeformed point on the elastic axis is located

in the i, , j,, k system.
^ 1 -«1 n/1

(2) The v , w deformations occur in the i , j , k system.
&£. &Z ,̂2 /V2 /v

(3) The final orientation of the blade cross section in space

is given by I , J , K unit vectors.
,,/1 *vl *vl

Measuring the final orientation of the I,, J,, K, system by the
A»l ~1 «»1

i, j, k vectors, the following relation can be written:

(1.8)

The transformation matrix [R ] , obtained by going through the various coordi-

nate transformations and using Eqs. I.I, 1.2, 1.4, and 1.3, is given by

Eq . 1.9 on page

In the second stage, the following pattern of transformations is

assumed:
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(1) A point on the elastic axis is assumed to have the

displacements v, w (Eqs. 8.4 and 8.5). The new

orientation of the blade is given by the I_, J_,
r, f- ~2

K system.
+* £

(2) The cross section is rotated by an angle of (0 + $)

about the I_ axis. The final orientation of the cross
/N/2

section in space is given by the I , J , K system.

Then the following relations can be written

I,

.[«.] (1.9)

Performing the coordinate transformation, it is found that [R ] is

given by Eq. I.10, page

Comparing the two matrices [R.] and [R ], it can be seen that all of

the elements agree, except R (1,1), R (2,3), and R (3^3) when compared with

the same terms of R . The discrepancies between the two matrices always

involve only second-order terms which according to Eq. 1.7 are negligible

compared to 1.

By varying the displacement pattern similar results are obtained.

This is not surprising since these are all the result of the assumptions

3 small and Eq. 1.7, which is equivalent to taking

Cos = cos

It should be noted that this approximation is related only to calculating

the orientation in space of the deformed blade. This is required for the evalu-

ation of the aerodynamic loading terms. It has not been used in calculating the

inertia loads which therefore are consistently accurate up to 0(e ).
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COl@LETE EXPRJ2SS IONS FOR Tk!E ACCELERATIONS 

T e r m s  m a r k e d  by /' are negligible a c c o r d i n g  to the c o n s i d e r a t i o n s  

of S u b s e c t i o n  8.4.1. 

+ 'BJ b2 + a~ ( s i W  B +picas 
axo ax, 



In this report, whenever a^ is used its meaning will be Eq. J.I without

the terms marked by .r .

$ coi & ) $ -

-ax.
1 /
9t \

(J.2)

(J-3)
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APPENDIX K

DERIVATION OF THE MOMENT LOADS PER UNIT SPAN ABOUT THE FEATHERING AXIS

K.I Derivation of q

In order to derive the quantity q.,f the quantities q and q are re
1. .1. X Z

quired. From the geometry of Fig. 28

where moments in the nose-up direction, for the cross section are considered

positive.

From Eqs. 8.11, 8.12, 8.20, and 8.23

/ |( V

i'n29 -a*

/ 251 $ {
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(" - fr*cosfrsV«& - z&lsjX&tosO- - & ( si-w2

^*0

— Xfcs
/ » /

/

•• f ' i f / *' '* «< " \^vi (co^&- ̂ si^^j — /mx J ($cos*9 -$$si^6-cos& )

6 (cos** - § CQ^SÎ ^) 1 \ (K.2)

The terms in Eq. K.2, marked by arrows, are of 0(e ), according to

considerations (1) through (6) Subsection 8.4.1, and therefore are negligible.

Thus

?X *" * °"Xl

f r-« » .
J <* -t-JI Si1L

(K.3)
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Due to the model selected to represent the blade cross section, terms

due to the polar moment of inertia of the cross section itself are missing.

The missing terms are :

(a) The regular angular inertia term given by

* " * * v

0" +$ (K.4)

(b) The missing part of the propeller moment effect, derived

separately in Section K.3 of this appendix, given by

~rr\k*Sl fs

From Eqs . K.3 through K . 5

Q = jvja _ T

+ § cos £ ) - W cos 6- +• 2 17 ( Jin 9" * $ c os^- )J

^ x f Hr -

- Z —

(K.6)

Next, q will be derived. From the geometry of Figs. 27 and 28

(K.7)
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where a positive q is one which gives compression in the nose fiber of the 
z 

blade, From Eqs. K-7 and 8-18 

-a a+ 4 
?. = ~ X , Q  [V ( c o ~ e  -$ye) 

- (x. + c , )  (cost3 - i s i v  B )  



-/

[-

the are or

(K.8)

are there-

fore negligible. Thus
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- 2̂ _ cos-*) 4- I* (̂  ŝ frcorf- - g. coŝ ) J
9Xa9^ / \*^D - ^x- --1

+ fL

V (K.9)

In order to evaluate q.,» 3q is required. In this analysis, 3 is a
IX Z

small quantity, again of 0(e ) and when evaluating 3q / using Eq. K.9, many

terms can be neglected. The result can be written as

~ 2

/
fi
/

(K.10)
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The expression for q can be obtained from Eqs. K.6, K.10, and 8.35.

K.2 Derivation of M
il

From Eqs. 8.17 and 8.18

* ̂-2/3V-J

(K.ll)
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From Eqs. K.ll, 8.23, and 8.24

Ap - tnf tYwir -t-X^**

*€

V-

,̂  fiv

From Eqs. 8.20 and 8.21, neglecting u& O(ED>

(K.12)
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From Eqs. 8.33, K.12, and K.13 

(K. 13) 



In Eqs. K. 11 through K.14, all of the terms marked by arrows are

negligible 0(e ) quantities.

K.3 Derivation of the Propeller Moment

FIG. K.I GEOMETRy FOR PROPELLER MOMENT EVALUATION

The geometry of the problem is shown in Fig. K.I; n is the chordwise

coordinate (see Fig. 28).

Assume that the mass of the blade is compressed in a plate-like struc-

ture with p(x,y) denoting the mass per unit area.

From the geometry, the centrifual force acting on an element of mass
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is given by

Its component in the y-direction is

The propeller moment per unit length of the blade is given by

t-e

Using 7T) -»-

t.c

and cos

PROP

(K.16)
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Comparing Eqs. K.16 with the appropriate term in Eq. K.3, it can be

seen that the last term of Eq. K.16 is included in Eq.3 while the first

term of Eq. K.16 is missing and must be added to Eq. K.3.
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APPENDIX L

THE ELASTIC COUPLING EFFECT

The elastic coupling effect is due to the angle of pitch setting 6

which causes the bending perpendicular to the hub plane to be coupled with

the bending parallel to the hub plane. In order to be able to represent the

stiffness of the blade by rotating flap and lag frequencies, which is the

usual practice in rotary wing-stability analyses, it is necessary to replace
2 2cos 0 by (1 - sin 0) in Eq. 8.72. The appropriate expressions in Eqs. 8.72

can then be rewritten as

• / \ I . % * ^ "1 . «.

9- (L.I)

(L.2)

It is convenient to define

E = |~ (El) ~ (El) I Si-v»*& (L.3)

and

P = I ( E: I ] "~ (E: 11 u I si *i 0 £°*" , ..cCi L v 'Z ^ '$ J (L.4)

When applying Galerkin's method in order to eliminate the spatial

variable in the flap and lag equations, it is necessary to evaluate the

following expressions

fltiTo

(L.5)

=• _ T J ̂ W?
ci r o*

t (L.6)
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Note that throughout this report it will always be assumed that the first

elastic mode in flap is the same as in lag (i.e., y = r\ ) ; thus Eq. L.6

is satisfied.

In rotary wing work, it is useful to express E , E by rotating or

nonrotating first flap and lag frequencies.

From elementary consideration

° - /T~ * ff_ (L.7)

Using Eqs. L.7 and L.8, together with the relation y = n, , Eqs. L.5

and L.6 can be rewritten as

nFI Sî fr/X,; - s£ J - t

J
. . . - - . tt.lO)
Mu

In order to be consistent with the approach used in this report,

Eqs. L.9 and L.10 must be expressed in terms of the rotating flap and lag

frequencies of the blade. The rotating flap and lag frequencies of the blade

will be calculated using Eqs. A.2 and A.4. The use of these equations implies

that the rotating flap and lag frequencies of the beam are defined as those

which would occur at a pitch setting of 0 = 0.

Equations A.2, A.4, L.7, and L.8 yield
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U* (L.12)

With the assumption that y, = H, and Eq. M.6, Eqs. L.ll and L.12 can

be rewritten as:

(L'14)

Thus, Eqs. L.9, L.10, L.13, and L.14 finally yield

and

Using the approximation sin6 = 6, cos6 = 1, ** elastic couPling effect

can be rewritten as

Finally, it is important to note that the treatment of the elastic

coupling in this appendix implies the use of the so-called Southwell coeffi

cient for rotating beam problems (Ref. 40). As pointed out by Bramwell in

Ref- 20, this treatment can lead to considerable error, depdning upon the

assumed mode shapes in the flap and lag degrees of freedom.
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For the mode shape defined by Eq. 7.1, it can be shown that the present

treatment of the elastic coupling is a good approximation for u) >̂  1.2.
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APPENDIX M

- -DEFINITION OF- THE- ADDITIONAL -GENERALIZED MASS INTEGRALS AND

INTEGRALS ENCOUNTERED IN THE AIRLOAD EVALUATION

In order to evaluate the various integrals required for the applica-

tion of Galerkin's method on the flap and lag equations, various integrals

which represent generalized masses must be considered. These expressions

are defined in Eqs. M.I through M.14 below. For the feathering equation,

Galerkin's method is not used; still, spanwise integrals similar to those

occurring in the flap and lag equations are encountered. These are defined

in Eqs. M.14 through M.18 given below.

i^jT-t'/ rf
Xo

I . I• i 111
D* I '

— (ft ̂ f.̂ xi) V <, (M.3)
Xb oJ * X /

(M.4)

(M.5)

(M.6)

B7 = —
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B' = - (fik 4 I i
/* 1 /•1

j - • ' / ([•»?..»i,)(r;;Vx;
J& J /

B10

B'

B

B

B

B1!

i a

p* 1 <

F / // ^ f x . ^ e j o t x . )
t. , \ -o /

«' r1-* f j x.»>r, *».
t> o

*' r - J-= J- j ^x.^olx.

- frk Jt> 9

a 4

1 fJ
t I

^ ' f 4d"

(M.8)

(M.9)

(M.10)

(M.ll)

(M.12)

(M.13)

(M.14)

(M.15)

B1* - I f
J
t Jb o (M.16)

B
w (M.17)
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-̂f'-̂ -r-Xf;̂ .̂ -:
(

, *,.

(-f«
The integrals due to the integrations of the airloads associated with

the feathering equation are given below:

8

= f (M.20)
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APPENDIX N

QUANTITIES REQUIRED FOR THE CALCULATION OF THE STATIC EQUILIBRIUM

POSITION AND DEFINITION OF THE FLUTTER DERIVATIVES

N.I Quantities Required for the Calculation of the Static

Equilibrium Position

The quantities associated with the calculation of the static equilibrium

condition are defined below.

(N.2)

(N-3)

(N.4)

WM ~ E0 (N.5)

(N.7)

(N.8)
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(N. 12) 

(N. 13) 

(N. 14) 



N.2 Definition of the Flutter Derivatives

In defining the flutter derivatives, it is important to note that some

are due only to elastic or inertia forces, while others can be due to both

aerodynamic and inertia forces. In order to be able to keep track of the

relative importance of the aerodynamic and inertia effects, the flutter

derivatives in which these effects combine, will be split into two parts; the

aerodynamic part will be denoted by the superscript A and the inertia part by

the superscript I.

The various flutter derivatives required for treating the flap equation

are given below.

*,

(N.16)

Fx*z

PTi i
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B h,

Ff

(N.16)

fl r ""

A = ZWF n
OJ>1 \ Pl ''SFI

The various flutter derivatives required for treating the lag equation

are given below.

'u»
(N.17)
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L =

L (N.17)

Lr

Lf

= 2.GO..V, - I *
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Finally, the flutter derivatives associated with the feathering

equation _are-given_below.:

- 2

IE - i - TV

KE - 1(1*5:)-
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(N.19)

T" = B"V(p+/aJ -t-M_.(<rV •»-B_(B*3»')-*-B"q03_-M,.(ha)* (N.20)

T = T1 + T (N.22)
N Y Y

(N.23)

(N.24)

<N-25)



Tfc, (N.28)

(N.29)

(N.30)

T >,
(N.31)

(N.32)

(N.33)

pW)?« 1J

1.34)
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(M. 40) 



APPENDIX O

ALGEBRAIC EXPRESSIONS FOR THE VARIOUS QUANTITIES USED

IN THE NONLINEAR EQUATIONS OF MOTION

B'X.,= "

(0-4)

. A,

(0.5)
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f

•f

Q,

I /"%«*, j - 1 fl 5f Xt T5*>

/

(0.6)
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APPENDIX P

COEFFICIENTS OF THE CHARACTERISTIC EQUATION

The coefficients of the characteristic equation obtained by expanding

Eq. 10.6 are given below. These coefficients were obtained by using the

FORMAC algebraic manipulative system.

- - Tv,L¥ "
(P.I)

- T* L

- T L F ~ L K ' T L F ~ L' ~ L T5?, ? , x , . ,

~ L?

(P.2)

£3 * + p -»- K -

292



r - L ** 4~ F« - T* L«* F*** *— ^ > -5 Tt. «* v

' V

L $, Fv " L ~ L

"« T* -
Y x.

(P.3)

- - LU - L

-L ** T* F F -
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-UFAT^- LVi f \ ~

F T** -V x. u* r** T*

3d T (P.4)

-

-~ i

. 2
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*,F*; '-L r V*,"

- L

*.

, T - L - L« - L., K_ •»- K o3,

(P. 5)

~ L* ' L - a - — .-7*
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_-_—,- rt

• ,

+ F

(P.6)

CP.7)
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APPENDIX R

— ~ EVALUATION"OF"THE"EXACT DIVERGENCE BOUNDARY IN FLAP-PITCH

The exact divergence boundary can be obtained from Eq. 9.22 after

suppressing the lag degree of freedom by taking h = 0.

Then from the first of Eqs. 9.22:

From the last of Eqs. 9.22

~ + 33 ° = ** * 3 ( R - 2 )
>H

Using Eqs. N.15 and R.2, one obtains, after some algebraic manipulation,

a third-order polynomial for 4> . Thus
o

"7 ^I §o + /c3. hi cJ - o
J l *n '

(R-3)

where

~ (R.4)

Equation R. 3 can be easily solved using Subroutine DPRQD available
o

in the IBM Scientific Subroutine Package. Thus, $ ,g are known. The exact

divergence boundary is obtained from Eq. 10.4, and can be written as

(R.5)
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