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ABSTRACT

A theoretical and experimental study is made to investigate the effect on

plate vibrations of varying the stiffness of corner elastic point supports. A

theoretical model is developed using a Rayleigh-Ritz analysis which approximates

the plate mode shapes as products of free-free beam modes. The elastic point

supports are modelled both as massless translational springs, and springs with

tip masses. The tip masses are included to better represent the experimental

supports. An experiment is constructed using the bending stiffness of hori-

zontal beams to support a square plate at its four corners. The stiffness of

these supports can be varied over such a range that the plate fundamental fre-

quency is lowered to 40% of the rigid support frequency.

The variation with support stiffness of the frequencies of the first

eight plate modes is measured, and compared with the theoretical results. The

plate mode shapes for rigid supports are analyzed using holographic interferometry.

There is excellent agreement between the theoretical and experimental results,

except for high plate modes where the theoretical model is demonstrated to be

inadequate.
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NOMENCLATURE

Kxc - rotational spring stiffness (Ibf-in)

|< - support stiffness (Ibf/in)

Ks -

C*3 - frequency (cps)

n"* - plate mass per unit area (slugs/in2)

Kr,r =» Kxc/D

^ - plate area

[^ - modulus of elasticity

~T - moment of inertia

|_ - support beam length

/LL - wire mass per length

w - plate deflection

In - plate thickness

Krnn ~ generalized spring constants

M.n-1 ~ generalized masses

T - kinetic energy

y - potential energy

X^Xn - free-free beam modes

XV - cartesian coordinates
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CHAPTER I

INTRODUCTION

1.1 Introduction

The purpose of this investigation is to analyze vibrational behavior of

plates with discrete elastic supports. Specifically, an experimental model

is designed to simulate a square plate with corner elastic supports. Measure- '

ments are made to determine the changes in frequency of the natural plate

modes as the stiffness of the corner supports is varied. A theoretical model

is developed to predict the plate vibration characteristics and the theoretical

and experimental results are compared. The mode shapes of the plate vibration

are investigated experimentally using holographic interferometry.

The present topic has received little analytical or experimental interest.

The vibrations of plates with spring supports is not, however, a topic of

purely academic interest. A present candidate NASA Space Shuttle design pro-

vides for a thermal protective layer composed of corrugated panels on point

supports. The number, location, and nature of these point supports is de-

pendent on the final shuttle design chosen, but at the present time, these

supports are not believed to be completely rigid supports. The thermal

panels will be supported on structures that can be modelled as springs with

finite stiffness.

Due to the difficulty involved in treating corrugated plates theoretically,

a flat isotropic plate was chosen for this investigation. The plate was taken

to be square to take advantage of symmetry properties, but both the experi-

mental and theoretical programs can easily be expanded to cover rectangular

plates. Corner supports were used to facilitate the experimental design, and



to allow comparison with previous work by Reed1 involving rigid, point corner

supports.

Aside from the possible future applications of this research to the vi-

bration of shuttle, and future spacecraft panels, two other factors motivated

this study. There is a definite lack of previous work concerning spring

supported plates. Another factor affecting the initiation of this research

is the previous work done at Princeton by Dowell2>3>4. This study is intended

to further develop the theory proposed by Dowell in reference 2, and to pro-

duce experimental data to compare to this theory.

1.2 Previous Work

The only work known to the author relating the change in plate frequency

to the variation in stiffness of point, corner supports is that of Dowell2.

Dowell calculates the frequency variation of the fundamental plate mode with

stiffness using a Rayleigh-Ritz analysis with normal modes of the unconstrained

plate. The support conditions are introduced into the analysis by means of

Lagrange multipliers.

The theoretical analysis presented in this study is developed from other

work by Dowell4. This work presents a Rayleigh-Ritz analysis for which support

conditions involving point masses and stiffnesses can easily be included.

This analysis is then applied to the flutter of a "typical" space shuttle

panel.

A number of authors have investigated the problem of a plate with rigid

corner supports. Reed1 presents analytical solutions to plate vibrations

using both a Rayleigh-Ritz analysis, and a series solution to the plate equa-

tion. The experimental frequencies recorded agree remarkably well with the
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theoretical analysis for rigid supports, and Reed's experimental apparatus

was used as a basis in designing the experimental setup described in this

report.

Tso5 also presents experimental data for a point supported plate, and

this data is compared with energy and finite difference analyses by Johns

and Nagaraj6. The correlation between theory and experiment is not good,

probably due to a lack of convergence in the numerical procedures employed

in the theoretical work. Dowell compares the experimental measurements

of the plate fundamental frequency from both sources with a revised theory

modelling support conditions by Lagrange multipliers. There is substantially

better agreement between theory and experiment for this analysis of rigid

point supports.

Two general references, Fu-feng7 and Leissa8 present information on

plates with rigid point corner supports. Fu-feng performs a brief theoretical

analysis of the problem using an energy analysis, while Leissa discusses and

summarizes the work of previous investigators, including Reed.

Most previous work is only concerned with the fundamental plate mode,

and only Reed is concerned with higher plate modes. For the most part, Rayleigh-

Ritz analyses are used in these papers. Hopefully, this research will fill

some of the gaps left by previous investigators.

1,3 Research Outline

This investigation can be divided into two parts, experimental and theoreti-

cal. Each of these parts can be further subdivided. The theoretical analysis

of the experimental apparatus poses two models for the support system. One

model assumes the supports to be discrete massless elastic springs, while the
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other model attempts to compensate for the vibration of real beam-like supports

with finite mass. This analysis is presented in Chapter II.

The experimental program described in Chapter III investigates the plate

mode shapes and frequencies separately. Holographic interferometry is utilized

to investigate the plate mode shapes while the plate frequencies are analyzed

conventionally. The experimental results are compared with theory in Chapter

IV.
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CHAPTER II

THEORETICAL STUDY

2.1 Formulation of Problem

2.1.1 Rayleigh-Ritz Solution

Before the experimental program was initiated, a theoretical analysis

was performed to predict the frequency variation of the natural modes of a

square plate with the magnitude of the support stiffness of the discrete

elastic plate supports. The modal frequencies of the plate were calculated

by a computer program utilizing a Rayleigh-Ritz analysis in which the plate

modes are represented by the products of free-free beam modes. The relevant

equations are presented in Appendix B.

The analysis was programmed so that both rotational and translational

springs, and point masses could be added to the plate model at desired

positions. To prevent mathematical coupling of uncoupled modes, the vibra-

tion of the plate model was divided into four.classes of normal modes. The

four types of plate vibration are: Class I, modes which are symmetric about

both the x and y axes of the plate; Class II, modes which are symmetric about

the x axis and antisymmetric about the y axis; Class III, modes which are

antisymmetric about the x axis and symmetric about the y axis; and Class IV,

modes which are antisymmetric about both the x and y axes. For a square

plate, the natural modes and frequencies of Classes II and III are identical.

The plate modes are approximated by combinations of free-free beam modes.

Therefore, for Class II solutions, symmetric beam modes are used in the x

direction, and antisymmetric beam modes in the y direction, to calculate

the mass and stiffness matrices for the unsupported plate.



2.1.2 Support-Plate Interaction

The actual plate support system can be modelled in two different ways.

Firstly, it can be assumed that the fundamental frequency of the cantilevered

support beam is much greater than the.frequencies of the plate modes under con-

sideration. If this condition holds, beam inertia or mass distribution

will not affect the natural vibration of the plate and the support beams

can be assumed to act as massless translational springs.

It was found, however, that for very low stiffness, corresponding to

long beam supports, the frequency of the support beam's first flexural mode

was of the same order of magnitude as the frequencies of the higher plate

modes studied (see Figure 7). Thus as the plate corners vibrated, the support

beams would be oscillated near their fundamental mode, and the mass of the

vibrating beams would affect the plate vibration characteristics.

There are a number of ways in which the characteristic vibration of the

beam supports could be included in this analysis. The simplest method is to

model the support beam as a tip mass, M , on a massless beam with stiffness

El . If El was selected to be the same as for the actual support beam,

the beam model would have the same bending stiffness as the actual support,

and the tip mass could be chosen to be the appropriate percentage of the

actual beam mass so that the computer model has the same fundamental frequency

as the beam support. For a tip mass on a massless beam

' . 3EX
10 - ML3

For a continuous beam with mass,
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Equating frequencies

M = 0.2M3 rr^L

As a second analysis of the plate vibration, the support beams were therefore

modelled as vibrating point masses with vertical stiffness.

2.1.3 Selection of Parameters

The input parameters used to generate the theoretical results presented

in section 2.1, were selected so that comparisons with available experimental

data could be made. The parameters which need be supplied to generate the

computer output are; the number of beam modes utilized in the computation,

the number and location of discrete point supports, and the values of point

masses, translational springs, and rotational springs at these locations.

Some difficulties were encountered in selecting these input values due to

computational errors involving small differences between large numbers.

This problem is discussed in Appendix C. As a result of an analysis dis-

cussed in this appendix, two free-free beam modes in each direction were

used in the theoretical analysis.

This investigation concentrates on the first eight plate modes: the

first three doubly-symmetric plate modes (referred to hereafter as modes

one, four, and six), the first two pairs of symmetric-antisymmetric modes

(referred to as modes two and three and modes seven and eight), and the

first doubly-antisymmetric mode (referred to as mode five). These modes

were chosen because they were the subject of previous related analysis by

Reed1, were easily excited and identified experimentally, and the range

of frequencies of these modes was, for the most part, below the frequency

of the support system.
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Dowell's2 theoretical analysis of this problem, shows that the funda-

mental plate frequency should reach an asymptotic value for K5 > 100.

The plate support system was therefore designed to provide non-dimensional

support stiffnesses from 2.5 to 100, and this was the stiffness range used

in the theoretical computations.

No rotational springs were employed in the analysis, but point mass

inputs were needed to simulate the beam vibration. Rather than use linear

beam bending theory to calculate the appropriate magnitudes of the beam tip

masses for each value of support stiffness used as input, the following

procedure was followed. The support system was calibrated (see Appendix D)

so that the support stiffness was known for length, L , of the support

beams. The support beams were weighed, so the percentage mass of the entire

beam which corresponds to each beam length could be determined. In gener-

ating the theoretical results, for each value of the support stiffness used

as input, the corresponding value of the point mass was determined from the

measured beam mass per unit length, and the calibrated beam stiffness per

unit beam length.

2.2 Theoretical Results

2.2.1 Plate Frequencies vs. Support Stiffness

The variations of the first eight plate modes with changing support

stiffness are presented in Figures 8 through 13. Theoretical results are

presented for the two different support models discussed; massless transla-

tional springs, and simple beam supports with one lumped mass at the beam-

plate junction. On all figures, the theory neglecting support mass effects

is represented as a dotted line from K3 equals 0 to 100. Zero stiffness



corresponds to a free support condition of the plate, whereas Ks = 100

represents approximately rigid corner point supports. Simple beam support

theory is not presented for stiffness values lower than 2.5, which corresponds

to the softest support stiffness measured in the experimental program. This

simple analysis becomes invalid for very low stiffnesses, because it neglects

the effects of higher order beam modes, and hence represents an inaccurate

theoretical model.

Figure 8 shows the variation of the first doubly-symmetric plate mode

with support stiffness. The non-dimensional plate frequency approaches an

asymptote of between 7 and 8 as the support stiffness becomes large, meaning

greater than 100. As K3 approaches zero, mass less spring support theory

predicts that the fundamental frequency of the plate approaches zero. This

was the expected result, as the first doubly-symmetric plate mode becomes

the translational rigid body mode of the free plate.

Similarly, Figure 9 illustrates the effect of varying support stiffness

on the second and third plate modes. These modes have identical frequencies

because they belong to Classes II and III for a square plate. These modes

do not approach their pin-supported limiting frequencies as rapidly as the

first mode, and it appears that the higher the plate mode, the larger the

support stiffness necessary to approximate rigid supports. Neglecting the

mass of the support system, these modes should correspond to the rotational

rigid body modes of a free plate, and as expected, the modal frequencies

approach zero as the stiffness of the support system becomes negligible.

The second doubly-symmetric mode is independent of the support stiffness.
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Figure 10 shows that the frequency of the fourth plate mode remains constant

throughout the range of support stiffness. The reason for this behavior be-

comes clear after studying the expected mode shape of this mode. The node

lines run diagonally between the four corners of th'e plate. Since the plate

is motionless at its four corners, the stiffness of the vertical springs has

no affect on the plate vibrations.

The frequency vs. stiffness curves for the fifth through eighth plate

modes, Figures 11 through 13, are all qualitatively similar. For negligibly

stiff supports, implying free plate boundary conditions, the plate modes begin

at finite, non-zero frequencies, and approach higher asymptotic frequencies

as the support stiffness is increased. As was previously mentioned, the higher

plate modes approach their asymptote more slowly than the lower plate modes.

2.2.2 Comparison of Beam Support Theory with Massless Spring Support

Theory

Except for very low, less than Kg =2.5, stiffness, for which the

support beam with tip mass model is invalid, the theoretical analyses for

both support models are qualitatively similar for all plate modes. However,

since beam support theory adds point masses to the plate corners, the more

massive plate vibrates at a lower frequency than the plate with massless

spring supports. The largest frequency variation occurs for low stiffness,

or long support beams, where the mass of the beams becomes appreciable when

compared to the plate mass.

Figure 7 shows the variation with stiffness of both plate and

support beam modal frequencies. It is evident that for Ks greater than 2.5,

- 10 -



the frequency of the support beam's second flexural mode is more than double

any of the plate frequencies under consideration. Modelling the support

beams as only vibrating in the first flexural mode is therefore justified.

For the first three plate modes the support beams vibrate at higher

frequencies than the plate for the entire stiffness range. Thus compensating

for beam vibrations should have only a small effect on the plate frequencies.

For K5 = 2.5, the frequency of the second and third beam modes is reduced

by only 13% when the beam mass is included in the analysis. Since the fourth

mode has zero deflection at its corners, the addition of point masses to

these locations has no effect on the plate vibration, and the two analyses

give the same result.

Plate modes five through eight have higher natural frequencies than the

support beams for low stiffnesses. Figure 7 shows that for certain values

of stiffness, the beams and plate have the same natural frequency and are

in resonance. Introducing beam vibration into the theoretical analysis

therefore lowers the plate frequencies significantly. For KJ = 2.5, the

frequency of the fifth mode is decreased by 23%, the sixth mode by 25%, and

the seventh and eighth modes by 27%.

Another consideration is to examine over what range of stiffness the

difference between beam support theory and massless spring support theory

is significant. As an indication of this, consider the stiffnesses for

which the plate modal frequencies are only lowered by 1% when beam mass is

introduced to the analysis: for mode one, K^ =10; modes two and three,

Kn =25; mode five, K^ =66; mode six, K5 =70; modes seven and eight,

Ks = 83.
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The difference between modelling the support beams as massless transla-

tional springs, or as a simple lumped-mass beams, is that for higher plate

modes, the vibration frequency of the plate is lowered more, and over a

larger range of stiffness when simple beam theory is used. It is expected

that the experimental results should agree better with the simple beam theory,

which is a closer approximation to the experiment than the massless spring

support theory.

2.2.3 Comparison with Previous Work

There are limited published results of similar work with which to com-

pare this theoretical analysis. For a plate on massless point translational

springs, the limiting cases of zero stiffness and infinite stiffness can be

compared with free plate and rigid corner support results in Leissa8 and

Reed1 (columns 1 and 3 respectively in the following table).

Since this analysis is inaccurate for large stiffnesses, modal fre-

quencies for K-3 = 100 are compared with Reed's rigid frequencies for a

general indication of the accuracy of the computation. This comparison is

presented in the following table.

K
Mode

1

2,3

4

5

6

7,8

free plate

0.00

0.00

20.50

13.34

23.40

34.70

K,= 0

0.00

0.00

22.37

13.52

22.37

35.70

rigid supports

7.46

16.80

19.60

41.50

48.30

51.60

K.;= 100

6.98

14.40

22.37

33.50

40.53

51.32
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This data indicates that the theoretical analysis is valid. The largest dis-

crepancy for the zero stiffness results is less than 3%, while the approximately

rigid support data compare favorably with Reed's work within the limits of the

rigid approximation. Some further work in refining the theoretical model

would be worthwhile however.
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CHAPTER III

EXPERIMENTAL PROGRAM

3.1 Determination of Modal Frequency Variation with Stiffness

3.1.1 Experimental Arrangement

The design of the experimental apparatus had to satisfy a number of re-

quirements. The primary design condition was to select the size and material

for the experimental plate so that it was small enough to have a high funda-

mental frequency,yet large enough so the plate was not too stiff to measure

mode shapes. The plate was finally designed to satisfy the frequency re-

quirement, and an 8" by 8" by 0.125" aluminum (5052 alloy) plate was used

in the experiment. This plate would have a fundamental frequency of 146 cps

for rigid point corner supports. Thus when the support stiffness was reduced,

the frequency of the fundamental mode could be reduced to less than one-third

of its rigid value without encountering nonlinearities in the magnetic exciter

and capacitive pickup used.

The support system must approximate a point support to the plate. The

supports must therefore restrict the vertical motion of the plate corners

to be the same as the vertical motion of the supports without restricting

rotation of the plate surface at the corners. After an initial design was

investigated and discarded, see Appendix E, the final design of this apparatus

was adapted from Reed1.

The four corners of the plate were beveled top and bottom at 35° angles,

so that the total included angle of the plate corners was 70°. The plate

was supported by the bending stiffness of four horizontal beams, whose pro-

truding ends were routed out to 90° angles. Detailed drawings of the plate



and beam ends are presented in Figures 4a and 4b.

The support beams were aligned along the diagonal axes of the plate.

When the beveled plate corners were inserted in the routed beam edges, and

the four beams were fastened firmly into position, the extreme corners of

the plate were restricted to vibrate vertically with the beams, but the plate

was allowed to rotate about a horizontal axis because of the angular differ-

ence between the beam and the plate. This is illustrated in Figure 5, a

magnified photograph of the junction between the plate and one support beam.

The support beams were designed to have a depth of 0.25", twice the

plate thickness, and a width of 0.50" to allow some leeway in the position

of the corner of the plate within the beam. These dimensions were also

influenced by the requirement that the support beams have a high fundamental

frequency. To obtain a non-dimensional support stiffness of 2.5, linear

beam bending theory showed that the support beams should be about six

inches long. Two additional inches were added to allow for clamping of

the beams. The beams were held clamped in support stanchions at a height

of four inches over the surface of the base plate. Four inches were allowed

so that the magnetic transducer which was used to excite the plate motion

could be fastened under the plate. The support stanchions were blocks

of aluminum measuring 4-3/8" by 2" by 1-1/2". A rectangular channel housed

the support beam which was fastened through the 0.125" thick cover plate

by three set screws, located 0.25", 0.75", and 1.75" from the front edge

of the stanchion. The bottom of the stanchions were tapped to accept two

bolts which passed through the base plate and could be tightened from under-

neath the plate to clamp the support stanchions into position.
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The base plate which supported the experimental apparatus was a heavy

aluminum plate 2' by 2" by 0.5". Four quarter-inch wide grooves were routed

along the plate diagonals to allow the support stanchions to be fastened at

varying distances from the corners of the experimental plate. The base

plate was set on wooden blocks to allow access to the support stanchion

bolts. The experimental apparatus is shown in Figures 1, 2 and 3.

3.1.2 Support Stiffness Measurement

The spring constant of the support system was determined in the following

manner. The stanchion bolts and set screws were loosened so that both the

stanchions and the support beams were free to move. The experimental plate

was then removed from its supports. The plate was laid on the base plate

so that the centers of the two plates coincided, and the experimental plate

corners lay along the base plate diagonals. The position of these corners

was permanently marked on the base plate, and the experimental plate removed.

The support stiffness was set by placing the front, inward facing edge

of the support stanchions a distance L from the marked position of the

plate corners. The stanchion bolts were then tightened. The support beams

of two adjacent stanchions were clamped by the stanchion set screws so that

the beams protruded for a distance, L + 0.125". Due to the routed groove,

the point of the groove which contacted the experimental plate, was exactly

over the position of the corresponding plate corner.

Two corners of the plate were then placed against the first pair of

support beams, and the remaining two beams were moved into contact with

the remaining plate corners. The plate was oriented to position its corners

approximately in the middle of each support. The second pair of beams was
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fastened by pushing each beam firmly against the plate and tightening the

rear set screws. The forward set screws were then tightened to lock the

support beams into position.

Although this method introduced some compressive stresses in the plate,

Reed1, who performed a similar experiment for rigid corner supports, assumed

that the effect of the compressive force was negligible, since it approxi-

mated a point load which would produce a small average stress in the entire

plate. Appendix D describes the calibration of the support system which

relates the stanchion position L , to the measured stiffness of the support

beams.

3.1.3 Determination of Plate Modes

Once the stiffness of the support system was measured, the plate was

excited by a magnetic transducer, B§K No. MM 0002, powered by a beat fre-

quency oscillator, B§K Type 1022. Small pieces of steel foil were attached

to the plate at six different positions for excitation. The expected mode

shapes for a square plate with rigid supports were known, and are presented

in Figure 14. From these predicted mode shapes, the positions of maximum

plate amplitude for the first eight plate modes were determined. These

were chosen to be the positions of excitation illustrated in Figure 14.

At each of these six positions a hole was tapped in the base plate so the

transducer could be fastened at this position.

A framework was attached to the base plate which held a capacitive

pickup on a sliding track so it could be positioned over any part of the

plate. The output of this pickup was displayed on an oscilloscope so that

the plate amplitude was observable. The pickup was positioned over the
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transducer in order to observe the maximum plate amplitude. Figure 3 shows

the plate exciter and pickup equipment in operation. The plate modes were

determined by observing the plate amplitude for resonances as the frequency

was varied, and tuning in these resonances to read the modal frequencies.

3.1.4 Plate Frequency Measurement

Working with the theoretical results produced in Chapter II, for each

value of the support stiffness investigated, the plate modes were determined

as in section 3.1.3. As will shortly be explained the plate mode shapes could

not be readily determined by the normal procedure of observing nodal patterns

formed with salt or sand.

Instead, for each position of the exciting force, the expected plate

resonances were known. Therefore, for a given support stiffness and trans-

ducer position, the frequency of the plate mode which should be excited was

determined from the analytically predicted results, and the neighborhood of

this frequency was searched for a plate resonance. When the resonant fre-

quency was determined, this was taken to be the frequency of the expected

plate mode, although the mode shape was not observed at that time. The

transducer and pickup were then moved to the next position and the process

repeated. In this manner, the frequencies of the plate modes were measured

as the support stiffness was varied from 2.5 to 95.

3.2 Determination of Mode Shape Variation with Stiffness

3.2.1 Program Goals

Early investigations of the experimental apparatus showed that the experi-

mental plate was too stiff to vibrate with enough amplitude to form nodal

patterns with small salt particles. In order to bounce the salt grains, the
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local plate acceleration,! w(*,y) GDn | , must exceed one gravity. Due

to the limited power of the transducer and the stiffness of the plate, only

for the fourth and sixth plate modes were the amplitude and frequency both

large enough to obtain nodal patterns.

To remedy this lack of information on the plate vibration, holographic

interferometry was used to determine the plate mode shapes. Basically,

holography measures the path length differences between two interfering light

beams, and can therefore detect displacements on the order of a wavelength of

visible light, which is of the order of one ten-thousandth of an inch.

To measure dynamic displacements, a type of holography known as time-

average holographic interferometry is employed. This method can be thought

of as measuring the displacement between the maximum excursions of the plate

as a double exposure photograph. For more detailed information on holography,

see Appendix F, or references 9, 10 and 11.

3.2.2 Holographic Bench Arrangement

This section assumes some prior knowledge of holography in discussing

the optics of this experiment. Due to the relatively large size of the ex-

perimental plate, and the relatively low power of the eight milliwatt continu-

ous wave laser used, difficulties were anticipated in obtaining good holograms

of the entire surface. Therefore this experiment was designed to observe only

one-quarter of the plate's surface, and the symmetrical properties of the

square plate are utilized in interpreting the entire plate motion.

The base plate of the experiment was modified slightly so that it could

be clamped to the holographic bench in a vertical position. Figure 6 shows

the position of the vibrating plate and the optical equipment on the bench

(scale 1:12). Essentially four factors influenced the experimental design.
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The large size of the base plate compared to the bench width hindered

the setup, and in order to clamp the plate securely, it had to be placed in

the middle of the bench and the laser beams deflected to makeshift bench

extensions. The hologram had to be located so there was open area behind

it in the laboratory in which the camera could be set up to photograph the

holographic images. With the hologram and plate positions set, the spatial

filters, which first focus, then diffuse the laser beams had to be set far

enough away from the hologram and the plate so they provided even illumin-

ation. The prisms and the beam splitter were then positioned to bring

the object and reference beams to their respective filters so the total

path lengths of these two beams are almost equal. The optical path lengths

should be equalized in order that the two beams remain coherent with re-

spect to each other.

In setting up the experiment the surface of the experimental plate was

first lightly sandblasted to provide a diffuse optical surface. Black

draftsman's tape was used to mark the plate axes around the quadrant to be

hologrammed (see Figure 15). The plate supports were adjusted to provide

maximum stiffness, K^^'-IOO > in the hope of obtaining rigid support

mode shapes. The plate was vibrated using the same equipment described

in section 3.1, but the capacitive pickup and framework were removed so as

not to interfere with the optics.

3.2.3 Experimental Procedure

The experimental results of section 3.1 were used to approximately lo-

cate the various plate modes to be hologrammed. Since the capacitive pickup

was removed from the system the resonant frequencies were tuned in by ear

with the transducer operating at maximum power. The voltage was then adjusted
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so the plate vibration could barely be detected with the finger tips. For

modes five, six and seven, no vibration could be felt and the transducer out-

put was adjusted to provide between six and ten fringe orders.

Initially, filters were used so that the light intensity due to both

the object and reference beams was equal over the entire surface of the photo-

graphic plate. Later it was found that brighter pictures were obtained when

the filters were removed and the reference beam was approximately 30% more

intense than the object beam. Once the laser was adjusted a shutter positioned

in front of the laser was closed to cut off the beam.

The experiment was performed in a light and vibration baffled lab. After

all lights were blacked out, a photographic plate, Kodak Type 649-F, was in-

stalled in the hologram holder, and the laser shutter was opened for the pre-

viously determined exposure time, with the plate vibrating the entire time.

With the shutter closed, the exposed plate was carried into the darkroom,

developed, and hung up to dry.

It was found that even a slightly damp plate obscured the holographic

image, and the plate should be completely dry when viewed. Since the holo-

gram reproduces the object beam exactly, the virtual image of the object is

located at the object's original position. To photograph the image, focus

a camera with high speed film on the object, then turn off all lights and

illuminate the hologram only with the reference beam. It should be noted

that even holograms which appear dark to the naked eye can register holo-

graphic patterns if the camera shutter is left open long enough.

During the course of experimentation, it was found that small changes

in the experimental setup could have significant effects on plate exposure
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times, object and reference beam intensities, and the darkness of the holo-

gram which effected photographic times. Although it is extremely difficult

to recreate holographic results with different equipment, there follows a

brief description of the experimental procedure used.

A typical hologram was produced in the following manner using the

equipment listed in Appendix A. The reference beam from the eight milliwatt

laser was adjusted to be approximately 30% more intense than the reflected

object beam (readings of 12 and 9 respectively on a Goffen Luna Pro light

meter). The photographic plates were exposed for 50 to 55 seconds, developed

for 5 minutes in Kodak D-19 Developer, fixed for 5 minutes using standard

Kodak Fixing Agents, and washed in a solution of ethyl alcohol and water

(1:1). Pictures of the holographic image were taken using Polaroid Type

57 Film (3200 ASA). The exposure time varied from 2 to 5 minutes depending

on the darkness of the developed photographic plate.

As was previously stated, this discussion describes the experimental

procedure used assuming a prior knowledge of holography. Further discussion

here is not relevant to this investigation, and Appendix F or the references

listed may be consulted for a more detailed presentation of the background,

theory, and applications of holographic interferometry.
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CHAPTER IV

EXPERIMENTAL RESULTS

4.1 Frequency Variation with Stiffness

4.1.1 Introduction

The only previously published results relating plate frequency to support

stiffness for corner discrete elastic supports were presented by Dowell2.

Dowell only presents results for the fundamental plate mode, however, so the

only available theory with which to compare the experimental results is that

presented in Chapter II. The agreement between the measured plate frequencies

and the analytically calculated frequencies is close enough to substantiate

both theory and experiment despite the absence of an additional source for

comparison.

Figures 8 through 13 compare the measured values of plate frequency with

support stiffness against both theoretical results for mass less spring supports

and simple beam supports. As expected, the experimental results are in

closer agreement with simple beam theory, which is a more realistic model

of the plate support system.

Within limits, the results presented in this section are repeatable. The

major limitation of the experimental program proved to be determining the sup-

port stiffness. For the stiffness range 23.5 < K- 1 59, the seven data points

corresponded to changes in support position of one-eighth of an inch. For

changes this small, errors of up to 25% could go unnoticed. The amount of

error obviously depends on the precision of the experimenter, but the nature

of the experimental apparatus, coupled with the small support changes necessary,

must allow for some experimental error in setting the support stiffness.



Two courses of action are open to the experimenter. For each value of

support stiffness investigated, the support system could be readjusted until

frequencies consistent with theory and other measured frequencies are obtained.

This method would furnish experimental results exhibiting a constant trend,

although the method of determining support stiffness may vary.

The experimental method used in this investigation was to set the supports

for the largest stiffness recorded using the procedure described in section

3.1.2. The plate frequencies were measured and the support stiffness reduced

to the next desired stiffness level following the same procedure. In this

manner, a set of plate frequencies are generated for the entire stiffness

range using identical methods for each value of support stiffness. Although

certain data points may not exactly follow the general experimental trend,

the data set presented is as a whole more consistent.

The data presented in this section are the experimental frequencies

measured having the fewest deviations from the general trend of the data.

For most of the plate modes presented in Figures 8 through 13, plate fre-

quencies for support stiffness K,-3 =59, appear lower than the other mea-

surements would predict, and frequencies corresponding to K.3 = 23.5, appear

higher than the general trend. This is presumably caused by errors in

determining these support stiffnesses, and the support system is actually

softer in the first case, and more rigid in the second case, than the stiff-

ness calibration indicated.

4.1.2 Comparison with Theory

The frequency vs. stiffness variation of the first plate mode is illus-

trated in Figure 8. The largest quantitative difference between experiment
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and theory is 5%. For stiffnesses of Ks < 2.0 , the agreement between ex-

periment and theory is excellent, although for larger stiffnesses the theoreti-

cal results appear to be conservative. The qualitative agreement is good how-

ever, and energy methods like the Rayleigh-Ritz analysis used are expected to

overestimate system eigenvalues.

The experimental results presented in Fig. 9 follow the same pattern

as the fundamental mode frequencies. As the support stiffness is varied, the

frequency of modes two and three increases qualitatively with the theoretical

result assuming the support beams to be stiff rods with tip masses. The max-

imum quantitative difference is 4%, and the experimental and theoretical

results are in better agreement for Ks < 30 > than for higher stiffnesses

where the theoretical results overestimate the experimental.

It should be noted that for Ks < 2.5 , the experimental frequencies are

bracketed between theoretical results for massless spring supports, and simple

beam with tip mass supports. This indicates that lumping the beam mass into

one point mass at the plate corner may be a crude approximation overestimating

the correction needed to account for vibration of the support beams.

The experimental results presented in Fig. 10 prove that the frequency

of the fourth plate mode is independent of the support stiffness. This was

predicted by theory, but there is a large discrepancy in the magnitude of the

plate frequency. This, however, seems to be an inaccuracy of the analysis,

since Reed1 predicts K^ = 19.6, and the measured frequency was found to be

K^ = 19.3. Again, the theory is conservative.

The fifth plate mode shows the best correlation between experiment and

theory. The maximum differential between experimental frequency and the

predicted value plotted on Fig. 11 is 2%. For most values of the support
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stiffness, the measured plate frequency is higher than that predicted by assum-

ing the support beam to be a flexible rod with tip mass, but less than the

theoretical frequency for a plate on mass less spring supports. This con-

firms the assumption that lumping the beam mass is an overestimation of the

support vibration correction.

The experimental plate frequencies plotted in Fig. 12 behave in a manner

similar to that of Fig. 11, but the discrepancy between theory and experiment

is greater for the sixth mode as opposed to the fifth plate mode. The largest

quantitative difference is 5%.

Plate modes seven and eight exhibit the worst correlation between theor-

etical and experimental results as shown in Fig. 13. The experimental plate

frequencies plot as a smooth curve over the entire stiffness range, and are

in reasonable agreement with theory for \^^ < 20. For higher stiffnesses,

however, theoretical analysis exceeds the experimental results by about 10%.

4.1.3 Discussion

As has previously been mentioned, and will be more fully discussed in

Appendix C, there are inaccuracies in the theoretical solution which could

easily be the source of the behavior of modes seven and eight. Section 2.2.1

discusses how the higher the plate mode, the slower the mode to approach

its rigid support frequency. Referring to the table in section 2.2.3, the

values of theoretical stiffness for K5 = 100 as percentages of the fre-

quencies predicted in Leissa8 for rigid supports are: mode one, .936; modes

two and three, .857; mode five, .808; mode six, .840; modes seven and eight,

.995.

These percentages should decrease as the mode number increases. There-

fore, although only the end points of the theoretical curves are being
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discussed, it seems that theory for the sixth plate mode slightly overestimates

previous theory, and should therefore overestimate the experimental results.

Similarly, the theoretical analysis for modes seven and eight predicts fre-

quencies significantly higher than that indicated by Leissa. Thus the ex-

perimental frequencies for these modes would hopefully be in better agreement

with an improved theoretical calculation.

In general, there appears to be excellent agreement between the experi-

mental results and the theoretical analysis modelling the support beams as

springs with point masses at the plate corners. Discrepancies are observed

at high stiffnesses due to the conservative nature of the Rayleigh-Ritz

analysis, and for high plate modes due to inaccuracies in the theoretical

computations.

4.2 Plate Mode Shapes

4.2.1 Introduction

One of the advantages of holographic interferometry over conventional

node line analysis, is that relative peak-to-peak vibration amplitudes can

be measured over the entire plate surface. Originally, it was intended to

quantitatively compare plate mode shapes for rigid and soft plate support

systems. This proved to be impossible, however, since holograms showed modes

two and three and modes seven and eight to be coupled. Due to the low in-

tensity of the laser beam, a clear hologram of the first mode, which has no

bright node lines, could not be obtained over the entire plate quadrant.

The only remaining plate mode whose shape would be significantly effected

by a stiffness variation was the sixth mode.

Fortunately, the sixth mode node lines could be obtained by bouncing
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glass beads on the plate surface in its horizontal position. Thus the plate

mode shapes were investigated holographically only for approximately rigid

supports ( K5 = 400). Figures 18 and 21 show the variation in node line

position for modes four and six as the support stiffness is changed from

K5 = 400 to K5 = 5. Since the fourth mode is independent of the support

stiffness, the node lines are the same for both stiffness values. Figure 21

shows that as the support stiffness is decreased the diameter of the circular

node line of the sixth plate mode increases from about 58% of the plate

width to 76% of the plate width.

Figures 16, 17, 19, 20, 22 and 23 are photographs of the hologram mode

shapes. To interpret these mode shapes, Fig. 15 should be consulted to

determine the plate center, support position, and axes system for the plate

quadrant photographed. The theoretical frequencies and mode shapes are pre-

sented in Fig. 14. The frequencies of the observed mode shapes compare

favorably with the theoretical frequencies, and the mode shapes will be

discussed in the following section.

4.2.2 Analysis of Mode Shapes

The mode shape of the first plate mode is shown in Fig. 16. Appendix F

describes how nodal lines of the plate vibration are distinguished by very

bright interference fringes, and as the amplitude of the plate vibration

increases, the intensity of the light fringes decreases. There are no node

lines in the plate fundamental mode, and the hologram is consequently so

dark that the center fringe orders are barely observable. To photograph

the hologram, the center of the plate was artificially lightened to pro-

vide a better picture.
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The observed mode shape agrees with that predicted in Fig. 14. The plate

displacement is zero at the support position, and increases towards the center

of the plate. Due to the darkness of the hologram, it was impossible to de-

termine whether the maximum displacement amplitude occurred at the exact

plate center.

Figure 17 shows the observed mode shape of the second plate mode. This

antisymmetric-symmetric mode should exhibit a node line along the entire Y

axis. The observed node line originates in the negative X , negative Y

quadrant of the plate (refer to Fig. 15 nomenclaturej, crosses the Y axis

near the plate center, and continues into the positive X , positive Y

quadrant.

This mode shape is disappointing but explainable. If the position of

the exciting force was slightly off the desired location, or if the corner

supports were not all identically stiff, a coupled mode could be excited.

If this coupled mode was a combination of antisymmetric-symmetric mode two

and symmetric-antisymmetric mode three, which both have identical frequencies,

the coupled mode shape could be as that observed. An attempt to examine the

mode shape of mode three produced no additional information, since that mode

also appeared coupled and no nodes were visible in the quadrant hologrammed.

The mode shape of the fourth plate mode, Fig. 19, is exactly as antici-

pated. The node line begins at the plate corner, and follows the diagonal

to the plate center, where node lines from the other corners also end.

The node lines of the fifth plate mode do not precisely match the

theoretical mode shape. Figure 20 shows the node lines do not follow the X

and Y axes as theory predicts, but form two hyperbolas in the positive X ,

positive Y and negative X , negative Y plate quadrants. These hyperbolas
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intersect, and follow the axes at a distance of about one-eighth the plate

width from the center. This deviation from the expected mode shape could

be caused by unequal support stiffness allowing slight plate vibration at

the center.

The sixth plate mode, Fig. 22, exhibits the clearest node line. The

measured node line is a circle, as is predicted by theory, with a diameter

equal to 64% of the plate width. The maximum amplitude of this mode is

observable at the plate center, where the intensity is low due to the rela-

tively large fringe order at that point.

Following the same analysis used in discussing the mode shape of mode

two, Fig. 23 shows the mode shape of mode seven to be coupled with that of

the eighth plate mode. One node line should follow the negative Y axis,

and the second should begin at the plate corner and curve upwards to inter-

sect the positive Y axis. Instead, these lines are skewed in a counter-

clockwise direction, presumably due to a combination of effects stemming

from uneven support stiffnesses or an improperly placed driving force.

4.2.3 Discussion

Although the original program of analytically measuring the exact mode

shapes for various stiffnesses could not be completed, holography was

shown to be a useful experimental tool. Even though the skewed mode shapes

for the coupled modes could provide no useful displacement measurements,

this does not mean that the modal frequency measurements were in error.

Theoretical investigation showed that 20% variations in the values of

the stiffnesses of the individual corner supports had negligible effect on

the modal frequencies as long as the average stiffness of the four supports
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remained constant. This mode shape investigation indicates that the plate

mode shapes are more dependent on the stiffness of the individual plate

supports than the frequencies of the plate modes.

An extensive holographic investigation could determine and isolate the

source of the mode couplings, and obtain clearer, measurable holograms. This

investigation would involve a great amount of time and expense, however, for

the production of a single hologram takes one hour from exposing the plate

until the hologram is dry enough to be examined. Real-time holography

might be used, in which a hologram of the stationary object is made, and

replaced in its exact original position. Interference fringes are then

observable as the plate is vibrated due to interference with the processed

hologram. Effects of adjusting the corner supports would be instantaneously

observable without producing time-average holograms of unseen vibrations.

However, clear photographs may still require time-averaged hologram production

(see Ref. 10).
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This study did not completely accomplish its original objective: to

experimentally investigate the vibration of a plate on discrete elastic

supports. It was found that the support system interacted with the plate

for soft supports, and the vibration of the experimental support beams

effected the vibration of the plate. Given this experimental limitation,

a theoretical analysis was developed which successfully predicted the

plate vibration for the first five plate modes. For higher plate modes,

the theoretical analysis was shown to be somewhat inaccuate, presumably

due to computational difficulties involving small differences between

large numbers.

While the experimental apparatus did not successfully provide massless

elastic supports to the experimental plate under all conditions, it did

approximate point corner supports well. The apparatus produced consistent

and reproducible results, with the major limitation being the experimenter's

accuracy in setting the support stiffness.

Holographic interferometry proved to be a useful tool in investigating

plate vibrations. The applications of holography were not deeply investi-

gated, and more experience with the technique, coupled with more refined

equipment could probably produce better mode shape pictures.

5.2 Recommendations

The results of this investigation leave four areas open for further

research. Firstly, a theoretical analysis should be developed which accurately



predicts the plate frequencies for high modes and stiffnesses. Secondly,

a new experimental apparatus should be designed for which vibrations of

the support system do not violate the assumptions of massless elastic

supports. Two possible supports recommended are: 1) an optimization of

the beam support dimensions to provide minimum stiffness with maximum fre-

quency, and 2) further development of the wire support system investigated

in Appendix E. The width and depth of the support beams could be adjusted

to provide maximum fundamental frequencies for desired stiffness values,

but this would have a small effect, and the same problems would be encoun-

tered for slightly softer supports. Since the mass of the support wires

were substantially less than the corresponding mass of the support beams,

this method of support might have less effect on plate vibrations. The

last recommendation for future research is that a more extensive investi-

gation of the plate modes using holographic interferometry be undertaken

to determine the source of mode shape irregularities in the apparatus.
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GENERAL VIEW OF EXPERIMENTAL EQUIPMENT
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PLATE AND SUPPORT SYSTEM

FIGURE 2



SIDE VIEW OF PLATE EXCITER
AND DISPLACEMENT TRANSDUCER

FIGURE 3



a) DETAIL OF PLATE CORNER

b) DETAIL OF SUPPORT BEAM EDGE

FIGURE 4



MAGNIFIED VIEW OF PLATE
AND SUPPORT BEAM JUNCTION

FIGURE 5
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APPENDIX A

EQUIPMENT LISTING

Frequency Analysis

1. Oscillator - Bruel and Kjaer, Type 1022

2. Magnetic transducer - Bruel and Kjaer, No. MM 0002

3. Capacitive pickup - Bruel and Kjaer, No. MM 0004

4. Microphone Amplifier - Bruel and Kjaer, Type 2603

5. Oscilloscope - Tektronix, Type 502

6. Measuring Microscope - Gaertner Scientific, No. M103

Mode Shape Analysis

1. Laser - Spectra - Physics Model 120, Helium-Neon C.W. Laser, 8 mw

2. Beam Splitter - Jodon Engineering Associates, Inc. UBA 200 Variable

Beam Splitter

3. Prisms - A. Jaegers Optics

4. Spatial Filters - Jordon Engineering.Associates, Inc. Model LPSF-100

5. Spectroscopic Plates - Kodak Type 649-F backed glass plates

6. Holographic Bench - One ton welded steel, pneumatic isolating
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APPENDIX B

RAYLEIGH-RITZ ANALYSIS

The theoretical evaluation of the modal frequencies of the plate was

performed by applying the Rayleigh-Ritz method to an energy approach utiliz-

ing Lagrange's Equations. The major part of this analysis is taken from

Dowel I1*.

Considering a flat plate, the elastic potential energy in cartesian

coordinates is

(.-»

where, for an isotropic plate

~Dx = TV = "D
D, = OTJ
D,y"VJT>

The kinetic energy is

T= J. ))«T\(TF/ dx.dy CB-2)

Applying a Rayleigh-Ritz approximation to the energy relations, expand the

plate deflection

- * Q M tm Mm I I J I rw - fc q m ( t j lm ( x . v J (B-3)



Substituting this relationship into the energy expressions

U - "i m n K,™ qm Qn (B-4)

T = 1 m n Mmn Qm Qn (B-5)

where

- - ,y y ^y xy 9x3^" ^ x j d x d (B-6)

" j) m U K-) dx.dy (B-7)

In choosing the plate mode shapes, products of free-free beam modes were

used due to the orthogonality of these modes, and the simplifications they

introduced into the analysis. Let

CB-8)

where X.^ (x l and Y.^y('y ) are free-free beam modes in the K and V

directions, and*

™x
 = '» • ' , !̂MAX

•^y -T I,. • , MRMAX

m ~ I; .. . , MMAX x MRMAX

*Due to the two-dimensional nature of the problem, for each mode number m,
there exist two related indices rr x̂ and m^ associated with each respective
dimension.
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Substituting (B-8) into (B-6) and (B-7)

) X^x (x)

d *y

Cy)
xy dx dy dx d Jdydy (B-9)

M - \S „ Y ANY / ^ v v V / \ i i
mn )) raArnx(x; I™ C^y )/n (x) My (y ; d x d v (B-10)// y r j; i

In this analysis, the orthogonal mode shapes were choosen so that

$Xm,MXn,MdY =0 m^n.

L. rr>y rn . •= riy

Therefore, (B-9) and (B-10) can be simplified
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where M is the plate mass and <bmn is the dirac delta function.

> \ r o r > ~ Dx L rn 0 m rv

+ - n _ y
)) j/ U, dx * dy* Tmy Oy ) A nx (SO

dx^ix) cnm f,j dx n x g) dYoJ^)] .
y r/x -^ -- a^ --- ^ J d x d y (B-14)

These generalized mass and stiffness terms are for the plate alone, but

can easily be expanded to handle the support conditions. This analysis is

concerned with the effect of point stiffnesses and masses on the natural

modes of a plate. The energy due to these point support characteristics

can be incorporated into the analysis as additional generalized mass and

stiffness terms.

Consider a translational spring with stiffness Ka , located at a

point (x5 , y«j ). The elastic energy contribution of the spring will be

J. i, if \2. K, w U,, ys; CB-15)

The additional generalized stiffness term will be of the form

Kmn " k< Ym OWyi) Yn (xs, y,,)
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If a point mass, m^ , was located at point ( Xs , ys ) on the plate's sur-

face, it would have a kinetic energy equal to

w_(*s/ysA
at / CB-17)

The additional generalized mass term will be of the form

m, Vm(x3 j y.,) ft (x,ty.J

It should be noted that neither the total generalized mass or stiff-

ness matrices are necessarily symmetric. It is convenient to symmetrize

these matrices in the following manner. Let
<">•' \/ * i/ .
K,'mn . 2

M mn - 2 (B-19)

These new mass and stiffness matrices are symmetric, and can be used in

place of the unsymmetric matrices without changing the energy expressions

as shown below

U = £ 1 <
V

Z ^ ^ r r ^ C r r n (B-20)
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Thus, combining (B-16) and (B-18) with (B-13) and (B-14) and symmetrizing

with (B-19) , the energy expressions for the plate and its support system

are

I / / "^
U = ~Z < < K m« ̂ /n ,r'n

T- i

Thus system equations can be obtained using Lagrange's equations

d ,

and (B-21) . They are

i M, --1....MMAX MRMAX (B-23)

or, in matrix notation

r~̂  -i r ~)

0 (B-24)

To find the normal vibrational modes of the system, assume simple harmonic

motion

,»t

therefore
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CB-25)

Equation (B-25) can be treated as a standard eigenvalue problem and solved

for the characteristic eigenvalues, plate frequencies, and eigenvectors,

and plate mode shapes.
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APPENDIX C

COMPUTER EVALUATION

The computer analysis used to predict the variation in the plate natural

modes with support stiffness possessed some inherent difficulties which com-

plicated the theoretical analysis. The primary difficulty was that for cer-

tain values of support stiffness, and depending on the number of beam modes

used in the approximation, the program failed while attempting to handle

small differences between large numbers.

All calculations were performed using double precision, so a more careful

numerical evaluation of the problem would have involved a major overhaul of

sophisticated mathematical techniques to solve the eigenvalue problem set up

in Appendix B. Since the purpose of this investigation is primarily experi-

mental, and the computer analysis was intended to be a reference point for

the experimental results, the program was not rewritten. Instead, a calcu-

lation procedure was established which generated frequency vs. stiffness

curves which were acceptable to the author, but which cannot be regarded as

authoritative results. The agreement between the experimentally determined

plate frequencies and the computer calculated predicted frequencies is very

good, with the exception of the second symmetric-antisymmetric pair of modes,

K7 g . Considering the theoretical calculation procedure, it is likely that

the computer analysis cannot predict higher modes accurately, and the ob-

served discrepancy should not be attributed to a fault in the experimental

apparatus.

The initial analysis did not subdivide the problem into doubly-symmetric,

symmetric-antisymmetric, and doubly-antisymmetric plate modes. Consequently,



if m free-free beam modes were used in both the x and y directions, the

first m plate modes were analyzed. It was found that as m increased,

the frequency of the fundamental mode did not converge to a limit as would

be expected, but began to diverge as m exceeded eight beam modes.

It was assumed at this point that the lack of convergence was due to

finite terms in the stiffness matrix which should be negligible for decoupled

plate modes. The plate system was therefore physically uncoupled as previously

described. Thus rr\ symmetric beam modes in each direction were used to cal-

culate no doubly-symmetric plate modes. The fundamental frequency of the

plate was again found to diverge when four symmetric modes were used in the

calculation.

The fundamental mode diverged more rapidly with the number of modes for

lower stiffnesses, than for rigid supports. Consider the eigenvalue problem

for very low stiffness, Kj" I . The matrix to be analyzed, (-cc2CK] * CKl )>

is shown below for M = 2.

4 -X

7.5

7.5

117

7.5

515 -TV

14

-42

7.5

14

515 -*

-42

117

-42

-42

4600 -7v

The first diagonal element is very small compared to the other diagonal

elements. Since the system eigenvalues are related in magnitude to their

corresponding diagonal elements, significant figures of the first eigenvalue

are lost in the analysis due to the large size of the other diagonal elements
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and corresponding eigenvalues. As m , and the size of the matrix, increases,

the larger diagonal elements become increasingly more dominant, and the solu-

tion for "X, fails. For larger stiffnesses, the K,; element is larger com-

pared to the other diagonal elements, and more modes must be added to drive

the solution to divergence.

Once the nature of the problem was determined, a solution still needed

to be found. Numerical techniques could be applied to the problem to equal-

ize the size of the diagonal elements of the matrix under consideration.

The standard eigenvalue routine should then be usable in solving for the

plate frequencies. However, developing a general technique that would work

for different matrix sizes and relative numerical values would prove to be

a substantial amount of work for an experienced programmer.

Instead, the following analysis was applied. Leissa8 gives the modal

amplitude coefficients for the free plate modes. They are tabled below

where Am represents the relative amplitude of the combination of symmetric

mode X with antisymmetric mode Y, .o 1

K_

All

A13

A31

A33

b

1.0

.0378

.0378

-.00435

K.

Aoo
A02

A20

A22

4

0

1

-1

0

K. K
b /,»

.0

.0

.0

.0

A

A

A

A

00

02

20

22

0

1

1

-

.0

.0

.0

.0236

A

A

A

A

01

03

21

23

0.0

-.0682

1.0

.0760

If two beam modes are used in each direction to calculate the system mass

and stiffness matrices, then the first row and column of the matrices repre-

sent the combination of the first beam modes used in each direction, and the
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fourth row and column represents the combination of the second beam modes

used in each direction.

Looking at the mode shape coefficients in the above table, it can be

seen that for the second doubly-symmetric (K.) and first doubly-antisymmetric

(K.) modes, the fourth mode combination has negligible effect on the plateo

frequency, and the fourth row and column of the eigenvalue matrix can be

eliminated in the computation. Thus for these modes, and also for the first

doubly-symmetric and symmetric - antisymmetric modes, the fourth row and

column of the mass and stiffness matrices have been eliminated from the four-

by-four matrices for the eigenvalue calculation. However, for the third

doubly-symmetric (K,) and second symmetric-antisymmetric (K_ 0) modes,
o /, o

the fourth modal combination is significant, and entire four-by-four mass

and stiffness matrices must be used in the eigenvalue computation. A

comparison of the computer results with the free plate and rigid point

support results presented in Leissa is presented in section 2.2.3.

The comparison with Leissa was close enough so that the computer pro-

gram was not rewritten. There remains, however, a certain element of

doubt regarding the computer output since convergence was never achieved.

As was previously mentioned in section 2.1.3, plate eigenvalues could

not be calculated for the case of rigid point supports because the computer

failed to converge to a value as the support stiffness increased. As Ks

exceeds ten thousand, the fundamental frequency diverges. This problem can

likewise be traced to the computer losing significant figures in the

eigenvalue analysis when it attempts to evaluate small differences between

large numbers for very large stiffnesses. The rigid support plate frequen-

cies could be guessed at from the frequency trend with increasing stiffness,
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but since this experiment is concerned with the transition to zero support

stiffness, the high stiffness region is not of interest and was ignored.

At some point, it would be desirable to change the computer program so large

numbers of modes and large stiffnesses can be employed, but this was not

deemed necessary to the completion of this research.
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APPENDIX D

SUPPORT STIFFNESS CALIBRATION

This section presents the calibration of the bending stiffness of the

support beams as a function of the length of the beam. It would be both

difficult and inconvenient to determine the magnitude of the support stiff-

ness whenever the position of support stanchions is changed. The support

stiffness is therefore measured for different support beam lengths, which

is the parameter measured when the elasticity of the plate supports is

altered.

In this experiment, the vertical spring supporting the plate is actually

the bending stiffness of the horizontal support beams. Linear beam bending

theory can be used to obtain an approximate stiffness vs. length curve, and

this theoretical curve was used to design the support beams to obtain the

desired stiffness range for the experiment. The theoretical result

]f - 3EI

* " L3

is plotted on Figure 26 along with the measured calibration curve.

The actual procedure used to measure the support stiffness for a given

support beam length is as follows. The four support stanchions were locked

to the base plate at a distance L from the corners of the experimental

plate. The support beams were then clamped to the stanchions so that the

projecting length of the beam was ( L + 1/8) inches. The reason for the

additional eighth-inch is that when the plate is inserted into the routed

angles in the support beams, the top edge of each beam overlaps the plate

by 1/8" (see Fig. 5). The plate was therefore effectively supported by

beams of length L



The plate was then fastened into the supporting structure, and a measur-

ing microscope focused on a point on one of the support beams directly under

the corner of the plate. A load 13 was then placed on the center of the

plate, and the vertical deflection of the support beam, 6 , measured with

the travelling microscope. The calibration setup is illustrated in Fig. 25b.

Since the total load must be carried by the four supports, the stiffness

of each beam is :

The beam deflection was measured for different beam lengths, L , and for

different values of the plate load for each L . The average measured

stiffness for each beam length was then calculated, and the results are

presented in Fig. 26. This measured stiffness curve is in qualitative agree-

ment with theoretical curve, but there is a significant quantitative differ-

ence. It appears that for a given stiffness K, , the experimental measure-

ment of the beam length is approximately 1/2" less than the theoretically

calculated length. This relationship holds over the entire range of stiff-

ness considered.

As can be seen from the photograph of the apparatus, Fig. 2, the forward

set screw which physically clamps the support beam to the support stanchion

is located 1/4" inboard of the front edge of the stanchion cover plate. It

therefore appears that the support beam is not effectively clamped by the

cover plate, but by the set screw. This has the effect of adding another

1/4" of flexibility to the support beam. It is reasonable to assume that

the remaining quarter-inch difference between linear beam bending theory and
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the experimentally measured support stiffness curve is similarly traceable

to the manner in which the support beam is clamped to the stanchion.

During the course of the experimental investigation, the support beams

were fastened to the stanchions in the same manner employed in this calibra-

tion, and the equivalent non-dimensional stiffness parameter was determined

from the experimental curve in Fig. 26.
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APPENDIX E

PRELIMINARY EXPERIMENT

The initial design of the experiment utilized the compressive stiffness

of long, thin rods as the elastic plate supports. Four wires would be attached

to the corner of the plate, and the plate would hang suspended from these wires,

which would be clamped into a supporting framework. The support stiffness

would be varied by changing the length of the wire which supported the plate.

There were several obvious advantages which inspired this design. To

fasten the support wires to the plate, 0.02" diameter holes were drilled in

the corners of the plate 1/8" from both sides. Set screws were placed in

the plane of the plate to fasten the wires into these holes. This is a

fairly reasonable approximation to corner-point supports, and is sufficiently

permanent, unlike the support beam method. Thin support wires would be flex-

ible enough so rotation at the plate corners would be allowed. Although the

supports would not be located exactly at the corners, their inboard position

would raise the plate frequencies by no more than one or two percent.

The most desirable feature of this design is that the support stiffness

is directly related to the wire length. The compressive stiffness of a beam

is :

k yAE
L

If fairly uniform wire is used, the product AE will be a constant and can

be experimentally measured. Therefore:

C = (A E)

L



To half the support stiffness, simply double the length of the wires support-

ing the plate. Varying the support stiffness is therefore very easy. The

clamp holding each support wire to the support framework may be loosened,

the wire let out to the proper length, and then clamped. The next support

wire may be adjusted independently of the other wires. With horizontal

support beams, all the beams must be adjusted in unison to support the plate.

There are several disadvantages to this model, some foreseen, and others

discovered during experimentation. In order to test the feasibility of this

configuration, a rough model was constructed and tested. (See Figs. 27 and 28)

Four-by-fours were clamped across a workbench top and to the bottom drawers

of the bench to provide an approximately rigid framework. Four steel wires

diameter = 0.022", were fastened to the wooden beams with "c" clamps, and

a 8" by 8" by 1/8" aluminum plate was hung from the wires. The plate was

driven from below by a magnetic transducer, and the plate response was ob-

served on an oscilloscope as the output of a capacitive pickup suspended

over the plate.

Two major problems were encountered immediately. Firstly, the weight

of the plate did not apply enough tension to the support wires to make them

hang straight with no kinks. Prestressing the wires would not remove the

bends in the wires so the plate would hang flat. It was further observed

that the transverse bending frequency of the wire was within the frequency

range of the plate response. Both these problems would be solved by applying

an initial tension to the support wires. Tension would straighten the sup-

port wires, and would not change the compressive stiffness of the wires if

the tension was not large enough for the wires to behave in a nonlinear

manner. Tension will also raise the bending frequency of the wires through
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the relation

CO

The experiment was therefore modified so that the support wires ran

through the plate and were fastened to turnbuckles on the lower four-by-fours

(see Fig. 28). Tests showed however, that the fundamental frequency of the

plate was altered by the support tension. Before this configuration was

abandoned in favor of horizontal beam supports, the variation of frequency

with support tension was investigated.

The wire constant was measured, and its value was determined to be

C = ( A Oeffective

The average length of the four support wires was measured at

L - 10%"
This corresponds to a non-dimensional stiffness of

The plate was excited at its center, so that the two primary modes excited

would be the first and third doubly symmetric modes, which are classified

as the first and sixth plate modes in this experiment.

The turnbuckles were left completely loose so there was no tension on

the support wires. The frequencies of the two modes were measured, then all

four turnbuckles were rotated a quarter turn. The frequencies were again

measured, and the procedure repeated until the modal frequencies had reached

asymptotic values. The results are presented in Figs. 29 and 30.

Because of the non-rigidity of the support framework, it was not possible

to calibrate the actual tension applied by a full rotation of the tumbuckle,

but there appeared to be a large amount of tension in the support wires by
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the time that the modal frequencies achieved constant values. With a large

amount of tension in the support wires, the wires going through the plate

corners were taut, and the plate was constrained to a condition of no rota-

tion at the corners. Applying tension to the support wires had the same

effect as adding rigid rotational springs at the corners.

This assumption was checked by computer analysis. Figures 31 and 32

show the variation of the first and sixth plate mode frequencies versus

support stiffness for different values of corner rotational stiffness. The

curve Ksr = 100 approximates the condition of rigid rotational springs.

The measured plate frequencies for zero, and for maximum tension are plotted

on these curves for the measured support stiffness, K ,, =26.9.

For the fundamental mode, both the zero tension and maximum tension

cases (zero and rigid rotational springs) agree with the theoretical curves

to within the accuracy limits of this experiment. The sixth mode does not

behave correctly, however. For the given value of the support stiffness,

adding rotational stiffness should have little effect on the frequency.

When tension was applied to the supports, however, the frequency of the sixth

mode jumped 20% from the no tension value, which was only 7% higher than the

theoretical calculation.

This unpredicted frequency shift implied that the wire support model

was still not completely under control, and the design was abandoned in

favor of the horizontal support beam configuration. . Considering the inpromptu

manner in which this preliminary experiment was constructed, the zero-tension

frequencies compare relatively well with the theoretical results. A more

carefully constructed apparatus of this sort could be used for an experimental

investigation involving discrete elastic supports. The only major problem
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would be dealing with the transverse vibration frequencies of the support

wires, which might not have a large effect on the plate modes due to the

very small mass of the support wires. This assumption may be unjustified

and should probably be checked out experimentally.
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APPENDIX F

HOLOGRAPHIC THEORY

An introduction to the basic theory behind holography is necessary in

developing time-averaging theory. Holography involves the recording on a

photographic plate of the interaction between an optical reference beam, and

an object beam which is diffused by the surface of the object under observa-

tion. The photographic plate, which becomes the hologram, records the inten-

sity of the combined light from the two beams which impinges on its surface.

The intensity of the total light beam varies across the plane of the hologram,

and is a maximum when the object and reference beams are in phase and add

their intensities. Similarly, the intensity is a minimum when the two beams

are out of phase and their amplitudes cancel. When the photographic plate

is developed, it becomes a complex diffraction grating which stores the phase

and amplitude relationships of the object beam. Thus when only the refer-

ence beam is directed through the hologram, it is diffracted, and the original

wavefront from the object is completely reconstructed. This reconstructed

wavefront is indistinguishable from the original object beam, and produces

a three-dimensional virtual image of the object at the object's original

position.

Holographic interferometry has proven to be a useful process in detecting

small deformations. Since the hologram stores phase information from the

object beam, it is capable of detecting small changes in the object's position

on the order of one wavelength of the illuminating light.

For double-exposure holography, consider the deflection of a canti-

levered beam under an end load. If the exposure time of the holographic



plate is 2t minutes, expose the plate to light reflecting off the

deformed beam for t minutes, then load the end of the beam and ex-

pose the plate for another t minutes. The hologram superimposes

the phase information from these two wavefronts, and the reference beam

will reconstruct the composite wave after the hologram is developed.

At the base of the beam, where there is no deflection, the two wavefronts

are identical. Further up the beam, it will have deflected a distance A

from its original position. When

= (2m- | m s
t t . . . n (F-l)

where X is the wavelength of the light source, the deformed and undeformed

wavefronts from these points are out of phase, and a dark interference fringe

will appear across the beam where this condition on A holds. If the wave-

length of the laser light is known, the deflection of the beam can be measured

by counting the number of fringes, no , and using equation (F-l).

Time-average holography is an extension of double -exposure holography.

Consider a plate vibrating in a normal mode. Each point on the plate moves

sinusoidally with an amplitude dCx.yV It is intuitively obvious that the

point spends more time near this position of maximum deflection, where the

velocity is zero and the point comes to rest, then it does at an intermediate

point between its two extremes, where the plate is moving with a finite velocity.

If a hologram is made of this vibrating object over a period of time equiva-

lent to several cycles of the plate, then the photographic plate will record

the "time -average" position of each point on the vibrating surface. Since
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each point is at its maximum deflection positions for a longer period of

time than it is at any of its intermediate positions, the hologram will tend

to record the position of each point predominantly at its positive and nega-

tive maximum amplitude positions. Thus the hologram of the vibrating surface

will approximate a double exposure hologram of the plate taken at its two

maximum amplitude positions.

Although the actual hologram will be more complicated than this, it will

behave qualitatively like the double-exposure hologram just described. It

will exhibit fringe patterns, where each fringe represents the displacement

at that point between the two extreme positions of the point. Thus inter-

ference fringes are formed, each fringe being a contour line of equal displace-

ment of the vibrating surface. The nodal lines of the vibrational mode will

be observable as zero order fringe contours, and the maximum displacement

of the surface will be marked by the largest observable fringe order. As

will be shown mathematically, the zero order fringe contour is the bright

contour of maximum intensity.

A mathematical relationship can be derived relating the vibration ampli-

tude of a point on a vibrating surface to the intensity of the fringe pattern

at that point. The analysis presented here is a shortened version of that

presented by Collier, Burchkhardt and Liny in section 15.4.1 of their book.

For a more detailed analysis of time-average holography, this reference is

recommended.

Consider a surface undergoing simple harmonic motion. The displacement

of an arbitrary point can be written as
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COS 60 1 (F-2)

if CJ is the frequency of vibration of the surface, and the surface is

simplified to exclude vibration in the V direction. A geometric analysis

of the optical path of the reflected object beam shows that the instantaneous

phase shift of the scattered light rays is

t I Si'COS t t S i n - -»- S \ f \ s] (F-3)

where X is the wavelength of the laser light and ?>; and <j><> are the

angles made with the surface by the incoming and scattered beams.

Let r andsX*, 0 represent the complex amplitudes of the reference

and object beams, and let r* and S K*,tJ be their complex conjugates. The

intensity of the combined light beam reaching the photographic plate is

* CF-4)

The photographic plate is exposed to the time-average of the intensity.

(T") -- 4^5 i (*. 0 d t (p-5)

Integrating over one vibrational period, T= Ztv/t^

(I) --fcffs (x,0s%f)* r r*^ s'Cx.iVr] d h
/ '̂ )|t X* "^

+ "r~ ) s(x,0 df (F-6)
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The second integral, which contains the original object beam, modified by

the conjugate of the reference beam, is the source of the holographic virtual

image, and the first integral will henceforth be disregarded.

If the transmittance of the developed hologram is proportional to the

time-averaged intensity, then when the hologram is illuminated by the original

reference beam, the observed virtual image of the object will be reconstructed

by the wave ? *

(F-7)

This equation represents the light from any point on the vibrating surface,

and the wavefront from the object at an arbitrary distance from the vibrating
— / ~\

surface. Let £ ( x , t ) represent the complex amplitude of the light arriving

at observation point "^ from point A on the vibrating surface. Define

the complex amplitude to be

jje x p j *, (F-8)

where a(.x ) is the complex amplitude at 'P when the surface is in its

deformed position, and o(ylf) is the phase difference produced by the

surface displacement ft( x, t-j .

Now substitute Sl(v.-t) for s(>,-H) in equation (F-7)

un-

>•••*. '

W. (F-9)

This integral represents interference at point ~P from the undisplaced
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point A with the displaced positions of A during the vibration cycle,

Substitute equation (F-3) into equation (F-9) and evaluate the integral

•3^

exp[-» ̂  D(x)Csinjz( +-SIH ̂ cos totj d fa f

-v T)(x) ( (F-10)

where J^, is the zero-order Bessel function. The light intensity at

will be

r .-.A.

Equation (F-ll) demonstrates that dark fringes in the observed inter

ference pattern of the vibrating membrane correspond to displacements

such that

J0 [ "T" "b^xVsjo^,- f S i n z •' 0 (F-12)

Similarly, bright fringes in the interference pattern correspond to local

maxima of this function. The intensity of the bright fringes is proportional

to the magnitude of these maxima, which decrease as the argument of the func-

tion increases (see Fig. 24b) . Thus as the displacement increases, the intensity
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of the fringe pattern decreases. Nodal lines of zero displacement can there-

fore be identified as fringes of maximum brightness. By evaluating the

Bessel function, the peak-to-peak vibration amplitude of any point on the ob-

ject can be determined by observing the local fringe order of a time-averaged

hologram.
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