The invention disclosed in this document resulted from research in aeronautical and space activities performed under programs of the National Aeronautics and Space Administration. The invention is owned by NASA and is, therefore, available for licensing in accordance with the NASA Patent Licensing Regulation (14 Code of Federal Regulations 1245.2).

To encourage commercial utilization of NASA-owned inventions, it is NASA policy to grant licenses to commercial concerns. Although NASA encourages nonexclusive licensing to promote competition and achieve the widest possible utilization, NASA will consider the granting of a limited exclusive license, pursuant to the NASA Patent Licensing Regulations, when such a license will provide the necessary incentive to the licensee to achieve early practical application of the invention.

Address inquiries and all applications for license for this invention to NASA Patent Counsel, Langley Research Center, Mail Code 456, Langley Station, Hampton, Virginia, 23365. Approved NASA forms for application for nonexclusive or exclusive license are available from the above address.
AIR REMOVAL DEVICE

This invention concerns a device suitable for removing air from water under both zero and one 'g' gravity conditions. The device is comprised of a pair of spaced membranes 20 and 22, one being hydrophilic and the other hydrophobic. The air-water mixture is introduced via tube 36 therebetween and a pressure differential created to cause outward flow. The selective action of the membranes causes the air to pass out through 42 and the water passes through the tube 44.

The chief novelty appears to lie in the provision of the pair of spaced hydrophilic and hydrophobic membranes together with means to produce an outward pressure differential so that the air-water mixture is separated.

Inventors: Franklin W. Booth
            Robert A. Bruce

Employer:  Langley Research Center
            NASA

Initial Evaluator: Hubert K. Clark

Dynamic Vehicles Section

Prepared by: John R. Benefiel

Serial No. 810,576
Filed: March 26, 1969
APPLICATION FOR LETTERS PATENT

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN THAT Franklin W. Booth and Robert A. Bruce

are citizens of the United States of America, employees of the United States Government

and residents of Hampton, Virginia and Newport News, Virginia, respectively

have invented certain new and useful improvements in

AIR REMOVAL DEVICE

of which the following is a specification:
ABSTRACT OF THE DISCLOSURE

This disclosure concerns a device suitable for removing air from water under both zero and one "g" gravity conditions. The device is comprised of a pair of spaced membranes, one being hydrophobic and the other being hydrophilic. The air-water mixture is introduced into the space therebetween, and the selective action of the membranes yields removal of the air from the water.

ORIGIN OF THE INVENTION

The invention described herein was made by employees of the United States Government and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.

SPECIFICATION

Life support and other systems incorporated into manned spacecraft have many points within which water is formed, each such point creating the possibility of mechanical infiltration or dissolving of air in the water system. The frequent changes in water stream pressure and/or temperature may result in dissolved air being released, and a significant quantity of air bubbles may collect in the system. This air may produce a deterioration in performance in some subsystems, such as electrolysis units, wherein it may displace the electrolyte, or in holding tanks where collection of air would cut down on the usable volume of the tanks.

This air must be bled back to the cabin atmosphere under zero gravity conditions, and for ground testing purposes, any air bleeding device used must operate under zero gravity conditions.
Therefore, it is an object of the present invention to provide an air separating device which will remove dissolved or entrained air from a water stream under zero or one "g" gravity conditions.

This object is attained by the use of a pair of porous membranes, one water-wettable or hydrophilic and the other nonwettable or hydrophobic. Introducing the air-water mixture under pressure between these membranes produces a separation due to the selective passage of air and water through the membranes.

The specific embodiment disclosed to illustrate the invention may be better understood by reference to the drawings wherein FIG. 1 is a plan view of the air separation device and FIG. 2 is a view of the section taken along the line 2-2 in FIG. 1.

Referring to FIG. 2, the device is indicated as 10 and includes a housing made up of a pair of plates 12 and 14 fastened together by screws 16 and sealed about their periphery by an appropriate sealing compound. A cavity 18 is formed between these plates 12 and 14 by cut out portions in the inner face of each plate.

Occupying this cavity are a pair of porous membranes 20 and 22 secured about their periphery with a spacer 23 and three sheets of woven mesh 24, 26 and 28 which serve to position the membranes and have another function to be hereinafter described. The membranes are constructed so that membrane 20 is hydrophobic while membrane 22 is constructed so as to be hydrophilic. Such membranes are widely available and well known in the prior art and may be made of a wide variety of materials with a wide variety
of surface treatments to obtain these characteristics.

These characteristics of the membranes will serve to create a selective barrier as the water will not pass through the pores of the nonwettable membrane 20 due to negative capillary forces, as long as the pressure differential motive force across the barrier is lower than the negative capillary force. For this purpose, it has been found that for a typical nonwettable material having 0.45 micron pores a pressure difference of 6 psi between inlet and exhaust air produced satisfactory selective passage of the air with no water transfer. Of course, variances in pore size and the contact angle of the material with the water would vary this value.

On the other hand, since the water is attracted to the membrane 22, the pores will be occupied by the water, and no air can pass through.

These membranes divide the cavity 18 into three chambers 30, 32 and 34.

Central chamber 34 serves to admit the air-water mixture and bring it into contact with the membranes, with the screen 26 causing the air bubbles therein to be brought into contact with the membrane 20. The air-water mixture is introduced from the source via tube 36, and enters the annular chamber 38. From thence the air passes into the central chamber 32 via openings 40 through spacer 23. The air passes through the membrane 20, and is collected by the screen 24 and passes into exhaust tube 42, while the water passes through the membrane 22, is collected by the screen 28 and passes out the tube 44.
In order to remove dissolved air from the water, a degassing device 46 may be placed upstream from the device, which may either heat the water to drive out the air and create bubbles or may reduce the pressure of the water also producing air bubbles from dissolved air coming out of solution. Thus, the device may also operate to remove both entrained and dissolved air.

In order to create flow across the membranes, a pressure differential must be set up, that is the pressure in chamber 32 must be greater than that in chambers 30 and 34, and a pump 48 upstream might be necessary depending on the application and the nature of the system incorporating the device.

In describing the specific embodiment a specific arrangement has been described for the sake of clarity but it is understood the invention may be practiced in other forms without departing from the spirit thereof.

What is claimed as new and desired to be secured by Letters Patent of the United States is: