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ABSTRACT

A guidance method for the space shuttle's transition from hypersonic entry

to subsonic cruising flight is presented. The method evolves from a numerical

trajectory optimization technique in which kinetic energy and total energy (per unit

weight) replace velocity and time in the dynamic equations. This allows the open

end-time problem to be transformed to one of fixed terminal energy. In its

ultimate form, "E-Guidance" obtains energy balance (including dynamic-pressure-

rate damping) and path length control by angle-of-attack modulation and cross-

range control by roll angle modulation. The guidance functions also form the

basis for a pilot display of instantaneous maneuver limits and destination.

Numerical results illustrate the E- Guidance concept and the optimal trajectories

on which it is based.
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THE SPACE SHUTTLE TR kNSITION

Robert F. Stengel

Charles Stark Draper Laboratory
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INTRODUCTION

The transition phase of the space shuttle's return from orbit matches the

hypersonic entry phase to the subsonic "cruise" and landing phase. Unlike the

neighboring phases, it is characterized by substantial variations in aerodynamic

coefficients and stability derivatives, the result of large angle-of-attack changes

and flight at supersonic and transonic speeds. As a consequence, transition

flight paths are not amenable to the aerodynamic simplifications and analytical

solutions which can be applied during entry and terminal-area flight. The

importance of transition flight path control is heightened not only by the require-

ment for unpowered landing approach but by the navigational uncertainties which

will prevail as the spacecraft emerges from radio-frequency "blackout." During

the latter period of atmospheric entry, inertial estimates of position and velocity

will have been degraded by the passage of time since de-orbit platform alignment,

and ground-based navigational aids will be obscured by aerothermal ionization.

Acquisition of terminal-area radio aids will reduce the navigational uncertainty,

and the vehicle may be called upon to perform ranging - and cross-ranging

maneuvers at this time.

The central problem of transition flight path control is to manage the

mechanical energy that is available following entry in such a way that the

destination is reached. Constraints on load factor and dynamic pressure (which

can be expressed as functions of kinetic energy, potential energy, and angle of

attack) must not be exceeded, and stability and controllability must be maintained.

The transition should terminate in a trim-glide flight condition, eliminating the
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need for special maneuvering to dissipate excess energy while preserving

sufficient energy for a safe landing. The time allowed for transition is open, and

the dynamical equations are independent of time.

.The significance of energy coupled with the secondary role played by time

suggests that a transformation of the variables of motion will simplify the

computation of flight paths, with a requisite simplification.of the optimization

process. Replacing velocity with kinetic energy and time with total energy allows

the altitude (potential energy) equation to be eliminated and converts the open

end-time problem to one of fixed final energy. The reduced dimension of the

trajectory problem increases the plausibility of a dynamic programming solution

for real-time applications, and engineering approximations make such an

approach feasible for space shuttle guidance.

An energy method for calculating optimal planar trajectories and a

2-dimensional dynamic programming guidance function have been presented

recently 1; in the sections which follow, this development is extended to 3-dimen-

sional flight paths. Equations for steepest-descent optimization using near-

optimal stepping of angle-of-attack and roll-angle perturbations are derived. The

transition trajectory is initially described by its end points, the starting and final

state variables. The trajectory connecting these points must minimize the rate-

of-change of dynamic pressure, implicitly limiting maximum load factor and

dynamic pressure. This dynamic pressure penalty provides damping of phugoid

oscillations through a direct feedback of kinetic-energy rate to angle of attack.

In addition to introducing kinetic- and total energy as state- and independent

variables respectively, range and cross-range are transformed to polar

coordinates centered at the destination. Numerical results illustrate a variety of

optimal trajectories, and a 3-dimensional dynamic programming guidance

function, which is the basis of the "E-Guidance Law, " is demonstrated. The

guidance function is shown to be of additional utility in providing a pilot display

of instantaneous maneuver limits ("footprint") and destination.
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DEVELOPMENT OF EQUATIONS

Transformation of Variables

The equations of motion for the 3-dimensional trajectories considered here

make use of the flat- earth approximations-- glide range, cross- range, and

altitude change during the transition maneuver are small compared to the earth's

radius, and velocity is decidedly sub-orbital. With the further assumption of an

exponential air-density profile (p(H) ), the equations for velocity magnitude (V) ,

flight path angle ( y ), altitude (H), range (R), heading angle ( i). and cross- range

(C), which are illustrated in Fig. 1, are

V -CDk e H V 2/2 - g siny (1

y = CL k e H(V/2) cos p- (g/V) cos v (2

H = V siny (3

R = Vcos y cos (4

-= CL k e- H(V/ 2 ) sin p / cos y (5

C V cos Y sin 5 (6

The control variables in these point-mass equations are roll angle ( p) and

angle of attack ( a) ; a enters through the aerodynamic coefficients for lift and

drag (CL and CD). Additional variables are the inverse scale height of air
density ( ), the gravitational constant (g), and the density ratio per unit length

(k = S p / m) , which combines reference area (S), vehicle mass (m), and

reference air density (p ).

It is convenient to transform range and cross-range into a distance from the

destination and an azimuth angle, which is referenced to the original heading

angle. Denoting final values by the subscript "f", the range- to- go and cross-

range- to- go are

Rgo = Rf-R, Cg o = Cf- C (7, 8

while the distance-to-go (Dgo) and destination azimuth angle ( T) are
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D = [R
2
+2 2 2

Dgo = [Rgo go (9

= tan-1 (C R go) = cos 1(R / D ) (10go go go go

The differential equations for the time rate-of-change of Dgo and A,

using eq. 4, 6, 7, 8, 9, 10 are

1 /2(C C +R R C2 2 l2
Dgo Cgo go go go ) ( C + Rgo

= -V cos y cos X (tan 7) sin 5 + cos 5 ) (1la

(Rgo C Cg R
g o

) / (R 2 + Cgo go go go go go

= -Vcosv(sin -tanTlcost)/D cosfl( 1 + tan 27) (12ago

The cos TI divisor and tan T1 terms lead to computational difficulties for

ml = 90 ; however, the equations can be rewritten as

D go - V cos y (sin f sin 5 + cos 11 cos 5 )go

= - V cos y cos ( 7] - ) (lib

= - V cos Y(cos sin 5 - sin 11 cos ) / Dgo

V cos v sin (11- t) Dgo (12b

As indicated by Fig. 1, the term ( T - 5 ) is the angle between the

line-of-sight to the destination and the longitudinal axis of the vehicle, i. e., the

horizontal "look angle" or azimuth-to-go (Ago). The solution for horizontal

position is seen to be independent of the actual values of 'n and 5 , relying only

on their difference for dynamic effect.

The specific kinetic energy, or kinetic energy per unit weight, is

K = V 2 / 2 g, (13

which possesses the time-derivative,

assuming zero sideslip angle
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K VV / g; (14

hence, V and V can be replaced by K and K in the system equations, yielding

the following set:

es IT 3 1/2 1/2
K = -C D ke FT(2gK ) (2gK) sin y (15

112
y = CLke-L H(gK/2) cos yP- (g/V) cos y (16

1/ 2
H = (2 gK) sin y (17

1/2
D = -(2gK) cos y cos (1 - ) (18go

-= -Cke-~ H 1(/2= -C keL (gK/2) sin p / cos y (19

1/2
1l = (2gK) cos y sin ( - ) / Dgo (20

Since these equations have no explicit dependence on time, their number can

be reduced by redefining the independent variable to be one or a combination of the

state variables. The new independent variable should be monotonic in time on a

typical trajectory to avoid singular points and multi-valued control histories.

Occurence of a phugoid oscillation (the long-period interchange of kinetic-and

potential energies) could prevent the first 3 variables from individually meeting

this requirement, while choice of one of the remaining 3 variables introduces an

artificial dependence on lateral state in the longitudinal equations. As shown

previously, 1the specific total energy, or total energy per unit weight,

E = K + H, (21

meets the requirements for a new independent variable. E must be monotonic in

gliding flight, as

E= K + H, (22a

which, from eq. 15 and 17 is

1/ = 2 gK 22b
E = _CD ke- H (2gK 3 ) (22bE = -CD ke~~~~~~~~~~~(2
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The individual terms on the right side of eq. 22 are always positive; hence,

total energy is always dissipated by aerodynamic drag. The derivatives with

respect to the new independent variable are

d( )/dE= [d( ) dt] / E -( ) ' (23

and the differential equation for either K' or H' can be eliminated in favor of

eq. 21. Eliminating the H' equation, the dynamic equations become

K' = 1 + sin y/ CD A (24

v' = (-CL cos p + cos Y / !1 ) / 2 CDK (25

Dgo = cos y cos ( - /) / CD / (26

' = C
L

sin p / 2 CD K cos y (27

1]' = - cos 'Y sin (T - ) / Dgo CD ii (28

where /J is a measure of the aerodynamic forces,

/~ = ke K = q / (W/ S) (29

with q = dynamic pressure and W = mg.

Several simplifications might be considered at this time, y has been found

to be negligible during transition maneuvers , including those with a rapid change

in a; setting the left side of eq. 25 to zero allows the transcendental solution

cos y = CL cos p (30

This approximation leads to computational difficulties in horizontal flight1

but could be of value for some applications. Replacing eq. 28 with a relation for

A'go and assuming that A'g is negligible yields a transcendental solution for

roll angle,

sin = -2 sinAgo / Dgo cos2 CL ke H (31
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which should be valid until D becomes very small, at which time the assump-go
tion can be violated by significantly different 5' and T1]' the magnitude of the

right side of eq. 31 can then exceed 1. This result suggests a roll control law which

steers to the destination while minimizing the rate-of-change of the azimuth-to-go.

A third simplification, which is adopted for the remainder of the paper, is that

the flight path angle can be assumed small during the transition, leading to

cos y . 1 and sin y _ y . This assumption is borne out by previous results

and it provides a modest reduction in the number and complexity of the partial

derivatives required for variational optimization. Equations 24 to 28 can now be

expressed as

x = f (x , , ) (32

wherex 1 =K, x 2 = x 3 = Dgo x4 = x 5 = , and

f 1 =1 + x 2 / C D= (33

f2 = [-C L cos (P + 1 f gu 1 / 2 CD x 1 (34

f = os ( x5 - x4 ) / CD .t (35

=4 CL sin / 2 CD X1 (36

- sin (x 5 - x 4 ) / x 3 CD (37

Eighteen of the 35 partial derivatives of f with respect to x, , and q>

are non-zero. Assuming that CL and CD are negligible, these partial
M M

derivatives (which will be used in the next section) are

1 = -X2 ( + 1/X1) / CD / (38
x 1

f 1 =1 / CD I. (39
x 2

f [ CLos (p - (2 + x) / ] /C 2 (40
2x D

1
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f 3 = - cos A go ( + 1 / x 1 ) / CD 1(
xl

1

f 3 = sin A go / CD 1
x 4

f 3 = -f 3

x 5

f 4
x 1

x 4

2
= CL sin / 2 CD X1

f5 = sinAgo (0+ 1/x1 ) / x 3 CDA

f5 = 1 ingo1 X 3 D

f = sin Ago/ x CD2
x 3

f5 = cos A go / x3 CD A

f 5 = _ f 55 -f5
5X. 5x

f 1 alo

(48

4

= -x C CD D0a

f 2 = [-CL cos Q + (CLCos
ce L e

/CDl /2 CD x 0 - 1 9z) C
D

= - cos Ago CD / CD2

at

4f
= L sin A- C C D D) 2 CD xl

f5 = sin A C
a go D

2
/x 3 CD 2

CL sin cp / 2 CD X
1

8
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(43

(44

(45

(46

(47

(49

f3

(50

(51

(52

f 2

(53

(54

I 
(41
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f4 = CL cos (p / 2 CD x 1

where Ag o = r- . The partial derivatives are seen to be well-behaved

except at the destination ( x 3 = 0 ) or in flight at vanishing dynamic pressure

( i = 0 ), in which case energy dissipation is negligible.

Equations and Methodology of Optimization

Optimization of the 3-dimensional dynamic equations proceeds according to

standard methods of variational calculus. The control which minimizes a cost

function consisting of integral and terminal penalties is to be found. The cost

function, augmented by the dynamic constraints (eq. 32), is

E
, ~ f T ~f

J = (x ) Q(x f-xD(xu)+ X[f(xu) - x]'1 } d E,
_f _ = __

E

Eo > Ef (56

where the end points are fixed, Q is a constant, diagonal matrix weighting the

squared-error between the achieved- and desired final state, a is a penalty

function whose integral must be minimized, X is the vector adjoint of x , and

the control vector is

u = (57

The state vector is a function of E through eq. 32, while X (E) is found from

T T
' (E) = f T (E) X (E) - x (E) (58-x - x

with

X (Ef) 2 Q (x -x (59

Having obtained a trajectory from eq. 32 with an initial control profile

u (E) , the angle-of-attack and roll-angle histories are improved on succeeding

iterations by the perturbation,

9
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T
(af + X f cr a (E)

where e and a are near-optimal step-sizes obtained by a 2-dimensional search

of J( E, a)

The cost-function search for near-optimal E and a is sequential. Choosing

the initial roll/angle-of-attack ratio, ao , to be 1 , a quadratic approximation,

J (e, aO ) is found by evaluating the costs of 3 trajectories with E = 0, E

and 2 cO . If J(E 0, a 0 )> J( 0, ao), the step-size sequence is e = 0,

E / 2, and e o The first search is completed by finding e , the a - step

which minimizes J ( E , a ) . The minimum in J ( e , a ) is then evaluated
0

by a quadratic fit in a, with a = 0, ao and 2 a ( or a = 0, ao / 2, aO,

as above), a the minimizing (p / a ratio, and ¢* are then used in eq. 60

to perturb the control profile and to compute the final trajectory of the iteration.

On succeeding iterations, Ec and ao equal the minimizing values from the

previous iteration.

Terminal distance corrections are most readily made by varying the control

early in the trajectory, yet some difficulty has been experienced in achieving this

obvious correction from the optimization equations. 1 The problem has been

overcome by imposing ramp-function weighting on E when the terminal distance

error is large. The ramp function equals 1 at Eo and 0 at Ef; therefore,

control corrections are attenuated as the terminal point is approached. This

allows large changes in terminal Dgo with little change in final V, y , and ,

which are primarily determined by the control profile in the latter portion of the

flight.

The integral penalty function ( e) contains terms which enforce control

boundaries and which introduce trajectory damping. Angle-of-attack limits

beyond which quadratic penalties occur, are academic for the present results, as

none of the optimal profiles shown here follow an a boundary. The trajectory

damping term penalizes the rate-of-change of dynamic pressure (q), which is

q' = q [( xl + 1 )fl- xl (61

10



where q p eo e-(E - x l)gxl and f1 is found from eq. 33. The penalty

function is then

'2e = c q ,c < 0, (62

which has the partial derivatives

x -l- 2cqq' {( 1/ x 
)
[( x 1+ l)fl x

1
]

x

+ [ I (f 1) + ( xl + 1)f 1 1 (63
X

*t =~ 2 cqq ( x + ) f (64
1

Equation 61 shows that :e is primarily a kinetic-energy-rate penalty which

is weighted by air density. The damping penalty establishes a direct relationship

between acceleration along the velocity vector and a , and it is independent of

both (p and the other state variables. The principle of damping the trajectory by

longitudinal motions alone is extended to the E-Guidance method, which is

presented later in this paper.

In the numerical results which follow, terminal K, y , and Dgo errors are

weighted in eq. 59, and ' go is open. The transformation from t and V to

E and K provides implicit weighting of terminal altitude error, as Ef is fixed,

and the Kf error is minimized; hence, from eq. 21, Hf error is minimized as

well. The use of polar coordinates to describe horizontal position allows the most

important navigational error to be described by one terminal variable (D )
gof

rather than two (R go f, C go ) . The final heading angle, f, must be

specified for the terminal maneuver which aligns the vehicle with the runway, and

a quadratic 4f penalty is demonstrated here. In the real-time guidance problem,

the final heading is more readily handled by re-targeting the terminal point from

the nominal aim point to a point of tangency on a heading alignment cylinder of

radius, DH . The final heading in the transition phase is then + 900 from the

azimuth ( 'H) to the nominal aim point.

11
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APPLICATION TO TRANSITION FLIGHT PATHS

The lift, drag, and mass characteristics upon which the following optimal

trajectories are based pertain to a delta-winged configuration for the space shuttle
3

orbiter. The maximum hypersonic L/D of 2. 1 occurs at a = 13. 80, while the

subsonic LtDma
x = 4.3 and occurs at c = 8. 40 . The transition phase begins in

the hypersonic regime (M = 8.26, H = 150, 000 ft, y = 0 ) and ends in a subsonic
trim glide (M = .9, H = 40, 000 ft, y = - 18 0). Initial specific total energy

(1.15 x 10 6 ft) consists primarily of kinetic energy, whereas the terminal specific

energy (5. 18 x 10 4 ft) is largely due to the terminal altitude.

The trajectories demonstrated in this section end at ranges of 200-to 402 nmi

from the starting point, and cross-range varies from 50-to 150 nmi (detailed results

for 2-dimensional,planar trajectories are presented in Ref. 1). The data are computed

using the flat-earth model presented in an earlier section and are compared briefly

with round(non- rotating)- earth trajectories for the same control profiles, which are

scheduled as functions of E. Initial condition- and mass-variation effects are

presented, as are the variations due to a constrained final heading angle.

General Characteristics of the Trajectories

Given the nominal initial conditions described above, the space shuttle

orbiter can fly to any destination within the "footprint" illustrated in Fig. 2. This

near-optimal envelope of reachable points has been determined by modulating

ac(as a function of Mach number) such that the lift-drag ratio is always maximized.

The roll angle ( (p) has been held constant until a heading angle ( 5) of 90 ° is

obtained, at which time qp is nulled. The vehicle descends to the nominal specific

energy of 5. 18 x 104 ft, corresponding to final velocities and altitudes of about

800 fps and 41, 500 ft. Peak dynamic pressures (q) on the trajectories to the

locus of terminal points indicated in the figure are large, the result of the

uncontrolled phugoid oscillations induced by the non-equilibrium initial flight

condition. These peaks can be substantially reduced by active control, at the cost

of a slight reduction in maximum horizontal path length, which is measured along

the dashed lines of Fig. 2. The round-earth model used in generating this

footprint produces longer range and lower qmax than the corresponding flat-earth

trajectories.

Fifteen optimal trajectories within this footprint have been computed; their

ground tracks are illustrated in Fig. 3, The zero-cross-range terminal point at

4 02-nmi-range is a flat-earth L/Dmax trajectory, whose round-earth counterpartmax

12



has 20-nmi-greater range. The remaining 14 cases were computed with dynamic-

pressure-rate damping. The preponderance of q = 187 psf in Fig. 3 indicates

that, in each case, the terminal q is the maximum value. Maximum load factor

6occurs at or near the starting point of each trajectory; hence, those cases with

shorter path length have commensurately higher maximum load.

A summary of energy distribution on the transition flight paths is offered by

the altitude-velocity (H-V) profiles of Fig. 4, which effectively plot potential energy

against kinetic energy (eq. 13 and 21). The contours of constant E and q provide a

background against which the most significant dynamic effects of terminal point

can be evaluated. Flight to short-range terminal points necessitates early

deceleration, which is obtained by increasing a . This not only leads to increased

drag but to increased lift as well, causing altitude to increase. Roll switching,

of the sort used for Apollo entry control or as recently suggested for the low L'D,

heat-constrained phase of the shuttle entry4 , could prevent the altitude increase,

although this characteristic does not constitute a guidance problem. The reduction

in dynamic pressure has a more direct effect on attitude control using aerodynamic

surfaces - the return to low q results in sluggish response to surface deflection,

introducing a possible need for continued use of the reaction control thrusters used

earlier in the entry and during orbital flight. Matching the H-V profiles with their

corresponding ground tracks in Fig. 3, the energy balance during transition is

seen to be a stronger function of path length than of the amount of path curvature,

For the 200-nmi case shown in Fig. 4, the phugoid oscillation which proceeds from

the altitude increase is well-damped by a modulation during the ensuing flight.

Increasing the path length to the terminal point forces a descent into regions of

higher dynamic pressure. For a given specific energy, the ratio of kinetic-to-

potential energy increases as terminal distance increases. This is less of an

energy effect than a minimization of the product CDA , which forms the denomina-

tor of a Dgo / a E (eq. 26) and,therefore, has an inverse effect on the final path

length. The H-V profiles coalesce into a single curve as the final point is

approached.

Details of 4 trajectories which constitute the extremes of the 9 out-of-plane

cases considered in this section are presented in Fig. 5 to 7: high-and low

terminal ranges are combined with high- and low cross-ranges. The control

angles (Fig. 5) and position variables (Fig. 6) illustrate the obvious separation of

a and (p control functions. Angle of attack is principally an energy and distance

control, while so determines the lateral state.

13



The path length trends evident in H-V can be seen again in a (Fig. 5a) and

D go (Fig. 6a). The a - profiles for long path length (R = 390 nmi, C = 50 nmi

and R = 350 nmi, C = 150 nmi) are virtually identical, as are the Dg o profiles.,

In both cases a remains close to the L/D max profile except at the end points.

Variation at the final point is required to match the specified Vf and Hf. An

initial a- "pop-up" is executed in an attempt to minimize the inevitable dynamic

pressure peak (Fig. 7a) associated with the long-distance transition. The phugoid

oscillation of the high-range, high-cross-range case is especially evident in the

q history, suggesting that further iteration during the optimization might be

fruitful; however it must be recalled that these oscillations are unavoidable in

the range-optimum case, and this case approaches the near-optimal footprint

(Fig. 3) more closely than any of the others.

The correspondence between V0 and Ago shown by Fig. 5b and 6b is clear -

an overlay of the 2 figures shows a remarkable similarity not only of general

shape but of magnitude as well (note that the polarity is opposite with the sign

conventions used here). The similarity is explained by the fact that the rate-of-

change of Ago is small; thus, by eq. (31), sin (D is proportional to sin A go. The

undulations in (p for the 200-nmi-range cases are related to similar features in the

C - profiles because the (p - Ago proportionality is weighted by CL , in turn a

function of ea.

Dynamic pressure (Fig. 7a) shows the trends predicted by the H-V profile.

The high-range, high cross- range and high-range, low cross- range profiles are

similar throughout the energy interval, the low-range, low cross-range case has

uniformly low q, and the low-range, high cross-range case begins with the low q

characteristic of early energy dissipation and switches to higher q for path

extension once the vehicle's heading change has brought Ago to a low value. The

first 2 cases show initial load factors below 1 "g" (Fig. 7b) as the spacecraft

conserves kinetic energy to establish a near-minimum CDA for long distance (see

earlier discussion) while reducing the first q peak. The remaining 2 cases have

low q, but load factor is high, a result of the high a required for distance control.

Although one might normally equate low q with low load factor, these 4 cases

indicate just the opposite. As a consequence, trajectories which minimize one

parameter do not necessarily minimize the other, and an attempt to minimize

both at once could be confounded by competing integral penalties. Round-earth

trajectories flown with the a - (p control histories used in these 4 cases have range

increases of 7 to 19 nmi and cross-range increases of 2 to 4 nmi. Dynamic

14



pressure peaks occuring during the flight (not at the final point) decrease from

0 to 42 psf.

Comparing these results with those for in-plane1 trajectories, it is found

that c , q, and load factor trends are not materially altered by path curvature;

path length is the distinguishing parameter for both in-plane and out-of-plane

motion. The principal exception to this finding is that low-range, high-cross-

range trajectories possess short-path-length parameters initially and transfer to

long-path-length parameters once the turn is established. The qualitative

relationship between E and time is the same for both 2- and 3-dimensional

equations: the logarithm of E decreases nearly linearly with time, and the

approximate slope is a function of the final path length. Flight times for the

15 trajectories vary from 434 to 692 sec.

Effects of Selected Parameter Variations

The previous results have used a single set of initial conditions, with

constant mass and open final heading angle. The effects of increased initial

velocity, positive initial y, 10% mass increase, and constrained final heading

angle are discussed in this section. In each of the above cases, a new a - p set

is computed. Initial condition perturbations also are applied with a fixed c -

set, in order to evaluate the sensitivity of an optimal solution to initial condition

errors. The reference trajectory for these runs has a final range of 350 nmi and

cross-range of 50 nmi (cross-range = 0 for the constrained heading case ).

Figure 8 presents altitude-velocity profiles for the first 3 variations.

Increases in VO and yo each tend to increase the path length of the trajectory,

resulting in an early a increase and the altitude increase which is characteristic

of distance-shortening trajectories. There is no significant change in the

(p- profile as a result of the VO increase, but (p is about 50 greater during the

altitude increase when yO = + 3 0 . The H-V profiles for both cases have returned

to the nominal profile by the time that altitude decreases to 100, 000 ft. The 10%

mass increase, which is representative of the return payload deviations that can

be expected in normal operation, is dynamically identical to a 1 0% decrease in air

density. The mass increase improves the vehicle's intrinsic ability to penetrate

the atmosphere; thus an early a-increase is necessary to preserve a near-nominal

H- V profile. The additional a is maintained to prevent an excessive q peak at

H = 125, 000 ft , causing this case to fall behind in reducing Dgo. Consequently,

15



a must be reduced to improve L/D, causing the average q to increase and the

H- V profile to drop below the nominal.

Specifying a non-zero final heading angle while constraining the end point to

the initial plane of motion forces the ground track out-of-plane during the

transition. There is a small reduction in early a as (p increases to provide the

cross-range shown in Fig. 9. The roll reversal simultaneously brings cross-

range back to a small value (there is a 1 nmi overshoot) and provides a 300 final

heading angle.

If the initial conditions are varied without changing the control profiles there

are appreciable variations in terminal position, maximum q, and maximum load

factor, while the variations in V y, f, f and Hf are negligible. Typical

variations in the latter are about 1 fps, .10 , .3° , and 10 ft for the initial

condition variations shown in Table Iwhich compares the effects on round-earth

trajectories. The excellent convergence of the terminal altitude and velocity

vector is the result of scheduling ac and eD as a function of E (and, therefore. H

and V ). Terminal position is not fed back by E-scheduling; therefore, its

dispersion is significant (see Table I). Load factor and q peaks occur at the

extremes of the trajectories. Altitude variation is seen to have the largest effect

on these parameters.

Case ARf ACff qmax' Load Factor,

nmi nmi psf g's

Nominal (Flat-Earth) .16 .26 187 1.9

Nominal(Round-Earth) 12.9 - 1.6 177 2.

+500fps 45.6 -6.6 176 2.2

-500fps 17.3 3.3 178 1.7

+3 ° 31.3 -1.6 178 2.

-30 -5.5 -1.2 176 2.

+5000ft. 16.1 -1.7 175 1.6

-5000ft. 9.4 -1.4 182' 2.4

occurs at initial condition

Table I. Effects of initial condition variations on a transition to Range = 350 nmi,

Cross-Range = 50 nmi. Maximum dynamic pressure occurs at the final

point; maximum load factor occurs at the initial point.
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A DYNAMIC PROGRAMMING APPROACH TO TRANSITION GUIDANCE

Up to this point, discussion has centered on 3-dimensional transition

trajectories- both the means of computing them and the results obtained for a

particular vehicle and set of flight conditions. While these results define the flight

environment during transition, they leave unanswered the question of guiding the

vehicle during the actual flight, i. e., in "real- time. " Simply choosing a single

optimal set of ac(E) - (p(E) is, of course, inadequate, as the vehicle must be

guided to a terminal point which cannot be well-defined before the trajectory

occurs. Furthermore, variations in atmospheric and vehicle characteristics and

errors in deriving E from measurements of H and V could allow unacceptable

dispersions in flight parameters. For the real-time case, some form of

feedback guidance is mandatory.

There are 3 alternatives for optimal feedback guidance. The first is to

execute a numerical optimization procedure, such as the one described in this

paper, in conjunction with "fast-time integration" of the state and adjoint

differential equations. Such a scheme has been devised for launch vehicles5 and

has been suggested for entry guidance as well; this alternative was, in fact, the

motivation for the current work. To date, however, the speed of convergence for

the steepest descent/energy optimization described here, combined with the

execution speed of foreseeable flight computers, is inadequate for real-time

application to transition flight path control. The second alternative is to obtain

neighboring extremal solutions for one or more optimal paths, resulting in a

family of nominal state, control, and feedback gain histories for the linearized

feedback guidance law. Linear control laws usually use time as the independent

variable, but the present results indicate that specific energy is more

appropriate. Perturbation guidance is most attractive if acceptable results can

be achieved with a single nominal trajectory and set of feedback gains, for

computer storage requirements are proportional to the number of nominal paths

used. The examples of the previous sections suggest that 3 nominal paths would

be required to adequately cover the transition footprint. The 3 cases would be

long-distance, short-distance, and short-range/high-cross-range paths. The

third alternative, which is explored in the remainder of this section, is dynamic

programming. The principal distinction between this and the second alternative is

that dynamic programming provides a nonlinear feedback law, eliminating feedback

gains at the expense of more nominal paths.
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A family of optimal transition trajectories constitutes an autonomous field

of extremals which can be used for nonlinear feedback control. The theory of

dynamic programming 
6
shows that a unique optimal control vector associated

with each point in the extremal field can be defined. Hence, a' and (p can

be precomputed as optimal functions of these variables and stored within the

flight computer. The present results suggest that two 3-parameter functions,

in which the guidance commands ( a 
G

and pG ) are functions of Dgo , Ag
o

,

and E only, are sufficient.

E - Guidance for Gliding Flight

A three-dimensional guidance scheme which uses nonlinear functions of

D go , A go , and E to find ao G and P G is described,and closed-loop guidance

results are presented in this section. As shown by Fig. 10, the nonlinear guidance

functions are supplemented by dynamic-pressure-rate damping, in which a is

modulated to minimize phugoid oscillations. The diagram shows that q' feedback

brings in the state variables which are missing in the guidance functions (K and

y ); in practice, q' also could be derived from measurement of V.

The oa G and S° G functions used for E (for "Energy" ) - Guidance are

sketched in Fig. 11, with the Ag o effects on aG and the Dgo effects on (pG

sketched as leaves of a multi-leaved guidance surface. In concept, oC G and

(p follow the hypersurfaces defined by
G

C G Q=G(Dgo Ago E) (65

p G= 'PG(Dgo, Ago E ), (66

although q' damping allows small variations as required. The same functions

can be used to predict the terminal point which will result from the currently

measured values of oa and p , using the revised form

Dgo p D (, (p, E) (67

Ago = A (a, , E) (68

The prediction assumes that an optimal c - (p profile is flown from the

current point, and it neglects the effect of q' damping.
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In the numerical results which follow, the guidance functions have been

derived from the 15 optimal trajectories described earlier, with Dgo and Ago

determined from the actual terminal points obtained in round-earth computations;

thus, the guidance functions terminate at the nominal specific energy with zero

D and near-zero A . The guidance variables are constrained to the
go go

maximum and minimum tabulated values, which (for these cases) converge to

functions of E alone as the end point is approached. Consequently, there are

neither violent terminal maneuvers nor precise homing with the guidance functions

used here. The most frequent result of these control constraints is that lateral

position error is not completely nulled or that the terminal point is reached with

surplus specific energy.

Table II lists the significant parameters of 7 round-earth trajectories to a

range of 300 nmi and cross-range of 50 nmi using E-Guidance without trajectory

damping. The first case has nominal initial conditions, while the remaining 6 cases

have the initial condition perturbations used in Table I. In a departure from earlier
convention, the terminal point is defined as the tabulated point of closest approach

to the destination. As before, the maximum q and load factor occur at the end

points.

g o f, AEf Vf qmax Load Factor,

Case nmi ft fps psf g's

Nominal .84 701 850 168 2. 1

+500 fps .02 1290 858 169 2.4

- 500fps .04 1593 855 165 1.5

+30 .05 1241 846 162 2. 1

-3 ° .10 539 850 170 2. 1

+5000ft .03 931 858 171 1.7

-5000ft .07 1231 860 182 2.6

Table II. Flight parameters for trajectories to 300-nmi range and

50-nmi cross-range using E-Guidance without trajectory damping.

Adding trajectory damping has little effect on the above-tabulated parameters,

but it does smooth the flight path and dynamic pressure profiles. Figure 12

presents a comparison of E- Guidance flight paths with- and without dynamic-

pressure- rate damping. The initial flight path angle is +3 ° , a condition which
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provides substantial excitation of the phugoid mode. Dynamic-pressure rate is
5

fed back to a with a constant gain of . 04 until E = 10 ft; at this point, the gain

is decreased to allow the dynamic pressure to build up to meet the terminal flight

condition.

The most significant control change brought about by trajectory damping is

the a pop-up at the beginning of transition. The initial a is sharply reduced to

prevent phugoid excitation; once the peak altitude is reached, a closely follows

the undamped profile. It can be concluded from this and previous results that

the early maneuver, and not the continuing control, is more important in pre-

venting large phugoid oscillations. Some oscillation does remain in the damped

case, suggesting that higher feedback gain could be employed. The amount of

damping demonstrated here reduces the maximum peak-to-peak load factor

variation from 1. 6 g to .4 g. Ranging control for the damped case is better than

that of the undamped example, with a minimum tabulated D of .04 nmi andgo
excess specific energy of 918 ft.

E-Guidance is relatively insensitive to vehicle mass or air density variation.

A 10 % increase in vehicle mass decreases the maximum load factor accordingly

and has negligible effect on maximum q . Terminal accuracy is adversely

affected by the (p constraints of the guidance functions used here: the maximum

final Dgo for the 7 initial conditions considered previously is 1 nmi, although the

average for the remaining 6 cases is .27 nmi.
The above results pertain to a low cross-range case; E- Guidance performs

in much the same way when the terminal point is extended to the edge of the

footprint (150-nmi cross-range at 300-nmi range). Table III indicates that

D fEf Vf, qmax Load Factor

Case nmi ft fps psf g's

Nominal .04 1346 852 176 1.5

+500 fps .01 2169 850 174 2. 1

-500 fps 69.02 - 822 251 1. 3

+3 .25 1700 849 191 1. 4

-30 .17 907 854 270 2. 1

+5000 ft .13 785 849 182 1.5

-5000ft .06 1370 852 191 1. 6

Table III. Flight parameters for trajectories to 300-nmi range and 150-nmi

cross-range using E-Guidance without trajectory damping.
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terminal convergence is retained in all cases which have sufficient energy to reach

the destination. The 11 % reduction in specific energy which results from an

initial velocity perturbation of -500 fps prevents this case from meeting its

objective.

S(* Azimuth Control and <V* Distance Control

Two modifications to E-Guidance can be considered for the transition phase.

The first makes use of the equilibrium relationship between (p and Ago which

exists when A ' is negligible; it is called "p'' azimuth control. The secondgo
evolves from the observation that the optimal ca depends largely on path length

rather than path curvature; it is called ca* distance control.

The roll angle p* is defined by eq. (31) as

s* in 2 s inA g / DgocOS2 CL ke-H) (65

Computing p* for the 4 extreme optimal trajectories presented in an earlier

section, it is found that there is a close similarity between the optimal roll

guidance command and (p* . In general, the optimal (p is larger than p* , as the

best control policy is to null Ago as the destination is approached rather than to

maintain a constant Ag o . Nevertheless, eq. (65) presents an explicit relationship

between the state variables and the lateral control variable which need not be

generated by numerical optimization; hence, it provides an attractive alternative

to the optimal policy.

¢p* azimuth control is compared with the dynamic programming guidance

function (p G(Dgo , Ago , E) for high- and low cross-range in Fig. 13. Azimuth-

to-go is kept very nearly constant by (p* control (Fig. 13b), whereas the optimal

Ago tends to zero. In the low cross-range case, however, the minimum miss

distance is .84 nmi; as the vehicle flies past its destination, Ago diverges. Final

D for the corresponding e case is .03 nmi. Ground tracks for the high
go

cross-range case, shown in Fig. 13a, show that optimality is important as the

footprint boundary is approached. The optimal case reaches the destination with

.04 nmi-error and a specific energy excess of 1346 ft, but the (p* trajectory is

9. 3 nmi from its goal when the final specific energy is reached. The roll angle

profiles which provide these results are shown in Fig. 13c. Roll angle is limited

to +45 , and each S* history reaches the limit. The limits on the optimal
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guidance function, ,PG, are more severe as the end point is approached; hence,

final lateral error is left uncorrected. For the low cross-range case, this causes

large error in the optimal result, while the (p-: function goes to its limit to null

the error. The early (p';: profile is inadequate in the high cross-range test,

letting the lateral error build up to an uncorrectable level. This result suggests

that ep* control be revised to explicitly null the Ago which exists at the

gobeginning of the trajectory. Allowing Ago to be non-zero, the relationship for

(p: ' becomes

TP -sin-1 2 sin Ago + CD KA (66
CL 2 H D go

L go jDgoC Cos ke(

The optimal results indicate that a Ago / a tn E is approximately constant

during the transition; hence, choosing A ' to be
go

Ago Ago / E(ln E0 - In Ef ) (67

leads to an A profile similar to the optimal high cross-range case shown ingo
Fig. 13b.

Simplification of the a guidance function proceeds from the fact that the

rate-of-change of path length with respect to specific energy is independent of

A ; therefore, the energy balance and ranging control obtained for planar motion
go

are applicable to the 3-dimensional case. Since the time-rate-of-change of path

length-to-go (PLgo ) is just -V, eq. lib becomes

D g = PL cos cos Ago (68go go go

which, for small y , can be rewritten as

dPL = d D / cos A (69go go go

Equation 70 can be integrated by taking note of the fact that

S f(y) d x = S f(y) d y I (d y / d x ) (70
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or

d Dgo / cos Ag
o

= d Ag
o

/ [cos Ago (dAgo /dD go)]

-= dAgo / [CD (d Ago/dE)]

= d E/ CD (71

Taken between the appropriate specific energy limits, this is the integral

form of eq. 35 when Ago = 0. This result justifies the use of PLgo as an input

parameter for longitudinal control, but it does not solve the problem of deter-

mining PLgo in real-time; using eq. 71 to find PLgo requires integration of the

remaining state equations to determine CD and p as functions of E. Fortu-

nately, the constant-Ago assumption allows the horizontal flight path to be

described by a simple spiral. Equation 69 is then readily integrated to yield

PLgo = Dgo / cos Ago (72

This relationship is exact for the original *p" assumption. Figure 13a

illustrates that the path length of the constant-Ago trajectory is greater than the

optimal path length; hence, eq. 72 provides a conservative (long) path length

estimate for guidance. ce* distance control is then defined by the 2-parameter

guidance function

a' = ae* (PLgo, E) (73

In summary, E-Guidance evolves from numerical trajectory optimization

through real-time dynamic programming of the 2 control variables to (p, a*

control with q' damping. In the final, simplified form, energy balance and path

length control are obtained by ce modulation, which is based on a nonlinear

guidance surface and linear feedback of the dynamic-pressure rate. The dynamic

programming guidance surface can be obtained by numerical optimization of the

planar case, as only path length and specific energy determine the angle of attack.

Roll control of cross-range derives from an analytical function (eq. 66 and 67)

which combines E, ca(through CL and CD) , and all of the state variables.
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CONCLUSION

Computation of optimal gliding trajectories for the space shuttle transition is

facilitated by making several transformations to the original, 3-dimensional set

of dynamical equations. Introduction of total energy, kinetic energy, and polar

position coordinates leads to a simpler description of the spacecraft's motion.

This aids the optimization process and establishes a natural set of components for

the guidance solution. The change of variables provides a fixed end-point for the

transition trajectory without restricting the final time and leads to a proportional

guidance law ( p* control) for the lateral state. As presented, the equations also

are applicable to terminal area maneuvering and landing approach, and the

equations could be extended to hypersonic entry with little difficulty.

Numerical results indicate that a wide range of a profiles is required to fly

to representative points within the transition footprint. If there is any concern for

meeting flight path constraints without restricting ranging capability, the concept

of a single a-profile for transition must be rejected. Similarly, the notion of a

discrete transition from the back-side of the L/D curve (i. e., from an a greater

than that required for maximum L/D) to the front-side to minimize flight loads or

to preserve ranging control is falacious. If dynamic pressure and load factor

peaks are to be minimized, C L must be kept as large as possible; therefore, c!

should be reduced to cruising flight values just prior to initiating the terminal-area

maneuvering phase. The discrete oa-jump from one side of L/Dma
x

to the other

is also seen to be detrimental for the case of maximum-range flight; in such an

instance, L/D must be maximized during the entire entry/cruise transition. As

demonstrated here, ranging control is not dependent on maintaining a quasi-linear

relationship of known magnitude and sense between L/D and a ; rather it depends

on a knowledge of specific energy, distance-to-, and direction-to the destination.

There are, however, valid reasons for performing a discrete a-jump during the

space shuttle transition. Static instability motivated a previous study of such
2jumps , and a recent study of unsteady aerodynamics suggests that leeside shock-

induced separation, sudden leading- edge stall, and vortex burst may force such a

maneuver to be reconsidered. 7

The concept of dynamic programming provides a rigorous link between the

optimal results and a practical realization for transition guidance. The "curse of

dimensionality" which haunts dynamic programming would appear to obviate such

an approach to transition guidance, for both a and Sp would be 6-parameter

functions in the 3-dimensional case; however, the demon is exorcised by the facts

that 2 states ( E and m ) always enter the problem in combination (Ago ) and 2 states

( K and y ) contribute primarily to phugoid-mode damping. The a and (p

24



guidance functions are, therefore, readily expressed as 3-state hypersurfaces;

these can be augmented by feedback of the remaining 2 states for trajectory

damping. Dynamic programming in reduced dimension thus forms the basis for

E- Guidance.

The E- Guidance formulation is further simplified by incorporating a near-

optimal guidance law for lateral motion ( p"- azimuth control) and by replacing

Dgo and Ag
o

by PLgo in the angle-of-attack guidance function ( a* distance

control). Nonlinear, explicit guidance for the space shuttle transition provides

flight paths similar to the optimal trajectories with substantially reduced compu-

tation.

A final point of some operational significance is the use of the E-Guidance

functions to predict the instantaneous destination and footprint for crew displays.

Whether the spacecraft is under manual control or is being flown automatically,

the pilot must be able to evaluate the progress of the flight and the limits of

maneuverability imposed by the current energy-state. The predictive computation

required to generate this information can easily exceed the actual guidance logic.

The E- Guidance functions can be inverted to provide this prediction from mea-

sured values of , (p, and E at little additional computational cost.
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Figure 2.
CROSS - RANGE, nmi

"Footprint" for flight at L/D (Round-Earth). Constant Rollmax
Angle held until 90 heading is reached;then roll angle 0 ° . Ground
track shown by dashed lines. Maximum dynamic pressure (qmax)
and load factor (gmax) shown as a function of terminal max

point. V
o
0 800 fps, Ho 41, 500 ft.
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Figure 3.
CROSS-RANGE, nmi

Ground tracks of 15 transition trajectories calculated
with flat- earth assumptions. Maximum load factor (g's)
and dynamic pressure (psf) shown in parentheses next
to each terminal point.
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2 4 6

VELOCITY,

Figure 4.

fps x 103

Altitude- Velocity profiles for several transition
trajectories. Short range trajectories require
early deceleration and, therefore, high .
This leads to an initial increase in altitude.
Long path-length trajectories require high kinetic
energy at a fixed level of specific energy; hence,
dynamic pressure is higher.
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a) Altitude and Dynamic Pressure Histories

.05 0.1 0.5
SPECIFIC ENERGY, ftx

1.0 1.5

b) Angle of Attack and Flight Path Angle Histories

Figure 12. The effects of dynamic-pressure-rate (q') damping on a
typical, guided trajectory. The phugoid oscillation established
by an initial y of 30 is reduced when a is modulated by a
linear feedback of q'.
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Figure 13. A comparison of optimal azimuth control and ND'' azimuth
control for high- and low cross-range trajectories. The
constant Ag of the p'" , high cross-range case increases

path length to the destination, and, therefore, the energy
required. Eo is insufficient to reach the destination in
this case. Low' cross-range convergence with constant
A control is very good.
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