
N 7 3 - 1 2 1 4 3
USGEE Report 426

UNIVERSITY OF SOUTHERN CALIFORNIA

SYNCHRONIZATION USING PULSED EDGE TRACKING IN

OPTICAL PPM COMMUNICATION SYSTEMS

R. Gagliardi

Interim Technical Report

September 1972

CASE FILE:
COPY

This work was sponsored by the National Aeronautics and
Space Administration, under NASA Contract NGR-05-018-
104. This grant is part of the research program at NASA's
Goddard Space Flight Center, Greenbelt, Maryland.

ELECTRONIC SCIENCES LABORATORY



USCEE Report 426

September 1972 ,.

Synchronization Using Pulsed Edge

Tracking in Optical PPM Communication Systems

R. Gagliardi

Interim Technical Report

Department of Electrical Engineering
University of Southern California
Los Angeles, California 90007

This work -was sponsored by the National Aeronautics and Space
Administration, under NASA Contract NGR-05-018-104. This grant
is part of the research program at NASA's Goddard Space Flight
Center, Greenbelt, Maryland.



ABSTRACT

A pulse position modulated (PPM) optical communication system using

narrow pulses of light for data transmission requires accurate time

synchronization between transmitter and receiver. The presence of signal

energy in the form of optical pulses suggests the use of a pulse edge

tracking method of maintaining the necessary timing. In this report the

edge tracking operation in a binary PPM system is examined, taking into

account the quantum nature of the optical transmissions. Consideration

is given first to "pure" synchronization using a periodic pulsed intensity,

then extended to the case where position modulation is present and auxiliary

bit decisioning is needed to aid the tracking operation. Performance

analysis is made in terms of timing error and its associated statistics.

Timing error variances are shown as a function of system signal to noise

ratio.



1.0 Introduction

The successful operation of any digital communication system requires

accurate time synchronization between the transmitter and receiver. In

optical digital systems a common procedure is to use a noncoherent pulse

position modulation (PPM) mode of operation using narrow pulses of light

intensity to carry the data [l~\. The presence of signal energy in the form of

optical pulses suggests the use of a pulse-edge tracking method of maintaining

the necessary time synchronization. In pulse edge tracking the edges of the

transmitted pulses are used as timing markers to adjust the synchronization

of the receiver. When the optical pulses are transmitted as a periodic

pulse train of known fixed frequency, the edge tracking corresponds to "pure"

synchronization, in that the transmitted edges always occur at periodic

points in time. When position modulation is present, however, the pulses

of light are shifted according to the data, and the edge tracking operation

must be modified in order to maintain receiver timing. The latter type of

synchronization is often called modulation-derived synchronization, or

"impure" syncing, since the timing must be derived from.or accomplished

in the presence of, the data modulation. In this report we examine the

pure and impure edge tracking operation in an optical binary PPM system,

taking into account the quantum nature of the light transmission. Performance

comparisons are made in terms of the instantaneous timing error of the

receiver and its associated statistics. The effect of imperfect timing on

the overall data decoding operation has been studied elsewhere [ 2 ] and

will not be considered here. In addition, it will be assumed that initial

acquisition of beam and waveform has already been achieved, and only
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the maintainance of continuous time synchronization will be investigated.

2. 0 System Description

A block diagram of an optical digital system is shown in Figure 1. In

normal operation the incident optical .field is photo detected, and the

recovered signal is processed in both a data detection channel and in a

synchronization channel, the latter providing the timing for the former. In

this report only the synchronization subsystem will be considered. In a

PPM non-coherent mode of operation, digital information is transmitted by

position modulating pulse of light intensity during each data bit interval.

Thus, in a binary system, the light energy is transmitted in one of two

adjacent bit subintervals, representing a binary one or binary zero, as

shown in Figure 2a. Detection in the data channel is made by photo electron

counting (physically, short term integration of the photo detector output,

•which is equivalent to energy detection of the optical field) during each

subinterval, deciding on the position -with the highest count as containing

the transmitted bit. Timing for the starting and stopping of each counting

interval is provided by the synchronization subsystem, and timing errors

(offsets between received and integrating bit intervals) lead directly to

system degradation. Continual timing in a digital system is necessary

to maintain bit timing in spite of the time delay variations that may occur

during optical transmission, (i. e. , the received waveform and associated

timing markers are unintentionally varied from their expected position).

The system of Figure 1 can operate with one of two different synchroni-

zation formats. For pure sync operation, an unmodulated sync signal (herein
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considered as a periodic train of optical pulses at the bit rate frequency),

shown in Figure 2b, is transmitted inter mittantly in place of the data to

allow receiver lock up, and the resulting timing is used to decode the

subsequent data transmissions until the system is retimed with the next

sync burst. In impure sync generation, the PPM data is transmitted

continuously and the timing is extracted from the data. The first

procedure allows pure synchronization but must sacrafice data during

the timing operation. The second method allows uninterrupted data

transmission, and is obviously the preferred method of operation, but

requires modulation-derived synchronization. For this reason considerable

interest exists in developing the latter system, and to determine the

achievable performance with impure synchronization.

In pulsed optical systems both the pure and impure sync systems can

employ edge-tracking for timing. An edge tracking subsystem makes use

of the fact that a pulse edge always occurs at the center of each bit interval

(see Figure 2) and can therefore be used to sync an identical pulse train

at the receiver. The subsystem, to be described in Section 3 and 4 employs

a feedback loop to essentially measure timing errors between the received

and receiver edges, using the error to correct the latter signal. In pure

synchronization the pulse edge at the center always corresponds to the tr-

ailing edge of a pulse. When PPM is present, however, the edge may

represent either a leading or trailing edge, and this polarity must be

determined for successful loop operation. To accomplish this, the

modulation-derived sync subsystem employs an auxiliary decision-making
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loop that operates in conjunction -with the edge tracking loop [see Figure 7 J.

This auxiliary loop essentially decides which type of edge (i. e. , which data

bit) is being received, using the decision to augment a delayed version of the

standard edge tracking loop. Similar systems have been previously proposed [3~|.

Continual or updated timing is necessary to overcome the unintentional

variations in transmission delay, due to doppler, relative receiver motion,

etc. If the basic assumption is made that these delay variations are slow relative

to the optical pulse width, then their only effect is to vary the time location

of the optical pulse without distorting its shape. Thus, if I(t) represents

the pulsed light intensity at the receiver with no delay variations, and

if T is the time varying delay occurring, then the recovered field intensity

is given by I(t-T ). Here it is tacitly implied that T is a function of t that

changes slowly with respect to the pulse width of I(t). Note this latter

condition is equivalent to the assumption that the bandwidth of T , is much

smaller than the bandwidth of I(t). The principle objective of the edge

tracking loop is therefore to "track out" the unintentional time variations

of T generated during the transmission of the optical field.

3. 0 Edge Tracking of a Periodic Pulse Train (Pure Sync)

In this section -we first examine the edge tracking operation when the

received intensity corresponds to a periodic pulse train of light. This

•would represent the situation during pure synchronization operation when

the. data modulation is not present (actually, a periodic pulse train at the bit

frequency can be considered as a continuous sequence of the binary one
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symbol in Figure 2a). The received field intensity with no delay variations

is therefore given by

I(t) = P[l + p ( t ) ~ | (1)

where P is the received field power per unit area, and p(t) is the effective

intensity modulation

P(t) =
1 0 £ t ^ W

(2]

Here W is the pulse width and T = 2W is the bit period. The above intensity

is assumed to be received with the delay variations T , which is equivalent

to replacing p(t) by p(t-T ).

The output of the photo-detector in Figure 1 , operating over a single

spatial mode of the optical field, is known to be the shot noise current

process [4j

N(0, t )
i(t) = Ge V^ 6(t-t ) (3)

where 6(t) is the detector impulse function, e is the electron charge, G is the

photomultiplication gain, {t 3 are the random location variables, and

N(0, t ) is the electron poisson counting process [i.e., N(0 , t ) is the

number of electrons occurring in the interval (0 , t )^ . The counting process

has its average value related to the received field intensity, I(t), by
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average

t-,

\ I(t)dt + k
J n (4)

where P = 1/hf, a = detector area, h = Plancks constant, f is the optical

frequency, and Pk = average rate of noise background photons per
n

detector area. The photodetector output i(t) of (3) •will have added to it a

white Gaussian circuit noise current i (t), and the resulting signal, x(t) =
n

i(t) + i (t), provides the input to the synchronization edge tracking subsystem^ .

shown in detail in Figure 3 . A pulse-edge integrator is time controlled

by a receiver timing oscillator, generating an error voltage used to

readjust the oscillator. The latter, in addition, provides the timing

markers for the data channel. The pulse-edge integrator consists of

simply a W sec offset integration over the trailing edge of the received

pulse. If the input to the integrator was the pulse train of Figure (2b) with

zero average value (i. e. , with its d. c. value removed) the offset integration

occurs over portions of positive and negative values. If this latter integration

had been timed to begin exactly half way through the positive pulse (at

t = W/2) , the resulting integrated error value would be zero, no oscillator

correction is necessary, and the system is in time sync. If a time

difference occurred between start of integration and pulse half interval

point, a proportional timing error would be generated whose polarity

depended on the direction of the time difference. This error voltage

can be used to adjust the loop timing oscillator. The input d.c. removal

can be accomplished easily by capacitor-coupled circuits, but is represented
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as a subtraction in the mathematical model of Figure 3. Unfortunately,

in the optical system of Figure 1, the input to the loop is not a clean pulse

sync train, but rather the shot noise process of (3), containing the optically

pulsed intensity of (1). In addition, this shot noise has added to it the additive

circuit white noise current i (t). Hence, the error signal generated after

the short term loop integration is then

e(t) = :J [i(t) + i (t) - Ge|3{p+kn)ldt

T +W

i (t)dt - Gep(P-fk ) (5)

'4 "

where T. represents the start of the loop integration; i. e. , the timing of the
JL

loop. The subtraction in (5) represents the removal of the average

intensity from the loop input. The dependence of the right-hand side on t

is implicit in the parameter T. , which varies as the loop attempts to track

out the variations T ,. Although T. is actually a function of t it is treated as
d *

a constant when integrating over the pulse width W sec long. This latter

fact is simply a restatement of the fact that the bandwidth of T. , which is

roughly the same as that of T , is much less than the repetition frequency

1/W. After substituting the input processes, (5) can be rewritten as

e(t) = GeP[N(T ,T fW)/W + n - (P+k ) (6)
t o ' n

where

N(t , t ) = number of photoelectrons occurring in the

inverval (t t_)
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n - Gaussian random circuit noise variable, having zero

mean and variance N /2W, where N_ is the one-sided

circuit noise level.

The performance of the tracker can be directly related to the instantaneous

timing error between the received and the oscillator signal. This timing

error is defined by

T = Td - T. (7)

where all parameters are actually functions of t. Using straightforward

analog loop analysis, and recalling that the oscillator phase depends on the

integral of the voltage controlling it, the timing error T in (7) satisfies the

integro-differential equation

!r • IT - K'«> (8)

where K is the total loop gain. Since the error signal e(t) depends on both

T, and T. , the equation is in general non-linear in T. Clearly, the solution
d. *

for T(t) in (8) necessarily evolves as a stochastic process due to the random-

ness of e(t) in (6). This is true even if the additive circuit noise i (t) is set
n

equal to zero (i.e. , background limited operation) due to the randomness of

the shot noise process.

Although the statistical properties of T(t) will be of ultimate interest,

the behavior of the instantaneous mean value of T (t) can be derived from

(8). If we statistically average both sides, interchanging differentiation and

averaging on the left, we obtain the equation
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(9)

where the overbar denotes statistical average. Since the additive noise

variable in (6) has zero mean, the mean error voltage is given by the

mean shot noise count. The latter is the integrated count intensity

over the integration intervals, as denoted by (4). Hence,

vw

V W J Kt)dt - GaP(P+kn)
Ti

W JT,

+w
+ p(t+T.|dt + k Idt - Gep(P+k )

1J n n

Tg +W \

p ( t - T . ) d t > (10)

* . ^ ^

•where & is the expectation operator over the random variable T, and p(t)

is given in (2). The above integral can be rewritten in terms of a receiver

correlation. Define the function y(t) by

y(t) =
0 elsewhere

Then (10) becomes

(11)

where

R

e(t) = & {epGPR (T)] (12)
T yp

, (W= il P(t-Td)y(t-T,)dt (13)
_oo
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Hence, the mean of the error process can be related to the correlation of

the periodic intensity modulation p(t) with the time function y(t). The

latter function can therefore be considered as the receiver "timing" signal

produced by the loop. The correlation function R (T) for the functions p(t)

in (2) and y(t) in (11) is plotted in Figure 4. The latter can be considered

as the mean error function of the tracking loop, and is often referred to as

the loop "S curve".

Equation (9) therefore becomes

^T - -IT- - (ePKGP)^{Ryp(T)} (14)

The above is the differential equation of the mean timing error variable in

the tracking loop. If T(t) is confined to the linear range of R (T) [i. e. , if

T r&O and the loop is tracking well] then we can approximate R (T) « 2r /W and

6 {R (T)} «<S 2T/W = 2T/W. Equation (14) then becomes a linear differential

equation in terms of the mean error process T(t) . Furthermore, this

linear equation corresponds to that of the linear feedback system in

Figure 5. The latter is often called the linear mean equivalent loop to

Figure 3, and is useful for analyzing or synthesizing based upon the mean

timing error process. Note that in this equivalent system, the input delay

variation T , appears as the loop input, and the loop timing oscillator

becomes a feedback loop integrator -whose output is the timing process

T.(t). The linear equivalent loop has a loop gain of 2eGKf3P/W and a loop

bandwidth* of

'~In a linear feedback system, if H(S) is the transfer function from loop input to
feedback signal, then the loop bandwidth is defined by BL = J | H(jU)) |2duu/2TT . It
essentially represents the bandwidth that the loop exhibits to the input.
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_ eGK|3P
BL ' 2W (15)

Note that the loop bandwidth depends directly on the received optical power

P, which therefore appears as a parameter of the equivalent system. The

loop bandwidth must be sufficiently wide (i. e. , there must be sufficient loop

gain) to track the expected time variations in T ..

Although mean error performance in tracking the received delay

variations can be determined from the linear mean system, the adverse

effects due to the random nature of the optical field and circuit noise cannot

be derived (note that the linear system is noiseless). In this case, the

dynamical equation of the true system, Equation (8), must be examined in

detail for a complete statistical analysis. The stochastic, non-linear nature

of the timing error equation indicates that the statistics of the solution T(t)

will be highly non- stationary as the process evolves in time. An indication

of the statistical properties of r( t) can be obtained by examining the steady

state probability density of T/W. This latter density, f ( T ) , is known to satisfy

the Kolmogorov-Smoluchowski steady state equation [5 j :

)] = 0, | r | < l (16)

where

(AT) J

K.(T) = lim -—- (17)
J At-»0

AT = [f(t+At) - T (t)]/W
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with the condition that f ( t ) integrate to one. When the coefficients K.(T)

exist, this equation provides a relation that must be satisfied by the steady

state density of the process T(t). The equation is a partial differential

equation with variable coefficients and, in general, involves all orders of

derivatives. The principle usefulness of (16), however, occurs when only

the first few coefficients are non-zero. In particular, if K.(T) = 0, j s 3

the resulting equation is the steady- state Fokker-Planck equation, and has

been extensively studied [6 ]. A Fokker-Planck equation implies a "continuous"

process; i. e. , processes that do not change significantly over a short time

period, while the more general equation of (16) would be associated with

processes containing statistical jumps.

The calculation of the sequence of coefficients K.(T) requires determin-
J

ation of the moments of the error increment A T in (17). Consider again the

system of (8) when tracking an intensity pulse having a constant time shift

T j ( t ) = Tr.- The timing error T(t) therefore satisfies (8) with dT ,/dt = 0.
d 0 d

The timing error variation AT is then

AT
I+AT /, \

4-f (*L\
W J \dz/

t+AT

-K/W f e(z)dz (18)
t

The coefficients in (17) can now be determined by using (6) in (18). It

is shown in Appendix A that these coefficients become
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K.(T)

-(eGKpP)R (T) ,

(GeK)2[f3Ry2l(T)4

j = 1

(19)

-eGK) j[RyJI(T)>

where

(20)
_oo

For the loop signal y(t) in (11), the above can be further simplified by

noting that for all j

Thus, the steady state Kolmogorov equation becomes

.2 ,
0 = (eGKpP)[Ryp(T)f(T)l ([pRyI(T) + NQ /2GeW]f(T)]

(T)£(T)] (22)
— j

The infinite number of derivatives manifests the jump nature of the error

process caused by the input shot noise. Although an exact solution for f ( r )

is somewhat ambitious, some meaningful information and approximating

solutions can be derived. In particular, consider the case where the system

operates in near-lock operation, so that it may be assumed that T ?» 0. The

instantaneous tracking error can therefore be considered to be confined to

the linear range of R (T) and, approximately,
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R (T) ft* 2T /W
yp

(23)

R (T) » (P + k )
yl n

Substituting into (22) and dividing by the coefficient of the second term

yields the modified equation:

00 i _ 1
J 1 J

0 = -CXTf(T) +— f(T) +V^ A. — f (T ) (24)

where

eGK/2W[p(P+k ) + N / 2 G e W ]
n 0

. (PPJ 1 '
n

[P(P+kn) + N0/GeW] j"1
(26)

Note that the coefficients A. vary as 1 /cr , exhibiting a. decreasing

importance in the higher derivatives as the parameter O. in (25) is increased.

[The bracketed term in A. is bounded by one and approaches one as the

system approaches quantum limited operation, i. e. , when f3P >;> (3 k +
n

N /GeW. J A physical interpretation to O, can be introduced by using the

linear mean- equivalent loop of Figure 5. Since it is desirous to operate the

tracking loop with a given loop bandwidth B the loop gain K can be adjusted
J_j

so as to obtain this value in (15). Hence K = 2B /GepPW, and (25) becomes

a - (Z7]
~ 2BT[ j3(P+k ) + N0VGe] ( '>

Li n 0

When written in this way, the numerator is the square of the mean intensity

of the received signal, while the denominator is effectively the total noise
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power occurring in the bandwidth B (since the level f3(P4 k ) is the
I_i n

two-sided shot noise spectral level). Thus, a is essentially a signal to

noise power ratio. Alternatively, (25) can be factored as

PP/2B,
a = L

N./GeWI+1T
(28)

Since the received power in a optical beam is equivalently the average

rate of received photoelectrons, the numerator represents the average

number of electrons produced in a 1/2B time period. In this way, a

can be considered as a normalized photoelectron count density, indicating

the accumulation of electron, over a time period equal to the reciprocal of

the loop bandwidth. Furthermore the normalizing factor in the denominator

becomes one for quantum-limited operation. Hence, coefficients A in (26)
j

essentially vary inversely with the electron density of the received optical

field.

Further properties of the solution for f ( r ) for the in-lock operation

case can be readily derived from (24). Transforming both sides indicates

that the characteristic function of f(T), cp(uo), satisfies the differential equation

_ d 2 [ u » ) + ! v-^\ i
+ > A.(ju)) cp (u>) = o (29)

i=2

This means

s + s£ ' ^— t c (30>£U. OL ̂ ^^j

i=2
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where C is chosen to satisfy the unit area constant on f(r). Since the

left hand side is in the form of a power series in ju", the semi-invariants

of the steady state density can immediately be identified. Note that the first

semi-invariant (mean value) is zero, the second semi-invariant (variance)

is I/a, and the higher semi-invariants are related to the {A.} . Thus, the

actual form of the solution density depends on these coefficients. As a

limiting case, however, we see that if a -» °° implying A. /a -» 0 for all i, then

2
In cp(iD) = -U) /2a, corresponding to a zero mean, Gaussian density for T ,

having variance I /a. On the other hand, for a < °° the higher coefficients

can no longer be neglected, and the complete series in ( 30 ) must be included.

In quantum limited operation, A. = (-ex) / i ' , and (26) has the closed form

= a e
:'^a)- 1 - jIn cp(uu) = a I e^ ' '- 1 | - juu (31)

•which means

= exp ae^0* - 1 exp[a(j(u/a)] (32)

This can be recognized as the characteristic function of a linearly transformed

Poisson variable with rate a. That is, (32) is the characteristic function

of the random variable

'(=)
x - 1 (33)

•where x is a Poisson random variable with rate parameter a. This itself

is a discrete variable, having zero mean, and takes on the values I/a, 2/a,

. . . n/a with Poisson probability at each n. This means the loop is exhibiting

the jump nature of the input shot noise process by linearly reproducing jumps



Vft



-17-

as the discrete arrivals occur. It must be remembered however that the

above is based on a complete linear loop model. As 0, is decreased in value

the size of the discrete loop error jumps (multiples of 1 /a) will cause the

loop error to exceed the linear range of R (T) , violating our assumption

that the loop is in fact completely linear. It is important to recognize

nonetheless that as the loop error density varies in form from the

asymptotic Gaussian density for a->» to the modified discrete Poisson density

for CX-» 0, the variance of the density is always 1/a [i. e. , the second semi-

invariant in (30)]. The linear loop error variance, normalized to the pulse

width W and assuming shot noise limited operation, is therefore

2B_
04)

The above is plotted in Figure 6 as a function of the parameter Ct = (3P/2B
L

P/hf2B , for several values of normalized noise energy k /2B . The
LJ n LJ

curves, in essence, summarize the performance of a pure sync system

operating with optical power P watts in a tracking bandwidth of B hz. The
LJ

rapid increase in the fractional error variance as. the sync signal to quantum

noise ratio is decreased represents the deterioration of the timing perform-

ance. The presence of background noise k causes the increase to occur
n

at higher values of (X. Recall again that (X can be interpreted as the average

number of signal photons received in the loop response time 1/2B , while
LJ

k /2B has a similar interpretation in terms of noise photons,
n L
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4. 0 Modulation-Derived Edge Tracking with PPM

In a PPM system the received optical intensity is no longer periodic,

but varies in position according to the data bit sequence. For example,

in binary PPM, if the optical intensity is written as in (1), then its

modulation during.a bit period is given by p(t) in (2) if a binary one is

sent, but is given by -p(t) if a binary zero is sent, as obvious from

Figure 2a. A receiver attempting to attain time synchronization by edge

tracking the center transitions during each bit period will be adversely

affected by the data modulation. If a data one is sent, a timing error T

will generate a loop error voltage of R (T) , as discussed in Section 3.
yP

However, if a data zero is sent, an error voltage of -R (T) is generated
YP

in the same loop. Hence, for equally likely data bits, the average error

voltage within the loop is then [R (T) (probability of one being sent)-

R (T) (probability of zero being sent)^] = 0. That is, on the average, no

loop error is generated for controlling the receiver timing oscillator during

modulation reception.

To compensate for this modulation, an augmented edge tracking system

is used, as shown in Figure 7. The decision loop attemps to determine the

true data bit, using this result to properly modify the sign of the loop error

voltage. This can be implemented by multiplying the generated error in a

delayed (by one bit period) tracking loop by a plus or minus one, depending

on the data bit. This latter decision is made from a count comparison over
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each possible bit subinterval as they arrive. Thus, the error in the delayed

edge-tracking loop becomes be(t), where

!

+l if one is sent
(35)

- 1 if zero is sent

or equivalently,

+1 if k

-1
b = (36)

where k , k_ are the counts over the first and second subinterval of each

bit period. The differential equation in (8) for the tracking loop error now

becomes

Tt = IT - K[be(t)1 (37)

Since the counts in (36) are random counts, the parameter b is a random

variable. Thus, the coefficients K.(T) in (17) for the steady state density
J

will be a function of this variable, and therefore require a subsequent average

over its statistics. When a one is sent the probability that k ^k is equi-
1 w

valent to the probability that the one is correctly detected, whereas the,

probability that k < k corresponds to the probability that an error is made.
1 Lt

Hence, when a one is sent,

!

4-l with probability 1-PE \
> (38)

-1 with probability PE /

where PE is the bit error probability when a one is sent. When a zero

is sent, the above signs are reversed and PE is replaced by PE . It
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should be remembered, however, that the timing for this subinterval counting

is in turn controlled by the receiver loop timing signal, which will have loop

timing errors incorporated within it. Thus, the bit error probabilities in

(38) must include these timing error effects. [A timing error between the

true bit arrival time and the start of subinterval counting will cause the

counting to occur over an offset interval. J The effect of these timing errors

on bit decisioning has been previously derived, [2 1 , and a typical average

bit error probability plot of PE = -|[PE + PEn] is shown in Figure 8, as a

function of the timing error T and optical signal and noise powers. This

timing error T is in fact a function of time, but can be considered a constant

over several bit periods.

The steady state coefficients K.(T) can be evaluated from (17), (19)

and (37), first conditioning on b, then averaging over the probabilities in

(38). Using primes to denote the K. coefficients when data modulation

is present, and noting that b = 1 for all j even, we see that

!

K . ( T ) , j even
J

lK.(T){(+l)[l-PE1] + ( - I J P E j C r ) - ( - l ) [ l -PE o]

- (+1)PE } , 3 odd

/ K . ( T ) , j even
= ] J (39)

( K . (T) [ l -2PE( T ) l , j odd

where PE(T) = |[PE + PE
nl- N°te that the dependence of PE on T has been

emphasized. The resulting steady state density equation is again given by (16)
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with K . ( T ) replaced by the K'.(T) above. Note that the coefficients are now

more complicated functions of T due to the auxiliary decisiohing, and

approach the earlier results as PE(f) -»0. In this latter case, the system

is correctly identifying the true bit during each period, and essentially

"removing1! the binary modulation. The first coefficient, K' (T ) =

GEK/&PR (T)[ 1-2PE(T)1, is the average loop error function, and repre-
yp •

sents the modified nonlinearity of the mean equivalent loop, as in (12).

This coefficient is plotted in Figure 9 as a function of the normalized T

and received pulse .energy S, obtained by use of Figures 4 and 8. Note

that the effect of the decision process is to reduce the width and amplitude of

the tracking error function. As PE(T)•-» \, there is no average error being

generated for loop tracking, and the system essentially loses lock.

For the near-lock assumption [use of (23)] the previous steady state

equation is modified to

co 1-1

0 = -a T [ l -2PE(T)]f (T) +^^ +y^A. -3-— f ( T ) (40)

with |T I ̂ 4 . Even with this simplification, neither the solution density

nor its characteristic function, can be generated as easily as in Section 3,

since the first coefficient is now more complicated. However, the

fractional variance for this density can be estimated by. approximating

the coefficient K ' ( T ) in Figure 9 by a sinusoid of proper amplitude and

frequency. This latter amplitude •will depend on the energy S per data

bit used for decreasing, which in turn is related to the a parameter in
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(27) by

S = (2B W)CX (41)
J_J

where 2B W = 2B_ /2R = BT /R, . The latter parameter is the ratio of
l_i J_i b Li b

tracking loop bandwidth to the data bit rate R , and is typically less than one.

When written as in (41), 2B W can also be interpreted as the fraction of
Li

the sync energy CX appearing in the data pulse and therefore used in the

auxiliary decisioning. For a fixed value of 2B W, each value of (X generates
Lt

a corresponding value of S, to "which an effective one cycle sin -wave can be

filtered to the corresponding curves of K ' ( T ) as in Figure 9- The variance

can then be determined at each CX by numerically solving a truncated version

of (40), using the method discussed in Appendix B. The resulting normalized

variance computed in this way is plotted in Figure (10), as a function of CX

for several values of 2B W. The curve for the noiseless, pure sync
Li

operation from Figure 6 is superimposed. The results stow that a deterior-

ation of performance occurs over pure sync, due to the decisioning process,

and can therefore be considered as the price to be paid for modulation

derived synchronization. Note that the decisioning causes system degradation

similar to an effective loss in signal to noise ratio (reduced CX) and can

therefore be interpreted as a power loss in the sync subsystem.

Although the use of the curves in Figure 10 are convenient for assessing

performance, their derivation requires a somewhat lengthly calculation.

Furthermore, this computation must be repeated at each desired value
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background noise k . However a simpler method can be used, at the

expense of analytical accuracy, to derive similar curves. This method

makes use of a form of truncated quasi-linear solution, which bascially

amounts to reducing (40) to a second order equation, and replacing the

first coefficient by a modified linear coefficient as in (24), but retaining

its dependence on the decision error probability PE. To accomplish this

linearization we first recognize that PE depends on both pulse energy S,

and timing error T, and we write this as PE(S, T). To linearize, we

replace the functional dependence on T by the root mean square value of

T ; i . e . , T = 7l /a'. Thus, using (41), we consider PE(2B
rms J

The quasilinear differential equation for the timing error density f ( r ) is

then taken as

^^ -a[l-2PE(2B Wa,yr7a:)]Tf(T) = 0 (42)
dT Li

Note the equation is linear in T, but the coefficients are nonlinear in a.

The solution for f ( r ) in (42) yields a Gaussian density with variance

Variance = 1 (43)

The values of PE at any value of (X and BL,W can be obtained from curves

similar to Figure 8. Several points of the above variance are superimposed

in Figure 10. The results tends to display the same behavior for tracking

performance, although the variance values indicate slightly lower variances

than the more accurate results determined earlier.
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APPENDIX A

The coefficients in (17) can be computed as a time average of the

moments of the statistical variations in (18), neglecting the short term

integration within the loop. Using i(t) as given in (3), and substituting

y(t) from (11), yields

AT =
t+At

t+At

1

m
i (z) /W - C/J(P+Krn n

m

dz

6(z-t ) + K i . ( z ) /W
m n

dz - Cp(P+K )At
n

m

t+At

t
(A-l ,

m

where C = GeK/W, k, = k(r , T +W), and k_ = k(t , t+At) , the latter defined
1 -V * L*

in (6). To determine the K. coefficients the moments of A T must be cal-

culated. The first two moments are as follows

- C yv --/ j m
u m

t+At
[i ( z ) ldz - Cp(P+K )At

t n n (A-2)

Now i (z) = 0 and it is known that Poisson shot noise has mean [4, pp. 1619J
n

+ At
(A-3)

m

In the limit as At -» 0,



rt+At
lim I y(a-T
At-X) t

T )da-» (At)y( t -Ta * (A-4)

It then follows that the time averaged first coefficient in (17) is

K = lim y(t-T^)I(t-Td)dt - CAtPfB
_oo

CO

= CpJ y(t-T^)[l(t-Td) - P]dt (A-5)

The calculation of the mean squared value of (A- l ) requires computation

of the cross products involved. However, noting that the eventual computa-

tion of the K. requires a division by At followed by a limit as At->0, only

the terms of order At need be retained. In particular, we see from (A-4)

that any product of averages of the shot noise summation will always be at

least of order At . Hence, we have

2 2
e ( A T ) = C

t+At

+ 7^ i (z )i (z )dz dz
n 1 n 2 12

(A-6)

The average of the first summation is known to be [4, pp. 1619^)

°(At
(A-7)

Since the circuit noise is white with spectral level N , the second integral

2
is known to be K N At /2W [?, pp. 86]. Proceeding as in (A-4), we have

y ( t - T _ g ) I ( t - T d ) d t

2
K N

2W
(A-8)
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. APPENDIX B

Consider the equation

0 = r a a s i n Z T l T l f O n + ^ + V A. ^llllll , |T

(B- l )

which is a truncated version of (40) with K ' ( T ) = Q sin 2TTT. We assume an

even solution having the form

f ( T ) = V^ C cos 2nkT , |T| ^ l/» (B-2)

k=0

•where
_!_

C, = f f ( r ) cos ZnkrdT (B-3)
k J x

~~2

If we substitute (B-2) into (B-l) , collect harmonic terms, set the resulting

coefficients equal to zero, we derive the following second order recursive

equations among the C :
K.

N 2A.kJ

Qa -- <B-4)

(odd)

The above allows a generation of all subsequent C from the first two, C
K. \

and C . These latter two are found from the conditions that 1) f (T) be a

probability density over (-•£, j) and 2) for large a, f ( f ) must approach the

known solution corresponding to A. = 0 in (40). From (B-3) we see that

the first condition requires that C = 1, while for A. = 0, (B-4) becomes
J



= C, , - ^ C , C = 1 (B-5)

The solution is then

yQal
(B-6)

for all k. Thus, C1 was selected as I (Qa)/I (Q<X) in subsequent analysis

using (B-4). The density £(T) can now theoretically be constructed by

solving (B-4) and using the C in (B-2).

We are primarily interested in the variance of this tracking error,

given by

«2 2

T f(T)dT
J 1

2 r2 2
o

T
~~Z

C- ^ z
cos Znkcrdr

K. «J i

k=i "2

(B-7)

k=l

The above can be computed directly from the C generated from (B-4).

To examine the truncation error (B-4) was numerically solved for Q in the

range (. 1-. 5) and N = 0. 3 and 5. For the range of interest (1 ^a ^ 100) no

noticeable change in variance appeared for N greater than 3. Hence, the

truncation was limited to N = 3 in all subsequent results. With N = 3, the

variance was then computed from (B-7) as a function of ex., after generation

of the C from (B-4). The value of Q, which itself depends on a, was deter-

mined for each a from the curves of Figure 9. The resulting variance is

plotted in Figure 10 of the paper.
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FIGURE CAPTIONS

1, An optical digital PPM receiver

2, Intensity waveforms, a) PPM bit intensities, b) pure sync intensity

3, Pulse-edge tracking subsystem

4, Tracking error characteristic for pure sync

5, Linear equivalent edge-tracking loop

6, Variance of normalized error T/W vs. loop SNR a (pure sync)

7, Modified edge tracking loop for PPM sync

8, Error probability curves vs. offset timing error

9, Modified loop error characteristic for PPM sync

10, Variance of normalized error vs. loop SNR (X (PPM sync)




