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1. Introduction

Consider a hyperbolic conservation law

ut + f(u)x - 0 (1.1)

where u - (u-.,...,u ), f = (f , ...,f ). A convex function T)(U)
-L HI J_ HI «

is called an entropy for (l.l) with entropy flux q(u) if

T](u)t + q(u)x = 0 (1.2)

holds identically for any smooth vector field u(x,t) which satis-

fies (l.l). For differentiate f(u),T](u) and q(u), (1.2) follows

from (1.1) if

j=-

For m = 1, every convex function -T](U) is an entropy
u

for (1.1) with entropy flux q(u) = / T]'(w)df(w). For m = 2,
0

Lax [1] shows that a strictly convex entropy exists, at least

locally. For m > 2} however, (1.3) is overdetermined and the

(*•)
existence of a non-trivial entropy may be attributed only.to a

happy coincidence. Nevertheless, conservation laws that result

from Continuum Mechanics and Thermodynamics are endowed with a

(*v ~ ''
That is, other than a linear function of u.
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"natural" entropy having a physical interpretation. Moreover,
m 2

Lax [1] observes that T](U) = Z u. is an entropy for (l.l) if
T—1 J

J^1

gradf is symmetric.

It is known that the initial value problem for (l.l) does

not have, in general, a global classical solution even if the

initial data are smooth. On the other hand, in the class of weak

solutions (bounded measurable functions which satisfy (l.l) in the

sense of distributions) uniqueness is lost. A number of criteria

motivated by mathematical and/or physical considerations have been

proposed in order to single out an admissible weak solution (for a

survey see, e.g., [2]). In the equations, of gas dynamics, the

requirement that entropy should increase across shocks rules out

nonadmissible solutions. Motivated by this occurence, Lax [1]

postulates the following

Entropy Admissibility_Criterion: Let T)(U) be an entropy for (l.l)

A weak solution u of (l.l) will be admissible if it satisfies

Tj(u)t + q(u)x <0 (1.10

in the sense of distributions.

The following interesting results are established in [1]:

The entropy criterion is compatible with the viscocity criterion.

Furthermore, if T)(U) is strictly convex, the entropy criterion

is equivalent (at least for moderately strong shocks) to Lax's
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shock admissibility condition [3]. Thus, it is reasonable to con-

jecture that in the class of genuinely nonlinear hyperbolic

conservation laws [3] the entropy criterion characterizes completely

the admissible solutions.

The situation is different, however, if (l.l) is not

genuinely nonlinear; in this case the entropy criterion for any

particular entropy does not rule out all solutions that are

disqualified by the viscocity criterion. In order to

circxtmvent this difficulty, Lax [ 1] makes the requirement that (lA)

should be satisfied for every entropy associated with (l.l). This

singles out the admissible solution in the case m = 1 where every

convex function is an entropy.

, . ¥e are not completely satisfied with this approach for two

reasons: First, it seems to be effective only in the case of a

single equation (m•= l) since -systems are not endowed with so

rich a collection of entropies.- Second, its physical motivation

is not very clear-because, even when several entropies are associated

with a system (l.l) resulting from thermodynamics, only one of them

enjoys a physical interpretation^ '. It is plausible that this

"natural" entropy is sufficient to characterize admissible solxitions.

The intent of this work is to put forward an alternative

r#.\
v 'For example... every convex T](U) is an entropy for the model

1 2equation u + uu =0 of gas dynamics but only r|(u.) = 75 11

has a physical interpretation (mechanical energy).



criterion in -which admissibility is dictated by a single entropy.

We.consider the initial value problem for a hyperbolic conservation

law (1.1) with a strictly convex entropy T)(U) and we restrict our

attention to bounded solutions u(x,t) such that u(-,t) e C ([0,T);

[L1(-~«')]m)̂ *\ We then introduce the total entropy at t e [0,T)

Hu(t) = /71(u(x,t))dx . (1.5)
—00

and we postulate the following

Entropy Rate Admissiblity Criterion; A solution u(x, t) will be

called admissible if there is no solution v(x, t) with the property

that for some T e [0,T), u(x, t) = v(x, t) on (-«yoo) x [0, T] and

D H (T) < D H (T).+ v + u^ '

Roughly speaking, we require that for the admissible solution

the total entropy decreases with the highest possible rate. The

physical motivation of the above criterion is clear and its relationship

to Lax's entropy criterion is obvious* we attempt here to establish its

equivalence to other accepted admissibility criteria. The investigation

is hampered by the scarcity of test cases (systems that are hot genuinely

nonlinear for which the problem of admissibility of solutions has been

solved). In any case, we are able to justify the entropy rate criterion

in the following two cases:

( * ) • • • •
The experience with m = 1 indicates that this is the natural
class of functions in which solutions should be sought.



(i) The single equation (m = l) in the class of piece-

(*}wise smooth solutions^ ',

(ii) The system

u. - v =0
t x

'(**)f' > 0, in the class of piecewise constant solutionsv ' .

This article by no means exhausts the subject. Further

investigation is necessary in many directions. The entropy rate

criterion should be tested on broader classes of solutions, in the

case of several space variables, as well as on larger systems. (The

system of equations of gas dynamics (m = 3) is the natural next

candidate.) Possible implications on existence, uniqueness and

stability of solutions should be explored. Finally, the criterion

should be tested on non-hyperbolic conservation laws. The equations

of nonlinear thermoelasticity provide an example of this nature.

(*)As shown by Ballou [4], this class generates the entire class
of weak solutions via completion.

**\ • ~
We have to confine our investigation in this class because the
solution of the Riemann problem [5, 6, 7] is virtually all the
information available at the present for the system (1.6) in
the case it is not genuinely nonlinear. There are indications
(see [7]). that the class of piecewise constant solutions
generates general weak solutions via completion.
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2. The Single Equation

We test here the entropy rate criterion on (l.l), with,

m = 1, in the class of piecewise smooth solutions with smooth

shocks. A function u(x,t) in this class is a weak solution if

(l.l) is satisfied at every point (x,t) where u is smooth while

the Rankine-Hugoniot condition

f(u+) - f(u_) _

u. - u

/ \ (*")holds across each shock x = X(t) . Furthermore, the solution is

admissible if Oleinik's E-condition [8]

f (u) - f (u ) f (u ) - f (u )

.u - u. " * u+ - u_ "

for all u between u and u , is satisfied across every shock.

We compute the rate of entropy decay for a solution

u(x, t). Although every strictly convex function 'n(u) can serve

equally well as an entropy in our investigation, we select

1 2
flCu) = ~o u which is physically motivated (see the footnote on page 3)

(•*) "~~~ "
As is usual, we employ the notation u = u(X(t) - 0,t),

u = u(X(t) + 0,t). For definiteness we assume that for each

t, u(x,t) is continuous from the left. Moreover, shocks x = X(t)

are defined on intervals closed from below and open from above.
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and, in addition, leads to a rate of entropy decay with an interest-

ing geometric interpretation.

Fix T > 0. Assume, for simplicity, that u(x, T) has

compact support in (-°°,°°). Then

GO

uutdx - \ I
oo shocks

•where the summation extends over all shocks that intersect the line

t = t. In the above equation we substitute X(T) from (2.1) and

u, from (l. l). After some computations we arrive at"C

D+Hu(T) = E. A(u_,u+) (2.3)
shocks

where we employ the notation

A(v,w) =\ [f(v)' + f(w)](w-v) - / f(0)da.
v

We observe that A(V, w) is the (signed) area between the graph of

f .and the chord that joins (v, f(v)) with (w, f(w)).

We intend to prove that every solution which satisfies

the entropy rate criterion satisfies also Oleinik1 s E-condition.

To this end, we assume that u(x, t) is a solution such that (2.2)

fails at a point (X(T),T) of a shock x .= x("t) and we construct

another solution with higher rate of entropy decay at T. Without

loss of generality, let (X(T),T) = (0,0). For definiteness,
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assume u_ < u at (0,0) (an analogous argument holds if

u_ •> u ) . Then there is u e (u ,u ) such that

f(u ) - f(u ) f (u ) - f(u )
" <—T ^=- (2-5)u - u u - uo +

which is equivalent to

A(u_,u+) >A(u_,UQ) +A(uQ,u+). (2.6)

We now define

| u(x, t) for x<f'(u)t, t>0
w(x,t) =

u for x>f'(u)t, t > 0

I u for x<f'(u+)t, t>0

o)(x,t) = <
u(x,t) for x > f (u+)t, t > 0

and we consider the initial value problems

f(u ) - f(w(£(t),

f(u) - f(o)(5(t),t))
= °- (2'8)
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By (2.1) .and (2.5),,1(0) < X(0) < £(0) so that (local) solutions
* - • • .

of (2.7) and (2.8) exist and £(t) < X(t) < £(t),- t positive small.

We now set .

v(x,t) =

w(x,t) for x < , t > 0

u for |(t) < x < £(t), t > 0

co(x,t) for <x , t > 0.

It is easily verified that v is a local weak solution of (l.l)

with v(x,0) = u(x,0). Furthermore, using (2.3) and (2.6),

D H (0) < D H (0) which shows that u does not satisfy the

entropy rate criterion.
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3. A System of Two Equations
* "

In this section we test the entropy rate criterion on the

system (1.6) which arises in gas dynamics and nonlinear elasticity.

In this connection, the "natural" entropy (mechanical energy) and

entropy flux are given "by

1 ? u

= | v + / f(a)da, q(u,v) = -vf(u). (3.1)
0

We consider piecewise smooth solutions (u,v)(x,t) with

smooth shocks. For definiteness we assume that for each t ' .

(u,v) (x, t) is continuous from the left. Moreover, shocks x = X(t)

are defined on intervals closed from below and open-from above.

The Rankine-Hugoniot conditions across a shock x = X(t)

here read . .

(u+ - u )X(t) + v+ - v_ - 0

(3.2)
(v+ - v_)X(t) + f(u+) - f(u_) = 0.

Applying the viscocity criterion, Wendroff [5] shows that a solution

is admissible if across every shock x = X(t) the following analog

of Oleinik's E-condition is satisfied for every u between u_

and. u :
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. f(u) - f(u_) f(u) - f(u_)

u.u u -.u
+ • (3.3)

f (u) - f (u ) f (u ) - f (u )
> if X < 0.u - u — u - u

We compute the rate of entropy decay. Fix f > 0.

Assume for simplicity that (u, v)(x,T) has compact support in

(-cojoq). Then , _ _. .

D+H(u,v)(T) = f [vvt + f(u)utl
dx - £ X(T)[| (vj - vf)

+ / f(o)da].
u

Substituting in the above equation u. and v. from (1.6) and
o "t

integrating,

" ̂ u'v^ shocks " T ' -

+ / f(a)da].
u_

Using (3*2) and after some computations we arrive at

shocks

where A(-,0 is again defined "by (2.U)
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We now confine our attention to piecewise constant solu-

tions. We intend to prove that every solution in this class -which

satisfies the entropy rate criterion satisfies also the admissibility

criterion (3.3). To this end, starting from a solution for which

(3.3) fails, we construct another solution with higher rate of

entropy decay. The construction is based on the solution of the

Riemann problem for (1.6) described in [6].

. We .will simplify, considerably the construction, without

affecting its essential features, by treating here only.the

special case where f(u) is piecewise linear.- After this is done,

the reader will have no difficulty to envisage the modifications

that are necessary -in order to carry over the construction to general

f(.u). •

Assume that (u,v) is a piecewise constant solution of

(1.6) SUch that (3.3) fails at a point (X(T),T) of a shock

x = X(t)." Without loss of generality, (X(T),T) = (0,0). For

definiteness, let u < u , v < v (a similar argument goes

through in the remaining cases).

For "'-«»< u-. < Up < oo} ̂(u-.,Up) denotes the convex hull

of the set {(cr,w)|tL < a < u2, w< f(a)}. For a e [û û , let

b(cj u..,Up) = max{wj (a, w) € ̂ (u,Up)}. Note that since 'f(a) is

piecewise linear. 'b(oj u-.,Up) is also'piecewise linear and the

vertices of its graph lie on the graph of f. We now define functions
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u
B(u) = v_> /.[b'(a; û un̂ da, u-e[u_,«), (3.5)

u

F(u) = v+ - / [b'(0; u+,u)]
1/2da, u e [u+,»). (3.6)

u

Leibovich [6, Proposition 2.1] shows that B(U) is

strictly increasing to -H» and F(U) is strictly decreasing to

-co. -We now prove that B(u') < v . Note first that, since (3.3)

fails, the graph of t>(0; u , u ) is not a straight line. Then,

using Schwarz's inequality and (3.2),

2 U+

- vj < / b'(a; u_,u+)da / da =
u u

+ - v_)
2.

It follows that there is a unique (u,v ), witho7 o'

u <u < u , v <v <v, such that+ o' o +'

= B(uQ) = F(uQ). (3.7)

u = u < u < - . . . <u.1<uo and u+ =

< u, < u be the ordinates of the vertices of the graph of

b(a,« -u ,u ) and b(ffj u,u), respectively. We- set

for X = -|i,.. .,-1

(3.8)
for X = 1, ...,v,



V*) = = -H,...,0,...,v - l. (3.9)

It can be shown that X_ < ... < X_1 < 0 < XQ < ••• < XV_-L. We

define

(u,v)(x,t) =

(u,v) (x,t) for x < X (t), t > 0

, t > 0,

(u,v)(x,t) for Xv-1(t) < x, t > 0.

It is easy to prove that (u,v)(x, t) is a piecewise constant

local solution of (1.6) with (u,v)(x,0) = (u,v)(x,0).

A tedious but straightforward estimation yields

-1

Moreover, it is clear that

x=o

Thus, by-(3:4), D+H (0) < D+K, » (0) which shows that the
(u,v) ^v;

solution (û v)(x, t) does not satisfy the entropy rate criterion.
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