a(mix)

NASA CR-120,992 LYCOMING 105.22.21

> USING (Avco

LACOWTUd

ñ

ω Hi

G3/15

Unclas 47926 H

N73-13471

61

DESIGN STUDY OF AN AIR PUMP AND INTEGRAL LIFT ENGINE ALF-504 USING THE LYCOMING 502 CORE

by

Dale Rauch

Avco Lycoming Division 550 South Main Street Stratford, Connecticut 06497

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

July 1972

CONTRACT NAS 3-15696

NASA Lewis Research Center

Cleveland, Ohio

Laurence W. Gertsma, Project Manager

REPRODUCED BY U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE SPRINGFIELD, VA. 22161

4. Tits and Subility 5. Report Date DESIGN STUDY OF AN AIR PUMP AND INTEGRAL LIFT ENGINE ALF.504 USING THE LYCOMING 502 CORE 5. Performing Organization Report No. 7. Author(s) 8. Performing Organization Report No. 10. Work Unit No. 9. Performing Organization Name and Address 10. Work Unit No. Avec. Lycoming Division 11. Contract or Grant No. Stratford, Connecticut 06497 10. Work Unit No. 12. Sponsoring Agency Name and Address 11. Contract or Grant No. NAS 3 - 15605 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Contractor Report 13. Supplementary Notes Contractor Report 9. Prepared in cooperation with Project Manager, Laurence W. Gertsma, NASA Lawis Research Center, Cleveland, Chio 18. Sponsoring Agency Code 16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycoming ings, The engine envelope including duct treatment but not localized accesery protrusion is 53.25 inches in diameter and 59,2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analysis includes fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis. 19. Security Caself. (of this report) 20. Security Cassifi. (of this pagel 21. No. of Pages 22. Price*	1. Report No. NASA CR-120, 992	2. Government Accession No.	3. Recipient's Catalog) No.
DESIGN STUDY OF AN AIR PUMP AND INTEGRAL LIFT ENGINE Surf 71.1. ALF-504 USING THE LYCOMING 502 CORE 6. Performing Organization Code 7. Authoridi 8. Performing Organization Report No. 105, 22 Dale Rauch 10. Work Unit No. 9. Performing Organization Nume and Address 11. Contract or Grant No. Avco Lycorning Division 11. Contract or Grant No. Stratford, Connecticut 06497 13. Type of Report and Period Covered 2. Somoning Agency Name and Address Contractor Report National Aeronautics and Space Administration Washington, D.C. 20546 15. Supplementary Notes Prepared in cooperation with Project Manager, Laurence W. Gertema, NASA Lewis Research Center, Cleveland, Ohio 16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycorning rings. The engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analysis includes fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis. 17. Key Words (Suggested by Author(s)) 14. Distribution Statement	4. Title and Subtitle		5. Report Date	
7. Author(s) 8. Performing Organization Report No. Dale Rauch Lycoming Report No. 105.22 9. Performing Organization Name and Address 10. Work Unit No. Avco Lycoming Division 11. Contract or Grant No. Stratford, Connecticut 06497 13. Type of Report and Period Coverec 12. Sponsoring Agency Name and Address Contractor Report National Aeronautics and Space Administration Contractor Report 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Supplementary Notes Prepared in cooperation with Project Manager, Laurence W. Gertsma, Prepared in cooperation with Project Manager, Laurence W. Gertsma, NASA Lewis Research Center, Cleveland, Chio 16. Abtract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycoming rings. The engine weight without starter is 1419 pounds including full-length duct and a sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analysis, engine noise analysis, engine performance, and weight analysis. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement High bypass ratio fan engine 20. Security Cassif. (of this page) 21. No. of Pages 22. Prict* 18. Security Cassified	DESIGN STUDY OF AN AIR PU ALF-504 USING THE LYCOMIN	MP AND INTEGRAL LIFT ENC IG 502 CORE	6. Performing Organiz	zation Code
Dale Rauch Lycoming Report No. 105.22 9. Performing Organization Name and Address 10. Work Unit No. Arco Lycoming Division 11. Contract or Grant No. Stratford, Connecticut 06497 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 11. Contract or Grant No. National Aeronautics and Space Administration NAS 3.15696 13. Type of Report and Period Course Contractor Report 14. Sponsoring Agency Name 14. Sponsoring Agency Code 15. Supplementary Nots Prepared in cooperation with Project Manager, Laurence W. Gertsma, NASA Lewis Research Center, Cleveland, Ohio 16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrus is 8370 punds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 punds including full-length duct and sound-attenuating rings. The engine envelope including duct tratement but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analysis, engine noise analysis, engine performance, and weight analysis. 11. Unclassified unlimited 17. Key Words (Suggetted by Author(s)) 18. Distribution Statement Unclassified unlimited	7. Author(s)		8. Performing Organiza	ation Report No.
9. Performing Organization Name and Address 10. Work Unit No. Aveo Lycoming Division Stratford, Connecticut 06497 11. Contract or Grant No. NAS 3-15696 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covere Contractor Report 14. Sponsoring Agency Name and Address 14. Sponsoring Agency Code 15. Supplementary Notes Prepared in cooperation with Project Manager, Laurence W. Gertsma, NASA Lewis Research Center, Cleveland, Ohio 16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Marum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The engine envelope including duct treatment but not localized accessory portusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analysis includes fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis. 17. Key Words (Suggested by Author(st)) 18. Distribution Statement Unclassified 19. Security Cassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 19. Security Classified 171 \$3.00	Dale Rauch		Lycoming Report	t No. 105.22
Aveco Lycoming Division Stratford, Connecticut 06497 11. Contract or Grant No. NAS 3-15696 12. Sponsoring Agency, Name and Address National Aeronautics and Space Administration Washington, D. C. 20546 13. Type of Report and Period Covere Contractor Report 14. Supplementary Notes Prepared in cooperation with Project Manager, Laurence W. Gertsma, NASA Lewis Research Center, Cleveland, Ohio 16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycominin 502 fan core with the final MCT power turbine. The fan is designed for a 12.5 bypass ratio and 1. 25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0. 302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozal exit fon in left flange. Detailed analysis includes fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis. 17. Key Words [Suggested by Author(9)] 18. Distribution Statement Unclassified 20. Security Cassif. (of this page) 21. No. of Pages 22. Price* 19. Security Cassif. (of this report) 20. Security Cassif. (of this page) 21. No. of Pages 22. Price*	9. Performing Organization Name and Address		10. Work Unit No.	
12. Sponsoring Agency Name and Address NAS 3-15696 12. Sponsoring Agency Name and Address Contractor Report National Aeronautics and Space Administration It. Sponsoring Agency Code 15. Supplementary Notes Prepared in cooperation with Project Manager, Laurence W. Gertsma, NASA Lewis Research Center, Cleveland, Ohio 16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycoming agency Code 16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycoming agency to the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 14!9 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 19. Specify Cassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 19. Sucurity Cassif. (of this report) 20. Security Classified 17.1 \$3.00	Avec I recoming Division		11. Contract or Grant	No.
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Contractor Report 12. Sponsoring Agency Name and Address Contractor Report Washington, D. C. 20546 14. Sponsoring Agency Code 15. Supplementary Notes Prepared in cooperation with Project Manager, Laurence W. Gertsma, NASA Lewis Research Center, Cleveland, Ohio 16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.251 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0. 302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analysis includes fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine perfortmance, and weight analysis. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement High bypass ratio fan engine 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 19. Security Classified Unclassified 17.1 \$3.00	Stratford, Connecticut 06497		NAS 3-15696	· · · · · ·
12. Scourity Cassified Contractor Report 12. Source in a space in the space in th		· ·	13. Type of Report an	nd Period Covered
14. Sponsoring Agency Code Washington, D. C. 20546 15. Supplementary Notes Prepared in cooperation with Project Manager, Laurence W. Gertsma, NASA Lewis Research Center, Cleveland, Ohio 16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attennating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analysis includes fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Unclassified 19. Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 19. Security Classified 171 \$3.00	12. Sponsoring Agency Name and Address	Administration	Contractor Re	eport
15. Supplementary Notes Prepared in cooperation with Project Manager, Laurence W. Gertsma, NASA Lewis Research Center, Cleveland, Ohio 18. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12, 5 bypass ratio and 1, 25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0. 302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized acessory protrusion is 53. 25 inches in diameter and 59. 2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analysis includes fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis. 17. Key Words (Suggested by Author(sl) 18. Distribution Statement High bypass ratio fan engine Unclassified 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 19. Security Classified 17.1 \$3.00	National Aeronautics and Space Washington, D.C. 20546	Administration	14. Sponsoring Agency	y Code
Prepared in cooperation with Project Manager, Laurence W. Gertsma, NASA Lewis Research Center, Cleveland, Ohio 16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycomin, 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analysis includes fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis. 17. Key Words (Suggested by Author(st)) 18. Distribution Statement High bypass ratio fan engine Unclassified unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 19. Security Classified 17.1 \$3.00	15. Supplementary Notes	· · · · · · · · · · · · · · · · · · ·		
16. Abstract Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycominy 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analysis includes fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement High bypass ratio fan engine Unclassified-unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 19. Security Classified Unclassified 171 \$3.00	Prepared in cooperation with Pr NASA Lewis Research Center,	roject Manager, Laurence W. (Cleveland, Ohio	Gertsma,	
17. Key Words (Suggested by Author(s)) 18. Distribution Statement High bypass ratio fan engine Unclassified-unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 171 \$3.00	and 1,25:1 pressure ratio, and static thrust is 8370 pounds with engine weight without starter is	provides supercharging for the h a specific fuel consumption of 1419 pounds including full-leng	core. Maximum sea f 0.302 lb/hr-lb. The gth duct and sound-att	a level e dry tenuating
17. Key Words (Suggested by Author(s)) 18. Distribution Statement High bypass ratio fan engine Unclassified-unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 171 \$3.00	and 1,25:1 pressure ratio, and static thrust is 8370 pounds with engine weight without starter is rings. The engine envelope inc is 53.25 inches in diameter and Detailed analysis includes fan dynamic analysis, engine noise	provides supercharging for the h a specific fuel consumption of 1419 pounds including full-leng luding duct treatment but not lo 59.2 inches long from exhaust h aerodynamics, fan and reduct analysis, engine performance,	core. Maximum sea f 0.302 lb/hr-lb. The gth duct and sound-att ocalized accessory pr nozzle exit to fan inl ion gear mechanical o and weight analysis.	a level e dry tenuating otrusion let flange. design, fan
17. Key Words (Suggested by Author(s)) 18. Distribution Statement High bypass ratio fan engine Unclassified-unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 171 \$3.00	and 1,25:1 pressure ratio, and static thrust is 8370 pounds with engine weight without starter is rings. The engine envelope inc is 53.25 inches in diameter and Detailed analysis includes fan dynamic analysis, engine noise	provides supercharging for the h a specific fuel consumption of 1419 pounds including full-leng luding duct treatment but not lo 59.2 inches long from exhaust h aerodynamics, fan and reduct analysis, engine performance,	core. Maximum sea f 0.302 lb/hr-lb. The gth duct and sound-att ocalized accessory pr nozzle exit to fan inl ion gear mechanical o and weight analysis.	a level e dry tenuating otrusion let flange. design, fan
17. Key Words (Suggested by Author(s)) 18. Distribution Statement High bypass ratio fan engine Unclassified-unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 171 \$3.00	and 1,25:1 pressure ratio, and static thrust is 8370 pounds with engine weight without starter is rings. The engine envelope inc is 53.25 inches in diameter and Detailed analysis includes fan dynamic analysis, engine noise	provides supercharging for the h a specific fuel consumption of 1419 pounds including full-leng luding duct treatment but not lo 59.2 inches long from exhaust h aerodynamics, fan and reduct analysis, engine performance,	core. Maximum sea f 0.302 lb/hr-lb. The gth duct and sound-att ocalized accessory pr nozzle exit to fan inl ion gear mechanical o and weight analysis.	a level e dry tenuating otrusion let flange. design, fan
High bypass ratio fan engine Unclassified-unlimited 19. Security Classif. (of this report) Unclassified Unclassified Unclassified 171 \$3.00	and 1.25:1 pressure ratio, and static thrust is 8370 pounds with engine weight without starter is rings. The engine envelope inc is 53.25 inches in diameter and Detailed analysis includes fan dynamic analysis, engine noise	provides supercharging for the h a specific fuel consumption of 1419 pounds including full-leng luding duct treatment but not lo 59.2 inches long from exhaust h aerodynamics, fan and reduct analysis, engine performance,	core. Maximum sea f 0.302 lb/hr-lb. The gth duct and sound-att ocalized accessory pr nozzle exit to fan inl ion gear mechanical o and weight analysis.	a level e dry tenuating otrusion let flange. design, fan
19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. Price*UnclassifiedUnclassified171\$3.00	and 1,25:1 pressure ratio, and static thrust is 8370 pounds with engine weight without starter is rings. The engine envelope inc is 53.25 inches in diameter and Detailed analysis includes fan dynamic analysis, engine noise	provides supercharging for the h a specific fuel consumption of 1419 pounds including full-leng luding duct treatment but not lo 59.2 inches long from exhaust h aerodynamics, fan and reduct analysis, engine performance, 18. Distribution S	core. Maximum sea f 0.302 lb/hr-lb. The gth duct and sound-att ocalized accessory pr nozzle exit to fan inl ion gear mechanical o and weight analysis.	a level e dry tenuating otrusion let flange. design, fan
19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. Price*UnclassifiedUnclassified171\$3.00	 and 1, 25:1 pressure ratio, and static thrust is 8370 pounds with engine weight without starter is rings. The engine envelope inc is 53.25 inches in diameter and Detailed analysis includes fan dynamic analysis, engine noise 17. Key Words (Suggested by Author(s)) High hypass ratio fan engine 	provides supercharging for the h a specific fuel consumption of 1419 pounds including full-leng luding duct treatment but not lo 59.2 inches long from exhaust h aerodynamics, fan and reduct analysis, engine performance, 18. Distribution Si Unclassifi	core. Maximum sea f 0.302 lb/hr-lb. The gth duct and sound-att bocalized accessory pr nozzle exit to fan inl ion gear mechanical of and weight analysis.	a level e dry tenuating otrusion let flange. design, fan
19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. Price*UnclassifiedUnclassified171\$3.00	 and 1, 25:1 pressure ratio, and static thrust is 8370 pounds with engine weight without starter is rings. The engine envelope inc is 53.25 inches in diameter and Detailed analysis includes fan dynamic analysis, engine noise 17. Key Words (Suggested by Author(s)) High bypass ratio fan engine 	provides supercharging for the h a specific fuel consumption of 1419 pounds including full-leng luding duct treatment but not lo 59.2 inches long from exhaust h aerodynamics, fan and reduct analysis, engine performance, [18. Distribution Since Science Sc	core. Maximum sea f 0.302 lb/hr-lb. The gth duct and sound-att boalized accessory pr nozzle exit to fan inl ion gear mechanical of and weight analysis.	a level e dry tenuating otrusion let flange. design, fan
Unclassified Unclassified 171 \$3.00	 and 1, 25:1 pressure ratio, and static thrust is 8370 pounds with engine weight without starter is rings. The engine envelope inc is 53.25 inches in diameter and Detailed analysis includes fan dynamic analysis, engine noise 17. Key Words (Suggested by Author(s)) High bypass ratio fan engine 	provides supercharging for the h a specific fuel consumption of 1419 pounds including full-leng luding duct treatment but not lo 59.2 inches long from exhaust h aerodynamics, fan and reduct analysis, engine performance, 18. Distribution S Unclassifi	core. Maximum sea f 0.302 lb/hr-lb. The gth duct and sound-att ocalized accessory pr nozzle exit to fan inl ion gear mechanical of and weight analysis.	a level e dry tenuating otrusion let flange. design, fan
	 and 1.25:1 pressure ratio, and static thrust is 8370 pounds with engine weight without starter is rings. The engine envelope inc is 53.25 inches in diameter and Detailed analysis includes fan dynamic analysis, engine noise 17. Key Words (Suggested by Author(s)) High bypass ratio fan engine 19. Security Classif. (of this report) 	provides supercharging for the h a specific fuel consumption of 1419 pounds including full-leng luding duct treatment but not lo 59.2 inches long from exhaust h aerodynamics, fan and reduct analysis, engine performance, 18. Distribution Si Unclassifi 20. Security Classif. (of this page)	core. Maximum sea f 0. 302 lb/hr-lb. The gth duct and sound-att boalized accessory pr nozzle exit to fan inl ion gear mechanical of and weight analysis. tatement ied-unlimited 21. No. of Pages	a level e dry tenuating otrusion let flange. design, fan 22. Price*

2.

PRECEDING PAGE BLANK NOT FILMED

FOREWORD

The work reported herein was conducted at Avco Lycoming Division, Stratford, Connecticut under NASA Contract No. NAS3-15696. The study was conducted under the management of the NASA Lewis Research Center with Mr. Laurence Gertsma as project manager.

Preceding page blank

PRECEDING PAGE BLANK NOT FILMED

ABSTRACT

Design studies were conducted for an integral lift fan engine (ALF-504) utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange.

Detailed analysis includes fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis.

Preceding page blank

PRECEDING PAGE BLANK NOT FILMED

.

.

TABLE OF CONTENTS	Da 22
FOREWORD	iii
ABSTRACT	v
LIST OF ILLUSTRATIONS	viii
LIST OF TABLES	xiii
SUMMARY	1
INTRODUCTION	3
PRELIMINARY STUDIES OF SUPERCHARGED AND NON- SUPERCHARGED INTEGRAL LIFT ENGINE AND AIR PUMP	4
FAN AERODYNAMIC DESIGN	7
MECHANICAL DESIGN	26
DYNAMIC ANALYSIS	42
NOISE ANALYSIS	50
ENGINE PERFORMANCE	59
POWER TURBINE ANALYSIS	90
ENGINE WEIGHT	93
SCHEDULE AND COST ESTIMATE OF INTEGRAL LIFT ENGINE	97
APPENDIXES	
 I. Aerodynamic Influence of the Part-Span Shroud II. Axisymmetric Flow Solution for the Fan III. Dynamic Analysis Methods IV. List of Symbols 	102 109 160 167
REFERENCES	171
BIBLIOGRAPHY	171
Preceding page dialik	

LIST OF ILLUSTRATIONS

Figure		Page
1	Rotor Polytropic Efficiency	10
2	Fan Meridional Flow Path	12
3	Fan Rotor Velocity Triangles	13
4	Fan Stator Flow Conditions	19
5	Basic Single Stage Performance Map for Fan Duct Section (Experimental Transonic Stage)	22
6	Estimated Performance Map for Duct Flow Fan A (21% Surge Margin at 100% N//θ)	23
7	Estimated Performance Map for Duct Flow Fan B (14% Surge Margin at 100% N//θ)	24
8	Measured Basic Single Stage Performance Map for Supercharger Fan Section (301 Fan Supercharger)	25
9	Estimated Performance Map for Fans A and B (Supercharger Section)	27
10	ALF-504 High-Bypass Fan Engine	28
11	ALF-504 Fan Engine Variable Nozzle	29
12	ALF-504 Fan Engine Installation Drawing	30
13	Fan Blade and Disc Stresses	33
14	Fan Rotor Blade Airfoil Composite, Scale Approxi- mately 2X	34
15	Midspan Shroud	35
16	Root and Groove Stresses	37

]	Figure		Page
	43	Fan Configuration B (SM = 14 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 5000 Feet on Standard Day	81
	44	Fan Configuration B (SM = 14 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 10,000 Feet on Standard Day	82
· .	45	Fan Configuration B (SM = 14 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 15,000 Feet on Standard Day	83
	46	Fan Configuration B (SM = 14 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 20,000 Feet on Standard Day	84
	47	Fan Configuration B (SM = 14 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at Sea Level on Tropical Day (90° F)	85
	48	Fan Configuration B (SM = 14 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at 5000 Feet on Tropical Day (70° F)	86
· ·	49	Fan Configuration B (SM = 14 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 10,000 Feet on Tropical Day (51° F)	87
	50	Fan Configuration B (SM = 14 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 15,000 Feet on Tropical Day (32 ⁰ F)	88
	51	Fan Configuration B (SM = 14 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at 20,000 Feet on Tropical Day (12° F)	89
	52	Estimated Fan Performance Map for Configuration A Showing Operating Lines With Two-Position Fan Ex- haust Nozzle	91

•..

Figure

53	Fan Configuration A (SM = 21 Percent at 100 Percent $N/\sqrt{\theta}$) Estimated Performance at Sea Level on Standard Day With Two-Position Fan Exhaust Nozzle	92
54	Modified MQT Power Turbine First Stage Velocity Triangles for 8.5 Percent Reduced Inlet Flow Function	94
55	Modified MQT Power Turbine Second Stage Velocity Triangles for 8.5 Percent Reduced Inlet Flow Function	95
56	ALF-504 Engine Program	98
57	Measured Flow Conditions Downstream of Rotor (Reference 1 - "Some Studies of Front Fans With and Without Snubbers")	103
58	Radial Surveys Downstream of ALF-502 Fan Rotor, Test -02	104
59	Analysis of Part-Span Shroud on Axial Velocity Pro- file Downstream of Fan Rotor	108

.

<u>Figure</u>		Page
17	Reduction Gear	38
18	Ring Gear Stresses	39
19	Reduction Gear Stress Analysis	40
20	Rotor Blade Frequency Analysis, N = 5245 RPM	44
21	Rotor Blade Vibration Interference Diagram	45
22	Rotor Blade Flutter Criteria	47
23	Fan-Power Turbine Torsion Analysis	48
24	Fan Rotor Deflection	49
25	Integral Lift Engine Noise at 200 Feet Radius and 110 Degrees	58
26	Engine Stations Used in Performance Evaluation	60
27	Fan Configuration A (SM = 21 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at Sea Level on Standard Day	65
28	Fan Configuration A (SM = 21 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at 5000 Feet on Standard Day	66
29	Fan Configuration A (SM = 21 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 10,000 Feet on Standard Day	67
30	Fan Configuration A (SM = 21 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 15,000 Feet on Standard Day	68
31	Fan Configuration A (SM = 21 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at 20,000 Feet on Standard Day	69

. . .

ï

Figure

,

.

32	Fan Configuration A (SM = 21 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at Sea Level on Tropical Day (90° F)	70
33	Fan Configuration A (SM = 21 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at 5000 Feet on Tropical Day (70° F)	71
34	Fan Configuration A (SM = 21 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 10,000 Feet on Tropical Day (51° F)	72
35	Fan Configuration A (SM = 21 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 15,000 Feet on Tropical Day (32° F)	73
36	Fan Configuration A (SM = 21 Percent, A ₁₈ = 1190 Square Inches) Estimated Performance at 20,000 Feet on Tropical Day (12° F)	74
37	Estimated Fan Performance Map for Configuration A With Fixed Fan Exhaust Nozzle (A ₁₈ = 1190 Square Inches) Showing Operating Lines	75
38	Estimated Supercharger Performance Map With Fixed Fan Exhaust Nozzle (A ₁₈ = 1190 Square Inches) Showing Operating Lines	76
39	Gas Generator Performance Map Showing Operating Line	77
40	Estimated Fan Performance Map for Configuration B With Fixed Fan Exhaust Nozzle (A ₁₈ = 1190 Square Inches) Showing Operating Lines	78
41	Fan Configurations A and B (A ₁₈ = 1190 Square Inches) Estimated Performance at Sea Level on Standard Day	79
42	Fan Configuration B (SM = 14 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at Sea Level on Standard Day	80

LIST OF TABLES

Table		Page
I	Basic Laminar-Type Profile, 10 Percent Thickness	15
Ш	Fan Rotor Blading Design Data, Conical Sections (Z = 32 Blades)	18
Ш	Fan Stator Blading Design Data, Conical Sections	18
IV	Integral Lift Engine Sideline Perceived Noise Level at 500 Feet	52
V	Integral Lift Engine Polar Perceived Noise Level at 500 Feet	52
VI	Polar Noise Field, Untreated Bypass Duct	53
VII	Sideline Noise Field, Untreated Bypass Duct	54
VIII	Attenuation of the Bypass Duct Treatment	55
IX	Polar Noise Field, Treated Bypass Duct	56
Х	Sideline Noise Field, Treated Bypass Duct	5 7
XI	Turbofan Engine Design Cycle Data	61
XII	Turbofan Engine Design Efficiency and Loss Assumptions	62
XIII	Turbofan Engine Station Cycle Data	63

SUMMARY

Preliminary studies and final design studies of an integral lift fan engine ALF-504 were conducted using in all cases the Lycoming 502 fan engine core and MQT power turbine. The fan full-speed design pressure ratio is i. 25:1 at sea level standard conditions as specified by NASA. Preliminary studies were conducted to determine the relative engine performance when supercharging with the fan alone and with the addition of two core inlet duct supercharging stages. The results of the preliminary studies show an increase in maximum sea level static thrust of 10 percent for the additional supercharged engine and an increase of approximately 10 percent in velocity leaving the power turbine. Considerations of the small thrust increase and added noise contribution of the hot exhaust jet* resulted in a decision by NASA to base the final design studies on the engine without additional supercharging. Another important decision as a result of the preliminary studies resulted in an increase of fan tip speed from 985 ft/sec to 1100 ft/sec. This tip speed increase reduced the rotor blade hub overturn (turning past axial in the relative system) from 25 degrees to 10 degrees in the final design, and gives reasonable assurance of flow stability into the core compressor. The final design studies includes detail analysis of fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis.

Aerodynamic design of the fan includes consideration of the splitter shape and location as this affects local streamline curvature and static pressure gradient. A solution is realized when the splitter stagnation streamline static pressure shows the same value for the duct and core flows. Semi-empirical analytical technique making use of test data from the Lycoming 502 fan has been included in the axisymmetric flow solution to account for the effects of part-span shroud pumping, wake profile and higher losses behind the rotor shroud.

Important design parameters of the final fan aerodynamic sea level standard design point condition for the ALF-504 fan engine are:

- 1. Total fan flow 421.1 lb/sec
- 2. Bypass ratio 12.5
- 3. Fan pressure ratio 1.25:1

 $^{^{\}pi}$ A diffuser after the power turbine was not used in either case.

- 4. Fan design efficiency 88 percent polytropic
- 5. Fan tip speed 1100 ft/sec
- 6. Fan tip diameter 48.0 inches
- 7. Fan inlet hub-tip ratio 0.392
- 8. Rotor hub overturn 10 degrees
- 9. Rotor inlet relative tip Mach number 1.15
- 10. Absolute Mach number at inlet of core stator 0.74

Stress and dynamic considerations of the fan rotor blade and disc based on use of titanium material and a part-span shroud located at an 18-inch radius show the steady stresses to be low compared with the material yield stress. The tangential stress at the disc bore is 43 ksi compared with 132 ksi yield, and the hub blade centrifugal stress is 26.5 ksi. First bending frequency is free from first-, second-, and third-order excitation above 80 percent speed, and therefore should provide adequate inlet distortion margin from a mechanical standpoint. Blade flutter analysis shows adequate design margin in torsion and bending when compared with NASA criteria.

Fan noise analysis without inlet treatment based on a modified Smith and House method shows a maximum 500 feet sideline noise of 98.6 PNdB at 70 degrees from the inlet for this component.

The total 500 feet sideline maximum engine noise without any acoustical treatment is 104.5 PNdB at 100 degrees from the inlet. Use of two sound-attenuating rings in the bypass duct in addition to wall treatment of this duct reduced the 500 feet sideline engine noise at 100 degrees from the inlet to 97.0 PNdB. This 7.5 PNdB engine noise reduction requires an increase of 3.8 inches in bypass duct diameter, produces a minimum of 2.5 percent loss in sea level takeoff thrust, and adds 58 pounds in weight to the engine because of the attenuating rings alone.

Sea level maximum static thrust is 8370^{*} pounds with a 0.302 lb/hr per lb specific fuel consumption. Use of a two-position variable duct exhaust nozzle gives 16 percent higher net thrust at 0.4 flight Mach number sea level and 15 percent improved specific fuel consumption

Does not include added pressure loss of sound-attenuating rings in bypass duct.

The nozzle goes to the closed position (12 percent closed) when a flight Mach number of 0.4 is reached, to rematch the fan at the sea level takeoff point. Engine acceleration time from a steady-state condition of 80 percent maximum thrust to 93.2 percent (66 percent of 80 to 100 percent) is estimated to be 2.5 seconds in the sea level flight Mach number range of 0 to 0.4.

The dry engine weight without starter but including bypass duct soundattenuating rings and wall treatment is 1419 pounds.

INTRODUCTION

The relative simplicity and the advantages and disadvantages of VTOL and STOL aircraft have been studied and debated in this country and in Europe for more than a decade. Indeed, many system concepts have evolved and a large variety of powerplant types and aircraft systems have been built and tested. Since these aircraft have been developed largely for military application, the noise by-product was of little consequence. However with application of VTOL and STOL to commercial aircraft, noise generated during takeoff and landing has become of paramount importance, with maximum effort and considerable funding being expended both to quiet existing engines and to better understand the fundamentals of the interplay between basic aerodynamic design of fans, compressors and turbines, and noise generation.

As an effort to demonstrate the relative quiet of STOL aircraft employing internal or external wing augmentation and aircraft of the same seating capacity with VTOL capability, NASA (Lewis) has sponsored a design and study program for lift cruise fan engines with Lycoming based on the 502 fan core. These engines would provide power for a demonstrator aircraft. It is intended that the outcome of this demonstrator program would lead to the design, development, qualification, and procurement of larger commercial VTOL aircraft and more powerful engines which would be phased into commercial use in such size, range, and cruise speed as to be economically viable.

The Lycoming 502 fan engine core was chosen by NASA for the demonstrator program because of its relatively short length and low weight, the many development and flying hours of the basic core, and the currently intense fan program sponsored by the Air Force for the AX closesupport aircraft.

The design studies reported herein have all been based on the 502 fan core, and demonstrate the relative ease of converting the 502 fan core to a high bypass ratio (BR = 12.5) low pressure ratio ($P_r = 1.25:1$) fan for lift cruise application. The final design studies include detail analysis of fan aerodynamics, fan stress and dynamics, reduction gear design and stress analysis, fan and engine noise analysis, engine performance evaluation, and weight estimation.

PRELIMINARY STUDIES OF SUPERCHARGED AND NONSUPERCHARGED INTEGRAL LIFT ENGINE AND AIR PUMP

General

Prior to the final design phase of the integral lift engine, parallel studies were made to determine the relative size, weight, performance, and fan aerodynamics for the nonsupercharged engine and a design having two supercharging stages following the fan. Reduction gearing design studies for each engine were also conducted to show any significant differences involved. The results of these studies were presented to NASA in February, and the decision was made to continue the final design effort on the nonsupercharged engine. Its greater simplicity, lower development cost, and reduced hot jet velocity after the power turbine^{*} (which may be a major noise contributor) more than offset the 10 percent lower takeoff thrust compared with the supercharged engine.

Engine Thermodynamic Performance

In this phase of study, only design point sea level static maximum power performance was considered. The use of two additional supercharger stages produced a higher cycle pressure ratio and increased mass flow in the core to increase the engine power. The following data summarize the performance results of the two engines studied:

In each case the MQT T55-L-11 power turbine is used without exhaust diffuser or jet nozzle.

	<u>Fan Alone</u>	Fan Plus Two Supercharging Stages
Wa tot - lb/sec	406*	449
W _{core} - 1b/sec	31.2	34.4
Bypass Ratio	12.02	12.02
P _{rf}	1.25	1.25
Total Supercharging P_r	1.25	1.5
Overall Pressure Ratio	9.73	10.7
F _{tot} - 1b	8000	8800
SFC - lb/hr-lb	0.307	0.300

Fan Aerodynamic Design

Two fans were studied, and they reflect the requirements of the supercharged and nonsupercharged engines. These fans were based on tip speeds of 985 ft/sec, which was later increased to 1100 ft/sec with concurrence of NASA to reduce the hub "overturn" (turning past axial in the relative system) with the belief that the added noise contribution would be small and would be as much affected by the blade aerodynamic loading as the increased tip speed. A summary of the more important aerodynamic parameters follows:

	Fan Alone	Fan Plus Two Supercharging Stages
P _{rf}	1.25	1.25
U _t - ft/sec	985	985
N - RPM	4770	4550
D _t - in.	47.244	49.606
Hub/Tip Ratio, Inlet	0.385	0.385
W _{a tot} - lb/sec	406.0	449.0
Rotor Tip Rel Mach No.	0.80	0.80
Rotor Hub Overturn - deg	25	25

^{*}Final design based on 421.1 lb/sec

Reduction Gearing

Reduction gearing design studies were made for the supercharged and nonsupercharged fan designs with appropriate reduction ratios. The study included designs utilizing a rotating planet and carrier with fixed ring gear as a possibility to reduce the gear envelope and weight and to allow positioning of the gear further downstream in the inlet housing to reduce the overall engine length. The results indicated the bearing loads of the rotating carrier to be excessively high for the package required for this application, and this approach was, therefore, abandoned. Gearing having fixed planets and a rotating ring gear (the type used in the Lycoming 502 engine) was used as the basis of the final analysis. Resulting design parameters for the appropriate gearing of the nonsupercharged and supercharged fan engines are as follows:

	<u>Fan Alone</u>	Fan Plus Two Supercharging Stages
Reduction Ratio	3.56	3.73
Output Torque-ft/lb	9080	9520
Output Speed - RPM	4770	4550
Number of Planets	5	4
Face Width of Sun and Planets - in.	2.85	3.12

Air Pump

In this study major emphasis has been directed to the integral lift engine powerplant; therefore, only a cursory study has been conducted for the air pump design concept as agreed upon by NASA.

The fan design was based on a pressure ratio of 3.5:1 with the bypass ratio dependent upon the static pressure desired after the power turbine and associated exhaust nozzle configuration. The fan design could be effectively accomplished from an aerodynamic standpoint with either three or four stages.

The optimum number of stages would depend upon design trade-off studies showing the effect of relative tip speed (higher for the 3 stage design) and number of stages on fan noise, gear reduction ratio size and weight, and fan weight. The fan supercharges the 502 core and, therefore, gives a significant temperature, pressure, and flow increase into the core of the fan engine. The study revealed that because of the temperature increase at the core inlet, the referred speed of the core compressor is 83.5 percent of design value. At this speed the core compressor requires operation with the bleed port open to prevent surge.

Two solutions to this problem are available:

- 1. Increase of the core rotor speed above the present 19,260 rpm value, which requires reset of the turbine nozzles and a review of the modifications required by the increased stresses.
- 2. Removal of one or more of the front stages of the core compressor to lower the overall pressure ratio and allow acceptable operation without requiring the bleed port to be open.

Both solutions are practical but require more extensive modifications than compatible with the minimum modification approach of this study. Accordingly, further analysis of the air pump design was not conducted.

FAN AERODYNAMIC DESIGN

Design Point Conditions and Data

A fan with 1.25:1 SLS (sea level static) total pressure ratio has been selected for the present study. This design pressure ratio corresponds to maximum SLS power setting of the 502 core at maximum rating turbine inlet temperature. The corresponding fan mass flow rate and bypass ratio follow from the power delivered by the supercharged engine core. the fan efficiency, and the condition of ambient static pressure level at exit of the power turbine (no turbine exit diffuser). An 88 percent polytropic fan efficiency is assumed as a realistic target value for a low hub tip ratio transonic fan stage with moderate pressure ratio and low supersonic relative tip Mach number. Initially, the fan design tip speed was set at 985 ft/sec. This speed, however, resulted in a specific work input coefficient $\Delta h/U^2$ considerably larger than 1 at the hub section and in a positive slope of the ψ - ψ operating characteristics for the entire supercharging section of the fan rotor blade. The tip speed was subsequently increased to 1100 ft/sec in order to minimize the risk of core flow instability.

The final fan SLS design conditions are summarized below:

Total Stage Pressure Ratio P/P = 1.25:1 Total Mass Flow Rate W_{atot} = 421.1 lb/sec Cor Engine Mass Flow Rate W_{ae} = 31.2 lb/sec Bypass Ratio BR = 12.5:1 Tip Speed U_t = 1100 ft/sec Target Total Polytropic Efficiency η_{Ptot} = 0.88

Aerothermodynamic Design Concept

The main aerothermodynamic problem consists of designing the core supercharging fan section and matching its flow path with the existing 502 fan-core transition duct without increasing the engine length. This latter condition limits the rotor exit hub diameter and the hub work input capacity. With the tip speed increased to 1100 ft/sec, the hub $\psi - \varphi$ characteristics still has a slight positive slope with a specific work input coefficient $(\Delta h/U^2)_{hub} = 1.22$.

. Overturning gradually disappears over the channel height and the flow conditions at the supercharger upper section are conventional with $(\Delta h/U^2)_{tip} = 0.8$. The aerodynamic conditions in the supercharger flow region are influenced by the meridional curvature of the core flow path and by the location, orientation, and thickness of the core-duct flow splitter. The meridional curvature of the core flow path raises the meridional velocity level near the inner wall. In order to minimize the core stator inlet Mach number, both the tangential and the meridional velocity components at rotor exit should be minimized in the inner wall region. Minimizing the tangential component requires an increase of the hub radius, which, however, results in an increase of the core channel curvature and the hub meridional velocity component. Similarily, the location, orientation, and thickness of the flow splitter determine the annulus area at inlet of the core stator and the average stator inlet velocity. The overall curvature of the core flow channel and the stator hub inlet velocity are also affected by these variables. Thechannel and splitter configurations thus markedly influence the flow conditions in the critical supercharger fan section, and their interaction must be studied in order to optimize the aerodynamic fan design. The

core flow path matches the 502 core at the upstream flange of the fan support casing. Therefore, the present design allows use of the 502 core cast inlet housing and bearing support structure.

The flow conditions are calculated with Lycoming's IBM Program R136, which solves the complete radial equilibrium equation for the axisymmetric flow field of a turbomachine with a bypass flow splitter. The splitter streamline separating the core and the fan duct flows is subject to two conditions at the splitter stagnation point, perpendicularity to the splitter nose and vanishing of the streamline curvature. Both flows domain upstream and downstream of the splitter nose are treated simultaneously in the iterative computation procedure, which usually converges within 50 iterations.

In addition to the fan design data specified above, the following assumptions are made for the calculation of the flow conditions:

The compression process through the fan rotor blading is characterized by a polytropic efficiency that varies along the blade span according to Figure 1. The stator losses are defined by a total pressure loss coefficient w = 0.05, which is constant over the radius except in the vicinity of the inner and outer walls, where the stator losses are increased to account for additional wall boundary layer and secondary flow effects. The rotor work input is determined in conjunction with the assumed rotor efficiency and the stator losses in such a way as to produce a constant overall fan total pressure ratio P/P = 1.25:1, except at the wall regions, where the additional stator losses are superimposed and result in a slight total pressure deficit. It will be seen in Figure 1 that the fan rotor polytropic efficiency has been decreased on the part-span-shroud streamline in order to take into account the effect of the shroud wake. The semi-empirical procedure used to simulate that effect is based on published test data (1) and in-house tests by Lycoming and is described in Appendix I. Finally global flow blockage effects of 1 percent at fan rotor exit and 2 percent at both fan duct and core stator exit stations have been assumed.

The fan hub flow conditions are critical because of the low hub rotational speed resulting from the low hub tip ratio and tip speed limitation. However, for a given tip speed and a given rotor exit hub radius, the rotor hub speed can be increased by decreasing the fan annulus area, i.e., by increasing the fan specific flow capacity. The fan inlet Mach

Figure 1. Rotor Polytropic Efficiency.

number consequently has been set at the highest level compatible with a favorable overspeed flow margin potential, namely 0.55 as an average value. For aerothermodynamic and noise reasons, the fan is designed without inlet guide vanes. Moreover, the core-duct flow splitter is located downstream of the rotor blading in order to allow for increased rotor-stator spacing in the duct section without increasing the length of the fan-core transition duct. In addition the fan duct stator tip is leaned in the downstream direction to further minimize wake noise. Figure 2 shows the fan meridional flow path with the stations used in the IBM program R136 calculation and the streamline pattern.

The results of the aerodynamic design optimization are illustrated by the velocity triangles shown in Figure 3. The first three triangles describe the flow conditions in the supercharger section. With the tip speed increased from 985 to 1, 100 ft/sec, both the rotor flow overturning and the Mach number at entrance of the stator have been reduced to favorable levels ($\beta_{2hub} = 10.4$ degrees and $Mv_{2hub} = 0.715$, as compared with 25 degrees and 0.75 to 0.8 with $U_{tip} = 985$ ft/sec). As a result of the slight relative flow overturning, the highest rotor flow deceleration rate does not occur at the hub section but in the splitter region. The stator hub section, however, is subjected to the highest deceleration rate, which is somewhat above usual practice for stator design. The corresponding velocity ratio $(V_5/V_4)_{hub} = 0.712$ is accordingly slightly lower than desirable for a shrouded design. (See "Aerodynamic Blading Design, ")

The last three triangles describe the flow conditions through the upper fan section, which are typical of conventional transonic design practice.

IBM Program R136 output section given in Appendix II contains a complete set of flow data that substantiate the basic aerodynamic design concept.

Aerodynamic Blading Design

<u>Rotor Blading</u>. - The main blading design problem consists of selectin a favorable compromise between the conflicting aerodynamic, weight, and acoustic design requirements. For the tip section, a profile with thin leading edge and maximum thickness located at 50 to 60 percent chord station is required. A double-circular-arc profile would be adequate.

Figure 3. Fan Rotor Velocity Triangles.

A laminar type profile superimposed on a circular mean camber line, however offers better aerodynamic properties for the subsonic blade portion while retaining the favorable characteristics of the double circular type in the transonic region. Such a profile has been used extensively in classical Lycoming transonic rotors with excellent overall performance results, and it is selected here as the best design compromise for all blade sections. The basic 10 percent relative thickness distribution is shown in Table I. Any desired relative thickness value is obtained by multiplying the basic 10 percent profile ordinates by the corresponding thickness factor. For this study the number of blades has been selected so that the blade passing frequency ($Z \propto RPM/60$) stays below the lower limit of the critical acoustic range of 2800 to 4500 hertz. Thus $Z = 2800 \times 60/5245 = 32$ blades. Two blade aerodynamic loading formulas are currently used to select the blading solidity, namely NACA's diffusion factor D, which is relatively insensitive to solidity. and Zweifel's aerodynamic loading factor ψ_a , which is directly proportional to relative blade spacing. Zweifel's criterion $\psi_{aopt} = 0.9-1.1$ is

often used in conventional blading design, but rotor hub sections have consistently demonstrated a higher loading capability without noticeable performance penalty. From a weight standpoint, it is of course desirable to design for minimum solidity and maximum aspect ratio compatible with good performance and mechanical integrity. On the other hand, it is imperative to insure adequate tolerance of the rotor blading to distorted inlet flow conditions, a requirement which is most efficiently fulfilled by designing for low aerodynamic loadings, i.e., high blading solidities, and low aspect ratios. For the hub section a maximum D value of 0.5 has been set as a compromise between the above conflicting requirements. The selected hub chord length $C_{hub} = 3.38$ inches results in a solidity $\sigma_{hub} = 1.77$, $D_{hub} = 0.486$ and $\psi_{ahub} = 1.27$. For the tip section, $\sigma_{tip} = 1.0$ is an adequate solidity for transonic operation with a normal shock wave in the cascade entrance region. This calls for a tip chord of 4.73 inches, thus a 40 percent blade chord elongation from hub to tip. The tip loading conditions then are $D_{tip} = 0.298$ and $\psi_{atip} = 0.546$.

Based on the mean chord length of 4.05 inches, the rotor blade aspect ratio is approximately 3.5:1.

The next step consists of selecting the design point incidences. In a low pressure-ratio fan discharging through a fixed nozzle, the operating line undergoes a considerable shift between static and flight conditions. At 0.6 flight Mach, for example, the ram compression ratio is of the same order as the fan design pressure ratio, and the fan nozzle expansion

ratio thus would increase from the SLS design value of 1.25:1 to 1.55:1. If the nozzle is sized for SLS conditions, its area will be too large for cruise operation, and the actual fan cruise operating pressure ratio consequently will drop to a substantially lower value than the SLS design value, which would result in lower fan efficiency and thrust perform ances. Both effects can be minimized by selecting positive angles of incidence at SLS conditions. This relationship is shown schmatically in the following sketch (the performance data quoted on the sketch corresponds to SLS and 0.4 Mach flight conditions and are taken from the performance evaluation presented under "Engine Performance"). The

better cruise performance of fan B is obtained at the expense of operating the blading closer to the surge line at sea level static conditions. The reduced SLS surge margin, however, is critical with regard to operating conditions with inlet flow distortion, and it is advisable to select conventional design incidences for safer VTOL operating conditions. A variable fan nozzle area will be required to achieve optimum cruise performance.

For the subsonic portion of the blading, a 0-degree incidence relative to the mean camber line constitutes an optimum compromise between efficiency and surge margin. In the transonic region, the profiles are usually designed and set so that the tangent to the suction contour at the midstation of the uncovered segment is aligned with the direction of the relative inlet velocity.

The above ground rules will be followed for final blading design. It must be emphasized that the selection of 32 blades to avoid the critical noise frequency band of 2,800 to 4,500 hertz constitutes a major design constraint, which is reflected by the comparatively large chords necessary to obtain favorable aerodynamic loading conditions. Because of its direct bearing on engine weight, this particular aspect of the noise problem should be critically examined prior to final blading design selection.

Table II presents typical design data for the presently selected 32blade rotor. Sample conical blade sections are defined corresponding to the velocity triangles shown in Figure 3.

<u>Core Flow Stator.</u> - The core stator flow conditions are illustrated in Figure 4. Although the stator inlet Mach number has been kept down to a very favorable level, the flow turning angles are comparatively large, and the deceleration rate at the hub section is close to the upper limit allowable for a shrouded stator design $(V_5/V_4 = 0.70-0.75)$. In this case, $\psi_{ahub} = 1.0$ must be considered as a maximum value. This consideration requires a solidity $\sigma_{hub} = 2.2$, which results in $D_{hub} = 0.45$ and 105 blades with a chord length $C_{hub} = 1.3$ inches. The blade can be conveniently manufactured from a basic strip stock profile with constant chord, coined to produce the slight twist and camber variation required. The basic profile uses NACA 65 series of 7 percent thickness distribution superimposed on a circular mean camber line. The blade is designed and set for 0-degree incidence over the entire core channel height. Table III presents blading design data for the three sections corresponding to the flow conditions shown in Figure 4.

It will be seen from Figure 4 that for a single row stator, it is necessary to increase the meridional velocity level across the blading in order to achieve favorable aerodynamic blade loading conditions. This

	 ⊒ :{:	TABLE II.	FAN ROTOR	BLADING I	DESIGN DAT.	A, CONICAL	SECTIONS ((Z = 32 blađes)				
Radius (in.)	Relative Angles β_1	: Flow (deg) \overline{eta}_2	Deviation Angle δ (deg)*	Camber Angle θ (deg)	Setting Angle Y (deg)	Incidence Angle i (deg)	Chord - Length C (in.)	Relative	Cascade Pitch S (in.)	Cascade Solidity σ = C/S	Aerodynan Loading Va	D g g
9.37/10.10	34.0	-10.4	8.3	52.7	7.65	0	3.39	8.0	1.91	1.775	1.265 0.4	85
10.57/11.24	37.8	6.1	7.4	39.1	18.25	0	3.49	7.25	2.14	1.630	1.172 0.4	61:
11.11/11.75	39.3	11.2	7.1	35.2	21.70	0	3.54	7.00	2.25	1.573	1.178 0.4	81
15.24/15.66	49.3	36.7	4.6	17.2	40.3	0	3.92	5.25	3.04	1.288	0.868 0.4	80
20.81/20.97	57.6	53.4	2.0	5.2	54.0	1.0	4.44	3.75	4.10	1.082	0.591 0.3	94
24.02	61.3	58.2	2.0	4.0	58.2	1.1	4.73	3.0	4.73	1.0	0.546 0.2	86
* is calculated v	vith Carter	's empirical fo	ormula $\delta = \sqrt{0}$	$\frac{1}{p}\theta$ with m	= 0.230 + 0.1 ⁻	$\beta_2(\alpha)$						

C

			TABLE III.	FAN STA	TOR BLA	DING DES		V, CUNICAL	SECTION				
Radius Al (in.) A	bsolute Angles (β	: Flow (deg) β5	Deviation Angle δ (deg)*	Camber Angle θ (deg)	Setting Angle Y (deg)	Incidence Angle i (deg)	Chord Length C (in.)	Relative Thickness $\begin{pmatrix} \nu \\ pct \end{pmatrix}$	Cascade Pitch S'(in.)	Cascade Solidity $\sigma = C/S$	Aerody Load Va	namic ing D	Remarks
9.95/9.65 46	6.1	0	8.5	54.6	18.8	0	1.3	7.0	0.586	2.22	1.01	0.450	Core Stator Sections
11.16/10.78 42	2.0	0	8.2	50.2	16.9	0	1.3	7.0	0.656	1.97	0.845	0.344	Z = 105 blades
11.73/11.28 45	3.4	0	8,7	52.1	17.35	0	1.3	7.0	0.689	1.89	0.774	0.250	. •
12.78/12.95 32	2.3	0	6.0	38.3	13.15	0	2.5	7.0	1.140	2.19	0.713	0.260	Duct Stator Sections
16.25/16.41 28	8.5	0	6.0	34.5	11.25	0	2.5	7.0	1.448	1.73	0.705	0.303	$\mathbf{Z} = 71$ blades
21.44/21.67 23	3.4	0	5.9	29.3	8.75	0	2.5	7.0	1.908	1.31	0.735	0.282	
24.55/24.88 25	5.4	0	7.0	32.4	9.2	0	2.5	7.0	2.185	1.14	0.924	0.333	
* is calculated with	Carter's	s empirical	l formula $\delta = \int_{-\infty}^{\infty}$	$\frac{m\theta}{\sigma}$ with	1 m = 0.23($0 + 0.1 \frac{\beta}{2}$	<u>2 (α)</u> 50						

Figure 4. Fan Stator Flow Conditions.

0.5¹⁸

744.0

0.6⁶⁶

1

145

9_{^W}

.

situation generally results as part of the design in highly loaded compressor stages. A lower stator exit velocity level could be realized by using a double-row stator assembly. This alternate solution will be examined prior to final blading design selection.

Fan Duct Flow Stator. - The duct stator flow conditions are illustrated in Figure 4. They do not present any critical problem from a blading design viewpoint. Consequently, design emphasis is put on noise abatement. A stator/rotor blade number ratio of 2.25 is desirable, and this calls for 71 stator blades. The axial distance available between the trailing edge of the fan rotor and the leading edge of the fan support struts allows for an average spacing of approximately 1.5 mean rotor chords between the rotor and the stator blading.

The blades can be manufactured from a basic strip stock profile with constant chord. With the comparatively high aspect ratio of the 71-blade design, it is adviseable to limit the aerodynamic loading to ψ_a values smaller than 1.0 in order to avoid or minimize the loss of surge margin generally observed in higher aspect ratio bladings. With a mean hub tip ratio of 0.52 and a constant chord design, the highest loading occurs at the tip section, where $\psi_{atip} = 0.95$ has been set as a maximum value. The selected 71-blade design requires a chord length of 2.5 inches resulting in a tip solidity $\sigma_{tip} = 1.142$ and $D_{tip} = 0.333$. At the hub section, $\sigma_{hub} = 2.19$, $\psi_{ahub} = 0.713$ and $D_{hub} = 0.360$. The basic profile again uses an NACA 65 series, 7 percent thickness distribution superimposed on a circular mean camber line. The blade is designed and set for 0 degree incidence over the entire duct channel height. Table III presents blading design data for the four conical sections corresponding to the flow conditions shown in Figure 4.

Fan Performance Evaluation

Performance maps for both the fan duct and the supercharger sections have been established by scaling measured basic performance maps of stages with similar design conditions. The scaling is effected on the basis of prescribed ratios of the design point mass flows, pressure ratios, and efficiencies. The pressure ratios are obtained by assuming a constant effective work input factor ($\Delta h \ scaled/\Delta h \ basic$) design and a constant efficiency factor ($\eta \ scaled/\eta \ basic$) design for all corresponding offdesign points. The scaled maps predict the actual performance characteristics with an accuracy that depends upon the degree of similarity shown by the basic and the actual designs. Since existing and new designs generally exhibit only limited similarity, it is important to select the basic maps and their representative design points in such a way as to best simulate the most essential characteristics of the new design.

<u>Fan Duct Section.</u> - The measured basic map is shown in Figure 5. It pertains to an experimental transonic stage with the following designpoint characteristics:

Total Pressure Ratio $P_t/P_t = 1.404$

Referred Mass Flow Rate Waref = 55.6 lb/sec

Tip Speed U tip = 1188 ft/sec ($M_{u_0} = \frac{U_{tip}}{a_{tot}} = 1.064$)

Hub-Tip Ratio $\nu = 0.47$

Adiabatic Efficiency $\eta_{ad} = 0.83$

For scaling, basic design points of fans A and B (with 21 percent and 14 percent surge margin at 100 percent $N/\sqrt{\theta}$ respectively) have been selected on the MU0 = 1.0 speed line, which corresponds to 1115 ft/sec tip speed. This provision insures good aerodynamic similarity for the transonic tip region, and also reflects the requirement for a favorable overspeed flow margin necessary to optimize cruise performance. With $(P/P)_{basic} = 1.37$, point A is representative of the conventional blading design approach adopted for fan A (SM = 21 percent at 100 percent $N/\sqrt{\theta}$). With $(P/P)_{basic} = 1.406$, point B represents a design that compromises surge margin in order to minimize cruise performance degradation with a constant fan nozzle area. The efficiencies have been slightly scaled to the assumed 88 percent target polytropic value for both A and B fans.

Figures 6 and 7 show the resulting estimated maps used for the engine performance evaluation.

Supercharger Section. - The basic tested map is shown in Figure 8. The map represents the supercharger section of the T53-301 fan with the following design-point characteristics:

Estimated Performance Map for Duct Flow Fan A (21% Surge Margin at 100% N// θ). Figure 6.

REF. MASS FLOW RATE $W_{ap} \sqrt{\theta_2}/\delta_2$ Ib/sec

Figure 8. Measured Basic Single Stage Performance Map for Supercharger Fan Section (301 Fan Supercharger).
Total Pressure Ratio $(P_t/P_t) = 1.577$

Referred Mass Flow Rate W_{aref} = 18.5 lb/sec

Mean Specific Work Input Coefficient ($\Delta h/U^2$) = 0.82

Polytropic Efficiency $\eta_{p} = 0.82$

Since the flow conditions are subsonic, the essential similarity parameter for scaling is the mean specific work coefficient $\Delta h/U^2$. The 0.82 value of the 301 supercharger section comes reasonably close to the 0.92 value of the present supercharger design. This ensures that the main characteristics of the supercharger section, namely the flat slope of the speed lines, is satisfactorily reproduced by the predicted map. The design-point polytropic efficiency has been sealed up from 82 to 86 percent to account for the favorable effects of the larger size and the lower blading Mach level of the present design.

Figure 9 shows the resulting estimated map used for the engine performance evaluation.

MECHANICAL DESIGN

General

The core engine LTC4B12 is completely compatible with present fan engine and is preceded by considerable work to produce the 502 fan engine. Consequently, the investigations presented in this section are restricted to the new fan component, reduction gear, housing, and exhaust nozzle.

A flow path view of the integral fan engine ALF-504 is shown in Figures 10 and 11. The core engine is identical with the 502 fan engine. The installation drawing of the engine with mounting pad locations is shown in Figure 12. The mounting pad location and engine support method are similar to those of the 502 fan engine. The new fan design is based on the following mechanical data at sea level, standard day, static conditions:

Gas Generator Speed	19,260 rpm
Power Turbine Speed	16,870 rpm
Fan Wheel Speed	5,245 rpm

Figure 10. ALF-504 High-Bypass Fan Engine.

Figure 11. ALF-504 Fan Engine Variable Nozzle.

Figure 12. ALF-504 Fan Engine Installation Drawing.

Fan Wheel Limit Speed	5,600 rpm
Fan Wheel Maximum Speed	6,400 rpm (mandatory inspec- tion required)
Power Turbine Power	6,240 hp (10 percent over SLS cycle value)

The geometry of the fan wheel is shown in Figure 13 with the material strengths and the corresponding stress and strain distributions for the blade and disc. These distributions are based on a constant temperature of 200°F and a speed of 5, 245 rpm.

Disc

It is seen from Figure 13 that the stresses in the disc at the operational speed of 5,245 rpm are much lower than the allowable stresses and that the low-cycle-fatigue life, resulting from the disc strain distribution, is greater than 10^5 cycles. For the fan overspeed condition of 6,400 rpm, the low-cycle-fatigue life exceeds the design criterion of 20,000 cycles.

Rotor Blade

The blade stress distribution that is shown in Figure 13 is a result of the centrifugal loads developed from the fan speed of 5,245 rpm. The bending stresses in the blade due to gas loading have not been included. The anticipated bending stress is in the order of 40 ksi at the base of the blade and will exist only if the blade airfoil sections are stacked on a radial line from the hub to the tip. This blade will not be a stacked blade, but rather a leaned blade, and the centrifugal bending stresses resulting from the lean will be adjusted so that they will cancel the gas bending stresses. The ultimate result will be a blade stress distribution close to the distribution shown in Figure 13. The stacked set of airfoil sections is shown in Figure 14.

Midspan Shroud

The geometry of the midspan shroud is shown in Figure 15. Bending stresses due to centrifugal loads have been calculated at sections x-x and y-y for a radial shroud thickness of 0. 14 inch. The values of these bending stresses are shown in Figure 15 along with the yield and ultimate strengths for the blade material, Ti-6Al-4V.

Figure 13. Fan Blade and Disc Stresses. (See Figure 16 for root stresses.).

Figure 14. Fan Rotor Blade Airfoil Composite, Scale Approximately 2X.

Blade and Disc Root

The root and groove geometry shown in Figure 16 is the same as the dovetail that is used in the 502 core engine. The nominal and maximum tenon hoop stress and the nominal and maximum tenon tensile stress have been computed at the base of the root groove. The tenon tensile stress concentration factor is 3.8, and the tenon hoop concentration factor is 2.0. The stress values are tabulated in Figure 16, and the groove low-cycle-fatigue life resulting from these stresses is greater than 10^5 cycles.

Gears

The new reduction gear train design (Figure 17) is similar in principle to that of the 502 engine. The reduction ratio has been increased from 2. 30:1 for the 502 to 3. 22:1 for the ALF-504 design. To transmit the additional torque, the gears were made larger in face width to operate within the allowable tooth bending stress required for infinite gear tooth life. The five planet gears are more critical in design than the sun gear since they operate under reversed bending loads; therefore, the maximum tooth bending stress was set at 28 ksi. The resulting planet gear face width is 2. 61 inches, and the corresponding tooth compressive stress is 133 ksi with an allowable stress of 145 ksi.

The ring gear has been analyzed to determine the hoop stresses resulting from the loads applied by the five planet gears. The loads applied by each planet are the radial load W_r , the tangential load W_t , and the bending moment M. A hoop stress also exists because of the rotational speed W of 5,245 rpm. The hoop stress distributions over that segment of the ring between the planets are shown in Figure 18.for both the inside and outside surfaces. These four distributions are summed to obtain the total hoop stress distribution, and is shown in Figure 18. For the inside surface of the ring, the bending stress of \pm 28 ksi at the base of the gear tooth has been added to the total hoop stress distribution, at points on each side of the ring gear tooth, meshed at each planet (see Figure 18). This is a conservative practice because both of these stresses do not occur at an exact point, but it has been done because they occur in the same plane.

Tabulated in Figure 18 are the maximum, minimum, mean, and alternating stresses for the inner and outer surfaces of the ring. Applying the alternating and the mean stresses to the modified Goodman diagram shown in Figure 19 it is seen that the ring gear stresses are well within the safe operating range.

Figure 16. Root and Groove Stresses.

Figure 17. Reduction Gear.

.

Fan Housing and Support

The fan housing and front frame will be cast magnesium and includes the same design concepts as the 502 fan inlet housing. There are 12 struts, one of which contains the accessory drive and starter shaft.

Engine mounting is accomplished through three mount pads on the housing. The top two pads support the engine weight and transmit thrust through a yoke, while the third pad gives mounting stability to the system. Similarity of the housing design with that of the 502 fan engine insures an optimal mechanical design.

Mechanical Design Study of Fan Duct Variable Area Nozzle

The variable area nozzle type selected is an iris construction made of two conically shaped and slotted members actuated by a contained air bladder mounted around the external circumference. The design concept and mechanical details are shown in Figure 11. The conical members are slotted to form individual fingers which permit the required deflection and necessary area reduction (from 1190 to 1045 square inches). The design of the nozzle is based on a two-position geometry, and "overshoot" is prevented by mechanical stops that are welded to the outer side of the nozzle wall. The bladder was chosen to provide the actuating mechanism because of its simplicity, the low temperature of the bypass duct, and the low force required to oppose the nozzle aerodynamic load (470 pounds radial and 250 pounds axial). Air pressure to inflate the bladder is supplied from the compressor or fan when the flight Mach number exceeds 0.4. The nozzle will automatically go to the open position (the fail-safe position) in the event of bladder failure and prevent fan surge at flight Mach number above 0.4.

DYNAMIC ANALYSIS

Vibration and Flutter Analysis of the Rotor Blade

<u>General.</u> - For the analysis, the fan blade is represented by a lumped mass model that is supported at the base (cantilevered), and partially restrained at a part-span shroud location. The sketch below shows the system of axes used in the analysis:

A transfer matrix method (Lycoming library program D105) * is used to calculate the natural bending and torsional frequencies (uncoupled). In the analysis, the part-span shroud location was varied in order to find the optimum frequencies for a blade to be free from resonances and flutter. The trend of frequencies is shown in Figure 20. For the selected shroud location R = 18.0 inches, the frequencies are shown in the Campbell diagram in Figure 21. The shroud is 0.75 inch wide and 0.14 inch thick, and is cut at midspan (12 degrees with engine axis) to produce locking and prevent clockwise rotation looking down from tip to hub.

<u>Results of Vibration Analysis.</u> - In Figure 21, a band for the first two frequencies is given to indicate the influence of different springrestraint conditions at the shroud (case A and B) because of some uncertainty in its prediction.

The first bending frequency is principally free from resonance excitation of low order (first, second, and third engine orders) above 80 percent speed. There is no fixed source of excitation in a fan inlet, but it is known from experience that inlet distortions could contain second or third order sources. The fan has to operate at speed below 80 percent and, therefore, experimental test verification is recommended to determine a tolerable stress limit in the blade.

The first torsion frequency also is free of direct intersection at 100 percent speed. No fifth or sixth order of engine excitation are apparent, and the torsion mode will be free from resonances in its range of operation.

<u>Aeroelastic Analysis of Rotor Blades</u> - The aeroelastic behavior of the blade is judged by the flutter coefficients represented in the form of

$$\lambda = \frac{W}{2 \pi f c}$$

where W = relative inlet velocity f = blade frequency c = blade chord

i

^{*} Appendix III gives a more complete engineering development.

Figure 20. Rotor Blade Frequency Analysis, N = 5245 RPM.

.

Figure 21. Rotor Blade Vibration Interference Diagram.

1	Sneed		Rela	tive	Stagger	Flow	Frequ	uency	Flutter (Coeff.
	(rpm)	%	Flow	Vel	Angle (deg)	Angle (deg)	Bend	Tors.	Bending	Tors,
			Tip	1234	58.6	60.7	240	418	1.93	1.1
	5245	100	3/4 Span	1127 ft/sec	54	57.5	240	418	1.908	1.04
			Span							ļ

In Figure 22 the values of the flutter coefficient for the blade 3/4 span are plotted against a limit that is obtained from publications and Lycoming test data. A satisfactory safety margin exists for a shrouded blade even if some uncertainty in the data exists.

Critical Speed Calculation

<u>Power Train Torsion.</u> - The power-train system from the fan to the power turbines is represented by lumped inertias that are connected by flexible elements. By a transfer matrix-type calculation (Lycoming Library program D112) * the natural frequencies of the system are determined. There is one natural frequency of $N_{T1} = 6060$ cpm for the

turbine shaft (36 percent speed) in the operating range where the fan rotor oscillates against the power turbines. The system and its corresponding mode shape are shown in Figure 23. The second mode occurs at $NT_2 = 31,200$ cpm (185 percent design speed).

The sources of excitation originate in the reduction gearing from faulty meshing. Experience has shown that these torsional excitation forces are very small and of no threat to the system.

Fan Module Lateral Vibrations. - A lumped mass model of three levels is employed to calculate the lateral natural frequencies of the fan module and are found by the use of Lycoming program D103^{*}. It is assumed that the important lateral vibrations of the fan module occur uncoupled from the core engine (Figure 24).

The fan rotor introduces inertial stiffening against the lateral motion. Only one-half of the inertia is used to account for the flexibility of the blades. The support stiffness in the core is calculated as a shell

See Appendix III for more complete analysis.

 α DEGREES TO LEADING EDGE TANGENT

Figure 22. Rotor Blade Flutter Criteria.

Figure 24. Fan Rotor Deflection.

structure and conservative numbers are used. For the flexibilities of the bearings, represented as lateral springs, conservative values have been taken. The calculated natural frequency, therefore, should represent a lower bound. The mode shape is shown in Figure 24 and it would occur at the first fan shaft critical $N_1 = 7,082$ rpm = 135 percent operating speed.

There should be no problem from excitation resulting from unbalances, and aerodynamic excitations from the inlet are unlikely to cause resonance problems.

NOISE ANALYSIS

Fan Noise

Noise generated by the fan is governed by the tip speed of the fan, the mass flow, and the spacing of the stator and rotor. The spectrum of the noise is determined by the number of fan blades and their chord length. The noise propagation is governed by the ratio of stator vanes to rotor blades, and the duct aspect ratio.

The noise was estimated by the modified "Smith and House" (2) method, which yields the pure tone and broad band noise for subsonic fans. Analysis for this fan for 500-foot sideline conditions gave a maximum perceived noise level (PNL) of 98.6 PNdB at 70 degrees from the inlet. The method, modified, by Avco Lycoming, is based on the experimental results derived from PLF 1A and 502 fan tests. The correlation with measured data is within \pm 2 dB over the spectrum.

Core Engine Noise

The contribution of the compressor to the total noise is based on test data for the T55-L-llA. The turbine noise was computed because this is the new design and test data are not available.

Exhaust Noise

Exhaust noise was computed on the basis of the "Kobrinsky"(3) method. Since the exhaust velocities for the core are high, (above 800 ft/sec) no corrections for combustor noise were made.

Total Noise Without Suppression

The noise generated by the engine was computed for a 500-foot polar and sideline (Tables IV and V). In the extrapolation of the data to 500 feet from 200 feet, only atmospheric attenuation was applied in addition to increase square law attenuation.

The maximum unsuppressed PNL is 106.1 PNdB at 130 degrees from the inlet. The maximum sideline noise is 104.5 PNdB at 100 degrees. The predicted sideline perceived level (SPL) spectrum at 200 feet is shown in Tables VI and VII.

Bypass Duct Acoustical Treatment

Since the maximum engine noise is in the rear quadrant and the maximum contribution to the PNL is by the fan, the treatment of the bypass duct will reduce the noise levels in the rear quadrant.

The analysis of the bypass duct assumed equal spacing between the two splitter rings in the duct. The duct height is 3.5 inches and the flow Mach number is 0.514. In order to maximize the attenuation at the blade passage frequency of 2850 hertz, the backing depth of 0.5 inch was chosen. An attempt was made to optimize the impedance of the treatment with a perforated plate, but sufficient flow resistance could not be achieved for optimum design. Hence, reinforced plastic material was selected. The face material finally selected is fiber-glass cloth impregnated with a polyimid resin with flow resistance required of 3 rayls (MKS). The backing is 0.125 inch, hexcel 0.5 inch deep. The impervious layers are also of the fiber-glass construction.

The assumptions made in the calculations of the attenuation were twofold: (1) the sound pressure is evenly distributed at the inlet to the splitter, and (2) the calculation is made for the least attenuated mode. The results of the duct treatment are shown in Table VIII.

TABLE IV. IN N	NTEGRAL LIFT ENGINE SIDEL OISE LEVEL AT 500 FEET	INE PERCEIVED
Degrees	Treated Bypass	Untreated Bypass
From Inlet	Duct (PNL, dB)	Duct (PNL, dB)
20	85.0	85.0
30	91.5	91.4
40	94.5	94.4
50	96.8	96.8
60 70 80	97.3 97.7 96.6 97.1	97.2 97.8 97.6 100.6
100	95.7	102.6
110	97.0	104.5
120	95.4	104.2
130 140 150 160	96. 1 93. 1 93. 1 86. 9	99. 9 96. 3 89. 0

TABLE V. INT NO	EGRAL LIFT ENGINE POL ISE LEVEL AT 500 FEET	AR PERCEIVED
Degrees	Treated Bypass	Untreated Bypass
From Inlet	Duct (PNL, dB)	Duct (PNL, dB)
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	97. 3 98. 5 98. 9 100. 0 99. 8 99. 9 98. 9 98. 9 98. 4 96. 7 97. 1 95. 9 97. 7 96. 9 99. 0 98. 0	97. 2 98. 5 98. 9 99. 9 99. 7 99. 9 98. 9 98. 5 97. 8 100. 6 102. 8 105. 2 105. 9 106. 1 105. 0
150	100 . 5	104.3
160	98. 5	101.8

Reproduced from Reproduced copy.

		LABLE	. VI.	POLA	LR NO	ISE F	IELD,	LNU	REAT	LED E	3YPA9	SS DU	СT			
E O	SA 1.25	F 1N . 8	1375 LIA	THR	150				Ŭ	GREES			, , ,	POL AR	FIFLO	
• 6 •	0 10.0	0.04	10.0	40.0	50° N	60.0	17.9	80.0	0 ° 06	100.0	0.011	120.0	0°011	140.0	150.0	167.0
						d	טר איז כנ	3M814E	INNES O	D LEVEI	LS	•		•		
.0 70.	E-01 E	. 59.2	10.2	<u>68.1</u>	63.6	65.3	51.5	6.54	69.4	56.93	63.9	69.0	74.4	75.8	1.08	0.16
5.0 73.	1 73.0	1.01	12.4	70.2	70.7	61.6	69.3	69.4	70.9	69.7	72.8	72.2	77.4	79.0	83.1	83.0
1.5 _75.	6 75.2	72.9	74.5		72.7	1.64	72.0	70.6	73.3	72.1	15.3	7.47	0.67	81.2	85.1	54.7
0.0 77.	4 77.0	74.4	15.9	73.3	74.2	11.3	73.7	72.3	75.1	73.9	77.2	76.6	81.6	82.6	86.5	45.9
0.0 78.	4 78.0	15.4	76.8	74.2	15.2	72.5	14.9	73.5	75.4	15.3	78.6	11.7	92.6	83.5	97.3	36.6
3.0 79.	9 79.4	76.8	79.1	75.5	76.7	14.2	. 76.6	75.3	2.87	77.2	30.3	79.7	94.1	84.3	83.6	97.3
0.0 80.	1 80.2	77.6	19.0	76.3	11.7	75.3	77.8	76.4	79.4	18.3	91.6	80.8	95.2	85.7	8°°5	B9.5
0.0 81.	0 80.5	P.15	2.01	10.6.	78.1	75.9	79.4	0.11	R.U.O.R	1.07	92.2	81.5	85.7	36.2	6°68	83.6
5.0 Al.	480.9	79.4	1.67	11.1	18.7	76.9	79.2	0.17	30.9	80.0	33.1	82.4	84.4	8.48	9°06	1.99
0.0 82.	2 81.7	1.67	8.) • 6	6.17	19.9	77.8	80.3	19.0	82.1	31.2	84.3	83.5	37.4	87.6	91.2	89.7
0.0 91.	7 81.3	73.7	1.08	77.5	19.5	17.7	80.2	78.9	82.0	31.2	94.3	93.4	97.2	в7.1	9.0.7	89.2
0.0 81.	6 91.2	7.8.7	1.06	11.1	1.51	78.1	80.5	19.3	82.4	1.18	34.5	83.9	87.2	87.0	9.6	89.0
5.0 71.	6 81.2	73.3	. 90.3	17.9	80.0	79.5	81.0	19.7	82.9	82.2	85.1	84.3	97.5	86.9	90.4	81.9
0.0 81.	2 80.9	79.5	1.08	77.7	8 0°0	78.6	81.1	79.R	83.0	82.3	85.3	84.5	87.3	86.4	89.9	88.3
0.0 <u>_</u> 80.	280.0		13.5			13.4	80.7	79.5	82 . 7	82.2	95.1	84.4	8.48	35.5	33,9	87.3
0.0 79.	8 79.3	78.2	1.1.1	19.1	19.9	19.9	80.9	17.8	.83.0	82.9	95.6	R5.2	97.0	35.6	83.4	96.8
0.0 79.	1.(1 +	79.7	80.1	1.9.1	8C.5	79.5	91 . 0	80.0	83 • 7	83.7	96.4	86.2	87.4	85.9	87.9	B5.0
	1 79.9	6.01	1.18	R.J. 7	Al.	80.5	91.2	. R0. 3	83.5	84.9	91.4	87.B	94.2	36.7	87.3	85.1
0.0 79.	7 81.0	al.7	92.7	92.7	82.9	82.1	82.0	91.4	84.5	36.7	39.1	89•8	30.5	33 . 2	87,5	85.0
0.0 80.	9 82.4	13.3	6.40	94.5	14.4	83.6	A3.1	82.6	15.7	93.3	1.06	61 • 5	91.2	8.9.8	. 89.3	85.5
0.0 AI.	4 83.2	14.4		. 45.5 .	85.3	84.5	83.7	83.2	85.4	99.3	9.16	92.6	92.1	90.7	93.6	85.6
7.0 81.	7 R3.5	34.8	A 5 • 6	86.0	85.7	94.9	6.68	83.5	86.6	99.7	92.0	0.56	92.4	1.16	88.6	85.6
3.0 R2.	5 84.4	65.7	86.5	6°033	36.6	35.8	84.5	ß3 . 9	86.7	87.6	91.9	92.9	92.3	0.16	83.4	85.4
0.0 79.	5 81.3	1.25	83.5	83.9	83.6	82.8	81.7	81.3	84.4	87.4	89.7	1.06	1.06	A8.A	86.3	93.2
0.0 77.	1 79.7	90°2	R1.1	n1.5	81.2	80.3	19.3	78.8	31.7	84.6	96.9	87.9	87.4	86.1	83.7	80.6
0.0 80.	1 82.0	31.3	84.2	84.5	84.2	83.4	eı.8	R0.4	80.8	82.4	84.4	85.2	94.7	83.5	81.2	79.0
0.0.72.	3 .74.1		-16.3-	_76.6	76.4		74.5.	.73.7	- 75 • 8 -	. 78.1	80.2	81.1	80.7	79.6	7.77	74.5
0.0 71.	4 - 73 a	74.6	15.5	75.8	75.5	74.6	73.5	72.6	74.44	76.7	78.8	7.61	19.2	79.1	75.9	72.9
0.0 76.	8 78.7	10.1	80.9	81 . 3	80.9	80.1	78.4	7.01	76.0	76.7	79.2	73.9	78.2	77.0	7.47	71.9
0.0 76.	8 79.7	80.1	80.9	81.3	80.9	80.1	78.4	76.8	76.6	6.11	79.6	80.5	79.8	78.5	75.8	73.0
0.0 67.	3 69.2	70.5	71.4	71.8	71.4	70.5	69.3	69.0	71.7	74.7	76.9	78.0	11.3	76.0	73.3	70.5

	I EL D	160.0		1.11	75.3	76.5	77.2	78.4	10.01	79.6	80.2	79.6	19.6	19.2	9° 6/	4°1)	75.7	74.6	74.2	74.3	74.0	4001	69°3	65°4	61.4	55°B	51.9	47.9	40°C4	31.00
	L INE	20.0		74.6	79.0	80.4	51.2	82.6 52.6	د م م م	84.3	95.1	94.5	84.2	94.1	\$° \$	ς•28 ς•28		80.5	30.5	91.0	91.0	0	77.1	73.7	70.2	65.3	619	58.7	51.9	6.16
DUCT	SIDEL	40.01		12.0	77.4	78.9	79.6	81 °0	51.5 52.2	6.20 82.9	83.7	83.2	83.0	8.7.8	82 • 3	81.4	81 .6	82.3	83.6	85.0	85.5 85	- • • • • •	82.5	2.61	75.7	70.9	68.0	65.4	64°7	59.1
ASS I		30.0 1	S TER S	72.1	75.1	79.3	80.3	91.8	1 ° 7 8	00,08 0,08	85.0	84.7	84.9	85.0	84 . 3.	94•2 94•2	84.45	85.3	86.7	88.0	04.7	20°	95.7	82.5	19.1	74.3	1.17	69.4	69 .1	64.5
В У Р	RFES	20.01	UND LE	57.7	70°9	15.3	76.7	78.4	c • c l	1 18	82.2	42.1	92.5	82.3	6°°	37.9	6 • 6 C	86.1	87.7	99.5	4 N 0 0 0 0	50°	87.6	94.3	. 81.1	76.1	73.8	71.8	11.9	61.5
ATEL	DEG	10.01	NED SC	69°4	72.2	76.7	78.0	19.9	0.18	61.0 20.5	83.7	83.6	84.0	84.5	84.6	84.9	, u 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	86.5	89.0	87.5	90.2	40.4	90°0	84.3	81.2	76.3	74.0	72.3	72.3	61.9
NTRE		0000	5 COMB1	56.B	69.5 71 0	73.8	1.51	11.0	78.2	70.07	81.0	90.9	91.4	91.J	82.0	81 . 3	C•78	3C	0.00	87.5	19.3	88.5	99.58 95.6	92.5	1.61	74.7	72.5	71.5	71.3	66.5
D, U		90°0	DEL IN	68.4	70.9	75.1	76.4	1.9.1		0°0°	82.0	92.0	82.3	82.8	6.78	82.5			B4.0	85.1	65.6	85.6	50. 50. 8	19.7	78.2	72.6	70.4	71.0	70.2	63.7
EIE1		80.0		65.7	63 °2	10.4	13.4	15.1	16.2	10.8		7.8.7	1,91	19.5	19.5	1.61	+ ° + 1	19.01	30.7	91.8	H2'o 3		20,50	7.51	1011	70.3	68.4	71.5	70.2	60.7
NOISE	US T	70.0		67.0	69.3	3 · · · ·	74.4	76.0	71.2	H	10.01	19.6	17.9	R1,3	80.4	19.9	1.08	1 • 1 8 2 • 0 E	9.08 9.08	6.19	82.3	82.0	1.20	76.6	78.6	70.5	68.7	12.6	1.17	60.3
LINE	THR	60.7		64.7		70.1	71.3	72.9	14.0	74.6	10.0	76.4	76.8	77.2	2.11.2	46.9	r•11	5. 0 C	80.2	81.5	92.4	82°2	- 02	76.8	7.9.2	70.6	68.83	13.1	71.4	60.03
SIDE	375 LA	50.0	•	66.3	4.69	5 - L 2	72.3	74.4	15.3	- 75 . 7	10.1	77.1	77.2	77.5	. 2.11.5	C. 11			19.9	81.3	6.6	82.1	8°°28	76.2	78.6	69.9	68.0	72.1	70.2	58.6
VII.	F1N, B	40.0	•	· 64 • 2		.63°L	5.01	7.17	4° 21	<u>_72.7</u> _	7°51	2.51	7.5.7	73.8	73.7	73.3	73.8		1.87	79.5	10.9	9.0.6	1.1 1.1	14.5	16.9	67.H	55. 8	69.7.	67.5	55.5
ABLE	1.25	30.0		64.1	56.3	69.3 60.8	2.04	72.1	12.9	73.1	13.5	6.42	73.9	74.0	73.7.	13.0	73.1		7.5.5	0.11	77.6	77.6	78.0		71.1	63.9	61.4	64.9	62.1	4.9.64
TA	V SVŘ	20.0		58.9	61.4	د . د . د	6,0.04	67.4	69.2	. 68°4 .	5° 19	0.10	69 .]	67.1	69.7	6.9.9	69.1	63.4		1.77	12.1	72.5	72.7		66.6	56.7	51.6	56.2	52.0	37.8
	FRED			0,05	5.5°0.	31°5 000	50.05	63.0	B0.0	0.001	125.0		250.0	315.0	0.014	5-10.0	630.0	800-0 1005-0	1000.0	1600.0	2000-0	2520.0	3150.0	4000.0	0.001.0	8000.0	10000.0	12500.0	16000.0	20300.0

TABLE VIII. ATTENUATION OF	THE BYPASS DUCT TREATMENT
Frequency	Attenuation
(Hz)	(dB)
500	2.0
630	2.5
800	3.0
1000	5.5
1250	9.0
1600	13.0
2000	17.0
2500	20.0
3150	19.5
4000	17.0
5000	13.0
6300	10.0
8000	8.0
10000	8.0

Total Noise With Treatment

When the computed attenuation for the bypass duct was applied to the bypass radiated noise, the polar and sideline noise changed in amplitude and directivity. The maximum polar PNL is at 150 degrees and is 100.5 PNdB (Table V). The maximum sideline noise is at 70 degrees and is 97.7 PNdB (Table IV). The predicted SPL spectrum at 200 feet is shown in Tables IX and X.

The treatment reduced the sideline noise at 100 degrees from 104.5 PNdB to 97.0 PNdB, a difference of 7.5 PNdB. The reduction is not as large as would be expected from the duct treatment, because the fan noise was suppressed below the jet noise up to 5 kilohertz (Figure 25). Therefore, in order to reduce the noise further, the core exhaust nozzle exit velocity must be lowered to reduct the noise on the sideline. The turbine noise is above 10 kilohertz and does not contribute significantly to the PNL, hence no acoustic treatment is required in the hot exhaust nozzle.

85.9 88.5 84.4 83.1 82.1 82.1 78.3 77.1 75.5 73.8 72.6 7.0.7 63.7 71.8 73.0 85.6 01.6 89.2 89.2 89.0 83.3 84.3 87.3 85.7 95. A 160.0 88.5 83. ŝ 99.0 100.0 110.0 120.0 130.0 140.0 150.0 13.3 POLAR FIELD 79.0 881.2 882.5 85.5 85.7 7 87.0 86.4 65.5 64.3 81.0 7.61 79.0 86.3 81.6 86°9 85.3 85.1 83.5 82.7 75.4 74.372.177.078.5 86°2 87.1 50 85.7 .0 84.3 78.1 77.2 74.9 72.8 73.2 79.8 14.4 71.4 79.9 36.6 86.5 95.6 85.9 82.6 81.1 81.5 82.5 85.2 85.7 85.7 86.4 81.4 87.2 87.3 60.3 79.2 87.2 87.5 85.1 TREATED BYPASS DUCT 84.5 84.6 85.0 84.7 83.9 82.9 81.0 79.4 78.8 77.6 77.0 77.0 78.0 74.7 76.5 77.9 77.9 80.8 81.5 882.4 883.5 883.5 883.9 883.9 883.9 883.9 84.1 79.9 80.5 72.3 69.0 72.2 4.1 84.9 83.5 81.9 80.4 79.9 85.4 84.9 78.477.377.1 72.3 75.3 78.6 80.3 81.6 82.2 84.3 84.3 84.5 85.1 85.3 85.2 84.2 19.6 16.9 6.9.9 72.8 74.2 83.1 LEVEL 79.1 75.9 76.7 76.7 715.7 71.1 76.7 77.9 66.9 80°0 81.2 81.2 81.7 82.2 82.3 82.0 92.4 82.7 82.3 8.18 81.3 80.0 19.2 14.7 DEGREES GNUUS 82.6 81.9 82.0 81.4 81.4 81.1 78.8 76.8 778.8 778.4 778.4 772.9 772.9 772.9 76.6 82.8 82.8 82.3 70.9 90.9 82.9 68.4 73.3 76.4779.27 82.1 82.0 82.4 83.0 COMBINED 77.3 69.0 80.0 65.9 0.61 78.9 79.7 19.4 79.7 79.8 79.8 80.4 81.2 81.5 81.5 19.61 12.9 16.8 68.4 776.5 776.5 77.0 77.0 77.0 77.0 77.0 77.0 7 82.4 11.8 19.3 6.7 POLAR NOISE FIELD. 67.5 69.8 73.7 73.7 73.7 73.7 73.7 80.2 80.2 80.2 81.1 81.0 81.1 80.7 80.9 81.7 81.1 81.8 81.8 82.9 83.4 83.5 84.3 81.4 79.0 81.7 4.4. 3.3 78.4 70.0 69°3 POLAR 60.09 75.5. 67.6 75.3 76.8. 1.11 78.6 8.4. 78.9 79.5 80.5 83.6 84.5. 85.8 82.8 80.3 83.4 79.5 82**.**1 74.6 65.3 71.3 04.9 80.1 . 50.0 79.6. 79.9 80.5 86.6 83.6 75.5 78.1 79.8 79.5 79.5 80.J 80.J 81.4 84.4 85.3 84.2 90.9 7L-4 68.6 70.7 72.77 76.4 THRUST 86.0 86.9 11.4. 78.1 79.1 80.7 83.9 40°04 70.272.073.375.57 16.6 94.5 95.5. 75.8 69.1 82.7 84.5 Z6.6 81.3 91.3 TABLE IX. "NASA 1.25" FAN. .. 83.75. LB 83.5 30.0 80.6 80.1 80.1 80.1 79.5-79.1 81.1 85.6 86.5 75.5 80.9 72.4 74.4 75.9 76.8 79.0 79.2 79.2 84.3 95.3 91°1. 84.2 80.9 6.03 82.7 78.7 78.8 78.8 78.5 78.5 78.5 78.2 78.7 78.7 78.7 78.7 78.7 78.7 84.4 84.8 85.7 82.7 83.3 83.3 74.6 80.I 20.0 10.5 81.7 68.2 72.9 83.3 15.4 80.1 10.0 79.9 10.61 75.2 80.9. 81.3 81.2 81.2 80.9 30.0<u>.</u> 70.7 82.4 83.5 84.4 81.3 78.9 74.0 79.0 19.4 80.2 80.5 73.3 78.7 69.2 0.0 90.8 81.4. 82.5 79.5 77.1 30.1 72.3 71.4 6.8 75.6.779.4 82.2 81.7 81.6 81.6 81.6 80.2 79.4 81.7 70.3 81°4. 1.61 19.7 ŝ FREQ 1259.0 0.0001 80.0 200.0250.0 500.0 20.0 225.0 31.5 50.0 63.0 00.00 125.0. 160.0 400.0 630.0 800.0 2000.0 2500.0 3150.0 4000.0 5000.0 6300.0 8000.0 0.0000 2500.0 0.0006 0.0000 .

		LABL.	Е Х.	SIDE	LINE	ISION] FIE	LD, 1	rrea'	TED I	3YPA	SS DU	ст		
FREQ	NASA	1°25.	FAN, B	1375 LB	THR	tus T		-		90	GREES		SID	I INE I	IELD
	20.0	30.0	40.0	50.0	60.0	70.0	80.0	0.06	100.0	110.0	120.0	130.0	140.0	150.0	160.0
		!	.*				S	I DEL IN	IE COMB	INED S	DUND L	EVELS	·		
20.0	58.9	64.1	64.2	66.3	54.0	67.0	65.7	68.4	66.8	69.4	67.7	72.1	72.0.	74.6	1.17
25.0.	.61.4.	. 66.3	-66.3.	68.4-	-66.4-	-69.3-	- 68.2 -	70.9		-72.2	70.9	. 75.1.			73.6
31.5	63 . 5	68°3	68.1 , , , ,		68.4 10	4.17	70.4	73.3	6.11	74.7	13.5	17.6	77.4	19.0	75.3
50.0	66.0	70.7	70.3	72.9		74.4	73.4	1.01	75.1	78-0	12.37	80.3 B0.3	19.8	80.4	76.5
63.0	67.4	72.1	71.7	74.4	72.9	75.0	75.1	78.1	77.0	79.8	78.4	81.8	81.0	82.6	78.4
80.0	68.2	12.9	72.4	75.3	74.0	2.77	76.2	79.3	78.2	81.0	79.5	82.8	91 ° 8	83.5	79.1
100.0				15.1	-74.6	8.11	_76.8_	80.0	78.9				82.3	83.9	79.2
125.0	6.9.9	73.6	73.2	76.4	15.5	19.6	17.7	80.8	19.9	82.5	81.1	84.0	82.9	84.3	79.6
160.0	69.6	74.4	74 0			- 19.1	78.8	8.2.0	81.0	. 1 . 68	82.2	85 . 0	83.7	95.1	80.2
0.002	1.60	5	0 · · ·		4 ° 0 / 6	9 0 6 1	1.8.1	82.0	80.5	83.6	82.1	84.7	83.2	84.5	19.6
315.0	69.1	74.0	73.8	- 11-5	17.2		79.5	82.3 87.8	4 0 18	84•U	6.78 87.9	84.8 85.0	83.0	84°2	4°61 C 02
400.0	69.7	73.7	73.7	77.5	17.2	80.4	79.5	82.9	87.0	84.6	83.0	84.8	82.30	1.50	78.6
500.0	68.0	73.0	73.3	77.0	76.9	19.9	1.61	82.4	81.7	84.2	82.6	84.1	81.3	82.4	77.4
630.0	58.1	73.1	. 73.9.	. 77.3	. 11. 3		79.3	82.5	82.1	84.4	83.0	84.0	1.18	81.9	7.01
0°008	68.4	73.5	74.8	1.1.1	6.11	1.08	19.3	82.5	82.3	84.6	83.4	83.9	80.7	0°16	75.6
1,000.0	4 ° 6 9	74.2	76.3		78.8	80.1	79.3	81.9	81.9	84.0	82.9	83.1	6.61	79.5	13.9
0.0041		0.77	1.07	5.77 F. 18	80.2	40. LA	80 - 5	81.4 81.4	81.2	83.1	82.I	82 . 1	78.9	78.3	72.4
2000.0	72.7	77.6	80.5	82.0	82.4	82.0	80.6	80.6	79.1	80.4	78.8	79.2	75.9	75.2	1.00
2500.0	72.5	77.6	80.6	82.1	.82.5	81.9	80.6	79.9	78.0	78.8	77.0	77.5	74.3	73.3	66.1
3150.0	72.7	78.0	1.18	82.6	83.1	82.4	81.0	19.9	7.17	78.0	76.1	76.3	13.2	71.8	64.1
4000.0	68.7	74.3	17.5		1.61	1.67	71.8	2.17	75.4	76.2	74.5	74.8	7.17	69.6	61.5
5000.0	65.1	1.17	74.5	76.2	76.8	76.3	1.51	74.8	73.7	74.6	73.4	73.2	70.2	67.4	53.7
	00.0	-(3•L	<u>[6.8</u>	13.6	-13.52-	78.5	-7.1.5	75.8	74.0	73.9	-72.5	71.6	68.6	65.1	56.0
10000.0	53.6	4-14	6.10 6.12	6 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 8 - 8 4	5 8 Y	0 4 ° C 9 °	67.4	07.0	2.01	2.44	08.J	4.04	5.10 5.70	1.20
12500.0	56.2	64.9	69.7	72.1	73.1	72.6	71.5	0.17	71.5		8.17	2.00	1.20	7 0 7 0 7	47.0
1 6000.0	52.0	62.1	67.5	70.2	71.4	71.1	10.2	70.2	71.3	72.3	71.9	69.1	64.7	57.0	45.0
20000.0	37.8	40.4	55.5	58.6	60.0	60.3	60.7	63.7	66.5	61.9	67.5	64.5	59.7	51.3	37.8

ENGINE PERFORMANCE

Design Cycle Considerations

The final turbofan engine design cycle was established at the maximum rating at sea level, static, standard conditions for the Lycoming LTC4B-12 shaft tubine engine. The B-12 engine, with minor modifications, serves as the power producer, and consequently its ratings (i.e. torque and speed limits) are applied to the fan version in addition to limits unique to the fan and reduction gearbox.

The rematch of the core engine at maximum rating when operating behind a supercharger stage is similar to the shaft engine being rammed at flight velocity. The operating point on the high compressor referred to its inlet reflects the reduction in referred turbine inlet temperature $T_4/\theta_{2.1}$. See the engine station diagram in Figure 26. This is manifested as a reduction in referred gas producer speed $N_G/\sqrt{\theta_{2.1}}$, referred compressor inlet airflow $W_a p \sqrt{\theta_{2.1}}/\delta_{2.1}$, and compressor pressure ratio $P_3/P_{2.1}$. Determination of the high compressor referred inlet airflow as a function of supercharger pressure ratio and efficiency allows computation of the actual engine inlet airflow, which is also the referred inlet airflow of the engine supercharging portion of the fan.

With a prescribed fan pressure ratio selection of the design bypass ratio and, therefore, the inlet referred airflow into the bypass stream portion of the fan, is dependent on the available power turbine work resulting from the power turbine gas flow, inlet temperature, and the expansion ratio necessary to diffuse the hot nozzle exit stream to the velocity desired for minimum exhaust noise. Gas flow and power turbine inlet temperature are determined by the compressor and supercharger match, component losses, airbleeds, and the maximum turbine inlet temperature T_4 of the B-12 engine. The resultant turbine power available * to drive the fan and supercharger at their respective pressure ratios and efficiencies establish the fan total inlet airflow and bypass ratio.

Estimated Engine Performance and Fan Matching

Estimated performance data presented herein are based on a lower heating value of 18,400 Btu/lb and are representative of typical average production engines. The standard atmospheric conditions are as given in U.S. Standard Atmosphere, 1962 (ASTIA Document 401813). Tropical atmospheric conditions are as presented in Climatic Extremes for Military Equipment, 1957 (MIL-STD-210A). Thermodynamic and performance data for the engine design point are presented in Tables XI through XIII. Part-load performance data have been generated for both the prime fan A with large design surge margin (SM = 21 percent at 100 percent

There is no exhaust diffuser or exhaust nozzle after the power turbine.

Figure 26, Engine Stations.

.

F

TABLE XI. TURBOFA	N ENGINE DESIGN CYCI	E DATA	
Item	Symbol	Unit	
Fan Engine Inlet Conditions Altitude Ambient Temperature Ambient Pressure Flight Mach Number	T _{am} P _{am} M _f	ft °R psia -	0 518.7 14.7 0
Cycle Temperature *	T _j	°F	2067
Specific Thrust	F _{NT} /W _{aT}	lb _f -sec/lbm	19.9
Pressure Ratios Compressor Overall Fan (and Supercharger) Gas Generator Compressor	P ₃ /P ₂ P ₁₃ /P ₁₂ P ₃ /P _{2.1}		9.8 1.25 7.84
Referred Airflows Total Gas Generator(Inlet)	$W_{aT} \sqrt{\theta_2/\delta_2} W_{aP} \sqrt{\theta_2.1/\delta_2.1}$	lb/sec lb/sec	421 25.9
Bypass Ratio	BR	-	12.5
Fan Speed Power Turbine Speed Gas Generator Spool	N _F N _{PT} N _G	rpm rpm rpm	5 <i>2</i> 45 16870 19180
Total Net Thrust Thrust Specific Fuel Consumption	F _{NT} TSFC	lb lbm/hr-lb _f	8370 •302
Engine Stream (Primary) Exhaust Velocity Bypass Stream (Secondary) Exhaust Velocity	V _{jP} V _{jS}	ft/sec ft/sec	846 623
*Total temperature at first tu	rbine rotor inlet		

-
TABLE XII. TURBOFAN ENGINE DESIGN EFFICIENCY AND LOSS ASSUMPTIONS						
Item		Symbol	Unit (
Pressure Losses in Engine						
Combustor		Δp/p ₃	-	.033		
Bypass Stream (Fan)Exhaust Duct		AP/P ₁₃	-	.01		
Nozzle Velocity Ratios						
Primary (Engine Nozzle)		C _{VP}	-	•99		
Secondary (Bypass Nozzle)		c _{vs}	-	•99		
Component Efficiencies				00		
Fan	Polytropic	η _{FP}	-	.88		
	Adiabatic	η _{Fa}	. 	.876		
Supercharger	Polytropic	η _{SCP}	-	.86		
	Adiabatic	^η Sa	 	.855		
Gas Generator Compressor		_		858		
	rothtrobic	^η CP	_	.050 814		
	AGIEDATIC	¹ C		°OTO		
Combustor		ח _B	-	.98		
Gas Generator Turbine	Polytropic	η_{TP}	-	.897		
	Adiabatic	$^{\eta}\mathbf{T}$	-	.907		
Power Turbine	Polytropic	η_{TP}		.871		
•	Adiabatic	'n r	-	.887		
Mechanical Rotor Efficienc	ies					
Gas Cenerator		^л мG	-	•993		
Fan		n _{MF}	-	.985		
Equivalent Cooling Air Flow (Bypassing Gas Generator Turbine)		w_/w	%	3.5		
Rotating Seal and Overboard Leakage		W/W L aP	%	0.5		

TABLE XIII. TURBOFAN ENGINE STATION CYCLE DATA						
Component		Total Pressure (psia)	Total Temperature (°R)	Flow Rate (lb/sec)		
Engine Inlet		14.7	518.7	421		
Fan	Inlet	14.7	518.7	390		
	Exit	18.4	558	390		
Bypass Stream (Fan)	Inlet	18.4	558	390		
Exhaust Duct	Exit	18.2	558	390		
Supercharger	Inlet	14.7	518.7	31.2		
	Exit	18.4	559	31.2		
Gas Generator Compressor	Inlet	18.4	559	31.2		
	Exit	144	1096	31.2		
Combustor:	Inlet	144	1096	30.0		
	Exit	139.3	25 <i>2</i> 7	30.7		
Gas Generator Turbine	Inlet	139.3	25.27	30.7		
	Exit	53.5	2040	30.7		
Power Turbine	Inlet	53.5	2040	31.7		
	Exit	16.8	1598	31.7		
Engine Stream (Gas)	Inlet	16.8	1598	31.7		
Exhaust Duct	Exit	16.8	1598	31.7		

 $N/\sqrt{\theta_2}$) and fan B, which has the more moderate design surge margin (SM = 14 percent at 100 percent $N/\sqrt{\theta_2}$) normally associated with fan engines configured for cruise. For each configuration, the aerodynamic fan design point has the same pressure ratio, flow, and efficiency, so Tables XI through XIII apply to both. Insofar as the effect of redesign influences only the bypass stream portion of the fan, the supercharger characteristic remains unaltered.

Fan A (Surge Margin = 21 Percent at 100 Percent $N/\sqrt{\theta_2}$). - Standard and tropical day performance from sea level to 20,000 feet at various flight Mach numbers is shown, for this design, in Figures 27 through 36. Lines are presented on these curves through the loci of maximum (5 minute) ratings, military (30 minute) ratings, and continuous ratings, as well as the power turbine maximum speed where this limits engine operation.

To obtain perspective with respect to component matching, operating lines within the suitable flight envelope are superimposed on the fan, supercharger, and high-pressure compressor characteristics, and are presented as Figures 37 through 39 respectively. The design surge margins* at 100 percent referred speed are 21 percent for the fan and 29 percent for the supercharger. The problem inherent to low-pressureratio fan designs shows up clearly as a rapid unloading of the fan with increased M_f (flight Mach number) with the associated severe decrease in efficiency. This is exemplified by the decay of fan efficiency at standard day maximum rating going from static to 0.4 M_f , on the order of 17 percent.

Fan B (Surge Margin = 14 Percent at 100 Percent $N/\overline{\theta_2}$). - The selection of a fan design with more moderate surge margin at the aerodynamic fan design point has the direct benefit of improved performance at the flight Mach numbers associated with cruise. The fan B characteristic is presented in Figure 40 with operating lines equivalent to those shown in Figure 37. The efficiency decay in this case traversing from the sea level, static operating line to the sea level, 0.4 M_f operating line is 8 percent at maximum rating. Sea level performance for both fan designs is shown comparatively in Figure 41 to illustrate the described effect on TSFC (thrust specific fuel consumption) and thrust. It is seen that the lower surge margin fan design provides 8 1/2 percent more net thrust with 8 1/2 percent less TSFC at 0.4 M_f maximum rating. Standard and tropical day performance from sea level to 20,000 feet is shown for this configuration in Figures 42 through 51.

* SM =
$$\left[\left(\frac{P_{rs}}{P_{ro}} \times \frac{W_{ao}}{W_{as}} \right) - 1 \right] \times 100$$

(at constant referred speed)

Fan Configuration A (SM = 21 Percent, A_{18} = 1190 Square Inches) Estimated Performance at Sea Level on Standard Day. Figure 27.

Fan Configuration A (SM = 21 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at 5000 Feet on Standard Day. Figure 28.

ł

THRUST SPECIFIC FUEL CONSUMPTION - 16m/(hr) (16f)

Fan Configuration A (SM = 21 Percent, A₁ g = 1190 Square Inches) Estimated Performance at 10,000 Feet on Standard Day. Figure 29.

THRUST SPECIFIC FUEL CONSUMPTION - Ibm/(hr) (Ibf)

TOTAL NET THRUST - Ib

Figure 30. Fan Configuration A (SM = 21 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at 15,000 Feet on Standard Day.

TOTAL NET THRUST - Ib

Figure 31. Fan Configuration A (SM = 21 Percent, A₁₈ = 1190 Square Inches) Estimated Peformance at 20,000 Feet on Standard Day.

Fan Configuration A (SM = 21 Percent, A₁g = 1190 Square Inches) Estimated Performance at Sea Level on Tropical Day (90° F). Figure 32.

THRUST SPECIFIC FUEL CONSUMPTION - Ibm/(hr) (Ibf)

TOTAL NET THRUST - Ib

Figure 33. Fan Configuration A (SM = 21 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at 5000 Feet on Tropical Day (70° F).

Figure 34. Fan Configuration A (SM = 21 Percent, A₁₈ = 1190 Square Inches) Estimated Performance at 10,000 Feet on Tropical Day (51° F).

TOTAL NET THRUST - Ib

TOTAL NET THRUST - Ib

Figure 36. Fan Configuration A (SM = 21 Percent, A₁₈ = 1190 Square Inches) Estimated Performance at 20,000 Feet on Tropical Day (12° F).

G

Figure 37. Estimated Fan Performance Map for Configuration A With Fixed Fan Exhaust Nozzle (A₁₈ = 1190 Square Inches) Showing Operating Lines.

Figure 38. Estimated Supercharger Performance Map With Fixed Fan Exhaust Nozzle (A₁₈ = 1190 Square Inches) Showing Operating Lines.

Figure 39. Gas Generator Performance Map Showing Operating Lines.

Figure 40. Estimated Fan Performance Map for Configuration B With Fixed Fan Exhaust Nozzle (A₁₈ = 1190 Square Inches) Showing Operating Lines.

806 CONFIGURATION A CONFIGURATION B 8000 Fan Configurations A and B $(A_{18} = 1190 \text{ Square Inches})$ 7000 MAXIMUM RATING 6000 TOTAL NET THRUST - Ib . 5000 4000 0 0.1 3000 Figure 41. 0.2 FLIGHT MACH NUMBER 2000 ო**4** ი- $M_{f} = 0.4$ 0.2 0.8 0.7 0.6 0.5 0.4 0.3

THRUST SPECIFIC FUEL CONSUMPTION - Ibm/(hr) (Ibf)

79

Estimated Performance at Sea Level on Standard Day.

.

THRUST SPECIFIC FUEL CONSUMPTION - Ibm/(hr) (Ibf)

Fan Configuration B (SM = 14 Percent, A18 = 1190 Square Inches) Estimated Performance at 5000 Feet on Standard Day. Figure 43.

Figure 44. Fan Configuration B (SM = 14 Percent, A18 = 1190 Square Inches) Estimated Performance at 10,000 Feet on Standard Day.

TOTAL NET THRUST - Ib

Figure 45. Fan Configuration B (SM = 14 Percent, A₁₈ = 1190 Square Inches) Estimated Performance at 15,000 Feet on Standard Day.

Figure 46. Fan Configuration B (SM = 14 Percent, A₁₈ = 1190 Square Inches) Estimated Performance at 20,000 Feet on Standard Day.

Figure 47. Fan Configuration B (SM = 14 Percent, A₁₈ = 1190 Square Inches) Estimated Performance at Sea Level on Tropical Day (90° F).

Figure 48. Fan Configuration B (SM = 14 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at 5000 Feet on Tropical Day (70° F).

Figure 49. Fan Configuration B (SM = 14 Percent, A_{18} = 1190 Square Inches) Estimated Performance at 10,000 Feet on Tropical Day (51° F).

TOTAL NET THRUST - Ib

Figure 50. Fan Configuration B (SM = 14 Percent, A₁₈ = 1190 Square Inches) Estimated Performance at 15,000 Feet on Tropical Day (32° F).

88

A

Figure 51. Fan Configuration B (SM = 14 Percent, $A_{18} = 1190$ Square Inches) Estimated Performance at 20,000 Feet on Tropical Day (12° F).

89

Estimated acceleration time for 66 percent of the interval between 80 percent maximum F_{NT} (total net thrust) and maximum F_{NT} (or, 80 percent maximum F_{NT} to 93.2 percent maximum F_{NT}) for sea level standard conditions at Mach numbers from static to 0.4 M_f is 2.5 seconds. The accelration schedule used is the same $W_f/\delta_{2.1}/\theta_{2.1}$ versus $N_G//\theta_{2.1}$ as that of the B-12 shaft engine and has full high compressor interstage bleed along the transient schedule. This insures the same high compressor referred acceleration surge margin for the fan that has been proven to be safe for the shaft engine using the same core components.

Variable Bypass Nozzle

The degradation in fan efficiency associated with increasing flight Mach number can be neutralized with the use of an infinitely variable bypass stream exhaust nozzle. Reduction of nozzle area moves the fan operating line toward surge, thereby reversing the deleterious effect of increased Mach number with constant nozzle area. Of course, the control system associated with a nozzle that is made to vary continuously is quite complex, and the concept of a "two-position" exhaust nozzle with a more simple control requirement still affords the basic advantage of improved cruise performance.

Figure 52 is the Fan A characteristic with sea level operating lines shown at static and 0.4 M_f for the base fan stream exhaust nozzle area. The result of reducing the nozzle area (12.0 percent) to relocate the 0.4 M_f maximum rating match point into the static operating line, with the associated higher fan efficiency, provides a performance improvement of 16 percent F_{NT} and 15 percent TSFC. Now, free stream Mach number may be increased to 0.7 M_f before returning the maximum rating point to the operating efficiency of the 0.4 M_f point of the base configuration. The resultant performance improvement at cruise Mach numbers above 0.4 M_f is shown in Figure 53, which presents comparative sea level standard day performance for both bypass exhaust nozzle areas.

POWER TURBINE ANALYSIS

General

An important aspect of the integral fan engine design includes use of the 502 MQT power turbine. This turbine has been designed with a 14 percent increased exhaust annular area, and will be phased into the 502 fan engine program much in advance of NASA time requirements. Use of the MQT power turbine reduces the exit velocity from 1,000 to 870 ft/sec for a

Figure 52. Estimated Fan Performance Map for Configuration A Showing Operating Lines With Two-Position Fan Exhaust Nozzle.

Figure 53. Fan Configuration A (SM = 21 Percent at 100 Percent $N//\theta$) Estimated Performance at Sea Level on Standard Day With Two-Position Fan Exhaust Nozzle.

condition of exit static pressure equal to ambient. This reduction in hot jet exhaust velocity will have an important effect on the jet noise, since the use of a diffuser after the turbine was not acceptable because of the increase in engine length and related problems of ground clearance in the aircraft installation.

Cycle Requirements and Turbine Aerothermodynamic Analysis

Matching studies of the 502 core engine supercharged by a 1.25:1 pressure-ratio fan show that the flow capacity $W \sqrt{\theta_{cr}}/\delta$ of the MQT power turbine is 8.5 percent too large. As a consequence, an off-design analysis was made on the turbine blading to reduce the flow capacity to the required value of 17.03 lb/sec. Since a relatively small change in flow capacity was required to produce the proper engine matching condition at the desired compressor pressure ratio and maximum temperature, it was possible to accomplish the reduction by increasing the fist stator stagger angle by 3.6 degrees to decrease the area and give the required flow capacity. The analysis accounted for change in incidence from the optimum value and Mach number change effects on each of the four cascades involved. The results showed that the loss in overall turbine efficiency resulting from the nozzle stagger angle change was 0.6 points, which assures the 0.887 value used in the cycle calculation since the MQT turbine target efficiency is 0.89 to 0.90.

Of particular interest in the analysis is the lowering of the second stage hub reaction when the flow reduction is made by the most simple change in turbine geometry involving only the first stage nozzle. The analysis indicated that a small acceleration was maintained at the second rotor hub, which should be adequate for the low camber (fluid turning 79 degrees) and low hub tip ratio (0.54) of this cascade.

Figures 54 and 55 show the hub, mean, and tip velocity triangles for the modified MQT power turbine at the sea level static design point. The thermodynamic state points are also included for additional information.

ENGINE WEIGHT

Weight analysis for the integral life fan engine was relatively simple since the core is made up of the Lycoming T55-B12 turboshaft engine with the MQT power turbine; therefore, the weight is accurately known for these components, and only the new fan component, bypass duct including exhaust nozzle and the duct sound-attenuating rings and wall treatment had to be calculated. The weight of these new components was determined from basic aerodynamic design and mechanical design considerations already described.

Figure 54. Modified MQT Power Turbine First Stage Velocity Triangles for 8.5 Percent Reduced Inlet Flow Function.

Figure 55. Modified MQT Power Turbine Second Stage Velocity Triangles for 8.5 Percent Reduced Inlet Flow Function.

The dry weight of the engine without starter is 1419 pounds, * and is made up of the following components:

	Weight (1b)
Core With Accessories (excluding power turbine)	510.50
MQT Power Turbine and Drive Shaft	165.00
5-Planet Reduction Gear	172.90
Fan Rotor Plus Blades and Spinner (titanium)	153.30
Fan Shroud (titanium)	58.00
Straightening Vanes for Duct and Core (aluminum)	66.10
Support Frame (magnesium)	194.00
Bypass Duct and Nozzle (aluminum and po lyimid resin)	41.00
Bypass Duct Noise-Attenuating Rings (polyimid resin)	58.40
Total	1,419.20

Based on fixed-area bypass duct exhaust nozzle

96

I

*

SCHEDULE AND COST ESTIMATE OF INTEGRAL LIFT ENGINE

Program Planning

An engineering program has been planned that would lead to development of the integral lift engine to a point where flightworthy engines could be provided for experimental aircraft. The overall 22-month program has been planned such that lesser objectives could be achieved in shorter periods of time.

Figure 56 shows a program schedule detailing major tasks, hardware development, and delivery schedules. This overall program schedule is segmented into three phases.

<u>Phase I - Demonstrator Engine.</u> - The intent of the Phase I program is to establish the credibility of the engine design by measuring static performance and establishing its noise signature. A single demonstrator engine would be procured and tested. The configuration would include downstream fan noise suppression (reference design); however, a conventional test cell bellmouth assembly would be used at the fan inlet. Suitable aerodynamic instrumentation would be installed. Preliminary testing would be limited to that necessary to establish adequate lubrication system and fuel system operation to assure satisfactory steady-state operation. Mechanical integrity instrumentation would be limited to that required for safe engine operation.

A 2- to 4-month engine test program is envisioned with 50 to 80 test hours logged in the test cell and at the free field noise site. After partial disassembly and inspection, it is anticipated that the engine could be reassembled for continued testing and evaluation either locally or at an offsite test facility.

The demonstrator engine program would validate the design point performance of the configuration and sea level static operating line performance.

The demonstrator engine program would underwrite the detail design of the design study engine and design of required special test equipment for cell and field site operation. It would also procure soft tooling for any subsequent procurements.

Figure 56. ALF-504 Engine Program.

<u>Phase II - Fan Module Rig Test.</u> The intent of the Phase II rig test program is to enhance the demonstrator engine program by validating the predicted performance of the fan component. An overall performance map would be produced from part speed to overspeed up to, and including, the surge line for the anticipated operating range of representative aircraft applications. Available facility power may impose certain operating limitations.

Installed aerodynamic instrumentation would permit computation of overall and blade row performance parameters, including adiabatic and polytropic efficiencies and vector diagrams.

Vibratory stress instrumentation would also be installed to sense regions of rotating stall, and sufficient stall data would be gathered to define potential areas of blade vibration resonances.

In Figure 56, the fan module test rig has been planned to complement the objectives of the demonstrator engine program. It could also be considered an independent program of 16 month's duration. This latter case was the basis assumed for the Phase II budgetary cost estimate. To integrate the program with the demonstrator engine program, the rig test has been scheduled to receive the second fan module fabricated. As an independent program, rig testing could start in the fourteenth month.

<u>Phase III - PFRT Program.</u> - Phase I and Phase II were planned to validate in hardware the results of the engine design study by confirming predicted component and overall performance values. From this base, Phase III is a continuing development program intended to bring the configuration to limited operational status, suitable for use in experimental prototype aircraft.

Phase III will culminate in the successful completion of a PFRT (preliminary flight rating test). It is essentially an engine program with limited effort at the component level. Three additional in-house test engines would be procured with a goal of 600 engine hours to be logged before initiation of the PFRT.

Types of engine tests planned are:

Steady-State Performance

Transient Performance

Variable Attitude Operation

Determination of Surface Temperatures

Overall Vibration Survey

Oil/Fuel System Operational Evaluation and Optimization

Cyclic Endurance Testing.

The task requirements of this program are very similar to those of our ALF-502A/YF-102 engine development program where the PFRT was successfully completed in the spring of 1972. Northrop A9A aircraft are now flying powered by these Avco Lycoming high-bypass-ratio turbofans.

The ALF-502 program schedule and costing were based on this recent history.

Budgetary and Planning Cost Estimate

1. PFRT Engine Program - \$6.5M

.

- NOTES: 1. Total program shown on schedule, Figure 56.
 - 2. PFRT complete 22 months ATP.
 - 3. Summation of Phases I, II, and III schedules.
 - 4. Costs include procurement of 4 engines and 2.5 equivalent engines for component test and in-house spares.
 - 5. Cost assumes Government-furnished fuel and lubricants.

2. Unit Cost of Deliverable Flight Rated (PFRT) Engines - \$485K

3. Phase I - Demonstrator Engine Program - \$2.4M

- NOTES: 1. Cost based on 14 months, one engine program.
 - 2. Cost includes detail design of engine and special test support equipment, procurement of tooling, 1/2 equivalent engine for in-house spares, and one set engine test support equipment.

3. Cost assumes Government-furnished fuel and lubricants.

4. Phase II - Fan Rig Test Program - \$750K

- NOTES: 1. Costs include fan module detail design and tooling. If Phase I and Phase II are implemented concurrently, reduce Phase II cost by \$300K.
 - 2. Assumes a 16-month program.
- 5. General Assumptions and Conditions

Δ

The costs shown are based on rent-free use of the Stratford facility and tooling.

For purposes of cost estimating, an assumed go-ahead date of 1 January 1973 was selected. Average labor rates were used and represent those anticipated for the CY 1973 and CY 1974 period. Material costs were estimated at current rates and increased to represent CY 1973 and CY 1974 procurements.

APPENDIX I AERODYNAMIC INFLUENCE OF THE PART-SPAN SHROUD

The part-span shroud creates an additional channel flow blockage effect that must be taken into account in the fan design.

In Reference 1, detailed radial surveys of the various flow parameters were taken at the exit of a part-span shrouded fan rotor and compared with the corresponding data for the same rotor without shroud. It was shown that the presence of the part-span shroud substantially modifies the tangential and meridional velocity profiles at the rotor exit station over the entire channel height. This finding prompted the following investigation, which is aimed at taking into account the effect of the annulus wake of the part-span shroud on the fan rotor flow conditions.

Figure 57 reproduces the axial and tangential velocity distributions measured at rotor exit station of the fan of Reference 1. It will be seen that the part-span shroud creates a wake with lower axial velocity and a higher tangential velocity than in the surrounding flow region.

Figure 58 shows, among other data, a total temperature survey taken at exit of the 502 fan rotor, which confirms the higher work input to the wake flow by the part-span shroud. At any point in the wake, the total temperature results from the mixing of particles undergoing the normal compression process outside the shroud boundary layer and particles inside that boundary layer. Since the tangential velocity in the shroud boundary layer varies from Us (part-span shroud rotational speed) to V_{A} (tangential flow velocity immediately outside of the boundary layer), the entire U_s , V_A tangential velocity spectrum is involved in the mixing process. The situation, however, can be conveniently schematized by considering the temperature at any wake point to result from the mixing of particles with only two different tangential velocities, namely Us and $V\theta$ (as imparted by the rotor blading just outside of the boundary layer). This scheme enables an equivalent mixing mass flow ratio to be defined for each temperature point in the wake downstream of the rotor. Accordingly, we write for the unit mass in the wake:

$$T_{wake} = m_1 T_{V_{\theta}} + m_2 T_{U_s}$$
(1)

Figure 57. Measured Flow Conditions Downstream of Rotor (Reference 1, "Some Studies of Front Fans With and Without Snubbers").

Figure 58. Radial Surveys Downstream of ALF-502 Fan Rotor, Test -02.

where $m_1 + m_2 = 1$ and $T_{V_{\theta}}$ and T_{U_s} are the total temperatures at rotor exit station resulting from the work input of the blading and of the shroud at its rotaitional speed U_s respectively. Hence:

$$\frac{m_2}{m_1} = \frac{T_{wake} - T_{V_{\theta}}}{T_{U_{\theta}} - T_{wake}}$$
(2)

It is now assumed that the above equivalent mixing ratio, which characterizes the local degree of mixing, is independent of the thermodynamic state of the mixing components and thus can be assumed to have essentially identical values at corresponding locations in the part-span shroud wake of different rotors.

Taking the highest wake temperature point at rotor exit of the 502 fan from the 90 percent referred design speed survey shown in Figure 58, namely:

$$T_{wake} = 1.127 T_{amb} = 584.6^{\circ} R$$
 (3)

and

$$T_{v_{\theta}} = 1.110 T_{amb} = 575.8^{\circ} R$$
 (4)

and with

$$U_{s} = 905 \, \text{ft/sec},$$
 (5)

that is, $T_{U_s} = 655.3^{\circ} R$

Equation (2) yields $m_2/m_1 = 0.1244$.

Applying this equivalent ratio for the present fan with the design point parameters

$$T_{v_{\theta}} = 556.5^{\circ} R$$
 (7)

$$U_{s} = 824 \, \text{ft/sec},$$
 (8)

that is, $T_{U_g} = 631.5^{\circ} R$ (9) Equation (1) yields $T_{wake} = 564.8^{\circ} R$.

The corresponding rotor efficiency can be calculated from the above total temperature, the resulting V_{β} component, and tentatively assumed

(6)

values of the static pressure and meridional velocity component. The meridional velocity is assumed to be in the same ratio the the unperturbed value as measured in Reference 1 and shown in Figure 57. A close value of the static pressure is available from a previous calculation without partspan shroud effect. (It can be iterated for final design purposes.) The resulting polytropic efficiency is $\eta_{P \text{ wake}} = 0.67$ and the total wake pressure ratio $(P/P)_{\text{wake}} = 1.221$. The results are compared in the following table:

	Rotor Data	ALF-502 Fan Meas- ured at 90 Pct Ref Design Speed	NASA Fan Calcu- lated at 100 Pct Ref Design Speed
Outside of Part- Span Shroud Wake	P/P [¶] p	1.40 0.935	1.262 0.945
At Part Span Shroud Wake Core	Р/Р ¶р	1.386 0.80	1.221 0.67
	(⁰ R) ∆T _{wakemax}	8.8	8.3

The wake core total temperature excess $\Delta T_{wake_{max}}$ is practically the same in both cases. This is due to similar values of the difference $U_s^2 - UV\theta$ for both rotors and follows immediately from the basic assumption of equal equivalent mixing mass ratios. The mixing losses in the present case, however, represent a substantially larger portion of the rotor work input and this is correctly reflected in both the calculated lower polytropic efficiency and the larger relative total wake pressure defect.

For the computer flow calculation procedure a 1.5-inch wake thickness has been assumed at rotor exit station 12, and the wake flow has been represented only by the two wake-limiting streamlines and the wake core streamline with the above-calculated input data. The calculated wake blockage effect is approximately 1 percent of the total annulus area. Figure 59 compares the meridional velocity profiles at rotor exit station with and without wake effect, but with identical overall flow blockage factors. It will be seen that the part-span shroud actually influences the flow field over a large portion of the annulus and that the modification of the velocity profile is qualitatively similar to that shown in Reference 1, although both effects are less pronounced in the present case.

This preliminary investigation shows that the influence of the part-span shroud on the fan flow conditions cannot be properly accounted for by a mere additional global flow blockage factor. A proper assessment of the resulting effect on the actual blading geometry, however, would require a more detailed description of the wake and its downstream dissipation, and possibly take into account the obstruction effect of the shroud itself on the rotor inlet flow conditions.

Downstream of Fan Rotor.

108

.

AXIAL VELOCITY - FT /SEC

APPENDIX II FAN FLOW CONDITIONS

Main Output

GROUP I

Group I output is repeated for each computing station in accordance with the input specification of Identifier 500. The sequence in which the stations appear in Output is:

- 1. Stations of the flow region upstream of splitter.
- 2. Stations of the lower flow region downstream, of splitter.
- 3. Stations of the uppper flow region downstream of splitter.

A. Mass Averaged Conditions

Line 1	
Word 1:	\overline{T} , average total temperature, °R.
Word 2:	\overline{P} , average total pressure, psf.
Word 3:	\overline{P}/P -upstream for compressor
	P-upstream/ \overline{P} for turbine.
Word 4:	η_{poly-T} (upstream to n-station).
Word 5:	η_{adi-T} (upstream to n-station).
Word 6:	$\overline{P}/\overline{P}_{I}$ for compressor. $\overline{P}_{T}/\overline{P}$ for turbine.
Word 7:	η_{poly-T} (stage inlet to n-station).

* NOTE:

Stage inlet definition:

- 1. For compressor, the n-station directly preceding the rotor exit station or the first blade station of the rotor, if blade stations are used.
- 2. For turbine, the n-station directly preceding the stator exit station or the first blade station of the stator, if blade stations are used.

Word	8:	η_{adi-T} (stage inlet to n-station).
Word	9:	\overline{T}_{S} , average static temperature, °R.
Word	10:	\overline{rV}_t , average moment of tangential momentum, in x ft/sec.
Word	11:	$\overline{\Delta H}$, average total enthalpy change from upstream temperature, Btu/lb.
Word	12:	Station Identification. *
Line	2	
Word	1:	W, computed weight flow, lb/sec.
Word	2:	N, rotational speed, RPM.
Word	3:	W√⊖/5, referred computed weight flow, lb/sec, where: ⊖ = T/518.688 5 = P/2116.216
Word	4:	N/ $\sqrt{\Theta}$, referred speed, RPM.
Word	5:	Wf/Wa, fuel-air ratio.
Word	6:	${\mathcal T}$, uniform blockage factor.
Word	7:	Number of streamlines.
Word	8:	Axial coordinate of the hub, in.
Word	9:	cotan ϵ , slope of the computing station.

*NOTE:

Output station Identification: n-Station = 10x input station identification plus iteration pass identification. b-station = Output identification of corresponding trailing edge station plus number of order of the blade station from leading edge.

B. Primary Option Definition

Line 1

Rotor or Station Option 1, 2, 3, or 4. Rotor Blade or Station Blade.

Line 2

ISRE or NISRE, if the entropy terms in the equilibrium equation and blade force components are neglected o included respectively.

Line 3

Blank or COUNTER ROTATING

NOTE:

One or more of the following lines may appear after Line 3 depending upon the options used:

MASS AVERAGE TOTAL PRESSURE

COOLING AIR EFFECT

TEST FACTOR SIMULATION

C. Title

D.

Flow conditions at Each Streamline

Six lines for stations outside blade rows or at the trailing edge.

Four lines for stations within blade rows. *

Line 1

Word 1: r, radius, in.

- Word 2: V, axial velocity, ft/sec.
- Word 3: V_m , meridional velocity, ft/sec.

* NOTE

The blade station output is printed in the sequence corresponding to the location of the station in the machine.

Word 4:
$$V/V_{n-1}$$
 or W/W_{n-1} , velocity ratio.*
Word 5: $\varphi_{n-1} - \varphi_n$ or $(\varphi_{n-1} - \varphi_n)_W$, turning angle,
deg.
Word 6: $T_n - T_{n-1}$, total temperature change, ${}^{O}R$.
Word 7: β or β_W projected flow angle, degree.
Word 8: $C_z = \frac{P_{s_n} - P_{s_{min}} - (P_n' - P_{n-1})_R}{P_{R_{n-1}} - P_{s_{min}}}$
where P_s is calculated using Zweifel
solidity and $(P_n' - P_{n-1})_R = 0$ for stator.
Word 9: Same as Word 8 except calculated using input
solidity.
Line 2
Word 1: V_{θ} absolute tangential velocity, ft/sec.
Word 2: V absolute velocity, ft/sec.
Word 3: M absolute Mach number.
Word 4: rV_t absolute moment of tangential momentum,
in. ft/sec.
Word 5: φ absolute flow angle, deg.
Word 6: T absolute total temperature, ${}^{O}R$.

* NOTE

The subscript n-l refers to the station preceding the n-station, or the first blade station when blade stations are present.

- Word 8: σ_z Zweifel solidity (for load coefficient of 1.0).
- Word 9: Input solidity.
- Line 3

Word	1:	V_{AW} relative tangential velocity, ft/sec.
Word	2:	V_w relative velocity, ft/sec.
Word	3:	Mw relative Mach number.
Word	4:	U blade speed, ft/sec.
Word	5:	ϕ_w relative flow angle, deg.
Word	6:	Tw total relative temperature.
Word	7:	P _w total relative pressure, psf.
Word	8:	$(\ddot{v}_{max}/v_n)_R$ where $v_{max R}$ is estimated using Zweifel solidity.
dond .	0 .	Some on Word & areant aslaulated water to

- Word 9: Same as Word 8 except calculated using input solidity.
- Line 4 $\tan \alpha = \frac{dr}{dz}$, streamline slope. Word 1: $Q = -\frac{d^2r}{dz^2} = -\frac{d\tan\alpha}{dz}$, in⁻¹. Word 2: $\frac{dv_z}{dz}$, ft/sec x in⁻¹. Word 3: Word 4: Axial coordinate, in. $\rho_{\rm s},$ static density, lb/cu ft. Word 5: Word 6: T_s , static temperature, O_R . P_s, static pressure, psf. Word 7: Word 8: $(M_{max})_{R}$ using Zweifel solidity. Same as Word 8 except calculated using Word 9: input solidity.

using input solidity.

114

.

Line 6	
Word 1:	P/P-upstream for compressor,
	P-upstream/P for turbine.
Word 2:	$\eta_{\text{poly},\mathbf{T}}$ (upstream to n station).
Word 3:	$\eta_{adi T}$ (upstream to n station).
Word 4:	P/P _I for compressor,
	P _I /P for turbine.
Word 5:	$\eta_{\text{poly }m}$ (inlet of stage to n station).
Word 6:	$\eta_{adi T}$ (inlet of stage to n station).
Word 7:	P _s /P _s for compressor, n-1
	P _s /P _s for turbine.
Word 8:	$\eta_{\text{polv S}}$ (n-1 station to n station).
Word 9:	$\eta_{adi S}$ (n-1 station to n station).
Word 10:	P/P_{n-1} for compressor,
	P _{n-1} /P for turbine.
Word 11:	$\eta_{poly T}$ (n-1 station to n station).
Word 12:	$\eta_{adi T}$ (n-1 station to n station).
Word 13:	V _{n-1} velocity at previous station, absolute for stator, relative for rotor, ft/sec.
Word 14.	Station Identification.
	MARANA TARATATATATATATATA

NOTE:

C

1

Words 8 and 9 of Lines 1 to 5 are printed if the calculated Zweifel solidity is > 0.050. Lines 5 and 6 are omitted in the case of a blade station.

	NASA FAN	ENGINE STUD	Υ	Mass Flow	Rates)				
EPSL1 0.0000100 EPSL5 0.0000500	EPSL2 0.0005000 UFRC 0.10000	EPSL3 0.0002000 XA1 0.0	EPSL4 0.0000100 7A1 0.0	RJUMP 0.05000 0x4 4.00000	VJUMP 1.00000 0YA 4.00000	QJUMP 0.20000 54 15.00000	FJUMP 0.0	FDRCER 1. 50000	FURCER 2 -0.40000
ICMPAS = NR = IND3 = NDROUT =	200 NCM 16 NRL = 0 INDV = 0 KSPPPP =	PAS = 300 4 NSTAT1 = 1 1 NEND = 0 0 NFS =	IPASS = IB NSTAT2 = I NGUT = 0 NKUSE =	0 5 NSTAT3 = 1 ITCNT = 0 0 0 0 0 0	5 NEU = 25 ENTRVL = 0 0 0 0 0 0	0 NE2 = 0 0 NUBRUT = 1 0 0 0 0	0 NE3 = 0 NIPRNT =	0 [ND] = 1 [NTBFR =	0 IND2 = 0 0 NUMBFR =100
VALUES DF 0.0 37.48000	SHUB 7.87400 41.10199	12.59800 42.36200	15.74800 44.64600	18.89699 45.82700	Station 22 . 04700 47.48000	Abscissas 25.19600 49.44800	Lower 28.34599 51.41699	Flow Path 31.49599	Contour 34.64499
VALUES OF 0.10000 9.37000	RHUB 0.10000 10.09840	0.10000 10.17710	0.10000 9.95000	1.00000 9.65000	Radial 2.00000 9.05510	Coordinates 3.50000 8.11020	Lower 5.50000 6.90000	Flow Path 7.38180	Contour 8.52360
VALUES DF 0.0 37.48000	SSHRD 7.87400 41.10199	12.59800 42.36200	15.74800 43.93660	18.89699 48.26729	Station 22.04700 50.74759	Abscissas 25.19600 53.81870	Upper 28.34599 57.63759	Flow Path 31.49599	Contou <i>r</i> 34 .64499
VALUES DF 24.01569 24.01569	R SHKD 24.01569 24.01569	24.01569 24.01569	24.01569 24.01569	24.01569 24.54999	Radial 24.01569 24.87999	Coordinates 24.01569 25.23999	Upper 24.01569 25.23999	Flow Path 24.01569	Contour 24.01569
VALUES OF 44.64600	SL SP 45.82700	41.48000	44800	51.41699	Station Abso	iissas Upper C	ore Flow Pat	h Contour	
VALUES OF 11.73000	KL SP 11.28000	10.78730	10.09840	9-33060	Radial Coor	dinate Upper (Core Flow Pat	th Contour	
VALUES ()F 43.93660	SUSP 45.90509	48.26729	51.33839	51.63759	Station Abs	cissas Lower]	Bypass Duct C	Contour	
VALUES DF 12.43000	RUSP 12.78000	12.95000	12.95000	12.95000	Radial Cool	dinate Lower	Bypass Duct (Contour	
VALUES DF 43.54199	525P, R55P, 12.12900	RLESP, ENDSP 0.19670	-0.05240	0.24930	Splitter Not	ie Definition			
LOWER FLOW	REGION TOTA	VL NO. OF STA	TIONS 18	END	CONDITION FUR	SPL [NE]			
UPPER FLUW	REGION TOTA	NL NO. OF STA	TIONS 18	END	CONDITION FOR	SPLINE 1			
W = 2 PREF = 2	421.11987 MF 116.00000 TR	WA = 0. Ef = 518.	0 KPM1 68799	= 5245.000	00 RPM2 =	0.0 RPI	13 = 0.	0	
LOWER FLOW	REGION MASS	SELON WL =	30.7471			-			
0.0	0.33725	0.33725	0.32551			Bypass Ratic	i = 12 . 696		
UPPER FLUW	REGION MASS	FLOW WU =	390.37256						
SIKEAMLINE 0.0 0.10625	0.05313	0.05313 0.05313 0.05313	0.05313	0.10625	0.13388	0.05419	0.05876	0.19433	0.10625

(Flow Path Geometry, Stations Definition, Inlet State,

DEFINITION OF INPUT OF PROGRAM R136 .

518.68799 421.12159 ATCR 0PT4	2115。99634 5245。70000	1. r r r 00 1 421.16529	0360 1.0000 5245,00000	1 • 00000 0 • 0	1.0000 1.0000 1.00000	499_42554 16.00300	0.0	0	0.0 0.0	01001
LE AVERAGE T	LUTAL PRESSURF		D-L TA-T	= 5N11000	0.0	014L 9€LT∆-T	C+C =			
0.10000 0.0 4.57712 4.56792 4.56792 -4.56792	NASA FAN ENG 481.14289 491.14287 491.14455 60.10455 0.00000 -1.47571 00000	INE SPLITTE 491.14287 0.43919 0.43971 -0.29432 0.46556 1.00000	.e STHINY 2.40571 0.1 0.5 0.0 1.0000	0.1 0.0 0.54504 0.06956 0.06956 0.99999	0.0 518.68799 518.68799 518.687970 492.42456 0.00114 1.7037 1.0030	100 = 0 100 = 0 100 2115,99341 2115,01534 1953,43774 0,00000	υ σ αύ" Ι	0C00 • 1	200.000	01001
3.76977 0.0 7.54715 0.00120 4.56759 1.	481.12769 491.12793 511.13257 -0.70000 -1.40564 0000 1.0000	491.12793 0.43918 0.43918 0.46557 0.46557 0.46557 1.00000	2.49564 0.0 172.54715 0.0 0.0 0.0 1.2003	0,0 0,0 19,72937 0,06156 0,993999	0.0 519.68799 5713.15479 419.42578 0.0000.6 1.0000 1.0000	0.0 2115.99707 7151.58594 1853.45337 0.00000 1.00000	1.0000	1.0000	200,0000	01001
5.33337 0.0 1.0 0.0 0.00182 4.56799 4.56799	481.14524 481.14600 539.45777 -0.17000 -1.40573 00301 1.0000	491-14600 0.43920 0.43243 0.49243 -0.37625 0.46556 1.00000	2.40573 0.0 243.97533 0.0 1.0000 1.0000	0.0 0.0 26.93924 0.06456 0.94999 0.94999	0,0 513,68799 523,63965 499,42432 9,00707 1,7170 1,0270	n.7 2115.97683 2187.57427 1953.43457 0.20000 1.00000	1.0000	1 - 0000	<u> </u>	01001
6.48996 0.0 17.05347 0.07212 4.56691 4.56691	481. 39790 481. 1988 565.41748 - 3.10000 - 1.43549 0000 1.0000	481.09388 0.43915 0.51612 -0.34636 0.46560 1.46560 1.00000	7.47549 7.7 2.7 0.0 0.7 1.0000	0.0 0.1 1.69116 0.99999 0.99999	0.0 513.68799 576.02956 419.42922 0.00015 1.0000 1.0000	n.0 2115.99292 2222.71509 1.953.49535 0.20300 1.90000		1.000	10000-L02	01061
7.54135 0.0 5.17749 0.00232 4.56792	481.14233 491.14355 592.15405 -0.0000 -1.40572 0007 1.0007	481.14355 0.43919 0.543919 0.54353 -0.25558 0.46556 1.00000	2,40572 3,0 3,5 3,5 3,5 1,749 0,0 1,7000	0.0 7.0 35.65475 0.06754 0.99799 0.83538	0,0 513,68799 528,50037 479,42456 0,00014 1,0739 1,0030	0.0 2115.99341 2260.09829 1953.43774 0.00000	0ú uc* l	0000-1	ננטייר, הנייה	01661
9.23444 0.0 2.67139 0.00756 4.56739	431,11670 431,11116 430,41064 543,41064 -3,70000 -1,47550 0000 1,0000	481.11816 0.43917 0.58457 -0.73838 0.46559 1.0000	2,40559 7,0 422,67139 6,0 1,0 1,000	0°0 0°0 1°06356 1°06356 1°0 0°0 0°0 0°0	0.0 518.68799 513.54958 513.42651 1.0001 1.0000 1.0000 1.0000	3.0 2115.77561 2736.00979 1853.46289 1853.46289 1.70070	1.000	1 • 0000	000C0+0C2	01061
1.66709 2.0 9.01709 0.00766 4.56530 06000 1.	491.12393 481.72549 685.2543 8645.25 8645.25 8646 1.4051 1.4000 1.0000	481.07539 0.43078 0.43078 0.4228 0.4523.0 0.4557 0.4557 0.4557 0.00000 1.00000	2.40513 7.0 4.81.01709 0.0 1.3000 1.3000	0.0 0.0 45.41335 0.06957 0.99999 1.39594	1,0 519,68799 513,49780 493,43780 6,00103 1,00103	9.3 2115.99854 2412.73979 1853.56157 0.00000 1.330790	0 M 0 C • 1	000.1	ບບນນເ <u>+</u> ບໍ່ບໍ່ຊັ	CICCI

Main Output

•012795 •0 •64795	441.74425 441.78569 767.71997	481.08569 7.43914 0.70032	2.40543 3.0 597.64795	0.0 1.0 51.16711	0.0 519.68799 549.39502	0.0 2115.39512 2571.73535				
1256 1564 10 1.C	00000-0- 54304-1- 000-1 000-	-0.C7998 0.46551 1.00000	0.0 7.0 1.9607 1.9900	0.06756 7.93999 0.89591	499.42970 0.00010 1.7030 1.0000	1353.49805 0.00000 0 1.00000	1.0000	1.0000	200-00000	1001
5869 4014 0226 6671 00 1.0	41.0P413 41.1891 481.1941 450.41284 60001.1 -1.40545 -1.4050 0000	481.08911 0.43914 0.78448 0.03577 0.45561 0.46561	7.40545 7.0 712.14014 0.0 1.0000	0.1 0.0 55.95983 7.06956 0.99999 0.89591	9.9 518.68799 550.863799 550.863706 499.42896 0.00007 1.7000 1.700	r.0 2115.79693 2782.49438 1853.49487 0.00000 1.00000	1.000	0000 • 1	60000-002	01001
5144 5200 5209 5209 5471 5571	481,78338 481,7836 874,7289 - 3,7000 - 1,43545 0001 1,0000	481.0978 41964.0 41964.0 80318.0 19470.0 19470.0 1000001	2.40545 7.7 7.7 7.7 7.0 7.0 7.0 1.0000 1.0000	7.0 0.0 57.44461 0.90999 0.90999	0,0 513,68799 565,90723 499,42995 0,00007 1,0000 1,0000	7.0 2115.99693 2971.19849 1853.49487 0.00000 1.00000	1.0000	1.0000	000000	10010
9133 2246 0181 6439 00 1. 00	491.16333 481.16406 933.14551 -3.00003 -1.43582 0001	491.16496 0.43921 0.43921 0.84905 0.12637 0.46554 1.00000	2.40592 0.0 796.02246 0.0 0.0 1.3003 1.0000	0.0 0.0 58.94963 0.06356 0.993999 0.993999	9.0 518.68799 571.37695 479.42285 0.00312 1.0000 1.0000	0.0 2115.99438 2969.63574 1953.41553 0.00000 1.00010	0000-1	0000-1	00000-002	1 001 0
5814 6309 0117 5792 07 1.00	431.14282 491.14307 1040.57910 -0.10000 -1.40571 2031.1.0000	481.14307 0.43919 0.94995 0.94995 0.21533 0.46556 1.00000	2.40571 0.7 9.25.66309 0.0 1.0000 1.0010	0.0 0.0 62.45917 0.06956 0.99999 0.89589	0.0 519.68799 599.46740 419.42456 0.00014 1.0113 1.0300	0.0 2115.99341 3312.43481 1953.43774 0.00000 1.00000	1.0000	1.0000	00000-602	01001
2095 4053 0076 6954 00 1.00	491.21582 491.71582 1996.79980 -0.13000 -1.40608 770 1.0000	481.21592 0.43926 1.00072 0.19561 0.46549 1.00000	2.40608 2.0 9.0 9.0 0.0 0.0 1.0000 1.0000	0.0 0.0 63.96335 0.99999 0.99999	0,0 519,68799 599,34741 1474,41970 0,01011 1,07070 1,07070 1,07070	0.0 2115.994.87 35115.34839 1853.36157 0.00000 1.02000	1.0000	1.0000	200-0000	01001
0249 5924 1 5936 10316 1000	481.79644 481.79644 1149.74268 -0.70000 -1.40548 2007	481.09644 0.43915 1.04904 0.24876 0.46560 1.00070	2.40549 0.0 1043.69924 2.1 0.0 1.0000 1.0000	0.0 0.0 65.25244 0.06956 0.99999 0.89590	0,0 518,63799 609,27681 499,42822 0,00015 1,0000 1,7000	0.0 2115.99292 3719.66699 1853.49535 0.00000 1.00000	1.0000	1.0000	00000	10010

10010	01001	10020	10020	0200 t	10020	10020	1 0020
200•00002	200, 0000	0°0	481.14292	£91.184	603+1 - 184	481.03898	481°14355
1.0000	1.0000	00	1.0000	1 • 0000	1 • 0000	1-0000	1 - 0000
1.0000	1.0000	0.0 7.874 1.0	1.0000	1.0000	0006 • 1	0000.1	0000-1
0.0 2115.99438 3825.54937 1853.34888 1853.34888 1.00000 1.00000	2115.99438 3934.59448 1853.34888 1.00000 1.00000	1-21 16,00000 114,997 1797	LONP= 0 2.0 2.115,99316 2.115,91514 2.116,01514 1.858,98755 0,00000 1,00000	0.0 2115.99121 2151.89478 1958.44239 1958.44239 1.00000 1.00000	0.0 2115.99170 2188.17822 1959.00098 1.00000 1.00000	0.0 2115-99496 2223.57837 1957.54077 1957.54077 1.00000	1.0 2115.99633 2762.10083 1955.86109 0.00300 1.00000
0.0 518-68799 614-16528 614-16528 7499-41772 0-00012	0.0 518.68799 619.10278 499.41772 490.41772 0.00012 1.0000		0.0 518,68799 518,68970 518,68970 6160000 0.00000 0.00000 0.00000	0.0 513.68799 571.18657 499.90981 0.00002 0.9797 0.9394	0°0 0°0000 2518°8179 2518°8175 2518°8175 25185 26000 0°0	0,0 518,68799 526,09716 690,74097 0,00003 0,93997 0,9384	0*0 0*00 0*09343 0*09343 0*09943 0*09943 0*09943 0*09943
0.0 0.0 65.82077 0.06956 0.99999 0.89584	0.0 0.0 6.35575 0.06956 0.99999 0.89584	1.00000 1 0.0 CTTLING =	0.0 0.0 0.55119 0.06971 0.99999	0.0 0.0 19.99361 0.06970 0.99999 1.00269	0.0 0.0 77.19358 0.06968 0.99939	0.0 0.0 32.00560 0.99997 0.99997 1.00219	9.0 9.0 35.94562 3.06955 3.90999
2.40614 0.0 1071.82397 0.0 0.0 1.0000 1.0000	2.40614 0.0 1099.27754 0.0 0.0 1.0000	.0000 1.0000 5245.00000 nelta-t	R STUNY 0.98985 0.0 1.0 4.57712 7.87702 7.87400 0.0	0.98998 0.0 173.30219 7.87400 0.0 1.0000 1.0000	0.999083 0.0 244.99382 7.874.00 7.9700 1.0000	0,000 0.0 298.23770 7.87.40 7.0 7.0 1.0000 1.0000	3,99313 0,0 346.47607 7,87400 7,87400 0,0 1,0000 1,0000
481.22352 0.43927 1.07247 0.13753 0.46548 1.00000	481.22778 0.43927 1.09534 0.09523 0.46549 1.00000	1 .00000 1 421.21729	SINE SPLITTE 475.7734 0.43411 0.43413 0.43413 -1.45413 1.13263 1.00000	476.30908 0.43461 0.46240 -0.84036 1.13133 1.00000	476.73535 0.43572 0.43572 -0.92917 1.13036 1.13036 1.13036	477.17554 0.51349 -0.80555 1.12921 0.99999	477.83643 0.43505 0.53863 -0.73966 1.12775 0.99999
481.22952 481.22952 1174.99819 -0.70000 -1.40614 .0007 1.0000	481.22778 481.22778 481.22778 1199.75044 00000 1.40614 -1.40614	2115.79194 5245.10000 4 TOTAL PRESSURF	NASA FAN ENC 475.7734 475.7734 475.7734 475.79932 0.0015 0.01115 0.01115	476.30566 476.90908 536.95693 -0.10069 0.11002 .0000 1.0000	476.72998 476.73535 536.70244 -0.70077 0.70917 0.7090 11.0000	477,15921 477,17554 562,70947 -0,10089 0,1008 0,1915 -0000 1,0000	477.92764 477.93643 597.23145 797.23145 0.10647 0.000 1.0000
23.41698 0.0 1071.82397 0.00319 -4.56990 1.00000 1	24.01569 0.0 1099.22754 -0.0000 -4.56980 1.00000	518.68799 421.17285 *STATOR 0PT * NISPE # MASS AVERAGE	* 0.10000 0.0 0.0 0.07712 -0.00040 0.02116 1.00000 1.00000	* 3.78627 0.0 173.30219 0.00388 0.01901 1.00000 1	* 5.35557 0.0 244.99382 0.00481 0.01740 1.00000 1	* * * 51583 0.0 2.0 2.000559 0.00559 0.01547 0.0559 0.0559	* 7.56574 0.0 346.47607 0.01305 0.01305 0.99999 1

.

816 10020	10020	i69 10020	11 10020	16 I 0020	06 10020	07 10020	A2 10020
481.11	481.07	481.045	441.089	481,089	481.164	481.143	481.215
1.0000	1 - 0000	1.0000	1.0000	1 - 0000	1 - 0000	1 • 0000	1 • 0000
1-0000	1.0000	0000*1	1.0000	1.0000	1.0000	1.0000	1.0000
0.0 2115.98804 2337.53198 1856.17603 0.00000 7 1.00000	0.0 2115.98706 2414.64136 1855.26245 0.00001 3 0.99999	2115-99341 2115-99341 2574-07563 1854-20605 0-00000 6 1-00000	0.0 2115.99048 2784.98022 1853.00024 0.00000 5 1.00000	0.0 2115.99243 2873.65649 1852.68018 0.00000 1.00000	0.0 2115.99194 2972.02148 1852.32251 0.00000	0.0 2115.98730 3314.19897 1951.53320 0.000000 1.000000	0.0 2115.98853 3512.60718 1851.54663 1.00000 1.00000
0,0 518,68799 533,64893 499,63599 0,9992 0,997	0,0 518,68799 538,61646 499,56543 0,00004 0,9992 0,996	0.0 518.68799 548.53467 473.48413 473.48413 0.00001 0.9986 0.995	0.0 518.68799 561.00562 499.39111 0.00002 1.0003 1.0006	0.0 518.68799 566.04614 499.36646 0.00002 1.0003 1.003	0.0 518.68799 571.50806 499.33911 0.00001 1.0001 1.002	0,0 518,68799 589,55273 499,27832 0,00002 1.0000 1.0017	0.0 518.68799 599.40942 499.27930 0.00002 1.0001 1.0018
0.0 0.0 41.55075 0.06964 0.99998 1.00146	0.0 0.0 45.59708 0.06961 0.99998 1.00092	0.0 0.0 51.27271 0.06958 0.99999	0.0 0.0 0.0 0.99999 0.99973 0.99973	0.0 0.0 57.44073 0.09999 0.99999	0.0 0.0 58.82524 0.06953 0.99999	0.0 0.0 62.38519 0.06351 1.00000 0.99898	0°0 0°0 63.89050 0.99999 0.99999
0.99455 0.0 424.09448 7.87400 0.0 1.0000 1.0000	0.99658 0.0 489.47778 7.87430 0.0 1.0000 1.0000	0.99857 0.0 7.87400 1.00 7.87400 1.7000 1.7000	1.00098 0.0 713.35156 7.87400 0.0 1.0000 1.0000	1.00162 0.0 754.66040 7.87400 0.0 1.0000 1.0000	1.00217 0.0 797.01416 7.87400 0.0 1.0000 1.0000	1.00379 0.0 923.25171 7.87400 0.0 1.0000 1.0000	1.00361 0.0 985.41969 7.87400 0.0 1.0000 1.0000
478.49683 0.43669 0.58352 -0.52643 I.12613 0.99999	479-38037 0.42752 0.62530 0.62530 0.62530 1.12384 0.99999	480.39819 0.43849 0.70089 -0.10542 1.12160 1.00000	481.56079 0.43959 0.78567 0.10790 1.11890 1.01000	481.86890 0.43988 0.81736 0.81735 0.14216 1.11819 1.00000	482.20776 0.44020 0.85039 0.14231 1.11758 1.00000	482.96680 0.44092 0.95124 0.26362 1.11577 0.99999	482.95386 0.44091 1.00187 0.36325 1.11597 0.99999
478.48608 478.49683 639.39672 -0.00107 0.0545 1.0000 1.0000	4179, 3691 479, 38037 780, 38037 925, 1232 90, 001 74500 0, 0000 1, 0000	07785.084 01805.99819 1828.737 1828.737 1828.05 105.0 1000.1 0000.1	481.55322 481.56079 860.68066 -0.10089 -0.10098 -0.0009	481.96255 481.96290 895.38257 -0.10081 -0.10162 -0.10162	482, 72764 482, 20776 931, 53418 - 0, 70072 -0, 00217 -0000 1, 0000	482,96509 482,96680 1041,94531 -0,00342 -0,00379	482,95313 482,95386 1097,40430 -0,10027 -0,10021 -0,1000
9.26553 0.0 424.09448 0.00672 0.01035	10.69401 0.0 489.47778 0.00688 0.00649 0.00649	13.08793 0.0 599.05078 0.00662 0.00662 1.00000 1	15.58515 0.0 713.35156 0.00187 -0.00187 1.00000 1	16.48766 0.0 754.66040 0.00519 -0.00309 1.00000	17.41299 0.0 797.01416 0.00465 -0.00414 1.00000	20.17101 0.0 9.23.25171 0.00281 -0.00723	21.52924 0.0 985.41968 0.00182 -0.00689 0.99999 1,

U

10020	1 002 0	10020	10030		10030	1 0030	10030
481。09644	481.22852	48 t • 22778	0•0 0		475.77734	476.30909	476.73535
1.0000	1. 0000	1 • 0000	800		1.0000	1.0000	0000-1
1.0000	1.0000	1 • 0000	0-0	0°0 =	1.0000	1.0000	1.0000
0.0 2115-98706 2115-33276 7195-30737 0.00000 1.00000	0.0 2115.99121 3825.89987 0.00000 1.00000	0.0 2115.99072 3934.58765 1851.27979 0.00000 1.00000	499.41797 16.00000	DTAL DELTA-T	LNDP= 0 0.0 2115.98755 2116.00952 2868.29321 0.00000 1.00000	0.0 2115,98364 2152,40967 1866,54053 1.00000 1.00000	0.0 2115.99511 2189.17041 1865.19556 0.00000 1.00000
0,0 518.68799 609.25854 499.25099 0,00002 1,0002 1,0015	0.0 518.68799 614.18115 499.25928 0.00001 1.0001	0.0 518-68799 619-10278 499-25879 0.00001 1.0015	1.0000_1.0000 1.00000	0.0	0.0 513.68799 513.689799 500.56567 0.00002 0.9999 0.99993	0.0 518.68799 521.22290 500.43140 0.00003 0.9998 0.9996	0.0 518.68799 523.74951 500.32837 0.00003 0.9997 0.9996
0.0 0.0 65.16196 0.99999 0.99883 0.99883	0.0 0.0 65.73482 0.06950 0.99999	0.0 0.0 0.0 0.06950 0.99999 0.92889	0•0 0•0	COJL ING =	0.0 0.0 0.56193 0.96996 0.99997 1.00500	0.0 0.0 20.43938 0.05999 0.99999 1.00436	0.0 0.0 27.70535 0.06988 0.99999 1.00387
1.00433 0.0 1.0438184 7.87400 0.0 1.0000	1.00410 1.00410 1.011 1.011 7.87400 0.0 1.0000	1.00412 0.0 1099.22754 7.87400 0.0 1.0000	.0000 1.0000 5245.00000	DEL TA-T	R 5TUNY 0.98087 0.0 12.559800 0.0 1.0000 1.0000	0.98340 0.0 174.56361 12.59800 0.0 1.0000 1.0000	0.98529 0.0 246.66618 12.59800 0.0 1.0000 1.0000
483.18091 0.44113 1.05017 0.34932 1.11517 0.99999	483.20166 0.44115 1.07345 0.44527 1.11543 1.11543	483.20898 0.44115 1.09624 0.47098 1.11541 1.00000	0.¢9999 1 421.13843		INF SPLITTE 466.67773 0.42550 0.42552 -2.17543 1.14184 0.99999	468,40161 0.42713 0.45583 -3.15722 1.13891 0.99999	469.72314 0.42838 0.48386 0.48386 -2.27501 1.13672 0.99999
483.18091 483.18091 1150.28345 -0.0013 -0.00433 .0000 1.0000	483.20166 483.20166 483.20166 1175.78833 -0.90906 -0.90410 .0000 1.0000	483.20898 483.20898 1200.74609 0.00000 -0.00412 -0.0000	2115.98486 5245.90000 4	TOTAL PRESSURE	NASA FAN ENC 466.67749 466.67773 466.7773 466.7773 466.7020 -0.0081 0.01913 -0000 1.0000	468.39428 468.40161 499.97256 -0.00132 0.01660 .0000 1.0000	469.68701 469.72314 530.55054 -0.00245 0.01471 •0000 1.0000
• 22.80650 0.0 1043.88184 0.00088 -0.00088 0.99999 1.	23.41890 2.0 1071.91187 0.00143 -0.00783 1.00000 1.	24.01569 0.0 1099.22754 0.00000 0.00780 1.00000	518-68799 518-68799 421-09253 *STATOR OPT	*MASS AVERAGE	• 0.10000 0.0 0.0 0.0116 0.0116 0.9999 1	* 3.81383 0.0 174.55361 0.03865 0.03146 0.99999 1.	5.38911 0.0 246.66618 0.01244 0.02790 0.99999 1

.

.

10030	10030	1 0030	10030	10030	1 00 30	10030	10030
477.17554	477.83643	478°49683	479.33037	480.34819	481 . 56079	481.86890	482 . 20776
0000 • 1	0000•1	1.0000	1 • 0000	1.0000	1.0000	1.0000	1.0000
0000 • 1	1 -0000	1.0000	1-0000	1.0000	1.0000	1.0000	1.0000
0.0 2115-97266 2224-97192 1863.70239 0.00001 0.99999	0.0 2115-97705 2263-89893 1862-42188 0.00000 9 1.00000	0.0 2115.97827 2339.96704 1960.08716 0.00000 4 1.00000	0.0 2115.98247 2417.55811 1858.08765 0.00000 9 1.00000	0.0 2115.98267 25775.53613 1854.92358 0.00001	0.0 2115.98462 2788.63916 1852.11353 0.00000 1.00000	0.0 2115.98608 2877.24976 1851.47803 0.00000 1.00000	0.0 2115.98926 2975.49072 1850.91699 1.000000 1.000000
0,0 518,68799 526,18237 500,21460 0,00005 0,9998 0,999	0.0 518.68799 528.79443 500.11621 0.0004 0.9997 0.998	0.0 518.68799 533.80786 499.93701 0.00004 0.9995 0.978	0,0 514,68799 538,80273 499,78320 0,00002 0,9991 0,998	0.0 518,68799 548,748,748,748,748,748,748,748,748,748,7	0.0 518.68799 561.21680 499.32324 0.00002 1.0001 1.0036	0.0 518,68799 566,24929 499,27417 0,00002 1,0003 1,0076	0,0 518,68799 571,69824 499,23096 0,00001 1,0002 1,0023
0.0 0.0 32.49909 0.05984 0.99997 1.00332	0.0 0.0 36.41986 0.06380 0.99997 1.00300	0°0 0°0 41°92799 0°06974 0°9997 1°00211	0.0 0.0 45.89420 0.06969 0.99999	0.0 0.0 51.41321 0.06960 0.99998 1.00039	0.0 0.0 55,99754 0.06953 0.99999	0.0 0.0 0.00.06951 0.06999 0.99999	0.0 0.1 58.80005 0.06949 0.99999 0.99924
0.98742 0.0 300.14993 12.59800 0.0 1.0000 1.0000	0.99868 0.0 348.55688 12.59800 0.0 1.000	0.99207 0.0 426.34326 12.59900 0.0 1.0000	0,9429 0,0 491.76050 12.59900 12.59900 12.0000	0.99855 0.0702 6.01.19702 12.59800 0.0	1.00175 0.0 715.13062 12.59800 0.0 1.0000	1.00238 0.0 756.27026 12.59800 0.0 1.0000	1.00279 0.0 798.44727 12.59800 0.0 1.0000 1.0000
471.17383 0.42975 0.50954 -1.97420 1.13427 1.13427 0.9999	472.42798 0.43094 0.53554 -1.69938 1.138282 1.138282 0.99999	474.70044 0.43309 0.58212 -1.19996 1.12896 0.99999	476.64526 0.43493 0.62492 -0.82495 -0.82853 1.12643 0.99999	479.70190 0.43783 0.70199 -0.24414 1.12162 0.99999	487.40601 0.44039 0.78750 0.24450 1.11804 1.11804 0.99999	483.01733 0.44097 0.81924 0.40014 1.11734 0.99999	483.55444 0.44148 0.85224 0.555621 1.11688 0.99999
471.12744 471.17383 558.55381 -0.0268 0.1258	472.37378 472.42798 587.9448 -0.9282 0.91132 -0000	474.63867 474.70044 638.05103 -0.00292 0.00793	476.58252 476.64526 634.94961 -0.10286 0.00571 -0000 1.0000	479,44722 479,70190 479,12402 769,12402 -0,70251 0,70145	482,36797 482,40501 662,62817 -0,70200 -0,70175 -0,70175	492,99608 483,11733 483,1735 47,35747 -0,0178 -0,0238 0000 1,0000	483.53003 483.55444 933.45752 -0.10154 -0.10279 0030 1.0000
6.55759 0.0 300.14893 0.01487 0.02385 0.9999 1	7.61520 0.0 348.55698 0.01516 0.02149 0.9999 1	9.31466 0.0 4.26.34326 0.01616 0.01506 0.99999 1	10.74388 0.0 491.76050 0.01626 0.01086	13.13482 13.13482 0.01 0.01511 0.00274 0.9999 1.	15.62402 0.0 715.13062 0.01258 -0.00335 0.99999 1.	16.52283 0.0 756.27026 0.01138 -0.00455 0.9999 1.	17.44431 0.0 798.44727 0.01006 -0.00533 0.99999 1.

¥

10030	10030	10030	10030	10030	10040	10040
482.96680	482.95386	483.18091	8 83.20166	8P305_F84	0°0	466 . h7773
1.0000	1 - 0000	1.0000	0000	1.0000	0 800	1.0000
1.0000	1 - 0000	1.0000	1.0000	1.0000	15.74	
2115-98215 3316-83447 1849-24073 4 0.00000	0.0 2115.99633 3514.51660 1848.73828 0.00000 1 1.00000	0,0 2115,98560 3720,33911 1849,46509 0,00000	0.0 38249 3826,38599 1848,40503 1.00000 1.00000	0.0 2115.98364 3934.577446 1948.35718 0.00000 1.00000	499.38745 15.00303	LONP= 0 LONP= 0 2115.98413 2115.00610 7116.00210 0.00000 1.900000 1.000000
0.0 518.68799 519.68677 499.10205 0.00002 1.0001 1.001	0.0 518.68799 599.50220 499.06323 0.00001 1.00001	0.0 518.68799 609.10542 499.04224 0.0001 1.0001 1.001	0.0 518.68799 614.20459 493.03735 0.00003 1.0001 1.0011	0,0 518,68799 619,10278 90,03369 90,0003 1,0001	00000 1.00000 1.00000 1.00000	0.0 518,68799 518,68770 501,53882 0.00001 0.9999 0.9995
0.0 0.0 62.30110 0.99999 0.99999	0.0 0.0 63.77800 0.06944 0.99999	0.0 0.0 65.04514 0.06943 0.99999	0.0 0.0 65.61533 0.06943 0.99999	0.0 0.0 66.14841 0.06943 0.99999 0.99947	= 9011002 0•0 1 66666 1	0.0 0.0 0.57765 0.07030 0.99999 1.00682
1.00453 0.0 924.12549 12.59800 0.0	1.00555 0.0 985.98535 12.59800 0.0 .000 1.0000	1.00561 0.0 1044-15137 12.59800 12.59800 0.0 .9000 1.0000	1.00569 0.0 1072.04395 12.59800 0.0 .000 1.0000	1.00577 0.0 1.090.22754 12.59800 0.0 .0000 1.0000	9000 1.0000 5245.00000 9ELTA-T	VUJY 0.97279 0.0 2.0 4.57712 15.74800 0.0 2000 1.0000
485.15332 0.44300 0.44300 0.83453 1.11495 0.99999 1.	485.63379 0.44345 1.00363 1.01363 0.87528 1.11382 0.99999 1.0.99999	485.89355 0.44370 1.05165 0.94979 1.11375 0.99999 1.0.99999	485.95361 0.44376 1.07484 0.93604 1.11366 0.99999 1	485.99854 0.44380 1.09751 0.95667 1.11357 0.99999 1.	0.º9999 1.(421.19727	INE SPLITTER 453.97754 0.41352 0.41355 -7.74313 1.15133 0.99999 1.
485.14502 485.15332 485.15332 1043.73413 -0.0088 -0.0088	485,53037 435,63379 1099,09375 -0,00565 -0,00555 0000 1,0000	+85.89282 485.89355 1151.67017 -0.1027 -0.10561 +0000 1.0000	695.95361 695.95361 691.96.7711 1000.0- 9000.1 0000.1 0000.0	485,09854 495,09854 1201,877134 0,0000 -0,00577 0000 1,0000	2115.07949 5245.10000	NASA FAN EN5 453.07485 453.07754 454.00049 0.00383 0.02383 0.02383
* 20.19009 0.0 924.12549 0.00592 -0.00865	21.54160 0.0 985.98535 0.00381 -0.00381 -0.00381 0.99999 1	2.01239 1044.15137 0.00182 -0.01072 0.9999	23.42178 0.0 1072.04395 0.00089 -0.01088 0.99999 1.	74.01569 0.0 -0.0 -0.00000 -0.01103 0.99999 1.	518.68799 421.15739 527470R 0P74 2 NISRF 0P74	0.10000 0.0 4.57712 -0.00360 -0.015144 0.99999 1.

10040	10040	10040	10040	10040	1 0040	1 004 0	10040
468.40161	469 . 72314	471.17383	472.42798	474.70044	476.64526	479 . 70190	482,49601
1.0000	1.0000	1 • 0000	0000	1 - 0000	1 • 0000	1.0000	1.0000
1 • 0000	1.0000	1.0000	1.0000	1 - 0000	1.0000	1.0000	1.0000
0.0 2115.97388 2153.23730 1879.94336 0.00000	0.0 2115.97192 2190.74792 1874.89111 0.00001 0.99999	0.0 2115.96558 2277.15405 1872.04614 0.00000	0.0 2115-96899 2266.63677 1869.28906 1.00000 1.00000	0.0 2115.97119 2343.56738 1964.76318 0.00000 1.00000	0.0 2115.97974 2421.78662 1861.07617 0.00000 1.00000	2115-97681 2115-97681 2582-52514 1855-52661 0.00000 1.000000	0.0 2115,97852 7793,86377 0.000000 1.000000
0.0 519.68799 521.28076 501.38013 0.00004 0.9998 0.9995	2,0 2,0 5010,07090 0,00005 0,0309 0,03999 0,9399 0,9399	0.0 518.63799 526.33008 530.85425 0.00003 0.9999 0.7993	n. n 518.68799 528.97754 500.64307 0.00003 0.9997 0.9391	0,0 519,68799 534,04272 500,29614 0,00003 0,9997 0,9993	0,0 519,68799 539,07178 500,01294 0,00001 0,9999	0.0 518.68799 549.05177 499.05177 499.58667 0.00007 0.9948	0.0 518-68799 561-51685 499-22754 0.00002 1.0001 1.0026
0.0 0.0 21.15127 0.07024 0.99997 1.00665	0.0 0.0 28.44915 0.07014 0.99997 1.00520	0.0 0.0 33.21284 0.07036 0.99997 1.00448	0.0 0.0 37.06165 0.06999 0.99997 1.00369	0.0 0.0 42.47377 0.06997 0.99999	0.0 0.0 46.25949 0.06977 0.99999 1.00161	0.0 0.0 51.58725 0.06962 0.99999	0.0 0.0 56.02542 0.06949 0.99999
0,97367 0,0 176,54321 15,74800 0,0 1,0000	0.97957 0.0 249.79047 15.74800 15.00 1.0000	0.78754 0.7 303.00155 15.74800 0.0 1.0000	0.98577 9.0 351.70142 15.74800 0.0 1.9000	0,99038 0,0 4,29,64,087 15,74800 0,0 1,0000 1,0000	0.99390 0.0 15.03931 15.74900 0.0 1.0000 1.0000	0.99877 0.0 604.21533 15.74800 0.0 1.0000	1.00247 0.0 717.65015 15.74800 0.0 1.0000 1.0000
456.07056 0.41550 0.44554 0.44554 -4.08356 1.15028 0.99999	460.12817 0.41932 0.41932 0.47691 -4.01365 1.14335 0.99999	462.94590 0.42198 0.50437 -3.36171 -1.13990 1.99998	465.68018 0.42456 0.53204 -2.70383 1.13623 0.9999	477.13403 0.42877 0.58085 -1.74722 1.13088 1.13088	473.73950 0.43218 0.62509 -1.03200 1.12687 0.99999	479.11353 0.43727 0.70377 -0.08975 1.12138 0.9999	483.59741 0.44152 0.79009 0.60461 1.11724 0.99999
455.97266 456.77056 489.74785 - 3.70637 - 3.70637 0.72633	459.09072 450.12817 523.31982 -0.00519 0.02043	462.77539 462.94580 462.94580 553.33838 -9.71746 -0.000	465.48953 465.68019 583.56812 -0.05812 0.11429 0.0100 1.0000	463.77822 477.13403 636.98086 -0.17565 0.17662 0.10962	473.54107 473.73950 695.19555 -0.11552 0.00610 -0000	479, ⁰⁵ 386 479, 11353 471, 11987 -0, 00123 0, 00123	483.49341 483.59741 465.38330 65.38330 -0.00319 -0.0020 ,0000 1.0000
3.95708 0.0 176.54321 0.02074 0.04974 0.99993 1	5.44644 0.0 249.29047 0.02445 0.03968 0.99999 1	6.62188 7.0 3.03.09155 0.02310 0.02310 0.03310	7.68397 0.0 351.70142 0.02872 0.02872 0.02710	9.38670 0.0 4.29.64087 0.02960 0.01879 0.91879 0.9999 1	10.81551 0.0 0.07997 0.01160 0.01160 0.01160	13.20076 0.0 604.21533 0.02583 0.0232 0.9999 1.	15.67907 0.0 717.65015 0.02076 -0.00471 0.99999 1.

10040	1 004 0	10040	10040	10040	10040	10040
483.01733	483 <u>5</u> 5444	485.15332	485.63379	485.89355	485.95361	485 . 09854
0000 - 1	1.0000	1 • 0000	1.0000	1 • 0000	1 -0000	0000 • 1
1 • 0000	1 • 0000	1.0000	1.0000	1.0000	1.0000	1.0000
2115-97974 2882-37085 1849-41675 0.00000 1-00000	0.0 2115.98340 2980.39623 1848.17212 0.00000 1.02000	0.0 2115.97607 3320.37646 1845.46191 0.000000 1.000000	0.0 2115-98022 3516-99854 1844-69067 0.000000 3 1.00000	0.0 2115.98511 3721.61987 1844.27930 0.00000 9 1.00000	0.0 2115-97876 3927,02466 1844-44556 0.00000 8 1.00000	7.0 2115.98291 3934.57300 1844.41382 0.00000 8 1.00000
518.68799 566.53638 649.11572 0.00002 1.0001 1.0015	0,0 518,68799 571,96680 499,01953 0,00002 1,0000 1,0012	0,0 518,68799 583,86670 499,81079 0,00002 1,0002 1,0002	0, 0 518, 68799 599, 62354 498, 75098 0, 00002 1, 0000 1, 000	0.0 518.68799 609.36523 498.71924 0.00000 1.0000 1.0000	0.0 514.68799 514.68799 614.23413 479.73219 0.00002 1.2007 1.0002	7.0 518.68799 519.10278 498.72974 2.00000 1.0003 1.000
0.0 57.40714 0.06945 0.99999 0.99989	0.0 0.0 58.72699 0.06942 0.99999 0.99957	0.0 0.0 62.15674 0.06935 0.99999	0.0 0.0 63.61539 0.06933 0.99999 0.99781	0.0 0.0 64.87329 0.06932 0.99999 0.99774	0.0 0.0 65.45216 0.06932 0.99999 0.99999	0.0 0.0 65.93535 0.06932 1.00000 0.99787
0.0 758.55884 15.74800 0.0 1.0000 1.0000	1.00547 0.0 800-46924 15.74800 0.0 1.0000 1.0000	1.00740 0.0 925.29614 15.74800 0.0 1.0000 1.0000	1.00793 0.0 986.72632 15.74800 0.0 1.0000 1.0000	1.00819 0.0 1044.49634 15.74800 0.0 1.0000 1.0000	1.000774 1.007.2 1072.2 15.74900 15.0 1.0000 1.0000	1.00771 0.0 1099.22754 15.74800 0.0 1.0090 1.0009
0.44284 0.82210 0.83032 1.11546 0.99999	486.17578 0.44397 0.45524 1.02962 1.11396 0.99999	488.74585 0.44641 0.95577 1.35568 1.11177 0.99999	489.48340 0.44711 1.00611 1.38911 1.1119 0.99999	489.87109 0.44748 1.05383 1.40428 1.11091 1.11091 0.99999	489.71411 0.44733 1.07673 1.40545 1.1140 0.9999	489.74365 0.44736 1.09973 1.40317 1.11143 0.99939
484,39462 900,34521 -0,00287 -0,00407 0000 1,0009	486.11108 486.17578 936.54565 -0.00246 -0.00542 0000 1.0000	489.72437 488.74585 1046.444409 -0.70136 -0.70740 .0030 1.0000	489.47485 489.48340 1111.46362 -0.70084 -3.70793 .0070 1.0000	419,469,469,4 489,37109 1153,66607 -0,30338 -0,30338 -3,71319 0000,1,0000	0000.1 0000.1 0000.2 0000.2 0 0000.2 0 0000.2 0 0000.1 0000.0 0000.0 0000.1 0000.0 0000.0	489.74365 489.74365 489.43063 -0.00000 -0.10071 -0.0000
0.0 758.55884 0.01864 -0.00777 0.99999 1.	17.48948 0.0 800.46924 0.01635 -0.01035 0.99999 L.	20.21567 0.0 925.29614 0.00940 -0.01415 0.99999 1.	21.55779 0.0 986.72632 0.00598 -0.01514	22.81993 0.0 10.0 0.034 0.00284 -0.01564 0.9999 1.	23.42542 0.0 1072.21021 0.00139 -0.01477	24.01569 0.0 1099.22754 0.00000 -0.01471 0.99999 1.

.

125

518 421 *STATOR * NTOR	.68799 .20776 .0714	2115,97607 5245,70000	0.99999 421.25537	1,0700 1,0000 5245,00000	0•0 0•0	1.0000.1 00000.1	499.30737 16.00000	0•0 18-894) 599	0.0	10050
* NIST	VERAGE 1	FOTAL PRESSURF		9FLTA-T	conting =	0.0	LOTAL DELTA-T	0.0 =			
ŏ	.10000	NASA FAN FNG 420.40864	11NF SPLITT 420.64526	FR STUNY 0.92458	0 u	0•0	LOAP= 0 0.0				
ō.	0	420.54526	0.38224	0.0	0.0	518.68799	2115.97827				
ŧ c	21776.	-0.01457	0.38277 -10.70351	4.57712 18.99699	0.62342	518.68970 503.96686	2116.00024 1913.07251				
ō	.13637	0.07342	1.20975	0.0	86666*0	0.00002	0.00000				
• 6 •0	·1 tóoo	,0000 1.0000	0* 00999	1.0000 1.0000	1.01703	1.0000 0.799	00000-1 6	1.0000	1.0000	453 . 97754	10750
ř.	.95506	436. 72 559	437.10913	0.95842	0*0	0.0	0.0				
ō	c.	437.10913	0.39767	0°0	0-0	519.68799	2115,96582				
181	•02803 04192	473.11255	-10 41028	181.02303 18 80600	72.49681	521.41431 502 78070	2155.15016 1807 40561				
č	07928	0.04158	1.16858	0.0	86566 0	0-00-03	000000				
56°U	000A 1.	0000 1 0000	0 . 9999A	1.0000 1.0000	1.00487	5666°0 6600°0	1.00000	1.0001	1.0000	456.07056	1 00 50
ۍ ۲	.56229	443. 10781	443.63989	r, 95417	0.0	0.0	0.0				
.0	0	443.53989	0.40380	0.0	0.0	518.68799	2115.96265				
254	59291	511.50146	0.46557	254.59291	29.85034	524,08709	21 ⁹ 3。98608				
õ	•05344	-0.01321	-7.06423	18.89699	0.07057	502.31104	1891.17529				
0	• 00/07	0000 1 0000	1.19198	1.0000 1.0000	1.00869	40000°0	1 1-00000	1-0000	1.0000	460.12817	10050
*	•			•					-		
è.	.74743	449.45557	450.17578	0.97242	0.0	0.0	0.0				
	•U 83813	430°11218 545,77969	0.40714	0.0 308.93813	0.0 36 65163	518.68799 526 62356	05866.5117				
•0	05664	-0.01307	-5,15782	1 8 89699	0*010*0	501.82471	1884.76660				
.0	05216	0.02758	1.15177	0.0	199997	0.00003	0,00000				
•••0	•1 8660	0000 1 0000	0.99998	1.0000 1.0000	1.00679	0.9999 N.9995	1.00000	1.0000	1.0000	462.94580	10050
	.81358	455.76636	456.01196	ŋ. 97924	0.0	0°0	0-0				
c '	0	456.01196	0.41544	0.0	0.0	518. 68799	2115.96387				
357	.63696 05736	579.52661 -0 01230	0.52797	357.63696	38.10605	529 . 32788 501 36477	2271.88989				
	92660	0.12076	1.14375	0-0	000000	0,00002	000000-0				
56 °0	•1 8606	0000 1.0000	0.99998	1.0000 1.0000	1.00519	1999 0 9999	1.00000	1.0000	1.0000	465.68018	10050
* 6	51576	463°34193	464.69067	0.98842	0.0	0.0	0.0				
•	0	464.69067	0.42363	0.0	0.0	519.68799	2115-96460				
435	54810	636.93844	0.58062	435。54810	43.14586	534.46777	2350.09814				
	00000	011160	06005.1-	10°0	1001010	57617 •006	18/0*28204				
56 0	1 866	0000 1 0000	86666	1. 1000 1.0000	1.00296	0.9447 0.944	1.00000	1.0000	1 •0000	470.13403	10050
• 10.	93848	470.52295	471.14844	0.99453	0.0	0°U	0.0				
• • •	0,1	471 14844	0.42973	0.0	0.0	519.69799	2115-97437				
	05158	68/. 49463 - 7. 70913	-0.82379	57760.000 18.8969772	46.74481 0.06984	500-21680	2424.11997				
ċ	01041	1.10547	1.12616	0.0	199997	0.00007	0.0000				
56 • 0	•1 6666	C000 1.0000	0,99999	1.0000 1.0000	1.00142	0.9792 N.998A	1.00000	1.0000	1.0000	473.73950	10050

•

126

.

10350	10050	10050	10050	10050	1 005 0	1 0050
479.11353	483.59741	484.98462	496.17579	488.74585	499.49340	499.87109
1.0000	1.0000	0000•1	0000 • 1	1.0000	0100	0000-1
1.0000	1.9000	1.0000	1.0000	1.0000	0000 • 1	1.0000
0.0 2115.97559 2590.58350 1854.57788 1.00000 1.00000	0.0 2115.97485 2901.77539 1847.42920 0.00000 1.00000	0.0 2115.97398 2889.97766 1845.41846 0.00000 1.00000	0.0 2115.97779 2987.53931 2987.53931 1843.65186 1.00000 1.00000	0.0 2115.97144 3375.46851 1939.93678 1.00000 1.00000	0.0 2115.97900 3520.60864 1838.88599 1.00000 1.00000	0.0 2115.97852 3723.53735 1838.32642 0.00000 1.00000
0.0 518.68799 549.54053 499.51392 0.00000 1.00034	0.0 518.68799 561.97021 561.97021 698.76289 0.00001 1.0000 1.0000	0.0 518-68799 566.96265 498.80762 0.00002 1.0000	0.0 518.68799 572.35989 498.67099 0.00002 1.0003 1.0007	0.0 513.69799 570.12476 408.38403 0.00302 1.0001 1.0006	0.0 513.68799 599.79907 498.30249 0.00007 1.0700 1.0705	0,0 519,68799 609,45532 498,25879 0,00005 1,0007 1,0005
0.0 0.0 51.75710 0.99999 0.97949	0.0 0.0 55.98593 0.06940 0.99999 0.99815	0.0 0.0 57.31932 0.99395 0.99999	0.0 0.0 58.59683 0.06930 0.99999 0.99755	0.0 0.0 6.1.94772 0.06920 1.00000 0.99701	0.0 0.0 63.3583 0.06917 0.99999 0.99696	0.0 0.3 64.63276 0.06916 1.00300 0.99677
1.00190 0.0 6.09.06592 18.89699 0.0 1.0000	1.00678 0.0 721.41945 18.89699 0.0 1.0000 1.0000	1.00784 0.0 761.93091 18.89699 0.0 1.0000 1.0000	1,00882 0.0 803.41040 18,89699 0.0 1.0000 1.0000	1.01069 0.0 926.97437 18.87699 0.0 1.7000 1.0000	1.01118 0.0 987.79712 18.89699 0.0 1.0000 1.0000	1.01147 0.0 1045.01538 19.89499 0.0 1.0000
480.02612 0.43813 0.70791 0.53689 1.11787 0.99999	486.87427 0.44463 0.79484 1.36991 1.1246 0.99999	488.78687 0.44645 0.42645 1.87205 1.57205 1.11129 0.99999	490.46362 0.44804 0.85987 1.73267 1.1021 1.99999	493.96533 0.45137 0.45137 0.95979 2.04676 1.10916 0.99999	494.95581 0.45231 1.00967 2.14050 1.10762 0.9999	495.48779 0.45282 1.05693 2.17054 1.10730 0.99999
479,57739 480,02612 775,49097 -0,00675 -0,00190 0000 1,0000	496.60669 486.91427 970.35693 -0.70469 -0.70678 -0.70678 .0000 1.0000	488.57593 488.79687 935.23535 -0.30400 -0.10784 -0.000	490.30396 490.45362 941.28784 -0.70337 -0.70882 -0.70882 -0.70882	493.91455 493.96533 1050.37280 -0.70178 -0.01068 -0.01068 00000	494.33555 494.35581 1104.96377 -0.00112 -0.01118 -0.01118	495.48340 495.48779 1156.53149 -0.0054 -0.01147 .0000 1.0000
13.30674 0.0 609.06592 0.04328 -0.00363 0.99999 1	15.76185 0.0 721.43945 0.03318 -0.01294 0.99999 1	16.64650 0.0 761.93091 0.02940 -0.01498 0.99999 1	17.55273 0.0 803.41040 0.02553 -0.01686 0.99999 1	20.25233 0.0 9.26.97437 0.01438 -0.02041 0.99999 1	21.58118 0.0 9.87.79712 0.00909 -0.07138 0.99999 1	22.83127 0.0 1045.01538 0.00430 -0.02191 0.99999 1

0.050	<u> 0050</u>	0050	0060	0960	0900	0060	0060
-	-	-	-	-	-	-	-
rom copy.	489.74365	ں•ں 0	420.64576	£1001. 10913	443.63989	450.17578	456.01196
oduced f available	1.0000	•0 4700	1.0000	0000 . 1	0000-1	1-0000	1-0010
Repr best	1.0002	0 - 0 - 0	0000-1	1.000	0006• t	1. 9009	0000-1
0.0 2115.97363 3474.01221 1438.19115 0.00000 1.00000	0.0 2115.97754 3934.56299 1938.15356 3.00000 1.00000	499.07593 16.00000 11.05LTA-T	0 = 900 0.0 2115.97095 2115.97095 2156.26270 1.066.26270 0.07000	2.115.96313 2159.99313 2159.994.78 1934.8995.8 0.00000 1.00000	0.0 2115.95483 2201.73291 1912.57959 0.000000	7.0 2115-95410 2240-94653 1899-16772 1.00000 1.00000	0.0 2115.95898 2282.63233 1888.41797 0.00000 1.00000
0.0 513.68797 514.27954 498.26979 0.00097 1.2700 1.0775	1.0 518.64799 619.10778 619.10778 619.24561 0.0007 1.0005	درده.۱ ودور.۱ دوههو.۱ ۲ د.۵	0.0 519.69799 518.69497 507.92944 0.00004 1.0000	7.0 518.68799 521.74905 505.60205 0.00001 0.9999 0.9990	1.0 518.68799 574.60915 533.927944 0.00003 0.9999	0,0 518,68799 521,25977 502,91748 0,00007 0,0009 0,9909	n.0 518.68799 530.04150 572.10295 0.7999 0.9997
0.0 0.0 0.0 0.065.10742 0.06315 0.99999 0.99999	7.7 7.7 55.72914 0.96915 0.99661	0°0 0°0 =	0.0 7.0 1.45832 0.07255 0.93996 1.7781	0.0 0.0 25.9343 0.0173 0.999738 17110.1	0.7 0.7 32.35149 0.71114 0.999977	7.0).0 36.43796 7.07779 0.99998 1.07754	0.0 0.0 39.6 39.50724 0.07254 0.07250 1.00502 1.00502
1.01703 1.01703 1.07046592 19.89690 0.7 1.0707	1.01775 0.0 1099.27754 18.47699 1.000 1.000	.0000 1.0000 5245.00000 net.ra-r	<pre>> \$10 >, 35,44 0, 1 - 0, 154,75 2, 04,700 0, 1 1,0000</pre>	0,00724 0,0 191,79160 191,79160 72,04700 0,0 1,0000	0.94031 0.0 266.77100 72.04709 0.0 1.10000	40740.0 0.0 0.5000.155 0.0 0.0 0.0 0.0000.1	0.97706 0.0 360.43970 22.04700 22.04700 0.0
495.60645 0.45293 1.07771 2.19763 1.10669 1.10669	4.35.646.24 0.452.07 1.101.99 2.20299 1.1066.6 0.00999	1 97999 1 6,1929 154 7	61NE SPLITTE 359.58325 0.32549 0.32559 0.32559 -30.75564 1.31019 0.99999	396.57326 0.35970 0.39965 -13.22920 1.23448 0.09999	421.15137 7.38272 0.45304 -7.05527 1.17980 0.99998	435.14988 7.39601 0.4927 -5.15686 1.15914 0.9998	446.4604 0.40645 0.57756 -3.14217 1.14396 1.14398
475,5547 475,5545 73545,5787 71141,15787 7121,203 7121,203 7121,203 7121,203 7121,203	415,44,74 495,44624 1705,1951 0,1000 -0,11205 0,01205 0,01205	2115,17021 5245,17021 4 f171,255	VASA FAN FN 359.73508 359.59325 359.59971 -0.10622 0.14516 0.14516	393.77222 396.57324 44.3.51587 -0.14874 1.11774 ,0003 1.3000	417,99420 421,15137 498,51296 -0,72338 0,55069 0,05000	412, 7/163 415, 74988 540, 41746 -3, 12745 -3, 11204 -3, 11204	443.53403 446.46094 573.49365 -0.12094 0.12094 0000 1.0000
7.43100 0.0 10.72.46587 0.00210 -0.02302	24.01567 0.0 10.022756 -0.02030 -0.021335 0.99999 1.	519.64773 519.64773 421.25703 *STATER (1974 * NISPE (1974 * MASS AVEPAGE 1	0.2000 0.0 9.15425 0.04590 0.26216 0.99999 1.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5.82836 0.0 266.77100 0.12694 0.00524 0.90933 1.	7.01315 0.0 2.1.00049 7.12947 0.06230 0.06230	8.07144 0.0 7.09.41970 0.01110 0.01777 0.03177 1.099999 1

.

128

.

067 10060	69601 \$\$\$	09061 219	0900 I 22%	1687 I 0060	10960	,533 L0960	
464.69	471.14	480.02	486 <u>.</u> 87	47 . 8 8.4	44.064		
1.0000	1-0000	1.0000	1.0 000	1-0000	0000	U006 • 1	
1.0070	-0000	0000.1	1 - 7000	1- 2000	00000	1.0000	
7.0 2115.95532 2362.35278 1873.63208 0.00000 1.00000	2.00000 2115-96951 2442.13477 1963-40454 0.00000 1.00000	0.0 2115.97339 2603.88916 2603.8992 1850.13599 0.00000 1.00000	0.0 2115.97168 2814.14111 1840.59131 0.00000 5 1.00000	C.C 2115.97290 2101.697290 21839.0261 0,00303 0,003030	0.0 2115.97266 2979.44165 1835.78882 0.03070 4 1.00070	0.0 2115-95484 3332-96094 1831-17017 0.000000	7.7 2115.97363 3525.81615 1829.91675 0.00009
7.0 518.68799 535.26294 500.97583 0.00004 0.9990	0.0 519.69799 540.76157 570.19214 0.00002 0.1	0.0 518.69799 550.34473 409.17189 1.00011	n.0 519.68709 542.67775 542.637775 498.43481 0.0001 1.0001 1.0001	7.0 519.64799 567.61915 4.08.23533 0.00007 1.0002	7.0 519.68797 572.95459 479.06274 0.00002 1.0100 1.000	0.0 519.63799 590.50415 4.7.70483 0.00007 1.0101 1.0100	0,7 519,68799 530,75249 477,60693
0.0 0.0 44.05487 0.07010 0.99999 1.00177	0°0 0°0 47~27454 0°06983 0°06983 0°09999	0.0 0.0 51.86934 0.06947 0.99999	0.0 1.0 55.8552 0.06922 0.99439 9.430	0.0 2.0 57.12592 0.06715 0.99999	0.0 0.0 59.35576 0.06999 0.99999	0.0 7.0 61.61930 0.05495 0.957995 0.957995	0.0 1.1 7.1 0.06391 0.06391
0,99284 0,0 446.33965 72.04700 0.0 1.000 1.0000	1.00066 0.0 510.46289 22.04700 0.0 1.000 1.000	1. 70988 0.0 6.0 6.05532 7.04700 7.0 1.0000	1.01330 0.0 727157 727157 22.04700 0.0 1.0000	1.01427 0.0 76.0 76.0 22.04700 2.0 1.0000 1.0000	1.01507 7.0 9.0 9.0 7.04700 0.0 1.000 1.000	1.71659 0.0 920.43409 22.04700 1.7000 1.7000	1.01692 0.0 989.34059 22.04709
461.36548 0.42049 0.58509 -0.76146 1.12807 0.95998	471.46143 0.43003 0.63390 0.57360 1.11026 1.11026 0.5999	494.28760 0.44213 0.71612 1.94474 1.94474 1.11014 0.9997	493,74888 0,45078 0,30307 2,66994 1,10530 0,99999	495.76001 0.45308 0.83471 2.83477 1.10425 0.9999	497.85718 0.45507 0.45507 0.86730 7.95246 1.10337 7.99999	502.15845 0.45917 0.45917 3.21233 1.10173 1.10173	503.32959 0.46029 1.01500 3.26275
459,09058 461,35548 641,96704 -0,01751 -0,01716 -0,0000 0000 1,0000	469.55920 471.46143 694.97280 -0.01379 -0.00666 0000 0000	483.16016 483.16016 484.37560 784.37566 -217015 -0.17598 0370 1.0000	00001. 60017.69 63847.69 63640.0 13000.0 13000.0 01300.0 01300.0 0 13000.0 0 13000.0 0 0 0 0 0 0 0 0 0 0 0 0 0	495,29724 495,76101 913,4530 -0,71492 -0,11427 6933 1,3009	497.51127 497.35718 949.94580 - 34580 - 31567 - 31567 00310 1.3003	502,05347 502,15345 502,15345 1056,413P2 -0,00207 0000 000001	573.03833 553.03833 5505.111 111.01587
9.75263 0.0 446.38965 0.09968 0.01363 0.99998 1.	11.15249 0.6 510.46789 0.08772 -0.00128 0.99999 1.	13.47910 0.0 6.0 9.06376 9.06376 -0.01679	15.80014 0.0 777.31152 0.04973 -0.07545 0.99000 1.	16.75922 0.0 767.09009 0.04347 -0.02730 0.93993 1.	17.64593 9.0 9.0 9.037.85913 0.03731 -0.02885 0.99999 1.	20.30508 0.0 929.43409 0.02047 -0.03174 1.02033	71.61490 0.0 5.89.34753 0.01285

Ą

¥

1 0050	10050	10060	10070	02001	10770	10070	10070
495.48770	495. 60645	475 . 64674	0.0	359 - 58325	396 . 57324	421.15137	435 . 34898
1.0000	1.0000	1 • 0000	200 200	roro. 1	1.0000	0000-1	1.0000
0-0c •1	1. 2000	0006 • 1		1000 ·	1.0000	1-0000	1.0000
1.0 2115.97192 3726.25371 1879.46997 0.00000 1.70000	0.0 2115.96753 3879.97764 3879.17969 1829.17969 0.00000	0.0 2115.97119 3934.55127 7130.13019 1909.1 1.0000.0	498.32349 16.00000 0 ^t Al DFLTA-T	1 70P= 0 0.0 2115.96559 2118.44556 2042.78149 0.00000 1.00070	n.0 2115.95410 2175.97534 1949.63919 0.00000 1.000000	7.0 2115.94995 2220.59155 1920.29883 1920.29883 1920.00000	0.0 2115.94556 2261.33887 1901.04932 1.00000 1.00000
1.0 518.68799 609.58229 497.57227 0.00002 1.0000 1.0001	0.0 518.68799 514.343799 614.34326 417.55005 0.00007 1.0700 1.0203	n.n 519.68799 519.10278 519.10278 510702 1.0709 1.0703 1.2003	1	0.0 513,68799 513,68799 513,49927 0.00004 1.0000 1.0000	1.0 513.68790 522.84814 522.84814 506.69971 0.0005 0.9999	1.0 51 4.68799 525.98794 504.51025 0.00002 0.00002 0.9992	0,0 518,69799 528,62573 503,06030 9,00004 0,9991 0,9966
1.0 0.0 64.27367 0.054892 0.054892 0.054992 0.93519	0.0 0.0 0.0 0.0 0.06991 0.99999 0.99999	0.0 0.0 65.36594 0.06391 1.00000 0.99509	ין, מפסטא ה-ח נחתו דעק	n.0 0.0 0.0 0.039624 0.07457 0.97457 1.33897	0.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	0.0 2.0 3.47777 35.47777 35.47777 0.07135 0.99997 1.00404	0.0 0.0 1.0 34.57387 0.07793 0.97997 1.00099
1,01666 0,0 1,0457.7471 1,0457.670 1,050 1	1.01695 1.0 1.0 1.0 1.0001 1.0000 1.0000	1.01596 0.0 1000.22754 22.04700 0.0 1.000 1.000	, 97Co 1, 0000 , 5245, 00000 n=1 1A-T	 STUNY 3.59449 3.1 45.77124 25.19500 0.0 	0.95715 0.7 27.65917 25.19600 0.7 1.000 1.0070	0.79013 0.0 294.19434 25.19600 0.0 0000 1.0000	0.97546 7.0 345.63477 25.19600 2.0 3.0 3.000
503.74171 0.4604 1.06152 3.37058 1.10155 0.99999	504.00617 0.46973 1.08401 3.30951 1.10133 0.99978	504. C5493 0.46098 1.10593 3.20895 1.10137 0.50995 0.50999	5712°127 1 86063 1	31NF SPL 1 TTF5 249.72565 0.22492 0.22456 -32.56863 -32.56863 1.61270 0.99998]	379.57813 0.34400 0.39926 0.39926 -8.71924 1.17015 0.90999 1	412.78364 0.37696 0.46037 0.46037 0.99160 1.14270 0.99999 0.99999	433.37427 0.39416 0.50417 0.14450 1.12510 0.99997 1.2510
503.73193 507.74121 1150.75073 -).10059 -).1666 -).1666	10000,1,0000 1,000,407 1,000,407 1,000,7 1,000 1,000 1,000 1,000 1,000 1,000	514.75493 564.75493 1279.29564 -2.71060 -0.11696 -0.0000	7115, 76533 5245, 7000 , 1741 ovessige	VASA FAN EN 209.37054 249.72566 253.13565 -0.39416 0.30551 0000 1.0000	360.91382 379.57313 440.55542 -0.71569 1.74285 0300 1.0000	379.12015 412.78369 535.97307 -3.75363 9.01987 0000 1.0000	472.55470 433.37427 554.37544 -0.74063 1.77454 0.000 1.0000
72.44726 0.0 1045.74731 0.00619 -0.07187 0.99999 1	73.43491 0.0 10.0 1072.87349 0.00298 -0.03242 0.9999	24.01559 0.0 0.0 0.00754 0.00070 -0.03746 0.59593 1.	518.68799 518.68799 421.16,55 * STATOP OP 14 * NISRF AVEPAGF T	* 1.00/10 0.0 45.77124 0.46.055 0.41112 0.9999 1.	4. R8578 0.0 2.03.62813 0.17574 0.08147	6.42750 0.0 2.04.19434 0.26380 0.26380 0.03797	7.55135 0.0 345.61477 0.22763 0.99997 1.

#

1 0070	1 0070	10370	10070	10070	10070	10370
446.46094 461.36548	471.46143	6Å7Å0	403 ,1 4890	495.76071	407.8571A	572.15845
1.0000	1.0000	1.0000	0000 1	0000 • 1	1.000	0006.1
1.0000	1.0000	1.0000	1.0000	1. 2007	Cuan.	1.0000
7115-95239 2115-952239 2303-97852 1866-05884 1.00000 1.00000 1.00000 2115-95020 2384-37447 2384-37447 1966-52832 0.00000 1.00000	0.0 2115-96387 2464.01511 2464.01511 1853-88892 1853-88892 18892 1.00000	7.115.96606 7624.60254 1938.45117 9.00000	0.0 115.97119 115.75119 115.7.581 1192.7.61 00000.1	0.0 2115.97044 2918.81641 1825.20532 0.90000	7.7 2115.96582 3014.19629 1922.94399 0.00000	0.0 2115.96494 3343.57520 1917.97559 0.0 1.0000
0,0 515,64799 515,44971 511,4297 511,4297 511,0201 1,00201 1,00201 518,6879 518,6876 518,6876 518,6876 518,607 0,00201 0,0021 0,00201	0.0 518.68799 541.73999 499.46143 0.00002 1.0000 1.0003 1.0003	0.0 519.68799 551.59131 498.26929 0.00003 1.0000 1.0003	1.0 514.68799 553.71875 563.71875 407.45396 0.00007 1.0010 1.0107	9.0 519.68799 558.57178 558.57178 497.24097 0.00001 1.00001	7.0 519.68799 573.81201 497.95713 5.00002 1.0001 1.0392	0.0 519.68797 591.04304 476.67799 1.7309 1.7309 1.7303
0.0 0.0 41.0940 0.07043 0.99999 0.99999 0.99999 0.0 0.0 0	0.0 1.0 47.60187 0.04357 0.99999 0.99490	9.0 0.0 51.77785 0.06916 0.99999	0.1 0.0 55.51172 0.06399 1.00300 0.99313	0.0 1.0 56.75667 56.75667 0.05890 0.95890 0.93307	0.0 0.0 51.94589 0.96874 0.96974 0.99999	0.0 n.0 k.1.13242 0.05861 1.00000 0.01280
85200.1 0000.	1.01956 0.0 526.44873 25.19600 7.0 1.700 1.3000	1.02246 0.0 629.99901 25.19500 0.0 1.0000 1.0000	1.02.492 0.0 7.55.47378 75.19600 0.0 1.0000 1.0000	1.07474 1.0 7.0 7.0 5.19607 1.0000 1.0000	1. 72400 1. 72400 1. 14421973 25.19400 1. 7000	1.07417 0.0 932.932.97 25.19500 25.19500 25.0 1.0000
448.86206 0.4087 0.4087 0.4087 0.5428 1.911.1 1.911.1 1.911.1 1.911.1 1.110	4 P0.68198 0.43175 0.45375 0.45371 4.13005 1.09852 0.99995	495. 35864 0.45269 0.73167 4.46060 1.09497 0.9998	505.15161 0.46207 0.91637 4.57177 1.59333 0.09333	5C7.67676 0.46443 0.46443 0.44720 4.44957 1.09371 0.99999	509.84912 0.46650 0.87000 4.49064 1.00366 0.0366	514.29761 0.47075 0.477578 0.97578 4.36855 1.09355 0.99998
440.70142 443.75906 595.72900 -0.73168 -0.70538 -0.70538 -0.70538 660.77080 468.39379 468.39379 660.77080 -0.712149 -0.712149 -0.712149	476.41040 487.63188 487.63188 712.93176 -0.71576 -0.71956 -0.01956	19500.504 19500.504 19900.60 19900.60 19900.60 19900.60 19900.1000.00 1000.1000.00 1000.1000.00	503.19608 575.15161 992.57397 -0.10586 -0.10586 -0.10000	576.75932 577.57676 926.78691 926.78691 -7.72404 -0.22404 -0.70200	573.21118 573.4412 467.676 -0.77404 -0.72409 -0.72409	514.11230 514.79761 1055.26904 -0.02202 -0.2020 -0.2000
8.55742 9.00 391.68335 0.19934 -0.01035 0.99999 10.16122 465.09155 0.016125 465.09155 0.0229 0.992929 0.99593 1.	11.50174 0.0 526.44873 0.13421 -0.03766 0.0999 1.	13.74207 0.0 6.989901 0.09786 -0.04395	16.07771 0.0 735.P7378 0.06395 -0.04593 0.004593	16.92183 0.0 774.53276 0.05887 -0.04612 0.99999 1	17.78839 0.0 814.21973 0.05507 -0.6507 0.0993 1	70.38173 7.0 0.07 0.07695 0.07695 -0.07695 -0.07695 1 0.20003 1

•

	00700	01001	02001	07001	060U 1	1 0080	06001
·Aao	573.32759	1514. 74121	514.00610	574.05493	ر ۲۰۰۵ ۵۰۵	249.77564	379.57813
Juced Fror vailable	1.0000	1.0000	1.0000	1.0000	0	1. 0000	1.0000
Reprod	ULOL 1	1. 0000	0000 - I	000C • 1	2 e . 3 .	0000 * 1	0006 • 1
0.1 2115.96997 3533.20972 1816.64478	0,01010 1,10000	1.0 2115.9558 3730.04496 1815.92725 1.07000 1.07000	0,0 2115,94460 341,351,56 0,13000 1815,76440 1815,76440 1815,70000 1,00000	0.0 2115.76684 3934.53955 1815.71119 0.07000 1.0000	496,56958 16,00000 111, 051 TA-T	LUNP= 0 0.0 2115.96265 2159.78003 1965.89916 0.00000	n.0 2115.94995 2214.97144 1914.22681 0.00000
0. 1 51 % 68799 600.41090 476.57349	0.0001 1.0001 1.0002	1,9 5,4,69700 6,0,76147 4,05,51769 0,10302 1,10302 1,10302	0.0 513.69799 614.43286 476.50513 0.000001 1.7777 1.007	0.0 518.68799 519.10778 496.5077 496.65073 0.00002 1.00030	000001 COCO.1 0000001 0.0	0.0 518.68799 521.7315 577.00234 7.00004 1.0007 1.000	0.0 518.64797 575.50757 574.07577 514.0597 0.00007 1.7700 1.7701
1.0 0.0 62.52893 0.05457	0, 99999 0, 99275	0.0 1.9 4.75711 0.14355 0.99769 0.99763	0.0 0.0 0.0 0.06355 0.09357 0.09377	0.0 0.1 64.93910 0.06355 0.99799 0.99767	= 5NT TUU) 6*0 6*0 0	0.0 0.0 71.94601 0.07755 0.96236	0, 0 7, 0 34, 32220 0, 07118 0, 99998 0, 99184
1.02421 0.0 1.42153 5.1953	0600 1. 0000 1	1.07464 .0 .746.77054 25.194.0 .0 .0 1.0000	1.07442 1.073.52 1.073.52 1.050 1.050 1.0000 1.0000 1.0000	1.07442 1.001 25.1960 25.1960 0.0 1.9000	.000C 1.7000 5245.00707 DFLT&-T	<pre>A STUNY A STUNY 1.44174 0.0 1.01 1.13375 7.1 2.34599 7.0 1.0000 1.0000</pre>	1.10485 3.0 286.31665 28.34597 28.34597 0.0 1.7000 1.0000
515.51537 0.47132 4.202302	1 • 09352 0 • 60996	516.16607 0.47256 1.76866 6.70537 1.00374 1.00374	516.31323 0.47268 1.50940 2.73834 2.38304 1.50940 1.50943	516.36304 0.47273 1.417184 4.39928 1.09330 0.9998	0.59998 1 421.16436	51NF SPLITF 360.032595 0.32595 0.37595 0.37595 59.28732 0.77684 0.77684	419.27576 0.185 0.18106 0.1870 0.121 1.01372 0.9990 1.01372
515.4272 515.4272 515.51587 1117.52710	0000°1 (000	0000	516.30957 515.131 515.1512 5267-1011 52670-0 -0-02442 00000	40697.915 40695.915 60734.417 00007.0 74470.0 00001 0000	115, אר 265 5245, אר 265 ל לדאע איר 255, שיר	VASA FAN FN 741.81716 347.71704 477.71704 03.13460 -).44174 -).44174	377.74761 413.37524 507.79199 -0.75607 -0.10485 .00001
21.66251 0.0 0.1.51053	14-16-6 -0° 46338 14-16-6	* 22.460a1 7.0 1.046.77554 0.000775 0.0003 1.	23.44990 1.07.12.517 1.073.32517 1.07.499 -0.06176 0.79749 1.	* 24.01569 0.0 - 10.0 - -0.0000 -0.0000 0.0000 0.0003 1	518,68799 51,11377 \$57876 0074 \$1158 \$1586 40466 7	* 4.1900 4.1900 0.0 1.11.37375 1.1.10347 -1.2559 0.09099 1.	* 6.25538 6.00 286.31665 0.53326 -0.532287 0.532287 0.53287 0.53287

10080	10080	10040	1 10940	0600 i	10340	06 06 1	10780
41 2. 73369	7527 8 85	448 . 86206	469. 38379	68 [89 ° 0 84	495 . 15864		507 . 67 <i>6</i> 76
1 • 0000	1 • 0000	1 • 0000	1.0000	0000-1	1.0000	1.7000	0000 • I
1 - 0000	00001	1. 0000	1 - 1000	1.0000	1.000	1 • 0000	1.000
0.0 2115.94653 2259.11011 1883.67896 0.00000 1.00000	0.0 2115.94165 2298.87402 1865.96826 0.00000 1.03000	0.0 2115.94995 2340.31519 1953.14282 1953.14282 1.00000	0.0 2115-94905 2418-53198 1877.32275 1.00000 1.00000	0.0 2115.95850 2496.16553 1827.52661 0.00000 1.00000	0.0 2115,96509 2452,98765 1915,6756707 11,00000 1,00000	0.0 2115.76690 2856.34790 1807.54614 1.00000	2.0 2115-96704 2940-93457 1805-37256 0.00000
0,0 519,69799 528,47681 501,74268 0,00000 1,0001	0,0 518,68799 531,1169 500,79063 9,00002 1,0000,7 1,0000,7 1,0001	0.0 514.68799 531,83752 499.40503 0.00001 1.0003 1.7001	0,0 518,68797 539,86694 499,18335 0,000000 1,0001 1,0001	9.0 543.69799 543.74854 497.42212 0,0000 1.0002 1.0003 1.0001	1.00 1.00 1.00 1.00 1.00 1.00 1.0000 1.00000 1.0000 1.0000 1.00000 1.0000 1.00000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000000 1.000000 1.000000 1.000000000 1.0000000000	1.0 518.68799 565.07775 665.86182 0.00072 1.0002	C*U CUUCO*I CUUCOO*C CUUCOO*C CUUCOO*C CUUCO*C CUUCO*C CUUCO*C C*C C*C C*C C*C C*C C*C C*C
0.0 0.0 37.24060 0.07037 0.99999 0.98093	0.0 0.0 39.44919 0.99999 0.98999	0.0 0.0 41.55312 0.16755 1.00700 1.00700	0.0 0.0 0.0 0.0177649 0.00013 1.000003 0.98436	0.0 0.0 4.0 6.05583 0.05583 1.00000 0.93578	0.0 0.0 51.32001 0.06455 1.00000 0.94763	0.7 7.0 54.95757 0.05833 7.99999 7.99934	0.0 0.0 55.15491 0.05827 0.03827 0.0399
1.09323 0.0 3.43.03662 28.34599 0.0 1.0000 1.0000	1.08203 0.0 380.54175 29.34599 29.34599 0.0	1.07746 7.0 426.59115 28.34599 28.34599 0.0 1.0000	1,05992 0.0 402.54370 28.34590 28.34590 0.0 1.0000 1.000	1.35!55 0.0 548.31015 28.34599 28.34599 0.0 1.0000	1.04243 1.04243 645.00366 24559 2.1.1.0000 1.0000	1.03639 0.0 746.44 746.447 745.4659 745.14590 7001 1.001.1	1.03540 7.0 7.1 7.2.00454 7.8.34577 7.5 1.000
451.26953 0.41097 0.51623 70.31541 1.02448 0.99997	468.92603 0.55419 0.55419 16.87584 1.03509 0.99997	481.38647 0.43942 0.58720 14.43335 1.04433 0.9998	496.40137 0.45369 0.45369 0.63912 11.69295 1.05679 1.05679 3.9999	505.52979 0.46238 0.48238 9.968254 9.968200 1.06495 0.9999	516.37500 6.477574 0.75645 8.275645 1.77442 1.77442 0.09908	523,74316 0,47079 0,83565 7,02922 1,02922 1,02924 0,09093	525.69497 0.48166 0.36497 7.01830 1.73161 1.03161
418,44727 451,26753 566,34937 -0,03522 -0,33522 -0,33522 -0,0000	445.11084 458.7503 637.70557 -0.02527 -3.79203 -0.75203	451.62574 461.38647 462.7148 643.71148 -0.131916 -0.77246 -0.0000	445.71516 466.43137 599.75517 -9.75517 -9.75987 -3.75987 -0.000	498.05396 575.52979 745.73218 -3.13943 -3.13943 -1.15160	512,55127 516,37500 826,24023 -0,03594 -0,13594 -0,14243	521,9796 523,7416 612,752 618,20 612,750 612,72 6120 612 6120 10 10 10 10 10 10 10 10 10 10 10 10 10	6000-1 -600 525-5492 6351-1256 74354 7356- 73561- 756 760 760 760 760 760 760 760 760 760 76
7.49459 0.0 343.03667 0.46376 -0.18717 0.99997	44508 0.0 385.54175 0.33147 -0.16323 0.90907 1	- - - - - - - - - - - - - - - - - - -	<pre>10.76739 0.0 0.0 402.54370 0.71405 -0.11769 0.39999 1.</pre>	1 6501.0 1 600 1 100 1010 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	14.09190 0.0 645.00365 0.12338 0.12338 -0.08198 1.08198	16.31779 0.0 746.86187 0.00343 -0.07081	17.12463 0.0 783.59454 0.0156854 0.07167 - 1.56879 1.00003 1.00003
. 10340	12047	0 2 6 1	1 1740	10742	17380		
--	---	--	---	--	---		
		4 ت 2 1 S • 5 1 S	514.16402	£2E1L-\$15	******		
mont bailable on mont house and the month of the montholde the montholde the montholde the month of the month	6660 • 1	nrc0.1			0000-1		
keprod best a	1.170	6666 • 1		٥دىزد • ١	1. 110		
n.n 15.34745 115.34745 134.31776 1873.50513 1.77007	7.0 2115.04059 3156.77612 1703.55103 1703.55103 1.00000	7.0001 7.06559 1.542.796559 1.764.6471 1.764.6471 1.70070	2115-96501 2115-96501 714-1900 710000 000001	ר 115.061 מר 115.061 מו 117.17.17 117.17 117.17 1100.0	0.0 2115.04214 24522422 0.05020 0.00000		
ر، ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	1,0 51,048791 5-11,70484 5-1467 5-3467 3,0001 1,0773 1,0777).0 514.64797 513.45083 515.16524 0.11031 1.7397 1.7303	1, 519,68790 5-30,9907] (-0000,0 1,0000,0 1,0101]	1.000 1.000	r, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
1.0. 1.1. 1.1. 1.1.150 1.15427 1.15427 1.15427 1.14477 1.144777 1.144777 1.144777 1.144777 1.144777 1.144777 1.144777 1.1447777 1.14477777 1.1447777777777	3.7 6.7 6.75735 0.064311 0.064311 0.09347	0.0 0.1 1.1 1.15479 0.17979 0.17979	0.1 0.1 4.2,07903 0.04417 0.04417 0.94719	0.0 1.0 53.52757 53.52757 0.09737 0.09737	n.n 0.0 46.1577 0.05336 0.04979 0.04979 0.04979		
1000,1 CUAC.	۲۰۶۶، ۲۰۱۲، ۲۰۶۵، ۲۰۱۲، ۲۰۶۵، ۲۰۱۲، ۲۰۶۵، ۲۰ ۲۰٬۰۱۲، ۲۰۲۶، ۲۰ ۲۰٬۰۱۲, ۲۰۲۰, ۲۰	الال 1، 1،116 م. م م. ۵ م. ۵ م. ۵ م. ۵ م. ۵ م. ۵ م. ۵	10111 10111 10111 10121 10121 1011 1011	P 2 160 - 1 P 2 160 - 1 P 2 2 4 7 9 P 2 2 4 7 9 P 2 2 4 7 9 P 2 7 9 P 2 7 9 P 2 1 7 00(•	1, 112 1, 112 1, 12 1, 12 1		
627,457,152 0,4472,42 1,547,45 1,57595 1,57595 1,57370 1,57595 1,57595 1,57595 1,57595 1,57595 1,57595 1,57595 1,57595 1,57595 1,57595 1,57595 1,57595 1,57595 1,5757575 1,575755 1,575755 1,575755 1,57575	530.F880? 0.49455 0.49736 5.4770 4.47709 1.09501	5314216 1.49761 1.03366 1.03366 1.1265 1.12655 1.18557 1.28557 1.28557	5:7.18:94 0.4978 1.07759 6.74349 1.09679 1.09679 3.00099	513,46265 1,46265 1,001 1,005 1,0463 1,04637 1,04637 1,0407	512 *0444 0.48720 1.11977 5.11706 1.78695 0.99999		
575, 1950 2751, 1950 25511, 1971 25511, 1 79511, 1 79511, 1 1001, 1	6000.1 - (600 42210.6- 15101.6- 42210.6- 15101.6-	0000°1 (CC) 1127,555 1127,555 1127,55 1127,5 1127, 1127, 1127 11	6000,! CCC). 5460,:CCC 54712; 54712; 59C12; 50111; 50112; 5000,! CCC).	F0723,567 F0723,567 F075,567 F01125,6611 F12011.61- F12161.61- F0202 1-0003	512,57444 512,59444 1221,41797 - 1,10002 - 2,11726 - 3,1126 - 1,0007		
11.96422 1.0 822.24439 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	20.47522 0.675263 1.5753 -9.55183 -9.552 -9.553 -9.555 -9.553 -9.553 -9.555 -9.555 -9.555 -9.555 -9.555 -9.555 -9.555 -9.	21.7277 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	72.89737 0.0 040.04077 0.03155 -0.65940 0.69960	73.46776 73.66776 71.04776 71.04556 -1.05647 0.49703	24.01569 0-0.000 0-0.000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.00000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.00000 0-0.00000 0-0.00000 0-0.00000 0-0.000000 0-0.000000 0-0.00000000		

.

-

.

134

.

•

.

•

.

.

.

•

00001		10090	06001	06(01	1 009 0	10790	06601	0.001
0.0		360.01955	419.37574	451.7693	468, 97673	1949r.[p4	406.40137	6705 <u></u> 673
6		0000-1	1.0000	0000-1	CCUQ • 1	0000•	0000	1.00
0•0 31.4959	0 •0 =	1. 2000	1.0000	CUOU-1	UL06. *1	C00C • 1	tuut • 1.	
493.51416 16.00000	ITAL DFLTA-T	LUNP= 0 0.0 1115.96069 241.57104 734.70972 0.00000 1.00000	0.0 2274.08667 2274.08667 2743.69385 0.00000 1.00000	0.0 2115-94115 2315-77344 2315-61890 1776-61890 1.776-01890	9.9 2115.94214 2350.95703 1781.94335 -0.07000 1.0000J	2115-95027 2393-97077 2393-97277 1794-42097 1794-42097 1794-42097	0.1 2115.94453 2461.98534 1705.43972 0.00037 1.000030	1.0 2115.05410 2575.95410 1785.05577 1.00070 1.00070
0000 1.0000 1.00000	0 . 0	0.0 518.68799 518.68799 557.30103 557.30109 1,0000 1,0000 1,0000 1,0000	0.0 519.64799 577.30713 1.22.39575 0.00001 1.2730 1.0700	1.0 518.68799 512.22900 403.4242 2.20022 1.3033 1.0303	1,0 51°,647°° 534,57515 403,84668 -1,00000 1,0000 1,0000 1,0000	1,0 513,54709 536,94729 404224 -0,00309 1,1700 1,0170	ر 1 5 ، ع. 54 70 5 ، 14, 54 70 5 ، 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,	0,0 513.6970 500.25 7500.277 77001.1 10101.1
0•0 0•0	= 5NT 1000	0.0 0.0 0.0314 0.06635 1.00000 0.84741	0.0 0.0 33.04132 0.05714 1.0000 1.0000	0.0 0.0 3.21361 3.5.21361 0.07769 1.00000 0.04317	0.0 0.0 33.61142 0.05763 1.07700 1.07700	0.0 0.0 40.74124 0.06470 1.00000 1.96200	0.0 0.0 44.07734 1.05774 1.0501 0.07190 0.07190	0.0 7.9 46.51546 0.96772 2.900131
00C0 1.0000 5245.00000	DFL T A-T	γυμγ γυμγ γο γο γο γο γο γο γο γο γο γ	1.34037 0.0 365.60742 31.49503 0.0 0.0 1.7030	1,22999 0,0 403,46972 31,49595 31,49595 0,0 1,0730	1.16515 0.7 4.36.34.00 31.49509 0.0 1.7200	1.1355 7.7 7.7 4.6°.78174 1.40509 1.000 1.000	1, 39402 1, 39402 5,5,00444 3,49500 1,3033 1,3033	1.07547 0.0 575.23199 1.1.49507 0.0 1.0000
0.09098 1. 421.23975		INE SPLITTF7 586.43579 0.54039 0.54039 0.61639 64.47115 0.68762 0.68762	562. C9790 0.51674 0.61643 40.67439 0.93567 0.93567	550.99438 0.59600 0.67716 29.67716 29.63440 0.01720 0.9977	546.37012 0.50154 0.651154 0.64135 73.48830 0.94125 0.9997	544.2152 3,47947 7,45972 19,26358 3,00070 0,00070	543.10693 49340 0.65319 13.84368 1.02368 0.99368	541.65%73 0.49933 0.72637 0.72637 11.37636 1.04145 1.04145 1.97699
2115.75801 5245.7C000	JAL POCSSURE	NASA FAN FNG 496.57352 596.43579 548.1235 0.16729 0.16729 0.16729 0.10003	503.59897 562.79790 570.53966 570.53966 70.329017 -0.34032 1.9200	512.49561 553.19438 44125.564 41150.564 91150.564 91250.6 -0.22199 0000.1.0000	5134.25391 51251.255 51155.66 51155.6 77857.6 77857.6 77857.6 77857.6 7000.1 7000.0 1000.0000.0000.00000000	721, 17910 544, 21582 544, 21582 719, 28076 714, 28 7, 13, 252 13, 152 0000	523,76611 543,10653 7552,1774,5 0,1575 -7,13400 -7,13400 0013 1,7003	514, 15497 543, 15497 791, 49121 7211, 1215 -0, 17542 6000 ', 2000
518.68799 421.18348 *514TAP	* NISPE *MASS AVERAGE T	* 7.03000 0.0 3.1.77173 2.1.67262 -1.54240 0.90993 1.0	* 7.98771 7.0 7.0 7.65.60742 7.46537 -0.74621 0.79993 1.0	* 9.81489 9.0 0.0 463.46897 0.39487 - 3.46972 0.99997 1.1	* 7.53307 7.0 7.0 435.34009 7.334009 7.35612 0.73612	* 13.74184 0.0 468.78174 0.07114 0.2714 -3.26149 0.00033 1.	* 11.47717 7.0 525.00464 7.18531 -0.18531 C.999927 1.	* 12.56759 0.0 575.23399 675.23399 0.18534 -0.128534 0.00009 1.

.

06001	0600 I	1 0090	10090	066.01	06001	10390
516.3757 0	4]{\$2.4	525°69492	07538.152	530 . P9892	210n9.15	532 . 19296
1 - 0003	ccoo.1	1 • 0000	1.000	0000 • 1	0000-1	1.0000
00LQ. I	1 - 0000	1.000	1 • 1020	1.000	0000 1	0000-1
0.0 2115.94119 2687.96177 1782.53784 0.00000 1.00000	0°0 2115°76118 2884•53796 1779•69530 1779•69530 1,00000	1.0 2115.966496 29665.91040 1778.75537 0.00000 1.07000	0.0 2115-95509 3057-90552 1777-71387 0.00000 1.00000	0.0 2115.95729 3372.12524 1775.37427 1.00000 1.00000	0°0 2115-95996 3557-84985 1774-76318 000000 1.000000	n.n 2115.96094 3740.22900 1774.35938 1774.35938 1.00000 1.00000
0.0 518,69799 555,30713 6923,89233 10000,0 1.0001	7.0 519.65700 566.65860 493.66676 0.00002 1.00002 1.00002	0,7 519,68799 571,72949 433,59253 0,00001 1,0000 1,00001	n.0 519.68799 576.17487 693.51075 403.51075 0.00027 1.00001	3.0 518.68799 592.47583 493.32471 0.00091 1.0700 1.7001	7,7 518,64799 511,36133 493,77588 0,70202 1,3000 1,0701	0.0 518.68799 610.23389 600.24463 0.00001 1.0001 1.00001
n.0 0.1 50.55937 9.06765 0.99999 9.98999	0.0 0.0 54.17007 0.06757 0.99459	0.0 0.0 55.36156 0.06755 0.98526 0.98526	0.0 1.0 5.4.51425 5.46152 0.06152 0.08573	0.0 0.0 59.62367 0.06746 0.99993 0.79557	0.0 0.0 61.00815 61.00815 0.06744 0.97584	0.0 1.0 62.21640 0.76743 0.99999
1.05712 0.0 663-56738 31-49599 1.000 1.0000	1.04699 C.0 759.57486 31.49597 0.0 1.0000	1.04463 0.0 794.00723 31.49599 0.0 1.0000	1.04303 0.0 831.49634 31.49637 31.49597 3.2 1.000	1,73991 7,7 942,11450 31,4959 31,49599 7,0 1,7000 1,9700	1.073996 0.0 997.77466 31.49599 0.0 1.0000	1,03902 0.0 1047.49497 31.49599 0.0 .000 1.0000
545.86890 0.50175 0.79871 9.57759 1.05949 0.99949	548°35034 0.50345 0.86009 1.66974 1.66974 0.9999	549.15674 0.50423 0.68711 6.21939 1.77215 0.99998	550.05767 0.50510 0.91548 6.94718 1.07370 1.07370	552-07846 0.50705 1.002200 5.59017 1.07701 0.99994	552.61157 0.50757 1.04721 5.60928 1.07800 1.07800	552.95117 0.50789 1.08959 5.76750 1.07793 1.07793
541.14944 545.4490 353.24072 -3.17341 -3.15712 -3.0073 1.0007	545.11499 549.1534 915.74662 -1.70364 -3.14696 -3.14696	547.47314 543.15674 965.15234 -0.1106 -0.34463 -0.14463	COOO"1 COOO" 52128"55 7225"55 12025"56 12025"56 12025"56 12025 5126"55 5128"55 5155 5155 5155 5155 5155 5155 5155	6000 °1 (000) 9857(552 9857(552 9857(5 -0- 1985(- -0- 1685(- -0- 1685(- -0- -0- -0- -0- -0- -0- -0- -	552°473157 552°51157 60°1°4746 60°1°4746 60°0°0 60°0°0 60°0°0 60°0°0	552.72017 557.35117 1146.75171 -0.17024 -0.73907 -0.73907 C000 1.0003
14.49749 1.0 1.0 1.1355738 7.13237 -0.11342 -0.11342	16.59398 0.0 759.52486 0.00057 -0.09337 0.09033 1.	17.36496 0.0 7.07 7.07349 -0.78569 0.40973 1	1 a 1 66735 7 0 0 7 0 0 7 0 0 7 0 7 0 7 0 7	23.58311 0.0 9.42.11453 7.03559 -0.07640 0.999998 1.	21.78324 0.0 0.1 0.0722466 0.022460 -0.07453 0.09999 [.	22.92914 0.0 10.0 1049.49487 0.01362 -0.07455 0.99993 1.

06001	10090	00101	10100	10100	10100	10100	10100
532.46265	532.57464	· · · · ·	586.4357 <u>0</u>	562.79790	550 . 9943R		544.21 <u>5</u> 82
0000 •	1.000	66	0000 • 1	1.0009	1 • 0000	1 • 0000	000-1
1.0000	1.0000	0.0 34.6444 = 0.0	1.0000	1.0000	1.0000	0000-1	1•0000
0.0 115.95435 1836.48682 174.53271 0.00000 1.00000	0.0 2115.95654 5934.52417 0.00000 1.00000	490.67749 16.00001 - DTAL DELTA-T	LDDP= n 0.0 2115.95068 2302.40308 1687.85967 1687.85967 1.00000	2115.93628 2335.32178 1702.10475 0.00001	0.0 2115-93115 2369-66211 1713-60547 0.00000 1.00000	0.0 2115.93530 2401.24194 1722.07324 0.00000	n.0 2115-93921 2436.77313 1729.94971 1729.90001 1729.99990
0.0° 518.68799 2 614.66846 3 493.25781 1 0.00002 1.0000 1.0001	0.0 518,68799 619,10278 493,25659 1,25659 0,00002 1,0001 1,0001	.0000 1.0000 1.00000 0.0	0.0 0.0 519.68799 531.34912 646.25073 0.00003 1.00003 0.0	0.0 513.68799 533.50906 497.42065 0.00003 1.0000 1.00003	3.0 518.68799 515.67236 4.08.3594 0.00003 1.0333 1.3300	3.0 519.69799 537.76514 489.04810 0.01002 1.0000 1.0001	3.0 519.68799 543.02026 499.60474 0.00003 1.0700 1.000
0.0 7.0 62.77834 0.06743 0.96743 0.99999	0.0 0.0 63.30132 0.06743 0.99999 0.98709	0.99998 1 0.0 0.1115 =	0.0 0.0 32.00090 0.06506 0.99999 0.97299	0.0 1.0 34.55157 0.06546 0.99598 0.94508	0.0 0.0 36.81522 0.06577 0.96158 0.96453	0.0 0.0 3.14535 0.06600 0.99640	0.0 0.0 40.53499 0.05499 0.05499 0.05499
1.03321 0.0 1074.64844 31.49599 0.0	1.03815 0.0 1.099.22754 31.49599 0.0 0.0	0000 1.0000 5245.00000 DELTA-T	 STUNY 1.76461 0.7 300.13550 34.64499 7.0 1.0000 	1,09050 0,0 422,09302 74,64499 0,0 1,0007 1,0000	1.00564 0.7 451.46038 34.64409 0.0 1.0000	1.570,1 0.0 0.0 0.0 0.0449 0.0 000,1 0000,1	1,08629 3.0 5.06.42822 34.64499 34.64499 3.0 1,0000 1,0000
552.80664 0.50775 1.11000 5.80361 1.07878 1.07878 0.99998 1	552, 82129 0.50777 1.13014 5.88111 1.07884 0.99998	0,00998 1. 421.13940	<pre>inc splitte 624.32570 0.57756 0.68105 15.63171 1.05203 0.99938</pre>	612,96631 3,56637 0,68766 16,23282 1,02705 0,9997	603.69199 0.55727 0.69608 1.69608 1.02223 0.99997	596.40420 0.55552 0.70585 15.00219 1.02535 0.40997	591.1752 0.54572 0.54572 0.74735 1.631755 1.03173 0.09997
552.79956 552.97664 1203.49668 -0.7010 -0.73821 0007 1.0000	552.42129 552.42129 1233.41138 0.0006 0.13815 -0.13815	2115,95215 5245,70000 4 1014 pyfsyurf	NASA FAN FN 540,12739 544,17520 524,17520 736,19900 0.136461 -0.736461 -0.0000	595.25830 612.74631 746.73804 0507667 05.73667 05.73667 05.73667 05.7369 05.7369 05.7369 05.7369 05.7369 05.7369 05.7369 05.7569000000000000000000000000000000000000	591.13220 631.63184 631.63189 754.17544 751.13764 -1.19564 -0.19564	0100.1 0100.1 0100 0101.221 0101.0 0101.1 0101.1 0000.1 0000.1 0000.1	575. ac917 591.17529 779.43.286 70.70.7 80.70.7 -0.330.1,0000
73.47868 7.0 1C74.64844 0.00515 -0.07306 0.99999 1.	* 24.01569 0.0 1090.22754 -0.00006 -0.07295 C.99598 1.	518.68799 518.68799 421.08716 *STATCR 1014 * NISRE * MASC AVERAGF 1	* 9.52360 9.0 9.13550 9.13550 -0.12299 0.99009 L	* 9.72180 0.0 4.72.09302 4.72.09302 0.31133 0.99097 1	* 0.37734 0.0 451.86938 7.28293 -0.18569 0.09947 1	* 10.46305 0.0 0.0 1.25540 0.755540 0.0 0.555510 0.0 0.00007 1	* 11.06433 0.0 506.4232 516.4232 -0.16732 -0.16737

-

-
U.53936 0.0 0.74288 555.63 1.04995 0.0 1.00007 0.0
0.44441 . M.M.
0.53467 0.0 0.53467 0.0 0.76941 600.97 15.56934 34.644
1.04389 0.0 0.99997 1.0009 1.
576.13013 1.05 0.53036 0.0 0.5207 682.75 1.6117 0.0 0.00 34.64 0.0 0.000 1.
575,134,77 0.52737 0.52737 0.88656 11.48391 11.48391 1.06784 0.0 0.99998 1.0000 1.0000 1.0000 1.0000 1.010 1.041 0.00
575.49854 1.747 0.52974 0.0 0.91181 806.248 15.18045 34.644 1.06874 0.7 1.06874 0.7
375-58934 1.046 0.52937 0.0 0.52993 0.0 0.93821 841-153 11.33561 34.644 11.33561 3.00 0.0737 0.0 0.0737 1.0000
1 0.0 1 0.0 1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0
176.58350 1.043 0.53080 0.0 1.05314 1000617 1.05314 1000617 1.07343 3.0 1.07343 7.0 0.07998 1.0000 1.0000 1

00101	00 10 1	10100	01101		ation	01101	01101	10110
552.95117	552 . 80664	552.82129	0.0		Rotor Inlet Si ding Station 1	624.37520	612.94631	6J3.69199
1.0000	1.0000	1.0000	000		Fan Bla	1.0000	0000-1	1-0000
1.0000	1 - 0000	1-0000	0.0 37.48(± 0°0		1.9000	1.0000	0006-1
0.0 115-95776 746.24902 145.70947 0.00009 1.00000	0.0 1115-94727 1115-94727 1339-55347 745-45776 0.00000 1.00000	0.0 115.95190 134.51538 134.51538 0.00000 1.00000	498.33091 16.00000	17AL DELTA-T	LUDP= 0 0.0 2115.94189 2342.69141	000001 0000000	7.0 2374.993091 2374.99916 1682.41577 1682.41577 1.20000	0.0 2115.92505 2407.43971 1688.35156 0.00000 1.000000
0.0 518.68799 2 610.51367 3 400.95532 1 400.95532 1 1.0000 1.0001 1.0000 1.0001	0.0 518.68799 2 614.80984 3 490.93555 1 0.00002 1.0000 1.0001	3.9 518,68799 2 619,10778 3 490,92554 1 9,00001 1,0001	1,0000 1,0000 1,00000	0°U	0.0 518.68799 533.99804	0.00002 0.00002 1.0000 1.0002	0.0 51.68799 536.07422 485.80347 0.0000 1.0000	0.0 519.68799 519.16187 7929297 7929297 700.0 1.0001 1.0001
0.0 0.0 0.00 0.00665 0.99999 0.98385	0.0 0.0 61.76495 0.06664 0.06664 0.98362	n.0 0.0 6.0 1.06664 0.99999 0.93356	Ú°0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CO01 1NG =	0.0 0.0 34.04643	0,409,99 0,99999 0,999399	0.0 0.0 0.0 0.05300 0.05491 0.05491 0.93444	0.0 0.0 3.7.77422 0.36509 0.999999 0.999999
1.04401 0.0 1651.09912 34.64499 0.0 1.0000	1.04465 0.0 1.075.43555 34.64499 0.0	1.04481 0.0 109.22754 34.64499 0.0 1.0000	.0100 1.0100 5245.00000	DELTA-T	 p STULY 1.01666 0.0 428.97646 	37.444000 0.0 1.7000 1.0000	1.02553 0.0 457.18652 37.48000 0.0 1.0000	1.03350 0.0 4.81.85994. 2.0593.7 7.5 0.0 1.0000 1.0000
577.78638 0.53148 1.10404 13.63973 1.07279 0.99998	577.49243 0.53168 1.12384 1.3.52541 1.07212 0.99998	577.59546 0.53178 1.14324 13.30057 1.07196 0.90999	0.º9997 1 421.16992		51NF SPLITTE 634.72510 0.58784 0.70945	-3.54463 1.10165 0.99997	628.61475 0.58180 0.1940 -0.90825 1.09212 0.99997	623.91797 0.57716 0.57716 0.73338 1.08369 0.8369 0.8369 0.93695
577.24805 577.24638 4199.19482 -0.00035 -0.04401 -0.04401	577.49291 577.49243 1220.67920 -0.0031 -0.0465 .0000 1.0000	577,59546 577,59546 1241,73950 -0,14481 -0,14481 -0,14481	2115.74482 5245.10000 4	tutvr batSsibe	NASA FAN FN 613.97305 634.72510 765.03589	0.01814 -0.11666 .0000 1.0000	611.16626 629.61475 777.28760 7.71318 -0.22553 -0.22553	609-51465 623-11797 623-1197 789-55298 0.11415 -0.13350 -0.13350
22.96419 0.0 1051.09912 0.01155 -0.081399 0.79993 1.	23.49588 23.49588 1C75.43555 0.03590 -0.08514 0.99093 1.	74.01569 0.0 1094.22754 0.00321 -0.08546 0.99998 1	518.58799 518.58799 421.11621 *STATOR DOT	* NISOF *MASS AVERAGE	* 9.37000 0.0 428.87646	0.26785 -0.03094 0.9097 1	* 99851 0.0 457.11657 0.24065 -0.04756 0.99997 1	* 10.57127 10.57127 483.85945 -0.21358 -0.21358 0.95357 1

#

01101	01101	10110	10110	01101	0110	10110	10110
Û~\$U8*955	6571 ° 1759	594.350L7	580.51782	£10£13013	575°1,477	575 . 49854	575 _• 58984
1 - 0 000	1.0000	1.0000	1.000	1 . 0000	0000	1- 0000	1-0000
1+ 1000	1.0000	0.00	1.00/03	0000-1	1.0700	1.0000	1.0000
0.0 2115.92871 2439.18506 1693.79058 1.00000 1.00000	0.0 2115.93115 2473.77739 1697.03833 1697.03833 1.00000	2.0 2115.93115 2541.24790 1705.01172 0.00005 0.99999	0.0 2115.93945 2410.30699 1711.69141 0.00000 1.00000	0.0 27152.895944 2752.89029 2757.49954 0.09009 1.30990	0.0 2115-94531 2940.56513 1724.02832 0.00000 1.00000	0.0 2115.95093 3019.29639 1775.98291 1.00000 1.00000	0.0 2115.94019 3106.30396 1773.27026 1773.10000
0.0 518.68799 540.117798 496.68737 0.00072 1.0700 1.0771	0,0 518,68799 542,34937 497,00617 0,00702 1,0700 1,0700	0.0 518.69799 540.53589 497.65969 0.00003 1.00003 1.00003	7.0 513.68799 550.73413 648.20361 0.0011.7771	0,0 518,68799 553,15137 759,65754 3,00001 1,0001 1,0001	1.7 518.69799 569.77795 439.20581 0.00002 1.0002	0,0 519,69799 574,09033 649,36401 0,00007 1,00007 1,00007	0.0 518.68799 578.75245 679.14478 0.00002 1.0000 1.0001
9.0 2.0 3.0 3.9578 9.06521 0.90099 9.08317	0.0 0.0 0.05532 0.05532 0.05999 0.99155	2.0 0.0 43.45718 0.06554 0.09999	0.0 0.0 45.72412 0.05572 0.99999 0.99270	0.0 1.0 1.0 1.0 0.04549 0.041999 0.04306	0.0 7.7 7.7 7.7996 0.04606 0.04613 0.98613	0.0 0.0 53.97430 0.05611 0.97499 0.91749	0.0 0.0 54.97395 0.99999 0.99999 0.98601
1,03913 0.0 5.08.29541 37.49000 0.0 1.)rc^ 1,0000	17 1 04 37 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0	1,04497 9,0 579,637916 37,49037 0,0 1,0700 1,0700	1.04759 0.0 420.73950 37.43300 0.0 1.3000 1.0390	1.04737 1.04737 597.54199 7.05 1.0000 1.0000	1,03491 0,0 1,0 7,538,77 1,44700 0,0 1,0000	1.03149 0.7 816.27295 37.49090 0.7 1.0000 1.0000	1.07516 0.0 850.01465 37.48000 0.0 1.0000 1.0700
620.15945 0.57345 0.74146 0.96494 1.07792	617.01567 0.55036 0.75336 1.55422 1.67307 0.99997	61C+62991 0.56477 0.77711 - 9.77711 - 9.27319 1.07180 0.99997	605.74365 0.55479 0.81042 -8.78563 -8.78563 1.07425 0.0997	600.54150 0.554180 0.55418 0.85418 0.85418 0.95438 1.07447 0.99938	595.21460 0.54996 0.54996 0.90775 -5.81019 1.08727 1.08727 0.99997	593.61597 0.54747 0.93072 -21.70169 1.98597 0.99999	695.87361 0.54957 0.95745 -6.64928 1.08196
607.59229 623.15445 831.94414 3.71943 -7.71913 C773 1.7013	514.32471 617.91563 617.91563 815.5887 0.0163 -0.04371 0.000 0.0000	672,86035 613,67891 841,24365 7,1033 -).74497 0000 +,000	579.03130 605.24365 366.77721 3.7761 0.7563 -0.14250 0007 1.7000	576,55947 577,54150 577,54150 573,44287 0,10379 -0,14237 -0,14237	591,1155 535,71460 31467 5457,7376 1,0000 1,0000	591.77930 573.41597 1009.79736 -0.77255 -0.7148 (033] 1.0000	594. 73247 595. 92861 1038.)4443 -0.01140 -0.)3516 0000 1.0000
11,10513 0.0 508,29541 0.20443 -0.07359 0.20443 -0.07359	11.65787 0.0 533.36401 0.18367 -0.08244 0.99997 1.	12.64198 7.0 578.63916 7.16176 -0.08502 0.99997 1.	13.56178 0.0 620.73950 0.14385 -0.09355 0.99957 1.	15.23975 0.0 6.1.54199 0.11426 0.11426 0.018072	17.17546 0.0 183.95327 0.03316 -0.06594 0.09997 1.	17.81376 0.0 816.27295 0.07895 -0.07895 -0.07893 0.0939	18.57094 0.0 850.01465 0.07783 -0.06642 0.99997 1.

01101	10110	10110	61101	01101	1 ⁹ 120 ation	10120
575.72729	576.59750	577, 29638	577.49243	577.59545	9.37761 0.0 Fan Rotor Exit St	Blading Station 2 0.21854 1.00000 1.38495 0.79951 0.0 0.0
1 • 000	1 • 0000	1.0000	1.0000	0000	• 49219 0199 0	1854 3175 3175 34495 0351 2483 2488
0006 • 1	0000-1	1•0000	1. 0000	0000 - l	5129 41.1	0.3 2.3 1.4 0.7 0.7 0.7 0.7
0.0 2115-94873 3404-78369 785387 1713-96387 1713-96387 1713-96387 1700000	0.0 2115-94604 3575-32422 1713-60181 1.000000 1.000000	7.0 2115-95368 3751-92202 1713-73389 1713-73389 1713-7389 1713-7389	0.0 2115.93725 3842.35520 1714.23535 0.00000 1.00000	0.0 2115.94189 3934.49683 1714.52393 1.14.52393 1.00000 1.00000	526.05811 16.00000 GTAL DELTA-T	LUNP= 3 -10.43758 -10.43758 2684.90576 2282.99597 2282.99597 0.04187 1.254999
0.0 518.68799 594.10693 8188.38318 0.00001 1.0000 1.00001	0.0 518.68799 607.44409 498.35864 0.00702 1.7000 1.0001	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0.0 518.69799 514.03750 614.03750 6483.41054 0.00203 1.0030 1.0030	0.0 518.68799 513.10278 513.10278 499.4338 0.00003 1.0001	0.9134 0.9174 0.9134 0.9174 0.0	41-19116 551-97915 536-45993 536-45993 511-0090 14667 0.7687 0.7647
0.0 0.0 57.64503 0.06578 0.99999 0.99377	0.0 0.0 58.97532 0.06577 0.99998 0.99114	7.0 7.7 60.16806 0.06578 0.99998 7.98168	0.0 0.0 0.072329 0.06579 0.99399	0.0 0.0 61.25400 0.05580 0.99999 0.99235	1.26343 0.0 0.0=	44.42227 45.922254 -10.37594 0.92553 0.96763 1.14997
1.04808 0.0 957.47877 37.48000 37.48000 0.0	1.04703 0.0 1603.79797 11.000 0.0 1.0000 1.0000	1.04558 0.0 1.052.58472 37.48000 0.0 1.7030 1.3000	1.00001 1.07449 1.076.15479 1.070 1.0001 1.00001	1.04391 0.0 1 C99.22754 37.48000 0.0	•9!03 0.9072 5058.05469 0.11≜-T	<pre>> STUNY - 7.72255 5673.67500 462.21606 41.10190 41.10190 0.9503 0.8448</pre>
603.40991 0.55699 1.04078 -7.89181 1.06952 0.99999	603.70264 0.55728 1.08127 -9.08308 1.06969 0.99997	603.59863 0.55717 1.12004 -8.37868 1.07118 0.99998	603.18628 0.55677 1.13874 -1.213874 1.01220 1.07220 0.9997	602.05581 0.55654 1.15723 -7.75506 1.07290 0.90997	1.26040 0 346.65332	61NF SPLITTE 54.0597 0.70590 0.49916 -32.59477 2.08376 1.26899
602.90137 672.90137 672.734 1127.52734 -0.70149 -0.74808 0507 1.0000	601.51587 403.77564 403.77564 4839 -0.7667 -0.705 -0.24703 -0.0000 1.0000	\$13.54274 \$13.55963 \$13.5679 \$1213.7579 \$10079 \$1000 \$1000	601.17944 601.1705 71073.8151 71073.8151 71070.40 604030.40 604030.1 0(00.0	19530,1000,1 19530,19581 19590,1 19600,1 19600,1 19600,1 1000,1 1000,1	2567. 10977 5245. 10977 3 3 101∆1 PSESSIPE	VASA FAN FN 540, 73003 540, 73003 553, 11450 0, 16599 0, 65839 3, 65839
* 20.80954 20.80954 952.47827 0.01108 -0.00122 0.99993 1.	* 21.93365 0.0 1003.79297 1003.79297 - 0.08918 0.99997 1.	* ??.99654 0.0 1052.58472 0.01392 -0.68636 0.99993	23.51160 2.0 1076.15479 1076.15479 -0.0481 0.08426 C.99997 1	* 24.01569 0.0 109.22754 -0.00175 0.0997 1	557。73328 557。73328 421。30644 *PUTPP 0PT * NISPE *MSS AVFRAGE	* 10.0940 561.83447 561.83447 -99.61941 0.11047 0.31854 1.26885 0

•

•

141

· •

295 544.74219 844 742.19727 899 549.14258 604 3.05011 297 3.52570 3.8949 0.8913	549.05700 0.66816 0.49436 -36.65102 2.04923 1.26697	n, 70649 5341, 04797 489, 47944 41, 10199 0, 0 0, 8950 0, 9914	37.0692A 42.29954 -1.06019 0.017254 0.86791	4.3.65308 553.34106 538.61304 513.52856 0.09541 0.8572 0.253	-1.04842 2680.62012 2348.43872 1987.23218 0.02787 7 1.25637	0.39297 7.15724 7.15724 1.41546 0.71946 2.11539 0.8950. 0.8914	0.38297 1.70000 1.41546 0.71946 0.0 0.0	, 10120
542.12329 712.72461 550.92529 0.55987 249 0.9223	547.79297 0.64042 0.649503 -45.234555 2.01635 1.26498	0.49777 5126.53516 514.62477 41.10199 0.0 0.9250 7.9225	31.69158 39.77555 6.11265 9.07386 0.90726 1.20309	39.02856 557.71655 540.71704 515.47046 0.06426 0.90426	6.17609 2676.60132 2401.57635 2031.24438 7.01919 1.1.26498	0.47084 1.09949 1.43114 0.73045 1.91553 0.9250 0.9725	0.42044 1.00700 1.43314 0.73045 0.0 789.55298	10120
517,17651 692,34937 553,03882 0,12457 0,59606 3379 1,9358	542.49634 0.62102 0.49606 -43.73667 2.0114 1.26498	0,64971 5052,94766 537,63794 41,10199 0,0 0,9380 0,9359	29.13351 38.41241 11.20527 0.07479 0.31743	38,46907 557,15601 54.2,73120 517,29126 0,6123 0,9272 0,925	11.31338 2676.60132 2441.58255 2063.73496 0.01567 201567 2.0532	0.44733 1.90232 1.44989 0.74154 1.78099 0.9380 0.9359	0.44233 1.00000 1.44999 0.74154 0.0 801.84814	10120
5,29. 31,201 5,75. 51,20 07,191,55 2,91,70 2,51,01 2,57 1,27 2,57 1,20 2,9999 9,419 1,20 2,419 1,20 2,419 1,20 2,419 1,40 2,40 2,40 2,40 2,40 2,40 2,40 2,40 2	535.5000 0.60483 0.49780 0.49780 -48.87311 1.99348 1.26612	0.420 0.420 0.9420 0.9420 0.9420 0.9420 0.9420	75.23595 37.56059 15.6050 0.07554 0.02289 1.23301	39.45059 557.13967 544.89917 544.89917 519.19774 0.9352 0.933	15.75324 2679.01514 2478.42285 2732.46745 0.01466 2 1.26612	7.45638 1.83076 1.46691 0.75399 0.75399 0.9420 0.9420 0.9420	0.45638 1.00000 1.46691 0.75399 0.9 815.58897	10120
524.33984 653.76799 576.35386 -0.11202 3.54475 9449 7.9430	511.15889 0.58348 0.51548 0.51548 -9.35627 1.93078 1.76498	0.68583 5014.00781 604.46631 41.13199 0.9450 0.0431	20.52789 35.54675 22.93129 0.93162 0.93162 1.24665	39.17785 556.86084 549.07337 571.39331 571.39331 0.04196 0.939	23.20595 2676.60132 2547.80933 2125.54834 2125.54834 0.01381 7 1.26498	0.45309 1.62735 1.45808 0.77770 1.41262 0.9450 0.9431	0.45379 1.70000 1.45908 0.77770 0.0 0.0	10120
579.43286 541.45729 507.77100 -0.10955 0.55746 9449 1.9430	534.36597 0.57251 0.54244 -2.49829 1.85095 1.26396	0,70103 4596,78516 644.47041 41.10199 0,9450 0,9431 0,9450 0,9431	17.27241 33.54803 33.54803 28.45129 0.07683 0.07683 0.93803 1.25115	39.03760 556.72559 553.22656 572.50659 0.03996 0.93996 0.9426	28.77006 2674.45972 2616.07197 2141.59131 0.01376 3 1.26396	0.44509 1.42745 1.42647 0.80053 1.18057 1.18057 0.9450 0.9450 0.9431	0.4779 1.0000 1.4047 1.42647 0.9053 0.9 866.97021	10120
533.36108 623.5929 669.55762 -0.0311 0.44701 9449 0.9431	537.09766 0.55571 0.55571 0.59667 -0.46697 1.73055 1.73055	0.07743 4960.91797 716.64136 41.01999 41.10199 0.0 0.9432	12.61113 30.53757 36.66237 0.07743 0.94855 1.26056	37.76709 556.45509 561.39551 524.11694 •0.03626 0.9449 0.942	36.85414 2670.17407 2754.16895 2165.00757 2165.00757 0.01364 9 1.26193	0.39467 1.13222 1.37470 0.84951 0.84528 0.9432	0.39467 1.00000 1.37470 0.84951 0.0 920.44287	10120
541.41064 513.69555 746.74077 -0.1107 -38724 7.38724 9449 0.9430	543.53367 0.54635 0.66480 -3.34676 1.61917 1.76193	0.75871 4961.09766 796.97095 41.10199 0.0 0.9432	9.49748 27.65376 7.476376 7.4762 1.29516 41810 0.07781 41820 0.95816 1.25636	37.76758 556.45557 571.49954 571.49954 525.13771 0.9433 0.9433	43.40340 2670.17407 2931.81567 2179.79443 7.01359 1.26193	0.34899 0.88879 1.31803 0.90790 0.61237 0.6437	0.34998 1.00000 1.31803 0.90700 0.0 984.72876	10120

•	18.13322 333.91357 496.06641 0.08560 0.32917 1.22113 0.6	450.77241 562.46265 671.52661 -0.30112 0.50146 5699 3.6605	452.62134 0.49453 0.59047 -12.68855 1.96323 1.22116	0.66534 6054.92959 829.97998 41.10199 0.6770 0.6605	6.35230 36.41740 47.62199 0.07610 0.71541 1.26670	46,09033 564,77832 575,96021 •538,47559 0,22130 0,7061 0,696	47.72610 2583.90991 2767.69824 2186.30273 0.09479 1 1.22116	0.37917 1.25311 1.50299 0.93090 0.80988 0.6700 0.6605	0.32917 1.200000 1.50299 0.93399 0.0 0.0	10120
*	18.88324 262.72754 601.58154 0.08217 0.31515 1.26190 0.0*	539.46779 601.67700 909.25769 0.10908 0.34801 0.34801 9449 0.9430	541.28516 0.53504 0.71963 -2.89775 1.55127 1.26193	0.77759 4961.14453 864.30908 41.10199 0.0 0.9450 0.9432	6.95094 25.89037 48.02002 0.07826 0.96406 1.27519	37.76758 556.45557 590.79272 526.35132 0.03058 0.9472 0.945	48.11586 2670-17407 3102.38037 2197.49365 0.01361 4 1.226193	0.31515 0.74592 1.28272 0.95762 0.47612 0.47612 0.9450 0.9432	0.31515 1.00000 1.28272 0.95762 0.0 1038.04443	10120
*	20.97162 236.48897 723.40796 0.04930 0.28338 1.26089 0.4	536.12627 536.56348 909.93444 -0.13797 0.30636 9419 0.94400	536.77710 0.52087 0.79992 0.79992 0.28185 1.48793 1.48793 1.26091	0.79892 4959.55469 959.99697 41.13199 0.0 0.9420 0.9401	4.22090 23.77693 53.42413 0.07875 0.96918 1.29395	37.15635 556.44434 595.28174 577.83374 0.2874 0.9475 0.945	53.45738 2668.03003 3379.85767 2217.61816 0.01427 5 1.226091	0.28389 0.59303 1.25169 1.25169 1.04100 0.34159 0.9420	0.28388 1.00000 1.25169 1.04100 0.0 1177.52734	10120
• •	72.02863 279.17210 779.10522 0.03099 0.26423 1.26089 0.	537.44287 534.50122 946.63989 -0.70313 0.79388 9250 0.9234	537.70068 0.51961 0.83993 1.14094 1.46714 1.26097	0.80916 5048.34375 1008.27734 41.10199 0.9260 0.9235	3.53791 23.09406 55.39841 0.07874 0.95393 1.29615	34.43237 557.12035 603.19141 528.71118 0.03540 0.9333 0.930	55.40126 2668.03003 3524.99438 2721.03594 0.01843 1.76092	0.26423 0.54259 1.23737 1.09150 0.29882 0.9260 0.9235	0.26423 1.000C0 1.23737 1.0150 0.0	10120
•	73.03816 229.66136 824.82373 0.01402 0.24675 1.26089 0.8	576.41578 583.55981 983.35777 -0.70247 -0.70247 -0.29381 8949 0.9811	536.46777 0.51683 0.97143 0.50977 1.45205 1.45205 1.26091	0.81091 5290.97266 1054.48511 41.10199 0.8850 0.9912	3.20818 23.17572 56.95988 0.07855 0.94657 1.27764	40.77905 559.96704 611.10620 530.65039 0.15473 0.9974 0.997	56.96245 2669.03003 3647.44531 2723.80991 2723.80991 2.02973 4 1.76091	0.24675 0.52151 1.23318 1.12031 0.27614 0.8950 0.8812	0.24675 1.00000 1.23318 1.12031 0.0 1.23318 1.23318 1.23318	02101
•	23.52960 235.93694 841.04199 0.07708 0.23343 1.26088 7.	514.00562 583.81680 996.25684 -0.00723 0.28811 8449 0.8397	534.01990 0.51611 0.88073 -2.09129 1.45756 1.26092	0.80756 5551.50000 1.076.97900 41.10199 2.0 0.8450 0.8398	3.14292 3.83650 57.58646 0.07930 0.92775 1.29791	42,26172 560,94971 615,08716 532,60913 5,07525 0,9598 0,954	57.58711 2668.03003 3685.49683 2224.91357 0.04168 1.26092	0.27843 0.53009 1.53311 1.13902 0.27592 0.8793	0.23843 1.20700 1.23831 1.13902 0.0 1233.67017	10120
ı ++	24.01569 244.70512 854.52222 0.00313 0.23096 1.26089 0.	529,50400 583,43674 1035,33130 -0,03305 1,29572 7999 1,7932	529.60645 0.51454 0.83666 -7.91960 1.46814 1.26092	0,80187 5876.75781 1099.22754 41.10199 0.0 0.0	3.04342 24.79933 58.21057 0.07902 0.07902 0.79590 1.29999	44.73682 543.42480 619.10669 535.12549 0.09911 0.9187 0.911	58.21069 2669.03003 3712.99487 2727.31739 2.05632 1.26097	0.23096 0.54677 1.24709 1.15753 0.9000 0.7933	0.23096 1.00000 1.24709 1.15753 0.0 1253.73687	10120

E

346.38354 5059.05078
netta-
NF SPLTTTFR STUDY 509.19923 0.96453
n.67842 5673.62199 0.46441 465.91336
-0.47705 42.34200
1.26889 0.8500 0.8448
504.]1865 0.95153
0.45173 494.18311
-17.07144 42.36230
1.1770 0.9914 1.27697 0.9950 0.9914
485.53467 0.97977
0.59123 5126.41406 0.43841 520.00044
-34,34866 42,35200
1.20526 3.0 1.25497 0.9250 0.9224
479.66699 0.92336
0.57021 5052.67957 0.44059 545.75830
-56.73141 42.36200
1.21297 0.0 1.26697 0.0387 0.0359
1.14440
1755.172 89172.0
15.64130 42.35273
1.26611 0.9422 0.9400
539.67310 1.00360
0.54579 5013.74679 0.53730 512 5330
18.06119 42.26200
1.11590 0.0
1.26497 0.9450 0.9431
545.99534 1.01106
Ο.5792κ κεαξ.09219
0.55784 (53.30027 14 76846 42 36220
1-10777 0.7
1.26396 0.9450 7.943

06101	0€101		0110	0 101	10130	10130
623.59273	613.68555	562 .44245	601.67700	586 . 584	584.50122	583 . 55981
0000-1	1.0000	(000-1	1.0001	1 • 000	1 - 0000	1 • 0000
0000 - 1	1 • 0000	0000	1-0000	1.0000	1.0000	1 • 7070
29.9441) 2670.16577 2764.33447 2153.52734 2153.52734 2.153.0000	77.43410 2470.16748 2944.60547 2175.66968 2175.60900 1-00000	36.19775 2583.90161 2779.20654 2184.92065 0.70007 1.307030	75.66780 2677.15392 3114.56276 2192.94937 2192.94937 1.00007	73.29897 2668.02588 3389.28442 2202.82544 7202.82544 720301000	22.54915 2668.02954 3531.71362 2203.31079 1.00000	22.59467 2668.02319 3650.80725 2203.68042 2203.68040 1.00000
0,1 556,45508 552,21451 523,32179 3,00072 1,0003 1,0003	0.0 5-6.45557 572.20874 524.95327 0.00001 1.9000 1.0003	0,0 564,77832 576,64282 539,37942 0,00007 1,0007 1,0027 1,0027	n.0 555.45557 591.44238 526.03345 0.00001 1.0001 1.0003	0,0 556,4434 595,75464 526,82593 0,00001 1,0000 1,0000	3.9 547.12036 64.51929 527.49951 0.00000 1.9007 1.9002	0.0 559.96704 611.26955 523.77441 523.7441 1.1000 1.1702
0.7744 20.81400 20.81400 2.8.79703 5.7770.0 0.99970 0.999770	0.33399 7755777 77557 77756 77770 0.077770 0.9999 76999 76999 0.9981	0, 72564 36,0964 196,094 1,07607 0,07607 0,09990 0,00075	0,04379 25,60787 8070,0781 917520 0,00999 0,099783 0,099783	0.50343 21.26451 52.98131 0.07838 0.99999 0.99999	0.54376 22.53430 54.83041 0.07427 0.99999 0.99999	n.59457 22.53115 56.25594 0.937904 0.99399 0.99395
1.01225 496.5231 1.223.61341 1.423.6230 6.0 0.9450 0.9431	1.00452 4947.44719 802.28174 42.36200 0.0 0.9450 0.9431	1.00145 6054.66777 6054.66777 844.47 42.36200 3.1 0.6730 3.4605	1.10525 4060.74141 946.73174 42.35200 0.0 0.0432	1.01745 4559.41405 452.43374 42.3620 0.0 0.0 0.0	1.07119 5644.26172 1011.21992 42.36200 0.9260 0.9235	1.07400 5700.74141 1055.40437 42.36200 6.7 C.9911
547.66557 0.56297 0.60994 10.37222 1.10649 1.26192	547,65039 0.54897 0.67206 4.97698 1.11497 1.26193	455.35571 0.40549 0.59656 7.60473 1.11795 1.22115	545,4580 0,53802 0,53802 5,35257 1,11415 1,26193	549,26071 0,537,47 0,83940 0,83940 10,98478 10,98478 1,10079 1,26091	551.26397 0.55016 0.84952 13.65495 1.09636 1.76091	551.75391 0.52999 0.68095 19.11859 1.09375 1.09375
543.37984 631.21167 683.23140 683.23140 683.23140 -3.71220 -3.91220 9437	645.71476 645.7147 1920 192	453,69287 553,60098 573,44095 0,10080 -0,1193 6691 1,5604	541, 95%69 594, 74351 816, 14257 - 0, 90069 - 1, 10575 9449 - 1, 9430	547.45801 596.93176 913.51694 -3.03488 -3.71745 9419 -3.9359	551, 35060 575, 33170 956, 35767 -0, 10851 -0, 12109 9259 0, 9234	551.65796 597.55519 993.28540 -0.10496 -0.10496 -0.10490 8940].8811
15.80673 313.93057 409.66234 0.11933 -0.02273 1.26189 J.	17.529C8 283.02417 519.25757 0.03964 -0.00941 1.26199 0.	19.24022 331.94.057 502-93677 0.06570 -0.00149 1.22112).	19.93)96 261.36426 607.41748 0.07530 -0.00383 1.26189 0.	21.03578 235.76105 727.05725 0.05416 -0.03284 1.26089	22.01104 228.72787 781.49097 781.49097 0.03928 -0.03777 1.26089 0-	23.05924 229.46001 825.94409 0.31867 -0.04531 1.26089 3.

0 1 1 0 1	10130	10140		10140	10140	10140	10140
5 43. Al 689	593.40674	9.65720 0.0	Inlet Station on 4	754.35376	706.22437	662.31006	639.28857
1.0000	1.0000	53906 600	re Stator] ading Stati	1.0001	1.0000	0000	1.0000
1-0000	0006*1	5,279. 44.64	BI BI	1.0000	1 • 0000	0000-1	1.0000
73.7150 2669.02937 3687.03931 2206.09668 2.00000 1.00000	74.35936 2668.02295 3712.93164 3713.23389 0.07000 1.00700	515.40527 4.00000 0TAL DFLTA-T	LUNP= 0 46.70027 2694.89111 2275.17285 1910.07861 1910.07861	1.00000	43.85657 7680.60303 2341.28809 1091.31738 1.00000 1.00000	43.03984 2676.58765 2396.17236 2396.27002 2070.00000 1.00000	44.77724 2676-58496 2440.54102 2440.54102 2166.13184 2166.13184 1.00000
0.0 560.4471 615.16284 531.31909 0.00000 1.0000 1.0002	0,0 563,42480 619,10669 534,1573 5,0002 1,9002 1,9002	0.9030 0.8797 0.0990.0 0.0	0.0 561.87915 535.94067 509.82666	1.0000 1.0001	0.0 559.34105 538.14526 513.83032 0.00002 1.0000 1.0001	9.0 557.71655 540.37427 518.56641 0.00000 1.0000 1.0001	n.0 557.15601 542.66602 524.49561 0.00002 0.99999
0.56543 23.27107 56.91)29 0.07783 0.97783 0.99999	0.44768 24.35954 57.68654 0.07766 0.99999 0.99999	1. 26626 0.0 CADL IVS =		0.96919	1.35230 43.09094 -2.30265 0.07264 1.00000 0.97300	0.90401 42.04769 5.72155 0.07498 1.00000 1.00000	-1.90147 43.41928 13.12634 0.01741 0.9999 1.00390
1.02750 5551.50000 1077.40015 42.36200 0.0 0.9398	1.01696 5876.75301 1099.27754 42.96200 0.0 0.8600 0.7933	.,9029 0.89996 5052.87891 nelta.t	R STUNY 1.04875 5673.61719 455.42383 44.64600	0.3500 0.8448	1.04747 5239.96875 483.64355 44.64600 0.0 0.8950 0.8914	1.03595 5126.41496 510.59448 44.64609 0.0 0.9250 0.9224	0.98030 5052.67578 536.89648 44.64600 0.0 0.9380 0.9359
548.38721 0.52836 0.88905 23.10371 1.09536 1.26092	547.48560 0.52374 0.89256 0.89256 28.69099 1.10132 1.26091	1,26623 0 25,21880	51NE SPLTTTE 548.39624 0.71477 0.50621 10.46584	1.06794	540.21680 0.66576 0.48657 15.69990 1.06924 1.26687	509-48959 0.61468 0.45872 37.91321 1.08113 1.26497	455.19679 0.55877 0.41639 69.69545 1.14250 1.26497
544.7573 596.75166 1004.46191 0.10311 -0.2250 8449 3.8397	540,46753 593,30029 1011,10498 0.021500 0.01694 7993 0.7932	2679 . 34863 5245.17000 , 17AL POFSGURE	NASA FAN FN 537.3594 791.12671 560.29101 0.08895	-).04315 8499 J.8447	525,09117 712,047 717,0427 7,0427 7,147 1,12198 1,12198 -0,4913 8949 0,4913	477.11719 686.12183 512.04028 7.16328 0.16322 -0.13595 9249 7.923	414.11060 676.69580 467.40894 0.24754 0.24754 9179 9357
73.53880 235.94476 841.55518 0.00650 -0.04246 1.26089 J.	24.01569 244.70497 854.52246 -0.00818 -0.03195 1.26088 0.	559.88135 559.88135 30.76004 10108 NISPE ASS AVERAGE T	9. 35000 570.21313 -114.78931 -0.20394	-0.08812 1.268£5 9.	10.56654 505.36597 -21.72241 -0.23449 -0.08716 1.76682 0.	11.15536 459.54717 51.04736 -0.26805 -0.06668 1.76493 0.	11.73000 430.74829 106.14819 -0.31544 0.03610 1.26493 0.
	*	5 S ***	#		+	*	* *

558.87305 30.73781 *Stator OPT	2637.87085 5245.10000	1.24663 0. 25.59663	8434 0.8384 5052.91406	1.24666 (0.0).8435 0.8395 0.98000	532.18994 4.00000	0.0 45.82700	9.65023 0.0	10150
* NISRF *MASS AVERAGF	TOTAL PRESSURE		DELTA-T	000 100 =	0,0	TOTAL DELTA-T	= 0°0	Core Stator Exit SI	ation
*	NASA FAN FNG	INE SPLITTER	STUNY			0 = 0001		Blading Station 5	
9.65000	540.07031	564.10864	0.71304	46.11729	0°0 541 07015	0°0 3630 65361	10165-0	1010001	
0.0	564.10864	0.49739	0.0	0.0	C1610 10C	10001-0002	1.40244	1 40244	
441.69238	716.45703	0.63171	441.69238 45 82700	58-00064 0-07767	515.42065	2213.03149	0.71488	0.71488	
-0.30166	0.01655 0 46205	-0° 000 -0-	0-0	0.87732	0.08316	0.02400	2,19316	0.0	
1.23840 0	.7532 7.7559	1.23843	0.7633 0.7560	1.15861	0.8584 0.8554	4 0.97600	0•0 0•0	791.12671	06101
*					c c	0.0	0.34961	0.34961	
10.22986	539,40039	564.36157	0-0	43.04044	559.34105	2645.75513	1.95854	1.00000	
0.0	10105.000	0.64812	0.0 468.23340	39.68143	577.56274	2960.35889	1.31077	1.31077	
468•73540 0 31227	10210 000	7.83427	45.82700	0-07852	532.85742	2232.29468	0.66583	0.46583	
12416-0-	0.58420	1.87342	0.0	0.93022	0. 05056	0,01300	1.89744	0.0	10160
1.25036 0	.8454 7.8404	1.25040	0.8455 0.8405	1.12102	0.8972 0.995	5 0°48700	n•n	134010461	
*	7030 003	647 J5879	0.82676	47.04963	0.0	0.0	0.25577	0-25577	
	567.75879	0.50225	0.0	0.0	557.71655	2647.14502	1.70099	1.00000	
493.20410	751.69652	0.66554	493.20410	41.00537	577 . 93384	2998.99658	1.20954	1.20994	
-0.33771	12230-0-	24.90669	45.32700	0.07867	530.95947	2228•32568	0.014/4		
0.75577	0.51393	1.72799	0•0	0.94112	0.04493	0.01100	1.05035	0.0 686 12183	10150
1.25101	.8813 0.8775	1.25106	0.4815 0.8776	1.07427	0.3563 0.864	00686-00 6	n• n		
		571 7107E	0 91227	43.41928	0.0	0.0	0.06490	0.06490	
11.28000	730. 132UG	0.50647		0.0	557.15601	2620.37646	1.49623	1.00000	
U.U E16 20956	770.34253	0.68269	516.29956	42.09411	579.31079	3004.11060	1.09616	1. 19616	
90998 V-	-0.15186	52.63927	45.92700	0.07778	529.97607	2199 • 25342	0.55831	1,844.0	
0.06490	0.43811	1.56875	0.0	0•99463	0.11011	0.02100	1.44×84	U.9 226 60690	10150
1.23836 (3.8532 J.8486	1.23849	0_8533 0_8488	1.01529	0.4170 0.415	00616-0 1	n•n	1.4.6.4.0.90	
•						·			
558.87133	2637.75752	1.24667 0	.8476 0.8386	1.24670	9.8437 0.9387	· 532,05396	0.0	9.64994	10160
30.73798	5245, 20000	25.59590	2022 * 01 797	0.0	0.099000	4.00000	4 7. 4 4 000	0.0	
*STATCP 7P	14								
	TUTA! DOFSCIPE		DEL TA-T	COOL 1NG =	0.0	TOTAL DELTA-T	= 0•0		
									•
	NASA FAN FN	GINE SPLITE			đ				
9.05510	51652 *125	5A1.26343	1.03041	0.0	U.U E11 07015	2420 44005			
0.0	581°76343	0.51329	0.0	0.0 36 (0030	51616-10C	2861.32373			
414.46289	713.99526	0.63041	614°414	14 044 404	01761 °C16	2180 44455			
-0-41308	0. 75825	-17.02024	4 (4 8 0 0 0		10000-0	00000-0			
-0.05784	14080.0-	C 80 0 1	0.0 0 7633 0 7560	0.08935	1.00001	01 1. 10000	1.0000 1.0	000 564.10864	10160
1.23840 *	Vec1.1 1610	- +00 7 • 1							
9.67374	543.47095	579.46167	1.02676	0.0	0.0	0.0			
0.0	579.46167	7.51293 0.51293	0.0	0°0	575, 63574	20424 4442			
442 . 77F.81	729.26611	U°047941	18411 4244	0.07800	531.42090	2211.28857			
-0.36991	0. 1941 4140 - 0	18060 1	0-0	66665 6	0.0002	0.00000			
-0•05035	-0.76960 0.8453 0.8403	1.25039	0.8455 0.8405	0.99059	1.0000 1.00	02 1.00010	1.0000 1.0	1000 564.36157	10160

10160	10160	10170	10170	10170	10170	10170
567 , 75879	571.71875	9.64774 0.0	F\$E85.182	579.46167	565 . 15341	533.65747
1.0000	1.0000	800	1 • 0000	1.0000	1.0000	1.0000
1.0000	1.0000	-0.0 -0.0 -144-44	1.0000	0000-1	0000 • 1	1.000
0.0 2647.13403 2964.08789 2231.23706 1.000000	3.0 2620.36670 2969.83350 2750.57783 2750.57783 1.00000	533.27051 4.00000 0tal DFLTA-T	LUNP= 0 0.0 2620.44165 2812.46582 2812.46582 2220.92764 1.00000	0.0 2645.74048 2478.53101 2235.98291 2235.100000 1.00000	0.0 2647.11865 2917.96339 2244.55396 0.00011 0.99999	0.0 2620.36108 2924.91309 2249.21313 2249.21313 1.00000
2.0 557.71655 576.00732 531.15771 0.0993 0.9993 0.9975	0,0 557,15601 577,41797 531,47534 0,00000 1,00030 1,00030 0,99999	0.8419 0.8399 0.94000 0.0	0.0 561.87915 57.3.73203 535.95898 0.00307 0.9999 0.9999	0,0 559,34,06 572,96362 533,10939 0,00002 1,0000 1,00002 1,00002	0.0 557.71655 573.43677 532.96177 0.0004 0.9999 0.9995	0,0 557,15601 574,01309 533,38672 0,00002 1,0020
0.0 0.0 39.69485 0.07874 0.07874 1.00131	0.0 0.0 7.0 6.07907 0.07907 0.99999 1.02331	1•24671 0•0 CTULTNG =	0.0 0.0 33.61807 0.07767 0.9998	0.0 0.0 35.78334 0.07962 0.99998 1.01117	0.0 0.0 38.05942 0.07907 0.9998 1.00537	0.0 0.0 40.84384 0.07904 0.4999 0.4999
C,996,29 0.0 469,11476 47,49000 0.0 0.3814 0.8176	0.9343 0.0 491.74905 47.4800 47.4800 0.8533 0.487	.8438 0.8398 5052.96094 DELTA-T	R STUNY 0.05056 0.0 37123337 41.44400 0.0 0.0	0°0,05 0°0 4°4,44879 0°0 0°0 0°0 08455 0.84455 0.84455	0,94244 0.0 434,80722 49,44800 0.9 0.8814 0.8776	1.00197 0.0 462.21606 49.44800 0.0 0.8531 0.8487
565.15381 0.50029 0.65019 -12.63611 1.12417 1.25105	533.65747 0.47139 0.64220 0.64220 -30.41596 1.19998 1.23840	1.24668 0 25.59727	SINF SPLITTF 558.34106 0.49205 0.59089 -37.58357 1.16598 1.23843	561.67374 0.49671 0.61179 -25.26117 1.15547 1.25039	555-45459 0.49129 0.62397 -14.61722 1.13956 1.13956 1.25105	534.65454 0.47231 0.62434 -2.61552 1.11791 1.23840
18810.91831 19821.5342 1982.15342 1982.0 198200.0 1982000.0 1982000.0 1982000000000000000000000000000000000000	511,72656 533,45747 727,03320 1,77698 0,7698 0,16657 8531 0,9486	2637.77339 5245.130000 • 1JTAL PPESSURE	NASA FAN ENC 49. 79541 558. 34196 579. 4901 579. 93944 0. 339444 1632 3. 7559	509,27441 561,57334 662,16533 0,14780 0,13070 8453 0,8403	- 512, 72681 555, 45459 70, 45440 7, 72838 7, 71716 8813 7, 9774	499, 35059 514, 65454 706, 75744 70, 01116 -0, 00187 4531 0, 9486
10.24911 9.9 469.11426 -0.33416 0.00695 1.25101 9.	<pre>10.7R730 9.0 9.0 493.74805 -3.23589 0.12176 * 1.2393.6 0.</pre>	558-86279 30-7607 30-7607 30-7607 30-7607 30-7607 40158 40155 AVER46	* 8.11020 7.0.0 7.1.21387 7.0.55672 7.273839 0.	* 8.844493 0.0 4.04.84351 -0.47027 0.05585 1.25035 0.	• 9.50154 0.0 4.81722 -0.41667 0.03203 1.*25100 0.	<pre>10.09440 0.0 0.0 462.21506 -0.38262 -0.07354 1.23936 0.</pre>

•64285 10180								.34106 10180						• 67334 10180						•45459 10180					•	**65454 10180
6 ° 0								000 558						000 561						000 555						000 534
0°0 51.41699	0•0							.0000 1.0						•0000 1.0						.0000						-0000 1-0
4,00000	DTAL DELTA-T =	1 00P= 0	0.0	2620.42993	2758.45166	2324.48486	0.00000	1.00000 1	0•0	2645.72388	2828.24902	2301.99341	10000.0	1 60066*0 6	0.0	2647.10791	7869.94849	2291.13867	0,00000	1.00000 1	0•0	2620.36060	2879.85899	2284.27710	0,00000	1 000001 6
00086*0	0*0		0.0	561.87915	570.16943	542.98511	0+00003	1.0000 1.0000	0.0	559.34106.	570.09106	537.55688	0*0000	5666*0 0000*1	0*0	557 . 71655	570.72900	535.19214	0.0003	1.0000 0.9999	u• u	557.15601	572,31592	535.74805	0.00000	1.0000 0.9999
0.0	COOL ING =		0-0	0.0	33.52423	0.08024	0.999909	1.04668	0.0	0.0	35.09192	0.08077	16666.0	1.02952	0.0	0.0	37,24242	0.08724	66666 •0	1.02076	0.0	0.0	40.08640	0.07992	66666•0	1.01559
5053.05469	DELTA-T	R STUDY	0.85381	0.0	315.82153	51.41699	0.0	0.7633 0.7560	0.91131	0.0	359 63257	51.41699	0.0	C.8454 0.8404	0.93702	0.0	395+66650	51.41699	0.0	0.4814 0.8776	0.94904	0.0	427.07300	51.41699	0-0	0.4533 0.8487
25,59766		INE SPLITTE	476.71582	0*1140	0.50069	-47.41689	1.31177	1.23842	511.85864	0.45042	0.55048	-28.24065	1.22900	1.25039	520.47070	0.45901	0.57658	-20.98418.	1.19528	1.25104	507.40967	0.44726	C. 58459	-19.41212	1.18014	1.23840
5245,00000	TOTAL PRESSURE	NASA FAN ENG	400.93892	476.71582	571.94009	- 0• 30000	0.14619	.7632 7.7559	424 * 45457	511.95864	625.56763	-0.10000	0.78869	.8453).8403	475.59398	520.47070	653.79028	00000-0-	0.74798	.R813 7.8774	472.15186	5)7.40967	663.21631	-0.10/00	0.05096	•8531 0.8486
558.84229 30.74243 Statur Opt. Nisre	MASS AVERAGE		6,90000	0•0	315.82153	-0.64348	0.25940	1.23839 0	7.85717	0.0	359.63257	-0.51734	0.16110	1.25034 0	8-64444	0.0	395.66650	-0-44460	0.11573	1.25100 9	9.33960	0-0	427.07300	-0.39761	0.09449	1.23336 3

20140	20140	20140	20140	20140	20140	20140	20140
9.35709 0.0	639 . 2A857	644 . 93286	655, 473 8 8	648 . 54079	631.21167	616.46045	563 . 50038
601 6 60	1.0000	1.0000	1 - 0000	0000-1	1 - 0000	1-0000	1-0000
5118.1 43.936 = 0.0	1.0000	1-0000	1.0000	0000-1	1.0001	1.0000	1-0000
524.69141 13.00000 DTAL DELTA-T	LONP= 0 34.11691 2676.585521 2487.27174 1987.13745 0.00000 1.00000	33.73703 2679.00342 2571.89429 2521.89429 2020.87012 0.00000 1.00000	32.62685 2676.58447 2587.30713 2075.19092 0.00000 1.00000	31.42398 2674.45117 7652.22691 2652.22691 2104.94019 2104.0000 1.00000	29.22491 2670.16382 2785.90820 2142.64551 2142.64551 1.00000	27.01917 2670.16211 2960.85620 2170.62207 2170.622070 2170.00000	35.63737 2583.89479 2793.74048 21P0.42578 0.00000 1 1.00000
0.000 0.010 0.09000 0.000 T	0.0 557.15601 545.61206 511.73340 0.00002 1.0000	0.0 557.13867 547.61108 547.61108 514.05151 0.00000 1.0000 1.0000	0.0 556.86084 551.49536 517.83569 0.00701 1.0000 1.0001	n.0 556.72559 555.40137 519.93726 0.0001 1.0000 1.0001	0.0 556.45508 563.23465 572.56567 0.00000 1.7300 1.7303	2, n 556, 45557 573,10964 574, 50567 7,00001 1,0100 1,1900 1,1900	0.0 5.4.77832 577.50171 538.06250 0.00002 1.0001 1.000
1.25397 0.0 001 ING =	R.14795 33.36987 14.74612 0.07279 1.00000	5.89093 32.99904 18.13144 0.07369 1.07369 1.07360 0.94421	2.49746 32.23443 24.39362 0.07512 0.99999 0.97803	1.47736 31.16374 29.36354 0.07588 0.99997 0.98792	7.73909 29.07600 37.08105 0.07686 1.00000 1.00000	0.47531 26.32447 43.71104 0.07757 0.99768	0.54992 35.54100 47.95995 0.07575 0.09795 0.99795
-9107 0-9077 -9058.44141 Delta-t	R STUNY 1.15600 5052.67578 568.93628 43.9360 43.9360 0.0380 0.9380	1.11605 5050.35156 589.68286 43.93660 43.9360 0.0	1.04509 5013.75000 628.03979 43.93660 43.93660 0.0	1.07551 49979 49979 41.37233 41.9360 0.0 0.0	1.01134 4960.61719 11189.167 131.8910 43.9366 0.0 0.0 0.0 0.0455	 1.00549 4960.89453 803.00464 43.93660 7.0 0.9431 	1.00596 6054.70703 841.04639 43.93660 43.93660 0.0 0.6700 0.5605
1.25994 0. 321.26025	INE SPL ITTE 617.18115 0.66645 0.55564 75.19234 0.96885 1.26497	603.66260 0.64764 0.57155 57.97983 1.00354 1.76611	579.42700 0.61417 0.57033 24.89597 1.07169 1.26497	569-12627 0.59507 0.59426 0.58426 14.12372 1.09714 1.26395	557.92065 0.56972 0.62413 5.24125 1.10744 1.26192	552.6530A 0.55216 0.68108 7.63251 1.11389 1.26192	461.25464 0.49859 0.60583 0.64856 1.81336 1.11336 1.77115
2666.07490 5245.00000 , 0141. PRESSURE	NASA FAN ENG 600.70244 739.71787 639.70142 3.77202 10.15600 9379 7.9557 9379 7.9557	586.75097 719.7734 635.20361 0.79874 -0.11605 9419 7.9309	570.77002 695.77002 636.17761 0.01573 -0.14508 9449 1.9430	563.33179 665.13645 653.3271 0.71953 -0.72551 9449 3.9430	554°57466 638°37095 699°33862 0°10386 -0°1134 9449 0°430	550, 42139 619, 94131 754, 55445 0, 10615 -0, 10548 9440 1, 9430	459.61816 566.85.86.86.84 588.79687 0.10365 -1.11594
557.65283 390.33081 *STATNP 0PT4 * NISRE *MASS AVERAGE T	* 12.43000 406.49072 167.44556 0.24100 -0.30189 1.26493 0.	* 12.88327 392.00979 397.67407 197.67407 0.24018 1.26617 0.	* 13.72128 13.72128 365.39966 267.64014 0.17483 -0.08401 1.26493 0.	<pre>* 14.51 f 50 14.51 f 50 324.18111 324.18111 320.20923 0.14734 1.26392 0.</pre>	* 15.°°920 15.°°920 310.22876 310.22876 -0.22108 1.26189 0.	* 17.67496 200.67496 228.33091 0.00014 0.00016 1.26183 0	* 18.37500 329.50976 511.53933 0.08447 -0.31125 1.22112 0.

.

20140	20140	20140	20140	20140	20140
1524 8 909	92108.965	596. 931 79	597 . 56519	596.95166	593.10029
1.0000	1.0000	1.0000	1.0000	1-0000	0000
1.0000	1.0000	0000	1 • 1020	6600•1	1.0000
25.34305 2673.16919 3129.95483 2187.85742 2187.85742 1.00003	22.89807 2668.07319 3403.14819 2191.78515 0.00000	22.02341 2668-02637 3643-76499 2185-73779 2185-73779 200000	21.65074 2668-01759 3659-10205 2169-72593 2169-72593	21.90050 2669.02589 27.92.07919 2154.33939 2154.33939 0.00000	72,22101 26,63,01978 3712,92725 7172,92725 2133,33203 0,0000,0 1,00000
7.0 556.45557 582.26074 525.69141 0.000000 1.0000 1.0000	1.0 556,44434 596,44873 526,07080 0,00001 1,0003 1,0003	n.n 557.12035 504.10596 576.79468 0.00001 1.0330 1.0302	3.0 558.96704 611.66455 576.86377 3.00001 1.3333 1.03001	0,0 569,94971 615,40234 527,77949 9,20000 1,0000 1,0300	3.0 563.42487 613.10669 524.57886 0.00001 1.0003 1.300
0.32971 5.27338 48.18144 0.07801 0.99999 0.99772	0.41631 22.85273 52.75247 52.75247 0.07702 0.99999 0.99499	0.54812 21.99619 54.30313 0.07795 0.99999 0.99999	0.95732 21.62383 55.12280 0.017716 0.99999	1.39367 21.88040 55.17577 0.07657 0.39799 0.97654	2.14848 27.21016 54.95575 0.07565 0.99799 0.96390
1.70567 4967.98747 874.43262 43.93660 0.0 0.9450 0.9432	1.01266 4959.44922 967.15528 43.93660 0.0 0.9401	1.07013 5049.78906 1013.71945 43.33660 3.0.9735	0,03970 0,057.661 1057.661 1057.6628 10.0 0.0 0.0 0.0	1.05882 5551.57344 1078.73901 43.7360 43.33660 0.8450 0.8398	1.09111 5876.75500 1099.22754 43.93660 0.0 0.8000 0.7933
550.01270 0.54121 0.73399 1.43112 1.11376 1.75193	556.92407 0.53757 0.81845 0.26801 1.10599 1.26091	564.56641 0.54145 0.86045 1.61494 1.61494 1.09790 1.26091	577.61255 0.55226 0.55226 0.857283 6.72982 1.07714 1.07714	586.53589 0.56134 0.01210 12.74344 1.05778 1.26092	599.32666 0.57446 0.92620 23.96452 1.02647 1.26091
548,23457 508,23193 824,33672 -0,00278 -0,10560 9449 1,9430	555.63042 694.14035 920.14111 -2.11266 -2.11266 9419 7.9399	563.51147 659.51147 659.4551 967.55762 -0.72059 -0.72013 9259 1.7234	576,42129 621,34033 621,34034 1010,13184 -3,03793 -3,73970 8949 -3,9810	585.74165 632.7545 632.1555 1027.12573 -0.75212 -0.7582 -0.7582 .8449 7.9397	599, 30269 647, 35840 1043, 74365 -0, 37317 -0, 17111 -0, 17111 -0, 1732
19.10442 259.67725 614.75537 0.07346 -0.01345 1.24189 J.	21.13042 234.70457 732.45850 732.45850 0.06695 -0.02373 1.26083 0.	22.14732 22.94144 22.7694144 785.76890 0.06127 -0.03781 1.26089 0.	23.10759 228.97390 828.69189 3.05240 -0.07527 1.26089 0.	23.56905 235.55296 735.55296 843.18604 0.04505 -0.11205 1.205 1.205	24.01569 244.70480 854.57771 854.57771 0.03790 -0.17568 1.76389 0.

000
INE SPLITTER STUDY
oz4.31104 0.999 9.66640 5052.67
0.58840 584.95
1,12008 0,00
1.26497 0.9380
612.49756 1.0
0.64973 5050.3
0.58660 604.9
1-11668 0.0
1.26611 0.9420
595-04103 1.01
0.62296 5013.73
-5 87165 641.9
1 1 0523 0+0
1.26496 0.9450 ^r
580 • 731 93 1 • 00
0.60144 4995.96
-5.10427 6//•28
1.10993 0.0
1.26395 0.9450 (
561.20776 1.7
0.57019 4967.65
3.63561 743.73 -5 71450 46.60
1.11912 0.0
1.26192 0.9450
550.59302 0.99
0.54873 4960.93
0.68922 820.65 -7 70.85 55 93
1,26192 0,9450 0
458.66529 7.9
0.49421 6054.
0.61482 852
0.78030 47.
1.22115 0.4700

20150	20150	20150	20150	20150	20150
608.23193	604.36035	603,84521	£F0 3 5	632,06763	647.35840
1.0000	1.0000	0000 • 1	1.0000	1 • 0000	1.0000
1.0000	1.0000	1 • 2000	1.0000	1 • 0000	1 • 0000
25.26689 2670.15771 3163.16016 2197.68457 0.00000 1.00000	23.44170 2668.00830 3448.88794 2221.76392 0.00001 0.99999	22.96933 2669.01880 3600.62012 2230.69946 2230.09000 1.00000	23.37309 2668.00732 3731.73096 2742.26636 0.00000 1.00000	24.29982 2568.02002 3774.96313 2250.81372 0.00000 1.00000	75.65503 2668-01563 3808-76709 2263-13306 2263-13306 1-00000
0.0 556.45557 594.01636 526.36499 0.00002 0.9997 0.9993	0,0 556,44434 509,44434 579,11621 529,11621 0,00003 0,9999 0,9999	0.0 557.12035 606.85352 529.36401 0.00002 0.9999 0.9999	0,0 558.96704 515.10083 531.90503 7,00002 1.0000 1.00002	0.0 560.94971 619.30785 534.37231 0.00001 1.0000 1.0000	0,0 563,42480 523,61965 537,56885 0,0000 1,0001 1,0000
0.06904 25.20433 49.19781 0.07826 0.99998 1.00449	-0.49900 23.35120 54.45099 0.07986 0.79997 1.01368	-0.85467 22.85786 56.53831 0.07999 0.99999 1.02057	-1.58829 23.21211 58.39961 0.07902 0.99999	-2.27780 24.10820 59.30756 0.07895 1.00000 1.00478	-3.71019 25.42335 60.33563 0.07391 0.99999 1.06984
0.98899 4961.03125 886.43481 47.22696 0.0	0.96575 4959.48828 4959.48828 981.23371 47.64762 0.0 0.9420 0.9420 0.9420	0.94897 5048.31641 1079.90454 47.85605 0.0 0.9260 0.9235	0.91816 5291.01172 1077.05640 48.06279 48.06279 0.3850 0.9811	0.87449 5551.55641 1100.33398 49.16496 0.7 0.8398	0.86144 5875.74609 1123.69335 49.26729 0.9500 0.7933
544.26890 0.53491 0.74051 -7.96799 1.13246	535.85645 0.51816 0.81823 0.81823 -10.83594 1.15972 1.26090	532.40430 0.51230 0.851230 0.85621 -13.40935 1.18027 1.26091	524.30811 0.50456 0.8513513 -16.09563 1.21994 1.21994	516.C5640 0.49899 0.89231 -18.13858 1.25213 1.26092	503.66895 0.49072 0.89552 0.89552 -22.91118 1.30015 1.26091
542.72998 601.53833 832.74854 0.70532 9.01101 9449 0.9430	533.53906 593.56784 921.66797 -0.10266 0.73425 9410 0.9399	529, 34302 577, 74658 965,58716 -0, 00301 0,05108 9259 0,9234	520,26782 570,49779 1000,57715 3,10281 0,39184 8949 3,8810	511-46143 565-37036 1011-72637 0-13989 0-13989 9449 0-3397	499.931 557.5591 1017.68188 0.7.7090 0.13856 0.13856 7999 7.7032
19.36664 256.16382 630.27100 0.07536 0.02038 1.26189 0.	21.43771 231.34424 749.88647 0.00331 0.06295 1.26087 0.	22.50113 224.35851 805.54590 0.10771 0.09323 1.26089 0.	23.53130 224.85004 852.20530 852.20530 0.12487 0.14730 1.26087 0.	24.03986 230.93188 869.40210 0.13435 0.13781 1.76089 0.	24.54999 239.37894 884.30420 0.14589 0.24276 1.26089 J.

• -

20160	it Station						20160						20160	2					20160						20160						20160						20160					20160	
9.35939 0.20790	Duct Stator Ex	ing Station 5	0, 32477 1,-00000	1.31151	0.66648	0-0	738-76774		0.31164	1.0000	1.27693	0.0477	721.91995		0. 29555	1.00000	1.74742	0.62303	U.0U	C1111*+60	0.27743	1.00000	1.22726	0.60149		1	0.24657	1.00000	1.19704		619.87207	0.22575	1.00000	1.18057	0.54877	0.0	616.29703	0.26376	1,00000	1.27044		562.11597	
0.0 48.26729	= 0.0 B.P.	Bladi	0.32477 1 56863	1-31151	0-66648	1.52135	0.0 0.0		0.31164	1.47096	1.27693	185490	1.44565 0.0		0.29555	18886.1	1.24742	0.62303	1.30141	0•0	F2776.0	1.31989	1.22726	0+0149	1.29965	0•0 0•0	0.24657	1.21227	1.19704	9-10/6-0	0.0 0.0	0.27575	1.11935	1.18057	0.54877	1.10592	0-0 0-0	0.26376	1.49667	1.27049	1 4 5 6 6 4	0-0 0-0	>>>
535.44653 13.00000	ΓΩΤΑΕ ΒΕΕΤΑ-Τ	0 =d001	0°0 31036 0575	2124.11270	2210 41377		0 97900	•	0.0	2638.80859	3174.07568	2223.57759	0.01501 7 0.00500	00000000	0°0	2647.13647	3278.65918	2242.56323	.0110°6	00666 00 1	0.0	2647.69751	3355.86279	2255.37817	001000	00066*0 2	0.0	2646.12378	3513.57300	2272.13062	00166 0 1		2646.11769	3726 - 47559	2287.51397	000000	1 0.99100	0.0	2560.99331	3680.71753	101040000		ATT
), 9712 0, 8671 0, 98000	0.0		0.0 EE7 15601	1001] */112	14467 00-6 530 75684		128 0 0220 0		¢•0	557.13967	599.23569	530.56030	0,06073		0.0	556.94094	541.91016	531.10096	0,04719	0.8445 0.843	0•0	556.72559	595 ,671 63	521.81323	0.04611	0.4405 0.479	u•0	556.45509	6.73. 33154	532.76953	0.9672 0.366	с с	596.4557	64245 514	533. ROI 76	0.04863	0.3458 0.945	0"0	564.77832	626.32349	547.14397	1474()*() 968 0 4066 0	0. 3140 N. 0.
1。24744 (0.0	= 5NI 10L0		32.34486	0.10	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1,164.1	1421101	35°82	c.0	47°30099	0.07855	0.07786	2776.1•I	30.0905	0.0	49.47712	3.07915	9.73495	1.09837.	30.17325	0.0	51:35657	0.77943	0.94735	1.07692	74.545 81	0.0	54.60359	0.07594	P1646.0	24 48100		0900 Z 3	0.04033	0.94774	1.75126	35.31740	0.0	61.85156	0.07450	0.92613	つたしまつ。 I
8711 0.3670 5058.39453	NFLTA-T	YOU'TS O	0.76249	7. N	rc/f/•/04	4ו/0/24		NH420 26CN.	0.79313	J.O	fl?.69459	f135703	0.0	1. 9816 0. 9770	0.90165	0.0	649.43237	49 . 52483	0.0	.9605 0.8973	0.81482	0.0	684.59424	48.68451	Ú°U	ე <mark>,</mark> მ0,44 0, მ013	0.83539	0.0	751.10059	49.99456	1.0 1.9083 0.9053		0.84707	0.00	55655.07		0.9082 0.9053	0.81334	U•U	967.81372	10484.64	0.0	0.64.00 1.010
1•24741 0• 324°49634		INE SPLITTER	563.44949	0.49897	. 0.12473	-23.3/143		I.23440 (565.35791	0.50076	0-73442	-19.39099	1.77773	1.24711 (556.49023	0.49265	0.75713	-17.30806	1.73107	1.25105 (547.25475	0-48424	0.77544	-14.72845	1.69908	1.25131 (533.70776	0.47175	0.81444	-11.51075	1.64569 1 25056 (571.95674	16644.0	-10.49084	1 60073	1.25056	460.56616	0.40174	0.85157	-2.19269	1.71650	1.21078
2633.52124 5245.7000	JTAI P?FSSURE	NASA FAN FNG	563.21606	543.44340	917.90933	n.73059	7. 50376	4531 J. 94P6	544.75191	565. 15791	933.49115	9.72769	J. 47984	8815 J. 4777	555.97925	556.49)23	155.24487	0° 01 753	0.45434	9904 J.8971	546.73803	547.35425	874. 50781	0.01218	7.43514	9043 1.9012	512.35840	533.70776	921.40967	1070C .C	0.40236 0003 0 0052		520.77641	1.1 Cer . 1.7 C	20274 878	17425	9091 J.9052	459.50615	467.56616	Ür610°916	A. 70383	9.46836	6399 0.5301
557。66260 390。33360 *STATOR ODT?	* NISPF *MASS AVERAGE T(#	12.95000	0-0	592.73755	0.02975	0-32407	1.23436 0.	* 13.38602	0-0	612.69459	0.03745	0.31164	1.24707 3.1	* 14-18966	0-0	649.43237	0•04289	0.29555	,•C 10152•1	* 11. 05687		686 50676	0.04789	0.27743	1.25127 3.	# 16 &rorr		751.10359	0.05649	0.24657		14.10405	0.0	828.87378 0.05735		1-25053 9.	* 18.80687	0-0	860.91372	0.06796	0.26376	1.21025 7.

	19-53830 0.0 894.29199 0.203947 0.203687	516.01367 517.25732 1033.10840 -0.10046 0.35209	517.25737 0.45659 0.91194 -10.41022 1.57462	0.85989 0.0 894.29199 49.63699 0.00 0.40.57	25.20433 0.0 59.95490 0.98249 0.94232 1.04379	0,0 556,45557 527,88989 534,20801 0.5039 0.9274 0.826	0.0 2646.39331 3930.17065 2293.91626 0.00890 3 0.99110	0.20368 1.04089 1.16294 0.53495 1.02974 0.0 0.0	0.20368 1.00000 1.16294 0.53495 0.0	201 60
4	1.22005 0. 21.66588 0.0 0.0 0.09110 0.18667 0.12665 0.	9005.0.0.9000 505.03247 507.12378 1113.91812 0.0044 0.32827 0.32827	1.22009 507.12378 0.44729 0.98241 -11.14848 1.54317 1.24968	0.9057 0.926	73.35120 0.0 62.91559 0.08075 0.94005 1.03749	0.000 0.000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	0.0 2644.25294 4274.81641 2305.06226 2305.06226 0.09910	0.18667 0.5594 1.15093 0.51819 0.94715 0.0	0.18667 1.00000 1.15093 0.51819 0.0	20169
¥	22.76546 0.0 0.0 0.1042.00317 0.10431 0.19941 1.24966 0.	499.04810 503.75000 1156.77959 3.70577 3.70577 0.32630 48902 7.8866	500.75000 0.44117 1.01953 -12.08597 1.54260 1.24969	0,86673 0,0 1042,00317 50,30772 0,0 0,8867 0,8867	22.85096 0.0 64.33267 0.08096 0.9348 1.03713	0.0 557.12046 647.27637 536.27075 0.05430 0.8031 0.802	0.0 2644.27344 4475.21094 2313.52783 0.08890 0.099110	0.18941 0.94043 1.15376 0.51234 0.51234 0.0 0.0	0.18941 1.00000 1.15376 0.51234 0.0 577.74658	20160
*	73.83364 0.0 1(90.75806 0.11782 0.18590 1.24965 0.	491.86475 495.26685 495.25685 1177.93237 0.32290 0.32768 .8509 7.8460	495.76685 0.43541 1.05316 1.72715 1.54302 1.54302 1.24968	0.86915 0.0 1090.75806 50.52937 0.0 0.8508 0.9461	23.21211 0.0 65.57915 0.09379 0.93594	0.0 558.95704 657.72900 538.57227 0.7951 0.7951 0.7951	0.0 2644.26196 4679.98828 2321.40747 0.00890 1 0.99110	0.18590 0.95102 1.15188 0.50470 0.4738 0.470 0.00 0.00	0.18590 1.00000 1.15188 0.50470 0.0 570.48779	20160
*	24.35410 0.0 1114.71704 0.12465 0.17542 1.24701 7	486.30005 430.75396 430.75396 1217.68457 -0.10205 0.33610 -8046 0.7984	490.04396 0.42999 1.06815 -11.40911 1.55278 1.55278 1.24705	0.866R0 0.0 114.71794 50.63377 0.8347 0.7985 0.8347 0.7985	24.10820 0.0 5.05917 5.08057 0.92131	0,0 560,94971 560,94971 564,07813 540,98219 0,0741 0,741 0,741	0.0 2638.67163 4771.08203 2373.99683 0.01100 0.01100	0.017542 0.99816 1.15367 0.49902 0.97650 0.0	0.17542 1.00000 1.15347 0.49902 0.0 565.37036	20160
* *	74.87999 0.0 1138.78784 0.13341 0.15193 1.73819 1.73819	4/2.71436 476.0510 1234.61401 1234.61401 -0.01099 0.35901 0.35901	476.0210 0.41699 0.41699 1.07949 -12.55724 1.555724 1.23821	r.85519 0.0 1134.78784 50.74750 0.0 0.7373 0.7292	25,42035 0.0 67,77696 0.08002 0.87739 1.02719	0.0 553.42487 571.03198 671.03198 631165 0.11851 0.594	0.0 2619.99121 4938.99219 2324.64478 2324.64478 0.01800 46 0.98200	0.15193 1.05578 1.16934 0.49075 1.04378 0.0 0.0	0.15193 1.00000 1.16934 0.49075 0.0 557.65991	20160

.

20170		20170	20170	20170	01102	20170	20170	20170
9.35833 0.20191		563 <u></u> 44849	1677¢,382	556.49023	547.35425	AT TOT . EF2	521,95679	460 <u>.</u> 56616
0 839		0000-1	1.0000	1.0000	0000 • 1	1.0000	1 • 0000	1.0000
51.33	- 0.0	0000 1	1 • 2000	0000-1	1.0000	1.0000	1 • 0000	1.0000
537.99307 13.00000	חדאן מפנדא-ד	L TJP= 1 0.0 2620.36035 3134.10357 2290.72379 1.00000 1.00000	0.0 2638.80249 3196.93213 2791.14233 0.00000 1.00000	0.0 2647.12109 32 ⁸ 5.85522 7293.02954 0.00001	0.0 2647.65945 3366.62930 2295.86230 2295.86230 1.00000	0.0 7646.11044 3530.41040 7302.57080 0.000000 1.73030	0.0 2646.10986 3749.87524 2310.95630 2310.05000 1.00000	0.0 2560.88067 3705.97388 2314.34033 2314.34030 0.00000
0.8714 0.8673 0.98000	0°0 I	0.0 557.15601 557.15601 536.17027 0.00027 1.0000 0.9999	7.0 557.1367 589.48609 535.11792 0.00001 1.7300 0.9999	7.7 556.96084 592.78174 534.49585 0.00004 1.7700 0.9938	0.0 556.7559 596.21606 534.52173 0.00002 1.000000.99999	0,0 556,45508 604,15527 534,79810 0,00303 0,9999	0,0 556,4557 614,62964 535,35400 0,00902 0,9999 0,9999	n.0 554.77832 627.554541 548.69556 0.9999 0.9997
1.24745 n.n	= ENTTOD	0.0 0.0 0.0 0.12273 0.23039 0.23039 1.03624	0.0 0.0 50.03997 0.09025 0.99999	n.n 0.0 51.53712 0.09041 0.99999 1.02255	0.0 0.0 0.0 0.09051 0.99999 1.01795	0.0 0.0 56.03703 0.08703 0.08770 0.9999 1.01340	0.0 0.0 0.0 58.95157 58.95157 0.099999 0.999999	0.0 1.0 63.16252 0.07906 0.99997 1.00997
.8713 0.9672 5058.41797	ηξιτα-Τ	P STUNY 0.99143 0.0 592.73755 51.33839 0.0 0.0 0.8533 0.8487	0.01375 0.0 614.16346 51.43289 0.0 0.88916 0.4779	n.93195 7.9 652.86743 51.60350 0.0 C.9005 0.9973	0.94409 7.0 689.36401 51.76442 0.0 7.9044 0.9013	0.95623 0.0 757.67603 52.06558 0.0072 0.0075	0.96514 0.0 R36.80705 52.41446 0.7 0.7 0.9787 0.9753	n,95500 0,0,55796 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,
1.24742 C 324.51480		INE SPLITTE 502.27344 0.44255 0.68455 -14.83423 1.25641 1.23840	514.61914 0.45388 0.45388 0.70670 -12.40509 1.23943 1.23943	518.52354 0.45767 0.73580 -8.48444 1.20177 1.75104	516.75122 0.45501 0.76027 -6.76444 1.18633 1.25131	510.34644 0.45024 0.80594 -5.18739 1.17127 1.25055	503.76721 0.44420 0.44420 0.86176 -3.38793 1.16045 1.25056	439.84033 0.38312 0.94862 -7.26588 1.17278 1.21027
2639.54565 5245.19000 4	TUTAL POFSSUPF	NASA FAN FNG 502.74585 502.7744 7744 770.27749 7.02749 7.10857 0.10857 0.10857 0.8531 8531	514.61914 514.61914 801.07124 -0,0273 0.08975 8815 0.8477	513.57756 513.67354 813.79028 7.70104 0.76805 .970805	516.59717 516.75122 961.54199 9.0307 9.75591 9.75591 9.924).9012	509.09364 510.34644 913.52417 0.00519 0.00519 0.94377 0.9181 0.9052	503, 75266 503, 7622 976, 73462 0, 13576 0, 13486 0, 13486 0, 13486	419.76147 419.84033 974.75172 0.1700 0.701700 0.74500 6339 0.6301
557.65796 3∘00.36719 ★STATUR Ω₽Ţ ★ NTOPE	*MASS AVERAGE	* 12.95000 0.0 502.73755 -02.13755 0.1955 1.73335	* 13.4187 0.0 614.16345 -0.00093 0.16282 1.24707 0.	14.26370 0.0 652.86743 0.01431 0.12474 1.25100 0.	* 15.06107 0.0 689.36401 0.10319 0.10319 1.25127 0.	* 16.55354 0.0 757.67603 0.03173 0.08139 1.25052 0.	18.78223 0.0 8.46.80005 0.04633 0.06521 1.25057 0.	18.09283 0.0 860.32520 0.08479 1.21025 0

.

19.7393 49.4 Mark 47.5588 0.9412 0.0 1.0 0.0 0.00555 0.00855 0.0012 0.0 0.0 0.0 0.0 0.00555 0.00856 0.00865 0.0012 0.0012 0.0000 1.0000 1.17.25732 0.00555 0.00856 0.00015 0.00017 0.00017 0.00005 0.0000 0.1000 1.0000 1.17.25732 0.00555 0.00016 0.00017 0.00017 0.00017 0.0000 0.11.0000 0.17.25732 1.00011 111.25065 0.00017 0.00017 0.0002 0.00017 0.0000 0.17.25732 1.00011 111.25065 0.0017 0.0002 0.0002 0.0000 0.17.25732 1.00011 10.11264 0.0017 0.0002 0.0017 0.0001 0.0000 0.17.25732 1.00011 10.11264 0.0017 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0	20170	20170	20170 20170	20170	201 70
19.73936 494.7446 497.55884 0.04192 0.0 50.0 </td <td>517.25732</td> <td>507°12378</td> <td>500.75000 495.26685</td> <td>490.06396</td> <td>476.90210</td>	517.25732	507°12378	500.75000 495.26685	490 . 06396	476.90210
15.13936 436. 7644 471.5588 0.66192 0.0 9.0		1.0000	1.0000	1 - 0000	1.0000
19.73936 496.7644C 477.5569 0.94132	0000 • 1	1.0000	1.0000	1 • 7700	1.0000
19.73936 496.7644C 477.55844 0.96192 0.0 0.0 90.0 497.55844 0.437.5584 0.43537 0.0 556.4557 90.0 0.49512 10314370 0.49055 90.49512 515.47661 0.00059 0.71088 1.15906 0.49051 0.49051 90.99999 0.99999 0.001121 0.71081 1.15906 0.99057 0.10097 0.99999 0.99999 0.99999 0.00211 0.70075 1.17944 0.9917 100.1137 0.9999 0.9999 0.99999 0.0021 0.70037 1.17944 0.9917 0.01317 0.9999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.90007 0.90007 0.90007 0.90007 0.90007 0.90007 0.90007 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 0.91143 <t< td=""><td>0.0 2646.38771 3960.66162 419.01514 0.00000 1.00000</td><td>0.0 2644.25464 4318.24609 2336.92407 2336.92407 1.03030 1.03030 0.0 2644.25562 4577.45703</td><td>0.0000 0.99999 0.999999 0.00 0.00 0.0000 0.00000 0.00000 0.00000</td><td>0.0 2638.65894 4841.44141 2377.79614 0.00000 1.00000</td><td>0.0 2619.97876 4919.83984 2391.273096 0.00000 1.00000</td></t<>	0.0 2646.38771 3960.66162 419.01514 0.00000 1.00000	0.0 2644.25464 4318.24609 2336.92407 2336.92407 1.03030 1.03030 0.0 2644.25562 4577.45703	0.0000 0.99999 0.999999 0.00 0.00 0.0000 0.00000 0.00000 0.00000	0.0 2638.65894 4841.44141 2377.79614 0.00000 1.00000	0.0 2619.97876 4919.83984 2391.273096 0.00000 1.00000
19.73936 496.7644C 497.55884 0.96192 0.0 903.49512 1031.43970 0.99195 903.49512 0.001121 0.005559 0.00886 0.90086 0.90195 0.001121 0.001121 0.003066 0.00817 0.90191 0.001131 0.00213 0.001306 1.164913 0.90197 0.001131 0.00213 0.001433 0.915697 0.001973 0.001131 0.00213 0.001433 0.9156982 0.9024641 0.001137 0.002213 0.001433 0.9156982 0.9024641 0.010345 0.00213 0.016473 1.17944 0.91564 0.903494 0.00213 0.016474 -4.10336 0.914647 0.01347 0.00213 0.016474 -4.10336 0.914647 0.01347 0.00313 0.016474 1.117944 0.914647 0.903474 0.00414 0.114447 0.914647 0.914647 0.91467 0.00414 0.01494 0.014945 0.914647 0.91467 0.00414 0.014646 0.914647 0.91467	0.0 556.45557 624.45557 624.87061 0.00002 0.9999 0.9999	0.0 555.44434 639.95630 531.16138 0.00002 0.00002 0.0999 0.9999 0.0 557.12036 557.12036	0,0005 0,0005 0,0005 0,0 558,96704 561,55713 0,0003 0,0003 0,0999 0,9999	0.0 560.94971 666.84766 544.52832 0.00004 0.9999 0.9999	0.0 563.42480 674.16040 548.92437 0.00004 1.7703 0.9999
19.73936 496.7644C 497.55884 0.96192 00.0 0.9912 0.91143970 0.96192 00.0 491.455884 0.90165 903.49512 00.0 0.9086 0.90965 903.49512 0.00121 0.0088 0.9086 0.90955 903.49512 0.00121 0.0088 1.56982 0.9097 0.9057 21.90883 490.64331 0.916434 0.9017 0.9057 21.90883 490.64331 0.9116434 0.9017 0.9057 21.90883 490.64331 0.91435 0.9057 0.9055 21.90833 490.64331 0.9156982 0.904127 0.001213 0.90555 0.9055 0.9056 0.9056 10.224965 0.9057 1.24968 0.99152 0.99152 0.10330 1.11445 0.91524 0.91524 0.91627 0.10330 1.124455 0.91524 0.91524 0.91626 0.10330 0.19547 1.1154436 0.91527 0.91627 0.10330 0.19537 1.24968 0.91526 0.91627	0.0 0.0 61.15816 0.058115 0.99998 1.01094	0.0 0.0 64.34834 0.08155 0.99999 1.01382 0.0 0.0 65.91405	0.099996 1.01563 0.0 0.0 67.49756 0.998192 0.998972 1.01955	0.0 0.0 0.52373 0.09195 0.99195 1.02315	0.0 9.0 70.12450 0.03165 0.99995 1.02864
19. 73936 496. 7644C 497. 55884 90.00 4995. 76444 0.455884 90.05659 0.00888 0.49352 90.05659 0.00888 0.90906 0.05659 0.00888 0.90566 0.05659 0.00868 0.90566 0.05659 0.00888 0.9056 0.05659 0.0986 0.9056 0.06213 0.01447 0.415392 0.00513 0.112.43213 481.56982 0.00513 0.9055 0.9056 0.42332 0.00513 0.112.43213 481.56982 0.4143 1002.79419 1112.43213 481.56982 0.4143 10.24965 0.9055 0.9055 0.40267 0.00513 0.05039 1.17943 1.17943 0.00514 1155.43213 0.17947 1.17945 10.24955 0.90587 0.76897 0.41443 0.0517 0.49147 0.20261 1.24968 1.24955 0.49447 0.71697 1.21219 11.24455 0.1104447 0.714459 1.24968	0.96192 0.0 903.49512 52.70853 0.00 0.0	0.94961 0.0 53.14636 0.0 0.9056 0.9026 0.9026 0.926 0.0 1054.33276	0.8903 0.8867 0.92395 0.92395 7.0 110461230 5.0 0.8508 0.8460	0.99688 0.0 1129.62329 53.70557 0.8047 0.7984	0.87574 0.0 1155.26563 53.81970 0.7373 0.7292
19.13936 496.76440 0.0 497.5584 903.49512 1031.43970 0.0 0.031.43970 0.05659 0.03188 0.00121 0.03188 0.00121 0.03188 0.0121 0.03808 1.25066 0.9086 0.9056 21.90883 490.64331 0.01121 0.01447 0.002.79419 1112.43213 0.003933 0.01447 0.00374 0.150391 0.00374 0.150391 0.00374 0.150391 0.00374 0.156391 0.00374 0.156391 0.00374 0.156391 0.10300 0.0577 0.10300 0.05677 0.10310 0.07605 0.10310 0.07605 0.10310 0.76656 1.24965 0.8902 1.24965 0.8902 1.24965 0.8507 0.104054 0.7765 0.10456 0.71037 0.10466 0.74465 0.124065 0.7	497.55884 0.43852 0.90906 -3.70906 1.16434	481.56982 0.42392 0.97927 -4.10386 1.17943 1.74968 0.41433 0.41433	-5.00045 1.24968 457.59985 0.40119 1.04826 -4.84103 1.24968	444.42344 0.38859 1.06137 -6.16991 1.23500 1.74704	417.63980 0.36370 1.C6977 -8.18967 1.27892 1.23821
19.73936 903.49512 903.49512 0.05659 0.05659 0.05659 1.25966 0.2037419 0.06213 0.09374 1.24965 0.16591 1.24965 0.16691 0.16591 1.24965 0.14054 1.24965 0.14054 1.24965 0.05379 1.24965 0.05379 1.24965 0.05379 1.24965 0.05379 1.24965 0.05379 0.14054 1.24965 0.05379 1.24965 0.05379 0.1565637 0.056595 0.057595 0.057595 0.057595 0.057595 0.057595 0.057595 0.057595 0.057595 0.057595 0.0575555 0.0575555 0.055555 0.0555555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.0555555 0.055555555	496.7644C 497.55884 1031.43970 0.03888 0.03888	480.64331 481.56982 1112.43213 0.01447 0.05039 9055 0.9025 470.36011 471.31445 1154.9257	0.02011 0.05878 3902 0.68866 456.63892 457.59985 1195.64429 0.73162 0.773162 9507 0.9459	443, 46558 444, 42944 444, 42944 1213, 70479 0, 04033 0, 03312 8046 1, 7983	416.57578 417.53989 1228.43848 0.15348 0.12426 0.12426 7.7372 1.7372
	19.73936 0.0 0.0549512 0.05659 0.075659 1.220066 0.0	21.99883 0.0 1002.99419 0.06213 0.09393 1.24965 0.0 23.03484 0.0 1054.33276	0.0514 0.10930 1.24965 0. 24.13333 0.0 1104.61230 0.06491 0.16054 1.24965 0.	24.67976 24.67976 0.0 1129.62329 0.05379 0.17997 1.24700 3.	25.23999 0.0 1155.26563 0.06807 0.27545 1.23817 3.

F

20180	20180	20180	20180	20180	20190	20190	08102
9.35834 0.0	502.27344	514.61914	518.62354	516.75122	510.34644	503 <i>.</i> 76221	439,84033
59	1. 0000	1.0000	1 - 0000	0000	1 - 0000	1.0000	0000-1
57.63 = 0.0	1.0000	1.0000	1. 9000	1.0000	1.0000	1.1000	1. 0000
538-54956 13.00000 NTAL DELTA-T	LOOP= 0 2620.34570 3134.08594 2335.85352 0.00001 0.99999	0.0 2638.79590 3199.52368 2335.85229 2335.85229 1.00000	n.0 2647.11450 3293.00146 2335.88428 2335.88428 1.00000	0.0 7647.67651 3377.90747 2335.68042 0.00000 1.000000	0.0 2646.10547 3549.00928 2335.59717 2335.59717 1.00000	0.0 2646.104.00 3775.95918 8.1676.85 2.355.77696 0.00000 1.00000	7.0 2560.87646 3733.62158 2335.69287 2.00000
0.8714 0.8673 0.98000 0.98000 11	0.0 557.15601 586.35449 539.17456 0.00004 1.0000 0.9998	0,0 557,13467 588,62305 538,07910 0,00002 0,00002 0,9999	0.0 555.86084 592.64917 537.32959 0.0002 0.9999 0.9999	0.0 556.7559 596.78599 537.15308 0.0004 0.9999	0.0 556.45508 605.06128 536.97778 0.9999 0.4999	0.0 556.45557 515.44059 516.98999 0.09002 0.0907	0.0 564.77832 628.87573 550.13623 0.0002 0.9993
1.24746 0.0 COOLING =	0.0 0.0 51.88350 0.06127 0.99977	0.0 0.0 52.12238 7.08137 0.99998 1.01951	0.0 0.0 53.55278 0.08149 0.99999 1.01869	0.0 0.0 55.05518 0.09150 0.99996	0.0 0.0 57.67444 0.09153 0.9998 1.01435	0.0 0.0 60.21940 0.08153 0.99999 1.01074	0.0 0.0 64.46490 0.07958 0.97958 0.97958 1.00923
.8713 0.9672 5058.41797 DFLTA-T	R 5TUNY 0.92587 0.0 592.73755 57.63759 0.0	0.93035 0.0 615.50928 57.63759 0.0 0.8816 0.9778	0.93451 0.0 656.24536 57.63759 0.0 0.0	0.93883 0.0 694.32179 57.63759 0.0 0.9044 0.9013	0.014836 0.0 764.84399 57.63759 0.0 0.0	0.96046 0.0 845.47290 57.63759 0.0 0.0 0.9087 0.9753	0.95417 n.0 RT8.49756 57.63753 0.0 0.0 0.0
1•24743 0 324•49854	INF SPLITTE 465,04077 0.40841 0.66198 -1.44661 1.20967 1.23839	478.77441 0.42111 0.68587 -2.46888 1.20395 1.20395	484.66040 0.42658 0.71875 -4.19658 1.19658 1.75104	485.17310 0.42710 0.74565 -4.66109 1.19290 1.25130	483.99077 0.42613 0.79691 -4.43726 1.18099 1.25055	493.84399 9.42599 0.85766 -3.93549 1.16611 1.25055	419.68140 0.36508 0.84693 -2.21823 1.17390 1.21027
2639.55811 5245.)0000 OTAL PRESSURF	NASA FAN FNG 465.03447 465.03447 465.14077 753.34282 0.10000 0.07413 8531 0.8486	473.76099 473.77441 779.79272 0.10000 0.16965 8415 0.8777	434.53037 484.66040 915.91470 0.00000 0.16549 9003 0.9511	495.11548 485.17310 847.17310 847.13931 -0.10000 0.10000 0.26111 9343 7.9012	483.95986 483.99072 905.11499 -0.0000 0.05164 9081 0.9052	433.67767 483.14399 974.13013 0.10100 0.33954 0.33954 0.33954	419.44556 419.58140 973.59668 9.70000 9.74583 0.74583 6199 7.6301
557.65820 390.34937 *Statcr Opt4 * NISRF ************************************	* 12.95000 0.0 592.73755 0.00526 0.13691 1.23935 3.	* 13.44751 0.0 615.55928 0.00753 0.12861 1.24707 0.	* 14.33751 0.0 656.24536 0.01117 0.12104 1.25100 0.	* 15.16979 0.0 694.32178 0.01542 0.11319 1.25126 7.	* 16.71014 0.0 764.84199 0.02328 0.09615 1.25052 0.	* 18.47171 0.0 845.47290 9.03127 0.07467 1.25052 3.	* 19.19327 0.0 878.49756 0.03355 0.08663 1.21024 0.

.

	19.94604	433.53135	483.92212	0.97259	0.0	0 •0	0.0				
	0-0	483. 72212	0.42607	0.0	0:0	556.45557	2646.37671				
	012.95509	1033 27970	0.90974	012.95503	62.07362	625.68872	3992.49584				
			12400	57-63750	0 08154	536 98364	2235 92116				
	0.051460	0 02741	1 15156				0,0000				
				0 0003 0 0053		0 0000 0 0003		0000 1	0000	407 EE004	00.00
4	•1 601.67•1	acne+r cen.	1.011C	10116 •0 1001 •0	6 V IOD • I		1.0000		1.000		06107
,	22.05024	431.95239	482.16333	1.00123	0°0	0.0	0-0				
	0.0	482.16333	1 4 5 4 5 4 4 1	0•0	0.0	556.44434	2644 .24683				
	1011.09766	1120-17922	0.98613	1011.09766	64.53484	641.34326	4351.19531				
	0.07961	00000 0	2.48751	57.63759	0.08153	537.11377	2336.19263				
	-0.00236	-0.00123	1.11862	ů°ů	66666 0	0,00003	0.00000				
	1.24964 3.	,9055 0.9025	1.24967	0.9055 0.9076	0.99969	1.0004 1.0051	1.00000	1.0000	1.0000	481.56992	20180
¥						4					
	23.19089	482.46875	482.56079	1.02386	0.0	0.0	0.0				
	0.0	482.55979	0.42456	C•C	0.0	557.12036	2644.25049				
,	1061-01733	1165.59888	1.02551	1061-01733	65.54347	650.58936	4556.23047				
	0.01956	000000.00	6.19831	57.62759	0.08143	537.75805	2336.06396				
	-0.04619	-0.72386	1.09390	0.0	66666•0	0.00002	00000				
	1.24965 3.	-8901 D.RR66	1.2496P	0.8902 0.8967	0.99421	1.00001.0000	000001	0000-1	1.0000	471.31445	20180
*											
	24.22324	483.42334	483.42334	1.05643	0.0	0° 0	0.0				
	0.0	433,42334	0.42462	0.0	0.0	558.95704	2644.25049				
	1109.72754	1209.53467	1.06241	1108.72754	66.44194	661.00171	4762.39453				
	0.00098	0.0000	12.35440	57.63759	9.78116	519.53638	2335.99730				
	-0.11097	-3.75643	1.06017	0.0	1.93099	0.00001	0,0000				
	1.24965 0.	.3507).8459	1.24967	0.4509 0.8460	9.98699	1.0000 1.0000	1.00000	1.0000	1.0000	457.599 <u>85</u>	20180
¥											
	24.73105	430.79546	480.13794	1.08035	0.0	0.0	0.0				
	0.0	430.13794	0.42096	0.0	0.0	569.94971	2638•65112				
	1131.97070	1229.5R387	1.07780	1131.97070	67.01519	667.28711	4852.67198				
	-0.01333	-0.0000	17.05350	57.63759	0.08082	541.78296	2336.05737				
	-0.15997	-0.09035	1.03670	c• 0	66666•0	0.00003	0,00000				
	1.24700 3.	.8045 7.7983	1.24704	0.8047 0.7984	0.98245	1.000.1.0000	1.00000	1.0000	1.0000	444.42944	20180
4	25,23599	466-64526	466.91528	1.11798	0-0	0 ° 0	0-0				
	0.0	466.91528	0.40796	0.0	0.0	563.42480	2419-97510				
	1155.26563	1246. 35249	1.08971	1155.26563	12666.73	674.16940	4918.83203				
	-0-03404	0.0000	23.70813	57.63759	0.08031	545.30029	2336.37524				
	-0.23978	- 3,11798	1.00180	0.0	66666 •0	0,00007	0,00000				
	1.23817 0.	1372 0.1291	1.23821	5P2T3 0.7292	0.97796	1.0000 1.0001	1. 30000	1.0000	1.0000	417.63999	20190
*	I										

,

/

SPLITTER LEADING ENGE 2, R, TAN A NE LEADING EDGE, LOWER ANⁿ Uppfr Surface fangent point 43.34840 43.53169 43.49440 12.09408 11.93257 12.31986 0.18046 -0.05240 0.24930

APPENDIX III DYNAMIC ANALYSIS METHODS

Blade Vibration Analysis

The method used to analyze the compressor and turbine blades is a transfer matrix technique. This method has proven to be extremely useful and easily adaptable to digital computer computation. It can be used to compute the coupling between two orthogonal bending and torsional modes of vibration. The coupling arises from the pretwist and noncolinearity of the elastic and centroidal axes.

The dynamic system assumed for the blade has two related but not colinear spanwise axes. These axes are the centroidal axis, which is assumed to be straight and colinear with a radial axis, and the elastic axis which, in general, is neither straight nor colinear with the centroidal axis. The elastic axis is a line along which the principle elastic bending and torsional properties are assumed to act.

For the analysis the blade is broken into segments of length (1) with two principle axes of inertia. The axis of minimum area moment of inertia is designated by using the Greek symbol eta (η) . The other principle axis is designated the zeta (ζ) axis. These two axes form a coordinate system which will be called the gamma(γ) system. This system makes an angle γ with the selected Y-Z coordinate system of the blade.

The unknown quantities at the end of any section to be determined are the shears (VY, VZ), bending moments (MZ, MY), slopes (θ, ψ) , and deflections (W, V). In addition, the torque (T) and angular deflection (θ) about the X-axis are also computed. These quantities at the right or left of any section will be called the state vector at that point. The state vector of a point in the X, Y, Z, coordinate system will be labeled Z_i .

The state vector in the gamma system (Z^{γ}_{i}) at point i can be related to the state vector in the X, Y, Z coordinate system (Z_{i}) by a transformation of coordinates

$$Z^{\gamma}_{i} = G^{\gamma}_{i} \cdot Z_{i} \tag{10}$$

Superscript γ indicates Gamma system. The transformation equation, assuming no torsional coupling, is shown below in matrix form.

Φ	Y	1										Φ
Т			1									Т
v				cosγi				-siny _i				v
θ					cosγi				-sinyi			Ð
М _в						cosyi		,		$-sin\gamma_i$		Ma
-vy	=						cosyi				-siny _i	-vy
-w				$sin\gamma_i$				cosy _i -				-w
ψ					sinγi				cosγi			ψ
му						sinyi				cosyi		м _у
v _s							$sin\gamma_i$				$\cos\gamma_i$	V _z

Also the state vector at the right of point i in the Gamma system (Z_i) can be related to the state vector at the left of i in the Gamma system as

$$Z^{\gamma R}_{i} = F^{\gamma}_{i} \cdot Z^{\gamma 1}_{i}$$
(11)

where F_i is a field transfer matrix.

By using the transformation Eq (10) for the left side

$$Z_i^{L} = G_i^{\gamma} \cdot Z_i^{L}$$
(12)

and by substitution into Eq (11), the following is obtained

$$Z^{\gamma R} = F^{\gamma}_{i} \cdot G^{\gamma}_{i} \cdot Z^{L}_{i}$$
(13)

also for the right side of section i

$$Z_{i}^{\gamma}R = G_{i}^{\gamma} \cdot Z_{i}^{R}$$
(14)

or

$$Z^{R}_{i} = G^{\gamma-1}_{i} \cdot Z^{\gamma R}_{i}$$

$$G^{\gamma-1}_{i} = \text{the inverse of } G^{\gamma}_{i}$$
(15)

therefore, by substituting Eq (13) into Eq (15), the following is obtained

$$Z_{i}^{R} = G_{i}^{\gamma-1} \cdot F_{i}^{\gamma} \cdot G_{L}^{\gamma} \cdot Z_{I}^{L}$$
(16)

or

$$Z_{i}^{R} = F_{i} Z_{i}^{L}$$
(17)

This relates the state vector at the right of section i to the state vector on the left in the X, Y, Z coordinate system. Also since

$$Z_{i}^{R} = Z_{i+1}^{L}$$
(18)

and as for Eq (16) but for section i + 1

$$Z^{R}_{i+1} = G^{\gamma-1}_{i+1} \cdot F^{\gamma}_{i+1} \cdot G^{\gamma}_{i+1} \cdot Z^{L}_{i+1}$$
(19)

or

$$\boldsymbol{\Xi}_{i+1}^{R} = \boldsymbol{F}_{i+1} \boldsymbol{\Xi}_{i+1}^{L}$$
(20)

By substituting the expression for $Z_{i}^{R} = Z_{i+1}^{L}$, the following is obtained

$$Z^{R}_{i+1} = \left| G^{\gamma-1}_{i+1} \mathbf{F}^{\gamma}_{i+1} \mathbf{G}_{i+1} \right| \cdot \left| G^{\gamma-1}_{i} \mathbf{G}^{\gamma}_{i} \mathbf{G}^{\gamma}_{i} \right| Z^{L}_{i} \text{ etc.}$$

As shown, the state vector at the right end of a system can be related by a product of the above transformation matrices, field transfer matrices, and a mass point matrix for each individual section. The boundary conditions that exist at the extreme ends of the system can then be inserted upon obtaining the system transfer matrix. With this, a reduced frequency determinant can be determined at a number of discrete frequencies and the frequencies, at which the determinant becomes zero, signify the eigenvalues or natural frequencies.

Rotor Analysis In Critical Speed

The methods employed to anlyze the rotor systems use a matrix technique similar to that described for the blades. The method selected depends upon the system being analyzed. One method can include the effects of damping and unbalance if these quantities are known. Another method which is employed extensively is based on the classical influence coefficient method. The procedure used to calculate the influence coefficients is again a transfer matrix method. This method will be described here to illustrate the general procedure.

The system to be analyzed is reduced to an equivalent mass elastic system. A typical two beam level system is shown in the following sketch:

The system is made up of sections of length L and constant stiffness EI. The matrix equation for a shaft section relating the shear, moment, slope, and deflection at the right end in terms of these quantities on the left is as follows:

To compute the influence coefficients, a unit load has to be placed at each mass point individually in the system. The transfer matrix representing a unit load would be:

v		1	0	0	0	-1		v	
М		0	1	0	0	0		M	
θ	=	0	0	1	0	0	•	θ	
Y		0	0	0	1	0	Ĩ	Y	
	R	Lo	0	0	0	1			L

This matrix simply states that a change in the shear across a load is unity. It is similar for a unit moment.

1	Ī		[1	0	0	0	٥٦		v]	
	М		0	1	0	0	-1		м	
	θ	=	0	0	1	0	0	•	θ	
	Y		0	0	0	1	0		Y	
	1_	R	Lo	0	0	0	1_		_ 1 _	L

164

.

The matrix relation for a support point anywhere in the system would depend on the number of beam levels in the system. For a two level system this relation is:

[v ^ī		1	0	0	- (S ₂)	0	0	0	0	К ₂	0	v ¹
мl		0	1	$\mathbf{s}_2^{\mathrm{T}}$	0	0	0	0	-к ^т 2	0	0	M ¹
θ^{1}		0	0	1	0	0	0	0	0	0	0	θ^1
Y1		0	0	0	1	0	0	0	0	0	0	Y ¹
1	=	0	0	0	0	1	0	0	0	0	0	1
v ²		0	0	0	к2	0	1	0	0	-(S ₃)	0	v ²
M ²		0	0	$-K_2^T$	0	0	0	1	$\mathbf{s}_3^{\mathrm{T}}$	0	0	м ²
θ ²		0	0	0	0	0	0	0	1	0	0	θ ²
y ²		0	0	0	0	0	0	0	0	1	0	Y ²
	R	Lo	0	0	0.	0	0	0	0	0	ı] _N	$\begin{bmatrix} 1 \end{bmatrix}_{L}$

The superscripts stand for level 1 and 2.

Here:

Spring Location Number System

Where:

K = Lateral Stiffness (lb/in.) $K^{T} = Rotational Stiffness (in.-lb/rad)$

It can be observed that by placing section matrices together, the quantities, shear, etc., on the right of one section is the same as those same quantities on the left of the next section. Therefore, a matrix representing the entire beam can be produced by multiplying through these matrices and representing loads, moments and supports by their respective matrices at the proper section. Using the product matrix and boundary conditions, the shear, moment, slope, and deflection at the left end can be determined. Using these values and stepping back through the individual matrices, these quantities are determined at all selected sections. The deflection and slope at the mass points selected are singled out and placed in matrix form.

The method used to solve for the frequencies and mode shapes is the matrix iteration method. For a linear system with N degrees of freedom, the equations of motion may be expressed in terms of influence coefficients with the loads, the inertia loads $(m_i \omega^2 y_i)$ at each mass.

$$y_{1} = \alpha_{11}(m_{1}\omega^{2}y_{1}) + \alpha_{12}(m_{2}\omega^{2}y_{2}) + \alpha_{13}(m_{3}\omega^{2}y_{3}) + \cdots$$

$$y_{2} = \alpha_{21}(m_{1}\omega^{2}y_{1}) + \alpha_{22}(m_{2}\omega^{2}y_{2}) + \alpha_{23}(m_{3}\omega^{2}y_{3}) + \cdots$$

$$y_{3} = \alpha_{31}(m_{1}\omega^{2}y_{1}) + \alpha_{32}(m_{2}\omega^{2}y_{2}) + \alpha_{33}(m_{3}\omega^{2}y_{3}) + \cdots$$
(21)

A convenient way to write these equations is by means of the matrix notation.

ſ	у ₁			[α ₁₁	α ₁₂	α ₁₃	[- m1	0	0	٥		y 1		
	У <u>2</u>			a 21	α 22	α ₂₃		0	m2	0	0		у2		
	Уз			α ₃₁	α ₃₂	α33		0	0	m3	, 0		У ₃		
	•	=	ω ²	•	•	• • • •		•	•	•	•		•		
	•			•	. •	••••		•	•	•			•	(22)
	•			•	•	••••		•	•	۰			•		
	•				•	••••		•	•	•	•	-	•		
	y _{n_}				•	••••		•	•	•	•		y _n		

The iteration procedure is started by assuming a set of deflections y_1 , y_2 , y_3 , ... for the right column of the matrix equation. After multiplying, the resulting column is normalized; i.e., reducing one of the amplitudes to unity by dividing each term of the column by the particular amplitude. The procedure is now repeated by using the normalized column as the new set of deflections. The amplitude will then stabilize, and the fundamental frequency can be found from the matrix equation. Since the iteration procedure converges to the lowest mode, certain manipulations are required to obtain the higher modes. Upon performing these manipulations, all desired modes can be obtained.

APPENDIX IV LIST OF SYMBOLS

А	area - ft^2 , in. ²
BR	bypass ratio - W_{aS}/W_{aP}
С	blade chord - ft or in.
Cp	specific heat at constant pressure - Btu/lb - ⁰ F
CV	specific heat at constant volume - Btu/lb - ^O F, or nozzle velocity coefficient
D	diameter – ft,or blade diffusion factor
Fg	gross thrust - lb
Fn	net (total) thrust - lb
^F t'y	tensile yield stress - lb/in. ²
F _{t, u}	tensile ultimate stress - lb/in. ²
f	blade or sound frequency - cps
g	gravitational constant - 32.17 ft/sec ²
h	specific enthalphy - Btu/lb
i	blade incidence - deg
J	mechanical equivalent of heat - 778 ft-lb/Btu
k	C_P/C_V
k _h	stress concentration factor in hoop stress
^k t	stress concentration factor in tension
М	Mach number
Ν	rotative speed - rpm

P	pressure - lb/in. ² or lb/ft ²
PNL	perceived noise level
PNdB	perceived noise in decibels
q	dynamic pressure - $1/2 \rho V^2$
S	blade pitch - ft or in.
SM	surge margin = $\left[\left(\frac{P_{rs}}{P_{ro}} \times \frac{W_{ao}}{W_{as}} \right) \right] - 1 \times 100$
SPL	sideline perceived level or sound pressure level
Т	temperature, ^o R or ^o F
TSFC	thrust specific fuel consumption - lb/hr-lb
U	wheel speed - ft/sec
V	absolute velocity vector - ft/sec
w	flow - lb/sec, or relative velocity - ft/sec
W _{aP}	primary or core flow - lb/sec
Was	secondary or bypass flow - lb/sec
W _c	cooling air - lb/sec
WL	leakage air overboard - lb/sec
α	absolute flow angle measured from axis - deg
β	relative flow angle measured from axis - deg
Y	setting angle - deg
δ	blade deviation - deg, or referred pressure - P/14.69

.

efficiency

Ĩ	efficiency
θ	camber angle - deg, or referred temperature - T/518.7
θcr	$= \frac{(\frac{2 k}{k+1}) T_t}{(\frac{2 k}{k+1}) (518.7)}$
λ	blade flutter coefficient = $\frac{W}{2 \pi f C}$
ν	relative thickness - pct
ρ	mass density - slugs/ft ³
σ	blade solidity - C/S,or stress
$\sigma_{\mathbf{h}}$	hoop stress - 1b/in. ²
σ _r	radial stress component - 1b/in. ²
σ _t	tangential stress component - lb/in. ²
Ø	flow coefficient - nondimensional (V_z/U)
ψ	pressure coefficient - nondimensional ($\Delta h/U^2/2gJ$)
[∦] a	Zweifel load coefficient
ω	pressure loss coefficient - $\triangle Pt/q_1$, or radians/sec
Subscripts	_ ·
a	adiabatic
am	ambient
В	burner

flight f

h hub
М	mechanical
ο	operating
p	polytropic
r	radial component
S	surge
Т	turbine
t	total or tip
w	relative
Z	axial component
θ	tangential component
1	inlet
2	exit

.

-

•

REFERENCES

- 1. Fujjii, Shoichi, "Some Studies of Front Fans With and Without Snubbers," ASME Paper 72-GT-4, 1972.
- 2. Smith, M.J.T., and House, M.E., "Internally Generated Noise From Gas Turbine Engines, Measurement and Prediction," Journal of Engineering for Power, pp. 177-190, April 1967.
- 3. Kobrynski, M., "General Methods for Calculating the Sound Pressure Field Emitted by Stationary or Moving Jets," O.N.E.R., May 1969.

BIBLIOGRAPHY

Lycoming ALF-502A Turbofan Engine, Volume II, Technical Description, No. 4510-8, August 1970.

G

1.5