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AN ACTUATOR EXTENSION TRANSFORMATION FOR A
MOTION SIMULATOR AND AN INVERSE TRANSFORMATION
APPLYING NEWTON-RAPHSON'S METHOD

By James E. Dieudonne, Russell V. Parrish,
and Richard E. Bardusch
Langley Research Center

SUMMARY

A set of equations which transform position and angular orientation of the centroid
of the payload platform of the six-degree -of -freedom motion simulator at the Langley
Research Center into extensions of the simulator's actuators has been derived and is
based on a geometrical representation of the system. An iterative scheme, Newton-
Raphson's method, has been successfully used in a real-time environment in the calcu-
lation of the position and angular orientation of the centroid of the payload platform when
the magnitude of the actuator extensions is known. Sufficient accuracy is obtained by
using only one Newton-Raphson iteration per integration step of the real-time environment,

INTRODUCTION

To enhance the capability of producing realistic aircraft simulations, in December
1971, NASA Langley Research Center acquired a Singer Simulation Products Division
six-degree-of-freedom motion simulator. This paper describes two problems inherent
to the design of this particular motion simulator and the methods used to solve these
problems. First, since the motion simulator does not have independent drive systems
for each degree of freedom but achieves motion in all degrees of freedom by a combina-
tion of actuator extensions, the base cannot be driven with the usual inputs of position
and angular orientation of the centroid of the payload platform. This fact requires that
a transformation be developed which will convert motion cues into actuator extensions,
This transformation will be discussed first in this paper.

For the purpose of evaluating the performance of the simulator hardware, an inverse
" transformation is desirable. The actual position and angular orientation of the centroid of
the payload platform would be obtained from the transformation of the actual magnitudes
of the actuators. A comparison of desired position and orientation of the centroid with
actual position and orientation would then yield the error in the base drive and provide a
method of determining dynamic servo performance. This inverse transformation is also



required for optimal washout filter design; therefore, the development of a method of
computing this inverse transformation that will operate in a real-time environment is

presented.
SYMBOLS

Values are given in both SI and U.S. Customary Units, The measurements and
calculations were made in U.S. Customary Units.

Ki vector in fixed coordinate system from origin of moving coordinate system

to upper attachment point of actuator i

known vector in moving coordinate system from origin of moving coor-
dinate system to upper attachment point of actuator i

>

i,m

a elements of Ki,m

1,my-2,mp+%,mg

B; known vector in fixed coordinate system from origin of fixed coordinate
system to lower attachment point of actuator i

bil’biz ’bi3 elements of Ei

E; extension of actuator i

() vector function

H height above lower bearing plane

Ly sim Km compo‘nrér;t;ofr uhif vectors defined in hoving coordinété system

1505k, components of unit vectors defined in fixed coordinate system

Ei vector in fixed coordinate system from lower attachment point to upper
attachment point of actuator i

8 0ol ol g components of {;

I!—li Ia act‘ual magnitude of actuator i obtained from instrumentation

[



lﬁi I neut

(4]

=1

w’g,(b

Subscripts:

max

n+l

neut

magnitude of actuator i when payload platform is in its neutral position

null vector

vector in fixed coordinate system from origin of fixed coordinate system
to origin of moving coordinate system

vector in fixed coordinate system from origin of fixed coordinate system
to upper attachment point of actuator i )

Euler angle of transformation matrix

elements of T matrix

elements of R which determine the inertial position of payload platform
unknown parameter vector which is vector root of ()

inertial angular orientation of payload platform

moving coordinate system
maximum
minimum
past value
new value

neutral

_ Superscript:

T

transpose

A bar over a symbol denotes a vector.



MOTION BASE DESCRIPTION

The motion base (fig, 1) consists of a payload platform upon which a cockpit and
visual display will be mounted. The payload platform is driven by six hydraulically
powered position servomechanisms forming a synergistic six-degree-of-freedom motion

-system. As shown in figure 2, the points where the actuators connect to the payload plat-
form form an equilateral triangle approximately 3.66 m (144 in.) on a side. The actua-
tors have a minimum length of 2.62 m (103 in.) and a maximum length of 4.14 m (163 in.)
giving a fully settled height of the platform of approximately 2.05 m (81 in,) and a fully
raised height of 3.99 m (157 in.) measured from the floor. The system design allows
for a 6804 kg (15 000 1b) payload and provides the limits of performance shown in table I
from the neutral position.

ACTUATOR EXTENSION TRANSFORMATION

Because of the design concept of the hardware, activation of all six hydraulic actu-
ators is generally required for motion in each degree of freedom. Thus, the simulator
must be driven with actuator extensions, but since aircraft simulations provide position
and angular orientation of the centroid of the payload platform, a transformation to actu-
ator extensions is necessary.

Two coordinate systems are defined as shown in figure 3; one has its origin at the
centroid of the lower fixed platform of the simulator and the other, at the centroid of the
moving payload platform. The coordinate systems are both right-hand systems and their
axes are alined when the payload platform is at its neutral position., When one actuator
at a time is considered, figure 4 defines the vector relationships between the origins of
each coordinate system and the actuator attachment point of each platform. Figure 5
shows these relationships for a general orientation of the motion simulator. These rela-
tionships yield the vector equations

I_‘l = Al +R
- - (1)
ri = Bj + 4
which after subtraction become _
=K +R - B ~ 2)

This equation is defined with respect to the fixed reference frame. Since the known vec-
tors Ki,m are defined with respect to the moving frame, one muit apply an Euler angle
transformation in order to determine the corresponding vectors A; in the fixed refer-
ence frame, By using a ¥ ,8,¢ order of rotation, the transformation is




where
Ty3 Tiz Tig
[T] =|Tg1 Tag Ta3
T3y T3z T3z
and
T11 = cos ¥ cos 0 T12 = sin { cos @ Ti3 = -sin @
Tgq = cOS Y sin 6 sin ¢ Tg9o = sin ¢ sin 6 sin ¢ Tgg = cos 6 sin ¢
- sin Y cos ¢ + €c0S Y cos ¢
Tgy = cos ¥ sin 6 cos ¢ Tgg9 = sin Y sin 6 cos ¢ Tgg = cos 0 cos ¢
+ 5in Y sin ¢ - cos ¥ sin ¢

Applying this transformation to the Ki,m vectors yields
—_— T__
A =[T) A m
Substituting this relation into equation (2) yields
- T_. — —
g =[1] Ajm+R-B (3)

which can now be solved since A; ,, and B; are known constant vectors, and R and
2

[T]T are calculated from the given values of x, y, z, ¢, 6,and ¢. The length of
each actuator is then

- 2 2 2
[ 7 ] = \/ﬂi’x TR



and the actuator extensions E; are defined by

Ei=liil _l’ailneut

where l@ l is the known neutral position value of actuator i,
Lineut
INVERSE TRANSFORMATION

The actuator extension transformation permits the driving of the motion simulator
with position and angular orientation inputs, but a means for determining the simulator's
response to these signals and its positioning accuracy was unavailable, " A solution would
be to take the actual actuator extensions, available from potentiometers mounted on each
actuator, and transform them into the position and angular orientation of the centroid of
the payload platform. Actual error, phase lag, and so forth, could then be determined
from comparisons of the commanded and actual position and orientation. This transfor-
mation is simply the inverse of the actuator extension transformation. This inverse
could be obtained if the vectors Ei were available, but the potentiometer reading yields
only the magnitude of the corresponding actuator lii la and not the required vector,
With only this information available, the problem becomes that of solving six simulta-
neous nonlinear equations for six unknowns (x, y, z, ¥, 6,and ¢).

The approach was to apply an iterative numerical method known as the Newton-

Raphson method. (See ref. 1 (pp. 447-453) and ref. 2 (pp. 19-26).) For a vector-matrix
equation, this method is a general method of computing the vector root @ of

equation (4)
i(@)=0 4)

The iteration formula has the form

n+ @ f-(an) (5)

=Ty -
n —
1 8ty

In order to apply this method to the problem, a function satisfying equation (4) must first
be defined. Since the actual magnitudes of the actuators are known, a function f;(a) can

be defined as

(@) =4 & - | &, (6)




where

R|
i

r‘H(a)~
£y(a@)

()

and [Ei ‘a is the actual magnitude of actuator i obtained from instrumentation. Sub-
stitution of equation (3) into equation (6) and performing the vector multiplication yields
equation (7). Note that each vector multiplication results in a scalar and permits the
grouping of terms as follows:

T — —— — -
fi(E) = ([TJTKi,m + ﬁ - -§1> ([T]TAi’m +R - Bi) —l Qi lz
- X:m[T:][T]TXi,m + K?:m[__'r:]ﬁ - sz[ﬂﬁi + f{-T[:T]TKi’m

+RR-R'B -5 [:T] Ajm+Bj B -B;R - l;zl

_ X;I:mAi,m . ZﬁT[T]TKi’m - 25, [1) Ky py - 2R

T . _T_ 2
+R R+B; B -4, (7)



By expanding in terms of elements, equation (7) becomes

2

-2
i,mg 2 2 2'“—1!

+b-121+bi2 +b123+x +y° +2 a

fi(a) = a2 + a2 +a ;

i’ml i,m2
+ 2(X i bi1)(ai,m1T11 * aistTZI ' ai’m3T31>

- 2/xb; +yb, + zb; 8
iy y i 13> 8

Taking the partial derivatives of fi('&) with respect to the elements of @ yields

of, (@)

—=2 (X +25 m T11 %8 m,Ta1 + 2 m T31 - b11> (92)
afia(yi) = 2<y + ai,mlTIZ + ai,szzz + ai,m3T32 - b12> (9b)
?f_ia(zi\z = 2(z + ai,m1T13 + ai,m2T23 + ai,m3T33 - b13> (9¢)
af;i/_) = -2(x - bil)(ai’mlle + ai’szzz + ai’m3T32>

+ Z(y - biz)(ai,mlTll + ai,szZI + ai’m3T31> (9d)




ofy( @)

= 2<x - bil><'ai,m1- sin 6 cos ¥ + ai,mz sin ¢ cos 6 cos ¥

a6
+2 1 €OS ¢ cos 0 cos 1}/) + Z(y - by )('ai,ml sin @ sin Y
+ ai,mz sin ¢ cos 6 sin ¥ + ai’m3 cos ¢ cos 6 sin z,b)
-2<z - bi3><ai,m1 cos 6 + ai,mz sin ¢ sin 6 + ai,m3 cos ¢ sin 9) (9e)
(@)

o¢ = Z(X - bil><ai,m2T31 - ai,m3T21>

+ 2<Y - biz)(ai,m2T32 - ai,m3T22>

. of
+ 2<z - b13><ai’m2T33 - ai’m3T23) (91)

The solution to the problem is now complete, since for a given set of initial conditions of
@ and corresponding solutions to equations (8) and (9), equation (5) can be solved. The
final form of the solution is

- e o - -
x T i e s T B T T P
ox ay oz oy 80 8¢ 1
; . e R ;
ox ay ' 2
z Z . f
. . . . . 3
= - (10)
1% v . £y
6 ) f5
L Jn+1l L 4n L % In L0y




where [ ]n is defined as a function of past value of @, ay; [ ]n+1 is defined as the
new value of @, Em—l; and f; implies fi(E). With an appropriate set of initial con-

ditions, equation (10) is repeated until some predetermined convergence criterion (desired

accuracy) is met.

The fact that the inverse transformation must operate efficiently in a real-time
environment places additional constraints on the solution of the inverse problem. Besides
assisting in the validation of hardware performance, the inverse transformation is to be
used in the feedback loop for optimal washout techniques. Figure 6 illustrates the major
parts of a real-time motion simulation by using a washout technique requiring feedback.
As shown in the figure, the motion simulation requires the addition of all the starred
blocks to a normal fixed-base simulation. These additions will increase the computational
time required per integration step for all motion simulations, The inverse transforma-
tion, being an iterative method, requires a variable amount of computational time based
on the number of Newton-Raphson iterations; therefore, the minimum number of iterations
required to give the desired accuracy had to be determined.

RESULTS

Actuator Extension Transformation

The actuator extension transformation was shown to be valid by the use of several
independent checks.

Inverse Transformation

To operate efficiently in a real-time digital environment, the inverse transformation
must yield the desired accuracy in the minimum amount of computational time possible.
Since most of the real-time digital simulation programs at the Langley Research Center
utilize an integration step size of 1/32 second, the inputs to the inverse transformation
\Ei la will be changing every 1/32 second. Based on the maximum servo drive rates of
the motion base and the sampling rate of the actuator magnitudes, the minimum number
of Newton-Raphson iterations per sample required to give the desired accuracy had to be
determined. The desired accuracy was defined to be anything within the position specifi-
cations of the servo drives of the motion base.

The data necessary to determine the minimum number of Newton-Raphson itera-
tions acceptable were obtained in the following manner: The actuator extension transfor-
mation was initialized at a particular starting point and an input to one degree of freedom
was swept through the allowable range of that degree of freedom with the maximum allow-
able rate (determined from the maximum servo drive rates). The resulting actuator
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extensions were used to drive the inverse transformation; thus, a motion base with perfect
response was simulated. Any differences that existed between the inputs to the actuator
extension transformation and the outputs of the inverse transformation would then be
attributable to the number of Newton-Raphson iterations,

Although many different starting points were tried, no attempt was made to conduct
a Monte Carlo simulation of the infinite number of starting points available. The results
to be presented represent the worst case encountered.

Table II presents the maximum error obtained in any degree of freedom by using
one, two, and three iterations for an input in each individual degree of freedom. For
example, with only the x-input changing (at its maximum allowable rate), the maximum
error that occurred during the sweep of the x-range was in z, 6.667 X 109 m
(2.624 x 10-3 in.) for one iteration. The results demonstrate that with one iteration
the maximum errors obtained, 9.287 X 10~ m (3.655 X 10-3 in,) in translation and
2.719 X 10-° rad (1.558 x 10-3 deg) in rotation, are within the specifications of the servo
drives, 3.074 x 10-3 m (0.121 in.) in translation and 8.726 x 10-4 rad (0.05°) in rotation.

Table IIT shows the maximum error obtained in each degree of freedom, by using one
iteration, for maximum rate inputs in individual degrees of freedom. Maximum errors
for one-half and one-fourth maximum rates are also shown along with maximum error
obtained from maximum rate in all six degrees of freedom simultaneously.

It is interesting to note that the maximum error in the translational degrees of
freedom, regardless of the input, always occurs in z, From a comparison of these runs,
it can be determined that the error is directly proportional to rate of drive and that even
the error incurred from the physically unobtainable case of maximum rate in all degrees
of freedom simultaneously is still within the required servo drive specifications,

It should be noted that the addition of the inverse transformation with one Newton-
Raphson iteration to a real-time digital simulation program will increase the total com-
putational time per integration step by 0.0018 second and the total memory by 1264 octal
core locations,

CONCLUDING REMARKS

A transformation which provides actuator extensions for a six-degree-of-freedom
motion base at the J.angley Research Center from the motion cues of a real-time digital
" aircraft simulation has been developed and implemented.

An inverse transformation which provides position and angular orientation of the
centroid of the payload platform from the measured magnitude of the actuator extensions

11



has been developed by using a Newton-Raphson technique. The transformation has been
shown to yield the required accuracy with one Newton-Raphson iteration for successful
operation in a real-time environment, with only a slight increase in memory and com-
putational time.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., October 19, 1972,
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TABLE I.- PERFORMANCE LIMITS

Degree Performance limits
of -
freedom Position Velocity Acceleration
Longitudinal (x) | Forward 1.245m | :0.610 m/sec +0.6g
Aft 1.219 m
Lateral (y) Left 1.219 m | +0.610 m/sec +0.6g
Right 1.219 m
Vertical (z) Up 0.991m | +0.610 m/sec +0.8¢g
Down 7162 m
Yaw (y) +0.559 rad 40,262 rad/sec +0.873 rad/sec?
Pitch () 40,524 rad +0.262 rad/sec | 10.873 rad/sec?
-.349 rad
Roll (¢) +0.384 rad +0.262 rad/sec | +0.873 rad/sec?

TABLE II.- MAXIMUM ERROR OBTAINED FROM NEWTON -RAPHSON'S ALGORITHM

Degree of
freedom
of input

Maximum error after —

1st iteration

(*)

2d iteration

*)

3d iteration

(*)

X

(z) 6.667 X 10-5 m

(z) 8.160 x 10-10

(z) 2.925 x10-14

y

(z) 6.667x10-5m

(z) 8.160 X 10-10 1y

(z) 2.415x10-14

(z) 9.287 %X 105 m

(z) 3.183 % 10-10 1

(z) 4.621x10714 m

(¥) 1.926 x 1079 rad

() 1.109 x 10710 154

() 9.920 x 10-15 raq

(6) 2.119 X 10-5 rag

(6) 8.980 x 10-11 raq

(6) 1.984 x 1015 rag

(¢) 2.719 X 1075 rad

(¢) 9.245 x 10710 rag

(6) 1.745 x 10-17 raq

x| 6 || €

error occurred.

Quantity in parentheses denotes the degree of freedom in which maximum
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\
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f l Lower bearing plane
o I Y41 " Floor plane

f

Figure 2.- Motion system in neutral, settled, and raised positions. Actuator dimensions:
Minimum length, 2.62 m; maximum length, 4.14 m.
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Figure 3.- Coordinate systems.
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payload platform

Centroid
fixed
platform

i Attachment point
; k fixed platform

Figure 4.- Vector relationships for actuator i.
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Figure 5.- Particular orientation of motion simulator.
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