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l. Introduction

Consider a hyperbolic conservation law

u, + £(w) =0 (1.1)

maeuz(%P“ﬂﬁ,f=MP”q%L Awmmfmmmnn@}

.is called an entropy for (1.1) with entropy flux q(u) if

= .2
1)y + alw), = 0 (1.2)
holds identically for any smooth vector field wu(x,t) which satis-
fies (1.1). For differentiable f(u),n(u) and q(u), (L.2) follows

from (1.1) if
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yeeeyll (1.3)

~For m =1, every convex function n(u)  is an entropy
for (1.1) with entropy flux q(u) = fuh'(w)df(w). For m= 2,
Lax [1] shows that a2 strictly convex?entropy exists, at least
locally, For m > 2, however, (l.B)Iis overdetermined and the
existence of a non—trivial(*) entropy may pe attributed only to a

happy coincidence. Nevertheless, conservation laws that result

from Continuum Mechanics and Thermodynamics are endowed with a

*)- .
( ‘That is, other than a linear function of w.



m
‘Lax [1] observes that n(u) = 2

"natural” entropy having a physical interpretation. Moreover,
2
u

] is an entropy for (1.1) if
J=1

gradf is symmetric.

It is known that the initial value problem for (1.1) does
not have, in general, a global classical solution éven if the
initial data are smooth. bnvtheApthef hand, in the class of weak

solutions (bounded measurable functions which satisfy (1.1) in the

sense of distributions) uniqueness is lost. A number of criteria

mo%ivated'ﬁy mafhe;aéié;l and/or physicél considerations have been
prbposed in order to single out an admissible weak solution (for a
survey see, e.g., [2]).' In the equations. of gas dynamics, the
requirement that entropy should increase across shocks rules out
nonadmissible solutions. Motivated by this occurence, Lax [1]}

postulates the following

Entropy Admissibility Criterion: ILet n(u) be an entropy for {1.1).

A weak solution u of (1.1) will be admissible if it satisfies

n(w), + a(w) <0 (1.%)

in the sense of distributions.

The followiné interesting results are established in [1]:
The entroﬁy'criterion is compatiblevwith the viscocity eriterion.
Furthermore, if 1(u) is strictly convex, the entropy criterion

is equivalent (at least for mcderately strong shocks) to Lax's




" shock admissibility condition [5];"Thué, it is reésonable to con-
jecture that in the class of genuinely nonlinear hyperbolic_
conservation lawé [ 3] the entropy criterion characterizes complefély
the admissible solutions.

The situation is different, however, if (1.1l) is not
genuinely nonlinear; in this case the entropy criterion for any

particular entropy does not rule out all solutions that are

circumvent this difficulty, Lax [1] makes the requirement that™ (1.k)
should be satisfied for every entropy associated with (1.1). This
..singles out the admissible solution in the case m = 1 where every
convex function is an entropy.
We are not completely satisfied with this approach for two

reasons: First, it seems to be effectiv; only in the case of a
single equation (m = 1) - sinceisystems'ére not endowed with so

rich a collection of entropies. Second, its physical mctivation

ig not very clear heczuse, even when several entropies are associated
with a system (1.1) resulting from thermodynamics, only cne of them
_enjoys a physical interpretation(*). It is plausible that this
"naturel” ghtropyvis gufficient to characte&ize'admissible golutions,

ihe.intent of this work is to put forward an alternative .

*
z~>For example, every convex n(u) 1is an entropy for the model

2
u

o] =

equetion u + uu =0 of gas dynamics but only n{uw) =

has 2 physical interpretation (mechanical energy).



criterion in which admissibility is dictated by a_single_entroPy.
We. consider the initial value problem for a hyperbolic conservation
law (1.1) with a strictly convex entropy n(u) and we restrict our

) .
attention to bounded solutions u(x,t) such that wu(-,t) € C ([0,T);

[Ll(-w,w)]n5(*). We then introduce the total entropy at t € [0,T)

o0

B () = [ n(u(x,t))ax - (15)

-00

and we postulate the following

Entropy Rate Admissiblity Criterion: A solution u(x,t) will be
called admissible if there is no solution v(x,t) with the property
that for some 7t e [O,T), u(x,t) = v(x,t) on (-w,o) X [0,7] and
D+Hv( T) | < D+Hu( 7). | '
) b-Roughly'épeaking; we require that for the admissible solution
the total entropy decreases with fhe higheét possible rate. The |
physical motivation.of the above criterion is clear and its relationship
to Lax's entropy criterion is obvious; we attempt here to establish its
equivalence to other accepted admissibilityvcriteria. The investigation
is hampered by the scarcity of test cases (systems that are not genuinely
nonlinear for which fhe proolem ofAédmissipilify of éolutions has been |
solved). 1In any case, we aro-able to justify tho entropy rate oriterion

in the following two cases:

(‘)The experience - with m = 1 indicates that this is the natural
class of functions in which solutions should be sought.
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(i) The single equation (m = l)- in the class of piece-

wide smooth solutiohs(*).

(ii) The system

ut - vx =0
(1.6) -
VT f(u.)x =0,

f*' >0, ip the class of piecewise constant soiutiohs(**).

This article by.no means exhausts the subject. Further
investigation is necessary in maﬁy directions. The entropy rate
criterion should be tested on broader classes of solutions, in the
~case of several space variaﬁles, as well as on larger systems. (The
system of equations of gas dynamics (m = 3) is the natural next
candidate.) 7Possible implications on existence, uniquéness and
sfability of solutions should be explored. Finally, the criterion

should be tested on non-hyperbolic conservation laws. The equations

of nonlinear thermoelasticity provide an example of this nature.

(*)As shown by Ballou [h], this class generates the entire class
" of weak solutions via completion. )

(**)We have to confine our investigation in this class because the
solution of the Riemann problem [5, 6, 7] is virtually all the
information available at the present for the system (1.6) in
the case it is not genuinely nonlinear. There are indications
(see [7]), that the class of piecewise constant solutions
generates general weak solutions via completion.

az



é.v Thé Sihgie Eqﬁation

AWe'test here the entropy rate criteripn on (1.1), with.
m = 1, in the class of piecewise smooth solutions with smooth
shocks, A function u(x,t) in this class is a weak solution if
(1.1) is satisfied at every point (x,t) where u is smooth while

the Rankine-Hugoniot condition

oy fle) - ) -
X(t) = ——— (2.1)

*
holds across each shock x X(t)( ).‘;Furthermore, the solution is

admissible if Oleinik's E-condition [8]

£(u) - £(u) fw) - £(u)

u-u -~ u - u 4
: - + -

(é.2)

for all u between u_ and wu, is satisfied across every shock.
We compute the rate of entropy decay for a solution

u(x,t). Although every strictly convex function: n(u) can serve

“equally well as an entropy in our investigation, we select

n(u) = % v’ which is physically motivated (see the footnote on page 3)

(%)

As is usual, we employ the notation u_ = u(X(t) - 0,t),
u, = u(X(t) + 0,t). For definiteness we assume that for each

t, u(x,t) is continuous from the left. Moreéver, shocks x = X(t)

are defined on intervals closed from below and open from above.



and, in additibn, leads to a rate of entropy decay with an interest-
ing geomeétric interpretation.
Fix 1> o0. Assume, for simplicity, that u(x,T) has

compact support in (-w,o). Then

D+Hu('r) =f uy, dx -—é % X(T)(uf - u?)

- shocks

t = 1. In the sbove equation we substitute X(t) from (2.1) and

uy from (1.1). After some computations we arrive at

D+Hu( R sho%ksA (u—’ u+) (. 5)

where we employ the notation

A(v,w) =% [£(v) + £(w)](w=v) - fwf(o)do. (2.4)
v
We observe that A(v,w) is the (signed) area between the graph of
f .and the chord that joins (v,f(v)) with (w,f(w)).
Wé intend to prove that every solution which satisfies
the entropy rate criterion satisfies also Oleinik's E-condition.
To this end, we assume that u(x,t) is a s@alution such that (2.2)
fails at a point (X(7),T) of a shock x.= x(t) and we construct
' another solﬁtion with higher rate of entropy decay at T. Without

- loss of generality, let (X(t),1) = (0,0). For definiteness,



assume u_ < u_ at (0,0) (an analogous argument holds if

u > u ). Then there is u_e (u,u ) such that
- + o) -2

f(uo) - f(u) f(u+) - £(u)

u - u u - u (2.5)
o - + -
which is equivalent to -
A,(u_,u+) >A(u_,uo) + A(uo,u+). (2.6)
We now define
u(x, t) for x < f'(u)t, t>0
w(x,t) = : :
u_ for x> f'(u)t, t>0
|( w, for x < f'(uw)t, t>0
w(x,t) = ,
<Lu(x,t) for x> f'(u+)t, t>0
and we consider the initial wvalue problens
. £lu)) - £(w(e(t),t))
N GO I SR G
L r(w) - £(e(L(4), 1)
| ¢(t) = u_ -~ O(E(E), ®) » §(0) =o0.

(2.8)
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By (2.1) and (2.5),,£(0) < %(0) < £(0) so that (Local) solutions .
_'of (2.7) and (2.8) exist and &(t) < X(t) < £(t), t positive small,

We now set

w(x,t) for x < (%) , >0
v(x,t) = u for &(t) <x<¢(t), t>0
w(x,t) for  t(t) <x , t>0.

It ds easily verified that v is a local weak solution of (1.1)
with v(x,0) = u(x,0). Furthermore, using (2.3) and (2.6),
D +HV(O) < D+Hu(0) which shows that u does not satisfy the

entropy rate criterion.
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>3. A Siéfem of Two Equations

-

In this- section we test the entropy rate criterion on the
system (1.6) which arises in gas dynamics and nonlinear elasticity.
In ‘this connection, the "natural" entropy (mechanical energy) and

entropy flux are given by

1 2 M
(u,v) = 3V + [ £(o)do, q(u,v) = -v£(u). (3.1)
0
We consider piecewise smooth solutions (uw,v)(x,t) with
smooth shocks. For -definiteness we assume that for each t
(u,v)(x,t) is continuous from the left. Moreover, shocks . x = X(t)
are defined on intervals closed from below and open.from above.

The Rankine-Hugoniot conditions across a shock x = X(t)

_here read

(3.2)

(U; - u;>X(t) + ﬁ; -iv; =0

(v; - v_)i(t)_+ f(u+) - f(u) = 0.
Applying the viscocity criterion, Wendroff [5] shows that a solution
is admissible if across every shock x = X(t) the following analog
of Oleinik's E-condition is satisfied for every u between wu_

and vu ¢
.i.



- £(u)

S fw)  f(w) - fw)
T TNy if X>0
(3.3)
£(w) - £(u) £(u) - £(u) .
> if X <0
- + -

We compute the rate of entropy decay. Fix T > O.
Assume for simplicity that (u,v)(x,7) has compact support in -

(-,0). Then

o]

D+H(u v)(T) =f [V’V‘t + f(u)ut]dx - Y, 5((1’)[;2L (vf - v?)
? -0 shocks
u
+ [ f(o)do].
u

Substituting in the above equation w, and v, from (1.6) and

t t
integrating,
L1l 2 2
Dﬂ,.H(u v)('r) =- 2 [v+f(u+) - v f(u) + 5 %(7) (v+. )
? shocks |
u
+ .
+ [ f£(o)aos].
u_ .
Using (3:2) and -after some computations we arrive at
D+H(u’V)(T) = Z X(T)A(u_,u+) (3,’4)

shocks

where A(-,-) is again defined by (2.4).



Ve ﬁow-confine 6ur attehtion-to ?iecewise‘constant solu-
tions. ﬁe intend to prove that evéry solution in this class which
satiSfies the entropy rate criterion satisfies also the admissibility
criterion (3.5). To this end; starting from'a solution for which
(3.3) fails, we construct another solution with higher rate of
entropy decay. -The construction is based on the solution of the
Riemann problem for (1.6) described in [6].

; We will éimplify.considerably the construction, without
affecting its essential features, by treating heie oniy_the
-speciallcase where f(u) is piecewise linear. After this is done,
the reader will have no difficulty to envisage the modifications
that are necessary in order to carry over the construction to general
f(u).

Assume that (u,v) 1is a piecewise cpnstant solution of
(1.6) such that (3.3) fails at é point (X(7),T) - of a shock
x = X(t).  Without loss of génerality,,(x(f),r) = {(0,0). For
definiteness, let u < w, v, < v, (a similar argument goes
through in the remzining cases).

For -« < w < u, <, éZ(ul,ﬁg) denotés the convex hull
of the set ((o,w)lul_g o< u, w< £f(o)}. For oe [u,us], let

| b(o; ul,uz) = max{w| (o,w) € E@(ul,ué)}. Note that since (o) is
piecewise'linearg'b(o; u15u2)- is also-piecewise linear and-the

vertices of its graph lie on the graph of f. We now define functions
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u
B(u) =v_+ [ [v' (0 u;,u)]l/Qdc, we [u,»), - (3.5)
u ,
u 1/2
F(u) = v, - J [v'(o; u+,u)] do, ue [u+,w). (3.6)
u

+

Leibovich [6, Proposition 2.1] shows that B(u) is
strictly increasing to +o and F(u) is strictly decreasing to
" -», . "We now prove that B(u;) <'v,. - Note first that, since (3.3)
-fails, the graph of b(c; u;,u+) is not a straight line. Then,

using Schwarz's inequality and (3.2),

u u
+ +

[B(u+) - v__]2 <[ b (o u_,u+)do [ do
. 1 u

[£(e) - 2(w) 1y, - w)

(v, - v_)2.

- It follows that there is a unique ~(ub,vo), with .

< <
u_ u+ u

v <v <v such that
o’ - o} +?

v, = B(y) = Flu). 5.7

Let u_=u

< < = <
- u¥u+l < < u_ uo and u uv u <

1 -1.
< W < u, be the ordinates of the vertices of the graph of

-A”b(c;ﬁu;,ué) and b(g, u4{uo), reépectivelyi We. set

-u,ono,"l

B(ux) for A =
vy, = { , (3.8)
F(u,) for A= 1,...,v,
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| (%) = (v, - vM'l)(uMl - u.}\)-lt, A= Hy 000,00,V - L (3.9)

It can be shown that i_u < e <X

define

/
(u,v) (x,t) for x < X_p(t), t>0

59 (x,) =9 (w,v)  for % _,(t) <x<X(+), t>0,
i N ’ o A= =p+l
(u;v)(x,t) for Xv_l(t) <zx t>0.

-

- It is easy to prove that (G,;)(x,t) -is a piecewise constant

v-1

,‘;.’

“local solution of (1.6) with - (u,v)(x,0) = (u,v)(x,0).

A tedious but straightforward estimation yields-

-1 )
2. ixA(ux;pK+l) < iA(u;,u4).
h=-p

Moreover, it is clear that

v-1
AE; XXA(ux’ux+1)'S 0-

" Thus, by (3.L4); DH_ _ (O)'<‘D“+H('u‘v) (0) which shows that the:
“(u,Vv 4

solution (u,v)(x,t) does not satisfy the entropy rate criterion.
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