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Appendix G
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two-dimensional winq theory

Component of aerodyhamic torque loading per
unit length in the~5 direction -
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Average values of Mﬁ, M, per révolution

L

Pitching and rolling moments on the whole rotor
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Resultant torque loading per unit length in the
feathering axis direction (31 direction, Fig. 29)
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coordinate system
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Various coordinate transformation matrices .
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defined in Eq. N. 15
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Flutter derivatives associated with the
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directions, respectively

v Elastic part of the displacement of a point
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axis used in Appendix I '
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. ~

W Elastic part of the displacement of a point
located on the elastic axis of the blade in the
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X,Y,2 - Rotating orthogonal coordinate system (Fig. 1)
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x =x-e.
X1¥0%)
xI
xA
xA = gA/bR
X100 %y
*y
XH
o
X(&,n)
Y. ¥,
s
Ys
o

Running. spanwise coordinate for part of the
blade free to deflection elgstically; X, - same,
dummy variable |
Coordinates of the blade cross-sectional center
6f gravity in its deformed position -

Blade crossﬁsectioqal mass ceﬂte;—of-gravity
offseﬁAfrom the elastic axis, shown iﬁ Fig. 28.
Positive for'c.g. before E.A.

Blade cross-sectional aerodfnamic center offset.
frquelastIc axis, shown in Fig. 28. Positive

for A.C. before E.A.

- Coefficients in perturbation expansion of XH

Coupling term in flap equation

Value of X at 6 = 0
"”.4 N . .c

Function used in phase-plane investigation

of condition for suppressing secdlar terms

Coefficients in the perturbation expansion

of YG

Coupling - term in lag equation

Value of Y_at 6 = 6
G - c
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Y (E,m)

Greek Symbols
al ,0.2 ,'(23 ,0'3

R

B,.8,.8,.8,

1’72’

™M

Function used in phase-plane investigation

- of condition for suppressing the secular terms

Quantities defined in Appendix G

Angle of attack of the whole rotor

Inclination of feathering axis with respect to

the hub plane measured in a vertical plane,
(angle of built-in coning, shown in Fig. 27a

Quantities defined in Appendix G

Angle of preconing, shown in Fig. 27b

‘ R 'bRsa'
Locke number (y = ZDjf—ﬂ
b
mth ianane'benaing mode

Flight path angle with respect to horizontal

Quantity used in phase-plane investigation

of condition for suppressing secular terms

Perturbation parameter

_Perturbation quantity in uniformly valid expansion
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t, n

n.,.MN;,/MN ,n22

117127 21

nl(l)

nl(l)

Nk

sk, "NsL,
1 1

Symbolic quantity having the same order of

madnitude'liké the displacements v and w

':Coérdinates attached to the blade cross sectioq

' oiiéin located at elastic axis, N coincides with®

the blade'chord} C perpendicular to the blade
chord, shown in Fig. 28. .1n also used in the
phase-plane investigation for suppressing the
secular terms. - |

Coefficients in the perturbation expansion of

e

daﬁping;”t

nl at xq =1

Quantity defined in Appendix F
kth flapwise normal bending mode

Structural damping coefficients defined in

Appendix B
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0 4 o Pitch angle measured from x,y plane

Gc - Critical value of collective pitch
61,62 Coeffic?énts in perturbation expansion of 6
"6; ) Cénstant part of collective pitch

elc;"els Cyclic pitch component, multiplied by cos ¥,
sin ¥, respectivgiy |

Kzel» KZAI Constants defined by Egs. G.80 and G.8l

Kl’KZ oo Kld' Quantities used inltyg perturbation method

o defined in Appendix G
AH = fzig— Value of inflow ratio in hover
> . .

Aap Approximate exﬁression defined in Eq. D.9 .

A ) Inflow ratio, induced velocity over disk,
positiye down( nondiménsionalized with
respect to {IR |

Alc = X&c g(x) first cosine compqnent of A

Xic Constant part"of.}‘lc

, Ao‘ Steady state part of A constant over disc

oc Value of Ao at critical condition

Al,kz Coefficients in perturbation expansion of A

H Advance ratio

uo,ul Coefficients used in the perturbation expansion

of the advanced ratio
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v s T Quantity of order one, or less, used to

‘characterize the closeness of w, to %-or 1

v6,V5, .o vo : Coefficients of the'characteristic equation
used in Section 10

& ‘ Coordinate used in -the phase plane investigation
of the condition for suppressing the secular term

go . Defined in Appendix H

"l,ﬂz Quantities used in the derivation of the conditions
for suppressing the: secular term

P - - . . Quantity associated with limit cycle amplitude
.used in the investigation of the condition for
suppressing the secular term

po o | Valse sf p_at wo =0

pz c Value of p for stable limit cycle

pA - Density of airi

px,n) Mass of blade per unit area used in Appendix K

2bRnb
g = — Solidity ratio
¢ Quantity used in phase plane investigation.of

condition for suppressing the secular temm
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i-z'axlz

X1 Xy

wovwl: s wn

Yr10'%L10

Q

Quantities defined in Eq. 5.95 and page

Amplitudes of osciliation about equilibrium

position for flap and lag, respectively

Azimuth angle of blade (¥ = .(t) measured
from straight aft position
Time scales used in multiple time-scale

expansion

Flutter frequency

Flutter frequencies used in the complete
linearized flap-lag~-pitch problem

Natural frequency of the ith flap or lag mode

Nonrotating flap and lag frequencies, .
respectively, nondimensional with respect to
Unperturbed value of first flap and lag

natural frequéncy; respectively

Speed of rotétion
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Special Symbols

—
—

()

()
()=

)

(pr )y

Nondimensionalized quantity unless otherwise
stated, lengths. associated with elestic
bending properties, nendimensionalized with
respect to £; all others with respecﬁ to R;
frequencies with respect to {i; mass properties

with respect to Ib

Differentiation with respect to 2;

Differentiation with respect to. Y

Complex conjugate of the quantity in brackets
Derivative of the product in the bracket

Subscripts R and I denote, respectively, the
real and imaginary part of the appropriate
quantity

The symbol Vv beneath a quantity_degotes.a
vector or a matrix

Denotes the inverse of a matrix

Transpose of a matrix [ ]
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SECTION 1

INTRODUCTION

1.1  General

A helicoptér blade ih forward flight is exposed to a severe aeroelastic
environment. Periodic, unsteady airloads act upon the blade due to a combina-
tion of forward flight and rotation of .the blade. Strong inertia,'including Cori-
olis forces, due to the relatively large speed of rotation further éomplicate the
problem. Thergfgrg, the aeroelastic stability and the response of the blade
are of extremé importance for both flutter calculation and vibration level
estimation. Vibration level predictions are required for both the linear and
the nonlinear range of blade motion in order to evaluate the fatigue iife of
. thé blade ahd the blade supportin; structure. The nonlinearities are those
arising from the inclusion of moderately large deflections in the inertia and
aerodynamic loading terms. Therefore, during the last thirty years, a con-
siderable amount of work associated with helicopter blade dynamic and aero-

elastic problems has been done.

A good review and an elementary déécription of the various dynamic and
aeroelastic problems gssociated with VTOL vehicles, in general, and helicopter
. blades, in particular, héve been given recently_py Loewy in Ref. 32. A con-
siderable amount of the work done up to 1964,.in the general area of heli-
copter blade dynamic response and flutter, has ‘also been reviewed with a
considerable amount of detail by Bielawa (Ref. 35). In this report, no at-
tempt will be made to repeat the reviews given’in Refs. 32 and 35. The only

references cited will be those pertinent to the problem being treated.

This report is divided, essentially, into three distinct and almost

independent parts:

(a) The first part, composed of Sections 1 through 7, deals with
the somewhat controversial problem of flap-lag-type instability
of torsionally-rigid, hingeless helicopter blades. This type

of instability is analyzed in the nonlinear range of blade
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motion in both hover and in forward flight. The main purpose
of this part is the identification of the physical mechanism
of the instability and the determination of the respective
roles of the forcing function, parametric excitation, and non-

linear coupling in affecting the coupled flap-lag response.

(b) The second part, composed of Section 8, presents a con-
sistent derivation of the general nonlinear equations
of motion for a Hingeless helicopter blade, having flap-lag
and torsional degrees of freedom. The torsional degree of
freedom is represented by elastic root torsion; thus dis-
tributed torsion and built-in twist are not treated. All
second-order terms (in terms of the displacements) in the
flap and .lag equations are retained, while third-order terms
are neglected. In the feathering equation, some important
nonlinear effects are included by rctaining third-order terms.
The main purpose of this section is to emphasize the various
approximations involved in obtaining the elastic, inertia,

and aerodynamic loads.

Hopefully, these equations will serve as a starting point for

future work in this field.

(c) The third part, Sections 9 through 11, is devoted to the
.inveétigation of the stability of coupled flap-lag-pitch
blade motion. This treatment is limited to the case of
hovering flight. Due to the novel aspects of the various
effects included in the equations of‘motion, both' divergence
and flutter boundaries had to be.obtained from the linearized

equations of motion.

The main purpose of this part is to illustrate how the
stability boundaries obtained in the first part of this
report are affected by the addition of the torsional de-

gree of freedom.

Each part of this report will have its own introductory section in which

the pertinent literature will be surveyed.
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1.2 1Introduction to the Flap-Lag Stability Problem -

1.2.1 Brief Review of Past Work

In the first part of this report, the flap-lag-type instability of
torsionally-rigid hingeless blades in the nonlinear range of blade motion
will be treated. This problem was first treated by Young (Ref. 1) with a
restrictive analytical approach. Modal equatiens of motion were obtained,
but the numerical results were evaluated for a blade represented by a cen-
trally-hinged, spring-restrained, equivalenf model. Young concluded that the
triggering mechanism of the flap-lag-type instabi;ity is the lag degree of

freedom.

Hohenemser (Ref. 2) treated the same problem, using a somewhat uncon-
ventional numerical integration scheme. Due to the various approximations

made in Ref. 2, the results presented there are of a qualitative nature.

A good treatment of the linear stability of the blade in hover has
been made recently by Ormiston and Hodges (Ref. 3). In this work, both the
centrally-hinged, spring-restrained and modal-elastic representation of a
hingeless blade were used. Stability boundaries for the linear case were

obtained.

The linearized equations of motion in flap. lag, at high values of ad-
vance ratio, were treated_by Hall (Ref, 4). .Using a rigid, offset hinged,
spring-restrained rep:esentation of‘the,blade, multivariable Flogquet theory
was applied to investigate the stability of blade motion. Reverse flow ef-
fects were included. The trim conditions associated with the variation of U
were vaguely mentioned withqut specifying what they .-were or how they were
satisfied. The primary purpose of the Ref. 4 work was the investigation of
the blade response in the presence of a simple control system; a stability

investigation in the aeroelastic sense was not intended.

The flap-lag instability .and response for both articulated and hinge-
less blades was also treated by Elman (Ref. 5). - Reverse flow and stall ef-
fects were included in this work. Unfortunately, the description of the theo-

retical part of this werk was very brief.
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The transient nonlinear flap-lag motion of a fully-articulated rotor
blade was also treated by Jenkins in Ref. 38. Reverse flow effects were in-
cluded; two-dimensional stall and compressibility effects could also be ac-
counted for, but were not used in the numerical calculations. The equations
of motion were solved using direct numerical integration. The physical ex-
planation of the mechanism of the instability was not attempted due to the

.
purely numerical nature of this work.

The perturbation method in multiple time scales (Ref. 6) has been

first applied to the nonlinear flap~lag problem by Tong (Refs. 7 and 8).

1l.2.2 Objectives of the Present Study

A preliminary study of the nonlinear flap-lag probem has been made in
Ref. 41 using numerical integration. The main purpose of Ref. 41 is to gain

some physical insight into the problem before applying the perturbation method.

In the present report, a consistent system of equations representing
the flap-lag motion of a hingeless elastic blade with moderate nonlinearity
" has been derived. Modes are assumed and the spatial variables are eliminated,
using Galerkin's method. The resulting system of equations is solved using
the perturbation method in multiple time scales (Refs. 7 and 8). For some

cases, results were also obtained by direct numerical integration.

The effect of forward flight is studied with the additional require-
ment that the helicopter should be in trim, i.e., the thrust coefficient is
kept constant during the increase in the advance ratio; thus the effect of

' forward flight on a fixed configuration can be obtained. The effects asso-
ciated with the trim requirement were disregarded in the other works dealing

with forward flight, except, possibly, in Ref. 4.
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SECTION 2

BASIC ASSUMPTIONS

The rotor blade can be considered to be a thin flexible beam attached
to the hub at its inboard end and free at its outboard end. Figure 1 describes

the geometry of the problen. .

The large deflections will have only a small effect on the tension in
the blade due to elastic effects, because one of its ends is free (in fact it
can be shown that this is a third-order effect in terms of deflections); there-
fore, a linear treatment of the elastic restoring forces can be considered ade-
quate. Such a theory has been derived by Houbolt (Ref. 10). It is very similar

to the usual engineering beam theory.

It is assumed that the blade is initially straight, with its elastic
axis coincident with the x-axis. The blade is torsionally rigid. It has a
pitch setting of O and it can bend in both the y and the z directions. The
cross section of the blade is assumed to be symmetrical about the major prin-

cipal axis.

A quasi~steady two-dimensional aerodynamic strip theory is used as
justified by Miller (Ref. 11) and apparent mass effects are neglected. This
means that in the usual unsteady aerodynamic expressions, Theodorsen's lift
deficiency function C(k) = 1. Stall, compressibility, and reversed flow ef-
fects are neglected; thus, the aerodynamic load is applicable to moderately

large advance ratios.

Periodicity and spanwiée variation of rotor inflow is restricted to the

first cosine component:

"A=Not e gix) cos (2.1)

In deriving the equations of motion, an X, y, z coordinate system (see
Fig. 1) rotating with the shaft of the helicopter and attached to the blade is

used.

36



SECTION 3

THE EQUATIONS OF MOTION

3.1 Brief Derivation of the Equations of Motion

A brief derivation of the equations of motion is given below. A more
complete and detailed derivation is given in Sec. 8. The equations of dynamic
equilibrium of a blade undergoing only bending in flap and lag can be taken
from Ref. 10:

”g%'} {[(Ej)ycgszaﬂg_[)z scn’e]% + [(ED); —[EI)gjscne Ceoeg)_é

- Teﬂsdnej_b%o [T(Xo)%)(ag ]=PZ p

2 _ . .
%{[(EI)E—(EI)JJMGMG'% +[(£I)y$on0 + (3.1)
2 2 e

where pz and py, which are given in Egs. 3.3 and 3.4, include the pertinent

aerodynamic and inertial forces.

For present purposes, it'is assumed that- the elastic axis, area cen-
troid, aerodynamic center, center of gravity, and feathering axis of the blade
are all coincident. The offset between these points in the cross section of
the blade is important only when one considers the torsional degree of freedom

also.

For moderate angles of pitch setting, the elastic coupling due to pitch
setting was neglected. This effect was included in the coupled flap-lag pitch equa-
tions treated in the last part of this study. Reference 3 illustrates, in detail,
the importance of this effect, which is strongly stabilizing. As pointed out in
Appendix L, a consistent treatment of this effect requires a more sophisticated

treatment of the elastic mode shape than the one used in this study. Therefore,
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the elastic coupling will be neglected in order to be able to study conveni-
ently the destabilizing aerodynamic and inertial flap-lag coupling terms. In
a practical sense, this assumption is a limiting case of reduced elastic

coupling which can occur for hingeless rotor blades with nonuniform stiffness

distribution.

2—;2 [(EI)7 %] o [T) ?W] Fe
‘ (3.2)

Pl [cen, %z)_(v_z ]_ 2 [T(%)ay ]:_ Py

?Xo X0

The loading terms in the z and y direction, with nonlinearities accurate up to

third order in displacements can be written as

L gﬂz v v A
= - mw — w
Fz- 2 ?SF (3.3)

P Ly de, [V (C,-I-'U' +25.7’35L‘ﬂ’6 {3.4)

- _ 2T . g e, +17 (3.5)
P, L ml* (Xote )

-The last terms in Eqgs. 3.3 and 3.4 represent viscous-type of structural damping.

The boundary conditions for a hingeless blade can be taken as

w(o,t)= dw(o,t) _ azwie,f) = 33W(~'ﬁf)
3o X0 xS

(3.6)

viot). v(ot) . vv(tit) _ Vv(Lt)
T wE axg

Next, in order to -apply Galerkin's method, the displacements u, v, w of the

beam are expressed in terms of the normal modes of the beam in flap and lag
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w o= by, () g, (t]= ;Z AZA (xo) 94 () (3.7

(3.8)

V= - Crm(xo) Am(’é)

/Xo aW 2 av— 2]dx
v -1 ow | + [ 3 )
2 % [ 3m) (;m) , (3.9)

Equation 3.9 represents the shortening effect or inboard movement of a

mass point on the blade due to bending, under the assumption that the blade is

inextensible.
Note, ' that whenever repeated indices are used in this report, the summa-

tion convention is always implied, unless otherwise stated.
The substitution of Egs. 3.7 through 3.9 into Egs. 3.3 through 3.5 and
3.2, together with the application of Galerkin's method on the resulting system

of equations, yields after a considerable- amount of algebraic manipulation
*

- *% — * — 2 —
MF‘:ZJ * ySFd gt,' * MF“. wF‘. jﬁ. = 2 }DL»@m gd /-Ln» 7

3 :
Ly7. dxo
I 272(. ° v=1,2,.... N

2
4
JZ;‘I[, A

(3.10)

M_;.c Z: +j;L(,' /‘:, + P7LL' CU—;,2 h.= [Z Semr = Z(ﬁ)')t'mr]/‘m hy

%* - lz 5 d—
7). &, G-t d¥,
=2 My )iae 34 3¢~ dm,,érLM "

t=42,.... M
(3.11)

In obtaining Egs. 3.10 and 3.11, the boundary conditions, Egs. 3.6, and

the orthogonality relations for rotating beams, given in Appendix A have been
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sed. The various quantities f'. )
u g MFL' Plkm

Appendix B and represent generalized masses.

... etc., used above are defined in

Next, the aerodynamic loading terms will be evaluated. The loading
term in the z-direction can be obtained from Miller and Ellis (Ref. 1l1l) or

from Bisplinghoff (Ref. 12).

Lg =apbRUr (U, 6-Up) (3.12)

The aerodynamic load in the y-direction (see Fig. 2)

LJ-; _fa.AR [IJP (UTQ'UP)-/' C_‘ég UTz] (3.13)

where the velocities UP, UT can be written as

Up= &R (,\ .,}‘,BW cosyz)f- WS (3.14)

- * '
U,= AR (/uscnf +X )+ v (3.15)

The expressions for the aerodynamic loads given above represent aero~
dynamic loads, for moderate angles of collective pitch 0. The nonlinearities
originating from these expressions are due to the retention of the second-
order terms due to large deflections in the appropriate relations for UTUP’
pi, and U;7

The reference plane used in evaluating relations in Egqs. 3.12 through
3.15, for a hingeless blade, is the hub plane. Therefore, in an exact formu-
lation, the terms associated with the cyclic pitch variation should also appear
in these equations. Keeping in mind that the primary aim of this reporf is
the evaluation of the nonlinear effects associated with large displacements,
and the determination of the respective roles of parametric excitation*and
forcing -due to forward flight, it was decided to treat the effect of cyclic
pitch variation only in a later part of this investigative effort which will

also include the torsional effects.

% Note that in this study, the term parametric excitation, stands for the effect
of the time dependent coefficients in the equations of motion. :
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The substitution of Egs. 3.7 through 3.9, 3.14 and 3.15 into Egs. 3.12
and 3.13 will yield the appropriate expressions for Lz and Ly' A further inte-

gration will give the generalized aerodynamic loads required for Egs. 3.10 and

3.11:
2 g Ty -
A= ——f-’——.[ Lz °2¢-‘/X° (3.16)°
NI, Y4

5 .
A =--24 / Ly Y. dX, (3.17)

Al YA

The complete expressions for AFi' A are given in Appendix C where the

1 20 Li 1 19
various flap coefficients F© ... F and lag coefficients L~ ... L are also

defined.

Using Egs. 3.10, 3.11, 3.16, and 3.17, the f;nal form of the general
equations of motion, for an arbitrary number of modes, can be written in

compact form
’ — %% — * —_— 2 -_— *
MFU yc +35FC g(_ -+ MFL' CUFL' j‘: = 2 e,érrb 5‘ Ah‘b + AIL'
i=1,2, ..., N (3.18)
— *¥ —_— - —_—2 o — *®
Mic A¢ i'é&Ld hd'+ Mo Wi hi = [32 Scmr -‘Z(jb—LJnr_]Amn Ar

- * —
-2 (M,). ~e, Co + ALy :
( ”L)Lée ?4 gt o =t Le i=1,2, ... , M (3.19)

3.2 Equations of Motion for the Two-Mode Case

The solution for the system of equations derived in the previous section
for an arbitrary number of modes is very difficult and complex. Therefore, in

this report only one elastic mode in each degree will be considered.

The static equilibrium condition in hover (U = 0, with all time deriva-

o

tives equal to zero) denoted by gi, hl' will be used as the natural equilibrium

state of the system.
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i g ) (Fo- )

M, Wry

hje 1 [1[(’%) [,\O(L'G - ) + o L‘/]"-é"C_’} (3.21)

- —1
pﬁl“ﬁl

(3.20)

In the following, the lower indices on the various L' and F* coefficients

will be dropped.’ By expressing
9=97%
1 1
o
hy= A‘f * ‘x’z

(3.22)

and considering only the case AEE-= 0, Egs. 3.18, 3.19 and 3.20 through 3.22

become
;‘7 + (o 1 Fg/““"%);z, + [WF/ZH;/u Cosf(F
¢, [(26F), F))-2(8) F'e {z]/us‘-,,)b .
;’Z[C"xf’LXH +C (_%)GFB ;22 +C (rf‘) F’S;}:]
+cz740[_,:c+/f) F"’iz]/.«cosy 4
[ 5_3_9/3'_/}/‘-'39 cos 2y 4/%" F"’(20+ xX,) sdnz+] (3.23)

Z

6_% ,,_-/47’22)])6:

X % * - 0
X, + 5027(2 + Wit Xy = faC L*6 Ao scny + puCe (g74%,)(L"-
. _
Z )soLll)(oS‘/’ + X4[ )/G ~Cn %y _/_C}/‘,ngSc'm,L_2/L~C;L’7(‘X4+Z°)cos%
. 2 %
G (&) (L7, +6L” % )]"
_;j o 16
1+ Cr 2[(34”(4)9/_ cos%’]Jf
2,17 . 0 1 ¢
Cg[G/gL SLnl‘f’(gl+x4)+2%g/LLSh'f]

(3.24)
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In the lag equations, terms proportional to (Cd /a)u2 have been neglected

because they are small quantities. The various quantigies used in the last two

equations are defined below.

G = L (£)3

C= X .@.)Z

2Mr R
— 3 8
g = Is e 4 (L X F
D p— R H—
Mg 2 MF
Cy= 2 gu/¢ﬁ§
Co= I (L)
Y
3
C7= v _8;) (3.25)
2 My R °

3
a

My,

XH = C‘/(ZO-C’ (29 F’o— F”Ao)

Yo -Cug'ecp(L'9-23L" )
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The equations above are a coupled nonlinear system of Hill-type equa-
tions under the influence of periodic forcing. The periodicity of the coef-

ficients of the equations and the periodic forcing are due to forward flight.

The terms 9p1 and 952 represent the damping present in the system. The
damping is partly of aerodynamic origin and partly from structural damping.
The damping in the lag degree of freedom is very small; therefore this is

the potentially unstable mode.
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SECTION 4

SOLUTION FOR THE LINEAR SYSTEM IN HOVER

For the case of hovering flight p = 0, when Egs. 3.23 and 3.24 are

linearized, the resulting system of equations is simply:

* % *

*
- 2
X, +gblx'1 +CUF’ X1 - XH 7(.2=O

*

* (4.1)
“x —
- =0
7(2_ +j}>z X, tw X, Ve X,

The critical condition for the complete system (Egs. 3.23 and 3.24)
will be given by the flutter or critical condition of linearized system
(Eq. 4.1). The flutter condition is characterized by the existence of a small

amplitude oscillation for Egs. 4.1. Assuming the solution in the form
PY .
7(,4 = A,C 5 X’Z= AZ. eP\// ' (4.2)

Substitution of Eq. 4.2 into Eq. 4.1 yields the following characteristic equa-

tion

(PZ+ Pj»/ * CJF?) (Pz"'goz P"('J;"z)~ PZXH K =° . (4.3)

For a small value of 6, the root of Eq. 4.3 has Real (p) < 0 and the
solution is stable. For the critical value O = 60, the system is neutrally
stable. For 6 > 6c, at least one of the roots of Eq. 4.3 has Real (p) > O

and the system is unstable.

At 0 = Gc, there are two solutions to Eq. 4.3 such that p is imaginary



Then by setting equal to zero the real and imaginary parts of Eq. 4.3, the

following relations are obtained

-2 - Z
QJZ' = 9o Wi+ Gpy WF (4.4)
Io1* o2
and
2 it ) (- wi ) ) - w? +eot Xy To=0
(-wf gl ) (- w'+a, e Ibs Jpa T e M4 16 (4.5)

Equations similar to Eg. 4.4 and 4.5 have also been obtained by Ormiston

(Ref. 3) and Tong (Ref. 7).

From Egs. 3.25 it can be seen that 9por Xy ¢ Y are all functions of 0
and )\o, while }\o is also a function of 6. As shown in Appendix D, the rela-

tion between the inflow and collective pitch is given by

Doz Ca { 2 [(H/:e)a/z (34-2) ’LZ] —/} (4.6)

16 ISL;'
'where be . 3286
Ca

(4.7)

Therefore, from Eqs. 4.4 and 4.5 the critical value Gc can be determined.
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SECTION 5

PERTURBATION SOLUTION IN THE NEIGHBORHOOD OF THE CRITICAL CONDITION

5.1 The Multiple Time-Scaling Technique

The multiple time-scaling technique is an extension of the two variable
expansions introduced by Cole (Ref. 6), Cole and Kevorkian (Ref. 13) and

Kevorkian (Ref. 14).

In the use of a perturbation method, one may encounter terms of type
t" sin t, tn cos t, which means that the solution will be unbounded for t =+ .
These terms {(which show the singular nature of the problem) are called secular
terms: from a physical point of view one does not expect unbounded solutions;
from a mathematical point of view, it means that the perturbation series break

down for large t. By introducing an additional time scale, t. = €t, where €

is some small positive parameter, the original differential e;uation is changed
into what is formally a partial differential equation. This can be exploited
in various ways to examine how the solutions grow and how to suppress the
secular terms. The multiple time-scaling technique is a further generaliza-
tion of the two time-scale expansions (Ref. 15) by introducing additional

.time scales tn = €™t to achieve greater flexibility. 1In particular, all pos-

sible secular terms can be avoided and a uniformly valid asymptotic expansion

in the time domain is obtained.

The multiple time-scaling technique has been extensively used in treat-
ing the nonlinear panel flutter problem (Refs. 16 through 18). It has been
applied first to the nqnlinear helicopter blade-flutter problem by Tong (Refs.
and 8).

5.2 The Perturbation Expansion

Let € > 0 be some small parameter representing the perturbed state of
the system relative to the critical condition denoted by subscript "c". The
following expansion can be established in the vicinity of the critical con-

dition. Let
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/

/. %
14: E Zao+ Ea4+ 6 2az+. PO

1/ 3/.
Xp= € bot byt €5 byt ... (5.1)

be the expansion of the dependent variables.

The various other parameters of the problem can be expanded as

/.
/L(,':/LLOE z+/a,e *.o
6= 0.4 6,640, ...

%
20"'Aoc+ N EF )28 o
. 31,

Io1 = doi0 *”ZHE'/")Z,ZQ *...
Jo2= goz20 +7ZZI£+ 7222_6 .-
° ]
= E7%+ ..
34 go * o/E+dC/02 *

XH: —XHO +X/(C_+ XZ 83/2—»‘. ..

(5.2)

/;
}é —.:720 +Yg+ K&32+....
-2 2
CUF/;(’UFIO

-2 _ 2
wy, = Weio
. . . 1/2
This particular expansion scheme has been chosen so that the 0(e ) per-

turbed equations will be a system of ordinary differential equations with con-

stant coefficients.
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In addition, the multiple time scales will be introduced, using the

following relations

Y =€

m=0,1, 2, ... (5.3)

where the wm‘s are chosen as the new independent variables. Then

42 3 _ 426 - ¥ (5.4)
= Y = Y __ 4 —— . .
() dyr oy ) Ao

Some of the perturbed parameters in Eq. 5.2 are not independent, being

related to 61 or Gc. The various pertinent relations are given below.

Aoc= Ca _:L_ 1+ 4 e 36 - 2 |-
_{/55;2[( ) (3ho2)t2 |-

16 (5.5)
/5 3,
h= 0 oa f(1#b,)* 4 (34 - }:
’ Glc a.[ 89c _ 3059‘:‘[6+A%) (Is’:éeC 2.)+Z]
I
= & fa{§4+59c) 2_ (/.,. A6 Aoc )}
6. 8 Ca (5.6)
where
Aec='32 QC
Ca
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also be evaluated.

consider expansions of order higher than 0(€

jo = C2 (Flec“ FZ/\oc)
o

dor= L2 (FIQ"FZ’\’)

e
XHO = ngo— C4(29cF/0— F”Aoc)
X/ = C4G — G (Ze, F'e F”A/)

y

Go= ~Cu g, *Cy( L0 - onch)

Y, = -c g + S (U6 -z),z_s)

3020 = gs_u + C7(2 Cdo /_lq-/' LlsAoc QC)
Q

Ly

1 - L (16 4o 6)
2)

In a similar manner, expressions for AZ' X

3/2

this report.

problem, with physical parameters affecting the rotor blade dynamics.

purpose, a distinction between the two cases must be made:
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These expressions would be important only if one would

(5.7)

, etc., could

) and will not be required in

It is important now to associate the mathematical perturbation parameter
€, which represents basically the ratio between the two time scales used in the

For this



Case l: Hovering Flight -- 4 = 0 (i.e., ul = 0)

From Egs. 5.2 through 5.7, it can be seen that 91 has been undetermined
and is, in fact, a free parameter. Without loss of generality, it can be taken

as 91 = + 1, so that

E=6-6c _ [ O0-6cf (5.8)
6,
i.e., for this case, the perturbation parameter £ is equal to the absolute
value of the difference between the actual collective pitch setting of the
blade in the flight condition being investigated, and the critical value of

the collective pitch Gc.
Case 2: Forward Flight -- 4 # 0 (i.e., Ho # 0, or U, # 0)

For this case, one may have £ associated with/u. Depending on the

value of wc, one can have either: (a) uo = 1 and ul = 0 or (b) ul = 1 and
UO = 0. Thus
1/2
(@) u=ce / _
or
' (b) u=c¢

which will be discussed in detail later.

For the cases with forward flight, Eq. 5.6 is no longer valid. For
these cases, the inflow is evaluated from the usual relation given in Gesow
and Myers (Ref. 19)

c,

2"/4’?-4_ )OZ (5.9)

Ao =/u,t%“R +

while Al and 61 are evaluated from

)I= >\o_ Aoc

€ (5.10)

9,: 6_ 6(.
€
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5.3 The Perturbed Equations of Motion

Substituting Egs. 5.1 through 5.4 into Egs. 3.23 and 3.24 and requiring
terms of the same order in £ to satisfy Egs. 3.23 and 3.24 separately yields -
the somewhat lengthy system of equations written out in detail in Appendix G,
Egs. G.l1 through G.3. This general system of equations is specialized below

according to the various cases mentioned in the previous section.

For hovering flight, 4 = 0 (i.e., uo = ul = 0), Egs. G.1l through G.3

reduce to:

Equations of 0(e1/?):

L, (a0 bo)=0

L, (@o bo)=0 (5.11)
Equations of O(g):

L,(a4,6,)= Qs(ao,bo)

L, (a4, bs) = Nefao, bo) (5.12)
Equation of 0(83/2):

L, (as,bs)= Q2 (ao,Bo,a.,’b:)

(5.13)

LZ (a-z, bs) = Nz(q.o,bol a,,,lu)

where the operators L., L_ and the expressions Ql' N ,.Q2 and N_ are defined

1 2. 1 2

in Egs. G.4 through G.9 of Appendix G.

1/2 (4, = 0), the equations

For the case of forﬁard flight with yu = ube 1

are:

/2,

L | (ao,69)= So Fo (%,ec)

Equations of O(El

(5.14)
L'). (o, bo) = Jfuo Ho (+o,9€)
Equations of 0(g):
L, (ad,l)q)'—' /‘o F,f (%, ec)ao,bo) +/1402J;(‘1"0, 6()+QI (aolbﬂ) (5.15)

LZ (_m,/u) = /Lo H4 (\f,,’ec)ao,bo)q‘-/b.: K, {‘/5)9(,)4’/\/4 (ao,bo) .
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/2):

L, (al;62):/4ro F:f (%)ec’ al;bf) f'/b,oF, (91,%)-/-/4,, FZ (%)ao' Ao)
+ g Ty (%6,a0) + Q (aobo,as,bi) .
L, (azb2) = peo Hy(%;,0c,@1,b4) +fuo Ho (45, 81) + fuo Hz (4,6, @5, by) (5-16)

Equations of O(E3

+ fuo” Ky (4o @0 ) + Ny (40,021, 69)

1’ Jl, Hl, Kl, F2, J2, H2, K2 are defined in

Egs. G.1l0 through G.18 of Appendix G.

where the expressions Fo, Ho, F

For the case of forward flight with y = ple (uo = 0), the equations

are:

/2

Equations of O(C1 ):

L| (ao,bo) =0
(5.17)

L, (ao,bo) =0
Equations of 0(g):

L’ (@s+,64) -.:/a, £, (%,90) * Qf ( ao, bo) (5.18)

L (anbi)=pus HolW,8c) + N1 (o, bo)

/2):

L; (az,bz)=/°4 FI (l}"o,gC, 40,50) Q2 (a"ILOI a,, 5!) :

Equations of O(E:3

(5.19)
LZ. (Qz'bq,) =/4, H/ (%) ec )do,bo) + /\/2 (Qo,bo, Qq, 64)

In Egs. 5.11 through 5.19, the terms Fo, Ho' J., K, represent forcing

1 1

functions; F., F_, H,, H,A represent parametric excitation functions, while

1 2 1 2
Ql’ Nl' QZ' N2 represent nonlinear coupling.

5.4 Solution of the Perturbed Equations and the Conditions
for Suppressing the Secular Terms

In this section, the equations derived previously will be treated in
detail. For convenience, the various cases will be classified in the follow-

ing manner:



Case A -~ Hovering flight u = 0 (i.e., M, = U, = 0)

1
. 1/2
Case B -- General forward flight case, U = uoe

(i.e., ul = 0) and W # 1/2 + €V or wc #1 + gV

Case C -~ Forward flight case, with wc = 1/2 + €v, for this case
= i.e. =
H ]Jle (i.e., Uo 0)
Case D -~ Forward flight case, with wc =1 + €v, for this case

_ 1/2 . _
M= uoe (i.e., W, = 0)

In these relations Vv is a quantity of order one or smaller, which will
be specified in the analysis. The reason for this classification will become

apparent within the context of this section.

5.4.1 Solution for Case A

This case represents hovering flight (4 = 0). The equations which must
be solved are Egs. 5.11 through 5.13. First, the solution to the equation of
0(81/2) will be obtained. As represented by Eq. 5.11, these equations are
identical to the linear system (Eq. 4.l), treated previously in Section 4.
since the damped branches are stable, only the harmonically oscillating

~branches must be considered, which can be represented by

cwe *] -Cwey,
{aa} - A {v;} ew% . (Ao* {(V}) e B
{ bo 1 /

ch%
- 2Reat | A, Z v,} e

1

(5.20)

where ( )* denotes the complex conjugate; Ao is a function of wl,wz, ... , etc.,
but not of-wo. In analogy to Section 4, the values of wc and BC are determined

from

2
1 + &.2.0— We

w o Wy 3o 10 v
¢ - . (5.21)
4+ 2»10
do10
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2 2)?
- ’ ( 2 r
3040 vﬂozo (wFIZ Luo ) + 9»10 jp?_o <= w‘LXHO Go
(Fou0 * Ip20) (5.22)

The gquantity Vs determined from Egs. 5.11 is given by

Yy = X o cu, (5.23)

This quantity represents the ratio between the flap and lag amplitudes. It

can be shown that

9520 Xuo

9» lo I,Ga

Next, the equations of 0(€) must be solved. The solution of Egs. 5.12

(5.24)

is composed of two parts: the solution of the homogeneous system and the par-

ticular solution which is obtained by the method of undetermined coefficients.
The homogeneous solution would have importance only if the equations of 0(82)

were also considered. This being not the case, the particular solution

would be sufficient. Then

‘szc‘l’
Q, 2 [ o« ° * oAz
=2Real [AZ [l e T4 4, (4)
by B2 3 (5.25)
where the quantities L 82, N 83 are defined in Eqs. G.19 and G.21.

Finally, the 0(63/2) equations are treated, substituting Egs. 5.20 and
5.25 into Eq. 5.13 and using Eq. 5.26

: < f .
2 Reat (Ae"“F) 2Reat (Be “):zeeae[As e

C(ol-w)t ]

C(ol+w) T
+

+ (A)*B e
(5.26)

yield the following relations
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ch\/)o
L4(Qz,61_)= Zfeal/[p,’@éi?+p3ﬁo+P,5(Aa)*Aoz]€ +
Y

+(....) ecsw‘%}

(5.27)

(5.28)

where the gquantities Pyr Pyr P3r Pysr Pror and P, are defined in Egs. G.21 of

Appendix G. The terms plS' Pie in Egs. 5.27 and 5.28 represent the nonlinear
coupling terms.

5.4.2 Solution for Case B

. 1/2 .
This case represents the general forward flight case U = uoe / and

wc#l/2+€\)orwc;£l+ev.

The solution to Egqg. 5.14 (O(EI/Z)equations) is given by Eq. 5.20 with

an additional part representing the particular solution. Thus,

a ‘W, A
{ "I 2Real [A,{ The 4 = o2 { o *
bo 1 02 (5.29)

where a b are defined in Appendix G.

o2’ 702

The solution to Egqg. 5.15 (0(€) equations) is given by
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a c2wet,, c(1-we) o
/ '} = 2 Real ’402 {0(2 € + Lo (Ao)* {C‘vs e
b, p: / b3

t po A () fo a
e fo aqy e +)AU Zf 4i}

bts

n AO(AO)* G |+ 2 [ aq
-1,3 / Alé

(5.30)

where the al3, b13' al4, bl4’ alS' b15' a3, 53 , al6' b16 are given in Egs. G.31
through G.35 of Appendix G.

Finally, when Egs. 5.29 and 5.30 are substituted into Egs. 5.16
/:

3 . . . ' o,
[O0(e z) equations] lengthy expressions occur which can be written as

L) (as8,) = 2Reat {[/»4 Yo 4pyho+
Pas puotho  + prs (A A ] LM%

() eYor () e, ofdwetor )y

C(2-we) ¥, < )Y ¢ %
4 (_) +( ) (24w )Y’.}(--”)e(‘“zw )"L/-

‘-'(4‘2 c)sl’
( JC “ o-{—... constant terms
(5.31)
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L 2 = Ao z o
2(47-)5) 2 Read {[Pz 27' -/-/b(on'/' PZ?_/"DA_/—

* pae (Ao)*/%z]efw‘/% s ()% () ey

_/_(- - ) eo 3(04'7‘&4_ ( ") e‘; (2-we) \"o+ ( ..) ec'(l'fwc) %+ C._) 'CL (14260::) ‘/;,+

.L. —2 [ %‘
(e rAeaT (onsf.fermsj
. (5.32)

where the quantities Py1 are defined in Egs. G.44 and G.45 of Appendix G.

r Pyy

5.4.3 sSsolution for Case C

This is a forward flight case with wc = 1/2 + €V and i # O where Vv is
a quantity of 0(l) or smaller which will be specified later. From Egqg. 5.30

it can be seen that the expressions for a__, b (and their conjugates) be-

come very large for wc = 1/2 + €V, becausiiﬂ(ll3 wc) of Eq. G.32 is near
singular. . This situation can be corrected by requiring that uo = 0, then

H = ule. For this case, the solution is obtained by solving Egs. 5.17 through
5.19. Proceeding analogously to the previous cases, the solution to the
0(61/2) equation is again given by Eg. 5.20, while the solution to the 0(g)

equations, Eg. 5.18 is given by

Awey,
“l o 2Rear [ A LS e T h Al {d3}+
A4 lgz F’3 )

# por &
/51
(5.33)

where the quantities a ,'Bl are defined in Eq. G.46.

1
The substitution of Egs. 5.20 and 5.33 into Eq. 5.19 yields
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¥ 427 et
4(“1,51):2’£ed {[/)1;%294'/03/40 7 ID1S&’°) Ao]e

¢ (1-we) Yy c( 1+ we) o
e +

+ /(4, Ps (Ao)* e + (.. )

(...) -3t A+ }

(5.34)
L (azbz)— 2k€a.£[[lb2 "{'/bgAa’/'/b/é {/’ A ]ecwc
C(1-We) 'y o( ¢/ To
+/¢4(/40)*P6€(4UJ)%+ () e ) ¥e F .
(”__)ecgwc%-p.... }
{5.35)

The quantities pS and p6 defined in Egs. G.47 and G.48 are associated

with parametric excitation.

5.4.4 Solution for Case D

This is a case with forward flight u = uoel/2 (ul = 0 ) and
wc = 1 + €v. From the solution of the general forward flight case, Eqg. 5.29,
it can be see that the expressions as and b°2 will be nearly singular. This
situation can be corrected by assuming that the expressions associated with
the forcing Fo(wo' Gc) and Ho(ll)o, ec) , Egs. G.10 are mathematically quantities
of 0(e) which physically means that at the flight condition being investigated

e_c and 9, are small quantities or in other words flight at low values of CT.

Then, from Egs. G.1l0

Folts 0c )= E(Forsinty - Foy conty )= EF, (%, 6.) . (5.36)



HO(%)ec): E(Ho,sch%o -/'HOZ(OO% ): e f;; (%’ec)
’ (5.37)

where Fo . F are defined in Egs. G.49 through G.52, and it is re-

H
1’ 702 1’ “o2
quired tnat these gquantities be all of order one.

’ H
o]

The equations which must be solved for this case are:

/

(a) Equations of O(El 2) as given by Eq. 5.11

(b) Equations of 0(€) as given by Egq. 5.15

/2) as given by Eqg. 5.16, except that in this

{(c) Egquations of O(E3
t
case, the term quo(wo, Bc) replaces quo(Gl, wo) and uOHo(WO, Bc) replaces.
H (¢,
R o(wo 61)

The solution to this system of equations is given by Eq. 5.20 and

Q4 2 (’,2(4)(,\/'
°
= 2 Real ( Ao { % .
64 ﬂz
. [ — C(1-We) Yo — c(1+we) Yo
oo (A0) {gs} e +/040/i’1‘* e
13 bey
=3 (A%
2 a,s [+ * o
bss 23
ﬁﬁ/&f'f'adc
L bse _
{5.38)
where the gquantities 13" bl3' a14, b14, alS' blS' a16, b16 are equal to the
same quantities without the bar, when a02 = b02 = 0. For convenience, the
quantities Py, through p14 and pl7 through Pyo are given by Egs. G.53 through

G.60.
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The substitution of Egs. 5.20 and 5.38 into the modified equations
(Eg. 5.16) yields:

L 1( aa,ba) = 2Reat ([ pidhe o, fo + oy Joo Ao 4

Pis (Ad)* AL ]6 w”‘/ .,.[/ pg + oo FHV" (Ao)/i /%5]

"(2" < ‘[’
+/b_02(ﬁo)*/>278 w) o+

-c(4 -2we)Y, ¢ 3«,&-

/L"o’qo (Pzg) (,,.) e
(--.) e«:(awc) ¥, . () et(u-:e,wo)% .

4.0 ’
} , {(5.39)

Ly (@ ba) « a0el { [, Dosp fot py b A ot

Plé(/)a) Ao® ]8 wet, [/& +/& /bzﬂf"'

po0* e pa ] 2 tagt e

-L(’f zw‘)fo \.'5(»(%

+/* goz(on # (_--) €
+(.“)-€\L(2+U~)c?‘/’o‘# ( )eL'(Mch) ‘//; }

{5.40)

where 521 are equal to p21 when a = Db = (0, and the guantities P,y

* Poo * Pao o2 = “02
through Py, are given in Egs. G.61 through G.68.

61



5.4.5 Conditions for Suppressing the Secular Terms

for the Various Cases Considered

In this section, a general condition for suppressing secular terms of

type woelmcwo will be derived. As shown below, the condition for suppressing

secular terms can be obtained from a relatively simple consideration.

A general case in which secular terms would appear, can be formally

written as

¢ weYe

Lt (Qzléz) :77_16

L, (@, b2)= Tzﬁ

The solution to Egs.

Ceg

5.41 can be written as

- w
Qo =l e
(,'Cdc"/é
b= T,, &

From Egqs. 5.41 and 5.42

-

2 . 2
- e + jblo twe * Wryo

= YGO Caue

It has been previously

ficients in the last equation

- XHo ‘;wc

D
Y
\
—A

2, . 2
- (‘(}6 "'(awcgpzo"‘wuo

-t L e
-

- N 7~
(77_4 ] 7/

’/—‘ N
720 W;

(5.41)

(5.42)

shown in Section 4, that the matrix of the coef-

vanishes.

Thus, these equations are not inde-

pendent of each other and the first row of the matrix must be proportional to

its second row, denoting the constant of proportionality by Cp

— . 2
CP= iy - - CUcz'/'gp,o(.wc*(A)F/o _ —XHo L We
T2 - Yo ca — Wt +We o120t Weio
From Egs. 5.43 and 5.23
o Yoo + T, Xuo =0

1
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As shown below, taking the appropriate combination for "1 and "2'
Eg. 5.44 will give the required condition for suppressing the secular terms

for the various cases considered.

Cases A and B

Case B which is the general forward flight case with wc # 1 + VE or

- 1/2

wc # 1/2 + ve and U = uoe , will also include Case A as a particular case.

From Egs. 5.31 and 5.32

. +*
"= -2 %%0 +/>3Ao "'/(02/’7_/ Ao + Prs (AO) 4"2
. [}

(5.45)

2
T= ) :‘%ﬁ_" + P.,ﬁof'/‘o"/’uﬂo* Pie (A’o)*A’O

{

From Egs. 5.44 and 5.45, the condition for suppressing the secular term

can be written as

Ao =( K,z-{-/q,z Ke) Ao + ko, Hoi(’oﬂ’)*

R ,a* (5.46)
For the case of hovering flight, Case A, uo = Q, (ul-= (o] )} and
Eg. 5.46 reduces to
2 ®*
Ho - K, Ao + Hy Ao (o)
?2¥ (5.47)

Evidently, Eq. 5.47 is not subject to the flutter frequency limitation
of Eq. 5.46. ’

; K., K, K_ are defined in Egs. G.69 through G.72.

The quantities K
quantitie 2’ 3 %6

1

Case C

For this case, wc =1/2 + ev and y = ule. Where v 1is of order one or

smaller, it can be shown that
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vz 7[(72;, ?p,o 7 9020; Wero, w‘-’o’) (5'.48)

For this case

WY
3———9./-}3/’94-/745 Ao [90) '»‘/h Ps-[ﬁo)*e

1

¥ (5.49)

’ 2 -t

2 :DT/}//_Q. + Py Aot Pre Po (ﬁo)ﬁt/a,,bg (A) e
1

=)

0
o

)

and from Egs. 5.44. and 5.49, the condition for suppressing the secular term is

aAo _ K A + 2 # e bd%’/
oy ek (o) 4 pus K5 €  (5.50)
t where KS is given by Egq. G.73.

- Equation 5.50 can. be rewritten in a more convenient manner after chang-

ing the dependent variable. Let

— oy,
Ao = Ao : , (5.51)

Then Egs. 5.50 and 5.51 yield:

o)

= ko Ao+ A (Ao ) +/"’ K"(Ao) (5.52)

o)
-

where

Ky = Ko +tV (5.53)

could also have some

It should be mentioned that a case wc = 2 + EV

practical importance, when the harmonic components of the inflow are considered
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together with cyclic pitch variations. 1In the present report, these effects
will not be considered. A partial treatment of this case can be found in

Ref. 8.
Case D

For tnis case, the flutter frequency is close to the forcing frequency

wc =1+ €vand 4 = uoel/z. It can be shown that

\)3‘% J( [7?2/) Iv101 J20> WFio, w“”)
(5.54)

From Egqs. 5.39 and 5.40, it is clear that many terms will contribute

iy, i(2-we)y, and‘e—i(l_zwc)wo

secular terms. In addition to e , terms of type e

will also yield secular terms. For this case

= ps %ﬂ + Py Aot E/ Jeo~ Ao * Py Ao’ (AO)* *
? 1

¥ ’CQ%;
[/é_f_opg+/gg3lbz3+/&o (4o) Ao /325] e

2 Y /) VY
gt gy € AR () e
L
7E=P2:-2—$;9 tpy ot Pra oo Aot Prg (Ae) Fo™#

—CJ %’

"/'[/L"O/;E_I,Q '/'/b.ogpz‘_, +/quo (40)*/726 ]6 |
-—:2(:\)%; b") f
+/af (Ao)*pz7e | +/40/)oz{f37_3)*€ £
(5.55)

From Egs. 5.44 and 5.55, the condition for suppressing the secular term

can be written as



— 2 +
’%_3_;’.: (’ﬁz_-f/tozlﬁg) Ao +IC3A0 (Ao) +

[ st iyt ]

..-QL‘\)% VY
+ /&oz(ﬂo)* /69 e 1-1“/140 Aoz/fw e '

(5.56)

where the guantities k,, K_, K_, K_, and K’lO are given by Egs. G.74 through

4 7 8 9
G.78, while K6 is equivalent to K6 with a, = b02 = Q.
Equation 5.56 can be rewritten in a more convenient manner by changing

the dependent variable.

Let

~ Y
Ay = Ace
(5.57)
- Then Egs. 5.56 and 5.57 yield
~ ~ __A ~ ~g VA
2Ry (Ropd ) Ao+ 1y Ao (Ao) 4
¥
&k K .(;)x;]+
Jae kgt feo Fop # fuo oy (Ae)” A
3
T Juo (o ’fg +/b- Ao Koo (5.58)
where
Ky= Hy+dY (5.59)
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5.5 Stability Analysis and Blade Response Amplitudes
for the Various Cases Considered

In this section, the amplitudes of blade response will be determined,
and the stability of the motion will be investigated for the various cases
considered in the preceding sections. The stability will be investigated
using the conditions for suppressing the secular terms, while the amplitudes
of blade response will be determined by taking appropriate combinations of

the solutions to the perturbed equations of motion.

5.5.1 Case A, Hovering Flight

For this case, 4 = 0 and the condition for suppressing the secular term
is given by Eq. 5.47. Equation 5.47 can be solved in closed form, taking the

solution in the form of (Refs. 17 and 7)
¢y
Ao=fe (5.60)

where both p and ¢ are real.

Substitution of Eq. 5.60 into Eq. 5.47 yields

jif = K. + K 3
= Kag 3 f (5.61)
2% s

°f . Kor + K .fl
Y 3I | (5.62)

where the subscripts R and I denote, respectively, the real and imaginary part

of the appropriate quantity.

The solution of Eq. 5.61 can be written as:

2 2 - 2HrY, -2 Kar¥,
f =fo/{e : '+f:."533(€ m'——4)] (5.63)

Kaog

From Egqs. 5.62 and 5.63, the solution for ¢ can be written as
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¥ = Y, + lizr‘/?—’cat 3n[4+_f ’CM (4 CZK“%%]

2K

(5.64)

where the quantities po, ¢° are the values of p and ¢ at wl = Q.

For the case of hovering flight, the solution is given by Egs. 5.20,
5.25, 5.1, 5.63, and 5.64.

2 o CQtucH%
Kol o2 Read [ €% 4, dEA TPl
X, | 1 ’ ﬁz

+£Admf/%}+
B3

For the case of hovering, from Eq. 5.8, the perturbation parameter € is

v, e‘auqé

(5.65)

IG - GCI, so that the blade response depends only upon the collective
pitch setting.

The stability of the blade response can be investigated using Eg. 5.63.

The following four cases can occur.

. > >
Case 1 KZR Q and K3R 0

At wl =0, p = po, at some finite time, the denominator of Eg. 5.63

approaches zero. ' That is p + ©, This clearly represents an unstable case.

2 .
- < <>
Case 2: If both KZR < 0 and K3R 0, p 0 as wl + o, This clearly

represents a stable situation.

Case 3: 1If KZR > 0 and K3R < 0, the exponential terms in Eg. 5.69 tend

to zero and



..\/__hfg
Jo‘&”“" ,

R
? (5.66)
This case represents a stable limit cycle oscillation.
. < >
Case 4: If K2R 0 and K3R 0,
Denoting f ~ 1\ Kae
L-c K3
Eq. 5.63 can be rewritten as
- 2,0 Y,
i _ 4 —4_ )e 2R 4 4 ‘15_
2 2 2
S S0 Ste See (5.67)
from the last expression for
[ -4 <o
0z o2 (5.68)
j’o fe-c
The system is unstable and for
-1 >0 (5.69)

L
2 2
-ﬁ: f bc
the system is stable.

From Egs. 5.66 and 5.68 for

2 K2R
£E> -
° fCae
the system is unstable, and from Egs. 5.66 and 5.69 for

_f;z &£ — fag
K3r
the system is stable.

Thus, in this. case, the stability is conditionally dependent upon the

relative magnitude of the initial value of po when compared to pi c

From Egs. G.69, G.70, G.24, G.25, and 5.7, it is clear that KZR is
m
linearly proportional to 61. That is, the origin (Ao "~ 0) is unstable above

the critical condition (6l > 0) and stable below the critical condition (81 <0).
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5.5.2 Case B -- The General Forward Flight Case

. 2
In the general case with forward flight, Y = uoel/

(ul = 0) without
any loss of generality uo can be taken as u = 1, Thus, in this case, the
perturbation parameter is € u . The flutter frequency for this case can have

any value except wc # 1/2 + €V or wc # 1 + €v.

The condition for suppressing the secular terms is given by Eq. 5.46.
The solution of this equation is identical to the solution of Eq. 5.47 with
62 + ni 66 replacing 62. In analogy to Egqg. 5.63, pz can be written as.

2 fo’z/[ e- & {/f‘ua'*/‘oz foeg) \#1*4_ faz K3 [ (Hag +4o fer )% _,-7},
Krrtho R
(5.70)

The various cases for which the stability of the response was investigated.

in the previous section remain unchanged and are summarized below:

Case l: K + K6Ru§ > 0 and K > 0 -~ the system is unstable

2R 3R
2 .
: + < < -
Case 2 KZR “oKGR 0 and K3R 9 the system is stable
2
. + > p . . . .
Case 3 KZR uo K6R 0 and K3R 0 stable limit cycle oscillation
with
_ —_ /fzg + oz/CGR
-fbr - v/ /h
Kig (5.71)
2 , . A
H < > - A
Case 4 KZR + uoK6R 0 and K3R (0] this system is conditionally
stable
Thus for
‘f.feﬁ. the system is stable
2 .
and for £ >_fb£' the system is unstable
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From these relations it is clear that the forward flight can influence

the stability through the magnitude and sign of K In addition to this

6R’
effect, forward flight can also affect the stability of the system by influenc-

ing K2R'
From Egs. G.22, G.23, G.24, and G.70, it is clear that Kl is dependent
only upon the critical conditions and K2 (with ”11 = 0) is composed of two parts,

one proportional to 91 and one proportional to Al.

*Lz=(’fle4)91 + (kyy,) My (5.72)

where K and KZAl are given in Egqs. G.80 and G.81. Thus K can be written

261 2R

as

Kog= (KQO')Re'f + (K'Z'\n)RA’ = Hag (649 X’) ' | (5.73)

In forward flight 91 must be evaluated from Eq. 5.10. The flight condi-
tion is determined by a fixed value of CT and a known value of u. For a given
flight condition, the values of 6 and aR are evaluated using an approximate
trim calculation described in Appendix F. These determine 91 by Eq. 5.10.
Thus, a change in U, at a fixed value of CT' results in a change of 61 and Al,

which has a considerable influence on both the stability and response of the blade.

From Eqs. 5.1, 5.29, and 5.30, the blade response for this case can

be written as

X Cwet %
T - 2Reat /0.,40 Vr ew%+/u o2
4

X’Z 602

2 z 6.20-’("/5 X

A, X2 (¢ 1{A ) d (€
/y :} + 0

2 /

+A¢,}{ al‘l} e\-'(ch) Y% 1 las e‘; 2%, + (5.74)

by +/L bas
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As can be seen from this equation for the lower order terms (multiplied
by W), only the nonlinearities and the forcing have an effect, while in the
higher order terms (multiplied by uz), the nonlinearities, the parametric ex-

citation, and the forcing will all have an influence on the blade response.

5.5.3 Case C -- Forward Flight with Dominant Parametric Excitation

For this case, the flutter frequency wc = 1/2 + gv. As shown before

in this case, U = U.E (uo = o) and ul can be taken as ul = 1. Therefore,

the perturbation paiameter € = U. The condition for suppressing the secular
term for this case is given by Egqg. 5.50 or Eq. 5.52 which cannot be solved in
closed form. Conclusions regarding the behavior of Ao can be reached without
actually solving Eg. 5.52 by using a phase plane analysis as described in
Refs. 21 and 22. This method.-was applied to a similar problem by Tong (Ref. 7)

and Kevorkian (Ref. 14). Suppose Ao can be written as

Ao= g+ (Z,)*;g-uf? (5.75)
ng 722= f1= IAOIZ

From the last relations and Eg. 5.52

¢ (’;m Hpy Ksa +f3/C_;g)§— ('f—z;—/u: Ksr 1"]’1 Kaz) 7 = X(gf’?)

Y,

— (5.76)
2—3 = (Hyr * laa ’f¢r+fzksz)§ + (K - Mg /fsn'*lecsn)"ﬁ Y(gl'?)
¥

A singular point occurs when both expressions in Eg. 5.76 vanish

simultaneously; thus a singular point occurs at § = n = 0, then p = 0.

According to Minorsky (Ref. 21), the investigation of the behavior of
the equations near the origin can be limited to the linear system which can
be written as

J €

2% (Kar +ps K"R)g‘(/c:r‘/" Kff)?
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3% (/61177(4 /CSI)§+ ( Har s «CsR) i

(5.77)

A proof which justifies the neglection of the higher order terms in
Eq. 5.76 can be found in Minorsky (Ref. 21). As shown in Ref. 21, the
stability of the system in the vicinity of the singular (or equilibrium point)

can be qualitatively determined by using the characteristic equation

Kae t Ksp—S - Kaz * Ay Ksr
_ =0 (5.78)

Kar +/L"4 Ksr Kae “hy Kse—S

The solution of this quadratic equation for S yields
- — 2 / 2
St,2= + Kar T\ Ko™ - /Kz/ F fuy Ks/
which is also equivalent to
- 2 - 2
+ I3
Siq = ffm-(/ [ks| - K

2 pe 1] b (5.79)

According to Ref. 2|, for distinct roots of Eq. 5.79, the following

cases can occur:

(1) sl, 52

which is stable if Sl' S

real of the same sign. The singular point is a node
, are negative and unstable if they
are positive.

The roots are real if ul > K /lK | They will have the

same sign if

Hoe > | K5 ] \//a, . K

g1t
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or /“12< ’€z:+’f;; = Ik, ]
IKgl? kel

From the last two relations, the singular point is a node when

-2

— 2
Koz < g Ik, ] (5.80)
IKs [* /h}/2
The node is stable when Ezn < 0, and is unstable if EéR > 0. Recall
that
EZ: ICZ+L'\7

Therefore the node is stable when KZR < 0 and is unstable when KZR > 0.

(II) sl' 52 are of opposite sign. The singular point is a saddle
point and the equilibrium is always unstable. This will
occur when

- P — p
Kra < 185l \[ po 2o Ioar |

lms/l

or when

Iyl
Ingl*® (5.81)

Ve

(III) If S., S. are complex conjugates, the singular point is a

1 2
focus. For this case, the stability of the singular point
is determined by Re(s). If Re(s) < 0, the focus is stable;

if Re(s) > 0, it is unstable.

The roots Sl' S. are complex conjugates if

2
—2
nr < K (5.82)
/K5 [?

For this case, Eg. 5.79 can be rewritten as

St,2= Kir *clrsf \/ IKer |* - /Mz

I Ks|* (5.83)

74



The stability depends upon the real part of S:

If KZR < 0, the focus is stable

If KZR > 0, the focus is unstable

It has been shown by Tong (Ref. 75 that additional singular points be-
sides the origin can exist. These will have a relatively minor influence on
the considerations which will be given below; therefore, these additional

singular points will not be written out in detail.

In the analysis given above, the behavior of Eq. 5.52 has been analyzed
in the vicinity of the singular (or equilibrium point). Another item of major
importance is the determination of the conditions for the existence of closed
trajectoxry curves (or limit cycles) of Eq. 5.52 in the {,n-plane. For this
purpose, the PoincaréLBendixson theory can be used (Ref. 21). In order to

apply this theory the following quantity must be defined.

————

26 7
From Egs. 5.76

9X _ Kar + it K tpiKse 42 [ TP n Hsr

R

Y
v= 20X, 2% ‘ (5.84)

(5.85)
o _ = 2 292K, +2E87K
—= = K — fralis +f Kyg + 247 Ty &7 "3
27
and
V =2 (Keg t 2K 0%)
(5.86)

From Green's theorem

fp\?’ dgdy = .§6(Xd7— L ) (5.87)
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According to the Negative Criterion of Bendixson, if V does not change

sign (or vanish identically) with a region D of the §,n-plane, no closed

trajectory can exist in D.

Therefore, the following possibilities exist:

(a)

(b)

2
: > i >
If KZRK3R 0 (they have the same sign, P 0)

This means that V cannot change sign or vanish and the
integral (Eq. 5.87) cannot be zero. Therefore no solu-
tion of Eq. 5.52 can form a closed trajectory in the

£ ,n-plane.

’ < . . . s .
if KZRK3R 0 (i.e., they have different signs)

From Eq. 5.86

V= ki (Eii-+fz)

2K (5.88)

for p? < -(E;R)/(ZKBR), V will not vanish and Eq. 5.52 cah
have no solution which forms a closed trajectory in this
region. Therefore, if there exists (the negative criterion
of Bendixson does not quarantee existence) a solution of

Eq. 5.52 which does form a closed trajectory in the §,n-plane,
its minimum radial distance from the origin, pminz must

satisfy

2 -
S - 9
2Kae (5.89)

The upper bound of pmin can be estimated when rewritting

Eg. 5.52 in polar coordinates.
- o)

Let Aoz g-ﬂ,'qz j’e('

and KS -.:-IK;/ e"¢

from these and Eq. 5.52
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—_ = [Elg +/‘1/K5—I(OS(ZJ-¢ )+K3sz]_r

(b% [/fzr —/u4/fc5/sLn{2(Y—¢)+ Kz p ] : (5.90)

The upper bound will be estimated without making use of Bendixson's
negative criterion. The quantity p is always positive. Therefore, the right-
hand side of Eq. 5.90 will be monotonic and will not change sign outside of

the range

max [0, - K2R g /Ks/) Jo[_____g /fc_s;/
kie | h3gl K 3r LYY

From this relation, if Egq. 5.90 has a solution in the form of a closed tra-

(5.91)

jectory in the §,n-plane, its radial distance from the origin must be bounded

by Eq. 5.91.

The last bounds, Egs. 5.91 and 5.89, can be combined to give a bound

on the limit cycle amplitude, if it exists.

- 2 o
max (_ Kig ,- far , |Ks] )f_ S & —F22 +/L,__/_’f_§_/. (5.92)
2Rig Mg [ Ksrl Ml

Note that in both cases considered above, p is a monotonic function of
wl‘ .
For large amplitudes (i.e., large values of p), the behavior of p can

be approximated by

2P Tl
3% f

From Eq. 5.93, if K

(5.93)

IR < 0, p will monotonically decrease in the region
of large amplitudes; i.e., the solution will converge to a limit cycle if it
exists, or to a stable equilibrium point (or singular point). Therefore, this

represents a stable situation.

If K3R > 0, will monotonically increase in the region of large ampli-
tudes; i.e., the blade is always unstable, if the disturbance is large enough.

From Eq. G.71, it is clear thath3 depends mainly upon the nonlinear coupling
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of the system, so that the nonlinear coupling is the decisive factor at large

disturbances. From Eq. G.73, it can be seen that K_ depends upon both the

5
parametric excitation and nonlinear coupling with response due to forward
flight. Therefore, on the basis of this approximate analysis, it can be con-
cluded that the location of the singular points and the magnitude of the
limit cycle oscillation (if it exists) will depend upon the pafametric

excitation and nonlinear coupling.

In addition to the effects discussed, a change in the forward flight
velocity with CT fixed will affect‘KZR by changing 61, and Al according to Eq.5.72
discussed in the previous section. Therefore forward flight will considerably
influence the stability of the system and it will also affect all of the bounds

obtained for the limit cycle amplitude in this section.

The amplitudes of blade response can be obtained from Egs. 5.1, 5.20,
and 5.33.

) ) cweg oy cldwe,
Xy = 4 Real /Lo/on "Le +/,., A:[/Z 2
2

2 1
/’"(Ao)*Ao {ds} +/‘4 4 Cd%-l-- ..

B3 Ba (5.94)

+

Due to the convenient form of the solution (Eq. 5.94), it is possible to
rewrite Eq. 5.52 in terms of the actual physical quantities associated with the

problem in a manner described in detail in Subsection 5.5.4.

Let ~ ", = 12 ‘;Q%
x&-:EAZAO: E Aoe _
Then Eq. 5.52 can be rewritten as

r~

:‘_’lzz[lc“(e-e,)mu (Ao=doc ) +9(‘*’°‘2i) 1o+
d\l«o (] [
~ \* O APROEY .
potis (X2)" 4 1 % () (5.52a)
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When considering only the linear part of this equation which is equiva-
lent to Eq. 5.77, the last term in Eq. 5.52a can be neglected. Consequently,
the characteristic equation (Eq. 5.79) can also be rewritten in terms of the

physical quantities as

S1,2= (Kzg, )2(0'9¢)+ (esy, ) (ho-Aoc) X \//“2/"513/‘("20,)1(6'9:)*(kZ)/)I(A"')"‘)*(wC-zL )]Z

(5.79a)

The solution of the linearized system is the same as the one derived in

Appendix H for Egs. H.2 and H.3, and can be written as

L, = 5 %5, e

where ﬁl and ﬁé are equivalent to Dl' 02 used in Appendix H when K6 = 0 and
ung is replaced by uKS in the appropriate relations. As is shown in

Appendix H, Ao for the linearized system can be written as

: L‘J/u.%

R

A,-

=2 =
/2
M
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5.5.4 Case D, Forward Flight with wc =1+ €V

This is a case in which the flutter frequency is close to the forcing
frequency. Since the system is being excited at its resonance frequency, the
amplitudes of blade response can be expected to occur at moderate levels énly
when the excitation is assumed to be small (see Section 5.4.4). The excita-
tion is represented by uFo(wo,ec);uHo(wo,ec) where Fo’ Ho are given by
Egs. 5.36 and 5.37. In most cases considered,ec cannot be assumed to be too
small (see Section 7). Therefore, it will be necessary to assume that the
solution derived in this section is valid for small values of the advance

ratio U and small values of CT'

For this case, a complete phase-plane analysis similar to the one per-
formed in the previous section is possible, but cumbersome; therefore a some-
what different approach will be used. Using Egs. 5.1, 5.20 and 5.38, the solu-

tion for this case can be written as

T, | twe 2 [o Cwe 2
= 2 Real /AA(, "re +/l4.z Ao e +
7(2 1 /32
- L(1-We 45 — ¢ ¢
piia)" {2 e ) S L (1ol
b3 4
I 2 <.

(5.94)
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Due to the convenient form of the solution for this case, it is possible

to rewrite Eg. 5.58 in terms of the actual physical quantities associated with

the problem. For this purpose, it is convenient to define a gquantity

— 1 ~
X, = e Ao (5.95)
where Ao is given by Eq. 5.57. Thus, the first-order solution for the lag

motion, according to Eq. 5.94 is given by

X, = 2 Real( 7—(.2) = 2¢e" Rea.e(/r;)

(5.96)
Using Eqs. 5.59, 5.72, and 5.73 together with
We= 1+ EV
the following relation can be written
Ky = (K“/)(Q:_e.‘) + (k23) (Me=doc) 4 clw-1) '
£ £ € (5.97)

Using Egs. 5.95 and 5.97, together with y = uoel/zand wl =.€w°, Eq. 5.58

can be rewritten in terms of the physical quantities

X - %, 4 W X 7
Z%z = [ Kz, (0-6c) + /t,,,(A,—/\oc)H(wc-f)]"z tp R Xt ’tq(xz)*]

+ 1%, ()" + [ Ky () + Ko X2 ] X
/u.lf? +/LL3K7

(5.98)

— %
In the last relation, the term K3X§(X) is due to the nonlinear coupling
*

of the flutter mode, while the term u[KB(ié) + Kloié] ié is due to the non-

linear coupling of the flutter mode and the parametric excitation. The solu-

tion of Eqg. 5.98 in closed form is required in order to investigate the non~

linear response of the blade. Due to the complex form, Eq. 5.98, this would
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be very complicated; therefore, the linearized form of Eq. 5.98 as given by

Eq. 5.99 will be treated first.

:;2 = [K'ze‘ (9"9c) + Kay, (Ao’xoc) */‘*zk‘c] "?z
[

+/U«z Kq()zz }*4/&59 ‘/’/l.(sfff/

(5.99)

Let —

X, = glfdﬂy

(5.100)

then the real and imaginary parts of Eq. 5.99 yield a system of two first-

order differential equations:
d -]
d——f;: [(Kza. )e (6-6c)+ (Kz},,)R th ijf ~[(/fzo.)1 (9-6.) +(Kz),,)r(xo‘xoc)
s(we =1) + p* /c}}_]nz bt Ko €+ }cqrwz]

3
L 2T el

(5.101)
dn T | L -
;—:é :—.[("Eze,)g {e"ec }1"&(;)\, )R ()\o‘)tog) 7‘- f(,GR]')Z +
[ (iea,); (-0t p s + an) Do-doc)+ (Cucfl)] £+
. "/az("fqrg‘ }qu'q)_—#/u ’fqz+/u3ic,7[
' (5.102}

82



The solution to Egs. 5.101 and 5.102 can be found in Ref. 22, and it
is analogous to the treatment given to Egs. 5:77 in Subsection 5.5.3. For the

sake of completeness, the solution of these equations is given in Appendix H.

The solution of the homogeneous linearized system is given by Egqs. H.6

and its stability depends upon the roots of the characteristic equation:

Su22 (ag)(6- 6)#(Kyy,), (Yo=doc) 2 \/ p kgl - [lezq,) (5 9)+(Ku (ho-doo) +ew,-1) 447 K ]

(5.103)
The linearized solution is stable if Re(Sl) and Re(Sz) < 0, and the stability

boundary is given by
Re(s,)=0 © (5.104)

The solution to the complete nonhomogeneous equations is given by

Eq. H.1l4. From this relation, an approximate relation for Ao can be written as:

It r- Sid, = S, :
A, = 1 ebﬁo[lge °+Dzez°+§P+o72P] (5.105)

It is important to note that due to the nonhomogeneous form of Egs. 5.101 and
5.102, the flutter mode for this case will always be excited. This is also

evident from Eg. 5.105.

As mentioned in Subsection 5.5.2, for trimmed forward flight with a
fixed value of C , the variation of Y will strongly affect the quantity
(6 - ec) and (Ao - Aoc)' Thus, the stability boundary represented by Eg. 5.104

will be strongly dependent upon the advance ratio.
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SECTION 6

UNIFORMLY VALID SOLUTIONS

6.1 Uniformly Valid Expansion

From the numerical results obtained, which will be discussed in detail

in the following section, it is clear that the cases of practical interest will

occur at values of collective pitch 8 < Gc. Therefore, it is important to ex-

tend the validity of the solutions obtained in the previous sections (which

are valid near the critical condition) to a region which extends below the

critical condition.

This problem is discussed in detail in Ref. 8 where a conventional

method (Ref. 6) for matching asymptotic solutions near and below the critical

condition is used.

) n
The matching is achieved by using an additional small parameter € which

has the following properties:

3

"\
€ is related to the parameters of the problem by Eq. 6.1:
9'—'6C = - £

£
The last equation can be also rewritten as

E=__E __ 4

- 6¢ 6,

(6.1)

(6.2)

In the cases with forward flight, the perturbation parameter € can be

. . 2 .
associated either with € = U (Cases B and D) or with € =

U (Case C).

From the numerical results presented in Section 7, it is clear that in

trimmed forward flight at fixed C_, the range of variation for le - GCI is

OCIO-OC/é .IZ

.while the range of variation for u can be taken as
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o<a;o £.3

Then for Cases B and D

~ 2
£=- - -1 (6.3)
6-6. 8y
) ny . . ,
and the requirement that € < 1 may not be satisfied for certain combinations

of CT and M.

For Case C

E=c o -- L
8-6. 6, (6.4)

Therefore, for this case, the uniformly valid expansion will be correct for
M < 0.15, approximately.
If the expansion near the critical condition and below the critical

condition are denoted by subscripts "n" and "b", respectively, the requirement

for matching the solutions is (Ref. 8):

Xu] X,

x X2/
t/n (6.5)

£<X

m
as €, € * 0 with wl fixed, for a =1/2, 1, 3/2 and the uniformly valid ex-

pansion can be written as

4
+ - (6.6)
X

X2 X2 h )CZ b 2 common

%, X, X [ X,
where the last term in Eq. 6.6 is the common part in the expansions
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{‘X, ) xf
X,Z n and X2 6 .

6.2 Uniformly Valid Solutions for the Various Cases Considered

The uniformly valid solutions for the four cases considered in

Section 5 can be easily obtained.

Case A, Hovering Flight (U = 0)

For this case, the solution below the critical condition is
’)(,z <0 while X is given by Egs. 5.65.
b 24y,

According to Eq. 5.72, K, is linearly proportional to 6_, below the

2 1’
critical condition 91 =0 -~ec and is a negative quantity. For this case,

the last term in Eq. 5.47 can be neglected and its solution can be written as
LR
Ao=h e " (6.7)

- where Ai is a constant determined from the initial conditions. The solution

will be exponentially decaying below Oc and Eqg. 6.5 is satisfied.

Case B, General Forward Flight Case

1/2 and the flutter frequency

As mentioned before, for this case u = €
can be arbitrary, except wc = 1/2 + €V or wc = 1 + ev. According to Subsection
5.5.2 for 6 < Gc and 4 < 0.3, Eg. 5.46 represents an exponentially decaying

function. For this case Ao can be approximately taken as

K,¥
Ap=H: e " (6.8)

The solution for{nxf} is given by Eq. 5.74. The solution below the critical
%2’y

condition, with Eq. 6.8, will be'composed only of the parts of Eq. 5.74 which
are independent of Ao. These parts will match and Eq. 6.5 will be satisfied.
From Egqs. 6.6 and 5.74, the uniformly valid asymptotic expansion can be

written as
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we s Qo oY
= ZQC&Z Aa 'U;,} e,cw o+ 2 e '’
/& A /L‘ 602

;(2
(,2 Yo ".(1—('”‘)('%
+ uzAal "(2 e we¥e +/L(2(Ao)* s (e
/
/32 by3
'/'/;,ZAO ay c(‘f"'wc)%-# ) ars 6‘: ¥
byy /b‘ bys
[« 2 | @it
4/(42 (Ao) (AO) 3 +/LL
3 546
3
(6.9)

Equation 6.9 is similar to Eq. 5.74. The only difference is that for
Eq. 6.9, the various quantities a ,, b ,, 0, 62, ayz - xHo, Yoor -+ etc.,
must be evaluated at the actual value of 6 and Ao as determined by the trim

calculation, instead of evaluating them at the critical condition.

Case C, Forward Flight with Dominant Parametric Excitation

For this case, the flutter frequency is W, = 1/2 + €v and u = g.
Below the critical condition Ao can be taken as given by the last equation
on page 46. The flutter mode is not excited and will be a decaying oscillation.
Thus, the solution below the critical condition will be independent of Ao and

will match the appropriate part of {Xh , satisfying Eq. 6.5. From Egs. 5.94
X,
n

and 6.6, the uniformly valid expansion can be written as
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(6.10)

As pointed out in Subsection 6.1, Eq. 6.10 is valid for 0 < u < 0.15.

20 By 9y 1
be evaluated at the values of 6 and Ao as determined from the trim calculation.

In Eg. 6.10, the various quantities o , 83, a., Bl, ... , etc. muét

Case D, Forward Flight with wc =1 + €V

61/2

For this case U = uo and uo = 1. Below the critical condition Ao
can be approximately determined from Eqs. H.1l4 and H.1l5 given in Appendix H

and the solution for {il} is given by Eq. 5.94. As pointed out previously
2 )b

in Subsection 5.5.4, for this case, due to the nonhomogeneous form of Egs.

5.101 and 5.102, the flutter mode will always be excited; therefore, the

matching procedure is no longer simple. The solution. } can be
xzh,

obtained only by solving Eq. 5.98 which is difficult to obtain in closed

form; therefore xd}
X2J common

cannot be evaluated. It can be concluded,
therefore;, that a uniformly valid expansion for this case is difficult to:
obtain analyticaliy, Therefore, this case can be handled most conveniently

by direct numerical integration. As mentioned in Subsection 5.5.4, the analyti-
cal treatment for this case is correct only for small values of the harmonic
forcing which implies low valﬁes of u(i.e., 0 < u < O.ZO) Therefore, direct
numerical treatment of this case will have the additional advantage of not

being limited to small values of U and CT'
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SECTION 7

RESULTS AND DISCUSSION

7.1 Numerical Quantities Used in the Calculation

In this section, the numerical values of the various quantities used in

the computation of the results are given:

(1)

(2)

(3)
(4)

(5)

Mass distribution was taken as a constant along
the blade span

Cd = 0,010 in all of the calculations

Lizt—curve slope, a = 21

Equivalent flat-plate area was . taken as f/1rR2 = 1/100
unless otherwise stated. This value of £ results in

CDp = 0.01l. This quantity is typical for modern well-
designed helicopters

The mode shape in flap is the same as the mode shape in lag;
both were approximated by the first nonrotating mode shape

which can be approximately written as

17 (.31)[4—L/>?,—(4->E)q] C(7.1)

This relation was taken from Ref. 12.

Equation 7.1 satisfies all of the boundary conditions of the
problem. As pointed out by Bramwell (Ref. 20), to get the correct
first rotating flapping mode shape of a hingeless blade, as many

as six or more expressions of type Eq. 7.2 should be combined:
; %o (1-%.)¢"°
flf a [1-(4+3) %o - (1-X,) (7.2)

Approximation (Eq. 7.1) to the mode would have influenced the re-

, sults to a certain degree if the rotating flap and lag frequencies

were calculated by using the (EI)y, (EI)z' and m distributions.
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(6)

(7

(8)

(9)

(10)

In fact, in all of the calculations, the values of B}l, BLI were
selected so as to give a certain wc, or Gc and the mode shape

was kept constant during all of the calculations.

The flap and lag coefficients, Fi, Li defined in Appendix C (and
mass quantities defined in Appendix B) were numerically evaluated
using a seven-point Gaussian integration. This integration scheme
is accurate up to polynomials of degree 13 (Ref. 25). The weights
for Gaussian integraﬁion were taken from Ref. 26. The numerical
values for these coefficients for 2/R = 1.0 and A= a, B = 1 are
given in Table 1. A

The quantities 81, 31, %1, 81, %i(l) used in the trim calculation
described in Appendix F weie evaluated using the approximate equa-
tions given for them in Ref. 20. The approximations of these rela-
tions in Bramwell (Ref. 20) are based upon a concept of an egquiva-
lent rotor with an elastic hinge offset and are sufficient for

trim calculations. The concept of equivalent hinge offset employed
by Bramwell is not similar to Young's more widely used concept of
equivalent blade because its value is associated only with the fre-

quency (Ref. 27).

The range of thrust coefficients used in the calculations is
0.005 < CT < 0.015. The practical range is 0.005 < CT < 0.01.
The range 0.005 to 0.015 was selected so as to include cases which

could occur during violent maneuvers or gusts.
The range of frequencies for flap was taken between

<w. <1.
1.05 wFl l.6

For lag, the range was selected as

< <1l.
0.8 le 1.5

For most cases devoted to studying the flap-lag-type of
instability, the lag frequency was taken as greater than one to

avoid the possibility of air or ground resonance (Ref. 28). A
limited number of cases with lag frequencies below one were
studied in Ref. 9.

The range of Locke numbers was taken as
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§£y=10
.All calculations were performed for either y = 5, oi Y = 10.

The Locke numbers more representative of a hingeless helicopter

blade are 7 < Yy < 10 (Ref. 28).

(11) Unless otherwise stated, the solidity ratio in all of the calcu-

lations was taken as

g = 0.05
(12) The range for the structural damping in the calculations was
taken as

0 <n < 0.02

sF1’ "sLl

This range is sufficient to clearly illustrate the effect of
structural damping. In some modern elastomeric bearings, the

value of the structural damping can be as high as 0.05.

7.2 Description of the Methods Used for Obtaining Numerical Results

The results presented in this section were obtained by two distinct

methods:

(a) The expressions obtained by solving Egs. 3.23 and 3.24 by
the perturbation method were programmed on a computer, to
obtain the analytical solution in numerical form.

(b) For a certain number of cases, the solutions were obtained
by direct numerical integration of Egs. 3.23 and 3.24, using

the predictor-corrector method (Ref. 29).

The reason for numerical integration was twofold. First, it served as

a convenient way to check the solutions obtained analytically. Second, in some

cases, the two methods were complementary to each other; i.e., by knowing the
solutions from numerical integration, it was easier to derive them in analytical

form.

It should be mentioned that the a priori knowledge of the limit cycle
amplitude as obtained from Eq. 5.66 was extremely helpful in obtaining the limit

cycle by numerical integration. Specifically, the low damping in lag and the
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the time scale wl = ewo in which the amplitude growth is represented,’combine
so that the time required to reach a limit cycle can be of order wo = 600, if
the initial conditions are not close to the limit cycle value of the amplitudes.
This can be shown analytically, also. This effect would preclude the use of
numerical integration for obtaining limit-cycle amplitudes in hover without

a priori knowledge of the value of the limit-cycle amplitudes.

Finally, it is of interest to note that the predictor-corrector method
is equivalent in accuracy and computing time to the fourth order Runge Kutta
method. At first glance, it appears that the predictor-corrector method should
be more efficient in terms of computing time because it requires one half the
number of points per interval of integration as the Runge Kutta method. As
pointed out by lLapidus (Ref. 30), the numerical stability of the predictor-~
corrector method for linear problems is worse than that of the Runge Kutta
method by a factor of two (approximately). Therefore, in order to obtain the
same accuracy, twice as many intervals are required in the predictor-corrector
method. This effect will cancel the apparent advantage of the predictor-corrector
method due to the smaller number of points per interval. For a nonlinear analy-
sis, this situation will be somewhat modified, but numerical experiments per-
formed indicate that the two methods are essentially equivalent in computing

time when requiring the same amount of accuracy.

7.3 Results for Hovering Flight

7.3.1 Stability Boundaries in Hover Without Structural Damping

From the solution to the linearized problem, described in Section 4,

with no structural damping (n = 0), stability boundaries resembling

sF1 ~ "sLl
ellipses can be drawn. The value of Gc specified on the curve is the value
of collective pitch above which the linear system becomes unstable in hover.
The unstable combinations of Bfl and Eil are given by the area inside of
the curve.

Figures 3 and 4 show the stability boundaries with the inflow evaluated
from Eq. 5.5 for hingeless elastic blades with Fi, Li as given in Table 1. The
limit cycle amplitudes which would occur when crossing into the post-critical

range 0 > 6c were calculated using the equations and the criteria given in
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Subsection 5.5.1l. The dotted part of the stability boundaries represents combi-
nations of flap and lag frequencies such that unstable limit cycles occur. In
order to check upon this prediction of stable and unstable limit cycles, three
points along the stability boundary (Fig. 4, Sc = 0.20), denoted by a, b, c

in Fig. 4 were also checked by numerical integration. The results are shown

in Figs. 5, 6, and 7. Figures 5 and 6 indicate the stable limit cycles, while

Fig. 7 shows an unstable limit cycle.

From Figs. 3 and 4, it is clear that by increasing Y, the unstable
areas enclosed are considerably increased.* The inner curve Gc = 0.175 in
Fig. 4 shows approximately the minimum value of Gc for Y = 10 below which

no instability can occur.

Figures 8 and 10 show the appropriate stability boundaries for the
elastic blade where the inflow as represented by Eq. 5.5 is replaced by the
inflow calculated from Eq. 7.3.

>o:_9£[\//+2_"9_ ,/]
) 16 aC : (7.3)

This inflow relation is equivalent to taking the induced velocity at 3/4R

of the blade as representative of the constant induced velocity over the whole
disc. As pointed out in Appendix D, this assumption gives values of CT which
are not in agreement with those given by momentum theory. The use of Eq. 7.3
in the computation of the stability boundaries decreases the size of the un-
stable areas enclosed by the stability boundaries. The physical explanation

for this effect is clear if the effective angle of attack defined as

o_(:fqe- gz Mo

fﬁ(ﬁ)z—é-‘”‘-l ;€ ={£)2{4“F2 (7.4)
R Mg 2 (R Mg
is considered, as the physically meaningful quantity.

*
Stability boundaries given for Yy = 5 and Y = 10 can also be considered to be
representative of the lift deficiency function of C(k) = 0.5 (with respect to

Yy = 10). (C(k) for this case is not frequency dependent (Ref. 31)).
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Equation 7.3 yields higher values of Ao than Eq. 4.6 for the same value
of O; therefore, from Eq. 7.4 it is clear that the use of this inflow relation
yields lower values of «, resulting in a system which is more stable than in

reality.

Finally, if Eq. 7.3 is replaced by the assumption that constant induced
velocity is that which would be obtained by taking the angle of inflow at

3/4R as representative of the blade, the following relation for‘Ao is obtained

- __ |+ 236 qu ]
o V (7.5)

Of the various inflow relatlons (1 e., Egs. 5.5, 7.3, and 7.5) the highest
value of inflow, for a given value of pitch setting, is obtained from Eq. 7.5.

A typical stability boundary obtained using Eq. 7.5 is shown in Fig. 9. Com-
parison of Figs. 4, 8, and 9 shows that this assumption results in a further re-
duction in the unstable area inside the stability boundary.

Figure 10 shows the comparison of the stability boundaries obtained by
considering the elastic blade as modeled in this report and comparing it to the
centrally-hinged, sbring—restrained blade for which the stability boundaries
were obtained by Ormiston and Hodges (Ref. 3). Only the case Y = 5, Gc = 0.20
is considered. As seen, the elastic modeling of the blade results in a slight
increase in the unstable area inside of the stability boundary, while at the

same time the location of the whole ellipse is shifted in the 5%1, GLl plane.

Comparison of the two stability boundaries given in Fig. 10 reveals a
significant effect of the mode shape in shifting the stability boundaries.
This result implies that a hinge offset should be included in the centrally-

hinged, spring restrained rigid blade model of the elastic hingeless blade.

'~ 7.3.2 The Effect of Structural Damping on the

Stability Boundaries

Figures 11 and 12 show the effect of structural damping in lag on the

value of Gc for the following four cases:
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(1) wFlO = 1.2 leO = 1.03861 nSFl = 0.005 Y = 10
wFlO = 1,2625 leO = 1.1 nSFl = 0.005 Yy = 10
wFlO = 1.200 leO = 1.1375 nSFl = 0.005 Y = 10
wFlO = 1.175 leO = 1.33319 nSFl = 0.005 Y = 10

As seen from these curves, the structural damping has a very strong

effect on the value of Gc. The increase in Gc due to the addition of nSLl is

very strong for small additions of structural damping and levels off around

4 /a.
o

a
n5L1 = 0.015. This is mainly due to the low value of C

The effect of the structural damping on the stability boundaries
is very important because it raises the values of BC beyond practical
values of collective pitch, and consequently (see Fig. 4) it raises the mini-

mum value of 0 below which no instability in the linear sense can occur.
c

The amount of structural damping in flap has no effect on the value of
Gc, except that it changes the third significant figure in ec, within

< <
0 Nep1 0.02.

7.3.3 Limit Cycle Amplitudes

For the cases where stable limit cycles exist, see Figs. 3 and 4. The

limit-cycle amplitudes can be obtained from Eq. 5.66.

From Eq. 5.65, for values of g, e/ec < 1, the maximum values of Xl’ x2

at their limit cycle value can be obtained approximately from

/Ao l ’fe,;,

where pz c is given by Eqg. 5.66 and

X
X

v | [V
= zfe.cié 4 (7.6)

Yl

2Jec
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A typical limit-cycle amplitude-response curve as obtained from Eq. 7.6

is given in Fig. 13 and is indicated by the full lines.

In order to check the results obtained from the perturbation method,
these results were also obtained by numerical integration. As seen from Fig. 13,

the agreement between the results is quite good.

Figure 14 shows the effect of the structural damping on oy é for a
typical case. As can be seen, the decrease in pz c starts to level off

Ly
around nSLl = 0.015.

To illustrate the effect of the structural damping on the location
‘and steepness of the limit cycle, amplitude-response curves, the points cor-

responding to nSL = 0.0025 and nSL = 0.00625 of Fig. 14 are plotted

1= 9% Mgy 1
in Fig. 15. These curves were calculated using Eq. 7.6. As seen from Fig. 15,
the structural damping changes drastically the location of the limit-cycle re-

sponse curves. Increasing the value of nSL tends also to reduce the steepness

1
of the limit~-cycle-response curves.

The steepness of the limit-cycle-response curves is an indication of the
stabilizing effect of the nonlinearities of the system. It also indicates how
far Bc can be exceeded before the amplitudes of response become too large to be
of any practical value. From the results presented in this section, it can be
seen that the limit-cycle amplitude response curves are quite steep. This
means that the nonlineafities in the system are weak and their stabilizing effect
is not strong enough to reduce the amplitudes of limit-cycle response to practi-

cal levels once the critical condition is exceeded.

7.4 Results for Forward Flight

7.4.1 Trim Curves

As pointed out previously in this report, the effect of forwa;d flight
can be correctly investigated only when considering the behavior of the rotor
at a fixed value of CT while varying u. This can be accomplished by requiring
that the rotor be in a trimmed condition. Using the trim procedure described
in Appendix F, a subroutine which calculates the trim conditions has been in-

corporated in the two computer programs (one using numerical integration and
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one using the analytical expressions of the perturbation method).

A typical set of trim curves for 5;1 = 1.20 and two typical values of

CT are shown in Figs. 16 and 17. It is clearly evident from these figures
that an increase in MY is always first accompanied by a decrease in 6 and Ao

up to v U = 0.2, after which 8 increases quite rapidly.

7.4.2 Effect of Forward Flight from Numerical Integration

Before starting to discuss the results obtained from the use of the
perturbation method, it is instructive to look at a typical case in forward

flight which has been solved by numerical integration.

The results showing the amplitude response for trimmed f£light at
CT = 0.006 are given in Fig. 18 for various values of H. The range applicability
of the analysis done in the present report is

o</u,<.30

For the case considered, the 0 < Oc; therefore, the system is below

critical and the amplitude grows with increasing py. The quantity (xl)av

plotted in the amplitude response curves is defined by

6( ) = X/ max - leo‘n 7.7)
"ay 2 (7.

It is necessary to use Eq. 7.7 because the natural equilibrium condition

defined by Egs. 3.20 and 3.21 is defined for U = 0. Therefore, the equilibrium
position about which the blade will oscillate in reality will be a function of
U. This effect is very small in lag (therefore only the max. value of X5 is
plotted) , but considerable in flap. As seen from Fig. 18, the increase in for-
ward flight speed increases the amplitudes of response. Below the values of |
the appropriate values of § are given for trimﬁed flight at fi#ed CT. At

B = 0.1, 0 is much lower than ec and the blade response is moderate, and

(Xl)av > Xp*

For py = 0.4, 8 = 0.2936 which is only 5% less than ec; therefore, the

typical behavior of the lag degree of freedom near the critical condition mani-

fests itself by a sudden growth in X2-
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' 7.4.3 Effect of Forward Flight on Case B

This’cése,represénts the general-forward and flight case with U = €

1/2

.and_wé # 1 + €V or wc = 1/2 + €V. For this case two possibilities exist:

' w

(2)

The cambination of C,, u and the structural damping in

lag nSLl result in a flight condition for which the col-’

‘lective pitch is below critical (i.e., 6 < Bc). The blade

response. is given by Eqs. 6:8 and 6.9. This case repre-

sents essentially the forced response of the system be-

" cause the flutter mode is a decaying oscillation. The

flutter mode is a decaying oscillation because

2

- 9"9( H /\ —Xoc "
"'yz = (."zel)g = +( “')“—::;_—— : (7.8)
is usually a-relative}y_large negative quantity.

The combination of Cpr-M and low or zeio_structurql
damping can result in a>flight condition for which
0> eé. In this case, the blade response is de- ‘
termined from Eqs. 5.74 and 5.70. The stability in
this case will be determined by Kops K3ge and Kgpo.
As shown in Subsection 5.5.2, the quantity which de-
termines the stability is . )

R L*

Hogs pd Kge= (Kag) 52+ puit Har +{las) Ao-doe (7.9)
R ME A
Stable limit-cycle oscillations can occur when
2 ) . .
> < . 7.
Kor +u° K6R 0 and K3R 0. The guantlty in Eq. 7.9
is strongly dependent upon the trim condition through
the variation of 61 = (6 - 9c)/u2 with forward flight.
The amplitude growth in this case occurs in the time
scale ¢1 = ewo = uzw. The quantity Ao governing the
postcritical amplitude response can be written in the

following functional form as

Ao = Ao ( ﬁ;ﬁk ).f;;ioc"/¢‘¢?
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The two possibilities mentioned above are illustrated by the numerical

results given below. A representative case was chosen with the following

properties.
Wi = Gm = 1.175
leo = le = 1.33319
w = 1.32641 0 = 0.357523
c c
Y =10, © = 0.05, c, =o0.01, a=2m
_ (o}
CDp = 0.012
Ngry = Ngpp = ©-00°
CT = 0.01

For this case, due to the presence of the structural damping 6 < ec,
Figure 19 illustrates the blade response at fixed CT as a function of u.
At four values of u(y = 0.1; 0.2; 0.25; 0.32) the values of the collective
pitch 6 as obtained from the trim calculation are also given. The dotted
lines in Fig. 19 represent the results obtained by using Egs. 6.8 and 6.9.
The flap and lag amplitudes were taken as the maximum values occuring between

250 < Y < 350, the quantity (xl) is defined by Eq. 7.7. Due to the re-

marks concerning the validity of :ze uniformly valid expansion made in

Subsection 6.1, the same curves were also calculated by direct numerical in-
tegration. The results from the numerical integration are given by the full
lines in Fig. 19. The agreement between the two sets of curves is quite rea-

sonable.

In order to show that Egqs. 6.7 and 6.8 represent correctly the time
histéry of the blade response, the time history for the blade response at
H = 0.25 was obtained by numerical integration and is given in Fig. 20.
Figure 21 represents the same blade response history as given by Egs. 6.7 and

6.8. The two sets of curves are quite similar.*

Figure 22 shows the blade response amplitudes as evaluated from Egs.
6.7 and 6.8 for CT = 0.0078. As can be seen, decreasing CT reduces the blade

response levels.

* .
From a mathematical point of view, the results of the numerical integration should

be harmonically analyzed, and the coefficients for a02’ b02’ a13, bl3' .e. , etc.,
should be obtained. These should then be compared to the same coefficients as ob-

tained from the perturbation method.
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Considering the same case for which the relevant quantities were

given above, with structural damping set equal to zero (nSF1 = 0), the

= s
blade response in the postcritical range (Q > Bc) can be con;idered. Removal-:
of the structural damping results in a new value for the critical value of
the collective pitch Bc = 0.20 (seé gléo Fig. 12). The blade.response ampli-
tudes are given in Fig. 23 for CT = 0.0078. The curves given in Fig. 23 were
evaluated using Egs. 5.70 and 5.74. As.can be seen, the postcritical region
is characterized by large amplitudes in lag. Although this is a stable limit
cycle oséillétion, the amplitudes in lag are so large that the results do not
have any practical significance. By comparing the blade response at 0 < 6c
with the response at 0 > Bc (Figs. 19 and 23), it is interesting to note that
below the critical condition the amplitudes in flap are usually larger than
in lag. While in the vicinity of Gc and above it, the lag amplitudes are
much larger than the flap amplitudes.

Comparing Fig. 22 to typical blade response in hover, Fig. 13, it is
seen that forward flight tends to reduce (Ile)/(|x1|).

The effect of trim at fixed CT on the stability of the blade and the
amplitudes of the blade response are illustrated by Figs. 24 and 25.
Figure 24 shows a plot of the quantity defined by Eq. 7.9. As can be seen,
this quantity is considerably affected b& u. Figure 25 shows a plot of
Pg.c. as calculated from Eq. 5.71. This quantity which determines the magni-~
tude of the blade response is also considerably affected by the Uy through the

requirement of trim at fixed CT.

7.4.4 Effect of Forward Flight on Case C

The flutter frequency for this case is mc =1/2 + €v and Y = E.

In this case, parametric excitation will be the predominant effect.

From the stability boundaries given for y = 5.0 and Y = 10 (Figs. 3

1 = nSLl = 0 for this

case will be so high as to have almost no practical value. Adding a small

and 4), it is clear that the value of Bc, even with nsF
amount of structural damping (nSLl = 0.005) will increase ec even further.

Thus it appears that the cases of interest would be 0 < Gc, which would re-
quire the use of the uniformly valid expansion. As mentioned in Subsection 6.1,
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the validity of this expansion is good for u < 0.15. For such low values of
forward flight, it is doubtful whether parametric excitation could have a

significant effect.

As shown in Subsection 5.5.3, the solution for this case is given by
Eq. 5.94. It has been shown that in the vicinity of the origin, the stability
is governed by the real part of s; where sy is given by Eq. 5.79a, page 46.
When Real (Sl) < 0, the system is stable and for Real (Sl) > 0 the system is
unstable. Also due to the homogeneous form of the linear part of Egq. 5.52,
the flutter mode below the critical condition will not be excited. It is also
shown in Subsection 5.5.3, that if a closed trajectory (limit cycle) exists
its distance from the origin will be bounded by Eq. 5.92. Also, for stability

in the nonlinear range, it is required that K < 0. It has also been shown,

R
by applying the perturbation method in the neighborhood of the critical con-
dition, that the location of the equilibrium point and the magnitude of the
limit-cycle amplitude (if it exists) will depend upon the parametric excita-
tion. The blade response up to the first order can be approximately written

as

X,z 2 r Real | Aol ¥, 9-6c . Mo-Aoc
25 M [ a T )]
(7.10)

Due to the large values of GC for this case, no numerical results are

given since they would be impractical.

7.4.5 Effect of Forward Flight on Case D

, . 1
The flutter frequency for this case is wc =1+ €v and U = € /2.

In this case, parametric excitation has an effect, but the forcing will be pre-

dominant because the system is excited very close to its resonant frequency.

Near the critical condition, the flutter mode is determined by Eq. 5.58
or EqQ. 5.98. The stability of the system near the origin depends upon the sign
of Re(sl), forbRe(sl) > 0 the system is unstable and when Re(sl) < 0, the system

is stable. The linearized system is nonhomogeneous, Egs. 5.101 and 5.102.
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Therefore the flutter mode is always excited the same is true for Eq. 5.98.
The solution for this case is given by Eq. 5.94, and up to the first ordeg,

the lag motion can Be approximated by

Z/uﬂeaﬁ[A(GGc X Xoc /u")l’)]

It should be noted that the ana1y51s for thlS case was performed with the

~ assumption that CT and U are small.

For numerical calculations, a representative case with the-following

properties was chosen:

wFlO = Wpy = 1.20

w = = -

L10 L =1 03861

w_ = 1.04146 8 =0.20

C C

Y = 10, ¢ = 0.05, cy =0.01 a=2m

o )

ch = 0.012

Nsp1 = Ngpp = ©2-0
Cp = 0.0080

For the value of CT chosen above 06 > ec.

‘Numerical results for this case can be obtained either by integrating
numerically Eqs. 5.58 or 5.98, and then making use of Eq. 5.94, or by using
the numerical infegration program. For convenience, the second method was
used. The results showing the blade response amplitudes are given in Fig.26.
As can be seen, this case is characterized by large amplitudes of blade re-
sponse which become very high even for moderate values of forward flight.

Therefore, flutter frequencies W close to w, = 1 should be avoided in practice.

Numerical integrations done for this case indicate that the special ex-

pansion used for Case D, and phy51cally characterlzed by the beating phenomenon

as represented by the term é -ivu wo in Eq. 5.105 (or in Eq. 5. 57), is valid up

to the advance ratios of u < 0.2.
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SECTION 8

GENERAL EQUATIONS FOR NOWLINEAR, COUPLED FLAP-LAG-PITCH
MOTION OF HINGELESS HELICOPTER BLADES

8.1 Introduction

Although research in the field of aeroelastic problems of helicopter
blades, both hingeless and articulated, has been going on for a considerable
amount of time (Ref. 32), a complete set of consistently-derived equations
for nonlinear, coupled flap-lag-pitch motion of hingeless (or even articu-
lated) helicopter blades is not available in the literature. The author be-
lieves that the lack of these equations has acted as an obstacle in the de-
velopment of reliable analytical methods for predicting rotor blade stability
in the range where the amplitude of the bléde motion is large, because most
" of the work in this field was restricted to solving a special system of equa-
tions derived under a particular set of simplifying assumptions. Thus, the
basis for a meaningful comparison of the results obtained by various re-
searchers was not available and the comparisons were usually of a qualitative

nature.

It is instructive, therefore, to review the various systems of equa-
tions available in this field. In this review, both the linear and nonlinear

equations of motion will be considered.

The best system of equations is the one derived by Miller and Ellis
(Rgf. 11). This system of equations, which was derived in order to treat
linear blade response problems, identified all of the important physical
effects associated with the coupled flap, pitch and lag motion of the blade.
Another advantage of this derivation is that it also considered distributed I
torsional effects and some finite displacement effects, like effects due to
large coning angles. Another useful device used in this derivation was the
modeling of the blade by a concentrated mass at the blade c.g. offset by a
distance x_ from the elastic axis. Finally, the last advantage of this deriva-

I
tion is its clear treatment of the derivation of the aerodynamic loads.

Chronologically, the next system of equations was derived by Houbolt
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and Brooks (Ref. 10). The purpose of the authors in Ref. 10 was to derive

a linear system of.equations for coupled flap-lag-pitch motion; as such,

their derivation was quite successful. They succeeded in deriving an engineer-
ing beam-type theory for treating the elastic deformation in flap-lag and
-torsion of thin elastic rotating beams in a consistent manner. The linear
inertia loads were also consistently>and systematically derived. However,

the Coriolis ine;tia load, due to the elastic shortening effect, was not in-
cluded in their derivation. An additional point in favor of the Houbolt

and Brooks (Ref. 10) derivation is that it contains some of the elements re-
quired for extending the derivation into the nonlinear range. Their treatment
includes finite, spanwise varying, *built-in twist and offéet between the blade
elastic axis and the line of cross-sectional centers of gravity. However, in
these equations no provision was made for treating built-in coning and the
aerodynamic forces were not treated. - The system of equ;tions derived in

Ref. 10 has been used in a number of papers dealing with blade flutter.

The equations of motion derived in Ref. 10 have been extended by
Lemnios in Ref. 33 fo include the Coriolis force in the chordwise direction
due to flapwise bending (elastic shortening effect, see Eq. 3.9). In addi-
tion, the aerodynamic terms of the equations of motion were treated in detail
in Ref. 33. The only nonlinear effect taken into account by Lemnios is the
elastic shortening effect, while many other second-order effects associated
with the inertia-loading terms have not been considered; thus, his equations
are not consistent. 1In Ref. 33, only the offset between the elastic axis and
the blade center of gravity was considered. Built-in twist and distributed

torsion were both treated.

\

A further improvement of the equations of motion derived by Houbolt
and Brooks (Ref. 10) was made by Pizialli (Ref. 34). This system of equations,

although still limited to the linear range, had the following improvements:

1. Built-in twist as in Ref. 10
2. Noncoincident and nonstraight cross section; e.q.,
centroid and elastic axes which do not pass through

the rotor axis of rotation.
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3. Details of articulation such as to include:
(a) Root elastic boundary conditions
(b) Radial and chordwise hinge offsets
(c) Hinge inclinations

(d) Pitch axis offset and inclination

Another system of equations of motion has been derived by Bielawa
(Ref. 35). These were derived for the purpose of investigating the higher-
order effects due to both elastic root torsion and distributed elastic torsion
in the spanwise direction. 1In order to simplify matters, the location of the
blade elastic axis, the blade center of gravity, and the blade aérodynami;
center were assumed to be coincident in each cross section of the blade;
thus a large number of second-order effects vanish. Large elastic displace-
ments in flap and lag were assumed.’' On the other hand, the Coriolis loads
due to the blade shortening effect were neglected. The effect of large dis-
placements on the aerodynamic loads was not carefully treated. Thus, no
clear picture of the various approximations involved could be obtained from
Ref. 35. The main contribution of Ref. 35 is a careful and detailed treat-
ment of the various to;sional effects. Thus, this work, too, suffers from

a certain amount of lack of consistency.

Finally, another detailed linearized version of the coupled flap-lag-
pitch equations of motion has been derived by Arcidiacono (Ref. 36). The
equations of motion were derived for linearly twisted rotor blades. The
motions include flapping and lagging for the articulated blade, as well as
flatwise, edgewise, and torsional deformations for the articulated and non-
articulated blade. Fully-coupled aerodynamic forcing functions were also
derived based on quasi-steady aerodynamic theory. These differential equa-
tions of motion were also expanded in terms of the uncoupled vibratory nodes

of the blade.

In this section, an attempt will be made to derive, consistently and
systematically, a system of equations of motion for coupled nonlinear flap-

lag-pitch motion of hingeless helicopter blades.

The equations will be carefully derived so that the various approxima-

tions involved in obtaining the elastic, inertia and aerodynamic loads will
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be made clear.

It is of importance to note that for a hingeless blade, the equations
of mOtion-are more complicated than for an articulated one. The reason is
that for a hingeless blade, the only physiéally meaningful reference plane
-is -the hub plane. In this reference plane, the angle of pitch setting cannot
be taken as a fixed quantity in timé, but will be a time~dependent quantity
due to the presence of the cyclic pitch. Due to this effect, additional

inertia terms will appear in the equations of motion.

For the pafticular case of an articulated blade, where for convenience,
blade stability analyses are usually performed in the no feathering plane,
the general equations derived in this section will still be applicable by
Setting'§=a;0 and replacing the elastic hingeless mode shapes by appropriate

mode shapes for an articulated blade.

In the equations which will be derived, only elastic root torsion will
be treated and no provision for built-in twist will be made. Small angles of
built-in coning - will be included in the analysis. The arguments for neglect-
ing higher ‘order nonlinear effects will be stated and consistently applied to

obtain the final form of the equations of motion in a general .form.

8.2 Basic Assumptions

The assumption used in the derivation of the equations of motion will

be given below. For convenience, they are divided into three groups:
A. Geometrical Assumptions

These are assumptions regarding the geometry of the blade and its
attachment to the hub.
(1) The elastic blade is attached to the hub at some offset
distance e, from the axis of rotation (see Fig. 27)
(2) At its root, the blade can have a built-in coning
angle Bp' In addition, the feathering axis can have
an inclination B (measured in a vertical plane)
with respect to the hub plane. 1t is assumed that
these angles are sufficiently small so that the

assumptions sinf=B8, cosB=1 (and the same for Bp)

are valid, unless otherwise stated.
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(3) The feathering hinge is inboard of the "virtual”
flap and lag hinge (see Figs. 27a and 27b)

(4) The blade is initially straight. There is no angle
of built-in twist.

(5) The cross sections of the blade are assuued to be
symmetrical about the major principal axis (see
Fig. 28).

(6) The equations will be derived in such a manner as to
enable the following choice in the location of the
elastic axis (E.A.), aerodynamic center (A.C.), axis
of twist [(A.T.) or feathering axis] and blade cross
section C.G. (C.G.):

(a) E.A., A.C., A.T., coincident with C.G. offset.
(b) E.A. and A.T. coincident, both offset with
respect to A.C. and C.G. which are coincident.

B. Elastic Assumptions

. These are assumptions regarding the elastic properties of

the blade and its deformations.

(7) During the deformations, cross sections are assumed to
remain plane and normal to the elastic axis.
(8) Shear is neglected.
(9) The Blade is a thin flexible blade attached to the hub.
(10) The blade can bend in two directions normal to the
elastic axis.
(11) The blade is torsionally rigid, except at the hub.
The twisting of the blade is represented by a root
torsion denoted by ¢. 4
(12) The deflections of the blade are moderately small so
that terms of 0(83) can be neglected when compared
to 1. (eD being the order of magnitude of the de-
flection.) With this assumption, it is sufficient
to retain only the linear and the second-order non-
linear terms in the equations of motion. All third

order terms can be neglected.
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(13) Only a linear treatment of the elastic restoring fo;ces
will be considered; i.e., large deflections will have
only a small effect on the tenéion due to elastic ef-
-fects in the blade since one of its ends is free. This

assumption is consistent with neglecting terms of 0(63),
‘C. Aerodynamic Assumptions

These are the assumptions made in calculating the airloads acting on

the blade.

(14) Two-dimensional quasi~steady aerodynamic loads
are used. '

(15) Apparent mass effects in the aerodynamic ioadé
are neglected.- »

(16) sStall, compressibility and reversed flow effects are
neglected; thus, the aerodynamic loads areivalid for

u < 0.3.

8.3 Displacements, Coordinate Systems, and Coordinate

Transformations

8.3.1 Sample Displacement Fields

In the present analysis, the feathering axis of the blade will be
assumed to have an orientation given by an angle B with respect to the hub
plane (see Fig. 27a). Therefore, it is important to define sample dis-
placement fields which can be used latter with the general equations of

motion, carefully and in detail.

A. First Displacement Field

Consider first the case where there is- no elastic root toréion. The
geometry for this case js shown in Fig. 27a. The required quantities are the
displacements of a point A (A' in deformed state) located on the elastic axis
of the blade. For this purpose, only the hub plane coordinate system, attached
to the blade and rotating with angular velocity {! is required. According to

assumption (4) Subsection 8.2, the initial position of point A on the elastic
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axis coincides with the x-axis. Also note that in its undeformed state, the
blade cross section at A has a collective pitch setting of 8. From the

geometry of Fig. 27a*

W o= Xo .SmP + We cosp (8.1)
. _

v o= ’V'e (8.2)
J = ~ We Snnla -%Xo (1 - cosp) - f[ av"’ (awe) J dx, (8.3)

Now assumption (2), Subseciton 3.2, will be used. Thus

W = X°P + We (8.1a)
T = Ve (8.2a)
U = —WQIB - X f [ 3"’0 (QWQ) ] OLX, (8. 3a)

In Eq. 8.3, all quantities are small second-order quantities, there-
fore the approximation cos B = 1 is not permissible. The last term in Egq. 8.3
is the elastic shortening effect, also given in Eq. 3.9. The quantity W, is
measured perpendicular to the real position of the undeformed blade (see

Fig. 27a).

Finally, the displacements due to the root torsion will be taken into
account. The assumption will be made that the torsional displacement occurs
after the elastic flap and lag displacements (i.e., W ve) have occurred.

If the torsional displacement around the feathering axis is ¢ (see Fig. 27a),

then the displacements due to torsion are (¢ is a small angle)

Wy = Ve @
(8.4)

Ty = =~ We d

* . - 1
Note that the inextensibility assumption is used in Eq. 8.3. In general, this
is not absolutely necessary. 109



Thus, the total displacements of a point on the elastic axis of the blade can
be written as

W o= W or W, = Xof *We + %@
| (8.5)

U = _WGP - xo% -

N[—

f [ (e’ +(%§_)J dx,

It is important to realize that if the elastic flapping and lagging
displacements are not assumed to occur before the root torsional elastic dis-
placement, then the additional displacements due to the coupling between

the steady-state elastic flap and lag with ¢ will have a different form.

B. Second Displacement Field

Another possible displacement field is one in which the feathering axis
has an orientation determined by the angle B with respect to the hub plane,
while in addition, the blade has a built-in preconing angle given by B_ with

respect to the feathering axis. This displacement field is schematically

shown in Fig. 27b.

From considerations identical to those applied in the previous sample

displacenent field

O elprr - F (g



SN
u

Ve — x°[Bl’ Sin &

' (p+pe) + W
W = Xo + -+ e
f *fe (8.6)
Again, the displacements due to torsion are given by
Vi o= =XeB, $cos® — Wed
(8.7)
Wy = %@

Thus, the total displacements of a point on the elastic axis of the blade
is given by

U = 0 = ‘WQ(F*PP) - Xzfn(f'*ﬂr)z

5T ) (3]

o= T o+ v T Ve — Wed ‘X°Pr(m&+§c°ﬂ) (8.8)

W = Xo(/B+,sr) + We + ve§=:r+ur7
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In Eqs. 8.7 and 8.8, the relation

an(O +§) = swmf +§car§

has been used.A For the particular case of Bp = 0, Egqs. 8.8 reduce to Egs. 8.5.

8.3.2 Coordinate Systems and Coordinate Transformations

In order to handle, in-a convenient manner, the various inertia and

aerodynamic loads derived in this section, the vector method will be used.

As will be seen below, six different coordinate systems are required to

describe the various quantities. These are:

1.

The hub plane coordinate system, shown in Fig. 27a rotating
ét constant angular velocity with the blade. The z-axis
éoincides with the axis of totation; the x—-axis coincides
with the assumed initial position of the elastic axis

and the y-axis is perpendicular to the x-z plane. The

P

unit vectors of this coordinate system are denoted by i, 3,

A second coordinate system shown in Fig. 29a. Its unit
vectors are denoted bytjl,‘gl, 51' The‘&l unit vector

coincides with the orientation of the feathering axis,

the j, j, axes are parallel and k., is perpendicular to

~ ~1 ~l
;1'.1 and’gl.
A third coordinate system with unit vectors 12, j2, k2
N Le ~

is shown in Fig. 29b. It is obtained by rotating the

i., j., k, system by an angle 6 + ¢ around the i. axis.

1
A fourth coordinate system with unit vectors‘sl, 31,151

is defined in Subsection I.1, Appendix I.

A fifth coordinate system will be attached to the cross
section of the blade at its elastic axis. It moves with
tﬁe cross section as the blade deflects. The unit vectors
for this system are: I

~2
axis of the blade; 32, normal to the deformed elastic axis

, tangential to the deformed elastic

and parallel to the hub plane, and K_ normal to I_ and J_.
~2 A2 ~ 2
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The projections of these unit vectors, at a point P

on the elastic axis, are schematically shown in Fig. 27.

6. A sixth coordinate system similar to the previcus one

and rotated about the I axis by an angle 6+9. The unit

2

vectors are I3 coincident with 12; J3 coincident with
~ ~ ~

the blade chord, and K3 3 3° These unit

vectors are schematically shown in Figs. 27 and 28.

normal tols andgg

According to the proof of equivalence of rotations given
in Appendix I, within the approximations inherent in the
various coordinate transformations, the unit vector‘g3

can be considered a good approximation to the blade-chord

orientation in space after the deformations have occurred.

The relations between the various coordinate systems are given in

detail in Appendix I.

8.4 Derivation of the Inertia lLoads and Moments

8.4.1 Derivation of the Inertia Loads in the x,y,z

Directions

The inertial loads will be derived using the blade model shown in
Fig. 28. The blade is assumed to be represented by its mass-—per-unit
span m, concentrated at the blade cross section C.G., and offset by a dis-
tance X, from the elastic axis. This model, used first by Miller (Ref. 11),
is much more convenient than the distributed mass used by Houbolt (Ref. 10).
On the other hand, care must be taken to correct the propeller moment and
the rotational inertial term in q by the_missing cross—-sectional polar

moment of inertia.

Let x, y, and z denote the undeformed position of the cross-sectional

blade C.G., while its position in the deformed state will be given by xl, yl,
and z,- Then the following relations can be written:
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= )

> T xo‘ it (8.9)
Y = x, cost }

z = ‘XI S O - »

X, = X, + & +U —%T(ZI—V)‘%%‘(Z‘—W)- (8.10)
Y, = v+ X Cos(B+d) = Vv +(XIC0$9—X¥§SI’n9) |

(8.11)

\

2| - W+ XISI.")(G"'Q)» w + XI (Sl'ne' +§COSG') (8.12)

Note that the blade cross section is not in the y-z plane, but is

normal to the elastic axis. Only the E.A. point is in the y-z plane. This

is the reason for the last two terms of Eq. 8.10. In addition, it will

always be assumed that ¢ is small, so that

Cos( & = cos6® - PsmE
OS( *Q) @ (8.13)
sim (6+d) = SinG + $coss

From Eqs. 8.10 through 8.12, the position vector, the blade center of

gravity in the deformed position is given by

- : ' (8.14)
Ba =X Tt + ke,

From elementary mechanics (Ref. 37), the acceleration in inertial space
can be written as

= T L . 8.
& L‘-R.i-Zb)xLLR*-(;)xE,,_«s-%x(‘z)sz) (8.15)
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Due to steady rotation, the third term of Eq. 8.15 is zero. From the

geometry 9/9x = B/BXO, using Eqs. 8.14 and 8.15,

%= ,\L,()E' - xl_Q_z +2'31Q) +(}(}1 ‘H1Qz "'2)'(.52) +£Z, .2.! (8.15a)

8.15 and 8.10 through Eq. 8.12:

From Egs.
a = ’E{Qa 'Z:—,%{‘ X_ cos(e+ @) +z;_’>%txzsfn(e+§)(é+§)

+ 2y cos(e+g)(8+3) + 3 x sin(0+B)(&+8)

_ %Jz sin(0+3) - Z;x‘;t X_ cos(e*é)(é*‘i’)

+ aw X, sin (0 +d)(5+d)" - %’i X, cos(6+3)(6+)

- R xte, vy - 2¥x, cos(&+3)- ol x Lsm(e+3) ]

- 20 L«%—x,sfn(M)(M)J}

+ ) { Voo Xy cos(e+é)(é+§)z- X, si'n(&«*@)(é*@)

- ['\r*rx cos GHI?)J +252[ tx cos(o+®)

+ 9—; X_Sin( &+§)(e+<};) - x tx sin( o-+&)
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- ow xrcos(e+§)(é+§) }

X

+£L i&—xxsin(&i—é)(é*‘;)t*xxcos(&+§)(é+§)}  (8.16)

The components of the acceleration in the x,y.,z directions, respec-
tively, can be obtained from Eq. 8.l16.After substituting Egs. 8.13, the
complete expressions for a s ay, a_ are given in Egs. J.1 through J.3 of

Appendix J.

From the form of these expressions, it is clear that a considerable
number of terms are negiigibie. The considerations for neglecting terms are

given below.
Denoting the order of magnitude of the displacements by O(ED):
1. v,w and their derivatives are of O(eD)

2. u from Eq. 8.6 is usually a second-~order

. 2
quantity; thus, u v O(ED)

3. @ is usually a small quantity (0 < ¢ < 3°); thus is
usually ¢ < 9v/3x , Ow/dx
3, %2 ©2 * 2 w4
Therefore 0(e ) < $° < O(e ). Thus, 9,97, 0¢
can be considered negligible when compared to other

second-order quantities

4. It is reasonable to assume that the order of magnitude of

"
sin 0 = O(SD). Thus
0(&,) Esin® 2 0(€,)

0(e,) 08 0(¢&3)

n
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5. From the first part of this report it was found that the
cyclic pitch is usually bounded by 0 < 0.5 60, where 60,
is the constant collective pitch setting. Thus, it is
reasonable to say that the order of magnitude of ez(aw/ax),
62w is given by:

610(€,)20(€2)

6. From the first part of this report, it was found that in
the vicinity of the critical region (6o 2 Gc); the lag
displacements were 3 to 5 times larger than the flap
displacements. Therefore, when neglecting terms in the
following equations, it will be usually assumed  that

v Ssin@ F wcosé
and rcos® > Wsime

All quantities, which according to considerations 1 through 6

above are of O(Eg), will be neglected, unless otherwise stated.

Neglecting almost all 0(83).in Eq. J.1, the inertia load in the x-

direction will be given by

P = -ma, =E( (8.17)

(Because Lx (see Eq. 8.56) is assumed to be zero]

From Egs. J.1 and 8.17, using the nondimensional time derivative,

Eg. 8.18 is obtained

p o= _mt U—(x°+e,+u)—2't~] —J).zmxI -ﬂ’;lme
X1

MW, Y

* -
— Bw_ sin® + [ 2V cosO +."’_"_J.S'1n6) + ?_@ S\'Y)e}
X,V X, ?Xo

: - w oW SECAVENY
- mOx, { é [ sin® —9%_5-\'”_ cos€ +(3x,C°SG 5¢, S 9) J

av_
Q&BY’
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* Y ; 2 *x
AV simO - 2¥W_cosO)+ (""’SmG-—l‘A‘cose
t22 (’“JY 2%, ¢ X, 2X. )

. * Xk - '
2%, { 2( 250 sinf - 2W_cos§) &+ B (2sin®
2%y (ax,,’w YT gy

— a_w__ OSG) + 20(gm6 +§CO$G)}

(8.18)

In the last expression, the first two brackets [ ] and { } represent
the linear 1nert1a load which was also obtalned by Houbolt (Ref 10). The
second { } bracket represents the nonlinear terms, while the last { }bracket
7 represents the additional inertia load dué to the presence of cyclic pitch.
It should be emphasized that a considerable number of terms in Eq. 8.18 aie

still negligible. These are retained for the sake of generality.

In a similar manner, neglecting the 0(813)) terms of Eq. J.2, the inertia

load in the y-direction will be given by

F}I T Tmay (8.19)

From Egs. 8.19 and J.2:

o~ - met (¥ +20-v) - m0t - [§ sime

‘"’,Y sine) ]

-(cos&—@sim&) - 2(%C
) 0
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Vv _ 2w o : AV cinG - W
+ [Zé('a*__xn Sm& ‘axﬂwcos )-r 2@( X sing e COSS‘)]

+ [v_(’ér’q. Z'ég) cos® -*&*( Sim® + cose) + 2( %‘(’-— §im &

* *
AW 2V
_mcos&)e -+ 2@02_):’@36':]} |
(8.20)

Again, the first group of terms in Eq. 8.20 are the linear terms
identical to Houbolt's (Ref. 10). The other two groups are the nonlinear

terms and those due to cyclic pitch.

The total load per unit span in the y-direction is given by

/; = Ly + f‘d‘ | (8.21)

Similarly, using Eqg. J.3 and

F: -’mai A
= (8.22)

the inertia load in the -z-direction is obtained

¥
2 /ax x5 2 .
/, = -mil (w + xIécos&)-— mx_ S 9(6053-§ 3‘“3) (8.23)
zZI
The total load per unit length in the z-direction is given by

It should be emphasized that the total loads are always assumed to be

acting at the elastic axis of the blade cross section. In reality, the
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inertia loads act at the blade cross section center of gravity. Therefore,
at the elastic axis, these loads will also generate a system of inertia

moments.

8.4.2 Derivation of the Feathering Moment at

the Blade Root

In deriving the feathering moment due to the complete system of loads
acting on the blade, the various moment arms must be carefully considered.
According to assumption (3), Subsection 8.2, the pitch bearing (or the
feathering hinge) is inboard of the "virtual® flap or lag hinges. Geometri-

cally, its location will be taken at x = e, {or x, = 0).

In writting the moments, the.il, jl' Ed coordinate system defined in
Subsection 8.3 is useful. From Eq. I.1l, assuming that B is small
L=t ~4,
'V,Ov' —vlﬁ

(8.25)

2%.

= A
B 4
= U + /fe
k= Lp ok |
The moment vector about the elastic axis in the hub plane coordinate

system is

7 ;7*3“"7?’{. * 715 - (8.26)

From Egs. 8.25 and 8.26

j, = (?x*/s‘;z);‘;- +¢1’,3“ +'(‘1"_7"F)b‘ (8.27)

The total loading per unit length at the elastic axis can be written

as

P o-Eivtei*thk

- ' (8.28)

[ (AT YRR AT TOL

or

(8.29)

120



The position vector of a point on the elastic axis of the deformed

blade, with respect to the pitch bearing, can be written as (see Fig. 27a)

ne= i (x, +v) +}m— + Rw (8.30)

Or using Egs. 8.25

EE = ’(;, [(x°+u) +Pw] +é',,'!r + fi[ W=(x,+ U)/5J (8.31)

The moment of the loads given by Eq. 8.29 about the point represented
by the pitch bearing is given by

R = pex p =o)L oh () e e

The required moment about the feathering axis at the blade root is

given by the % component of Eq. 8.32

1

M., = "’(FI‘FR) ”I; [W -p (%o “)J (8.33)

The total feathering moment will be given by

R R
MT'FA =f Mﬁ. ol x +f 1“ d x (8.34)
where

(1.” = 7x+/a7i (8.35)

In order to evaluate the feathering moment, the quantities MPil’ 941
are required. The derivation of these quantities, together with the various

approximations involved, is given in Appendix K.

From Egs. K.6, K.10, K.14, 8.35 and 8.34,.MT F.A can be written in
its final form. Note that between 0 < x <e_., L , L , u, v, w, kK , x_, and m
1 Zr Yr m I

are all zero. Thus
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Mera ’f { vl - La(w~f.x,) +Ma - m;f’(\r’v: «x P vend)

+mi [( - v)w - FJ m& e,/aw,ma, zu(w—(sx.)+mxzdz [ we(W~(Axo)

. §5m0( —(3)() §sm6’( -{3)(.) - 2(w~Px)( R cos®

1“’ - 2P 2 o .
— fz;a;ys:nﬁ)] } i&o -~ ﬁ I;& - I{ (sm9 co,;Q + §¢0526)
¢ af ‘ i
+j { ~*mx152‘( sim@ + §cos®) v+ mx, 5 ['v» (sin &+ P cost)
° .

—ﬁcosﬁ + z:)(sim&+§cos6—) - Xa/3°°53 —-2;{“058;[ '

RN 16 - 2
- M 2 '9 s SimBcosy + 2 W _ sim 29 cos 28
' XIR [ ’axaq 3xch xan J
]
+ mMx -Sl V ocos*® + W sinBcas® v es?G
’éxo ’a )P axag?& F

")3W . _ 2 r2 oo,
- Zax,’aY‘ sm&t:oSG[jJ B dx, If_n & - (I’(—-IO)&II. sinBcosl

L4
+ f{_mfl‘ng‘\rcoﬁﬁ - 'mxzj)_[ 1’3;1\9’

:w cos&) & sim B'J }

{8.36)
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where If is the feathering moment of inertia of the blade

IF =fz(gk°’ +x) ) malx, (8.37)

I = ‘(Wh:o{&, (8. 38)

Thus,

{
Jx: mdx, = If -1, (8.39)

-]

8.5 Derivation of the Aerodynamic Loads

8.5.1 Approximations Made in Deriving the Airloads

The purpose of this subsection is to show the various approximations
involved in evaluating the aerodynamic loads acting on a section of the
blade. In calculating these loads, assumptions (13) through (15) of Sub~

section 8.2 will be used.

Consider the deformed position of the blade in the hub plane coordi-
nate system (x, y, 2z system, sée Figs. 27 and 28). The position of the
elastic axis is given by the position vsctor

Re = (x,,+e,+u)L +\r(} r wh (8.40)

v ~ ~

For air-load calculation, the displacement u in the axial direction
(which is a second-order quantity, anyway) is unimportant and will be neglected

in this treatment. Thus

~ ~s

ng = (x°+e.)}4 R w Ak (8.41)
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The velocity of this point (the elastic axis), can be written as
’\rEA = Mg + W x Re (8.42)
-~ ~ ~ ~ .

Or; using Eq. 8.41

~JeA

Voo = WL +[R(rre)+v] +whk (8.43)

From the geometry shown in Fig. 2, the velocity of the air in the hub

plane coordinate system is giveéen by

V = paRcosVi -/d?.Rsm“l’(} - DNRx A _ (8.44)

(Note that in this report the induced velocity is positive down.)

From Egqs. 8.43 and 8.44, the flow relative to the blade at .the elastic

axis is given by

.NQ ’5"\
+h v (x,ve,)] +A [-RRx-W]

In order to transform the flow relative to the blade, as given by

U=V, -v%, = ’E[/mkcosv +1r32_] -4 [/lesim'Y’

(8.45)

Eq. 8.45, into a physically meaningful form, it is convenient to use the

-\]52' 22' 2

in Subsection 8.3.2.

K., attached to the elastic axis of the blade and defined previously

Note that it is important to use this coordinate system because accord-
ing to assumption (7), Subsection 8.2, the cross section of the blade is
normal to the elastic axis. In this plane, the instantaneous geometric angle
or (0+9).

of pitch is given by the angle between the vectors J_  and J

2 3
From the relation between the various unit vectors, Egs. I.5, the

following relation can be written.

L -1, -2% ] _ 2w
~ o~ 'ax:z" X
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~ (8.46)

From Egs. 8.45 and 8.46, the flow relative to the blade can be expressed

system. Thus

intermsofthe_{,’g_,lg

2

2 2

}VJ = Ez[rSLRCOs"V-i-'\r —%’/AS)_RSM"Y ~\'r’%¥ —gi,’g(xofe.)J
¢ T [~ pareesY - Zon - pARsinY - -2 (xre,) |

W P ) RCL WIS
+K. |- ;;PSIR,cos“V v 2 - -aRr ] .

or

U = uxz 31 + UYz _‘I} + UZL E" (8.48)

v

For convenience, a picture of the blade and flow geometry resulting

from these considerations is given in Fig. 30.

The total load on the blade can be written symbolically as

L_o = Lz,_ K} * Ly, z,_ | ' (8.49)

~

From two~dimensional quasi-steady aerodynamics, it is well known
(Ref. 11) that the quasi-steady lift at the aerodynamic center (¢/4 point)
is due to the angle of attack at the rear neutral point (3/4 c). At the rear

neutral point the induced velocity can be written as

=Vg, ¥ ('g" xe)(éJ’&’)
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Le, ;’fAUY:abR[(eHi)— EUE:L + (= —3“2(4'@*@4) J (8.50)

* ) B 2

v,
Ly, #-gla g LUbRC. e

Where the following approximations were made in writting Egs. 8.50 and 8.51

tan™ (Uz" ) i Ue,

Uya Uy,
i.e., the angle of inflow is small and
. 2 o 2
Il Y ‘) o Yo bg 4V Y | 22,0
2 jq (U"t z 2 \» Y, 1 UY:. T2 Ss Y,

both of which are reasonable approximations. Also, the Uy o component of the
velocity parallel to the blade deformed elastic axis will have no effect on
the aerodynamic loads.

From Egs. 8.49 and I.5, LA can be rewritten in the i

i, 3, 5 coordinate

system. Thus

2w 2}_’ + | + 8.52)
LA [LZ 2X YzaxJ (}LYr- fLi‘z (

-~

According to the symbol convention of this report, LA can also be

written as
A‘:A =Lt Lx{’} L‘Jr N '!S Lzr (8.53)

Comparing the last two equations, it is clear that
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L‘ﬂ: Ly,_ (8.54)

Lz = Lg, (8.55)
- _ AW 2V ‘

LxT Lz,_,b LY). X (8.56)

It should be noted that Egs. 8.54 through 8.56 are a direct result of

the approximations inherent in the coordinate transformation, Eq. I.7.

In the present report, the quantity LXTWill be neglected in the calcu-
~lation of P, because it is a small quantity when compared with the centrifugal
force acting in the opposite direction. This is a nonconservative assumption

. because the Lleoad per unit length tends to reduce the stabilizing effect

of the centrifugal force.

Finally, the aerodynamic moment along the I direction can be symboli-

2
cally written as

~
fjh = M":_ 1. (8.57)

From Egs. 8.57 and 8.46

- : Vi W
= -— gy —_ o 8.58
Ma = M, b= My, 5% My, 3% R (8.58)

These two moments in the j, k direction will introduce additional small
bending moments in the flapwise and chordwise directions. These will also be
neglected in the present report. Thus, the aerodynamic moment can be written

as

L’le g sz,; = Ma i ' (8.59)

~s

Finally, approximate expressions for the velocity components, as given

by Eq. 8.47, are required. Consider Eq. 8.47: u is not required in this

X2
analysis and will be left unchanged. For low values of U { assumption (16)
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of Subsection 8.2], the first two terms in the expression for uyZ can be con-

sidered small when compared with the other terms. Thus

2;—’!1 << N ‘(xo *'et)

P << (Xore)
sé-that |

2 _uDRsinY -5 -5 (X +€ ., - (8.60)
UY,,_ /49.!2,31;\4’ > .Q_,(Xo+ ) | |

’ *
Similarly, in the expression for'uzz, v(dw/9x)§2 < wil and will be
neglected so that.

UZ.‘_‘N X ln.Q.R,COS\V \sl NR>» - 7 _ (8.61)

Comparing Egs. 8.60 and 8.61 with Egs. 3.14 and 3.15,7it can be seen
that they are identical. Thus

Ur = _Uzz
(8.62)

)

Ur =-Uy,

8.5.2 Derivation of the Aerodynamic Loads and

Moments per Unit Span

Originally, it was intended to derive the air-laods per unit span in
a general form and use the quasi-steady assumption (assumption (14), Sub-
section 8.2) C(k) = 1 only in the actual numerical calculation. Unfortunately,
the presence of the cyclic pitch, constant pitch, and time dependent motion at
flutter frequency would require a formal splitting of the aerodynamic loading
into these three distinct groups. Thus, in order to reﬁove this unncessary
camplication, it was decided to invoke the quagi—steady assumption right at

the beginning.

In order to clarify the various assumptions associated with the

quasi-steady approximation and neglecting the apparent mass effects, the

128



results of two-dimensional unsteady aerodynamics will be given below. For the
case of a two~dimensional airfoil, in unsteady motion, determined by a time-
dependent angle of attack o and a downward displacement of the elastic axis h,

(see Fig. 8.1), the unsteady load and moment per unit span can be written as

(Ref. 12)
FIG. 8.1
e . bR -
= o _ix. _ b¥& (8.63)
L=1Lqc(R) +55A(b‘2) }:L + V, & (x,5 z)“.]
where LQ is the quasi-steady lift given by

Lq = aS:AVA bR [VA% +h +(ER-XF,)$¢J - (8.64)
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- Ly 28R (5 [ s

~fa2 Ve[ bR~ Xa ] (bR)" - (Ln) <

(8.65)

Here the assumption has been made that the aerodynamic center is at c/4.
Setting C{k) = 1, as justified in Ref. 11, and neglecting the apparent mass

terms associated with h and a yields

L = apV,bR[V,a+ h +(2-%,)brR% ] (8.66)

= ap, n(LR)X [ +h] +aj>V (LR) (I-— )LRoL{x -.5)

(8.67)
where Xy = xA/bR.
- - - et * *
Replacing h = - UP' VA = UT' a=0+Panda=0+9=0(0 4+ 9
Eqs. 8.66 and 8.67 become (for small angles of inflow)
3_5 .3
Loy af, U bRV (8+2) -V, +(2-% )bR2(E + 2) ] (@-69)

20 - x #.).
1, =g (b3, [ 2)-up] + (%) R0} o
Finally, the loading in the y-direction can be obtained from Fig. 2~

=-VYe| _ebrc, U2
L‘A"’ v, Lz S, do T (8.70)

In Eq. 8.70 it is implied that
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v Ve
Uy

cos[t@nd(%%)] =,1

From Egqs. 8.68 and 8.70

L} =_fha,bn{uf[u1_ (9+@) fuf] +(§ —)?n>Uf,ER.Q(6+§’)

tan™

S

Cdo 1,2
+ =22, U .
o T (8.71)

8.6 The Equations of Motion

8.6.1 The Elastic Restoring Forces

According to assumption (13) Subsection 8.2, a linear treatment of the
elastic restoring forces will be considered sufficient. Such a treatment has
been derived by Houbolt and Brooks (Ref. 10). 1In writing the equations of
equilibrium for the beam element, another convenient assumption will be made,
following Ref. 10. It will be assumed that the element is cut by slices
perpendicular to the hub plane. This assumption is one of convenience (in
calculating the loads and moments, it was always assumed that the cross
section is normal to the elastic axis), and will have a negligible effect on
the results. Finally, in the beam equilibrium equations in the y and z-
directions, the terms qu/axo, qu/axo will be neglected. Thus the equations

of equilibriwa can be written as

2

;3?: [(EI)3 cos*O + (EI)Z sin’BJ g—;—(‘%'—e + [(EI);(EI)}]sinecoseg%

- ; -9 2w =
Tes s)'n9} X, [T (. ’SB?,J P
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L 8

%: [(EI)z —(EI)3] SinBcos® ';:(";‘

.4

+ [(En)yswo (e cos™] 2

2 \ 2V
~Te cose} - = [T X.) = = : : (8.72)
A ’bxo ( °) axo r}
Note, that only the elastic deformation contributes to the elastic

energy of the system. Therefore've, LA defined in Fig. 27 are used in

Egs. 8.72.

The elastic restoring moment about the feathering axis can be assumed

. 2
to be represented by a spring constant KQ = If wo.

8.6.2 Blade Equations of Motion

The equation of motion in the z-direction is obtained by combining

Egs. 8.72, 8.23, and 8.68.

The equation of motion in the y-direction is obtained by combining

Eqs. 8.72, 8.20 and 8.71.

The feathering equation of motion can be symbolically written as
. .
MT,F_A = If“\’o§ (8.73)

where M . . is given by Eqs. 8.36, 8.68, 8.69, and 8.71.
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SECTION 9

NONLINEAR AND LINEARIZED EQUATIONS FOR THE COUPLED FLAP-LAG-PITCH
MOTION OF HINGELESS BLADES IN HOVERING FLIGHT

9.1 Introduction

In this section, the general equations of motion derived in the previ-
ous section Qill be specialized to the case of coupled flap-lag~pitch motion
in hovering flight. Using Galerkin's method for the spatial variable, the
partial differential equations will be reduced to a system of nonlinear ordi-
nary differential equations. 1In this process, no attempt will be made to in-
clude an arbitrary number of elastic modes (as was done previously for the
case of flap lag); thus only one elastic mode for each elastic degree of
freedom (i.e., flap and lag) will be used. Due to the considerable amount of
algebraic manipulations involved, this process of reduction is given in a
most concise form possible. Where details are required, they are given in

the various appendices.

Based on physical reasoning, it is shown that the nonlinear effects
in the feathering equation must be treated in a different manner than those
associated with the flap and lag equations. Therefore, the treatment of the
flap and lag equations is separated from the treatment of the feathering equa-

tion .

The resulting system of coupled ordinary differential equations is
linearized about a natural equilibrium position, which is taken to be the
equivalent linear steady-state position. In this pfocess, various nonlinear
effects are transformed into coupling effects. Thus the linearized equations
contain many new terms when compared with those which would have been obtained

from a purely linear treatment.

Next, the linearized equations of motion are transformed into a system
which can be conveniently solved by defining various flutter derivatives

(Refs. 11 and 39).

Finally, by adding the nonlinear terms to the linearized equations of

motion, the complete coupled nonlinear equations of motion are written in a
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form suitable for numerical integration.

9.2 Assumptions Made in Reducing the General Equations '

In order to reduce the number of terms in the general equations, same

assumptions must be made. These assumptions, given below, are only a matter

" of convenience, and will have little effect on the mechanism of instability.

(a)

(b)

(c)

(d)

(e)

(£)

In order to simplify the inertia loads, it is assumed that
the offset between the elastic axis and the blade cross-

sectional center of gravity is zero, i.e., x = 0.

The distance eA between the area centroid of the tensile

membér and the blade elastic axis is also taken as eA = 0.

In order to describe the displacements of the ‘blade, dis-
placement field B, given by Eqs. 8.8 and shown in Fig. 27b,

will be used.

It is assumed that the flap and lag motions of the blade
can be represented with a sufficient degree of accuracy
by using one elastic mode in each of these degrees of

freedom; thus

wWe

Iy (%) 3.0

(9.1)

i

.—lzr.(i.)k(t)

Ve

(See Figs. 27a or 27b for the definition of we, ve.)

The mode shapes used in Eqs. 9.1 represent the appropriate
mode shapes of a rotating beam without the effect of elastic

coupling, i.e., at 8 = 0.

The boundary conditions for vé, we are taken as the usual
ones for a hingeless blade, i.e., Egs. 3.6 are assumed to
apply to v we replacing v and w.

The angle of preconing Bp and the built-in coning angle

of the feathering axis B are assumed to be small.
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9.3 The Equations of Motion in Flap and Lag

From Eqs. 8.8 and 9.1, the displacement field can be written as

U =-lng, (F’“/‘f) ) ;'QL(F*P;-%(J [(7-')13: +()?h ] 4, (9.2)
v dh - g, -y (st eosn)

W = /(?,(F-O-Fr) + 7‘3,1 - 11\'\"@ (9.4)

From Egqs. 8.17, 8.18, 8.20, 8.21, 8.23, and 8.24, assuming that KI =0,

the loads can be written as

k] ’ »
X .
*

F = LW -'mnz(”‘l; +2:(_ ~f\>) - %SLSI'\?e (2.6) -
d

233 " (9.7)

=L - ma2*w - 9 S We

P! 2T P

where the effect of a viscous type of structural damping has been included in
the last two relations. Note that only the elastic part of the displacement

will dissipate energy through structural damping.

Denoting the elastic coupling effect by Ecl and Ec2 as defined in

Appendix L by Egs. L.3 and L.4, and using the assumption thatAeA =0,

Egs. 8.72 can be rewritten as

2 2 We 2" Ve 2 W
Xo X%, Zz °

,;—1.
X . W | (9.8)
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2 (g oTwe [ £ +fe } L) +2 (tov (9.9)
A o We |- 2 _ 2 v .
GX:' 'c”' 9X:’ a ( I)z ’ax," r\a XK, i)
Substituting Eqs. 9.2 through 9.7 into Egs. 9.8 and 9.9 yields a
system of equations on which Galerkin's method is applied. The application

of Galerkin's method consists of the following steps:

x % : i .
(a) The u , u terms occurring in Eq. 9.5 are neglected.

(b) The flap equation is muitiplied by nllzd;; and the temms
associated with éhe inertia and elastic forces are inte-
grated between ;; = 0 and ;; = £, while the aerodynamic

loading terms are integrated between ;; = A and 26 = B,

where A and B are the tip loss factors.

(c) The resulting equation is nondimensionalized by
dividing by 15(22.
(d) The lag equation is multiplied by Y112d§;, then steps

(b) and (c) ,described above, are repeated.

The algebraic process detailed above is straightforward and elementary;
therefore, the details of the algebraic manipulation will not be given. The
equations of motion obtained from this process for the flap and lag degrees

of freedom are given in Egs. 9.10 and 9.11, respectively.

— % —_ *
14

Mg, g, * 2 Mg, W, 75: p
1

-

¥ ( Fﬂ;aa;f *‘ELI) ?1::

x¥%
~~

§7(h, )_ .E'(f”fs?) + _B—”v,§ " z_ﬁ,l:}. (9.10)

+Z§3"T(f"ﬂr) + Eah + A,
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—— * —_ _
2 M, wy, ,Isu ‘\, + (ML. w,f ~ Ec\>}’. =

a,Ecp ~ 'ﬁ’[(ﬁ)— 3.8] - zﬁ’g‘ (f*‘/’r)
(9.11)

xx

—E“FF [cos&( Q - @)— Si")GJ + 2 [S—n:\ "'(ﬁ; “,_] bll:, - Z(M-’))m 3454

_ E134§ - E‘oﬁ, (g,’,,?--p §co$9’) + 2§8[B? Simeﬁ, ¥ Auy

In the derivation of Egs. 9.10 and 9.11, the orthogonality conditions
for rotating beams, Egs. A.2 and A.4 have been used. It should be mentioned
that Eq. A.4 should be modified to account for the effect of the total
coning angle (B + Bp). As shown in Ref. 23, this effect will increase the
rotating lag frequency 52 by an amocunt 1/2(8 + Bp)z. In the present treat-

Ll
ment this small correction term will be neglected.

The quantities Ecl' Ecz appearing in Egs. 9.10 and 9.11 are the elastic

coupling effects. These quantities are defined in Eqs. L.16 and L.17 (or L.5
and L.6). The quantities B* appearing in Egs. 9.10 and 9.11 are generalized

mass terms defined in Appendix M.

The quantities AFlT and AL are generalized aerodynamic forces in flap

1T
and lag, respectively, defined by

—

8
t“ (9.12)
Amr g7, ) Bem ) 45

A
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8

U v ode
T o L‘aT X de
MY Qﬁlb 4

(9.13)

Next, the aerodynamic loading terms AFlT and ALlT will be evaluated.
The aerodynamic loads LzT and L ,, are given by Egs. 8.68 and 8.71, while the

yT
relations for Up and UT are given by Eqs. 8.60, 8.61, and 8.62. For hover,
= 0, and
* ' 4
Vo = wfl + 2 Rx (9.14)
U, = 2 +_O.(X.,+€;) , (9.15)

Substituting Egs. 9.2 through 9.4 into Egs. 9.14, 9.15, 8.68, 8.71,
9.12, and 9.13 and performing the required integrations yields:

‘ t\? ' 2 *
e~ l(ﬁ){F(“") - Ft - L9,

FIT 2

- L [ (s+8) -5 F" ]k

(9.106)

138



and

(9.17)

-The quantities Ll, Fl used in Egqs. 9.16 and 9.17 are defined in

Egs. C.1 and C.2.

In all of the equations associated with the flap and lag degrees of
freedom, most third~order terms have been neglected. Also, some small

terms multiplied by Cd /a have been neglected.
o

9.4 The Feathering Equation of Motion

9.4.1 The Higher Order Terms in the Feathering Equation

In treating the feathering equation, it is important to realize that
the third-order inertia terms in this equation can be of importance and are
non-negligible. The reason for this is clear when the general form of the
feathering equation is considered. From Egs. 8.36 and 8.73, where XI = 0,

the feathering equation can be simply written as

x%

n‘I; $ +n’ I)((Sihecose + §Coszs) + 14 W3 =

]
J{ vlgr ~ Ljr(w“ﬁxo) +M, - v+ 'mSl"[w(:;—\r)

- :’*FX‘J - mRe,pv + zmn’J(w—Fx,>} ¥,

(9.18)
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The left-hand side of this equation ié multiplied by the feathering
moment of inertia of the blade which for the case of X = 0 is a small quantity.
It can be easily shown that after the integrations, all of the quantities on the
right-hand side of Eq. 9.18 ére multiplied by the flapping (or lagging) moment
of inertia of the blade Ib' or by similar generalized mass quantities which
are of the same order of magnitude. - The ratio of Ib/If'g.IOOO for most hinge-
less blades. Thus, the small nonlinear inertia and aerodynamic terms on the
right-hand side of Eq. 9.19 are multiplied by a large quantity and their in-
fluence on the stability of the torsional degree of freedom could be con-
siderable. This has also been found in Ref. 1ll. Great care is, therefore,
taken in treating these terms in this derivation and none of the potentially

important terms aré'neglected. On the other hand, all fourth-order terms or

terms of equivaient magnitude will be neglected;

9.4.2 Final Form of the Feathering Equation

The final form of the feathering eqﬁation can be obtained by substi-
tuting Egqs. 9.2 through 9.4, 8.68, 8.69, 8.71, 9.14, and 9.5 into Eq. 9.19.
After performing the required integrations, thch are straightforward, and
dividing the result by Ibﬂz, the following final result is obtained. [Also,

"using sin 0 ¥ 0, cos 6 T 1]

!t

P xlosemra] - [FhF T - 5000
-7 b ()] +{B (b B )(pep) + T (hoF g - 5[ 1.8
G g0 [38-09] * polpop) (8 +0-%)

f B (0+2-F) - A ha(h-h)} - 2{ 85 plpre)
R A N Y (R T R ALY
LB 8 (58) 55T uTph +

is given b
where ATl g Y

3.2
h)

(9.19)
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gé<x‘n{ T(9+8) - T* X, - u—‘zg’r_ e [20(6+8)- L) ]/:,L[e/f,z/g %3
K EX
+(%)zAF~,:§l+%m #)] -2 éf(s,,fe}u»(/ ) () (TE - £ fLZD
(% <{U(9+§ “ L dohy - ﬁg h, F°_ ,[z{a+§)L SRS I
Ry 05 F' + T/z,,e(eué)} {(3-%) YbELh, +(F'0-20F )353
Aot U (hE) bl L2 ] ¢ g BT g T
hglh L +(1 xn)b.‘?[F 9 8Ty 6 - eh ho L __,,GPGA L]})

PR [T o80T £ [P (008)- 0.8
-Lp, b [ Dol (04 3) +2 S 1" ] 49,0, [F2(6+8) ), ]
T3 T} (0 10 05)- 200
_%[>0F44(9+§)+ J.’-Flo]/x 00,4} {(——-Xn Af)‘ [TﬁP+F3:]

N,

a
s )63 L5 [ppFted F2]- Lohg [BForgl”]
b (2% )b L5 [ppr™eg, F*]- Lok g [ Fog,
2 R R (9.20)
In writting the last equation, the assumption sin &8 , cos@¥10

has been used. The quantities Tl, T2, T3 used in Eg. 9.20 are defined by

Egs. M.19 through M.21.

9.5 Linearization of the Equations for Coupled Flap-Lag-Pitch Motion

9.5.1 Determination of the Static Equilibrium Condition

The complicated system of nonlinear differential equations obtained in
tiie previous sections will be linearized about the static, linear equilibrium
condition. Denoting the static equilibrium position in flap, lag, and torsion

and f , respectively, the dependent variables can be written as
o

by gi ’ ho

14
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~3:’ +x’

3 a0
-
[} |

L= hlax, » (9.21)

5 - 3.+¢ .
It is important to note that the quantities 9y hi, although similar
in nature to those given by Egs. 3.22,will have different values and will be

given by different algebraic relations due to the presence of the torsional

degree of freedom.

Setting all the dynamic terms equal to zero in Egs. 9.10, 9.11, 9.16,
9.17, 9.19, and 9.20, and substituting Egs. 9.21 in the resulting equations
gives (after some algebraic manipulation) the following system of equations,

which for convenience is written in matrix form

- (. 3\
su SI‘L ‘Sls 3. (an ’ (Cc
Sa S;a S { oo = (L r + ‘J C. (9.22)
S S S . T,
1‘ 31 32 {S_J bé A L SI‘J \CS

titi .. T . . i i . N.
where the quantities Slj, FSN' st, SN’ and Cl] are given in Egs. N.1
through N.15.

- The quantities FSN' LSN' TSN represent the static nonlinear quantities
in the flap, lag, and feathering equations. The linear static equilibrium

condition about which the equations of motion are linearized will be defined
as that obtained from solving Eq. 9.22 with the nonlinear temrms set equal to

zero, i.e.,

{S'*j T {C\} (9.23)

D 5T ap
|
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9.5.2 The Linearized Equations

Using the static linear equilibrium conditions, determined in the
previous section, the linearized equations can be obtained by substituting
Egs. 9.21 into Egs. 9.10, 9.11, 9.16, 9.17, 9.19 and 9.20. In this process
- : only the linear terms in X1r Xgp» and ¢ will be retained. The linear steady
state part of the equations will vanish due to Egs. 9.23, and the nonlinear
part of the steady values will be tacked onto the nonlinear equations, which
will be treated in the following section. After dividing the flap equation by
the linearized flap and lag equations can

1
be written in the following convenient manner.

Efl’ and the lag equations by ﬁL

% gk (T R % = L R,

¥ FXle * F%t ,:f * F}‘a% * Fff (9.24)

x ¥ . * —_—2 = *
- X, +3sz‘ + (W, — LX)X Le X LX, X,

rlyXor Ly rLad rLyy

(9.25)
The quantities F**, F* F F**, F* P and L**, L* L, L**, L*
4 o X X, 6T e TN X e Y
L, are flutter derivatives associa%ed with the flap and lag &quations, re-

¢

spectively. These quantities are defined in Egs. N.16 and N.17. The quanti-~

ties g represent equivalent damping terms in the flap and lag equations

p1’ 9p2
given in Eqs. N.1l6 and N.1l7 (the last equation in each group). These are

partially due to structural damping and partially due to aerodynamic damping.
Finally, it should be mentioned that in this process of linearization, while

the quantity ¢ has been replaced everywhere by ¢O+¢, the inflow ratio Ao has
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been left unchanged and is calculated from Eqs. 4.6 and 4.7. Physically,
this approximation means that the linearization has been performed in such a

manner as to allow small variations in the thrust coefficient. -

Next, the feathering equation is linearized. In this case, due to the
-algebraic form of the equation obtained, it is convenient to divide the equa-

tibnbby the quantity IE (see Egs. N;18 and N.19)

I.=1- qu - _ (9.26)

Physically, I_ represents the increased moment of feathering inertia of the

E
blade due to the blade elastic axis displacement from the  feathering axis.

Thus the feathering equation can be written in a convenient form by

tFi +.§;u t} * iiikf. - 1%f j‘\ + .T}iL;(’ M 1ﬂx X

v

] *
+ | = + ) +
Ty X, v Ty X, 4T %,
% 2 2 .
(9.27)
where the quantities T**, T* , T , T** T* , T represent the flutter
X X X X, X
1 M 1 2 2 "2
derivatives for the feathering equation. while Ip3 is the equivalent damping

in feathering, it is of aerodynamic origin only, and Eﬁ is the equivalent
spring in the feathering degree of freedom. These quantities are defined

by Egs. N.24 and N.41.

9.6 Nonlinear Equations for Coupled Flap-Lag-Pitch Motion

The nonlinear equations for coupled flap-lag-pitch motion can be
easily obtained by using the linearized equations of motion obtained in the
previous section. The nonlinear parts of Egqs. 9.10, 9.11, 9.16, 9.17, 9.19,
and 9.20 are extracted, the nonlinear steady-state parts from Eq. 9.22 added,
and the resulting reiations added to the linear system, Eqs. 9.24 through 9.27,
obtained in the previous section. The final form of these equations is given

below.
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+Fp - Fu (;,)iz)xz)f‘f)\f) (9.28)
B’ 5 x3 B7IX, \¥¥
_(L,,‘_%:‘I)"‘.,.Xz—(. H_L)\r

T Xy (L)% Ly X Lk 7 L

hy (9.29)
+LTY + L (X )X.) : z)sf)\r>

* T, (XX X,z,"f’ Y) (9.30)

where th iti L T T** T** T** are defined in
e e quantities FNL' NL’ TNL’ le, NX2 NG

Egs. 0.l through 0.6.

Note that all second derivatives are written on the left-hand side of

Egs. 9.27 through 9.29. This form is necessary for the numerical integration

of these equations.
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SECTION 10

STABILITY OF FLAP-LAG-PITCH MOTION IN HOVER

10.1 Introduction

10.1.1 Brief Review of Past Work

In this section, the stability of flap-lag-pitch motion will be in-
vestigated using the equations obtained in the previous section. Both static
stability or divergence and dynamic stability, or flutter will be considered.
When searching in the available literature for previous investigations in
this area, one finds. that the complete three degree-of-freedom problem has

not been investigated before.

The most extensively investigated case has been the case of flap-pitch
motion which is similar to the classical flutter problem associated with
fixed wing aircréft. For this case, both flutter and divergence in hover
have been investigated by Miller and Ellis in Ref. 11. They concluded that
the important parameter of the problem is the offset between the blade cross-
sectional center of gravity and the aerodynamic center. Both flutter and
d;vergence boundaries were plotted as a function of this parameter. The im-
portant effect of preconing on both flutter and divergence has also been

pointed out in Ref. 11.

The flutter boundaries in flap pitch for hovering flight were also
obtained by Daughaday, DuWald and Gates in Ref. 42. Their results were in
general agreement with those of Ref. 1ll. Divergence boundaries were not
presented in Ref. 42. The flutter boundaries obtained support, the claim
made in Ref. 11, that quasi-steady aerodynamics yields conservative flutter
boundaries. The experimental results obtained in Ref. 42 seemed to indicate
better agreement with quasi-steady aerodynamics. Furthermore, it was found
in this work that flutter could occur when the mass and aerodynamic centers
were coincident with the elastic axis; this was found to be due to gyroscopic

coupling between torsion and flapping.

It is interesting to note, therefore, that no investigation of the
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static or dynamic stability of the complete flap-lag-pitch motion in hover
has been undertaken up to the present. 1In particular, the various effects

of feathering axis orientation with respect to the hub plane, preconing,
collective pitch setting combined with elastic coupling, and inplane stiffness

of the rotor on the divergence boundaries has not been investigated.

Finally, it is worthwhile to mention briefly a few other papers which
have a connection with the coupled flap-lag—bitch problem. The pitch-lag
éroblem in hovering of an articulated blade has been excellently treated by
Chou in Ref. 43. Chou identified the mechanism of instability as due to
pitch changes caused by lag motion; the coupling betwéen these degrees of
freedom was due to rotor head geometry. Stability criteria for hovering

rotors were obtained.

The aeroelastic stability of helicopter rotors in hovering flight was
studied by 2Zvara in Ref. 44, both theoretically and experimentally. The main
purpose of this work was to determine the relative merits of the various aero-
dynamic theories as applied to different rotor confiqurations. Cantilevered,
articulated, and teetering blades were evaluated. Only the flap-pitch

degrees of freedom were considered.

Perisho (Ref. 45) treated the flap-pitch motion in forward flight,
including the effect of reversed flow. Blade response curves were obtained
‘using numerical integration. Stability boundaries and divergence boundafies
were not explicitly obtained, although some of these boundaries are indicated
on his curves. Bielawa (Ref. 35) treated the complete flap-lag—pitch problem,
considering mainly second-order effects due to distributed torsion, together
with the effect of time-dependent coefficients. Stability in ho&ering flight

and divergence boundaries were not considered by Bielawa.

Recent flutter analyses seem to be devoted to considering some effects
while neglecting other effects, usually of equal importance. Representative
examples of this trend are found in a recent paper by Stammers (Ref. 46),
where the effect of the periodicity of the coefficients was investigated using
a regular perturbation method. The Coriolis effects in the flap-pitch equa-

tions of motion were neglected, reversed flow effects were also neglected,
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and inertia terms associated with the feathering equation did not include all
of the important effects. In this paper divergence boundaries were obtained
as a function of the blade center-of-gravity elastic axis offset, and flutter
boundaries were also obtained. Another example of this trend is in Ref. 47
where the effect of the wake in forward flight on the blade stability is
treated by extending Loewy's aerodynémic theory (Ref. 48) to forward flight
while neglecting the effect of periodic coefficients and reversed flow at
advance ratios of 0.3 < Y <€ 0.8. The inertia characteristics of the blade

in Ref. 47 werevrepresqnted by taking the tip Eross section of the blade as

a typical cross section of the problem. In this case, stability boundaries
for forwara flight were obtained. Again, only the flapfpitch degrees of

freedom were considered.

10.1.2 Objectives of the Present Study

In the present study, using the linearized equations of motion, the
divergence of the coupled flap-lag-pitch motion will be investigated first.
The effect of preconning, elastic coupling, feathering-axis orientation with -
respect to the hub plane, and inplane stiffness of the rotor on the divergence

boundaries will be shown.

Next, the flutter, or dynamic stability of the linearized system of
equations (Egs. 9.24, 9.25 and 9.27) will be considered and stability

boundaries similar to those obtained in Section 7 will be given.

10.2 Divergence Boundaries

10.2.1 The Linearized or Approximate Divergence Boundary

A linearized approximate divergence boundary can be immediately ob-
tained from Eq. 9.23 by requiring that det Isijl ='0. The divergence bound-
aries obtained from this requirement are similar to those of Ref. 1l. They
are characterized by the property that the divergence boundary is independent
of the values of the quantitigs gi, h?, and ¢° which represent the linear

static equilibrium condition of the blade.

From Eqs. N.l through N.9, it is easy to see that the only element of

Therefore from the

the [Sij] matrix which contains G; explicitly is 833.
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requirement that det lsijl = 0, the following relation can be written

{ Pr(F Be) + A = Ex T - '(%)2(3?[‘7‘30 - T‘)u.]z

(10.1)
*’h*%_}fi
where'
i = Susissil SuSe. Siz
1 S:zsn S|zsz| (10.2)
o Sul8Sn = 5.5
2 ) J&zsn Sltsl\ (10-3)

where Sij is given by Egs. N.l through N.9. From Egs. 10.1 through 10.3, the

approximate or linearized divergence boundary can be easily calculated.

10.2.2 The Exact Divergence Boundary

The exact divergence boundaries are obtained by including the effect
of the static equilibrium condition of the blade (i.e., gi, hi, and @o).
Mathematically, the exact condition for the divergence can be shown to be

given by the following relation:

(s ) <S,, - %‘" (5.3 - %‘f")

(10.4)
?L su - 21;3.. - L sw -
Sz\ (Sn 24, <st 23 . =0
- 9T _ Qs 3T
33 T}i (532 ok S3s %,
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This requirement is- identical to setting Vo = 0 (where vo is derived in the

next section)..

10.3 "The Flutter Boundaries for the Linearized System

The flutter boundaries can be obtained from the solution of the
linearized system as represented by Egs. 9.24, 9.25, and 9.27. The solution
to this system of equations is given by
x,=A, el _
X, = A,ef : (10.5)
v =ae’Y

Substitution of these relations into the linearized equations of motion yields

‘the characteristic equation, Eq. 10.6, given on the next page. This equation

can be expanded to give a sixth order equation which can be written as

'

v p o+ P, r" * osr’ + vzr‘w,r +3 =0

where the coefficients v6, ces 4 vo are given in Appendix P, Egs. P.1l through

(10.7)

P.7.

At the flutter condition
F = Lwt (10.8)

Substituting Eq. 10.8 into Eq. 10.7 gives two equations, one for the

real and one for the imaginary part of Egq. 10.7.

From the real part
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- 6 § _ : . =0 (10.9)
. v, W' o+ O“wc thc A
From the imaginary part

5 3

e )y +wey, =0

or
2 .
VWS- Vw +9, =0 (10.10)

The last equation is a gquadratic in wi which can be easily solved; thus

(w‘) R \]9:—40,0,'
l,‘L

A = 29, , (10.11)

From Eqs. 10.11 and 10.9 the flutter boundaries can be obtained.

10.4 Flap-Pitch Stability Boundary

In the presentation of the results, it will be useful to have stability
boundaries for flap-pitch motion similar to those obtained previously for
coupled‘flap—lag in Section 4. Therefore, the stability boundary for flap-
pitch motion will be derived below. From Eq. 10.6

P9, p+ @2 +Fx’) » -[sz;;. +p£‘¢+Fr]
=0
[ 2 - = (10.12)
[Fll-i':*'lb-}}a'* 7;‘4] Pt p ooy + Ke

In analogy to Section 4, at the flutter condition p = iwc and the
imaginary part of the characteristic equation (Eq. 10.12) yields the appropri-

ate relation for the flutter frequency

CU:': _?_D-I /(_E + 2:3 (a;;:,‘fo‘)‘Ff 7.-z‘ "7;' F; . ' (10.13)
dort Jo3—FJ 7%:
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The real part of Eg. 10.12 yields

[’ wt *((‘;Flz'/’ Fx4 )](-C“cz’/' EE) - w‘z%‘; %3

2p e e o
“(~wl Tge+Ty,) Fp 4 Fyg 1£ =9 - (10.14)

The simultaneous solution of Egs. 10.13 and 10.14, with an appropriate
relation for the inflow ratio, yields the critical value of the pitch setting

6C at which pitch-flap flutter occurs for a given torsional stiffness B;.
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SECTION 11

RESULTS AND DISCUSSION

11.1 Numerical Quantities Used in- the Calculation

Most numerical quantities used in the calculations are identical to
those given in Section 7.1 unless otherwise stated. For all flap-lag-pitch

calculations xI = 0.

In the calculation of the divergence boundaries, the following géo—

metrical blade properties were used:
Y = 8; g = 0.08; b= 0.0313; -1 = 0.0013

These properties are close to those of the Boelkow M105 4-bladed hingeless

rotor.

In the calculation of the effect of the torsional degree of freedom on
the flap-lag-type of instability, the previous values for Yy and 0, used in

the flap-lag calculations had to be used again. Thus, for this case -
Y = 10; o = 0.05; b = 0.025; I = 0.001
In the calculation of the effect of lag on the flap-pitch instability,

the same values of Y, O, b and I were used as for the divergence boundary cal-

culations.

For convenience, the inflow for all cases calculated was taken from

Eq. 7.3.%

11.2 Static Stability Boundaries

11.2.1 Approximate Divergence Boundaries

For convenience in numerical calculations, only the linearized or
approximate divergence boundaries, defined in Subsection 10.2.1, Eq. 10.1,
were evaluated. Conceptually, these approximate stability boundaries are
similar to those evaluated by Miller (Ref. 11). Equation 10.1l1l includes up
to the first order, the destabilizing feathering moment due to the drag

*In all coupled flap-lag-pitch calculations the structural damping in the flap
and lag degress of freedom "I.sn: ’I'Ls“=o . The sructural damping in the
feathering degree of freedom was always assumed to be zero.
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acting through the initial deflection (static) in flap together with the
stabilizing feathering moment due to the lift acting through the initial

deflection (static) in lag.

Figure 31 1is a typical divergence boundary of this type. The blade
cross sectional center of gravity and the elastic axis are taken to be coinci-

dent.

Thus, xA represents the aerodynamic center-blade cross sectional
center-of-gravity offset. As can be seen from Fig. 31, the rotating-lag
frequency (or chordwise stiffness of the blade) has a coﬁsiderable effect on
tne divergence boundary because it changes the effective moment arm through
which the lift produces a stabilizing feathering moment. As can be seen,
changes in )

Ll
Fig. 31 that the soft inplane hingeless blade has superior divergence charac-

between 1 and 2 have the greatest effect. It is clear from

teristics.

Figure 32 shows the effect of collective pitch setting 0 on the approxi-
mate divergence boundaries. These plots indicate that at lower collective
pitch setting the blade is statically more unstable. Physically, it expresses
the fact that the stabilizing moment due to lift is approximately proportional
to'ez, while the destabilizing moment due to drag is proportional to a power
of © somewhere between 1.5 and 1l.2. Calculations made for pitch flap with the
exact divergence boundary (nonlinear) show that increasing 6 could be de-

stabilizing.

Figure 33 shows the destabilizing effect of the preconing, which has
also been indicated in Ref. 11. From this plot it is clear that preconing

has a strongly destabilizing effect on static stability.

Figure 34 shows the effect of feathering axis orientation f with re-
spect to the hub plane, measured in a plane perpendicular to the hub plane.

Again, this is a destabilizing effect, similar to Bp, but not as strong.

The effect of elastic coupling is stabilizing. Figure 33 was recalcu-
lated, including elastic coupling; it was found to be stabilizing, but only to
a minor degree. The effect of elastic coupling is dependent upon the combi-

nation of flap and lag frequencies. Therefore, for some other combination of
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these quantities, the effect could be stronger.

11.2.2 The Exact Divergence Boundary for Flap Pitch

In order to illustrate the considerable difference between the approxi-
mate and exact divergence boundary, these two are given in Fig. 35. The exact
divergence boundary for flap pitch is treated in Appendix R, and the appropri-

ate curve was calculated using Eq. R.5.

As can be seen from Fig. 35, the exact divergence boundary is approxi-
mately 33% higher than the approximate linear divergence boundary. Additional
cases for different values of collective pitch setting 0 were also computed

and the same difference between approximate and exact boundaries was observed.

. . e . . o
It is of interest to compare the initial static values of gl,@o evalu-
ated at the exact divergence boundary and compare them with the values result-

ing from Egq. 9.23.

For the §A> = 0.04 point of Fig. 35

(¢ )

o N
.04 = 0.1011
o) exace = 0-04919 (g)) 101

exact

1]

(¢

- [¢)
2) i noay = 0-0623 - (g = 0.1117

linear

. : . A o
The flutter calculations are dependent upon the initial values gl,éo;
thus, the exact calculation of these quantities, can have an effect on the re-

sult of the flutter calculation.

11.3 Flutter Boundaries

11.3.1 General

The purpose of this section is twofold. First, it will show the
effect of the addition of the torsional degree of freedom on the flap-lag-
type of instability treated in the'first part of this work. Second, it will
show the effect of the addition of the lag degree of freedom on the flap-pitch
type of instability as evaluated from Eqs. 10.13 and 10.14.

The coupled flap-lag-pitch stability boundaries are evaluated from
Egs. 10.9 and 10.1ll1l using a computer program which searches and iterates for

the flutter points occurring between O < § < 0.5 for a given combination of
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flap, lag,and torsional frequencies. This program also continuously checks
the value of vo, evaluated using the linear static equilibrium condition, for

the occurrence of divergence.

The coupled flap-pitch stability boundary is evaluated using Egqs. 10.13
and 10.14 by a separate program which searches and iterates for the value of
G; at which flutter occurs at a given collective pitch setting 8. This pro-

gram evaluates only the upper branch of the stability boundary.

11.3.2 Effect of Torsional Degree of Freedom on the

Flap-Lag-Type of Instability

*
In order to illustrate this effect, the following cases are considered:

!

Case 1 (a) W, = 1.175; & = 1.075764
(b) 5?1 = 1.175; GLl = 1.28303
Case 2 (a) GFl = 1.25; ZILl = 1.11966
(b) Gm = 1.25; ZJLl = 1.39403

Note that all cases plotted are calculated without the effect of elastic

coupling.

Cases 1 and 2 correspond to the appropriate points on the stability
boundary given in Fig. 8 for ec = .20. Point (a) is on the lower branch

while (b) is always on the upper branch.

Figure 36 shows the effect of torsion on Case 1l(a). At a high
value of 5;(5; f 100), this simulates a torsionally rigid blade; for this
case, Gc = 0.2068 which compares well with the value OC = 0.20 obtained from
the flap-lag calculation. As the torsional stiffness is gradually decreased,
the value of Oc is slowly increasing. In the vicinity of 5; z 32"0c in-
creases sharply. At some very high value of 0 divergence occurs. Thus, the
effect of addition of the torsional degree of freedom is stabilizing for the

lower branch of the flap-lag stability boundary shown in Fig. 8.

When the same process is repeated for the upper branch of the flap-lag

stability boundary, Case 1(b), it is seen from Fig. 37 that the value of Gc

*
A limited number of additional cases will be considered in Ref. 9.
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is continuously decreasing and at 6; = 5, it reaches a value of Bé = 0.047.
Thus, the addition of the torsional degree of freedom is strongly de-

stabilizing for the upper branch of the flap-lag stability boundary.

During this process, the flutter frequency remains fixed for both the
upper and the lower branch of the stability boundary, and is approximately
equal to the lag frequency.

For the sake of completeness, two additional points on the flap-lag
stability boundary were considered. These are Case 2(a) and Case 2(b); the
results are shown in Figs. 38 and 39. Again, the torsional degree of freedom

is destabilizing for the upper branch and stabilizing for the lower branch.

11.3.3 Effect of Lag Degree of Freedom on the

Flap-Pitch-Type of Instability

In oxder to evaluate this effect, a pitch-flap stability boundary is
required; this boundary is shown in Fig. 40. As can be seen, the pitch

setting is strongly destabilizing.

In Fig. 41, the flutter frequencies associated with the stability
boundary shown in Fig. 40 are given. It is of interest to note that the

flutter frequencies in pitch-flap are usually lower than E;.

A representative point on the flutter boundary (Fig. 40) with
Bc = 0.20 wo = 7.8;25 mFl = 1.2

will be used to investigate the effect of adding the lag degree of freedom.

The results of adding the lag degree of freedom are shown in Fig. 42.
For GLl = 20, which represents a blade with the lag degree of freedom
effectively suppressed, Gc = 0.197, which is quite close to Bc = 0.20. De-
creasing the lag stiffness of the blade gradually reduces the value of OC.
The flutter frequency during this process is shown in Fig. 43. It is in-
teresting to note that during this gradual decrease, the flutter frequency is

essentially the flap-pitch flutter frequency.

In the vicinity of GLl = 5.0, where the rapid dip in the value of Oc

occurs, the nature of the instability changes; it becomes a flap-lag-type of
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instability and the flutter frequency is very close to the lag frequency.
"
At Wy = 2.25, Gc attains a minimal value of 8c = 0.04. This region is

obviously identical to the region of low ec

- A
In the vicinity of w = 1.1, a rapid growth in the value of Bc occurs, and

no flutter occurs below'GLl

plane hingeless blade seems to have the best coupled flap-lag-pitch flutter

s shown in Figs. 37 and 39.
< 1.0. This seems to indicate that the soft in-

characteristics. This apparent advantage of the soft inplane hingeless blade
should be considered within the limitation of the analysis performed in the
present study. The various other instabilities associated with this type of
blade such as ground resonance, air resonance,and instabilities due to positive
preconing, were not considered and could be major design problems in the con-

struction of a stable hingeless rotor system.

For a few cases, the effect of elastic coupling on these stability
boundaries was investigated: It seems that the elastic coupling is sufficient'
to eliminate most of the unstable regions, except the unstable region in the
= 2.5 shown in Fig. 42.

vicinity of le
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SECTION 12

SUMMARY OF RESULTS AND CONCLUSIONS

12.1 Conclusions for Coupled Flap-Lag Motion

Conclusions for Hovering Flight

1. 1In the vicinity of the critical condition (6 3_ec), when flutter
occurs, the amplitude of flap motion is much smaller than that
for lag. This is due to the fact that the lag mode is the poten-
tially unstable mode, due to its low damping. In this region the
ratio of lag over flap amplitudes can be between 5 to 10.

‘2. The structural damping in flap has no effect on the stability of
the system. On the other hand, a smallwgmount of structural
damping in lag (nSL1= -5% of critical damping) is sufficient to
stabilize the potentially unstable lag mode by raising the values
of the critical collectiye pitch setting Gc above values which
could occur in practice. According to Ref. 3, the elastic coupling
effect is also sufficient to eliminate most unstable areas inside
the flap-lag stability boundary. In an actual hingeless rotor, these
two effects will always coexist, indicating that the flap-lag sta-

bility problem may be readily avoided in an actual rotor design.

3. The limit-cycle-amplitude-response curves in lag are steep and the
limit-cycle amplitudes are large. This means that the nonlinearities
in the system are weak and they cannot stabilize (in a practical

sense) the response once the linear-stability boundary is exceeded.

4. Combinations of flap and lag frequencies, corresponding to the
region of unstable limit cycles in the stability boundaries (Figs. 3
and 4), should be avoided in the design of hingeless helicopter
blades, because for this case a blade stable from a linear point of
view can become unstable, if it encounters a disturbance which is

large enough.
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The structural damping in lag tends to reduce the limit-cycle
amplitudes in lag and it also reduces the slope (axz/ae) of the
limit-cycle-amplitude-response curves in lag (see Figs. 14 and
15).

In the neighborhood of the critical condition (8 > Gc), the

“value of K_,_, defined in Eq. G.71, determines the behavior of

3R
the blade motion in the large amplitude range because the sign

of BIAOI/Bwl is the same as for K,g When |A°| is sufficiently

large. Therefore, a large positive K represents a strongly

A 3R
destabilizing nonlinear effect. It is undesirable to have a

blade with a positive K_,_ because in this case instability can

3R
always be excited, if the disturbance is sufficiently large.
In violent maneuvers or in strong gusts, such large distur-
bances may occur in practiée. The value of K3R is independent

of the advance ratio and is a complicated function of wc, wFlO'

leO’ vr, etc.

In hovering, for 6 > ec and K < 0, the limit-cycle amplitude

3R
for lag motion is approximately given by

- ke ]
3R

while the limlt—cycle amplitude in flap is given by

]v,/ [ sz]
Kar

Figure 10 shows that the effect of using the approximate
centrally-hinged, spring-restrained rigid blade mode of
the elastic hingeless blade is to significantly shift the
region of flap?lag instability to lower values of blade
frequency. This indicates that the use of the exact ro-
tating mode shape could be of importance in the calcula-
tion of flap-lag stability boundaries.
The flutter frequency of flap-lag oscillations is very close
to the lag frequency le Therefore, for practical purposes,

the lag frequency can be taken as equivalent to the flutter

frequency.
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Conclusions for the Forward-Flight Cases

10. When the fotating lag frequency of the blade is
‘ not in the vicinity of the 1/2 or 1, the time de-
pendent coefficients (or forward flight, u) in the
equations of motion has only a forcing function type
of effect. Thus, the time dependent coefficients
will not have any influence on the stability of the
sfstem for this case and for the range éf advance

ratios considered in this study (0 < u < .3).

11. Below the critical conditioh 0 < GC) for all cases,

the flap amplitude xl' in forward flight, is larger

than the lag amplitude Xy* At approximately 0.16c

below critical the lag amplitude starts to grow, and

for 0 > Bc, the lag amplitudes are much larger than

the flap amplitudes. In order to eliminate -large qscil-
lations in lag, it is reasonable to design the blades in
"such a manner that no angle of collective pitch inside

the flight envelope should ever exceed 0.79c.

12. Due to the large amplitudes of vibrations in lag which can
occur in both hover and forward flight, the fétigue life
of the blade for inplane vibration could possibly be an im-

portant criterion for hingeless blade design.
i

13. For the general forward flight case, Case B (1 = 81/2

'u°=ll
wc # 1/2 + €V or wc # 1 + €v), the blade response and stability

in the neighborhood of Bc is determined by uzK + (0 - ec)/uz,

o 6R KZR[

(Ao - Aoc)/uzl and K when the first of these quantities is

3R’

positive and K, < 0, stable limit~cycle oscillations occur.

3R

The flutter mode in this case has the functional form of
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14.

15.

l6.

A= AO(G—GC do-dec /u."*f)
R
Case C (uv= €, ul = 1, uo = 0, wc = 1/2 + €V). In this case,
the parametric excitation is predominant. Up to the first
order, the amplitude of the lag motion, near the critical con-

dition, can be approximated by
- 12 o [6- Xo-) ]
X,Z_Z/u Real[/i {TG‘)——/U—EC)/""%)

Near the origin (Ao = 0), the stability is determined by Re(sl)

(s, is given by Eq. 5.79%a on page 46). For Re(sl) > 0, the

1
system is unstable and for Re(sl) < 0, the system is stable pro-

i <
vided K3R 0.

Case D (4 = 81/2

"uo =1, ul = O,wc = 1 + €V). The parametric
excitation has an effect but forcing is predominant because the
system is excited very close to its resonant frequency. Up to

the first order terms, the lag motion can be approximated by

XZ, 2/(' Read [;}0(9/;?% )\cp/;ioc 7/“2.‘/,)]

n
The stability near the origin (Ao = 0) depends upon the sign of

Re(sl). Where S1 is given by Eq. 5.104, the system is stable for
Re(sl) < 0 and is unstable when Re(sl) > 0. For M > 0.25, this
case is usually characterized by large amplitudes of blade re-
sponse. Therefore, the lag frequency range of 0.88 < GLI <'1.12

should be avoided in the design of hingeless helicopter blades.

The important nonlinear terms in Egs. 3.23 and. 3.24 have been
identified. The strong destabilizing term in Eg. 3.23 is
Cl(R/R)BFl3§§. When neglecting this term, the regions of un-

stable limit cycles in Figs. 3, 4, and 8 vanish completely.

The term - C7(2/R)L18;i in Eq. 3.24 is stabilizing. When neglecting
this term the regions of unstable limit cycle grow and cover
approximately 60% of the stability boundary. Thus, it is danger-
ous to neglect nonlinear terms when investigating the nonlinear

blade stability problem.
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17.

For all forward-flight cases, the stability and the amplitudes
of blade response are considerably affected by the requirement
of trimmed flight at fixed CT' Flutter and blade response cal-

culations, which neglect this effect when evaluafing the effect

of forward flight, have a doubtful validity.

12.2 Conclusions for Coupled Flap-Lag-Pitch Motion

1.

From the numerical calculations performed it was

found that the results associated with the

stability of the coupled flap—lag;pitch system

are quite-sensitive to the numerical values of the
coefficients in the feéfﬁering equation. The

various quantities F?: L:"'J-B":, F‘-‘m,(M‘l,)"' , etc.

are dependent on the assumed mode shape, consequently

the use of the exact mode shaperof the blade (corresponding
to the actual load distribution) may be important for certain

flight conditions. Similarly the use of the exact, span-

wise varying, inflow could also effect the results. These

effects, can also combine to modify the static equilibrium

‘position of the blade, thus affecting both the divergence

and flutter boundaries. Use of an additional elastic mode
in the flap degree of freedom could also be important.
Therefore, the results and conclusions, presented below,
should be considered as subject to certain limitations due
to the fact that-the various effects mentioned above have

not been included in the analysis.
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From the approximate static stability boundaries given, it is
clear that the aerodynamic center-blade-elastic axis (c.g.

in reality) offsct is a destabilizing effect. Similarly the
effect of preconing (Bp) and blade feathering axis orienta-
tion with respect to the hub plane ( B) are also destabilizing.

The strongest destabilizing effect seems to be the preconing.

The lag degree of freedom has an important effect on static
stability because the deflections in iag generate an effec-
tive moment arm through which the lift produces a stabiliz-
ing feathering moment. Thu§, a soft inplane hingeless

blade has much better divergence characteristics than a blade

which is stiff in the chordwise direction.

Conceptually, the approximate linear divergence boundary is
not the correct divergence boundary of. the system. For the
small number of cases considefed, the approximate divergence
boundary seems to be nonconservative.

The addition of the torsiohal degree of freedom has a
stabilizing effect on the lower branch of the flap-lag
stability boundaries (Figs. 3,4, and 8), while it is
destabilizing for the upper branch. Thus, the dpper

branch of the flap-lag stability boundary should be

avoided in the actual design of rotor blades.

The addition of the lag degree of freedom with 6;1 > 1.2

is destabilizing for the coupled flap-pitch motion.
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10.

11.

With rotating lag frequencies of Gil < 1.1, the coupled

flap-lag-pitch motion is quite stable. Thus, the soft

‘inplane rotor with a rotating lag frequency in tlie

vicinity of GLl = 0.75 (midway between .5 and 1.0) seems to be
the best from both the divergence and flutter point of view.
This apparent advantage of the soft inplane hingeless blade '
should be considered within the limitation of the analysis per-
formed in the present study. The various other instabilities
typical of this configuration were not considered (see

page 159).

Due to the strong effect of the initial deflections
gi, hi, @o on both the static and dynamic stability
boundaries of the.blade,_flufter—divergence interactions

could easily occﬁr}

When including the third order inertia termé in the féather—
ing equation it has been found that it is also necessary

to include & considerable Rumber of third order terms, as-
sociated with the aerodynamic loads (because they are of the
same order of magnitude). This is required in order to rep-
iesent correctly the behaviour of the blade. It should be
pointed out, that this conclusion may be modified by the

considerations given in the first conclusion of this section.

Based upon this work, a parametric investigation aimed
at determining the optimum configuration for a hingeless

blade seems feasible.
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TABLE 1

Numerical Values of F*, L' Coefficients Defined in Appendix C

Numerical Value

Flap Numerical Value Lag
Coefficient (Nondimensional) Coefficient . (Nondimensional)

P 0.2253962 Lt 0.2888881
F2 0.2888881 L2 0.3999991
P 0.3999991 L3 0.0
F 0.0 4 0.2253962
B 0.0 L’ 0.0
F® 0.3716033 18 0.0
F’ 0.4999981 L’ 0.2059954
F° 0.2059954 1® 0.2567891
Fo 0.2567891 12 0.0
F1O 0.2059954 L0 0.3716033
Fit 0.2567891 0.4999981
Fi? 0.0 L2 0.0
i3 0.1901494 P 0.2567891
pid 0.3333313 0.2059954
Fi> 0.1901494 > 0.0
F16 1.0000000 Fl® 0.3333315
rl’ 0.5000000 7 0.3333313
Fi8 0.3333333. Fi8 . 0.1901494
F1? 0.4222209 2 0.1901494
F2° 0.7428541
Values for the éertinent Generalized Mass Quantities Defined in App. B

3111 = .8148114 im = .7703672

's'lu' = .8148114 Hm = .7703672

(Hy)lll = .8148102 El = 1.199996

(Hn)lll = .8148102
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TABLE 2

=i i
NUMERICAL VALUES OF B , T COEFFICIENTS DEFINED IN APPENDIX M

Coefficient Numerical Value
B .8666655
B .9037014
B .7703676
B .7703676
B° .8666654
B° .9037012
B’ .7703671
B° .7703676
B .9037012
B0 . 8666654
st .8666642
Bl2 . 8666642
B3 1.1999960
ptd | 1.5000000
Bl . .9037001
B0 .9037001
B .8148102
B8 .8148102
ot .333333
72 .500000
3 . 250000
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/"‘— DEFORMED BLADE

UNDEFORMED BLADE
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FIG. 1 GEOMETRY OF UNDEFORMED BLADE AND DEFORMED BLADE
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DIRECTION OF FLIGHT
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MAR=Vcos o o \.

2
1 .9L1szotLr
. HUB_PLANE
RRscn
- ¥ \U,- L u y [¥-y PLANE]
TOP VIEW tan } R Y P
OF BLADE . U, U

FIG. 2 VELOCITIES IN PLANE OF THE BLADE AND GEOMETRY FOR EVALUATION OF Ly
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— ——— Denotes Region of Unstable

Limit Cycles

Denotes Region of Stable
Limit Cycles

0.05

Inflow Calculated from

FIG. 3 STABILITY BOUNDARIES FOR VARIOUS VALUES OF ec Yy =

Eq. 5.5
1 i 1 A i A - | i HBF].
1.1 1.2 1.3 1.4 1.5
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4§ L1
1.6 [
1
1.5 F
e
1.4
1.3
-
1.2 —~-=-- Denotes Region of
Unstable Limit Cycles
L Denotes region of
Stable Limit Cycles
1.1 10 Ngpy = Mgy = ©
0.01
2m
0.05
1.0
Inflow Calculated from Eq. 5.5
-
o.s)
0.8 1 ) 1 1 1 I ] 1 1 | > 55‘1
1.0 1.1 1.2 1.3 1.4 1.5

FIG. 4 STABILITY BOUNDARXES FOR VARIOUS VALUES OF ec Yy = 10
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Note: X+ X, are flap and lag deflections, about the equilibrium
position, at blade tip nondimensionalized with respect to the
blade lex_xgth'

# 209
wg, = 1.325
.50 X3¢ X, Eual.«s
9c==0.20;' € = 0.02 ; nsmansuao
40 | i) l
Lag X
3WHWW-HWW] LR WM"?’\FMWWH. |
NN = -
J‘JHMJMM (ih HJJJM LLRERRBERRERHRREERRE
-.60 | — T T T v

FIG. 7 UNSTABLE LIMIT CYCLE OBTAINED BY NUMERICAL INTEGRATION

FOR POINT @ FIG. 4
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FIG. 8 STABILITY BOUNDARIES FOR VARIOUS VALUE OF O WITH
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1.4 |
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Stability boundary
taken from Ref. 3
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1.1 [ / & — Stébility boundary
'\ Q- : for elastic blade,
N using inflow given
by Eq. 7.3
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FIG. 10 COMPARISON OF A TYPICAL STABILITY BOUNDARY FOR CENTRALLY
HINGED SPRING RESTRAINED BLADE MODEL WITH THAT FOR
HINGELESS ELASTIC MODEL
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Wpio = 1-2
Yy =10 _
.35 7] o = 0,05, cd = 0.01, a = 27
e (o]
C. = 0.01
Dp

©, ag. -els' 8)cr A

0¥ 1 1 T T
. 0 .1 .2 .3 .4

FIG. 16 TYPICAL TRIM CURVES FOR C, = 0.005
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FIG. 17 TYPICAL TRIM CURVES FOR CT = 0.0075
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Note: Xl' )(2 are flap and lag deflections, about the
equilibrium position, at the blade tip nondimen-

sionalized with respect to the blade length

wFl.O = 1.20
= 1.1375
(XI) v y'z ‘ wLm ; :
avy w_ = 1.139939; ec = 0.315614
C, = 0.006
Ngpp = Ngpy = 0-005

Note: X, = (X;),, Eq. 7.

CDp = 0.012, Y =10, 0 = 0.05, C

d = 0,01, a = 2w

Q-

0 -+ + + $ —
0.1 0.2 0.3 0.4 /b
+ + { + e,
0.1628 .0.1623 0.2014 0.2936

FIG. 18 AMPLITUDE RESPONSE IN FORWARD FLIGHT
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_(Xl)av' x2 Note: xl. x2 are flap and lag _deflections,‘__Aabout the

| equilibrium positioh, at blade tip nondimension-
alized with respect to the blade length.
CASE B, wFlO f 1.175, leO = 1.333;93 CT =-0,01
nSFl = nSLl = 0,005, ec f 0.357523,‘wc = 1.32§4
numerical integration
— T T T perturbation
op = 0.012, y = 10, 0 = 0.05, C; = 0.01, a = 2m
] _ : o
! (Xl)av
7
7
4 7~
- X
’,f" - 2
= -
o s -
il
+ ! 4 '\ + + i L J’/Al
0.1 0.2 0.3 S
+ + } } 19 (trim)
0.267 0.255 0,266 0.296

FIG. 19 AMPLITUDE RESPONSE CURVES IN FORWARD FLIGHT, COMPARISON
OF RESULTS FROM PERTURBATION AND NUMERICAL INTEGRATION
AT SUBCRITICAL CONDITIONS .
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Cx:)nv,)(z Note: Xye X, are flap and lag deflections, about
the equilibrium position, at blade tip non-
dimensionalized.with respect to the blade

length.

CT = 0.0078

All other data the same as for Fig. 19

(x‘)av
X,
0.3 M
. . , B (trem)
0.210 0.2037 0.237

FIG. 22 EFFECT OF CT ON AMPLITUDE RESPONSE IN FORWARD FLIGHT
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Note: xl, x2 are flap and lag deflections, about the equilibrium

position, at blade tip nondimensionalized with respect to

* the blade length.
" CASE B, wFl-= 1.175, le = 1.33319, wc = 1.3264
X)v X =n = =
(.a, 2 "sp1 = Mgy = O 6<: 0.20
CT = 0.0078

CDp = 0.12, Cdo = 0.1, a=2m

Yy = 10, O = 0.05

0 + + + + + + 4 )/h
0 0.1 0.2 0.3 .
O (trim)
~ + . ' : >
0.243 0.236 0.210 0.2037 0.237

FIG. 23 AMPLITUDE RESPONSE CURVES IN FORWARD FLIGHT, POSTCRITICAL
REGION (FROM PERTURBATION METHOD)
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| Kt Hoen CASE B
ET = 0.0078 _ |
@Fl = 1..175; le = 1.33319
Ngpy =N gLy = 0; Oc =0.20; w_ = 1.3264
o a - - - = - . = H
0.40 ch = 0.012; Cdo 0.01; 0 = 0.05; Y = 10;
a = 27
0.30[
0.20
o.10T
L
° o Vot
1 [y
} + + 4 -+ -0 (trim)
0.243 0.236 0.21 0.204 0.237

FIG. 24 EFFECT OF FORWARD FLIGHT, WITH TRIM AT FIXED CT, ON

2
T K + K
THE QUANTITY 2R uo 6R
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j; CASE B
"0 -
.All data the same as for Fig. 24
4.0 1
3.0
2.0
1.0 [
0 ——— - v

0 0.1 0.2 0.3
L : } : } - € (irim
0.243 0.236 0.21 0.204 0.237

FIG. 25 EFFECT OF FORWARD FLIGHT, WITH TRIM AT FIXED CT'
ON pl c (CALCULATED FROM EQ. 5.71)
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Note: Xy r X, are flap and lag deflections, about the equilibrium

position, at blade tip nondimensionalized with respect to the

blade length.

“(%'l)av, xl
X2
CASE D, QFl =1.2, le = 1.03861
w_ = 1.04146, 8 = 0.20
[+ (o4
Cp = 0-0080, ngpy = Ngy =0
Y =10, 0 = 0.05, C;, = 0.01
(o]
a = 2w, CDp =-0.012
0.3 ¢
0.2
(xl)GW
0.1 4/
0 + + —+— + + + > p
0 0.1 0.2 0.3
l + + + + + ..59

0.248 0.241 0.215 0.205 0.207 0.219 .

FIG. 26 AMPLITUDE RESPONSE CURVES, IN FORWARD FLIGHT, FOR CASE D,
IN POSTCRITICAL REGION (FROM NUMERICAL INTEGRATION)
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DEFORMED BLADE

. REAL POSITION |

/ OF UNDEFORMED

. BLADE

w
\ r—-e;:mekms AX|S x
Xo —-

ASSUMED POSITION
OF UNDEFORMED
REAR VIEW - BLADE FOR INERTIA

Co LOAD CALCULATION
[ASSUMPTION (4),
SUBSECTION 8.2]

RIGID HUB

DEFORMED BLADE

A
Ve-v

¥

- X _

UNDEFORMED BLADE

TOP VIEW

FIG.27a DISPLACEMENT FIELD WITHOUT ROOT TORSION AND WITHOUT
PRECONING (Bp=o)
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PITCH . . — v.A
BEARING -
={ph)
T 1 > ]
[F’Eﬂ THERING AXIS A X' .‘7
-nhq :1 - x°
REAR VIEW
kY s
I
—_ X, C
A 1" - Lo )~
""’"8' ——| x° ————-‘

TOP VIEW

FIG. 27b. DISPLACEMENT FIELD WITH PRECONING; 3 AND
. ' p
WITHOUT ROOT TORSION
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POSITION OF BLADE CROSS SECTION
AFTER THE DEFORMATION :

o8 "

. .

¢
- N

CROSS SECTION LOCATED AT SPANWISE

-STATION x = X, + e, ' ’

'POSITION OF , S -
BLADE CROSS SECTION BEFORE DEFORMATION

fIG. 28 BLADE MODEL AND POSITIONS OF THE CROSS S-E(.'I'IQN
BEFORE AND AFTER THE DEFORMATION
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7 iz
P A
pé] e; (3, j, parallel both in the x,y plane)
XL (a)
{a)
ks
| &,
~/
4
~
} - 4
~
6+d
Lyl
(b}

FIG. 29 GEOMETRY OF COORDINATE SYSTEMS
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FIG. 30 BLADE GEOMETRY FOR AIR-LOAD CALCULATION
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Elastic axis, blade c.g. coincident
10 w,, = 1.2

Y = 8 g = 0,08 b = 0.0313

6 = .15 Cd /a = 0.00159
o .

g  B=B8_=0 I =.0013

No elastic coupling

0 I T T T

-.00 .04 .03 .12 .16 X .20
: : A

FIG. 31 EFFECT OF AERODYNAMIC CENTER ELASTIC AXIS OFFSET AND
LAGWISE BLADE STIFFNESS ON THE APPROXIMATE DIVERGENCE
BOUNDARIES :

205



el

10 Elastic axis, blade c.g. coincident
Wpy = 1.2 W = 1.1 I = .0013
b = 0.0313 o = 0.08 Y =8
C./a=0.00159 B=f =0
o
No elastic coupling
0=,05
6=.25
I | LI i i
-.00 .04 .03 .12 .16 — .20
x;

FIG. 32 EFFECT OF AERODYNAMIC CENTER ELASTIC AXIS OFFSET AND
COLLECTIVE PITCH ON THE APPROXIMATE DIVERGENCE
BOUNDARIES
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£l

Elastic Axis Blade c.g. Coincident

10 _
= = = .015
f x, =B=0 ¢, /a=0.00159
o
Y=8 0=0.08 b= 0.0313
wFl = 1.2 le = 1.1 I = .00l3
8
No Elastic Coupling
6-—d
4—
2-J
0 o
-.00 .04 .03 .12 .16 /3 . 20
P

FIG. 33 EFFECT OF PRECONING Bp AND PITCH SETTING € ON THE
APPROXIMATE DIVERGENCE BOUNDARIES
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Elastic Axis Blade c.g. Coincident

10 R = = =
‘ A= B, =0 C4/a= .00159
B o
° Y=8, 0=0.08, b=0.0313
wFl = 1.2 le = 1.1 I = .0013

No elastic coupling’

1 1 Y i bl
-.00 .04 .03 .12 .16 {3 .20

FIG. 34 EFFECT OF FEATHERING AXIS ORIENTATION WITH RESPECT TO
HUB PLANE B AND PITCH SETTING 6 ON THE APPROXIMATE
DIVERGENCE BOUNDARIES
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APPENDIX A

ORTHOGONALITY CONDITIONS

‘The orthogonaiity_condition for a rotating beam vibrating out of the

~ plane of rotatidé can be obtained following Bisplinghoff (Ref. 12)

e [leny a1 40 [y(€fmits) e

(A.1)
when i # k and'; | o 7 | “
’ PR . ‘“ -

o , oo

:éz—é- 4,;(51){7 (7;‘,') "dx,, .+/o ea{qi,)z(‘émx, 4% ) o/x.,_

. 2 | N _ 3
= We / my 2d¥o £
f"~l.ﬂz 0 ¢ )

(a.2)

when i1 = k.

For a beam vibrating in its plane of rotation, thg orthogonality con-
ditions are (Ref. 23)

J{ze j '(Ef)i::a;;' J,’:.-dme’/o ( /x_' mx, d%,) 1, ?‘n'aua,-

e
£ [my 3,45 =0

(a.3)
whenm#n’and . y _ .
L fen, ) amer Of ([ miaz ) (1) d -
L L'mrczdﬂz(%g')L23 / %o
whenm=n;i _ ’ | )

These relations also determine wFi and wLi'
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APPENDIX B .
Costmcxmrs 'ASSOCIATED WITH GENERALIZED 'MASSES' AND DAMPING
: ];_ J/ ano¢JXb
A - .
Petm = 4/"[ h f ™y, (x')o“")d n

Frc= 8 mg2die/ 3,
»:7;-&'=13_/o ""x_-z?l-x’/-[b
C. = O mrd%/ 1,

mr_f,j,rf, / i, i) 4% /1,
(/7,[.);”: gs['[',,?{Lx 7,7, a/x, J‘o/x., /Is
Wp),,, - [ [m( [ 0 a5 )1, m]/.n

th

The nondimensionalized viscous-type structural damping coefficients are

;gFI

i
2, - -
‘/0 T o %o Jse = Awr, Mg "’ZSF(,.
4 .
Jij;old)a
o -

"

751.' I I Jse = A M:"'qlsu
4
SN f "m %% dlxe

where nspi-and nSL

the ith mode in flap or lag.
21y

represent the fraction of critical damping associated with



|

the upper limit B.

EXPRESSIONS ASSOCIATED WITH AERODYNAMIC LOADS IN FLAP AND LAG

APPENDIX C

Note that all integrals are performed between the lower limit A and

4

F. = [x2q. d%
F2. / X7, d%
F- / 7. d%o
B [7 gt 7,45

(c.1)

220

A and B represent the tip loss factors.

L= [Xy. d¥
LZ- [y
Lt =‘/ 9(ic) y A%

L} =/§zﬁd’6

L§=f73(5) Yoo
L J[ gl 325

L= XNy ¥

8 —
Lcszqlkr‘;dxo

L= f?""’ AT

L’:Q =/’T”Zr§, yl,d)?-a

\ o )
L(:-k :fa’b'lli' olXo

(€.2)



12 r o - _
Fim = / Je 1, de Log= / g(x’o) Mg . d%o

£ /,7‘ mrdxa o L:z=/ﬂrmd’(_;

Rt [ L»t Jrn 75
'Ei,:f’z,%rmd’? . | Lie-[90) 5., 4%

P fam Libm=[ i a1 %
F7- [xd% - Live=[rq/m,4%
F"=f’72‘”3 R Lfé-éi/f-’ll? o
F" b 7! dfo

FZO _(')Z ) o Xo

The quantities AE‘i' ALi are defined by the following relations:

AFc= (% {[FG -F*Xo +F> e/u Mc F 605'7"4-/.4..(2,6/:—
o FLs) SL'n%- /%1 F;.se cos Z%- )\lc/"z_s ESSL'n Z%]

Fat E/ sin2 L8 Fieny) -

_/4( vd CoS%+/2_§ ch Stn ‘#)ﬁé‘k-(ﬁx"/*ms‘"*)%
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— ) %
[ 9 F(,m o )‘lc FC’:'Z cosy —/—2./;,9,5“_,: Sr,'nY/]Am

+[(k¢) WA h ,L(e)/u'—“ cos,b?h +( Fol g m]]

(c.3)
A = J“; %2{[XO(LZ9—L¢2AO) 4 Lf/\;z.;._f_,_gg (LL?—/—/_,_(:')-/-
(L70he -2 % Me L )COs++(/u,\ &L +2640/‘L9)5m¢
-Zl-,L(AIC h«#%lg/u Lg)wSZ% +/_24-_ & Me L,,- SLnZ.‘//]

* Ge (Y[ a0 -Lix2%0) -2 h Likcos + plLig0snt]
+ 9 [/u CIT) L;: Ao) cosf— L he Let'* (14 cos 24 )+
" A Y |

+ %jfm 56h2+]— o (ké)[(Lc'ZAaw z%_, wa )+
- s B P
Mc @ Loy cos 4 2‘%{-"/; Log sen ()b]—' [/LL(_{ (6 hm Q&Lc&m
17 W *
+ 2 [L‘ke 2,\;?8 ) Cosyf 1 (%)Z(que i 3:-/—9[.;4,ng ltm ]}

(C.4)
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APPENDIX D

INFLOW RELATIONS

D.1 Inflow Relation in Hovering Flight

Extended blade element theory (Ref. 19) gives the following relatioﬁ
for the induced velocity

ﬁﬁ[,/,ﬁ_z_;e? - -
AR 46 ao , (D.1)

Thus, constant induced veiocity over the whole rotor area is compatible,
with a twist variation inversely proportional to x. In the present report only
" constant values of collective pitch will be considered. Therefore, an ex-
pression for the constant inflow will be derived in such a manner that it repre-
sents a weigh;ed integral of the varying inflow, resulting in the correct value .

for the thrust coefficient.

From blade element theory with constant induced velocity

213 2 (D.2)
Also, from blade element theory
dT= Lp (7_5/2)02"1237(2(9_ v ) ox
2= RRX (D.3)

From Egs. D.1 and D.3
I}
Cr- G 19,/ co [ 00X, Jxax
2 3 o 16 ca (D.4)

Evaluating the integral in Eq. D.4 yields:
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€r= CZ“a. [36 m[ﬁb, <(,+1,9) (359—2) +2) 4 ]} (0.5)

From Egs. D.2 and D.5

Ao = Ci {_.‘!__[ by) (3b,-2 +2]—} |
T T (i+bs) (362) -  (0.6)

be= 320
Ca

The advantage of relation D.6 when compared to (D.7)

’ |
- al .
do=a [\/H 246 __j] | | 0.7

is due to the fact that, for a given CT’ Eq. D.6 agrees to within
v 4% with ) = Y C/2, while Eq. D.7 gives a discrepancy of ~v 20%.

where

D.2 Inflow Relation in Forward Flight

In forward flight, the constant part of the inflow can be cbtained from

the well-known relation given in Ref. 19

Aoz /(,(,'tam,dR -+ C~T ) . - (D.8)
2\‘/}4—%" _ '

For a given value of CT and Y, Ao can be obtained from Eq. D.8 by
solving a quartic equation. This has been done by usiﬁg a simple iterative

process on a digital computer.

In practice it has been found that it is possible to replace Eq. D.8
by a simpler relation which provides a reasonable approximation for Ao in the

range of advance ratios (0 < y < 0.3) and thrust coefficients (0.005 < CT < 0.015,

for flutter) considered.

a, n,
For low values of |, y v 0, Ao = AH = /CT/Z. For the value of u v 0.3,
it has been shown in Ref. 24 that

224



)«va-:-'/;_f“ndg + Cr
_ .%/b
Therefore, an approxiﬁate relation which wddld be good at the endpoints can

be written as

Aaf:/‘bfa‘“’ g + ,CT

2/ mutaucy Cr + A ' (D.9)
[/u ) 2 Antu) /a] '

Using this expression, Ao can be approximated by.

)o—*-/u.iamock + Cr , (0.10)
v ) 2 a2 V2
Z.[ af.‘l'}l.]

Expression D.10 can be considered to be an approximate solution to the
quartic (D.8). The maximum error due to the approximation occurs at M = 0.05
and is 7%, at W = 0.1 the error is 2.5%, at 4 = 0.15 the error is less than
0.8% and afterward (D.10) is equal to(D.8) up to 3 significant digits.

Therefore, Eq. 8.10 was used instead of solving Eq. D.8 by iteration

for every case considered.

Note that_AH in Eq. D.9 is calculated from AH = VCT/2 .
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APPENDIX E

THRUST COEFFICIENT FOR A HINGELESS BLADE IN FORWARD FLIGHT

In this appendix, the thrust coefficient of a hingeless rotor will be
derived. All quantities are referred to the hub plane. According to
Bramwell (Ref. 20), the motion of the blade as represented by one elastic
mode is sufficient for the derivation of the thrust coefficient. The contri-

butions due to lagging velocity in UP and Ui will be neglected.

With these assumptions and Egs. 3.7, 3.8, 3.14, and 3.15, the velocity

components UP and UT can be written as

. ' , # : '
Up= [)\.+/aq,’ J Cos++k€ 1,9, ]"Z‘ , (E.1)

Ur= A% (/“""Y’* 7) (E.2)

From Eq. 3.12

. 3 ' 25 (8 _
Eﬂszr Lyl ol Kol = mb (bR) “fa£/ / uTz(a-gg) dx oy
2T o Jf Ur

AT Yo Y (E.3)
Assuming a cyclic pitch variation given by
O = 0,+ 6,5 Scngp+ 8y COSY (E.4)

the corresponding flapping motion can be represented by

o .
yl - ?4 +Zssmf +ic cos (E.5)

The substitution of relations E.l1, E.2, E.4, E.5 into E.3 yields,

after a considerable amount of algebraic manipulation,



(E.6)

e
e

For A =0, B = 1.0, by integration by parts

S
X”]’dx-/F

e

>

N .
From its definition F3 v 0.5, therefore, the last term of Eg. E.6 is

negligible, and the thrust coefficient is given by

B - 17
Cr= Cafl {9, 3F%3 ZF")- F'7 Yot f F 945} |
A 4 '{{k’) 3 ( '2"“ /14 | (E.7)

where the quantities F16, Fl7, Fl8 are defined in Appendix C.

Equation E.7 agrees with the corresponding equation given in Ref. 20.
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APPENDIX F

APPROXIMATE TRIM EQUATIONS FOR A HINGELESS ROTOR

F.l Assumptions and Basic Equations

In this appendix, an approximate method for calculating the value of

collective

pitch 60 and the appropriate values of aR' elc' els for a given

flight condition will be described. The flight condition is determined from

the values
The

(1)
(2)

(3)

(4)

(5)

The

The

of CT and U which are assumed to be known.
method of calculation is based upon the following assumptions:

The helicopter is in steady level flight.

Pitching and rolling moments on the rotor are
equal to zero.

The rotor hub and the helicopter center of éravity
coincide, i.e., the whole aircraft is represented
by a point mass coinciding with the hub.

The cyclic pitch variation is assumed to be given
by Eq. E.4 and the corresponding flapping motion
is given by Eq. E.5. '

: . v -
The angle aR is small. Then sin aR = aR' cos aR = 1.
geometry of the problem is given in Fig. F.l.

equations of equilibrium, tangential and normal to the flight path,

can be written as

ms V= mrgsinf, ~Dror (F.1)

erJ‘; =-L *"’fg""sb'): (F.2)

From assumption (2), the moment equilibrium in pitch and roll yields

Mmr=o0 (F.3)
Mgy =0 (F.4)
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} VERTICAL

HORIZONTAL

FIG. F.1 GEOMETRY FOR TRIM CALCULATION
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These four equations are sufficient to determine the four unknowns

e, , and,Gls.

eo'~aR' 1lc

Frqm assumption (1), Y = ? =0 V= 0, and Egs. F.1 and F.2 reduce to

>DT0T= 0 . (F.Sj
L=mrg - (F.6)

From Fig. F.1

Dyor = -TSL'nO(R-[-'HcOSolR-I--DP (F.7)

~ (F.8)
L = TCOS 0(/{

The drag of the helicopter can be represented by using the equivalent

flat-plate area

2
Dpz-lifvf (F.9)

‘With these relations and assumption (5), Eq. F.5 can be rewritten in coef-

ficient form
Crog +Cxy + 1L -0
TR +4H (.”-Rz) Y (F.10)

In order to solve the problem, the quantities C ’ M M! must be

evaluated.

F.2 The Pitching and Rolling Moments

Neglecting the Coriolis forces, Egs. 3.1 and 3.3 yield

EI) TW) 4 m W =
3’(0 [( ]’()x ] 'DXO( 'BXo) St__l L2 (F.11)
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By integration, tne moment at the blade root due to aerodynamic, cenfrifuqal

and inertia forces can be written as (for £ = R, xo = x, and el =-0)

Mn(o + [Lz '”’leat;l mazw] XodXo . F.12)

" Using one elastic mode given by Eq. 3.7, Egs. F.1l1l and F.l2 yield

MR("‘* e/[“[“‘:[ dx‘]dXo(Tg)%’ )'MULHZ’}W"WO Bt

- From the free vibration problem equation (A.2)

s

d _ —Z o2
[(EI Ly, dxp(rggf)_mwp,um,

(F.14)

From Egs. F.13, F.1l4, and D.1l5

Me(o,tll)=£3..)22(w;,2—4)(gﬂ-gKCos%J-g,sSdh)”)/om@?,dx_o (F.15)

According to Fig. F.2 below, the pitching and rolling moments are ob-

tained from MR by a simple vector decomposition.

Me

beade

FIG. F.2 BLADE ROOT MOMENT DECOMPOSITION
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Mm= Mel0,¥) cosy

Me= Mg (oY) S"”)b (F.1le)

For trim purposes, the average values of these quantities, per revo-

lution, are required.

o ) '
Mma = _’_/ Me(o¥ ) cosy d
27 Yo

(F.17)
B 2F ) o
Mg - _4_/ Ma(0,%) scnipd ¥
' 27 Jo - \
From Egs. F.17 and F.15
l
— 3 — -
Mma-z _'_/_(C()F’z—l)‘e (jlijlc j mxo?, dXo
2 ° (F.18)

(G- PR %o 7). d%e
Me= £ (6 -) ER%g, [ mer,d%
Equation F.18 represents pitching and rolling moments due to one blade,
for n blades
ﬁfhzr = Mma np
(F.19)
‘Mer: Mla ny

Thus, Egs. F.3 and F.4 are equivélent to the requirement that

Zc :jlss 0. Ny (F.20)

F.3 Flapping Coefficients

The so-called “flappinq coefficients” are obtained fram the steady-state
solution of the flap equation when the Coriolis forces, damping and displace-
ments or velocities, due to lag motion,-are neglected. In the analogy to

previous derivations, only one elastic mode is used. From Eq. 3.18
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— %%

Mei 9, + Mg wr 0‘!, Ari

(F.21)
With Ilc = 0, from Eq. C.3
Ag, = z a2 36 1" (2 8FZ XF3)Siny
Fi &(%){[F@ F,\,+Fe/2¢ +po 0 )' |
o 4R P20 cos2y g (Focosy 4
2
(F.22)

7o £ 9, ;
/fF 5“,2%)?4-%(/:.74/' Sn\#)gl}

Substituting Eqs. E.14 and E.15 into Egs. F.2l1 and F.22, together with the
requirement that the coefficients of the constant term, cos Yy-term and

sin Y~term should be equal to zero, yields the following equations:

o

&;—F/zg, ‘3%.(_ [e (F+1 F/u, )— /‘;-2/\0+/qu945

PR ¢ 9 -
§H [ ErOE Jraee

(.F.23)
From the‘ cos y-term:
3¢c (wer, —/) X_ ..4; (F' F/‘ )94c-/4§,
Mr,
; @,3!+F7 z)'-o (F.24)
gIS _(ﬁ /z"; - -
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From the sin y-term:

—2 / 3,2 h
Jis (oo 1) E(4)L [(Fl+3F25 Yo+

2 3. 4 ) 4 2 7 5
-I-;L/thF —/L()\oF +3lc [%F -/L_Z;_ F )] o
{F.25)

Using Eq. F.20, taking (/R) =1, A =0, B =1, m = const., Egs. F.23
through F. 25 can be rewritten so as to be similar to the equations given in

7 Bramwell (Ref. 20)
~2ge é (Z+/ &)—E)t + Fé’ ]‘0 (F.26)
wn?,-)éi o(CotL f 4 Ao+ JuFy Brs

(F.27)

[(Cov6e2 p2) O 424006, -p o Gy J=

- );t )z [024(/4)2_ 5:] i" - aéc [—(CNAGA;%:_Z ‘)94c]"~‘0 | (F.28)

where
E,—:- Fl/e9 54 ¥ .Fz//:a
EL: F/re D, =4 S |  p.29)
7,00 3 1
and |
Fr=f-477
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From Egqs. F.26 through F. 28

Oy = ,f‘)"' G+ f’)hgo A o (F.30)

’Cvlfglg/b.z

~ ~

~ ~. 2
e [eo(c,u/sa,-_g,a_ﬁ_
d Wr, - 2 'C,*Gqé/tz
| | y
+k°( pRG ,’:‘;’) (F.31)

Cut @.g/a‘

O, =/2‘: [%;1) —D:]%C':+/£ é‘;] (F.32)
"/ |

F.4 The Horizontal-Force Coefficient

The horizontal force per unit span is given by the following relation
dy ( y [, ow W

an _ Scny dWw (oS .

e Lz p+ LJ) ¥ - La 2% (F.33)

' n
where ¢ = arctan (UP/UT) = UP/UT.

Using Eqs. 3.12, 3.13 and 3.7, the average horizontal force per revolu-

tion can be written as -
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g b
He s (bR) P, C // {[ Ur Cdo +a (UrUp B -uj)] Scnf
LT 4 o .

~a (6077~ UPUT) 9, "?,1(905”}4{5 d)b _. o (F.34)

The substitution of Eqs. E.11, E.12, E.14, E.15 and F.20 yields, after a

considerable amount of algebraic manipulation:

C= £ opeCan (£) + B(8) [ G020 pF “r8is F'7 Ao ]

ST PP ¢
) (F 6y -p g’ £ ) %{ﬁ) ’ ®.33)

where F}B and F19 are defined in Appendix C.

. For consistency with the previous section, let
e “ —-‘: M —--‘_’
C.q_)z 10 5 A=0 B=1

and introducing the usual correction for radial flow effects, Eq. F.35 can be

rewritten as

4
Cu= 048 Gpa ot T2 [0, do po ' 4005 F'7 do |

po ~No 20 - .
"(Z, ( Fmefc"/(“gl F ) g_g ®.36)

where Flg, on are given in Appendix C.
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F.5 Trim Calculation

From Eqs. F.10 and F.36

- CTO('R'I'O"IS C}CJO -»"ZQ [Qo)ﬁo/u'Flc.fg./s F,7 X(’]

"7 ("09“ /“Z )(a ‘1 7[)//" = | (F.37)

In Eq. F.37, Gls is given by Egq. F.30, C

Ao is given by Eq. D.10.

o is given by Eq. E.17 and

This system of eguations is solved by an iterative process on a digital
computer. First 0, a_are obtained and from their value els' elc, and Xo are
also evaluated.
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APPENDIX G

DEFINITION OF THE VARIOUS EXPRESSIONS, EQUATIONS, AND QUANTITIES
- USED IN THE PERTURBATION METHOD

Note that almost all of the expressions given in this section have been checked
using the FORMAC algebralc marupulatlve program.

Equation of 0(e /2) :

L4 (ao, bo) =/t~o F.,(\P,,ec)

- . (G.1)
L, (ao bo)= Jeo Ho (%, 6.)
Equations of 0(€): 4 .
Ly lanbs)= oo Fil %,0c,a0b0) + oo Tu (%, 6c)
+/lb4 Fo(‘l’olec) + foao, bo)
(6.2)

Lz(a-l, b.l) = /l;.o HI(‘/’,,ec,,ao,Lo) +/Q:k, ('-.11,, 9¢)

+/u,4 Ho (%, ec) + N, (a"l_l”)

Equations of 0(53/ 2) :
Lf (ai;I’Z) = /.,,,:4(\/’0) ec,a'l,l’l) '/'/‘4«0 F;[eh‘/’c) +
+uoFy (Yo,20,b0) + oo Ty (¥o,20 )+ pu, Fi(%,66,00,6,)
+ Oc faofus Fic, - scn2¥ A CI.F”/-‘O/Uf +
+ (092"/6 9(/40/11-4 C2F3 + Qa, (a.o, bo, yq, ‘N)
Lz (Q 2,61) ‘—"/4:0 Hl (%)9(,0.4,64)4‘/‘0 Ho(%l 94) -+

/‘o Ha (%,GC, Qo, bo) 4/~pz K (%, Qo)'ba' H, {(/6) gc,ao,éo)
+ 5 2% 0c g, fo fur Co L"+ Ny (acbo,as, b)) 6.3
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The operators Ly, Ly are:

-z 2 2b
(a,b) -—‘/—:- +%/o '?—5%0 + Wrpa - XHO a—s’g (G.4)
2
L (a,b) = jp .J.CUL;a b- )2'0 2—‘2 (G.5)

Cy ao b W\ (o F3 [3b ’5’2)_4_,,'5_5_0] .
Q (aolbo) L/ao’wf +C4()[¢ (B‘/’:) Y ¥ (G.6)

N4 (ao,b)--—cuaoa‘“ -C3 t[aao)/_,Lg L 2ae @-é-‘l] (G.7)
Yo 3‘/1, 2%

bo ¢y Qo abf +7_C,(C)9 FlB@J dbo

Q, (ao,bo, a4, bs) = Cyay 250
2 1 I} ) 3#’0‘3%0

Yo

+ ¢, LF”[ day o 4 g0 Obs ]./.X, b,

R Y% 2% ‘o% Wo
- a ) 0 3 o 'a a
”244 Q XH /?i —jDID ’83’1 2'3%'305(’ (c.8)

1 19/ Da, be
| N,(ao, bo,asbis) = - c,,(%) [ZL 3‘24 23/: + 6L 20, %0 +

@_“_2 Q_lii] Cuaafaq’ '772, 'Q_é_q Y4 dae

% Yo M
g Pao _ b _ 2 2 o _ Cu pLE (G.9)
+ oo 7 do2o ¥, % 3%, Wo
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Fo (%,8c)= Cz[(zFZG Faxx)nnﬁ, g,p‘cos%]

.Ho %, c = CG[(M./. )\OCGL )Stn\{' +

(6L~ 21" hoc )j, COSYJ,,_]

Note that starting with Eq. G. lO the term L (c )/a will be neglected in
L . O . .

(G.10)-

all of the calculations.

" 3bo _¢,F9%a, s
(% ec, Qo, bo [ 28, 2 C, F scny, wp: ¢ aa%c:o ing

~ ¢y Féa, 4 _L;) F" 3bo (os -
2F aocos ¥y + Z(,g A _‘5%_(05% (G.11)
5 _ 3
J4 ("/bl OC):—}_i Czjo F7$c‘n Z‘/’o 4‘2{_ CZGC F3COS 2%"’% 9CC2F (G.12)

H, (+,,,9c, o, bo) = C.,L B dao < sints - 29 Cy L"a;a st
% | o

-—qu_ 9(5 bAo COS‘P ‘l‘CgL. Qog COS(/’ -

| L2 | |
2 Xoc CsL" 0o cos Y, o (G.13)
. ;- oo
K, (gc, (/o) = __ZJ_ 9,56 ec LI Scn 2.(/; (G.14)
1y
FZ-(‘#OIQO/ 60) = Qo F Cl % 2—%;: Cos % (G.15)
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< » -

L (%,a0) = "2_! ¢, F7ao sin 2% (G.16)

7 16
Hz. (LPO, ec' a0160)= — Z COS % Ao C7 LI g_g,_g _COS%QQC7L _?_A.o (G.l7)

2% 2%
Kz (ao,4,) =1 6. a0 Scn2 iy, (G.18)
5
% L [ame (g )i (Fo s F )
= (cwe) M (2a)
!
i =Cu U‘;’—q(% ) U cer (L/J”d;-f 9¢L9) (6.19)
where
Q.)/:’,Lo -AZ+L.gDIo‘A - XHD L A
M(A) = (G.20)
~ 2 Az,
B Ly
s *
o we, {ch [ (w)-v] +c R{iwc[ZF"”edF' (v, +87) )]}
= AWeio

] | eyt facet e [n o]
Wus

P1= [—(:Lcouc +3oi0) Urt XHa] (G.22)
PZZ[“R'CCUC’?DZO"' YGo Vr] . (G.23)
p3 = [-70g v X/]C‘*’c (G.24)
Py = ["’2“ te + % Cwe U’r] (G.25)



P{S: Cy [ —dw, oy #2ew ey + 2w, /32 (v,)*]
()l [4FRap r 2 FE L 2Fp (w) ] e
Pro= Cu [ (V) ca, (~el2) - 2oty e v,]- c.,(%)@f[wz L(w)*
+ (zrr)*'ft/&z 6, L% 20,6, L"]  e.2n

0 | .- P3-
a 2} =M ’(4) | (G.28)
Loz PIO ’ ‘

/99:__ __z!_ goCZ FG-(.'GC FZCZ +_(,; AOC CzF3

5 (G.29)
e ANy B Cel 1 8,9 Co L Norq col” (G.30)
P10 = 3 ¢ Aee % ¢ 2 c 9,6 oc §, Ce (6.
e | » (G.31)
e 2p

a3 -1 PV‘" '
= M (1-we) {
{643 } ~ Prn } ’ (€32
{:H} i rlj’l(”wc) P | o (G.33)
" _ P14 _ 4
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Qs |
: M-'(Z) P
bis ~ pis

where Pll through p14 and p17 through p20 are given below:

= M7 { Pra (G.35)
P20

=27

by

P, = bos (v;,)*wcF'sc,(_é) + a;Z@cF"c/(%)—aaoszCq+
G '

. +* 3 . 1y
+0boy (V) cyy #26, boy e F' C'('r%) ~'21 b CZ(/%) F o

¢

¥* *

+4 W)we, F- 4wy F +cu¢F”Cz/_¢_) Oc (G- 36)
Z R

. Poa- -0, bo, (w)*w¢ (_}%)c,, L? - 6, @y W, (ké) <, LIQ

" Il % ¢ e )* 7
(V] Ur ¢
(V)" Noc Ce L _21(11:) w8 L ¢yt (%) Geg, L Cq (G.37)
. . . % * I’
- { Qoz (7);) CUCCu"LQOZ(v;') Cu — 2a‘°2 (v;)wc/ke')c7L

6 0
+4 (w69l Cq + A6, Co L
2 w c?o 7 Z(»rc 6

. 1S .
Prz= - boy we U C'(%)F ——aaz.wcFISCl(ké)-l-"A"Zv;c‘f

o

/3 N
+ Loz WcCy -26 AOZCUCF- C:(klé)+.2_4"wccz/%)qu

(G.38)

v, ¢, F¢ _ w, Fc, [é—.)ec

~24-(Ucv;'C1Fg—-
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' » 19
- o, b AW o e Cnf2) L
P]q = ec 07 wc UL 7 (E-) + QC Q 2 w 7 ’R'

8 ’ 17
- ¥ Ao Cg L F 4 WUk E L Cy—cowy vf"’jo Cq L

z {G.39)
18

“‘.sz e Uk Cy -—‘«-an Vi€ + 4 %oz o Vs % CqL |

—z‘! Cw, & o L Cq 42{77}9ccc

5 . : Z /3
/94,75 ~£)02, Qo2 C-I(_Rz:') F + L Aoz aach-—ec AOZ G (—Rg)F

' . 4 g
¢, Fg 2 4 Chyy € e)F’ ~dam¢, F
""-‘3; bz Jot 7 702 2(@‘ &5 02 (G.40)
3 i
-4 aozCzFG+_:’.CzeCF—bozl— Cz-ééc
2 i R

' 19 . 2 2 1
PIB = 6 boz do2 C7 (.’%.) L - L Qpy Cy + Qo2 é) C'7 1—

i . H ) 4
- Qo2 >‘oc CGL 1 ‘fécjo Ce L -l-zi aoz Oc L C’7 ©.41)

. 17 6. ., 1o
..LaozgoL C7 __24_ 602 GcgoC:7L L _I_‘_Z'i QOZQC CGL

Fig= € (%) FIS[“OZ(AOZ)*+ boy (“"Z)*] *
2.6, (ba)'c, Fﬂfﬁ‘) v (f) £y, [ Hbe)” .02

o2

+ Cleg [aoz+ (aoz)*] - —2!- G, F-6 [aoz -I'(aoz)*]

‘ #
+ CZ gcz-l_:3+ Cz (%) 96 F” [Apz{(boz).f] -I- le [:,'boz (aoz)*-l—&. 602) QOZ]
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£

P20 = - & C,,(_Rg) /-19 [ (/602)*%5 * (“02)* A"Z]’Z @02):01 C7(-f-) L
- G L"hc [a-v?- +(a02)*] “2{ Cq Lgec Qo2+ (Qoz)*]

- Cp L"'go [(c'aoz) + v’aoz)*] - ,3_7 9, "6, [(L‘Aoz)+¢/>oz)*]

% (G.43)
+ C¢ Lloec [aol + (aoz) ]

4
2

Far= <2 k) e F' [b1s)" (1-cc) # bus (1400) [ #iweasCy +
#
¢ Aoz_ @43)*&/ —-¢ (boz)* Ay Cy + 2/75.) 05 FBC{/-AOL (613) (’/—CUL)
+ (l’oz >* 1’49 (1+ w°)] —Cdoy (545)*@; (1-Coc)+ L(Zoz)*éwcv (1+we)
+c4{§) F* Ao, (645)*(4-%) + {Qoz)* b,y (1+c) +

éoz (a43>*(4"(0c) +(boz )*C(.,q (/H'Cuc)] + 2!. c, Fgﬁaﬁ)*(/—wc)

Fas (0]~ o Fo[ (e ran ] +4 a f4) Fofbe g, (1

+ Chuy g, (#wc) +C ((562)*~boa) Vi =, ((acs)™+ aoz)] (c.44)

Pz?_: Qc Cl7 _4_8[( (,Uo—l) (Cl/a)*.. ( 4+Ct)c) A4y ] -+ Cr7 L‘ LIVgo [?J*Wc)(qli)*
2

_ (4‘*(4)(,) Ay ] -+ C7 E7[—QOL (‘H’@c) v, +(4"CU¢) Vk(aoz)*j
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-:/~ .C7 L wz- f /-~ Qo2 @13)*(d)6-l) —‘(4)‘(4)c) (Qo;,)* Q1y] | .
+c, %, L [ Aoz(wc ~0)(@3) "~ (4 600) (An) gy +
Qo, (543) (cUc—/) (4*60c)(aoz) [,44]4- Co L~ L 9, & [‘r("*wc) (613)
o L(4+wc)l,4q]+ €2 1%, [illor)* _502) U - coc (v +(a,,z))]
2
Zi Ce L0, [(au) +a4y] Cel” Xoe [(a43) 7"6119] -

. * . *
Cpasw, Ui Crrwelaog (ar)” _ (@02) W, agy Cy (G. 45)

{G.46)

N

{d'} - M) [-aliFe b FY) g Fe ]
Po

: C;[_ y Lzéc doc +3,(6. L 2 l”’\oc]

9 * Fé ¥ re " _
. *
C2 o %)F'qgwc + [— ol L‘wc-h,ﬁ, ('U}) ]Cli + |
2

£ wc[ze F'aﬂ + o, 5 /34 F'S(w) ] (G.47)
R
17 * % el *L_O( (ot
‘ /05:' 67[ o cwe (V) + gzl_écgoL twe + ,,( ,) " (we )
- : : %
- c,,(g)[ 2 1_"'( u;)*p(,wc + 6, ngwcf{, (vr) + 6, L'gwcoz,]
R _

*
7 e w (%) 4 ¢ (%)
2

(G.48)
where 012 is given by Eq. G.79.
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Fo[‘—' Cl(zFloc—Fz)“’c) | :
(G.49)

13
Fore g F*
‘ oL = C2
€ (G.50)
Hoi= CaAocQCLZ .
€ (G.5S1)

Hy, = (L= al"” Aoe) 9.
£

(G.52)

/b"_._.__!CC()CCzLF”/ 44 (7 *w, ¢, F 9 YN "
2 2 A 1 v) w _zl.(u;)chJ'(ucF Cl%ec (G.53)

— # u * b4 %* 4
P42 -(V) Aoc CGL "'ZL(U;) CU¢6¢ L C7 +¢ (‘U’,) wed, LI C7+2/-b'w¢ ecgol-lécf]

I
(G.54)

W

— 4
o 1w Cof L) F g — L U GF? € o F"
o (4] P - () e

- I 18 7
P = “0y Aoc oL 41 Wev €L Cy— ¢ '
2 ¢ VrUc n Lwcwgocq L (G.56)
. 16 lo -
-%cw‘e,;%ch + Ef' v; 6, Co L
-~ . 7
P = A4, F g, + 1 ¢, 8 F?
4 ° 4
(G.57)
— ) "
Plf:-i LOCgOCG '
(G.58)
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' (G.59)
2 .

Pr0 =9 : (G.60)
P (24 FIC,(1) 6.4 i . F2 1 G FY (g vax)

+ b L, F"'] .
Py = [—c7 ’o.a, - Acdis g L7, _¢ éjg-e'c g, [_IGC7 |

- - lo i - -_—

Fas = {iwce, (an- am) + 2, Flc (1) we [(we-0) b
R
Flwct) by | 40 (1-we) by wc, H(140c) Cybyy (v3)*
Is - -
+ G4 (%) Fla, [(‘*’C") Ur bey + (14 0.) ()  bay +

— — = ¢
(‘*’c") A3 + ayy (4+wc)]—.zl ol3C, F7y _Lc“wc[v,-(v;)yczké/:"’
2 |

(G.63)
| _ P 5 _ 173
Pae ~ [zc.,cu-wc) G L7 L _ 2w, (140) (V) ey ¢, L 8

+Cq _é) OcL” ey, [ (1-we) dgy - (1+we) ary 4 ( 1-we) zr,-l,; -
R
(/4w¢) bay (‘V?—)*] +Zi Cy Lléecfwc [U; —(U-r)“] +

- o — "o _ ok — '
Z %38 Cel~ oy docce L _, Urag cn - (V) an C.,} (G.64)
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for= [(w-1) b, P ‘.

—~L 0 s C, -/-750 5,5—10 C,FB

+ﬂzt(‘f) 1’45—C +2[V) C'Jcéf_cff £F+2Cdca-/5cf(1)F$

i’.QBClF(wc—/).p_ii(V)C F7 _ta,3C F¢,
z ('f"‘dc) 643 Cz (ze)got' qu]

- 4
fa= [ 4 (1) ary 0, e, 4 g,

-+

- (G.65)

— 7

-~ 4 -
4(%)" w, o, <qL é) -~ 2w, q5 ,/g. é.¢c,L"

~2 fwc - 19 : - /6
( ) £4S'R£9c C7L +§C(WC“/)A,3 choL C7

+dag e c (”

2 -—CIB /\oc CgL l.

(V%6 ¢, "

. * — . *
+ (V) We A5 Cy-20(vy) Q- c,,] (G.66)

Fq= [.ch{/?»z)*F”Cz_ké O —CwedsCyt duy, 673%-51’:’3 &

~ - - *
~dwtb,y gec GFR 4 (), by (1-we) + ¢ F’;m-wc) websy (¥3)

*
W, (1-we)ay, FW% + welel) ¢, F9- £06)7c, F

2

~°"‘(/3‘)*Q kégo Frie .lc(?)}) We C, LFN]

(G.67)
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£ ) 17
Bo* [* W, ("(2)* O Cg L+ 2w, ("(z)*g, L7¢ 4“

L 7 - ;
+0(V,) e ¢ L 2(0) we az Cn L'gé_’: +
2 wran ¢ L\ L9 ~ 9

r) W, A3 '?(.-) - Cucafa(!; G(:C*‘}' L~
w, a,3(£)eccy L, (fwe-1) wc(v‘,) 6,_,, 9cc,,£ L *

. . o
(o (pa) g col" s 4 () e c?L+ Ef(d‘) o col’

66) Yoc ol — (i) i :lcéf,,)*wcq‘)}cu] (G-sa,'
K, = /u?fry Got P2 X | (G.69)

=~ (BV % Yoo +;a, Xho /K,, ' (6.70)
Ky - (pisth Ygo ¥ pus .Xm) /fc, G.71)
ng-(PzIWY'Go—ff:szm)//f, - | (G.72
ks < ~(Pgll} Y;,,, +f>gXHa)/ff/ ' 6.7
ky= - (Vr Yoo pg + X;iof)fo)/h;l | .74
gz - (v Yoo puyt XHOIDH) /K, (G.75)
kp= - (% \(sa,pz.r% Xuo pac) /K, - (6.76)

= - (v YGO/Dzv‘* Xuoﬁzy)/fﬁ,, | (6.77)

250



KIO = [m?ga (P2g>*+ XHa (/330)*]/%1 (G.78)
e Co(L°0 -2 Do L”) .79)

. !
K261= —_4___ [Lwcw}go (CZ quF- -Z.C,F‘o)
K, CUF:O

2

. 13 ! 7 .
+ XHo"‘Uc {"C'7L doc - Culz F17;+C,71_‘U;)] (G.80)
Wep

2 7]
sz,,=—:!,.[dw 'U‘,YG (_.CzCuF +ch )
K4 (4 0 ___T-

We)p

3 8 ;
+ Xro ch(~C7LI O, + C2Cy Fz'v;, - 2viCyl )] (G.81)

z
Weio
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APPENDIX H

THE SOLUTION OF EQUATIONS 5.101 .AND 5.102

For convenience, Egs. 5.101 and 5.102 can be rewritten as

:l‘!‘f_: (ditpHioe)§— (dz-pkor )M +

| (H.1)
S _ (1o g ) €+ (o= )4 7, “
d¥, - .
where
diz 0(29')( (9"96)* éizll)n(xo‘xob)+/‘z E‘R - (H.2)
dy= (zor); (0-6) #(kan,); (No-dod) + " ez (1.3)
and

§o- fleax +/‘°3K7” (H.4)

,70=/U. qu- +/L3/C7l— (H.5)
The homogeneous system is given by Eg. H.1l with Eo = no = 0. The solution
of the homogeneous system denoted by subscript h can be written as
s S. ¥,
= D, e% p e

(H.6)

Sk
M= DaGe 4 D.0 oo

252



where Dl and D, are arbitrary constants and

G= Sq- (d+p’Kar)

!

2 (H.7)
-dz*/“ [qu .
0, = S, - (dit pu* Ko gr) S (H.8)
"'dz 4‘/[4.2/‘11‘
and Sl' 52 are the roots of the characteristic equation given by
] 2 '
sz_zd,s+[d4‘+dz + kg ]=° (H.9)

Therefore

Si, = (Hze,), (6- 6.)+ (Kar)q (A°'>‘°‘)+/"z’£:R 2 J/u Ikl 3'[(K‘°')1r(9'9‘)‘('(/"1'\')t (%o doc) Wl - ')4/" zE"f]z—

(H.10)
The particular solution of Eq. 5.103 is given by
gF’: - §o(di- KQR/LZ) + ’77,("6’14-/42 Kar)
A (H.11)
Np= Mo (ditp’ Kar)+ €, (du+ ™ Kor)
A
(H.12)
A= (datprhyg) (di- Keg pu?) +(dy + 7 Kar) (d2- i Kar)
The complete solution is given by
E- ErtE,
(H.13)
M=%

so that from Egqs. H.6, H.13, and 5.100, the solution can be written as
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_ ' S S '
X1=§+L7]=D4(4ﬂ'5'4)6 %4- Dz("“'(z)e 1%4- gP*‘“’ZP)

—

= D, es%. 5, g .
2 +Ept<Tp

{H.14)
and
— _CVEY '
A S x, € | '
E,ﬂ | | (H.15)
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APPENDIX I

COORDINATE TRANSFORMATIONS AND PROOF OF THE EQUIVALENCE OF ROTATIONS

I.1 Coordinate Transformations

In this section, the various coordinate transformations for the various
coordinate systems mentioned in Subsection 8.3.2 will be given, together with
the various approximations involved.

The relations between the i, j, k unit vectors and the-i., j., k, unit

vectors is shown in Fig. 29a.

Fi o F~

el
e

L, ' cosp 0 Sin P ]

¢

y = [0} i 0

§3r-

o
1)
o
-
o]

Q-
A

U (S

'J- ~g|'y,P o COSFJ

e ——
[91(/3)] ' . | (I.1)

The relations between the 11, Jl, ki and the 12, 32, k2 coordinate

~F 0 FJ

systems (see Fig. 29b) is given_by

i’i o) o : j’.‘

b

L = 0 cos(6+3) sm(6 +§) '

¥ o

LO - sin(g+d) cos(8+3) 4, _

[RT(KB,Q)] N (I.2)

The last two coordinate transformations are orthonormal. Thus, the

. . T T
inverse transformations can be obtained by using [Rl (B)1" and [R2(6,¢)] ’
respectively. '

If one assumes that the undeformed blade coincides with the 12 direc-
tion, the position of the elastic axis in the deformed state can be specified
by two displacements Ve2' wez [in the Y, and z, directions, respectively, and

for simplicity u = 0]. These displacements for the same loading conditions
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will be related to ve, we (see Fig. 27) by

v, ¥ v, cos(@43) + W Sin(0+3)

(1.3)
We ¥ = sin(6+8) + Wecos(B+3).
Then for

ton DV ~ Ve, tan"' PWea < 2Wer
92X, %X, ) X, 2%,

a coordinate system I

I 31' }Sl can be defined.

A coordinate system 3 + 4.+, K. can be attached to the cross section

1 1’ ~1

of the of the deformed blade at the elastic axis such that I is tangential

1
to the deformed elastic axis, J., coincides with the chord and }51 is normal
to both Il and 31. For {apn-! ('3\:'"_) v MW, “:o.n-, Wea) ~ 3Wea
~ 2X, 7’{1, ) d 2 sz
FI . r— 1 ’b1r¢; 1”&!. (.-'
1 2
~ Qx:_ ?X,_ -~
. 9"'@; : { 1
<-I I R T ! 0 4
. 2w,
K, o 0 1 .
\ : - 2 i \’V
~— —~ )

%)

(1.4)

‘Also, for B small: 9/3x = 3/2)x7 = B/Exn.

In the inverse transformation, it will be assumed that

2 1
1 + sl | [Wer) = 1
2%, X,



: . . . T
Then the inverse transform is again given by using [}H] .

Finally, the pertinent relations for the transformation between the

‘é., 2, 5, 52, 22' ‘152, and33,g3, 53 systems defined in Subsection 8.3.2 are
given below
(1 Vv W i 1
L. 1 x x| |\~
- v P (I.5)
<g"? = 2X 1 0 J’ |
-~
Kz "?nﬂ 0 i *
"~/ 2X ~
. - Y,
r ° —
I, E 0 0 12\
~ -~
< T, = 0 co_s(B#—@) sin(e +§) T
K, 0 -sin(&+§) CO$(9 +§) K,
L - - (I.6)

In the inverse transform of Egq. I.5, again it will be assumed that

2 2
(’i‘l’.) +</‘)—") +1 &1 (1.7)

ax 2X

It is important to note that unless this assumption is made on the

various coordinate transformations involving slopes, the nonlinear problem
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becomes almost untreatable.

I.2 Proof of the Equivalence of Rotations

In this subsection, it will be shown that with the assumptions that
B, ¢ are small and that

W P20\ ~ 4 -
+ + =1 I.7
1 (,ox) x) ‘ (1.7)
The final orientation of the blade cross section in space will be independent
of the order in which the deformations occur. It will also be shown that it

is immaterial if the rotations 6 and ¢ of the cross section take place about

the feathering axis gi axis), i axis or the 12 axis.
~

First, let us assume the following hypothetical displacement patterns:

(1) The undeformed point on the elastic axis is located

in the i system.

Iyedir Ky

(2) The Vaor we2 deformations occur in tpe’:z, 2;,’5 systgm.

(3) The final orientation of the blade cross section in space

is given by I . K. unit vectors.
~1 fvl ~1

Measuring the final orientation of the Il' gi, 51 system by the
~n
i, j,‘5 vectors, the following relation can be written:
~

~

I,

L
~

R ' (1.8)
[f]14

K4 &

lasd

The transformation matrix [R4], obtained by going through the various coordi-
nate transformations and using Egs. I.1,I.2, I.4, and I.3, is given by

Eq. 1.9 on page .

In the second stage, the following pattern of transformations is

assumed:
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(1) A point on the elastic axis is assumed to have the
displacements v, w (Eqs. 8.4 and 8.5). The new

orientation of the blade is given by the 12, J2,
, 2N

52 system.

(2) The cross section is rotated by an angle of (0 + @)

about the 52 axis. The final orientation of the cross

section in space is given by the'53,'g3,'53 system.
Then the following relations can be written
(Is\ (i
lad -~
, . , (1.9)
122 = [Rst
(5 .

Performing the coordinate transformation, it is found that [R5] is

given by Eq. I.10, page .

Comparing the two matrices [R4] and [RS], it can be seen that all of
the elements agree, except R4(l,1), R4(2,3),>and R4(3,3) when compared with
the same terms of Rs. The discrepancies between the two matrices always
involve only second-order terms which according to Eq. I.7 are negligible

compared to 1.

By varying the displacement pattern similar results are obtained.
This is not surprising since these are all the result of the assumptions

B small and Eq. I.7, which is equivalent to taking

v ~
cos( g.:‘i) = Cos (5;) =4

It should be noted that this approximation is related only to calculating
the orientation in space of the deformed blade. This is required for the evalu-
ation of the aerodynamic loading terms. It has not been used in calculating the

inertia loads which therefore are consistently accurate up to O(ES).
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APPENDIX J

COMPLETE EXPRESSIONS FOR THE ACCELERATIONS

Terrms marked by ///lare negligible according to the considerations

of Subsection 8.4.1.

. 3
a, :U-r-xr{—’;_x_l"_,_ (t’.os& §Sm&>+ Z?v [0’ Sl*)G"’é)’/g')
rhame +3hed®] + 2L [pard-6255m0

(LB PSS o— Hsind +’9}_f_["- + Psint

XOWCOS Qs\'n) %, gsing + Psim

T &+/P4?e) (s;.,,h@cose)
QX’O

2w z(é-coge'—-é ing +§cos&-—§ 'Y\9>
2,2t

+§_;{éz <} +M + QW (S|w9 +§COSG)M

- 2 (x,re vu) —20% + QX [( 2% cos® + &\’osine’)

]

+ @( 2;rsm9 +:w cos @ )j + 20 x L (s:ne +@cosd)

TR )

(J.1)
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' In this report, whenever a is used its meaning will be Eq. J.1 without

the terms markea by / .
a? = b +200 - 2y + X, { coso ds) 9) 9 +29§/§/{)

= (simb +Fcp€O) & - (sin6 + Pcos) 7§? - 2" (cos®-gsine)

2

.,_257_[ : 1:(c:ose ismﬁ) + ’a'\r (snm&+§cos9)9

+ 2¥ (gin‘e-v-!;-? cos&)§ - sin9+¢§Cos&)

X, 2,9t
] (cose -§si~;’9)é - ™ (cose» -&s 9)5 ] @2
?2X, X,

Az=W-Xy(sint+3 59)(/5/*‘ 2/9{*}{)

+ XI_(c,oso-és'n;&)ﬁ + XI((_030'~§%9>§ (3.3)
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APPENDIX K

DERIVATION OF THE MOMENT LOADS PER UNIT SPAN ABOUT THE FEATHERING AXIS

K.l Derivation of 94,

In order to derive the quantity q,

i1’ the quantities qx and qz are re-

quired. From the geometry of Fig. 28

o= Mow [Fp o) op (39

where moments in the nose-up direction, for the cross section are considered

positive.

From Eqs. 8.11, 8.12, 8.20, and 8.23

?x = ”o» + <[( v + 20V —R"‘lr) simb + §('\'):+2.()_0—le1r)cosi0]x:m
+ X:"m{[—ésim’e-a" (casGsfmG - ési'n’G)

- 29’(%t CosBsimnb +'a?x_7>‘it si#&)‘} + [»S).2 (§cos’&—§gy’{c"‘9)

- zS?.( 07w

2 QL -1
R cos?@ +9—3.*.: S 9cos&>§J [2 §( Ot sinté

2w 9/ .
~—— S'M 8 <+ @
%, X S; cos ) 252 / /

+[2Q@(-—5t Sim cos&-%c 0’)-&251@&(;::8:” cas@
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— g)_(‘iyil/e)J + [ - 6,10050 smb —~ zé§ S}‘{COS& _ é ( Sim2l

+ $ cost smG) + zﬂ( v Sm’G g;" cosGst) 6

+ znée-/—/éé&svnfﬂ +[-—-9 §C/é'g 29@}4’9 eé Smﬂ 46
+ ¢%{9) + 203 -_sn% - —~/ 9 + 2.Q§9%‘6J>

+<- 'mxxﬁ (cose- §sm&) - {(Q cos?@ - §§Sl coss)

+0 (cos‘& § cos sm&)} >

(K.2) .

The terms in Eq. K.2, marked by arrows, are of 0(6 ), according to

considerations (1) through (6) Subsection 8.4.1, and therefore are negligible.

Thus

?x =M - 'mxISLz( s'meA-!-écose')‘b— + M [1'}(313»0 +§cose) “

- Wcosh + 2.57.(1(:%9 +§co_c9) _]

= mx_ {[é + DsimGcosh +N*Pcos2t +25).( —;( sin@ cos@

e‘w 2 v
+ 2N ¢ 0] - 20 cos 26
XD m ) é 2%.3 23t

+|:0+9 smﬁcose zQ.( s|n9—Tcos6)9$nn0]}
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Due to the model selected to represent the blade cross section, terms
due to the polar moment of inertia of the cross section itself are missing.

The missing terms are:

(a) The regular angular inertia term given by
1 - . l
-k m(0+3) (K. 4)

(b) The missing part of the propeller moment effect, derived

separately in Section K.3 of this appendix, given by
22 .
—-mko n [svn&cos‘e' +§cos29J (K.5)

From Egs. K.3 through K.5

?x = My — rmxIn_z(sin +§cose)1r + ‘mxxﬂz [?: (sin g
+§cose)' — Wecost + 20 ($|'h9+§COS9)J

-m (/zoz + xrz) gﬂz - m (,402 + x:)ﬂz(sin rcost +@ cosze)

2 2 2
- mx:_n_?'[z(av SinB cos® + 9 W sin‘G)—zGV @coszej
ax,aY x2Y XY

E h 4 .
- "‘"(‘/&,z+ x> )'9'51‘ - mx:ﬂz [ & ? sinBcost

X
2V . 2W ]
- z(ax sing — X cosﬁ')9 stn 9] (K.6)

(-4

Next, q, will be derived. From the geometry of Figs. 27 and 28

? z ~ -r; (‘a' —-\r)

(K.7)
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where a positive a, is one which gives compression in the nose fiber of the

blade. From Egs. K.7 and 8.18

75 = mxxﬂz[’? (cosG—Q/si"b/&) -~ (xn+€,)(c059~4§si'n9)

- U(COSB— 32?/4) - 2?}'(@59“@/5""4/6')_}

2 2 3 3 .
+ mx N [- 2T _ cos*® — 27w . SimGcos® + BV 00c2 &
WY AV X,

sinBcos®

+ ;a;! smﬁ'cos&) + 2§ S\‘n&(:osGJ [§ (

22XV

2 ) * 2
- 2W_ g0+ W oo - 2V s'mB'COsQ) + 2_'§(?_-2'. sindeast

?xoﬁv?' ’DXQ QXQ axo'a“l
NCL Y ‘6’) + @ (———- sim® cos8 — cos"9) ]
2%X,2Y X,

+ 2( 2T Gnbeosd - W coS‘e) o4 0( simbcos®
wxNAY ax Y X,

. X
—-g;‘i’_ c.os‘&) + 26 ( simBcos® + Cos"Q)_]
Xeo

+ [§ ( %«y» SimDcost® — 2'w Sm"e) $ ( cosBgim B+

xRV
+ %J: S'mle‘) - ?_Q%:”&J [—@smﬁ*(%sﬁ& ’
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;ég + ;ﬁﬁe—zigﬁﬁ>
'ax'a‘{’ 2 X %4

* 1
_ 5““&( 2 v _/5im§ - 25w 059‘>
2é§ XD 22X

- ég sm& %”—:(;)4 cosG
+ [-— 2% S\hee' ’3)(’:) b %58)

—_— @ Slvs&@' /4 - %‘:’O/KG
_zﬁgsmv(ix{+§7é@)]
(K.8)

The quantities marked by the arrows /are O(ES) or higher and are there-

fore negligible. Thus

st (e ve) st - () Bt

2 Xk xR 2
+mx;S7. (UCOSB’ —Z'Irc.ose) + MX;J'L {[%’%’:cos"&
-]

3 5 .
2V costh - 2V simBcos O

+ W gimBeos® -
Y A,V

2%,

+ 2.§ sind LOSG’J [@( x %\P‘ simbcos® .—;":;’thosze)

267



x 2
2w AV : 2v -
2% Cos2b — 2P 2¥ sinBcosH + zﬁ(ﬁ simB cos @
+ @ 2X, ° : fox, - ' MY

_ 2w cas* ) + @ ( Srn&cose' A cos‘G’)J

x
+ [_ ( simdcoch — LW cos’ﬂ) ¢
2X 3‘{’ WY |

L
W co52B)  + 28 (s‘macos&
X,

+P C"529'>J } | : ) : (K.9)

In order to evaluate 9, qu is required. In this analysis, B is a

+8(

small quantity, again of 0(€D) and when evaluating qu, using Eq. K.9, many

terms can be neglécted. The result can be written as
7 s - sz)’( (e, +»x°) cos & — 2 mx 5111%6(,059
?*P I F T

+ mxlﬂ, [(-cos‘9' + 7?—)-:"—- Sin&cosﬂ)ﬁ

T3
- cos‘&/l - 2u Iﬂs'mﬂcos&]
XV X,V

+ O(G;)

(K.10)
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" The expression for q,, can be obtained from Eqs. K.6, K.1l0, and 8.35.
il

K.2 Derivation of MP

From Eqs. 8.17 and 8.18

- [T (e - 2p8)

3

/BCOSG —L /351»9 +-/3( 2V osh

- mx 0 {
'axw*

_;Me) +§/3 2"sint} ;7/)} —mxfl 2f(” sing
~ 2w case)z’; Y (ﬂ mf — W cé{} 26 (7-4+%
WP P, 2x/ ) /3 - }

..fm.Q[ (x +e)/3 _ZV/B] - mx N ?Xa V’ /35059

—w
> Y
i

- ’as Fsma— +/;( cos @ +:;" simﬁ-)}

Moy A

(K.11)
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From Egs. K.11, 8.23, and 8.24

(F “Ff)"’ - vLi-mQ’(ﬁv+k§'}rcos&)_

z X

- Ynx;é’ﬂ_z‘!r( cos® —§§u/0) + 'mJl“[-(x,+ 9,)'3'\)'
/_] + 'mxn.{ QXQY/fAS&

- //.:9 + fm ”/,ée + %G)}

- m (W 3 vcoch B vRcoss
= vl, - m wy +x v—cos) —mx,

- mn’(xﬁ e,)/nr

From Eqs. 8.20 and 8.21, neglecting uB = 0(813)) ‘
F},(w—px.) =L, (W'~Fxn) - m(“~f3¥.)n’"('fr"+2§~«r)

—~ j)}«mxz {[- fgsim&(w-{;x;) - cosG(w-—px,)

E §'s‘m&(w~pr) - z(w-—{axo)(:;:\r cos@ —~ %siﬁ)}

P (%{sah& - Q’;«»/‘(”Ss) (w-px.,)
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[_(6." + 2§$)(W"Fxo) cos® — %*(Si'n9 +§C053>(N—/$X,)

-4

+ 2(2)‘{ sim @ —%’; cos&) ( Px)

+ z§§ ;3—;5 cos&(w—[sxo)l

(K.13)
From Egs. 8.33, K.12, and K.1l3
Mf- = vl - WQZ(VV +X_ %*m-cos&)
Ly
-~ mxl’éﬁlz'&rwsﬁ - 'mﬂ.z X,J—e,)/.%’b— — Lz (w~/zx,,)
e () (¥ - w)at o+ [ coso (uepn)
+ @ s’mﬁ‘(w -,on> —_ gsm&(w —/3)(,)
( —/Sx )( SV cos® — 2—)—(—3\—}, SMG)}
(K.14)
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In Eqs. K.1ll through K.14, all of the terms marked by arrows are

negligible O(Eg) quantities.

K.3 Derivation of the Propeller Moment

b1 {

dF = plx)fxey 0 dd y

FIG. K.1 GEOMETRY FOR PROPELLER MOMENT EVALUATION

The geometry of the problem is shown in Fig. K.1l; n is the chordwise

coordinate (see Fig. 28).

Assume that the mass of the blade is compressed in a plate-like struc-

ture with p(x,y) denoting the mass per unit area.

From the geometry, the centrifual force acting on an element of mass
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is given by
dF = p (I a7 dedy

Its component in the y-direction is

dF,, = \ x-;‘az' jff(x,vn sin ¥, dxdy

=j>(x,71)’2 %L o’ v}‘;‘f o(xohz

The propeller moment per unit length of the blade is given by

Megop = ‘J f vl cos &+§)sw(&+§)ﬂ o{yld,x

- _f 'mvl cog(e*é) sm(&+§) dﬁz (K.15)

t.e
e
Using ffmyzld,'? = IQ,:m + ’h‘)XIz
t.e |
and _ cos(& +<§) si'n(9+§) =(cdsﬂ-§sin6‘>(sin0' +§cos&)

= sinbcosG — @sim‘a +P cos*® - QtM&

dMopop =~ mk} vl Ls'm&cas& + 3P cos 7.8_]

-m X:[S'me'cosG + Pcos ZGJ
(K.16)
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Comparing Egs. K.16 with the appropriate term in Eq. K.3, it can be
Seen that the last term of Eq. K.16 is included in Eq.3 while the first
term of Eq. K.16 is missing and must be added to Eq. K.3.
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APPENDIX L

THE ELASTIC COUPLING EFFECT

The elastic coupling effect is due to the angle of pitch setting 6
which causes the bending perpendicular to the hub plane to be coupled with
the bending parallel to the hub plane. 1In order to be able to represent the
stiffness of the blade by rotating flap and lag frequencies, which is the
usual practice in rotary wing-stability analyses, it is necessary to replace
c0526 by (1 - sinze) in Eq. 8.72. The appropriate expressions in Eqs. 8.72

can then be rewritten as

(sx)\a cos* & +(E1)z sin?h = (EI),a + [(&1)z - (EI)?] Sinf  (L.1)

(EI),J sin' +(ET), cos*d = = [(e1), -(EI)}] sim*® +(ET), (L.2)
It is convenient to define

Ee, = [ (e1), - 1), ] siv'® @

E., = [(EI)z -(EI)‘&] sinB cas & .4

When applying Galerkin's method in order to eliminate the spatial
variable in the flap and lag equations, it is necessary to evaluate the

following expressions

]
2 AR NS A

T, a? (L.5)

E;1 =

)" di,

_— + [ B () d5, 1]

= ) Ec ((|||
Ci 2 A
IL‘Q IL‘Q (L.6)



Note that throughout this report it will always be assumed that the first
elastic mode in flap is the same as in lag (i.e., Yl = nl); thus Eq. L.6

_ is satisfied.

In rotary wing work, it is useful to express E; by rotating or

, 1’ B2
nonrotating first flap and lag frequencies.

From elementary consideration

%,/(ér)} (’7.“):(7" 2 ' (LT

-—2
; I—b 02 = wr—‘m ¥l
; . .
i ] — .
5 EL) —_—a2 = (L.8)
¢ °f( )E (K' )dk, = w;_:l ML\ ’
I, N

Using Egs. L.7 and L.8, together with the relation Yl =1, Egs. L.5

and L.6 can be rewritten as
—_ —_ . — 2 —~ 2 =M Bl ot
Eeq = Mg S"“te[wuu = Wey J - Mu Ste 0'[(0““ Wew ] (L.9)

\. . -— 2 ~— g — . —1»_‘—1. (L.lO)
- E¢p = Mg, simbcosh [w,_,,. "wn,.] =My simbcosd w,_ - UH',]

In order to be consistent w'ith the approach used in this report,
Egs. L.9 and L.10 must be expressed in terms of the rotating flap and lag
frequencies of the blade. The rotating flap and lag frequencies of the blade
will be calculated using Eqs. A.2 and A.4. - The use of these equations implies
that the rotating flap and ;ag frequencies of the beam are defined as those

which would occur at a pitch setting of 6 = 0.

Equations A.2, A.4, L.7, and L.8 yield

. , ) _
— e[ @)( fpm(x+e)ds)  _,
&)—F‘I: MF! + 0/(? ) (I/: ): We, M (L-11)
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s 02 J [ Lom(ze)dn](n) 45 - .

Wy iw Mo + Ty Moo= MW, (£..12)

With the assumption that Yl = nl and Eq. M.6, Egs. L.1ll1l and L.12 can

be rewritten as:

= - L.
FiIN .Fl Mrl
56
— 2 — 2 B
W =W, +1 - —/— (L.14)
LIN L
' ﬁ_l.-.l
Thus, Egs. L.9, L.10, L.13, and L.14 finally yield
— —2 _ =2 _ =2
W ~ NFIN = W, We, +1 ‘ (L.15)

and

—_— —_ - _ en[—2 —2
E:J = MF\ Si”zo[wLT - wr: + 1,]=Mus;°‘ o[wuz'”n +1J (L.16)

— — — — -— - -—2
E., = M,: sim0 cosﬂ[oo.: -wF"'+1J =M, sinBCoSO[U:; -—u,_‘ﬂ] (L.17)

k3

" N i i
Using the approximation sin® = 0, cosb = 1, the elastic coupling effect

can be rewritten as

-

— - - 2f — 2 —
Eu = MFI &1(&): —ws:,|.+1) = Mu& (0\)‘_‘ -, + 1) - (L.18)

— _ — —T -2 - — — q —-— )
Bera © MF‘G(OJ“ = W, +1) ML)6 (NLl Bt ' 1 (L.19)
Finally, it is important to note that the treatment of the elastic
coupling in this appendix implies the use of the so-called Southwell coeffi-
cient for rotating beam problems (Ref. 40). As pointed out by Bramwell in
Ref. 20, this treatment can lead to considerable error, depdning upon the

:‘assumed mode shapes in the flap and lag degrees of freedom.
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For the mode shape defined by Eq. 7.1, it can be shown that the present

treatment of the elastic coupling is a good approximation for w, > 1.2,

Fl
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APPENDIX M

- - ‘DEFINITION OF--THE- ADDITIONAL- -GENERALIZED MASS INTEGRALS AND
INTEGRALS ENCOUNTERED IN THE AIRLOAD EVALUATION

In order to evaluate the various integrals required for the applica-

tion of Galerkin's method on the flap and lag equations, various integrals

. which represent generalized masses must be considered. These expressions

are defined in Eqs. M.l through M.14 below.

For the feathering equation,

Galerkin's method is not used; still, spanwise integrals similar to those

occurring in

in Egs. M.14

E’l

w

w1
-

the flap and lag equations are encountered.

through M.18 given below.

st [ [ w45
3 I !

Ieb f[;g «n(§'|+'é',)ol§‘]1{l‘vl: dx,

(]

]} "
~ <
U'I(‘; , w
oM
O%
S
xf"“\
X
S
x|
~—
:5
-
|
°

"
v
oM

=

=
o

°><

279

These are defined

(M.1)

(M. 2)

(M. 3)

(M. 4)

(M.5)

(M.6)

(M.7)
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]

"
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(M. 8)

{M.9)

(M. 10)

(M.11)

(M.12)

(M.13)

(M.14)

(M. 15)

M.16)

{(M.17)



3 A ;o
S ,_‘A_,_v_-j"h‘_-;__,, ,{,__,-- o e A = s 7O - — e —
2" g e [ e ]

The integrals due to the integrations of the airloads associated with

the feathering equation are given below:

8
T = f %* o X, (M. 19)
A
g
T? =f xd X, (1. 20)
A
B
T3=] %1% dX, | (M. 21)
A
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APPENDIX N

QUANTITIES REQUIRED FOR THE CALCULATION OF THE STATIC EQUILIBRIUM
POSITION AND DEFINITION OF THE FLUTTER DERIVATIVES

N.1l OQuantities Required for the Calculation of the Static

Equilibrium Position

"The quantities associated with the calculation of the static equilibrium

condition are defined below.

- o~ 2
S, = M_w_ +E,

" Fl TR (N.1)
Siz = ~Eca (N.2)
0\* '
SIS = - ;. (-ﬁ) B (N.3)
SQ_| = - ECz (N.4)
$;2 ° My a:; - E_C\ (N.5)
- B, - B'p, - £ (AL
st = Fr - (Br z \Rr o (N.6)
2 2

_ Ty _ Cdo v ¥ (4 2q _ 3\ ¥ _g
S;l = -3 Pfg X,- F Z (-é) - >\° (F 9 )OF ) 2 (,R) (N.7)

LY I ~

- —o" ‘ ¥ X y _y¥ L \ Py

S,, = —B ((3+F?)+Z(R) L8 2 (R)L% /3€,C. (N.8)
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0 = ) 2 2 3_ !
cy <-T6 *A (PR * 3 & A% (TN EORLTOT

e 2 CoLo 3
AT S 0]
F, = B*h 3, (N.13)
Loy = E-'g:@o - ﬁzaf 3, (N.14)

— 2 — ° Z
Tew = BTN g B 9 2 (pep) T 48, 1, 8, 0)

AN 0 anr ] Z o ! 2
B
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N.2 Definition of the Flutter Derivatives

In defining the flutter derivatives, it is important to note that some
- are due_only to elastic or inertia forces, while ofhers can be due to both
aerodynamic and inertia forces. In order to be able to keep-track of the
relative importance of the aerodynamic and inertia effects, the flutter
derivatives in which these effects combine, will be split into two parts; the
aerodynamic part‘will be denbted by the superscript A and the inertia part by

the superscript I.

The various flutter derivatives required for treating the flap equation

are given below.

A 10 - "
Fh, = ) [ 2F"(0+2) -2F"= 173, ]
(N.16)
F Fa + Fa
x = N
x3 xz v iz
I
sz F’T‘, (Ec,_ + B §,)
N (!.)3 F
X, Z\R) Mg
_ Eq
Fx -
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- I,

The various

are given below.

f

(i

(N.16)

(N.17)
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L*z + L‘i,
Ee,
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)
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Finally, the flutter derivatives associated with the feathering

veee-w___equation_are given below: _______ _ __ _ __

Tss = -ﬁ‘u &\-,.') -2 B %Pf‘ £l 3‘)173;' (N.18)
IE = I - th (N.19)
T‘PI " gng:» (F+Fl’) +H‘F\(3?)l +FP(P+P!’) *E‘E:Ff—ﬁ'-'(h:)z (. 20)

2
P‘_*e""f.e_[_"" 3, ' 2_ 0
T‘f -iibx:T +z() L'h, 2T /sre +2)~°(5rT +_)°F g,J - (n.21)
- FE) (Flo-F) g
x A
T‘I’ TY + TY (N.22)
kg = I(1®) - Ty | | (N.23)
_ Ke
KE = ?; (N.24)
_ _1_ =7y ° S12
T')'c’, = Ie<3 h’ +B (3',&) (N.25)

I 2 =2 _ D o Tx Lo 77, 0V?
T s L) R g o) ] e
A% 3y
(E) IDS(-AF'lq.I': Ei(-\i){hl L7+ F‘PFO+PP[.F \(6w§>°)*2)~°Fj} (N.27)
PE(LFL A Lpp T P QR £y [ (01222
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. T‘;-: =:il- %(—é)’.!: YA{L'§°-[2L|(9+§O)"Lz)«o—]}

[2(+2) "> "] b= G*Qo)'—'+293L'j/5f}
L {[PeF"(o42) #2S6F] 97+ L(ppoL g 0 F”) 9.5}
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N—l\f\g
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T; =-ji %(é) {)o[Fz(e+§°)‘_>‘oF3J+ %F'_(F’e—Fz,\o)fo} .

" (N.28)

(N.29)

(N. 30)
(N.31)
(N.32)

(N.33)

. (N.34)

(N.35)

(N.36)



RIS USSP

T
Ty, = T‘)(«1 + Ty (N.38)

T =i’;{§ (%)zbi,,[ul{ 2T 8]+ B I T2 (1-5,)( %, -,5)} (x.39)
o L R i
+ Mo (Tz@f’ + F;g,o) ; % 3;[5}’ Fi]..( ﬂpeL'q+g4°6F'°) }'L:"L“’(L,o)z_}

»3 4 (N. 40)
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APPENDIX O

ALGEBRAIC EXPRESSIONS FOR THE VARIOUS QUANTITIES USED

IN THE NONLINEAR EQUATIONS OF MOTION

‘ f =57 . - | '
- T,,;g‘ =-I—E( B Xz) .(0.1)
| B, |
: TN'x’ - IE (0.2)

T [ Fu(12h o 8) B g R fyr X)) o

tF } (0. 4)

* x *\ _ | L Z7aE E =, ol *

LNL(X')Xsz)X“lp, 5) = I‘T{ B72%,$ +B X,p -2 DX,

— e 2 P = 0 12 Qo4 gk *
“B'xp +§(;) [a‘f’".‘f - R X, g L(X,p v % P)
_Czn * ¥ AN IRV 2 3g.bL3\;72-]+LSN}

= L 0X X, - R L (XI) + ‘E(’Z" ,,) 1 (0.5)
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;— . ¥ * % — 5!
T (%4, 2 Xz Xz Y, sﬂ)- 4 ( My 2% Y- ML,/;f—'&?CZsz/B”?Cn(?_-ﬁ B2 (%,
e

- "Lx”f)(/“/&/’)'f MF/[-Q'Q Ly P Af 7”*7644.’—0 -Z7C Y’(g,+ %) ]*B Brrp
- oy b Raf = My %o [Hy (F44p) + b y’]} 2{8F %, B A,

+ Mgy 1;%(/3*/3/0 # B”ﬁg, x, X +7(., 7(,, 87, 8"’[/,4 Xyt Ay (%% 2]76}
+/5/3'l.zx,50 + g_%b{x,,[, kf;u’,ufxg o(%z) (Kg) /.’34-//_5.) F'% %,
+ &0 {;1‘/4"z‘;)]’L[A““’T”)(X;"O'f")(‘eLL;-’-;;)]}
*.
LYoy <X ~(E) [ (048 ) L N0 L] 2,
- L ayt AT }”C( J LA B Fy —Lhop XaLiflp 00 Py ]
- x (%) {(g-x;)wxzw(ff’e-FZAo)nw L"’A,”(wazP)
b U LRy 8,) # (ot ) § ] - £ o P! (Bory) P, - £[o0h s FY
+ 7(4744 F (§+‘F]"‘ L764 7—(1’4’”5?-) L +(—-——Xﬁ)4y[Fz(Zf Zq

# X8y Hif ) = L (b4 T, ) 4, L7 - Lppol’ 7(]}
+ E(t {H g, y’F" Hﬂf [ F¥o+ &%) a0 FO]-EhoFlpXe g

L’
- _é_ [)\oF" (9+fo+‘f’)+z % F ]764 X, —ké(xz“f"’x'z'f [/g,baLl
+(97+%) 6F" (% +?/’4°)"49Fm*(l’)a ‘;[ngoxf

¢
R
L e ] - Lok [P PO (g ]} " SN)

(0.6)
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APPENDIX P -

COEFFICIENTS OF THE CHARACTERISTIC EQUATION

The coefficients of the characteristic equation obtained by expanding
Eq. 10.6 are given below. These coefficients were obtained by using the

FORMAC algebraic manipulative system.

‘ o‘,:. -T.xa' L‘f F'X.'.._— L?‘ F?a - L*t T'itz_ L"x"l FV—T;X; - Fva: + 1

?
(p.1)
05' - ion * sz * ?Jtps N L?_L*l%-m - L&._?baFYz - Ti, LY; F):C:_
- TY| L; F?; - Li, F*;‘; - T;c" L? Fi, - L’).E' Fi:, - L\F T;C:'
- L;l Fq’. TY; - Ly‘ F\? Ttiz e L*Yt Tiz - L‘X,:F;‘F T{t
-q * ¥ lxe & ¥ -2)
5. Ty "R Ty T Fe Ty | (.2
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- F. Te ._.} F?Ti -F\?Ti -F’\'FT‘X, (P.3)
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;‘ X, ~x,7§ X, i, F‘f T&:’ - LYTi,_ - LX‘F‘\‘; Tiz

Ly FeTy Ly Ry ~LaT, ~LpReT,

- - q ;-2.- 3y K « as
L FeTy, "Lyt 903, v, K "R Ty L

kS

X,

-— 2 — . - — 2 - "
+ FV T{,sz - W, F‘? T?' -3, F\’ T;" W, F‘; Tx'

(P.4)

X, F P Fi P
—_ - -— i — 21 2
+ w2 S oy -
1o ®n TR W - L G W, W -L T B

294



L TR T by R TR

B 4 A T

‘Li, EE Fiz - Tx,L";’Fi,, - T)'tk. L‘f’ F)’C'z -_L*g’ FX:

S Ly K, Fxl - Tx,Li'ﬁ’sz A T&"Lr Fr.

“LyR Ly Fe Ty - Ly F3 Tiz- Ly Fely, = Ly Ty,

Xy Xa

"Ly R T, - Ly RN - LpRT, - Ly K + K&
|Y xz

*FeTp L, *FeTx YR T, L F, Ty
-, F -3 Fe Ty, Fo T, 4 Y
- F\PTx| (P.5)
Y T LT F, t LK, tad Ke 3, - L, Tiz"j:'
TLyT B CL e relg B K B
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Ly Tz Fr, ~hetub xz—,,Fx. S }”FL

ﬁm-e Fx, - Lx,?e Fiz - TX‘L'\rF;‘tz - L’xjp; X

Li‘?e " T, LgFe ~ T’,Lf‘:x ~LyFe Ty,

- Lx.FsFch - L;,F\,sz + B Tx b, ¥ F?Tx,"'x,

B R
= ~LeTy ‘:3:! - X,EE #:\ +<_C):"~K€§J: —L\PTW,_FW.
Ly R By, T O K Fy - \,)L"?E’F)Lz - T, LoFr
L, FyTr, * P T, Ly, ~ 0 R Tx, 2.7
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APPENDIX R

EVALUATION OF THE EXACT DIVERGENCE BOUNDARY IN FLAP-PITCH

The exact divergence boundary can be obtained from Eg. 9.22 after

suppressing the lag degree of freedom by taking hi = 0.

Then from the first of Egs. 9.22:

540= (C4 Sty f, ) gL (R.1)

From the last of Egs. 9.22

S5 (Cr8,8) -+ 5y o= Ton * Gy ~ (R.2)

n

Using Egs. N.15 and R.2, one obtains, after some -algebraic manipulation,

a third-order polynomial for @o. Thus

)

3

(__’_ 5,2 —) 51’:,3_ LSyl + S0 ﬁ,;,) foz
S”Z 'S;I 'S'II

(R. 3)
+ [( CI"‘B‘f’SfB Ssi )_ 533 é + (C3" éﬂ C,)-:-O
S
S
where
. iz : 2 2 272 v
- {2 J YRR + Mg C
Gx BUpopr) g (g) Fhow 2 ppt Z2=

Equation R.3 can be easily solved using Subroutine DPRQD available
o . o
in the IBM Scientific Subroutine Package. Thus, ¢o,gl are known. The exact

divergence boundary is obtained from Eq. 10.4, and can be written as

°°=o= Su (333—37;” )—- 313(53,_37-5#} . (R.5)
2%, 2g°
297




