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STELLAR EVOLUTION AND MECHANICAL FLUX

Stellar evolution carries a star through the Hertzsprung-Russell -Diagram.
For a given mass, M. one obtains both luminosity, L, and radius, R, as
functions of time, t. From these parameters we determine the surface
gravity and the effective temperature as functions of t:

g(t),Teff(t).

It is these two parameters which determine the properties of the
outermost layers of a star, the atmosphere and the top of the hydrogen
convective zone.

From the equations of mixing lengths theory (Bohm-Vitense, 1958) one
can derive for the Mach number, M, that:

M2< -
where C = mixing length, Hp = pressure scale height and V= d fin T/d fin P,
Vad = (d CnT/dfin P)ad . We thus see that the Mach number can approach 1
only in regions where V- Vad is large, that is in those regions where the
stratification is highly superadiabatic — as it is at the top of the
convective zone. Sound waves can be formed in these layers only; thus
the mechanical flux also depends only on g(t) and Teff(t). Therefore, for
the determination of the mechanical flux a grid of models of stellar outer
layers as functions of the two parameters g, Teff is necessary.

Recently de Loore (1970) has computed the, flux for a set of model
atmospheres. The mechanical flux F,,,̂  which he derived is given in the
log Teff - log g - plane of Figure IV-1 . As has been said yesterday, de
Loore's models exaggerate the mechanical flux for those models which
have convective zones thinner than the mixing lengths. In the next three
figures evolutionary tracks are plotted in the log Teff - log g - plane
together with de Loore's mechanical flux areas. In Figure IV-2 the pre-
main sequence evolution as well as the post main sequence evolution up
to helium flash are plotted for a star of one solar mass. One can see that
the star is always in the region of strong mechanical flux. This holds also
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Figure IV-1 The mechanical flux Fmech as a function of g and Teff computed by de
Loore (1970) with the LighthiU-Proudman theory. The numbers at the
white lines give log Fmech where Fmecj, is in c-g-s units. The straight
line in the lower left corner gives the slope of an evolutionary track
which is horizontal in the HRD.

for the post main sequence evolution of a 1,3 solar mass star (Figure IV-2).
Stars of 1, 3 solar masses settle down on the main sequence near F5. This
is the region where on the main sequence one observes the transition
from stars with Ca emission to those without. One therefore is surprised
that according to de Loore's computations such a star is right in the
middle of the region of strong mechanical flux. One would expect the
star to be on the left border of the area of strong mechanical flux
instead. This is probably due to the enhanced mechanical flux in the thin
convective zones in de Loore's computations. Figures IV-3 and IV-4 show
that stars of higher masses start on the Hayashi track in the region of
strong mechanical flux, move into the low flux region and then come
back into the high flux region during central helium burning and further
later evolution. While the more massive stars make loops they go several
times from high flux to low flux regions and vice versa.

It has been indicated during this conference that the mechanical flux
computed according to the Lighthill-Proudman theory is not very reliable
due to uncertainties in the theory of convection. We were confronted
yesterday with at least two new and different possible mechanisms of
heating. Certainly these mechanisms have to be worked out more
thoroughly before one can decide whether we really have the correct
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Figure IV-2 Evolutionary tracks for 1 M© and for 1.3 M®in the log g-log Teff plane.
The 1 Mgstar starts in the lower right comer, moves into its pre-main se-
quence evolution towards the main sequence and goes back into the lower
right corner in the post ms evolution. For the 1.3 M® star only the post
ms evolution is plotted.

theory of mechanical heating. It is, for instance, not sufficient to show
that a certain type of motion is unstable by making only a linear analysis.

What one has to show is that such an instability, if it is fully developed,
has sufficient energy to produce the mechanical flux necessary for
chromospheric heating. In the case of convection we know that in many
stars all the energy of the star is transported through such motion and it
is therefore easy to get the required energy from convection. It should be
kept in mind that in the HRD the observed transition from stars with
observed calcium emission to those where calcium emission is not, or is
only seldom, observed seems to agree fairly well with a line of constant
mechanical flux generated by convection.

In particular on the main sequence there is a sharp transition between
calcium emission and no calcium emission (as it is observed by O. C.
Wilson, 1964) which coincides with the well known transition from
convection to no convection. Since the flux depends on the eighth power
of the turbulent velocity one would expect a sharp cut-off in the
mechanical flux at this transition. That this cut-off is not so pronounced
in Figures IV-1 to 1V-4 may be due to de Loore's treatment of thin
convective zones.
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Figure IV-3 The evolutionary track for 5 M0from the pre-ms evolution to the ms.
Central hydrogen burning starts at point A and is terminated at point B.
Further evolutionary stages go from C to R

4.4 4.3 4.2 4.1 40 3.9 3.8 3.7 36 35 3.4 3.3

Figure IV-4 The evolutionary track for 9 M@from the pre-ms evolution to the ms.
Central hydrogen burning: A-B/further evolutionary stages: C-H.
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INFLUENCE ON STELLAR EVOLUTION
OUTER BOUNDARY CONDITIONS

I do not think that stellar models would be drastically different if the
normal grey or nongrey atmospheric boundary conditions were replaced
by a fit to an outer layer with a more complicated temperature profile.
Only cool stars are sensitive to their outer boundary conditions - but
only in the sense that their radii and therefore their position in the HRD
is dependent on boundary conditions.

But the evolution itself is steered by the very deep interior and the
interior of an evolved star does not know about the envelope.

MASS LOSS BY STELLAR WIND

The mass per year blown into space by the solar wind is small. It is less
than the decrease in mass of the Sun due to the mass equivalent of its
radiated energy. From the point of view of stellar evolution this mass loss
can therefore be neglected. According to Weyman (1962) a Ori has a
mass loss of

a Ori is a star of about 20 solar masses in its post main sequence
evolution. In the most favorable case this mass loss might add up during
central helium and carbon burning to a mass loss of a few percent for
that star.

The luminosity of a main sequence star is reduced by mass loss according
to the mass-luminosity relationship. But a star with shell burning remains
at the same luminosity even if 90% of its hydrogen rich envelope is
removed. This is well known from computations of mass exchange in
close binary systems. Therefore it is very difficult to decide from
observations whether an evolved star has undergone mass loss.

This is the reason why for years an argument has been going on between
the non-linear cepheid pulsation theory people on the one side and the
evolutionary and linear pulsation theory people on the other side. Christy
(1968) claims that he can get agreement with observed light curves only if
he assumes that cepheids have but half of the mass given by the normal
evolution theory. On the other hand Lauterborn, et al., (1971), give an
evolutionary track for a 5 M®star which has loops in the red giant region
with several slow crossings of the cepheid strip. They found that if more
than 5% of the mass of the star were taken off the envelope, the loops
disappear. Therefore, they argue, if mass loss takes place there would be
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no slow crossings of the cepheid strip, there would then be no cepheids
and Christy would then have no observed light curves to compare his
theoretical curves with.

Since the mass of the cepheids is still undetermined (Fricke, Strittmatter,
Stobie, 1972, Cox, King, Stellingwarf, 1972) if we wish to understand
whether mass loss from coronas influences the evolution of stars we
certainly have to look for the masses of the cepheids since this offers a
chance to obtain information.

LATE PRE-MAIN SEQUENCE AND MAIN-SEQUENCE-EVOLUTION
AND CHROMOSPHERIC ACTIVITY

When 0. C. Wilson (1963) found that field stars have less chromospheric
activity than the same type of stars in galactic clusters a completely new
point of view came into play. Imagine: stars" at the same place in the
HRD and (since they are, therefore, also on the main sequence) stars of
the same mass, differ in their Ca + emission! These stars should have the
same atmospheres since g and Teff are the same. They certainly have the
same mechanical flux if it is computed in the same way as de Loore, but
they differ in their chromospheric activity. The puzzle would remain even
if one of the two new mechanisms mentioned yesterday were to replace
the mechanical flux due to sound waves coming out from the convective
zone. All those mechanisms would produce the same mechanical flux for
the same values of g and Teff.

Kraft (1967) found the correlation between chromospheric activity and
rotational velocity. Now we know fr.om the work of Skumanich (1972)
that roughly

, Ca+ -emission ~ J2 ~ t"1/4

where SI is the angular velocity of the surface. From the Sun we know
the Ca+ emission is correlated to the magnetic field. Beckers and Sheeley
during this conference told me that for fields between 0 and 100F there
is a positive correlation between Ca+ emission and the magnetic field
strength IB I although there is a large scatter around -this relationship.
Finally, ,we know that the solar magnetic field is related to the rotation
of the Sun. We therefore come up with the following logical scheme, as
shown in Figure IV-5.

The outer five boxes, forming a pentagon, give the logical structure as it
follows from the first two sections of this article. Stellar evolution
changes effective temperature and surface gravity of the stars, and these
two parameters determine the top of the convective layers in which the
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Figure IV-5 The logical structure which connects stellar evolution
with nonthermal heating of chromospheres coronas.

mechanical flux is generated which heats the outer layers. Heated outer
layers may produce a stellar wind which may influence the stellar
evolution.

Due to the effects mentioned in this section one must also take into
account the inner boxes. We know much less about these boxes inside the
pentagon. What seems to go on inside the pentagon is more secret to us.
As you see in the figure, almost all the arrows, that is all the
information, goes into the interior of the pentagon and almost nothing
comes out. But there is one leak.

If rotation is taken into account we must keep in mind that' during stellar
evolution when the star is contracting or expanding the angular velocity
distribution will change. The angular velocity fl, near the surface might
therefore also be influenced by stellar evolution. For the Sun there is an
indication that convective zones show differential rotation. Differential
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rotation together with convection can produce magnetic fields which on
the one hand can enhance the outcoming magnetic flux and especially
can determine the region where the dissipation takes place. It therefore
influences the heating of the outer layers. On the other hand the stellar
wind together with magnetic fields can produce a strong loss of angular
momentum which, together with stellar evolution, influences the angular
velocity distribution of the star. In the following we will discuss in more
detail the interior of the pentagon.

EVOLUTION AND STELLAR ROTATION

Even if we assume that the star does not lose angular momentum the
problem is difficult. We do not know how effective mechanisms, such as
large or small scale motions or magnetic fields, are at redistributing
angular momentum in the stellar interior. We do know that only very
restricted angular momentum distributions are stable, but we do not
know what the time scales of some of the instabilities are and whether
they are really important during the life time of a star.

If we knew the true theory of the flow of angular momentum inside the
star during evolution, the surface angular velocity would be known as a
function of time: £2 = £1 ft). From numerical calculations with different
assumptions about the redistribution of angular momentum during stellar
evolution Kippenhahn, Meyer-Hofmeister, Thomas 1970) one can derive,
as a very crude thumb rule, that

0(t) ~ fe(t)

This relationship is valid in the case of local conservation of angular
momentum. It turns out that this is a fairly good approximation in the
physically more realistic case when one assumes that the hydrogen
convective zone rotates as a solid body and that in the radiative regions
angular momentum is locally conserved.

For our purpose in this review it is not so important to know the
numerical details but rather to understand the logical structure, that is to
find out what determines what. For this purpose it is sufficient to know
that, when stars from the main sequence evolve into the red giant region,
the surface angular velocity goes down roughly as indicated by the above
formula. Observed rotational velocities for red giants (Oke, Greenstein,
1954) support the above formula.
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DIFFERENTIAL ROTATION

Winding and unwinding of magnetic fields seems to be important for the
solar dynamo. Therefore differential rotation is essential. The turbulent
viscosity of the hydrogen convective zone gives a time scale of only 100
years for adjustment. The differential rotation therefore is certainly not a
fossil relic from earlier phases of evolution. It must be maintained by
some unknown mechanism.

Many attempts have been made to explain the solar rotation law. I think
everybody now agrees that it is a pure hydrodynamic phenomenon; that
the magnetic fields there have to follow the gas in the hydrodynamic flow
and do not influence the rotation. This is indicated by the fact that the
differential rotation does not vary with the solar cycle during which the
magnetic field changes sign.

Among the hydrodynamic approaches there is that via non-isotropic
viscosity proposed by L. Biermann (1951), Kippenhahn (1963) and
Kohler (1970). This approach did not encounter much enthusiasm from
the professional hydrodynamicists. On the other hand there are the
attempts by Busse (1970) and recently by Oilman (1972).

In the present we do not know if any of these approaches will really turn
out to be true. But, for the moment, we can just assume that convective
regions like to rotate differentially - whatever the reason is.

TURBULENT DYNAMOS

During the last years, theories for the solar cycle have been developed by
Babcock (1960) and Leighton (1969) and also by Steenbeck and Krause
(1966). Both approaches have in common that turbulence and rotation
are considered in a statistical theory which yields equations for the mean
velocities and for the mean magnetic field. These equations contain terms
in addition to those of ordinary magnetohydrodynamics due to cor-
relations in the turbulent quantities. In normal magnetichydrodynamics
one has

§§ = ? A B + cure [V B]
at 4ija ~

where B, V, are the magnetic field, the velocity field and a the electric
conductivity. The first term on the right hand describes the dissipation of
magnetic energy due to ohmic losses while the second term alone would
give the frozen-in condition. From Cowling's theorem there follows that
in the axisymmetric case a given velocity field V can not maintain a
magnetic field against the dissipation. But in the case of turbulent motion
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one obtains an equation similar to that above for the mean field but this
equation contains an additional term as indicated in the lower part of
Figure IV-6. This additional term has been derived by Steenbeck and
Krause, and it contains the fact that rising and falling turbulent elements

LEIGHTON'S NONLINEAR MODEL:

£:•'(•• I?*",!?;
Winding of Frozen-in Field

3 B r _ 1 3 I" ,„ 3Br
at TD a cose [_'"• "• a cos

Diffusion

| - 6 • const | B^, I B#

Depletion Due to
Eruption

1 3(B cosS)

ej 5 const a cos 8

Creation of BT by Tilt "

Bjj from V- I = 0

0 1BJ<|B.|

1 otherwise

KRAUSE-STEENBECK'S LINEAR THEORY:

|f = const. A B + curl. (\L x fj) + curl (a B)
at

Diffusion

V. B = 0

Winding of
Frozen-in Field

a -effect

Figure IV-6 Formulae for the two types of models for turbulent dynamos.

are forced to a helical motion by Coriolis forces. The magnetic field is
tilted by these elements in such a way that the mean field behaves as if
there is a mean electric current parallel to the mean magnetic field
(a-effect). This effect was already indicated by Parker (1955). The papers
by Krause, Radler and Steenbeck on the turbulent dynamo have recently
been translated by Roberts and Stix (1971) (See also Deinzer, 1971).

Similar additional terms have been introduced into the magnetohydro-
dynamic equations by Leighton as one can see in Figure IV-6. In this
theory similar to the a-effect of Steenbeck and Krause a "tilt" is assumed
when a pair of sunspots appear when a magnetic "rope" comes to the
surface.
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The Babcock-Leighton theory is non-linear and one therefore obtains for
any given angular velocity distribution, and for a given differential
rotation, a magnetic field configuration. Recently Durney and Stenflo
(1971) have investigated the strength of the magnetic fields in Leighton's
dynamo in dependence on the angular velocity assuming the differential
rotation to be the same. They found that the magnetic field is approxi-
mately proportional to the angular velocity.

IBI ~ n

New solutions of the Steenbeck-Krause equations have recently been
found by Kohler (1972) who used a solar model with a realistic
convective zone, and derived from the properties of the convective layer
the factor in front of the AB term of the Steenbeck-Krause equation as
well as their a as functions of depth. He indeed obtained periodic
solutions. Certainly the linear theory can not give amplitudes. But Stix
(1972) investigated the case of non-linear limiting which would set in if
the amplitudes become sufficiently high. Then, as already suggested by
Steenbeck and Krause, the magnetic fields would be so strong that they
would react on turbulence and inhibit the helical motion. With such a
cut-off he found that the amplitudes roughly go like

IB i ~ n3/2

The theory of the solar cycle is incomplete but one might already dare
to make some predictions for other stars. If stars have a convective zone
and are rotating, one would expect that they also have differential
rotation. In this case the turbulent dynamo may work and one would
expect the magnetic field to increase with rotational velocity if everything
else including the degree of differential rotation is kept constant.

/

LOSS OF ANGULAR MOMENTUM

It had first been pointed out by Schatzman (1954) that mass loss from a
rotating star with a magnetic field gives a high loss of angular momentum.
This is due to the fact that the outstreaming material gains angular
momentum from the magnetic field until it has reached a point where it
is released into space. Following Weber and Davis (1967) one can write

. ' f t ) = rA*<2 - (1)

kM R2 is the inertial momentum of the star. The factor k can be
computed for any given stellar model. The radius rA is the distance from
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the star at which the Cowling number

v2

B / / 4 7 T P

is one. Here vr and Br are the radial components of velocity and magnetic
field. If we follow recent work by Durney (1972) in a more generalized
way one can show that

r A ~ B 0

where VA is the value of vr at the point where C = 1 and B0 the field at
the surface of the star. If we assume from the dynamo theory it follows
thatB ~n? we can then write

r. ~ ii' v'A A

From equation (1) it then follows that — as long as the radius of the star
is not varying with time, as it is in the case for the main sequence stage
to a high degree of approximation, one can write

t— — = const.
i2 dt VA

Therefore for any given rate of mass loss and for any assumption as to
how the radial velocity, VA, varies with time, one can determine the
angular velocity as a function of time. Probably VA as well as dM/dt will
vary with the angular velocity since the angular velocity will enhance the
turbulent dynamo and therefor enhance the heating and therefor the mass
loss. Generally one can assume

with a free exponent f . Then equation (2) can be integrated and gives (as
long as £*2-y)

« = const, (t -10)
 r ' 2lr

Durney has used this formula for the special case f = 0, y = 1 in order to
obtain Skumanich's law ft ~ f^. Certainly one must know more about
the mechanisms inside the pentagon of Figure IV-6. The main purpose here
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is to show that, in principle, the time dependence of the angular velocity
distribution is determined.

We have now discussed the boxes inside the pentagon and I must say I
have the feeling that the whole logical structure indicates quite a closed
picture although many details still have to be worked out.

TURBULENT VELOCITIES IN THE ATMOSPHERES
OF ROTATING STARS

I would like to add a comment on the question of hot main sequence
stars where convective theory gives practically no turbulent velocities. It
has been shown by Baker and Kippenhahn (1959) that near the surfaces
of rotating stars meridional circulation can reach fairly high velocities. I
will give a different approach here. We consider very rapidly rotating
stars where, near the equator, the centrifugal force almost balances
gravity. Then it follows from von Zeipel's theorem that the effective
temperature at each latitude is connected with the effective gravity:

T ~ ev*1eff 8 •

It follows that pressure and temperature are constant on equipotential
surfaces for hydrostatic equilibrium. But when we try to construct
atmospheres in each latitude it turns out that the mean optical depth T is
not constant on equipotential surfaces 0 = const:

dr = - K dr = -K d0/g, K = K (P, T) = K (0),

Therefore T varies on equipotential surfaces like g"1. Solution of the
transfer equations yields the temperature which is not constant on
equipotential surfaces. This can be most easily seen in the case of a grey
atmosphere where radiative equilibrium in the simplest approximation is
given by

•

T4 = const, x Teff
4

Teff
4 varies on equipotential surfaces like g and r like g'1. Therefore T is

not constant on equipotential surfaces. This is in contradiction to the
condition of hydrostatic equilibrium. The equilibrum condition with the
longer time scale will not be fulfilled. This is the equation of hydrostatic
equilibrium. We therefore must assume.that there are strong horizontal
motions with velocities high enough that the inertia terms are of the same
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order as the pressure gradient. This means the velocities are near the
velocity of sound.

The theory of atmospheres of rotating stars has recently been worked out
by C. Smith (1970) and indeed he found that there are velocities which
come near the velocity of sound. Therefore if chromospheric activity is
found in rapidly rotating hot stars where convection cannot account for
it, turbulent atmospheric motions in the atmospheres caused by rotation
may be responsible.
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